content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from time import time def vectorize_timing(n_targets): """ Calculate the rise time of ``n_targets`` targets, return the run time in seconds. """ vega_coord = SkyCoord(279.23473479*u.degree, 38.78368896*u.degree) vega = FixedTarget(name="Vega", coord=vega_coord) target_list = n_targets*[vega] t = Time("2008-02-27 22:00:00") obs = Observer(location=EarthLocation(10*u.deg, 20*u.deg, 0*u.m)) start = time() obs.target_rise_time(t, target_list) end = time() return end-start
287f723d66efedc9eaa874e3b1db9d6724598c10
5,348
import json def get_game(name, all=False): """ Get the game information for a particular game. For response object structure, see: https://dev.twitch.tv/docs/v5/reference/search/#search-games May throw exceptions on network/Twitch error. """ search_opts = { 'query': name, 'type': 'suggest', 'live': 'false', } headers = { 'Client-ID': config['twitch_clientid'], 'Accept': 'application/vnd.twitchtv.v5+json', } res = common.http.request("https://api.twitch.tv/kraken/search/games", search_opts, headers=headers) res = json.loads(res) if all: return res['games'] or [] else: for game in res['games'] or []: if game['name'] == name: return game return None
0946516ca7062087d0dc01daa89b328a26367145
5,349
def compute_correlation_prob_class_target(candidates_per_query_target): """This function computes the overall correlation between the probability of being in the positive class and the value of the target column """ probs_per_query_target = [] gains_per_query_target = [] for key in candidates_per_query_target.keys(): candidates = candidates_per_query_target[key].keys() tmp_probs = [candidates_per_query_target[key][candidate]['pred_prob'] for candidate in candidates] tmp_gains = [candidates_per_query_target[key][candidate][TARGET_COLUMN] for candidate in candidates] probs_per_query_target += tmp_probs gains_per_query_target += tmp_gains return pearsonr(probs_per_query_target, gains_per_query_target)
e0412cfa3940149d88c75f680aab55dece9b36a2
5,350
def get(sql: str): """ execute select SQL and return unique result. select count(1) form meters or select lass(ts) from meters where tag = 'xxx' :return: only value """ result = _query(sql) try: value = result.next() except StopIteration: return None except taos.error.OperationalError: return None if len(value) == 1: return value[0] else: raise MultiColumnsError('Expect only one column.')
10b03b64c0a18b4cd5a3c83e6d101d05566b251c
5,351
def is_fully_defined(x): """Returns True iff `x` is fully defined in every dimension. For more details, see `help(tf.TensorShape.is_fully_defined)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: is_fully_defined: `bool` indicating that the shape is fully known. """ return tf.TensorShape(x).is_fully_defined()
d3d419864fb9d6168adce54afae84f089c9a680c
5,353
def make_shell_context(): """ Creates a python REPL with several default imports in the context of the current_app :return: """ return dict(current_app=current_app)
8db290ccfa51681ac63e8e5d88b29c4e82176f36
5,354
def recommend_hybrid_user( df, model, interactions, user_id, user_dict, item_dict, topn, new_only=True, threshold=3, show=True): """Function to produce user recommendations. Hybrid version of recommend_known_user Args: model: trained matrix factorization model interactions: dataset used for training the model user_id: user ID for which we need to generate recommendation user_dict: Dictionary type input containing user_id as key and interaction_index as value item_dict: Dictionary type input containing item_id as key and item_name as value threshold: value above which the rating is favorable in interaction matrix topn: Number of output recommendation needed new_only: whether to only recommend items that users have not visited show: whether to show the result of function Returns: Prints list of items the given user has already visited Prints list of N recommended items which user hopefully will be interested in """ print('Recommending items for user {}...'.format(user_id)) n_users, n_items = interactions.shape user_features, item_features, user_x, _ = feature_matrix( df, user_id=user_id) scores = pd.Series(model.predict( user_x, interactions.values[user_x, :], user_features=user_features, item_features=item_features)) scores.index = interactions.columns scores = list(pd.Series(scores.sort_values(ascending=False).index)) known_items = list(pd.Series( interactions.loc[user_id, :] [interactions.loc[user_id, :] > threshold].index).sort_values( ascending=False)) if new_only: scores = [x for x in scores if x not in known_items] item_list = scores[:topn] known_items = list(pd.Series(known_items).apply(lambda x: item_dict[x])) recommended_items = list(pd.Series(item_list).apply( lambda x: item_dict[x])) if show is True: print("Known Likes:") counter = 1 for i in known_items: print(str(counter) + '- ' + i) counter += 1 print("Recommended Items:") counter = 1 for i in recommended_items: print(str(counter) + '- ' + i) counter += 1 return item_list
f6f1bb5486dcd3a7848ca006998587a8efce4939
5,355
def i(mu_i, mu_ij, N) : """Calcule le tableau I[i, j]""" return [[I_ij(i, j, mu_i, mu_ij, N) for j in range(0, N)] for i in range(0, N)]
518609bbe91088d94267515ccd07b3fa16525d4f
5,356
import dateutil def format_datetime(this, date, date_format=None): """Convert datetime to a required format.""" date = dateutil.parser.isoparse(date) if date_format is None: date_format = "%d-%m-%Y" return date.strftime(date_format)
0311eb918540dbb0c5751244b89de220073b9dcd
5,357
import numpy def _estimate_melting_levels(latitudes_deg, valid_time_unix_sec): """Estimates melting level at each point. This estimate is based on linear regression with respect to latitude. There is one set of regression coefficients for each month. :param latitudes_deg: numpy array of latitudes (deg N). :param valid_time_unix_sec: Valid time. :return: melting_levels_m_asl: numpy array of melting levels (metres above sea level), with same shape as `latitudes_deg`. """ month_index = int( time_conversion.unix_sec_to_string(valid_time_unix_sec, '%m') ) return ( MELT_LEVEL_INTERCEPT_BY_MONTH_M_ASL[month_index - 1] + MELT_LEVEL_SLOPE_BY_MONTH_M_DEG01[month_index - 1] * numpy.absolute(latitudes_deg) )
d72ac1cf0c23eadb49fc15e55c2a71e273120500
5,358
def edit_municipality(self, request, form): """ Edit a municipality. """ layout = EditMunicipalityLayout(self, request) if form.submitted(request): form.update_model(self) request.message(_("Municipality modified."), 'success') return redirect(layout.success_url) if not form.errors: form.apply_model(self) return { 'layout': layout, 'form': form, 'button_text': _("Save"), 'cancel': layout.cancel_url, }
4d233f97cbc7672b38348eb982cecc68f88ade17
5,359
import copy def operate_monitor(params): """ different apps has different required params""" ret_obj = copy.deepcopy(RET_OBJ) group_id = params.get("group_id", type=int, default=None) app_name = params.get("app_name") operate = "update" if key_exist(group_id, app_name) else "insert" valid_key = "_".join([app_name, operate]) if valid_key not in param_valids: raise CustomException("operate_monitor Not found corresponding valid function for %s" % app_name, 1005) params = param_valids[valid_key](params) api_create(params) if operate == "insert" else api_update(params) ret_obj['msg'] = operate + " monitor successfully." return ret_obj
8d78d61dc44acf2fdcc85a8e3cd4d6fd68c47bf6
5,361
def construct_rgba_vector(img, n_alpha=0): """ Construct RGBA vector to be used to color faces of pcolormesh This funciton was taken from Flamingo. ---------- Args: img [Mandatory (np.ndarray)]: NxMx3 RGB image matrix n_alpha [Mandatory (float)]: Number of border pixels to use to increase alpha ---------- Returns: rgba [Mandatory (np.ndarray)]: (N*M)x4 RGBA image vector """ alpha = np.ones(img.shape[:2]) if n_alpha > 0: for i, a in enumerate(np.linspace(0, 1, n_alpha)): alpha[:, [i, -2-i]] = a rgb = img[:, :-1, :].reshape((-1, 3)) # we have 1 less faces than grid rgba = np.concatenate((rgb, alpha[:, :-1].reshape((-1, 1))), axis=1) if np.any(img > 1): rgba[:, :3] /= 255.0 return rgba
028275930ad4d2a3b98ce32e48021da8ff1e6c43
5,362
def nice(val): """Make sure this value is nice""" if pd.isna(val): return None return val
a2d0c3c64c7c2e01d66d171902e85a3d0056cc73
5,363
import logging import requests import json def retrieve_tree(issue_id): """Retrieve a tree of issues from Redmine, starting at `issue_id`.""" logging.info(f" Retrieving issue #{issue_id} ...") params = { 'issue_id': issue_id } response = requests.get(ISSUES_ENDPOINT, params=params, headers=HEADERS) data = json.loads(response.text) issue = data['issues'][0] issue['children'] = retrieve_children(issue_id) return issue
928d2f3d68e5b9033a062d5e24d3f34f74781357
5,364
from typing import Sequence from typing import Dict def cmdline_args(argv: Sequence[str], options: Sequence[Option], *, process: callable = None, error: callable = None, results: dict = None) -> (Dict, Sequence[str]): """ Take an array of command line args, process them :param argv: argument array :param options: sequence of options to parse :param process: process function :param error: error function :param results: optional dict to contain results (alternative to process callable) :return: parsed results, remaining unprocessed arguments """ def select_option(short_opt, long_opt): selected_option = None for current_opt in options: if short_opt is not None and short_opt == current_opt.short: selected_option = current_opt break elif long_opt is not None and current_opt.long is not None: if current_opt.long.startswith(long_opt) or long_opt.startswith(current_opt.long): selected_option = current_opt break else: if error is not None: if short_opt: error(f"unknown short option '-{short_opt}'") else: error(f"unknown long option '--{long_opt}'") return selected_option def dispatch_option(_option: Option, _opt: str, _args): if _option.fn is not None: return _option.fn(_option, _opt, _args) if callable(_option.fn) else _option.fn if process: tmp = process(_option, _opt, _args) if tmp is not None: return tmp return _args if _option.has_arg else True if results is None: results = dict() index = skip_count = 0 saved_args = [] for index, arg in enumerate(argv): if skip_count: skip_count -= 1 elif arg.startswith('--'): # long arg skip_count = 0 longopt = arg[2:] option = select_option(None, longopt) if option is None: saved_args.append(f"--{longopt}") else: args = None if option.has_arg: if '=' in longopt: longopt, args = longopt.split('=', maxsplit=1) else: skip_count += 1 args = argv[index + skip_count] results[option.long] = dispatch_option(option, longopt, args) elif arg.startswith('-'): skip_count = 0 for opt in arg[1:]: option = select_option(opt, None) if option is None: saved_args.append(f"-{opt}") else: if option.has_arg: skip_count += 1 args = argv[index + skip_count] if option.has_arg else None results[option.long] = dispatch_option(option, opt, args) else: break return results, saved_args + [arg for arg in argv[index + skip_count:]]
c9c78d5a6b5fb6147a8b392647ec9a7e4abc2800
5,365
def trailing_zeroes(value): # type: (int) -> int """Count the number of trailing zeros in a given 8-bit integer""" return CTZ_TABLE[value]
a98968aa38c886de9aa38bae71e52d0e012c432c
5,366
def _calc_WaterCirculation(heat_load, CT_design, WBT, DBT, fixedCWT_ctrl, pump_ctrl, ignore_CT_eff, max_CT_eff=0.85): """Calculates the water circulation loop. Used by simulate_CT(). Parameters: Returns: All (time x CT) arrays as HWT Hot water temp [pint, C] CWT Cold water temp [pint, C] waterflow Water mass flow rate [pint, kg/s]. This is the input water stream to the CTs. Notes: 1) This routine determines the temperatures of the water circuit (HWT, CWT) and the water flow rate to transfer the heat load to the CT. 2) The WBT serves as a lower limit to CWT. (variables: WBT is an iterable (length nTime), whereas WBT2 is a 2d array (time x CT)) """ nTime = len(WBT) nCT = CT_design.shape[0] # .......................................................... 1) Calc CWT (based on WBT) and approach # i) CWT if fixedCWT_ctrl: raise NotImplementedError # This ctrl is not as simple as setting CWT to rated, because what if ambient WBT + min approach is above this? # CWT fixed at design value # CWT = Q_(np.tile(CT_design['CWT [°C]'].values, (Nsimul, 1)), 'degC') else: # CWT from CT performance curves perf_m = CT_design['CT perf slope'].values perf_b = CT_design['CT perf y-int'].values # time x CT CWT = Q_(np.outer(WBT, perf_m) + np.tile(perf_b, (nTime, 1)), 'degC') # ii) Approach WBT2 = Q_(np.transpose(np.tile(WBT, (nCT, 1))), 'degC') approach = CWT - WBT2 # .......................................................... 2) Calc water circulation loop # (calc deltaT, waterflow, assuming loaded) # Forms a time-invariant array with shape (time x CT) and as a Pint quantity tile_and_pint = lambda arr, units: Q_(np.tile(arr, (nTime, 1)), units) HWT_r = tile_and_pint(CT_design['HWT [°C]'].values, 'degC') waterflow_r = tile_and_pint(CT_design['water flow [kg/s]'].values, 'kg/s') if pump_ctrl == 'fixed HWT': deltaT = HWT_r - CWT waterflow = (heat_load / (cp_water * deltaT)).to_base_units() elif pump_ctrl == 'range limit': # Calc range as if HWT = HWT_r deltaT = HWT_r - CWT # i) Adjust deltaT deltaT_min = np.tile(CT_design['Min Range [C°]'].values, (nTime, 1)) deltaT = Q_(np.clip((deltaT).magnitude, deltaT_min, None), 'delta_degC') # ii) Calc water flow waterflow = (heat_load / (cp_water * deltaT)).to_base_units() elif pump_ctrl == 'c': # Calc range & water flow as if HWT = HWT_r deltaT = HWT_r - CWT waterflow = (heat_load / (cp_water * deltaT)).to_base_units() waterflow_units = waterflow.units # i) Adjust water flow # Clip violating values waterflow_ub = np.tile((CT_design['Max per unit water flow'] * CT_design['water flow [kg/s]']).values, (nTime, 1)) waterflow_lb = np.tile((CT_design['Min per unit water flow'] * CT_design['water flow [kg/s]']).values, (nTime, 1)) _wf = np.clip(waterflow.magnitude, waterflow_lb, waterflow_ub) # Back to pint waterflow = Q_(_wf, waterflow_units) # ii) Calc deltaT deltaT = (heat_load / (cp_water * waterflow)).to('delta_degC') else: waterflow = waterflow_r deltaT = (heat_load / (cp_water * waterflow)).to('delta_degC') # .......................................................... 3) No-load fix # This part is necessary for all conrtol modes because the operational limits applied # in the step 2 assumed loaded operation. After this step, water flow and deltaT are final. CT_load_mask = (heat_load != 0).astype('int') # 0 if no load, 1 otherwise waterflow = waterflow * CT_load_mask deltaT = deltaT * CT_load_mask HWT = CWT + deltaT # .......................................................... 4) HWT and CWT adjustment # HWT cannot be less than DBT; in which case, HWT is limited to DBT and CWT rises. # Vectorize DBT into (time x CT) DBT = np.tile(DBT, (nCT, 1)).transpose() HWT = Q_(np.maximum(HWT.magnitude, DBT), 'degC') CWT = HWT - deltaT # .......................................................... 5) Checks and return assert waterflow.units == ureg.kg / ureg.s assert deltaT.units == ureg.delta_degC, deltaT.units # Check that CT efficiency is realistic. In practice, efficiency is 65-70% (normal operating conditions) CT_eff = deltaT / (deltaT + approach) assert ignore_CT_eff or np.all(CT_eff < max_CT_eff), \ "CT efficiency exceeded the limit: {}".format(CT_eff) assert all(obj.shape == (nTime, nCT) for obj in (HWT, CWT, waterflow, deltaT, approach, CT_eff)) # Check energy balance assert np.allclose(heat_load.magnitude, (cp_water * deltaT * waterflow).to(heat_load.units).magnitude) res = { 'HWT': HWT, 'CWT': CWT, 'water flow': waterflow, 'range': deltaT, 'approach': approach, 'CT_eff': CT_eff, } return res
46d4d7e8fb1c718821b9f64fe86fa268e05c459a
5,367
def read_dataset_from_csv(data_type, path): """Read dataset from csv Args: data_type (str): train/valid/test Returns: pd: data """ data = pd.read_csv(tf.io.gfile.glob(path + data_type + "*")[0]) return data
3b5fb8318d6b7297166b381d199fe206f4240d84
5,369
def search_ignore_case(s, *keywords): """Convenience function to search a string for keywords. Case insensitive version. """ acora = AcoraBuilder(keywords, ignore_case=True).build() return acora.findall(s)
bf093c3864353278a9ff91267b0806bc1e2362a3
5,370
from typing import Union from typing import List import pathlib def _prepare_directory(data_dir: Union[str, PathLike], ignore_bad: bool = True, confirm_uids: bool = True) -> List[str]: """ Reorganizes PPMI `data_dir` to a structure compatible with ``heudiconv`` PPMI data starts off with a sub-directory structure that is not conducive to use with ``heudiconv``. By default, scans are grouped by scan type rather than by session, and there are a number of redundant sub-directories that we don't need. This script reorganizes the data, moving things around so that the general hierarchy is {subject}/{session}/{scan}, which makes for a much easier time converting the PPMI dataset into BIDS format. An added complication is that a minority of the scans in the PPMI database are "bad" to some degree. For most, it is likely that there was some issue with exporting/uploading the DICOM files. For others, the conversion process we intend to utilize (``heudiconv`` and ``dcm2niix``) fails to appropriately convert the files due to some idiosyncratic reason that could be fixed but we don't have the patience to fix at the current juncture. Nonetheless, these scans need to be removed so that we can run the batch of subjects through ``heudiconv`` without any abrupt failures. By default, these scans are moved to a sub-directory of `data_dir`; setting `ignore_bad` to False will retain these scans (but be warned!) Parameters ---------- data_dir : str or pathlib.Path Filepath to PPMI dataset, as downloaded from https://ppmi-info.org ignore_bad : bool, optional Whether to ignore "bad" scans (i.e., ones that are known to fail conversion or reconstruction) confirm_uids : bool, optional Whether to check that DICOM study instance UIDs for provided subject are all consistent for a given session. Only applicable if `pydicom` is installed. Default: True Returns ------- subjects : list List of subjects who are ready to be converted / reconstructed with ``heudiconv`` coerce : list List of paths to data directories where subjects / sessions may have had inconsistent study instance UIDs that should be coerced """ if isinstance(data_dir, str): data_dir = pathlib.Path(data_dir).resolve() # location where "bad" scans will be moved if ignore_bad: timeout = data_dir / 'bad' timeout.mkdir(exist_ok=True) else: timeout = None subjects, coerce = [], [] for subj_dir in sorted(data_dir.glob('*')): if not subj_dir.is_dir() or subj_dir.name == 'bad': continue subj, force = _prepare_subject(subj_dir, timeout=timeout, confirm_uids=confirm_uids) subjects.append(subj) coerce.extend(force) return subjects, coerce
2220dec499f875501ab7fd80e4bdcf25c61c641d
5,372
import re def find_log_for(tool_code, form_id, log_f): """Returns an array of lines from log for given tool code (P1,N3,...) and form_id. The form_id is taken from runner - thus we search for formula number ``form_id+1`` """ log = open(log_f,'r') current_f = -1 formula = re.compile('.*ltl:(\d+): (.*)$') tool = re.compile('.*\[([PN]\d+)\]: (.*)$') gather = re.compile('Performing sanity checks and gathering statistics') output = [] for line in log: m_form = formula.match(line) if m_form: current_f = int(m_form.group(1)) curr_tool = '' if current_f < form_id+1: continue if current_f > form_id+1: break m_tool = tool.match(line) if m_tool: curr_tool = m_tool.group(1) if gather.match(line): curr_tool = 'end' if curr_tool == tool_code: output.append(line.strip()) log.close() return output
c28659ce832dcc8ad372188a556699f20c9116db
5,373
def create_patric_boolean_dict(genome_dict,all_ECs): """ Create new dict of dicts to store genome names :param genome_dict: dict of key=genome_id, value=dict of genome's name, id, ec_numbers :param all_ECs: set of all ECs found across all genomes """ ## new format: key=genome, value={EC:0 or 1} ## This makes it easy to write to file with pandas boolean_genome_dict = {} for genome_id in genome_dict: boolean_genome_dict[genome_id] = {} boolean_genome_dict[genome_id]['genome_name'] = genome_dict[genome_id]['genome_name'] boolean_genome_dict[genome_id]['genome_name_with_id'] = genome_dict[genome_id]['genome_name_with_id'] boolean_genome_dict[genome_id]['duplicate'] = genome_dict[genome_id]['duplicate'] for EC in all_ECs: if EC in genome_dict[genome_id]['ECs']: boolean_genome_dict[genome_id][EC] = 1 else: boolean_genome_dict[genome_id][EC] = 0 return boolean_genome_dict
7ab3554bbf705ee8ce99d1d99ff453b06e3d2b53
5,376
def append_ast_if_req(field): """ Adds a new filter to template tags that for use in templates. Used by writing {{ field | append_ast_if_req }} @register registers the filter into the django template library so it can be used in template. :param Form.field field: a field of a form that you would like to return the label and potentially an asterisk for. :returns: The field label and, if it's a required field, an asterisk :rtype: string """ if field.field.required: return field.label + '*' else: return field.label
76e36ead3387729b0536bf84f288c400f376a041
5,377
def getPileupMixingModules(process): """ Method returns two lists: 1) list of mixing modules ("MixingModule") 2) list of data mixing modules ("DataMixingModules") The first gets added only pileup files of type "mc", the second pileup files of type "data". """ mixModules, dataMixModules = [], [] prodsAndFilters = {} prodsAndFilters.update(process.producers) prodsAndFilters.update(process.filters) for key, value in prodsAndFilters.items(): if value.type_() in ["MixingModule", "DataMixingModule", "PreMixingModule"]: mixModules.append(value) if value.type_() == "DataMixingModule": dataMixModules.append(value) return mixModules, dataMixModules
4ee3cc5f7b11e4ad6a846f14dc99e4f82bd04905
5,378
from typing import Hashable from typing import Type from typing import Any from typing import ForwardRef import typing def GetFirstTypeArgImpl_(type_: Hashable, parentClass: Type[Any]) -> Type[Any]: """ Returns the actual type, even if type_ is a string. """ if isinstance(type_, type): return type_ if not isinstance(type_, str): # It's not a type and it's not a str. # We don't know what to do with it. raise ValueError("Bad type argument: {}".format(type_)) forwardRef = ForwardRef(type_, is_argument=False) # pylint: disable=protected-access evaluated = forwardRef._evaluate(GetClassNamespace_(parentClass), None) if evaluated is None: raise RuntimeError("Unable to resolve type {}".format(type_)) if isinstance(evaluated, typing._GenericAlias): # type: ignore if isinstance( evaluated.__args__[0], typing._GenericAlias): # type: ignore # Now use the origin to retrieve the default value type. return evaluated.__args__[0].__origin__ return evaluated.__args__[0] return evaluated
f6fd63c4080af886de24465d866f87e716b49992
5,379
from typing import Callable from typing import Any from typing import Sequence def tree_map_zipped(fn: Callable[..., Any], nests: Sequence[Any]): """Map a function over a list of identical nested structures. Args: fn: the function to map; must have arity equal to `len(list_of_nests)`. nests: a list of identical nested structures. Returns: a nested structure whose leaves are outputs of applying `fn`. """ if not nests: return nests tree_def = tree_structure(nests[0]) if any([tree_structure(x) != tree_def for x in nests[1:]]): raise ValueError('All elements must share the same tree structure.') return jax.tree_unflatten( tree_def, [fn(*d) for d in zip(*[jax.tree_leaves(x) for x in nests])])
8117efd93402fb7ab5e34b4015950c77a24dc038
5,380
def square_area(side): """Returns the area of a square""" # You have to code here # REMEMBER: Tests first!!! return pow(side,2)
e3cc1a0d404c62a9b1d50de63ea924087c77066a
5,381
def match_collision_name_to_mesh_name(properties): """ This function matches the selected collison to the selected mesh. :param object properties: The property group that contains variables that maintain the addon's correct state. :return str: The changed collision name. """ collisions = get_from_collection(properties.collision_collection_name, 'MESH', properties) meshes = get_from_collection(properties.mesh_collection_name, 'MESH', properties) if collisions and meshes: selected_mesh = [mesh for mesh in meshes if mesh.select_get()][0] selected_collision = [collision for collision in collisions if collision.select_get()][0] name = f'{selected_collision.name.split("_")[0]}_{selected_mesh.name}' selected_collision.name = name return name return ''
3658435cdaa21408664a511e3555f3976c1b3614
5,382
def _handle_event_colors(color_dict, unique_events, event_id): """Create event-integer-to-color mapping, assigning defaults as needed.""" default_colors = dict(zip(sorted(unique_events), cycle(_get_color_list()))) # warn if not enough colors if color_dict is None: if len(unique_events) > len(_get_color_list()): warn('More events than default colors available. You should pass ' 'a list of unique colors.') else: custom_colors = dict() for key, color in color_dict.items(): if key in unique_events: # key was a valid event integer custom_colors[key] = color elif key in event_id: # key was an event label custom_colors[event_id[key]] = color else: # key not a valid event, warn and ignore warn('Event ID %s is in the color dict but is not ' 'present in events or event_id.' % str(key)) # warn if color_dict is missing any entries unassigned = sorted(set(unique_events) - set(custom_colors)) if len(unassigned): unassigned_str = ', '.join(str(e) for e in unassigned) warn('Color was not assigned for event%s %s. Default colors will ' 'be used.' % (_pl(unassigned), unassigned_str)) default_colors.update(custom_colors) return default_colors
31ae730af0a184b5de469687b74334960c2939ef
5,383
import logging import warnings def redirect_logs_and_warnings_to_lists( used_logs: list[logging.LogRecord], used_warnings: list ) -> RedirectedLogsAndWarnings: """For example if using many processes with multiprocessing, it may be beneficial to log from one place. It's possible to log to variables (logs as well as warnings), pass it to the main process and then log it with workings filter etc. To log stored logs and warnings, use Args: used_logs (list): List where logs will be stored used_warnings (list): List where warnings will be stored Returns: RedirectedLogsAndWarnings: Object, where you can reset redirect. Logs and warnings you already have from inserted parameters. """ showwarning_backup = warnings.showwarning OUTPUT_backup = config.OUTPUT STREAM_backup = config.STREAM def custom_warn(message, category, filename, lineno, file=None, line=None): used_warnings.append( { "message": message, "category": category, "filename": filename, "lineno": lineno, "file": file, "line": line, } ) warnings.showwarning = custom_warn config.OUTPUT = None config.STREAM = None config.TO_LIST = used_logs return RedirectedLogsAndWarnings( logs=used_logs, warnings=used_warnings, showwarning_backup=showwarning_backup, OUTPUT_backup=OUTPUT_backup, STREAM_backup=STREAM_backup, )
31cda3f036c8438371811b6421a8af2b0f6ac215
5,384
def get_file_picker_settings(): """Return all the data FileUploader needs to start the Google Drive Picker.""" google_settings = frappe.get_single("Google Settings") if not (google_settings.enable and google_settings.google_drive_picker_enabled): return {} return { "enabled": True, "appId": google_settings.app_id, "developerKey": google_settings.api_key, "clientId": google_settings.client_id }
3b1840e22512e1f9112f9fa4dfb6697299aa248a
5,385
def match_subset(pattern: oechem.OEMol, target:oechem.OEMol): """Check if target is a subset of pattern.""" # Atoms are equal if they have same atomic number (so explicit Hydrogens are needed as well for a match) atomexpr = oechem.OEExprOpts_AtomicNumber # single or double bonds are considered identical (resonance,chirality fix) bondexpr = oechem.OEExprOpts_EqSingleDouble ss = oechem.OESubSearch(pattern, atomexpr, bondexpr ) oechem.OEPrepareSearch(target, ss) return ss.SingleMatch(target)
99d8d5d73f465f929b6710ec53b5e01f92c1e229
5,387
def get_quad_strike_vector(q): """ Compute the unit vector pointing in the direction of strike for a quadrilateral in ECEF coordinates. Top edge assumed to be horizontal. Args: q (list): A quadrilateral; list of four points. Returns: Vector: The unit vector pointing in strike direction in ECEF coords. """ P0, P1, P2, P3 = q p0 = Vector.fromPoint(P0) # fromPoint converts to ECEF p1 = Vector.fromPoint(P1) v1 = (p1 - p0).norm() return v1
169b8043a5a385843b92225cba8677ef39bb43a5
5,388
def CP_to_TT( cp_cores, max_rank, eps=1e-8, final_round=None, rsvd_kwargs=None, verbose=False, ): """ Approximate a CP tensor by a TT tensor. All cores of the TT are rounded to have a TT-rank of most `max_rank`, and singular values of at most `eps` times the largest singular value. For the first core and last core this rounding is done using SVD, for all other cores a randomized SVD is employed. Uses `sklearn.utils.extmath.randomized_svd¶` for randomized SVD. After forming the TT, it is optionally rounded again with an accuracy of `final_round`. Parameters ---------- cp_cores: list<np.ndarray> List of CP cores max_rank: int eps: float (default: 1e-8) rsvd_kwargs: dict (optional) keyword arguments to pass to the randomized svd method. verbose: bool (default: False) """ d = len(cp_cores) tt_cores = [None] * d prev_rank = 1 if rsvd_kwargs is None: rsvd_kwargs = {} for alpha in range(d): core = cp_cores[alpha] dim = core.shape[0] if alpha == 0: U, S, V = svd(cp_cores[0], full_matrices=False) elif alpha < d - 1: # Use randomized SVD for middle cores core = np.einsum("ik,jk->ijk", SV, core) core_mat = core.reshape( core.shape[0] * core.shape[1], core.shape[2] ) U, S, V = randomized_svd( core_mat, n_components=max_rank, **rsvd_kwargs ) else: # alpha = d - 1 core = np.einsum("ik,jk->ij", SV, core) U, S, V = svd(core) r = 1 r = max(1, min(max_rank, np.sum(S > eps))) U = U[:, :r] S = S[:r] V = V[:r, :] SV = (S * V.T).T if alpha == d - 1: tt_cores[alpha - 1] = np.einsum( "ijk,kl->ijl", tt_cores[alpha - 1], U ) tt_cores[alpha] = SV.reshape(SV.shape + (1,)) else: tt_cores[alpha] = U.reshape((prev_rank, dim, r)) if verbose: print( f"feature {alpha+1}/{d}, compressed TT core size is {tt_cores[alpha].shape}" ) prev_rank = r if verbose: print("Orthogonalizing") tt = TensorTrain(tt_cores, is_orth=True) if final_round is not None: if verbose: print(f"Rounding to {final_round}...") tt.round(eps=final_round) if verbose: print(f"Final TT rank: {tt.tt_rank}") return tt
54c30dec3f18271050150dfcc443fcbfe74c4df5
5,389
def _create_key_list(entries): """ Checks if entries are from FieldInfo objects and extracts keys :param entries: to create key list from :return: the list of keys """ if len(entries) == 0: return [] if all(isinstance(entry, FieldInfo) for entry in entries): return [entry.key for entry in entries] # this should be a regular list of strings return entries
bb87bbfbfc1856d4041c12d8babaaa8d8ce42249
5,390
def compose_rule_hierarchies(rule_hierarchy1, lhs_instances1, rhs_instances1, rule_hierarchy2, lhs_instances2, rhs_instances2): """Compose two rule hierarchies.""" if len(rule_hierarchy1["rules"]) == 0: return rule_hierarchy2, lhs_instances2, rhs_instances2 if len(rule_hierarchy2["rules"]) == 0: return rule_hierarchy1, lhs_instances1, rhs_instances1 graphs = set(rule_hierarchy1["rules"].keys()).union( rule_hierarchy2["rules"].keys()) homomorphisms = set(rule_hierarchy1["rule_homomorphisms"].keys()).union( rule_hierarchy2["rule_homomorphisms"].keys()) new_rule_hierarchy = { "rules": {}, "rule_homomorphisms": {} } new_lhs_instances = {} new_rhs_instances = {} composition_data = {} # Compose rules for graph in graphs: if graph in rule_hierarchy1["rules"]: rule1 = rule_hierarchy1["rules"][graph] lhs_instance1 = lhs_instances1[graph] rhs_instance1 = rhs_instances1[graph] else: rule1 = Rule.identity_rule() lhs_instance1 = {} rhs_instance1 = {} if graph in rule_hierarchy2["rules"]: rule2 = rule_hierarchy2["rules"][graph] lhs_instance2 = lhs_instances2[graph] rhs_instance2 = rhs_instances2[graph] else: rule2 = Rule.identity_rule() lhs_instance2 = {} rhs_instance2 = {} new_rule, new_lhs_instance, new_rhs_instance, data = compose_rules( rule1, lhs_instance1, rhs_instance1, rule2, lhs_instance2, rhs_instance2, return_all=True) new_rule_hierarchy["rules"][graph] = new_rule new_lhs_instances[graph] = new_lhs_instance new_rhs_instances[graph] = new_rhs_instance composition_data[graph] = data # Compute rule homomorphisms for source, target in homomorphisms: lhs_hom1, p_hom1, rhs_hom1 = rule_hierarchy1["rule_homomorphisms"][ (source, target)] lhs_hom2, p_hom2, rhs_hom2 = rule_hierarchy2["rule_homomorphisms"][ (source, target)] source_data = composition_data[source] target_data = composition_data[target] # H_G -> H_T h_hom = get_unique_map_from_pushout( source_data["h"].nodes(), source_data["rhs1_h"], source_data["lhs2_h"], compose(rhs_hom1, target_data["rhs1_h"]), compose(lhs_hom2, target_data["lhs2_h"]) ) # P*G_1 -> P*T_1 p1_p_hom = get_unique_map_to_pullback_complement( target_data["p1_p1_p"], target_data["p1_p_h"], p_hom1, source_data["p1_p1_p"], compose(source_data["p1_p_h"], h_hom)) # P*G_2 -> P*T_2 p2_p_hom = get_unique_map_to_pullback_complement( target_data["p2_p2_p"], target_data["p2_p_h"], p_hom2, source_data["p2_p2_p"], compose(source_data["p2_p_h"], h_hom)) # Pi_G -> Pi_T pi_hom = get_unique_map_to_pullback( new_rule_hierarchy["rules"][target].p.nodes(), target_data["pi_p1_p"], target_data["pi_p2_p"], compose(source_data["pi_p1_p"], p1_p_hom), compose(source_data["pi_p2_p"], p2_p_hom)) # L_G -> L_T lambda_hom = get_unique_map_from_pushout( new_rule_hierarchy["rules"][source].lhs.nodes(), source_data["lhs1_lambda"], source_data["p1_p_lambda"], compose(lhs_hom1, target_data["lhs1_lambda"]), compose(p1_p_hom, target_data["p1_p_lambda"])) # R_G -> R_T rho_hom = get_unique_map_from_pushout( new_rule_hierarchy["rules"][source].rhs.nodes(), source_data["p2_p_rho"], source_data["rhs2_rho"], compose(p2_p_hom, target_data["p2_p_rho"]), compose(rhs_hom2, target_data["rhs2_rho"])) new_rule_hierarchy["rule_homomorphisms"][(source, target)] = ( lambda_hom, pi_hom, rho_hom ) return new_rule_hierarchy, new_lhs_instances, new_rhs_instances
0cfab451af31bfc7b41d610381efb47e8c5c0fb5
5,391
def expand_tile(value, size): """Add a new axis of given size.""" value = tf.convert_to_tensor(value=value, name='value') ndims = value.shape.ndims return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims)
50adf652fff47418d1f8f1250a2a6d01f712da76
5,392
import logging import requests import time import json import pytz def fetch_exchange(zone_key1='DK-DK1', zone_key2='DK-DK2', session=None, target_datetime=None, logger=logging.getLogger(__name__)): """ Fetches 5-minute frequency exchange data for Danish bidding zones from api.energidataservice.dk """ r = session or requests.session() sorted_keys = '->'.join(sorted([zone_key1, zone_key2])) # pick the correct zone to search if 'DK1' in sorted_keys and 'DK2' in sorted_keys: zone = 'DK1' elif 'DK1' in sorted_keys: zone = 'DK1' elif 'DK2' in sorted_keys: zone = 'DK2' elif 'DK-BHM' in sorted_keys: zone = 'DK2' else: raise NotImplementedError( 'Only able to fetch exchanges for Danish bidding zones') exch_map = { 'DE->DK-DK1': '"ExchangeGermany"', 'DE->DK-DK2': '"ExchangeGermany"', 'DK-DK1->DK-DK2': '"ExchangeGreatBelt"', 'DK-DK1->NO-NO2': '"ExchangeNorway"', 'DK-DK1->NL': '"ExchangeNetherlands"', 'DK-DK1->SE': '"ExchangeSweden"', 'DK-DK1->SE-SE3': '"ExchangeSweden"', 'DK-DK1->NL': '"ExchangeNetherlands"', 'DK-DK2->SE': '("ExchangeSweden" - "BornholmSE4")', # Exchange from Bornholm to Sweden is included in "ExchangeSweden" 'DK-DK2->SE-SE4': '("ExchangeSweden" - "BornholmSE4")', # but Bornholm island is reported separately from DK-DK2 in eMap 'DK-BHM->SE': '"BornholmSE4"', } if sorted_keys not in exch_map: raise NotImplementedError( 'Exchange {} not implemented'.format(sorted_keys)) timestamp = arrow.get(target_datetime).strftime('%Y-%m-%d %H:%M') # fetch real-time/5-min data sqlstr = 'SELECT "Minutes5UTC" as timestamp, {0} as "netFlow" \ from "{1}" WHERE "PriceArea" = \'{2}\' AND \ "Minutes5UTC" >= (timestamp\'{3}\'-INTERVAL \'24 hours\') AND \ "Minutes5UTC" <= timestamp\'{3}\' \ ORDER BY "Minutes5UTC" ASC'.format(exch_map[sorted_keys], ids['real_time'], zone, timestamp) url = 'https://api.energidataservice.dk/datastore_search_sql?sql={}'.format(sqlstr) response = r.get(url) # raise errors for responses with an error or no data retry_count = 0 while response.status_code in [429, 403, 500]: retry_count += 1 if retry_count > 5: raise Exception('Retried too many times..') # Wait and retry logger.warn('Retrying..') time.sleep(5 ** retry_count) response = r.get(url) if response.status_code != 200: j = response.json() if 'error' in j and 'info' in j['error']: error = j['error']['__type'] text = j['error']['info']['orig'] msg = '"{}" fetching exchange data for {}: {}'.format( error, sorted_keys, text) else: msg = 'error while fetching exchange data for {}: {}'.format( sorted_keys, json.dumps(j)) raise requests.exceptions.HTTPError(msg) if not response.json()['result']['records']: raise ParserException( "DK.py", 'API returned no data', zone_key=sorted_keys) df = pd.DataFrame(response.json()['result']['records']) df = df.set_index('timestamp') df.index = pd.DatetimeIndex(df.index) # drop empty rows df.dropna(how='all', inplace=True) # all exchanges are reported as net import, # where as eMap expects net export from # the first zone in alphabetical order if 'DE' not in sorted_keys: df['netFlow'] = -1 * df['netFlow'] # Format output output = [] for dt in df.index: data = { 'sortedZoneKeys': sorted_keys, 'datetime': None, 'netFlow': None, 'source': 'api.energidataservice.dk' } data['datetime'] = dt.to_pydatetime() data['datetime'] = data['datetime'].replace(tzinfo=pytz.utc) data['netFlow'] = df.loc[dt, 'netFlow'] output.append(data) return output
93488b4bc24a6a899232a5a1fd0e694d0747ad12
5,393
def snitch(func): """ This method is used to add test function to TestCase classes. snitch method gets test function and returns a copy of this function with 'test_' prefix at the beginning (to identify this function as an executable test). It provides a way to implement a storage (python module that contains non-executable test functions) for tests and to include different set of functions into different test cases. """ return FunctionType(func.func_code, func.func_globals, 'test_' + func.func_name, closure=func.func_closure)
b8b54d55269951cb3db4c1f45c375ac36cbd3bdf
5,394
def average_h5(path, path_dc): """Return averaged data from HDF5 DC measurements. Subtracts dark current from the signal measurements. Args: - path, path_dc: paths to signal and dark measurement files. Returns: - 2D array containing averaged and DC-subtracted measurement. """ with h5.File(path, 'r') as f: with h5.File(path_dc, 'r') as fdc: arr = (f['data'][...].mean(axis=0) - fdc['data'][...].mean(axis=0)) return arr
8daaa7efcdbaf7137d320407b64a96b73f847289
5,395
def edit_distance(hypothesis, truth, normalize=True, name="edit_distance"): """Computes the Levenshtein distance between sequences. This operation takes variable-length sequences (`hypothesis` and `truth`), each provided as a `SparseTensor`, and computes the Levenshtein distance. You can normalize the edit distance by length of `truth` by setting `normalize` to true. For example, given the following input: ```python # 'hypothesis' is a tensor of shape `[2, 1]` with variable-length values: # (0,0) = ["a"] # (1,0) = ["b"] hypothesis = tf.SparseTensor( [[0, 0, 0], [1, 0, 0]], ["a", "b"], (2, 1, 1)) # 'truth' is a tensor of shape `[2, 2]` with variable-length values: # (0,0) = [] # (0,1) = ["a"] # (1,0) = ["b", "c"] # (1,1) = ["a"] truth = tf.SparseTensor( [[0, 1, 0], [1, 0, 0], [1, 0, 1], [1, 1, 0]], ["a", "b", "c", "a"], (2, 2, 2)) normalize = True ``` This operation would return the following: ```python # 'output' is a tensor of shape `[2, 2]` with edit distances normalized # by 'truth' lengths. output ==> [[inf, 1.0], # (0,0): no truth, (0,1): no hypothesis [0.5, 1.0]] # (1,0): addition, (1,1): no hypothesis ``` Args: hypothesis: A `SparseTensor` containing hypothesis sequences. truth: A `SparseTensor` containing truth sequences. normalize: A `bool`. If `True`, normalizes the Levenshtein distance by length of `truth.` name: A name for the operation (optional). Returns: A dense `Tensor` with rank `R - 1`, where R is the rank of the `SparseTensor` inputs `hypothesis` and `truth`. Raises: TypeError: If either `hypothesis` or `truth` are not a `SparseTensor`. """ if not isinstance( hypothesis, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Hypothesis must be a SparseTensor.") if not isinstance( truth, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)): raise TypeError("Truth must be a SparseTensor.") return gen_array_ops.edit_distance( hypothesis.indices, hypothesis.values, hypothesis.dense_shape, truth.indices, truth.values, truth.dense_shape, normalize=normalize, name=name)
9dfcebb6f49de41c5d5d6bfcc849873f14e2b3f9
5,396
def kl_bernoulli(p: np.ndarray, q: np.ndarray) -> np.ndarray: """ Compute KL-divergence between 2 probabilities `p` and `q`. `len(p)` divergences are calculated simultaneously. Parameters ---------- p Probability. q Probability. Returns ------- Array with the KL-divergence between `p` and `q`. """ m = np.clip(p, 0.0000001, 0.9999999999999999).astype(float) n = np.clip(q, 0.0000001, 0.9999999999999999).astype(float) return m * np.log(m / n) + (1. - m) * np.log((1. - m) / (1. - n))
91567169da22ae42bd90c15292f1699f53a184ab
5,398
def _incremental_mean_and_var(X, last_mean, last_variance, last_sample_count): """Calculate mean update and a Youngs and Cramer variance update. last_mean and last_variance are statistics computed at the last step by the function. Both must be initialized to 0.0. In case no scaling is required last_variance can be None. The mean is always required and returned because necessary for the calculation of the variance. last_n_samples_seen is the number of samples encountered until now. From the paper "Algorithms for computing the sample variance: analysis and recommendations", by Chan, Golub, and LeVeque. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to use for variance update last_mean : array-like, shape: (n_features,) last_variance : array-like, shape: (n_features,) last_sample_count : array-like, shape (n_features,) Returns ------- updated_mean : array, shape (n_features,) updated_variance : array, shape (n_features,) If None, only mean is computed updated_sample_count : array, shape (n_features,) Notes ----- NaNs are ignored during the algorithm. References ---------- T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample variance: recommendations, The American Statistician, Vol. 37, No. 3, pp. 242-247 Also, see the sparse implementation of this in `utils.sparsefuncs.incr_mean_variance_axis` and `utils.sparsefuncs_fast.incr_mean_variance_axis0` """ # old = stats until now # new = the current increment # updated = the aggregated stats last_sum = last_mean * last_sample_count new_sum = _safe_accumulator_op(np.nansum, X, axis=0) new_sample_count = np.sum(~np.isnan(X), axis=0) updated_sample_count = last_sample_count + new_sample_count updated_mean = (last_sum + new_sum) / updated_sample_count if last_variance is None: updated_variance = None else: new_unnormalized_variance = ( _safe_accumulator_op(np.nanvar, X, axis=0) * new_sample_count) last_unnormalized_variance = last_variance * last_sample_count with cupyx.errstate(divide=None, invalid=None): last_over_new_count = last_sample_count / new_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum) ** 2) zeros = last_sample_count == 0 updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros] updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count
8fac3715bed8431f0910bbf7a37d3924afece9c0
5,399
def avg_pds_from_events( times, gti, segment_size, dt, norm="frac", use_common_mean=True, silent=False, fluxes=None, errors=None, ): """Calculate the average periodogram from a list of event times or a light curve. If the input is a light curve, the time array needs to be uniformly sampled inside GTIs (it can have gaps outside), and the fluxes need to be passed through the ``fluxes`` array. Otherwise, times are interpeted as photon arrival times. Parameters ---------- times : float `np.array` Array of times gti : [[gti00, gti01], [gti10, gti11], ...] good time intervals segment_size : float length of segments dt : float Time resolution of the light curves used to produce periodograms Other Parameters ---------------- norm : str, default "frac" The normalization of the periodogram. "abs" is absolute rms, "frac" is fractional rms, "leahy" is Leahy+83 normalization, and "none" is the unnormalized periodogram use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). Here we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars fluxes : float `np.array`, default None Array of counts per bin or fluxes errors : float `np.array`, default None Array of errors on the fluxes above Returns ------- freq : `np.array` The periodogram frequencies power : `np.array` The normalized periodogram powers n_bin : int the number of bins in the light curves used in each segment n_ave : int the number of averaged periodograms mean : float the mean flux """ if segment_size is None: segment_size = gti.max() - gti.min() n_bin = np.rint(segment_size / dt).astype(int) dt = segment_size / n_bin flux_iterable = get_flux_iterable_from_segments( times, gti, segment_size, n_bin, fluxes=fluxes, errors=errors ) cross = avg_pds_from_iterable( flux_iterable, dt, norm=norm, use_common_mean=use_common_mean, silent=silent ) if cross is not None: cross.meta["gti"] = gti return cross
904f43b36380e07e115d23c6677b61bca155d898
5,400
import random def check_random_state(seed): """ Turn seed into a random.Random instance If seed is None, return the Random singleton used by random. If seed is an int, return a new Random instance seeded with seed. If seed is already a Random instance, return it. Otherwise raise ValueError. """ # Code slightly adjusted from scikit-learn utils/validation.py if seed is None or isinstance(seed, int): rng = random.Random(seed) elif isinstance(seed, random.Random): rng = seed else: raise ValueError( "### error: '{}' cannot be used to seed random.Random instance.".format( seed ) ) return rng
347481de01f4a3bba59bc9a2c484c10d4857e1e2
5,401
def chunk(seq, size, groupByList=True): """Returns list of lists/tuples broken up by size input""" func = tuple if groupByList: func = list return [func(seq[i:i + size]) for i in range(0, len(seq), size)]
e7cece99822a01476b46351cebc1345793485cbd
5,402
def registerNamespace(namespace, prefix): """ Register a namespace in libxmp.exempi @namespace : the namespace to register @prefix : the prefix to use with this namespace """ try: registered_prefix = libxmp.exempi.namespace_prefix(namespace) # The namespace already exists, return actual prefix. return registered_prefix except libxmp.XMPError: # This namespace does not exist, that's cool pass try: libxmp.exempi.prefix_namespace_uri(prefix) # Prefix is already used, but not by us. raise NameError("Prefix is already used") except libxmp.XMPError: # This prefix is not used yet, that's cool pass return libxmp.exempi.register_namespace(namespace, prefix)[:-1]
6e7dbed515651f252222a283dc1cda08941fa4c5
5,403
def definition(): """ Lists the parent-child relationships through the curriculum structure. """ sql = """ --Course to session SELECT c.course_id as parent_id, CASE WHEN cc.course_id IS NULL THEN 0 ELSE 1 END as linked, cs.course_session_id as child_id, 'course' as parent, cs.description + ' ' + cast(cs.session as char(1)) as description, -1 as ratio,0 as changed FROM c_course c LEFT OUTER JOIN c_course_session cs on cs.curriculum_id = c.curriculum_id LEFT OUTER JOIN c_course_config cc on c.course_id = cc.course_id AND cc.course_session_id = cs.course_session_id UNION ALL --session to group SELECT a.course_session_id as parent_id, CASE WHEN c.course_session_id IS NULL THEN 0 ELSE 1 END as linked, b.cgroup_id as child_id, 'course_session' as parent, b.description, -1 as ratio, 0 as changed FROM c_course_session a LEFT OUTER JOIN c_cgroup b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_course_session_config c on a.course_session_id = c.course_session_id AND b.cgroup_id = c.cgroup_id UNION ALL --CGroup to component SELECT a.cgroup_id as parent_id, CASE WHEN c.component_id IS NULL THEN 0 ELSE 1 END as linked, b.component_id as child_id, 'cgroup' as parent, b.description, ISNULL(c.ratio, 1) as ratio, 0 as changed FROM c_cgroup a LEFT OUTER JOIN c_component b ON a.curriculum_id = b.curriculum_id LEFT OUTER JOIN c_cgroup_config c on a.cgroup_id = c.cgroup_id AND b.component_id = c.component_id """ return sql
e8dc6a720dcd5f62854ce95e708a88b43859e2cc
5,404
def create_user(strategy, details, backend, user=None, *args, **kwargs): """Aggressively attempt to register and sign in new user""" if user: return None request = strategy.request settings = request.settings email = details.get("email") username = kwargs.get("clean_username") if not email or not username: return None try: validate_email(email) validate_new_registration(request, {"email": email, "username": username}) except ValidationError: return None activation_kwargs = {} if settings.account_activation == "admin": activation_kwargs = {"requires_activation": User.ACTIVATION_ADMIN} new_user = User.objects.create_user( username, email, joined_from_ip=request.user_ip, **activation_kwargs ) setup_new_user(settings, new_user) send_welcome_email(request, new_user) return {"user": new_user, "is_new": True}
afdff23d6ca578ef652872ba11bcfe57264b0a9b
5,405
def prendreTresorPlateau(plateau,lig,col,numTresor): """ prend le tresor numTresor qui se trouve sur la carte en lin,col du plateau retourne True si l'opération s'est bien passée (le trésor était vraiment sur la carte paramètres: plateau: le plateau considéré lig: la ligne où se trouve la carte col: la colonne où se trouve la carte numTresor: le numéro du trésor à prendre sur la carte resultat: un booléen indiquant si le trésor était bien sur la carte considérée """ if getTresor(getVal(plateau,lig,col))==numTresor: prendreTresor(getVal(plateau,lig,col)) return True else: return False
5fa94fb875e34068f4e391c66952fe4cc4248ddf
5,406
def task_get_all(context, filters=None, marker=None, limit=None, sort_key='created_at', sort_dir='desc', admin_as_user=False): """ Get all tasks that match zero or more filters. :param filters: dict of filter keys and values. :param marker: task id after which to start page :param limit: maximum number of tasks to return :param sort_key: task attribute by which results should be sorted :param sort_dir: direction in which results should be sorted (asc, desc) :param admin_as_user: For backwards compatibility. If true, then return to an admin the equivalent set of tasks which it would see if it were a regular user :returns: tasks set """ filters = filters or {} session = get_session() query = session.query(models.Task) if not (context.is_admin or admin_as_user) and context.owner is not None: query = query.filter(models.Task.owner == context.owner) _task_soft_delete(context, session=session) showing_deleted = False if 'deleted' in filters: deleted_filter = filters.pop('deleted') query = query.filter_by(deleted=deleted_filter) showing_deleted = deleted_filter for (k, v) in filters.items(): if v is not None: key = k if hasattr(models.Task, key): query = query.filter(getattr(models.Task, key) == v) marker_task = None if marker is not None: marker_task = _task_get(context, marker, force_show_deleted=showing_deleted) sort_keys = ['created_at', 'id'] if sort_key not in sort_keys: sort_keys.insert(0, sort_key) query = _paginate_query(query, models.Task, limit, sort_keys, marker=marker_task, sort_dir=sort_dir) task_refs = query.all() tasks = [] for task_ref in task_refs: tasks.append(_task_format(task_ref, task_info_ref=None)) return tasks
4d03e8f7ae15411c2cb597aeb06e25cd40c4f033
5,409
def updateAppMonConf(AppID, requestModel): """Update an Application Monitoring Configuration for a given application Args: AppID (str): This is the application ID of the Web App you are interested in. requestModel: This is the data you wish to update and you need to put it in this format: { "enabled": true, "scanUrl": "https://mywebapp.com/directory" } explanation: { enabled (boolean): Enable Application Monitoring , scanUrl (string): Scan Url } Returns: dict: Dictionary with the following layout { "success": true, "errors": [ "string" ] } In the case of a return code 204, the update will take place but you will not get the above layout, instead you will get a custom layout like this: {'Response_Text': u'', 'Status_code': 204} """ url = "https://api.ams.fortify.com/api/v3/applications/{applicationId}/application-monitoring/configuration".format(applicationId=AppID) req = fodRequest() r = req.put(url, params=requestModel) return r #*******************************************************Applications**************************************************************
0b61eae04b79702b2722d0c0bc5dafe48dcdf21f
5,410
def plot_morphology(morphology, order=MORPHOLOGY_ORDER, colors=MORPHOLOGY_COLORS, metastases=None, metastasis_color=METASTASIS_COLOR, ax=None, bg_color='#f6f6f6', **kwargs): """Plots morphology matrix as 2D heatmap. Plots a morphology matrix (typically obtained from the parse_morphology function) as a 2D heatmap. Matrix is expected to correspond with the three categories returned by parse_morphology (ILC, Spindle cell and Squamous). Parameters ---------- morphology : pd.DataFrame Boolean matrix of samples-by-morphologies. order : colors : metastases : pd.DataFrame Optional dataframe (single column) indicating which samples have a metastasis. Used to draw metastases as an extra row in the heatmap. metastasis_color : ax : matplotlib.Axis Axis to use for plotting. bg_color : str **kwargs Any kwargs are passed to seaborns heatmap function. Returns ------- matplotlib.Axis Axis that was used for plotting. """ if ax is None: _, ax = plt.subplots() # Add metastasis data if given. if metastases is not None: morphology = pd.concat([morphology, metastases], axis=1) order = list(order) + [metastases.columns[0]] colors = list(colors) + [metastasis_color] # Sort by rows/columns. morphology = morphology[list(order)] morphology = sort_matrix(morphology, sort_columns=False) # Convert to numeric matrix (for heatmap). num_matrix = pd.DataFrame( { col: morphology[col].astype(int) * (i + 1) for i, col in enumerate(morphology) }, columns=morphology.columns) # Draw heatmap. cmap = ListedColormap([bg_color] + list(colors)) sns.heatmap( num_matrix.T, ax=ax, cbar=False, cmap=cmap, vmin=0, vmax=len(colors), **kwargs) ax.set_xticks([]) ax.set_xlim(0, num_matrix.shape[0]) ax.set_title('Tumor morphology') ax.set_xlabel('Samples ({})'.format(morphology.shape[0])) # Add counts to labels. ax.set_yticklabels( ['{} ({})'.format(k, v) for k, v in morphology.sum().items()][::-1], rotation=0) return ax
62048ced8ede14e9aa505c6e45dd5b196d12297d
5,411
import requests def post(name,url,message,params=None): """Wrap a post in some basic error reporting""" start = dt.now() s = requests.session() if params is None: response = s.post(url,json=message) else: response = s.post(url,json=message,params=params) end = dt.now() if not response.status_code == 200: print(name, 'error:',response.status_code) print(response.json()) return response.json() print(f'{name} returned in {end-start}s') m = response.json() if 'message' in m: if 'results' in m['message']: print(f'Num Results: {len(m["message"]["results"])}') print_errors(m) return m
9180424171cdf4cb7bf16a938d7207a99af0987f
5,413
def get_lin_reg_results(est, true, zero_tol=0): """ Parameters ---------- est: an Estimator A covariance estimator. true: array-like, shape (n_features, n_features) zero_tol: float Output ------ out: dict with keys 'utri' and 'graph' """ est_coef = get_coef(est)[0] est_adj = fill_hollow_sym(est_coef) true_adj = fill_hollow_sym(est_coef) coef_results = compare_vecs(est=est_coef, truth=true, zero_tol=zero_tol) graph_results = compare_adj_mats(est=est_adj, truth=true_adj, zero_tol=zero_tol) results = merge_dicts(coef_results, graph_results, allow_key_overlap=False) return results
0f963c135d0bd74a70714ef47ed6f2b0191df846
5,414
import requests import logging def download_file(requested_url: str) -> str: """Download a file from github repository""" url = f"https://github.com/{requested_url.replace('blob', 'raw')}" resp = requests.get(url) logging.info(F"Requested URL: {requested_url}") if resp.status_code != 200: logging.info(f"Can not download {url}") raise NotebookDownloadException("Can not download the file. Please, check the URL") return resp.text
f96d68843f6291aa3497a6e7a5b1e30e2ea4005e
5,415
import warnings def readBody(response): """ Get the body of an L{IResponse} and return it as a byte string. This is a helper function for clients that don't want to incrementally receive the body of an HTTP response. @param response: The HTTP response for which the body will be read. @type response: L{IResponse} provider @return: A L{Deferred} which will fire with the body of the response. Cancelling it will close the connection to the server immediately. """ def cancel(deferred): """ Cancel a L{readBody} call, close the connection to the HTTP server immediately, if it is still open. @param deferred: The cancelled L{defer.Deferred}. """ abort = getAbort() if abort is not None: abort() d = defer.Deferred(cancel) protocol = _ReadBodyProtocol(response.code, response.phrase, d) def getAbort(): return getattr(protocol.transport, 'abortConnection', None) response.deliverBody(protocol) if protocol.transport is not None and getAbort() is None: warnings.warn( 'Using readBody with a transport that does not have an ' 'abortConnection method', category=DeprecationWarning, stacklevel=2) return d
bbc693fca1536a3699b0e088941d9577de94d8dd
5,416
def is_valid_mac(address): """Verify the format of a MAC address.""" class mac_dialect(netaddr.mac_eui48): word_fmt = '%.02x' word_sep = ':' try: na = netaddr.EUI(address, dialect=mac_dialect) except Exception: return False return str(na) == address.lower()
f8bb59a986773307f803dd52154ec03eaddb8597
5,417
def build_state_abstraction(similar_states, mdp, tol=0.1): """ """ bools = similar_states + np.eye(similar_states.shape[0]) < tol # approximate abstraction if bools.sum() == 0: raise ValueError('No abstraction') mapping, parts = partitions(bools) idx = list(set(np.array([p[0] for p in parts]))) # pick a representative set of states. one from each partition f = construct_abstraction_fn(mapping, idx, mdp.S, len(idx)) # print('Abstracting from {} states to {} states'.format(mdp.S, len(parts))) # print('idx', idx) # print('mapping', mapping) # print('parts', parts) # mapping, parts = fix_mapping(mapping) # print(f) # print(f.shape, abs_mdp.S) abs_mdp = abstract_the_mdp(mdp, idx) # want a way to do this stuff in numpy!? # should calculate the error of the abstraction?! check it is related to tol!? return idx, abs_mdp, f
d4d9354507172ee92ea11c915de0376f0c873878
5,418
def diagram(source, rstrip=True): """High level API to generate ASCII diagram. This function is equivalent to: .. code-block:: python Diagram(source).renders() :param source: The ADia source code. :type source: str or file-like :param rstrip: If ``True``, the trailing wihtespaces at the end of each line will be removed. :type rstrip: bool, optional, default: True :return: ASCII diagram. :rtype: str """ return Diagram(source).renders(rstrip)
2a386b49052a7f4dd31eb4f40dec15d774d86b94
5,419
def eng_to_kong(eng_word: str)-> list[str]: """ Translate given English word into Korean into matching pronounciation, matching the English Loanword Orthography. For example, "hello" will be translated into 헐로. # Panics When given a english word that it cannot translate, `eng_to_kong` will raise a KeyError. Example ```python import konglog def main(): word = "shrimp" print(konglog.eng_to_kong(word)) ``` """ # Parse word into phonemes string for passing to Prolog Query. prolog_arg_aras = "]" for phe in cmudict.dict()[eng_word.lower().strip()][0]: if phe[-1] == '0' or phe[-1] == '1' or phe[-1] == '2': phe = phe[:-1] prolog_arg_aras = "," + phe.lower() + prolog_arg_aras prolog_arg_aras = "[" + prolog_arg_aras[1:] # Execute Prolog query with PrologMQI() as mqi: with mqi.create_thread() as prolog_thread: assert(prolog_thread.query("consult(\"ipa.pl\")")) prolog_res = prolog_thread.query(f"ipa_to_kr(X,{prolog_arg_aras})") # Parse results jamo_lists = [] try: for jls in prolog_res: temp = jls['X'] temp.reverse() jamo_lists.append(temp) except TypeError: raise KeyError jamo_all = [] for jamo_list in jamo_lists: temp_jamo_all = [""] for jamos in jamo_list: if isinstance(jamos, str): for i in range(len(temp_jamo_all)): temp_jamo_all[i] += jamos else: temp = [] for jamo in jamos: for s in temp_jamo_all: temp.append(s + jamo) temp_jamo_all = temp jamo_all.extend(temp_jamo_all) # Combine jamos into Konglish word jamo_all.sort(key = lambda x : len(x)) for jamos in jamo_all: try: return join_jamos(jamos, False) except ValueError: continue
0b0d55fdacdea1493d73de85c21dc9c086352b99
5,420
def socfaker_dns_answers(): """ A list of DNS answers during a DNS request Returns: list: A random list (count) of random DNS answers during a DNS request """ if validate_request(request): return jsonify(str(socfaker.dns.answers))
c1f641e1a0e977363067937487a6455800e6a25c
5,422
def bilin(x, y, data, datax, datay): # --DC """ x, y ARE COORDS OF INTEREST data IS 2x2 ARRAY CONTAINING NEARBY DATA datax, datay CONTAINS x & y COORDS OF NEARBY DATA""" lavg = ( (y - datay[0]) * data[1,0] + (datay[1] - y) * data[0,0] ) / (datay[1] - datay[0]) ravg = ( (y - datay[0]) * data[1,1] + (datay[1] - y) * data[0,1] ) / (datay[1] - datay[0]) return ( (x - datax[0]) * ravg + (datax[1] - x) * lavg ) / (datax[1] - datax[0])
59a740f65c7187a08cdc09cef8aa100b01c652cf
5,424
import array def slice_data(xdata, ydata, x_range): """ crops or slices the data in xdata,ydata in the range x_range on the x axis """ data = zip(xdata, ydata) sliced_data = [d for d in data if d[0] >= x_range[0] and d[0] <= x_range[1]] return array(zip(*sliced_data))
faf90781e2f073e74a7b11cd80d7c127c0db1bb3
5,425
def best_low_rank(A, rank): """ Finding the best low rank approximation by SVD """ u, s, vh = np.linalg.svd(A) s = np.sqrt(s[:rank]) return u[:, range(rank)] @ np.diag(s), np.diag(s) @ vh[range(rank)]
5df8197fc0113bfa74a36803445a6a300766880f
5,426
def get_bangumi(uid: int, type_: str = "bangumi", limit: int = 114514, callback=None, verify: utils.Verify = None): """ 自动循环获取追番/追剧列表 :param callback: 回调函数 :param uid: :param type_: :param limit: :param verify: :return: """ if verify is None: verify = utils.Verify() bangumi = [] page = 1 count = 0 while count < limit: data = get_bangumi_raw(uid=uid, pn=page, type_=type_, verify=verify) if len(data["list"]) == 0: break bangumi += data["list"] if callable(callback): callback(data["list"]) count += len(data["list"]) page += 1 return bangumi[:limit]
b5a2a553a3bf13ded7eb30c53ce536b4a2b9e043
5,427
def local_cases_range(start_date='2020-06-01',end_date='2020-07-01',areaname='Hartlepool'): """calculate new cases in a time range""" try: q=DailyCases.objects.filter(areaname=areaname,specimenDate=start_date)[0] start_total=q.totalLabConfirmedCases q=DailyCases.objects.filter(areaname=areaname,specimenDate=end_date)[0] end_total=q.totalLabConfirmedCases return end_total-start_total except Exception as e: log.info(e) return None
747f03f2ef9925f7dc252798bb7f3844cd31d2c0
5,428
def ecal_phisym_flattables(process, produce_by_run : bool=False): """ Add the NanoAOD flat table producers. This functions adjust also the output columns. Should be called once nMisCalib has been set in the EcalPhiSymRecHitProducer """ process.load('Calibration.EcalCalibAlgos.EcalPhiSymFlatTableProducers_cfi') nmis = process.EcalPhiSymRecHitProducerRun.nMisCalib.value() for imis in range(1, nmis+1): # get the naming and indexing right. if imis<nmis/2+1: var_name = 'sumEt_m'+str(abs(int(imis-(nmis/2)-1))) var = Var(f'sumEt({imis})', float, doc='ECAL PhiSym rechits: '+str(imis-(nmis/2)-1)+'*miscalib et', precision=23) else: var_name = 'sumEt_p'+str(int(imis-(nmis/2))) var = Var(f'sumEt({imis})', float, doc='ECAL PhiSym rechits: '+str(imis-(nmis/2))+'*miscalib et', precision=23) if produce_by_run: setattr(process.ecalPhiSymRecHitRunTableEB.variables, var_name, var) setattr(process.ecalPhiSymRecHitRunTableEE.variables, var_name, var) flattable_sequence = cms.Sequence( process.ecalPhiSymRecHitRunTableEB + process.ecalPhiSymRecHitRunTableEE + process.ecalPhiSymInfoRunTable ) else: setattr(process.ecalPhiSymRecHitLumiTableEB.variables, var_name, var) setattr(process.ecalPhiSymRecHitLumiTableEE.variables, var_name, var) flattable_sequence = cms.Sequence( process.ecalPhiSymRecHitLumiTableEB + process.ecalPhiSymRecHitLumiTableEE + process.ecalPhiSymInfoLumiTable ) return flattable_sequence
f6f48ab2e5b1df6a3e58c5e3130be56861eb1384
5,429
def nx_add_prefix(graph, prefix): """ Rename graph to obtain disjoint node labels """ assert isinstance(graph, nx.DiGraph) if prefix is None: return graph def label(x): if isinstance(x, str): name = prefix + x else: name = prefix + repr(x) return name return nx.relabel_nodes(graph, label)
c8f05052c613adc17423637186867b70db31e70d
5,430
def infected_asymptomatic_20x80(): """ Real Name: b'Infected asymptomatic 20x80' Original Eqn: b'Infected asymptomatic 20+Infected asymptomatic 80' Units: b'person' Limits: (None, None) Type: component b'' """ return infected_asymptomatic_20() + infected_asymptomatic_80()
fd9cba446672bf8ebcc5fe2fc7f2f961129bdb71
5,431
def biosample_table_data(): """Return a dictionary containing the expected values of the BioSample Table""" columns = [ "id", "BioSample_id", "BioSampleAccession", "BioSampleAccessionSecondary", "BioSampleBioProjectAccession", "BioSampleSRAAccession", "BioSampleOrganism", "BioSampleStrain", "BioSampleSubmissionDate", "BioSampleComment", ] metadata = [ "1", "12991206", "SAMN12991206", "", "", "SRS5502739", "TestOrganism1", "TestStrain1", "2019-10-08T07:15:03.950", "", ] table_dict = {} # Populate the dict with data for i in range(0, len(columns)): key = columns[i] value = metadata[i] table_dict[key] = value return table_dict
65e5d5bb5416a8f113100562fba8f2e6fd66796a
5,433
def grid_adapter3D( out_dim=(100.0, 100.0), in_dim=(50.0, 50.0), z_dim=-10.0, out_res=(10.0, 10.0, 10.0), in_res=(5.0, 5.0, 5.0), out_pos=(0.0, 0.0), in_pos=(25.0, 25.0), z_pos=0.0, in_mat=0, out_mat=0, fill=False, ): """ Generate a grid adapter. 3D adapter from an outer grid resolution to an inner grid resolution with gmsh. Parameters ---------- out_dim : list of 2 float xy-Dimension of the outer block in_dim : list of 2 float xy-Dimension of the inner block z_dim : float z-Dimension of the whole block out_res : list of 3 float Grid resolution of the outer block in_res : list of 3 float Grid resolution of the inner block out_pos : list of 2 float xy-Position of the origin of the outer block in_pos : list of 2 float xy-Position of the origin of the inner block z_dim : float z-Position of the origin of the whole block in_mat : integer Material-ID of the inner block out_mat : integer Material-ID of the outer block fill : bool, optional State if the inner block should be filled with a rectangular mesh. Default: False. Returns ------- result : dictionary Result contains one '#FEM_MSH' block of the OGS mesh file with the following information (sorted by keys): mesh_data : dict dictionary containing information about - AXISYMMETRY (bool) - CROSS_SECTION (bool) - PCS_TYPE (str) - GEO_TYPE (str) - GEO_NAME (str) - LAYER (int) nodes : ndarray Array with all node postions elements : dict contains nodelists for elements sorted by element types material_id : dict contains material ids for each element sorted by element types element_id : dict contains element ids for each element sorted by element types """ out = gmsh( gmsh_grid_adapt3D( out_dim, in_dim, z_dim, out_res, in_res, out_pos, in_pos, z_pos ), import_dim=3, ) out["material_id"] = gen_std_mat_id(out["elements"], out_mat) if fill: element_no = [ int(in_dim[0] / in_res[0]), int(in_dim[1] / in_res[1]), int(abs(z_dim) / in_res[2]), ] mesh_in = rectangular( dim=3, mesh_origin=in_pos + (z_pos + min(z_dim, 0.0),), element_no=element_no, element_size=in_res, ) mesh_in["material_id"] = gen_std_mat_id(mesh_in["elements"], in_mat) dec = int(np.ceil(-np.log10(min(min(in_res), min(out_res)))) + 2.0) * 2 out = combine(mesh_in, out, dec) return out
9c14a4f9b27ec14cdc550f81fd861207a5674616
5,434
from typing import Sequence from typing import Tuple from typing import Mapping from typing import Any from functools import reduce from typing import cast def concat_dtypes(ds: Sequence[np.dtype]) -> np.dtype: """Concat structured datatypes.""" def _concat( acc: Tuple[Mapping[Any, Any], int], a: np.dtype ) -> Tuple[DTYPE_FIELDS_T, int]: acc_fields, acc_itemsize = acc fields = dtype_fields(a).throw() intersection = set(acc_fields).intersection(set(fields)) if intersection != set(): raise ValueError(f'dtypes have overlapping fields: {intersection}') return ( { **acc_fields, **{k: (d[0], d[1] + acc_itemsize) for k, d in fields.items()} }, acc_itemsize + a.itemsize ) # dtype.fields() doesn't match dtype constructor despite being compatible return np.dtype(reduce(_concat, ds, (cast(DTYPE_FIELDS_T, {}), 0))[0])
bef7d8ebe30f41297adbf8f1d8de9b93f646c8f4
5,435
def mutation(param_space, config, mutation_rate, list=False): """ Mutates given configuration. :param param_space: space.Space(), will give us information about parameters :param configs: list of configurations. :param mutation_rate: integer for how many parameters to mutate :param list: boolean whether returning one or more alternative configs :return: list of dicts, list of mutated configurations """ parameter_object_list = param_space.get_input_parameters_objects() rd_config = dict() for name, obj in parameter_object_list.items(): x = obj.randomly_select() single_valued_param = False param_type = param_space.get_type(name) if param_type == 'real' or param_type == 'integer': if obj.get_max() == obj.get_min(): single_valued_param = True else: if obj.get_size() == 1: single_valued_param = True mutation_attempts = 0 while x == config[name] and single_valued_param == False: x = obj.randomly_select() mutation_attempts += 1 if mutation_attempts > 1000000: break rd_config[name] = x parameter_names_list = param_space.get_input_parameters() nbr_params = len(parameter_names_list) configs = [] n_configs = nbr_params if list else 1 for _ in range(n_configs): indices = rd.permutation(nbr_params)[:mutation_rate] for idx in indices: mutation_param = parameter_names_list[idx] # Should I do something if they are the same? temp = config.copy() temp[mutation_param] = rd_config[mutation_param] configs.append(temp) return configs
38427cfee226589d72117f102d2befdbe8ebbcc0
5,436
from typing import Union from typing import Callable from typing import Optional from typing import Tuple def uncertainty_batch_sampling(classifier: Union[BaseLearner, BaseCommittee], X: Union[np.ndarray, sp.csr_matrix], n_instances: int = 20, metric: Union[str, Callable] = 'euclidean', n_jobs: Optional[int] = None, **uncertainty_measure_kwargs ) -> Tuple[np.ndarray, Union[np.ndarray, sp.csr_matrix]]: """ Batch sampling query strategy. Selects the least sure instances for labelling. This strategy differs from :func:`~modAL.uncertainty.uncertainty_sampling` because, although it is supported, traditional active learning query strategies suffer from sub-optimal record selection when passing `n_instances` > 1. This sampling strategy extends the interactive uncertainty query sampling by allowing for batch-mode uncertainty query sampling. Furthermore, it also enforces a ranking -- that is, which records among the batch are most important for labeling? Refer to Cardoso et al.'s "Ranked batch-mode active learning": https://www.sciencedirect.com/science/article/pii/S0020025516313949 Args: classifier: One of modAL's supported active learning models. X: Set of records to be considered for our active learning model. n_instances: Number of records to return for labeling from `X`. metric: This parameter is passed to :func:`~sklearn.metrics.pairwise.pairwise_distances` n_jobs: If not set, :func:`~sklearn.metrics.pairwise.pairwise_distances_argmin_min` is used for calculation of distances between samples. Otherwise it is passed to :func:`~sklearn.metrics.pairwise.pairwise_distances`. **uncertainty_measure_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier. Returns: Indices of the instances from `X` chosen to be labelled; records from `X` chosen to be labelled. """ uncertainty = classifier_uncertainty(classifier, X, **uncertainty_measure_kwargs) query_indices = ranked_batch(classifier, unlabeled=X, uncertainty_scores=uncertainty, n_instances=n_instances, metric=metric, n_jobs=n_jobs) return query_indices, X[query_indices]
eb95ad79f4326d89c94a42aa727e2e3c338e021e
5,437
import re def only_digits(raw, force_int=False): """Strips all not digit characters from string. Args: raw (str or unicode): source string. Kwargs: force_int (boolean): not to seek for dot, seek only for int value. Returns: int or float: in dependence of "raw" argument content. None: if raw is None, empty or not contains digits. """ if isinstance(raw, (unicode, str)) and len(raw): if not force_int and re.search(r'\d\.\d', raw): try: return float(u''.join(u'{0}'.format(one) for one in raw if one.isdigit() or one == one.__class__(u'.'))) except (TypeError, ValueError): return None else: try: return int(u''.join(u'{0}'.format(one) for one in raw if one.isdigit())) except (TypeError, ValueError): return None elif isinstance(raw, (float, int)): return raw else: return None
413763588b067f335f7401fb914f1d6f3f8972fa
5,438
def namedtuple(typename, field_names, verbose=False): """Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', 'x y') >>> Point.__doc__ # docstring for the new class 'Point(x, y)' >>> p = Point(11, y=22) # instantiate with positional args or keywords >>> p[0] + p[1] # indexable like a plain tuple 33 >>> x, y = p # unpack like a regular tuple >>> x, y (11, 22) >>> p.x + p.y # fields also accessable by name 33 >>> d = p._asdict() # convert to a dictionary >>> d['x'] 11 >>> Point(**d) # convert from a dictionary Point(x=11, y=22) >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields Point(x=100, y=22) """ # Parse and validate the field names. Validation serves two purposes, # generating informative error messages and preventing template injection attacks. if isinstance(field_names, basestring): field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas field_names = tuple(map(str, field_names)) for name in (typename,) + field_names: if not all(c.isalnum() or c=='_' for c in name): raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name) if _iskeyword(name): raise ValueError('Type names and field names cannot be a keyword: %r' % name) if name[0].isdigit(): raise ValueError('Type names and field names cannot start with a number: %r' % name) seen_names = set() for name in field_names: if name.startswith('_'): raise ValueError('Field names cannot start with an underscore: %r' % name) if name in seen_names: raise ValueError('Encountered duplicate field name: %r' % name) seen_names.add(name) # Create and fill-in the class template numfields = len(field_names) argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes reprtxt = ', '.join('%s=%%r' % name for name in field_names) dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names)) template = '''class %(typename)s(tuple): '%(typename)s(%(argtxt)s)' \n __slots__ = () \n _fields = %(field_names)r \n def __new__(_cls, %(argtxt)s): return _tuple.__new__(_cls, (%(argtxt)s)) \n @classmethod def _make(cls, iterable, new=tuple.__new__, len=len): 'Make a new %(typename)s object from a sequence or iterable' result = new(cls, iterable) if len(result) != %(numfields)d: raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result)) return result \n def __repr__(self): return '%(typename)s(%(reprtxt)s)' %% self \n def _asdict(t): 'Return a new dict which maps field names to their values' return {%(dicttxt)s} \n def _replace(_self, **kwds): 'Return a new %(typename)s object replacing specified fields with new values' result = _self._make(map(kwds.pop, %(field_names)r, _self)) if kwds: raise ValueError('Got unexpected field names: %%r' %% kwds.keys()) return result \n def __getnewargs__(self): return tuple(self) \n\n''' % locals() for i, name in enumerate(field_names): template += ' %s = _property(_itemgetter(%d))\n' % (name, i) if verbose: print template # Execute the template string in a temporary namespace and # support tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename, _property=property, _tuple=tuple) try: exec template in namespace except SyntaxError, e: raise SyntaxError(e.message + ':\n' + template) result = namespace[typename] # For pickling to work, the __module__ variable needs to be set to the frame # where the named tuple is created. Bypass this step in enviroments where # sys._getframe is not defined (Jython for example). if hasattr(_sys, '_getframe'): result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__') return result
ce2e4b2f6fe0243a8ac5c418d10c6352c95ea302
5,439
from typing import Optional from typing import Sequence def get_users(compartment_id: Optional[str] = None, external_identifier: Optional[str] = None, filters: Optional[Sequence[pulumi.InputType['GetUsersFilterArgs']]] = None, identity_provider_id: Optional[str] = None, name: Optional[str] = None, state: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUsersResult: """ This data source provides the list of Users in Oracle Cloud Infrastructure Identity service. Lists the users in your tenancy. You must specify your tenancy's OCID as the value for the compartment ID (remember that the tenancy is simply the root compartment). See [Where to Get the Tenancy's OCID and User's OCID](https://docs.cloud.oracle.com/iaas/Content/API/Concepts/apisigningkey.htm#five). ## Example Usage ```python import pulumi import pulumi_oci as oci test_users = oci.identity.get_users(compartment_id=var["tenancy_ocid"], external_identifier=var["user_external_identifier"], identity_provider_id=oci_identity_identity_provider["test_identity_provider"]["id"], name=var["user_name"], state=var["user_state"]) ``` :param str compartment_id: The OCID of the compartment (remember that the tenancy is simply the root compartment). :param str external_identifier: The id of a user in the identity provider. :param str identity_provider_id: The id of the identity provider. :param str name: A filter to only return resources that match the given name exactly. :param str state: A filter to only return resources that match the given lifecycle state. The state value is case-insensitive. """ __args__ = dict() __args__['compartmentId'] = compartment_id __args__['externalIdentifier'] = external_identifier __args__['filters'] = filters __args__['identityProviderId'] = identity_provider_id __args__['name'] = name __args__['state'] = state if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('oci:identity/getUsers:getUsers', __args__, opts=opts, typ=GetUsersResult).value return AwaitableGetUsersResult( compartment_id=__ret__.compartment_id, external_identifier=__ret__.external_identifier, filters=__ret__.filters, id=__ret__.id, identity_provider_id=__ret__.identity_provider_id, name=__ret__.name, state=__ret__.state, users=__ret__.users)
4d404eb1069c829bb757f3870efc548583998434
5,440
def se_resnet20(num_classes: int = 10, in_channels: int = 3 ) -> ResNet: """ SEResNet by Hu+18 """ return resnet(num_classes, 20, in_channels, block=partial(SEBasicBlock, reduction=16))
da1d1327d5e5d1b55d3b4cc9d42dbf381ece029f
5,441
def parallel_threaded(function): """ A decorator for running a function within a parallel thread """ def decorator(*args, **kwargs): t = ParallelThread(target=function, args=args, kwargs=kwargs) t.daemon = True t.start() return t return decorator
9f4936b0ab7de3d550b404043d6b0e37dbb3a066
5,442
def Upsample(x, size): """ Wrapper Around the Upsample Call """ return nn.functional.interpolate(x, size=size, mode="bilinear", align_corners=True)
dfaabb3999047589b2d755a2cc631b1389d172b1
5,443
def get_user_playlists(spotipy_obj, username): """Gets and returns all Spotify playlists owned by the username specified. Parameters: spotipy_obj: Spotipy object username: Spotify username Returns: List of dictionaries, each dictionary a Spotify playlist object. """ # Grab all user playlists, including private ones initial_playlists = spotipy_obj.user_playlists(username) final_playlists = [] while initial_playlists: for playlist in initial_playlists["items"]: if playlist["owner"]["id"] == username: final_playlists.append(playlist) if initial_playlists["next"]: initial_playlists = spotipy_obj.next(initial_playlists) else: initial_playlists = None return final_playlists
90c06e0ddd91a7a84f4d905dd9334f9b4c27f890
5,444
def create(dataset, target, features=None, l2_penalty=1e-2, l1_penalty=0.0, solver='auto', feature_rescaling=True, convergence_threshold = _DEFAULT_SOLVER_OPTIONS['convergence_threshold'], step_size = _DEFAULT_SOLVER_OPTIONS['step_size'], lbfgs_memory_level = _DEFAULT_SOLVER_OPTIONS['lbfgs_memory_level'], max_iterations = _DEFAULT_SOLVER_OPTIONS['max_iterations'], validation_set = "auto", verbose=True): """ Create a :class:`~turicreate.linear_regression.LinearRegression` to predict a scalar target variable as a linear function of one or more features. In addition to standard numeric and categorical types, features can also be extracted automatically from list- or dictionary-type SFrame columns. The linear regression module can be used for ridge regression, Lasso, and elastic net regression (see References for more detail on these methods). By default, this model has an l2 regularization weight of 0.01. Parameters ---------- dataset : SFrame The dataset to use for training the model. target : string Name of the column containing the target variable. features : list[string], optional Names of the columns containing features. 'None' (the default) indicates that all columns except the target variable should be used as features. The features are columns in the input SFrame that can be of the following types: - *Numeric*: values of numeric type integer or float. - *Categorical*: values of type string. - *Array*: list of numeric (integer or float) values. Each list element is treated as a separate feature in the model. - *Dictionary*: key-value pairs with numeric (integer or float) values Each key of a dictionary is treated as a separate feature and the value in the dictionary corresponds to the value of the feature. Dictionaries are ideal for representing sparse data. Columns of type *list* are not supported. Convert such feature columns to type array if all entries in the list are of numeric types. If the lists contain data of mixed types, separate them out into different columns. l2_penalty : float, optional Weight on the l2-regularizer of the model. The larger this weight, the more the model coefficients shrink toward 0. This introduces bias into the model but decreases variance, potentially leading to better predictions. The default value is 0.01; setting this parameter to 0 corresponds to unregularized linear regression. See the ridge regression reference for more detail. l1_penalty : float, optional Weight on l1 regularization of the model. Like the l2 penalty, the higher the l1 penalty, the more the estimated coefficients shrink toward 0. The l1 penalty, however, completely zeros out sufficiently small coefficients, automatically indicating features that are not useful for the model. The default weight of 0 prevents any features from being discarded. See the LASSO regression reference for more detail. solver : string, optional Solver to use for training the model. See the references for more detail on each solver. - *auto (default)*: automatically chooses the best solver for the data and model parameters. - *newton*: Newton-Raphson - *lbfgs*: limited memory BFGS - *fista*: accelerated gradient descent The model is trained using a carefully engineered collection of methods that are automatically picked based on the input data. The ``newton`` method works best for datasets with plenty of examples and few features (long datasets). Limited memory BFGS (``lbfgs``) is a robust solver for wide datasets (i.e datasets with many coefficients). ``fista`` is the default solver for l1-regularized linear regression. The solvers are all automatically tuned and the default options should function well. See the solver options guide for setting additional parameters for each of the solvers. See the user guide for additional details on how the solver is chosen. feature_rescaling : boolean, optional Feature rescaling is an important pre-processing step that ensures that all features are on the same scale. An l2-norm rescaling is performed to make sure that all features are of the same norm. Categorical features are also rescaled by rescaling the dummy variables that are used to represent them. The coefficients are returned in original scale of the problem. This process is particularly useful when features vary widely in their ranges. validation_set : SFrame, optional A dataset for monitoring the model's generalization performance. For each row of the progress table, the chosen metrics are computed for both the provided training dataset and the validation_set. The format of this SFrame must be the same as the training set. By default this argument is set to 'auto' and a validation set is automatically sampled and used for progress printing. If validation_set is set to None, then no additional metrics are computed. The default value is 'auto'. convergence_threshold : float, optional Convergence is tested using variation in the training objective. The variation in the training objective is calculated using the difference between the objective values between two steps. Consider reducing this below the default value (0.01) for a more accurately trained model. Beware of overfitting (i.e a model that works well only on the training data) if this parameter is set to a very low value. lbfgs_memory_level : int, optional The L-BFGS algorithm keeps track of gradient information from the previous ``lbfgs_memory_level`` iterations. The storage requirement for each of these gradients is the ``num_coefficients`` in the problem. Increasing the ``lbfgs_memory_level`` can help improve the quality of the model trained. Setting this to more than ``max_iterations`` has the same effect as setting it to ``max_iterations``. max_iterations : int, optional The maximum number of allowed passes through the data. More passes over the data can result in a more accurately trained model. Consider increasing this (the default value is 10) if the training accuracy is low and the *Grad-Norm* in the display is large. step_size : float, optional (fista only) The starting step size to use for the ``fista`` and ``gd`` solvers. The default is set to 1.0, this is an aggressive setting. If the first iteration takes a considerable amount of time, reducing this parameter may speed up model training. verbose : bool, optional If True, print progress updates. Returns ------- out : LinearRegression A trained model of type :class:`~turicreate.linear_regression.LinearRegression`. See Also -------- LinearRegression, turicreate.boosted_trees_regression.BoostedTreesRegression, turicreate.regression.create Notes ----- - Categorical variables are encoded by creating dummy variables. For a variable with :math:`K` categories, the encoding creates :math:`K-1` dummy variables, while the first category encountered in the data is used as the baseline. - For prediction and evaluation of linear regression models with sparse dictionary inputs, new keys/columns that were not seen during training are silently ignored. - Any 'None' values in the data will result in an error being thrown. - A constant term is automatically added for the model intercept. This term is not regularized. - Standard errors on coefficients are only available when `solver=newton` or when the default `auto` solver option chooses the newton method and if the number of examples in the training data is more than the number of coefficients. If standard errors cannot be estimated, a column of `None` values are returned. References ---------- - Hoerl, A.E. and Kennard, R.W. (1970) `Ridge regression: Biased Estimation for Nonorthogonal Problems <http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634>`_. Technometrics 12(1) pp.55-67 - Tibshirani, R. (1996) `Regression Shrinkage and Selection via the Lasso <h ttp://www.jstor.org/discover/10.2307/2346178?uid=3739256&uid=2&uid=4&sid=2 1104169934983>`_. Journal of the Royal Statistical Society. Series B (Methodological) 58(1) pp.267-288. - Zhu, C., et al. (1997) `Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization <https://dl.acm.org/citation.cfm?id=279236>`_. ACM Transactions on Mathematical Software 23(4) pp.550-560. - Barzilai, J. and Borwein, J. `Two-Point Step Size Gradient Methods <http://imajna.oxfordjournals.org/content/8/1/141.short>`_. IMA Journal of Numerical Analysis 8(1) pp.141-148. - Beck, A. and Teboulle, M. (2009) `A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems <http://epubs.siam.org/doi/abs/10.1137/080716542>`_. SIAM Journal on Imaging Sciences 2(1) pp.183-202. - Zhang, T. (2004) `Solving large scale linear prediction problems using stochastic gradient descent algorithms <https://dl.acm.org/citation.cfm?id=1015332>`_. ICML '04: Proceedings of the twenty-first international conference on Machine learning p.116. Examples -------- Given an :class:`~turicreate.SFrame` ``sf`` with a list of columns [``feature_1`` ... ``feature_K``] denoting features and a target column ``target``, we can create a :class:`~turicreate.linear_regression.LinearRegression` as follows: >>> data = turicreate.SFrame('https://static.turi.com/datasets/regression/houses.csv') >>> model = turicreate.linear_regression.create(data, target='price', ... features=['bath', 'bedroom', 'size']) For ridge regression, we can set the ``l2_penalty`` parameter higher (the default is 0.01). For Lasso regression, we set the l1_penalty higher, and for elastic net, we set both to be higher. .. sourcecode:: python # Ridge regression >>> model_ridge = turicreate.linear_regression.create(data, 'price', l2_penalty=0.1) # Lasso >>> model_lasso = turicreate.linear_regression.create(data, 'price', l2_penalty=0., l1_penalty=1.0) # Elastic net regression >>> model_enet = turicreate.linear_regression.create(data, 'price', l2_penalty=0.5, l1_penalty=0.5) """ # Regression model names. model_name = "regression_linear_regression" solver = solver.lower() model = _sl.create(dataset, target, model_name, features=features, validation_set = validation_set, solver = solver, verbose = verbose, l2_penalty=l2_penalty, l1_penalty = l1_penalty, feature_rescaling = feature_rescaling, convergence_threshold = convergence_threshold, step_size = step_size, lbfgs_memory_level = lbfgs_memory_level, max_iterations = max_iterations) return LinearRegression(model.__proxy__)
3988ac27163873a8feff9fd34a5e8fe87e923487
5,447
def argument(*name_or_flags, **kwargs): """Convenience function to properly format arguments to pass to the subcommand decorator. """ args = list() for arg in name_or_flags: args.append(arg) return args, kwargs
0cae66e8b23211affc97fd8857f17b48a73cf286
5,448
def get_logger(): """ Provides the stem logger. :returns: **logging.Logger** for stem """ return LOGGER
8189cae16a244f0237f641e613783a484be5cf38
5,449
def get_graphql_type_for_model(model): """ Return the GraphQL type class for the given model. """ app_name, model_name = model._meta.label.split('.') # Object types for Django's auth models are in the users app if app_name == 'auth': app_name = 'users' class_name = f'{app_name}.graphql.types.{model_name}Type' try: return dynamic_import(class_name) except AttributeError: raise GraphQLTypeNotFound(f"Could not find GraphQL type for {app_name}.{model_name}")
d9f2b4093c290260db864cedd6b06958651bf713
5,450
from pathlib import Path def load_image_files(container_path, dimension=(64, 64)): """ Load image files with categories as subfolder names which performs like scikit-learn sample dataset """ image_dir = Path(container_path) folders = [directory for directory in image_dir.iterdir() if directory.is_dir()] categories = [fo.name for fo in folders] descr = "A image classification dataset" images = [] flat_data = [] target = [] for i, direc in enumerate(folders): for file in direc.iterdir(): img = imread(file) img_resized = resize(img, dimension, anti_aliasing=True, mode='reflect') flat_data.append(img_resized.flatten()) images.append(img_resized) target.append(i) flat_data = np.array(flat_data) target = np.array(target) images = np.array(images) print('done') return Bunch(data=flat_data, target=target, target_names=categories, images=images, DESCR=descr)
1c92309c7f8f0b99db841fed21901d37e143f41c
5,451
from datetime import datetime import calendar def create_calendar(year=None, month=None): """ Create an inline keyboard with the provided year and month :param int year: Year to use in the calendar, if None the current year is used. :param int month: Month to use in the calendar, if None the current month is used. :return: Returns the InlineKeyboardMarkup object with the calendar. """ now = datetime.datetime.now() if year is None: year = now.year if month is None: month = now.month data_ignore = create_callback_data("IGNORE", year, month, 0) keyboard = [] # First row - Month and Year row = [] row.append(InlineKeyboardButton( calendar.month_name[month]+" "+str(year), callback_data=data_ignore) ) keyboard.append(row) # Second row - Week Days row = [] for day in ["Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"]: row.append(InlineKeyboardButton(day, callback_data=data_ignore)) keyboard.append(row) my_calendar = calendar.monthcalendar(year, month) for week in my_calendar: row = [] for day in week: if day == 0: row.append(InlineKeyboardButton( " ", callback_data=data_ignore) ) else: row.append(InlineKeyboardButton( str(day), callback_data=create_callback_data( "DAY", year, month, day )) ) keyboard.append(row) # Last row - Buttons row = [] row.append(InlineKeyboardButton( "<", callback_data=create_callback_data( "PREV-MONTH", year, month, day )) ) row.append(InlineKeyboardButton( " ", callback_data=data_ignore) ) row.append(InlineKeyboardButton( ">", callback_data=create_callback_data( "NEXT-MONTH", year, month, day )) ) keyboard.append(row) return InlineKeyboardMarkup(keyboard)
232dd093b08c53f099b942d4497aef920002f5d4
5,452
def format_allowed_section(allowed): """Format each section of the allowed list""" if allowed.count(":") == 0: protocol = allowed ports = [] elif allowed.count(":") == 1: protocol, ports = allowed.split(":") else: return [] if ports.count(","): ports = ports.split(",") elif ports: ports = [ports] return_val = {"IPProtocol": protocol} if ports: return_val["ports"] = ports return return_val
0c07feec16562826a1f38a11b1d57782adf09b4d
5,453
def get_airmass(when, ra, dec): """Return the airmass of (ra,dec) at the specified observing time. Uses :func:`cos_zenith_to_airmass`. Parameters ---------- when : astropy.time.Time Observation time, which specifies the local zenith. ra : astropy.units.Quantity Target RA angle(s) dec : astropy.units.Quantity Target DEC angle(s) Returns ------- array or float Value of the airmass for each input (ra,dec). """ target = astropy.coordinates.ICRS(ra=ra, dec=dec) zenith = get_observer(when, alt=90 * u.deg, az=0 * u.deg ).transform_to(astropy.coordinates.ICRS) # Calculate zenith angle in degrees. zenith_angle = target.separation(zenith) # Convert to airmass. return cos_zenith_to_airmass(np.cos(zenith_angle))
2d2b25963cc5814c8189b117734963feda762d88
5,455
def get_metadata(class_): """Returns a list of MetaDataTuple structures. """ return list(get_metadata_iterator(class_))
95bc083464431cd8bc3c273989680732f711c5c1
5,456
def get_register(regname): """ Get register value. Exception will be raised if expression cannot be parse. This function won't catch on purpose. @param regname: expected register @return register value """ t = gdb.lookup_type("unsigned long") reg = gdb.parse_and_eval(regname) return long( reg.cast(t) )
43d077b59dc0b1cb8a6233538a2a1291216c1ec4
5,457
import re def create_queries(project_id, ticket_number, pids_project_id, pids_dataset_id, pids_table): """ Creates sandbox and truncate queries to run for EHR deactivated retraction :param project_id: bq name of project :param ticket_number: Jira ticket number to identify and title sandbox table :param pids_project_id: deactivated ehr pids table in bq's project_id :param pids_dataset_id: deactivated ehr pids table in bq's dataset_id :param pids_table: deactivated pids table in bq's table name :return: list of queries to run """ queries_list = [] dataset_list = set() final_date_column_df = pd.DataFrame() # Hit bq and receive df of deactivated ehr pids and deactivated date client = get_client(project_id) deactivated_ehr_pids_df = client.query( DEACTIVATED_PIDS_QUERY.render(project=pids_project_id, dataset=pids_dataset_id, table=pids_table)).to_dataframe() date_columns_df = get_date_info_for_pids_tables(project_id, client) LOGGER.info( "Dataframe creation complete. DF to be used for creation of retraction queries." ) for date_row in date_columns_df.itertuples(index=False): # Filter to only include tables containing deactivated pids with the earliest deactivated date LOGGER.info( f'Checking table: {date_row.project_id}.{date_row.dataset_id}.{date_row.table}' ) if check_pid_exist(date_row, client, pids_project_id, pids_dataset_id, pids_table): dataset_list.add(date_row.dataset_id) row = { 'project_id': date_row.project_id, 'dataset_id': date_row.dataset_id, 'table': date_row.table, 'date_column': date_row.date_column, 'start_date_column': date_row.start_date_column, 'end_date_column': date_row.end_date_column } final_date_column_df = final_date_column_df.append( row, ignore_index=True) LOGGER.info( "Looping through the deactivated PIDS df to create queries based on the retractions needed per PID table" ) for ehr_row in deactivated_ehr_pids_df.itertuples(index=False): LOGGER.info(f'Creating retraction queries for PID: {ehr_row.person_id}') for date_row in final_date_column_df.itertuples(index=False): # Determine if dataset is deid to correctly pull pid or research_id and check if ID exists in dataset or if # already retracted if re.match(DEID_REGEX, date_row.dataset_id): pid = get_research_id(date_row.project_id, date_row.dataset_id, ehr_row.person_id, client) else: pid = ehr_row.person_id # Get or create sandbox dataset sandbox_dataset = check_and_create_sandbox_dataset( date_row.project_id, date_row.dataset_id) # Create queries based on type of date field LOGGER.info( f'Creating Query to retract {pid} from {date_row.dataset_id}.{date_row.table}' ) if pd.isnull(date_row.date_column): sandbox_query = SANDBOX_QUERY_END_DATE.render( project=date_row.project_id, sandbox_dataset=sandbox_dataset, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, end_date_column=date_row.end_date_column, start_date_column=date_row.start_date_column) clean_query = CLEAN_QUERY_END_DATE.render( project=date_row.project_id, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, end_date_column=date_row.end_date_column, start_date_column=date_row.start_date_column) else: sandbox_query = SANDBOX_QUERY_DATE.render( project=date_row.project_id, sandbox_dataset=sandbox_dataset, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, date_column=date_row.date_column) clean_query = CLEAN_QUERY_DATE.render( project=date_row.project_id, dataset=date_row.dataset_id, table=date_row.table, pid=pid, deactivated_pids_project=pids_project_id, deactivated_pids_dataset=pids_dataset_id, deactivated_pids_table=pids_table, date_column=date_row.date_column) queries_list.append({ clean_consts.QUERY: sandbox_query, clean_consts.DESTINATION: date_row.project_id + '.' + sandbox_dataset + '.' + (ticket_number + '_' + date_row.table), clean_consts.DESTINATION_DATASET: date_row.dataset_id, clean_consts.DESTINATION_TABLE: date_row.table, clean_consts.DISPOSITION: bq_consts.WRITE_APPEND, 'type': 'sandbox' }) queries_list.append({ clean_consts.QUERY: clean_query, clean_consts.DESTINATION: date_row.project_id + '.' + date_row.dataset_id + '.' + date_row.table, clean_consts.DESTINATION_DATASET: date_row.dataset_id, clean_consts.DESTINATION_TABLE: date_row.table, clean_consts.DISPOSITION: bq_consts.WRITE_TRUNCATE, 'type': 'retraction' }) LOGGER.info( f"Query list complete, retracting ehr deactivated PIDS from the following datasets: " f"{dataset_list}") return queries_list
2940468b76ccd4d16dfb1bbddf440be635eaaf8d
5,458
def load_and_estimate(file, arguments, denoise=medfilt, data=None): """Loads mean+std images and evaluates noise. Required for parallelization.""" # Pipeline for µCT data if data is not None: # Evaluate noise on data noises = np.zeros(len(metrics)) for m in range(len(metrics)): noise = estimate_noise(data, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noises[m] = noise return np.array(noises) # Pipeline for images # Get images path = arguments.image_path # Load images image_surf, image_deep, image_calc = load_vois_h5(path, file) # Auto crop if arguments.auto_crop: image_deep, cropped = auto_corner_crop(image_deep) image_calc, cropped = auto_corner_crop(image_calc) # Evaluate noise on mean+std images noises_surf, noises_deep, noises_calc = np.zeros(len(metrics)), np.zeros(len(metrics)), np.zeros(len(metrics)) for m in range(len(metrics)): noise_surf = estimate_noise(image_surf, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noise_deep = estimate_noise(image_deep, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noise_calc = estimate_noise(image_calc, metrics[m], kernel_size=kernel_size, denoise_method=denoise) noises_surf[m] = noise_surf noises_deep[m] = noise_deep noises_calc[m] = noise_calc return np.array((noises_surf, noises_deep, noises_calc))
63b53eb5441dd9a2e9f4b558005b640109fea220
5,459
import torch def calc_self_attn( bert_model: BertModel, protein: dict, device="cuda:0", **kwargs ): """Calculate self-attention matrices given Bert model for one protein. Args: bert_model: a BertModel instance protein: a dict object from LM-GVP formatted data (json record). device: device to do the computation Returns: torch.tensor of shape: [n_maps, seqlen, seqlen] """ bert_model = bert_model.to(device) bert_model.eval() with torch.no_grad(): self_attn_mats = bert_model( protein["input_ids"].unsqueeze(0).to(device), attention_mask=protein["attention_mask"].unsqueeze(0).to(device), output_attentions=True, ).attentions # gather self-attention map from all layers together n_layers = len(self_attn_mats) batch_size, n_heads, seqlen, _ = self_attn_mats[0].size() self_attn_mats = torch.stack(self_attn_mats, dim=1).view( batch_size, n_layers * n_heads, seqlen, seqlen ) # remove [CLS] and [SEP] self_attn_mats = self_attn_mats[..., 1:-1, 1:-1] if self_attn_mats.size()[0] == 1: self_attn_mats = self_attn_mats.squeeze(0) self_attn_mats = self_attn_mats.detach().cpu() return self_attn_mats
4d076cc232207c9c446c4f9f52f1156af2afabf2
5,460
def compute_median_survival_time(times, surv_function): """ Computes a median survival time estimate by looking for where the survival function crosses 1/2. Parameters ---------- times : 1D numpy array Sorted list of unique times (in ascending order). surv_function : 1D numpy array A survival function evaluated at each of time in `times`, in the same order. Returns ------- output : float Median survival time estimate. """ t_left = times[0] t_right = times[-1] if surv_function[-1] > 1/2: # survival function never crosses 1/2; just output this last time point return t_right for t, s in zip(times, surv_function): if s >= 0.5: t_left = t for t, s in zip(reversed(times), reversed(surv_function)): if s <= 0.5: t_right = t return (t_left + t_right) / 2.
22103bc705acb791c0937a403aa9c34e9145e1c2
5,461
def TDMAsolver_no_vec(coeffs): """ TDMA solver, a b c d can be NumPy array type or Python list type. refer to http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm and to http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm) """ a = coeffs[1:, 0] b = coeffs[:, 1] c = coeffs[:-1, 2] d = coeffs[:, 3] nf = len(d) # number of equations ac, bc, cc, dc = map(np.array, (a, b, c, d)) # copy arrays for it in range(1, nf): mc = ac[it-1]/bc[it-1] bc[it] = bc[it] - mc*cc[it-1] dc[it] = dc[it] - mc*dc[it-1] xc = bc xc[-1] = dc[-1]/bc[-1] for il in range(nf-2, 1, -1): xc[il] = (dc[il]-cc[il]*xc[il+1])/bc[il] return xc
cdec1baa7ce0fe2baef71631b0ba678a0f7559dc
5,462
def aggregate_ant(data, sub_num, response_type="full"): """ Aggregate data from the ANT task. Calculates various summary statistics for the ANT task for a given subject. Parameters ---------- data : dataframe Pandas dataframe containing a single subjects trial data for the task. sub_num : str Subject number to which the data file belongs. response_type : {'full', 'correct', 'incorrect'}, optional Should the summary data be calculated using all trials? Only correct trials? Or only incorrect trials? This is not supported in all tasks. Returns ------- stats : list List containing the calculated data for the subject. """ # Calculate times following errors and correct responses df = data follow_error_rt = df.loc[df.correct.shift() == 0, "RT"].mean() follow_correct_rt = df.loc[df.correct.shift() == 1, "RT"].mean() if response_type == "correct": df = data[data["correct"] == 1] elif response_type == "incorrect": df = data[data["correct"] == 0] elif response_type == "full": df = data # Aggregated descriptives ## congruency conditions grouped_congruency = df.groupby("congruency") neutral_rt = grouped_congruency.mean().get_value("neutral", "RT") congruent_rt = grouped_congruency.mean().get_value("congruent", "RT") incongruent_rt = grouped_congruency.mean().get_value("incongruent", "RT") neutral_rtsd = grouped_congruency.std().get_value("neutral", "RT") congruent_rtsd = grouped_congruency.std().get_value("congruent", "RT") incongruent_rtsd = grouped_congruency.std().get_value("incongruent", "RT") neutral_rtcov = neutral_rtsd / neutral_rt congruent_rtcov = congruent_rtsd / congruent_rt incongruent_rtcov = incongruent_rtsd / incongruent_rt neutral_correct = grouped_congruency.sum().get_value("neutral", "correct") congruent_correct = grouped_congruency.sum().get_value("congruent", "correct") incongruent_correct = grouped_congruency.sum().get_value("incongruent", "correct") ## cue conditions grouped_cue = df.groupby("cue") nocue_rt = grouped_cue.mean().get_value("nocue", "RT") center_rt = grouped_cue.mean().get_value("center", "RT") spatial_rt = grouped_cue.mean().get_value("spatial", "RT") double_rt = grouped_cue.mean().get_value("double", "RT") nocue_rtsd = grouped_cue.std().get_value("nocue", "RT") center_rtsd = grouped_cue.std().get_value("center", "RT") spatial_rtsd = grouped_cue.std().get_value("spatial", "RT") double_rtsd = grouped_cue.std().get_value("double", "RT") nocue_rtcov = nocue_rtsd / nocue_rt center_rtcov = center_rtsd / center_rt spatial_rtcov = spatial_rtsd / spatial_rt double_rtcov = double_rtsd / double_rt nocue_correct = grouped_cue.sum().get_value("nocue", "correct") center_correct = grouped_cue.sum().get_value("center", "correct") spatial_correct = grouped_cue.sum().get_value("spatial", "correct") double_correct = grouped_cue.sum().get_value("double", "correct") # OLS regression conflict_intercept, conflict_slope = congruent_rt, incongruent_rt - congruent_rt conflict_slope_norm = conflict_slope / congruent_rt alerting_intercept, alerting_slope = double_rt, nocue_rt - double_rt alerting_slope_norm = alerting_slope / double_rt orienting_intercept, orienting_slope = spatial_rt, center_rt - spatial_rt orienting_slope_norm = orienting_slope / spatial_rt return [ sub_num, follow_error_rt, follow_correct_rt, neutral_rt, congruent_rt, incongruent_rt, neutral_rtsd, congruent_rtsd, incongruent_rtsd, neutral_rtcov, congruent_rtcov, incongruent_rtcov, neutral_correct, congruent_correct, incongruent_correct, nocue_rt, center_rt, spatial_rt, double_rt, nocue_rtsd, center_rtsd, spatial_rtsd, double_rtsd, nocue_rtcov, center_rtcov, spatial_rtcov, double_rtcov, nocue_correct, center_correct, spatial_correct, double_correct, conflict_intercept, conflict_slope, conflict_slope_norm, alerting_intercept, alerting_slope, alerting_slope_norm, orienting_intercept, orienting_slope, orienting_slope_norm, ]
be01651d450560a5c36bc6240025fe59352d6347
5,463
def parse_search_after(params): """Validate search_after and return it as a list of [score, ID].""" search_pair = params.get("search_after") sort = params.get("sort") if not search_pair or not sort: return if '_' not in search_pair or len(search_pair.split("_")) != 2: return _score, _id = search_pair.split("_") _sort = sort.split("_")[0] if _sort not in ["relevance", "created"]: log.error("{} is not a supported sort value.".format(_sort)) return if _sort == "relevance": score = test_float(_score) if score is None: log.error("Search_after relevance score is not a float.") return elif _sort == "created": if not str(_score).isdigit(): log.error("Search_after date score is not an integer.") return score = int(_score) return [score, _id]
f44228d4f5b47129218d122adcb29e41a81c5a1f
5,464