content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _fit_seasonal_model_with_gibbs_sampling(observed_time_series, seasonal_structure, num_warmup_steps=50, num_results=100, seed=None): """Builds a seasonality-as-regression model and fits it by Gibbs sampling.""" with tf.name_scope('fit_seasonal_model_with_gibbs_sampling'): observed_time_series = sts_util.canonicalize_observed_time_series_with_mask( observed_time_series) dtype = observed_time_series.time_series.dtype design_matrix = seasonality_util.build_fixed_effects( num_steps=ps.shape(observed_time_series.time_series)[-2], seasonal_structure=seasonal_structure, dtype=dtype) # Default priors. # pylint: disable=protected-access one = tf.ones([], dtype=dtype) level_variance_prior = tfd.InverseGamma(concentration=16, scale=16. * 0.001**2 * one) level_variance_prior._upper_bound = one slope_variance_prior = tfd.InverseGamma(concentration=16, scale=16. * 0.05**2 * one) slope_variance_prior._upper_bound = 0.01 * one observation_noise_variance_prior = tfd.InverseGamma( concentration=0.05, scale=0.05 * one) observation_noise_variance_prior._upper_bound = 1.2 * one # pylint: enable=protected-access model = gibbs_sampler.build_model_for_gibbs_fitting( observed_time_series=observed_time_series, design_matrix=design_matrix, weights_prior=tfd.Normal(loc=0., scale=one), level_variance_prior=level_variance_prior, slope_variance_prior=slope_variance_prior, observation_noise_variance_prior=observation_noise_variance_prior) return [ model, gibbs_sampler.fit_with_gibbs_sampling(model, observed_time_series, num_results=num_results, num_warmup_steps=num_warmup_steps, seed=seed) ]
c13d4df3eca25f1a53ed27cd94e5f2b4b102013c
5,227
import pandas as pd import numpy as np def rm_standard_dev(var,window): """ Smoothed standard deviation """ print('\n\n-----------STARTED: Rolling std!\n\n') rollingstd = np.empty((var.shape)) for ens in range(var.shape[0]): for i in range(var.shape[2]): for j in range(var.shape[3]): series = pd.Series(var[ens,:,i,j]) rollingstd[ens,:,i,j] = series.rolling(window).std().to_numpy() newdata = rollingstd[:,window:,:,:] print('-----------COMPLETED: Rolling std!\n\n') return newdata
d37cfa3c756f8fc062a28ac078e4e16557282951
5,230
def visualizeTimeSeriesCategorization(dataName, saveDir, numberOfLagsToDraw=3, autocorrelationBased=True): """Visualize time series classification. Parameters: dataName: str Data name, e.g. "myData_1" saveDir: str Path of directories pointing to data storage numberOfLagsToDraw: boolean, Default 3 First top-N lags (or frequencies) to draw autocorrelationBased: boolean, Default True Whether autocorrelation or frequency based Returns: None Usage: visualizeTimeSeriesClassification('myData_1', '/dir1/dir2/') """ info = 'Autocorrelations' if autocorrelationBased else 'Periodograms' def internal(className): print('\n\n%s of Time Series:'%(className)) clusteringObject = dataStorage.read(saveDir + 'consolidatedGroupsSubgroups/' + dataName + '_%s_%s'%(className,info) + '_GroupsSubgroups') if clusteringObject is None: print('Clustering object not found') return print('Plotting Dendrogram with Heatmaps.') visualizationFunctions.makeDendrogramHeatmapOfClusteringObject(clusteringObject, saveDir, dataName + '_%s_%sBased'%(className,info), AutocorrNotPeriodogr=autocorrelationBased) return for lag in range(1,numberOfLagsToDraw + 1): internal('LAG%s'%(lag)) internal('SpikeMax') internal('SpikeMin') return None
b2fcac2179e3a689ee73e13519e2f4ad77c59037
5,232
from typing import Dict def refund(payment_information: Dict, connection_params) -> Dict: """Refund a payment using the culqi client. But it first check if the given payment instance is supported by the gateway. It first retrieve a `charge` transaction to retrieve the payment id to refund. And return an error with a failed transaction if the there is no such transaction, or if an error from culqi occurs during the refund.""" error = check_payment_supported(payment_information=payment_information) response_has_errors = False if error: response = get_error_response( payment_information.amount, error=error) else: setup_client(**connection_params) try: payload = format_culqui_payload( payment_information, TransactionKind.REFUND) response = culqipy.Refund.create(payload) print(f"DATA::response::{response}") # Fix: get specific errors except Exception as error: response_has_errors = True response = get_error_response( payment_information.amount, error=error) if not response_has_errors: if response.get('object', None) == 'error': error = response.get('user_message', None) if error is None: error = response.get('merchant_message', None) if error is None: error = 'Unkonw error!' response = get_error_response( payment_information.amount, error=error, id=payment_information.token) else: clean_culqi_response(response) return _generate_response( payment_information=payment_information, kind=TransactionKind.REFUND, data=response)
75dff392c0748a1408eb801ad78ef65be988026c
5,233
import numbers def check_random_state(seed): """Turn `seed` into a `np.random.RandomState` instance. Parameters ---------- seed : {None, int, `numpy.random.Generator`, `numpy.random.RandomState`}, optional If `seed` is None (or `np.random`), the `numpy.random.RandomState` singleton is used. If `seed` is an int, a new ``RandomState`` instance is used, seeded with `seed`. If `seed` is already a ``Generator`` or ``RandomState`` instance then that instance is used. Returns ------- seed : {`numpy.random.Generator`, `numpy.random.RandomState`} Random number generator. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.default_rng(seed) if isinstance(seed, (np.random.RandomState, np.random.Generator)): return seed raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed )
57390806329776c77977a27e18e78fdad298fef9
5,236
def power3_sum_2method(): """ Input: nothing, it have everything it needs. Output: sum: summ of all numbers which is power of 3 and fit in between 0 and upper bound == 1000000 """ k = 0 sum = 0 while True: a = 3**k k += 1 if a < 1000000: sum += a else: break return sum
b86bfaeb2418e183a78054d2a4b76c58d58be388
5,237
def bitwise_right_shift(rasters, extent_type="FirstOf", cellsize_type="FirstOf", astype=None): """ The BitwiseRightShift operation The arguments for this function are as follows: :param rasters: array of rasters. If a scalar is needed for the operation, the scalar can be a double or string :param extent_type: one of "FirstOf", "IntersectionOf", "UnionOf", "LastOf" :param cellsize_type: one of "FirstOf", "MinOf", "MaxOf, "MeanOf", "LastOf" :param astype: output pixel type :return: the output raster """ return local(rasters, 15, extent_type=extent_type, cellsize_type=cellsize_type, astype=astype)
8d07a60a514466ee4aa0b15b0b442fb71b3347ed
5,238
import re def strip_comments(line): """Strips comments from a line and return None if the line is empty or else the contents of line with leading and trailing spaces removed and all other whitespace collapsed""" commentIndex = line.find('//') if commentIndex is -1: commentIndex = len(line) line = re.sub(r'\s+', ' ', line[:commentIndex].strip()) if line == '': return None else: return line
09579031294d7b5787c97fa81807fa5ecfe12329
5,239
import logging def fft_pxscale(header,wave): """Compute conversion scale from telescope space to sky space. Parameters ---------- ima : array 2D Telescope pupil model. Returns ------- fftscale : float The frequency scale in sky space. Example ------- .. code-block:: python fftscale = fft_pxscale(ima) """ #size of the image. This should be taken from the header. gridsize = header['NAXIS1'] #pixel scale of the image. This should be taken from the header. pxscale_mod = header['PIXSCALE'] #in meters/px #1D FFT of the gridsize. fft_freq=np.fft.fftfreq(gridsize,pxscale_mod) #wavelength of the desires psf. This is a input of the user, wavelength in microns wave = (getQuantity(wave,recognized_units=UNITS['WAVE'])) lam = wave.to(u.m) #in meters #re-orginizing the 1D FFT to match with the grid. roll=np.floor(gridsize//2).astype("int") freq = np.fft.fftshift(fft_freq) ## ## pxscale -> fftscale fftscale=np.diff(freq)[0] ## cycles / mas per pixel in FFT image mas2rad=np.deg2rad(1./3600000.) ## mas per rad fftscale = fftscale/mas2rad * lam ## meters baseline per px in FFT image at a given wavelength logging.info("Pixel scale in PSF image is: %g mas per pixel" % fftscale.value) return fftscale.value
6935bdefe96aec771704a79952cfc25ffb55e8bb
5,240
def parse_git_submodules(gitmodules_data): """Parse a .gitmodules file to extract a { name -> url } map from it.""" result = {} # NOTE: configparser.ConfigParser() doesn't seem to like the file # (i.e. read_string() always returns None), so do the parsing # manually here. section_name = None in_submodule_section = False submodule_name = None submodule_prefix = 'submodule "' urls = {} branches = {} for line in gitmodules_data.splitlines(): if line.startswith('['): section_name = line[1:-1] is_submodule_section = section_name.startswith(submodule_prefix) if is_submodule_section: submodule_name = section_name[len(submodule_prefix):-1] elif is_submodule_section: key, _, value = line.strip().partition('=') if not value: continue key = key.strip() value = value.strip() if key == 'url': urls[submodule_name] = value elif key == 'branch': branches[submodule_name] = value result = {} for submodule, url in urls.iteritems(): branch = branches.get(submodule) if not branch: branch = get_git_remote_ref(url, 'heads/master') result[submodule] = '%s@%s' % (url, branch) return result
78d01ec70b68164189a2ea775c6084e256116d0a
5,241
import pathlib from typing import Dict import json def get_model_cases(dir_path: pathlib.Path) -> Dict[str, Dict[str, str]]: """ Returns the Zen model case for each test if it exists. :param dir_path: The path to the directory containing the DIFFERENCES directory. """ model_cases = defaultdict(dict) # type: Dict[str, Dict[str, str]] queries_dir = dir_path / QUERIES expected_res_dir = dir_path / QUERY_RESPONSES tag_dir = None if queries_dir.exists() and queries_dir.is_dir(): tag_dir = queries_dir elif expected_res_dir.exists() and expected_res_dir.is_dir(): tag_dir = expected_res_dir if isinstance(tag_dir, pathlib.Path): for queries_file in tag_dir.iterdir(): with open(queries_file, 'r') as qf_fp: queries_info = json.load(qf_fp) for qinfo in queries_info: if "ZenResponseTag" in qinfo: query_str = qinfo["Query"]["Name"] + ":" +\ qinfo["Query"]["Type"] model_cases[queries_file.stem][query_str] = qinfo["ZenResponseTag"] return model_cases
d35b4cf59cf9b99a6aeb9e05e0af3ee342b11f3b
5,242
def _format_date(event): """Returns formated date json object for event""" old_date = event["date"] term = event["term"] dates = old_date.split("-") if len(dates) == 1: is_range = False else: is_range = True is_range = (len(dates) > 1) if is_range: start_date = dates[0] end_date = dates[-1] else: start_date = dates[0] end_date = dates[0] new_start_date = _format_date_string(start_date, term) new_end_date = _format_date_string(end_date, term) date = { "start_date": new_start_date, "end_date": new_end_date, "range": is_range, } return date
aa8bf9a41fe30b664920e895cdc31d6993a408b2
5,243
def fetch(bibcode, filename=None, replace=None): """ Attempt to fetch a PDF file from ADS. If successful, then add it into the database. If the fetch succeeds but the bibcode is not in th database, download file to current folder. Parameters ---------- bibcode: String ADS bibcode of entry to update. filename: String Filename to assign to the PDF file. If None, get from guess_name() funcion. Replace: Bool If True, enforce replacing a PDF regardless of a pre-existing one. If None (default), only ask when fetched PDF comes from arxiv. Returns ------- filename: String If successful, return the full path of the file name. If not, return None. """ arxiv = False print('Fetching PDF file from Journal website:') req = request_ads(bibcode, source='journal') if req is None: return if req.status_code != 200: print('Fetching PDF file from ADS website:') req = request_ads(bibcode, source='ads') if req is None: return if req.status_code != 200: print('Fetching PDF file from ArXiv website:') req = request_ads(bibcode, source='arxiv') arxiv = True if replace is None: replace = False if req is None: return if replace is None: replace = True if req.status_code == 200: if bm.find(bibcode=bibcode) is None: if filename is None: filename = f'{bibcode}.pdf' with builtin_open(filename, 'wb') as f: f.write(req.content) print(f"Saved PDF to: '{filename}'.\n" "(Note that BibTex entry is not in the Bibmanager database)") else: filename = set_pdf( bibcode, bin_pdf=req.content, filename=filename, arxiv=arxiv, replace=replace) return filename print('Could not fetch PDF from any source.')
7d264df3f0eab896a9cb4858e7b19e2590d8142b
5,244
def crop_multi(x, wrg, hrg, is_random=False, row_index=0, col_index=1): """Randomly or centrally crop multiple images. Parameters ---------- x : list of numpy.array List of images with dimension of [n_images, row, col, channel] (default). others : args See ``tl.prepro.crop``. Returns ------- numpy.array A list of processed images. """ h, w = x[0].shape[row_index], x[0].shape[col_index] if (h < hrg) or (w < wrg): raise AssertionError("The size of cropping should smaller than or equal to the original image") if is_random: h_offset = int(np.random.uniform(0, h - hrg)) w_offset = int(np.random.uniform(0, w - wrg)) results = [] for data in x: results.append(data[h_offset:hrg + h_offset, w_offset:wrg + w_offset]) return np.asarray(results) else: # central crop h_offset = int(np.floor((h - hrg) / 2.)) w_offset = int(np.floor((w - wrg) / 2.)) results = [] for data in x: results.append(data[h_offset:h - h_offset, w_offset:w - w_offset]) return np.asarray(results)
61593029455a880d5309e8343cf4f6d1049f598f
5,245
def value_loss_given_predictions(value_prediction, rewards, reward_mask, gamma, epsilon, value_prediction_old=None): """Computes the value loss given the prediction of the value function. Args: value_prediction: np.ndarray of shape (B, RT+1, 1) rewards: np.ndarray of shape (B, RT) of rewards. reward_mask: np.ndarray of shape (B, RT), the mask over rewards. gamma: float, discount factor. epsilon: float, clip-fraction, used if value_value_prediction_old isn't None value_prediction_old: np.ndarray of shape (B, RT+1, 1) of value predictions using the old parameters. If provided, we incorporate this in the loss as well. This is from the OpenAI baselines implementation. Returns: Pair (value_loss, summaries), where value_loss is the average L2 value loss, averaged over instances where reward_mask is 1. Summaries is a dict of summaries collected during value loss computation. """ B, RT = rewards.shape # pylint: disable=invalid-name assert (B, RT) == reward_mask.shape assert (B, RT + 1) == value_prediction.shape value_prediction = value_prediction[:, :-1] * reward_mask # (B, RT) r2g = rewards_to_go(rewards, reward_mask, gamma=gamma) # (B, RT) loss = (value_prediction - r2g)**2 # From the baselines implementation. if value_prediction_old is not None: value_prediction_old = value_prediction_old[:, :-1] * reward_mask # (B, RT) v_clipped = value_prediction_old + np.clip( value_prediction - value_prediction_old, -epsilon, epsilon) v_clipped_loss = (v_clipped - r2g)**2 loss = np.maximum(v_clipped_loss, loss) # Take an average on only the points where mask != 0. value_loss = np.sum(loss) / np.sum(reward_mask) summaries = { 'value_loss': value_loss, } return (value_loss, summaries)
5896dd57e1e9d05eb71e5b31aab4071b61d0fdbf
5,246
def build_pkt(pkt): """Build and return a packet and eth type from a dict.""" def serialize(layers): """Concatenate packet layers and serialize.""" result = packet.Packet() for layer in reversed(layers): result.add_protocol(layer) result.serialize() return result layers = [] assert 'eth_dst' in pkt and 'eth_src' in pkt ethertype = None if 'arp_source_ip' in pkt and 'arp_target_ip' in pkt: ethertype = ether.ETH_TYPE_ARP arp_code = pkt.get('arp_code', arp.ARP_REQUEST) layers.append(arp.arp( src_ip=pkt['arp_source_ip'], dst_ip=pkt['arp_target_ip'], opcode=arp_code)) elif 'ipv6_src' in pkt and 'ipv6_dst' in pkt: ethertype = ether.ETH_TYPE_IPV6 if 'router_solicit_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_ROUTER_SOLICIT)) elif 'neighbor_advert_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_NEIGHBOR_ADVERT, data=icmpv6.nd_neighbor( dst=pkt['neighbor_advert_ip'], option=icmpv6.nd_option_sla(hw_src=pkt['eth_src'])))) elif 'neighbor_solicit_ip' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ND_NEIGHBOR_SOLICIT, data=icmpv6.nd_neighbor( dst=pkt['neighbor_solicit_ip'], option=icmpv6.nd_option_sla(hw_src=pkt['eth_src'])))) elif 'echo_request_data' in pkt: layers.append(icmpv6.icmpv6( type_=icmpv6.ICMPV6_ECHO_REQUEST, data=icmpv6.echo(id_=1, seq=1, data=pkt['echo_request_data']))) layers.append(ipv6.ipv6( src=pkt['ipv6_src'], dst=pkt['ipv6_dst'], nxt=inet.IPPROTO_ICMPV6)) elif 'ipv4_src' in pkt and 'ipv4_dst' in pkt: ethertype = ether.ETH_TYPE_IP proto = inet.IPPROTO_IP if 'echo_request_data' in pkt: echo = icmp.echo(id_=1, seq=1, data=pkt['echo_request_data']) layers.append(icmp.icmp(type_=icmp.ICMP_ECHO_REQUEST, data=echo)) proto = inet.IPPROTO_ICMP net = ipv4.ipv4(src=pkt['ipv4_src'], dst=pkt['ipv4_dst'], proto=proto) layers.append(net) elif 'actor_system' in pkt and 'partner_system' in pkt: ethertype = ether.ETH_TYPE_SLOW layers.append(slow.lacp( version=1, actor_system=pkt['actor_system'], actor_port=1, partner_system=pkt['partner_system'], partner_port=1, actor_key=1, partner_key=1, actor_system_priority=65535, partner_system_priority=1, actor_port_priority=255, partner_port_priority=255, actor_state_defaulted=0, partner_state_defaulted=0, actor_state_expired=0, partner_state_expired=0, actor_state_timeout=1, partner_state_timeout=1, actor_state_collecting=1, partner_state_collecting=1, actor_state_distributing=1, partner_state_distributing=1, actor_state_aggregation=1, partner_state_aggregation=1, actor_state_synchronization=pkt['actor_state_synchronization'], partner_state_synchronization=1, actor_state_activity=0, partner_state_activity=0)) elif 'chassis_id' in pkt and 'port_id' in pkt: ethertype = ether.ETH_TYPE_LLDP return valve_packet.lldp_beacon( pkt['eth_src'], pkt['chassis_id'], str(pkt['port_id']), 1, org_tlvs=pkt.get('org_tlvs', None), system_name=pkt.get('system_name', None)) assert ethertype is not None, pkt if 'vid' in pkt: tpid = ether.ETH_TYPE_8021Q layers.append(vlan.vlan(vid=pkt['vid'], ethertype=ethertype)) else: tpid = ethertype eth = ethernet.ethernet( dst=pkt['eth_dst'], src=pkt['eth_src'], ethertype=tpid) layers.append(eth) result = serialize(layers) return result
afd84446d3bb545b03b9d4c42d80f096b6665342
5,247
def make_file_prefix(run, component_name): """ Compose the run number and component name into string prefix to use with filenames. """ return "{}_{}".format(component_name, run)
73ef37d75d9e187ee49ee058958c3b8701185585
5,248
from typing import Dict def initialize_lock_and_key_ciphers() -> Dict[str, VigenereCipher]: """[summary] Returns: Dict[VigenereCipher]: [description]""" ciphers = {} with open(CIPHER_RESOURCE, "r") as cipher_resource_file: cipher_data = load(cipher_resource_file, Loader=FullLoader) for cipher_key_name, cipher_keys in cipher_data.items(): ciphers[cipher_key_name] = VigenereCipher(key=cipher_keys['key'], alphabet=cipher_keys['alphabet']) return ciphers
1c0a27b36b4c0524b77dcb5c44a3bc840797b226
5,250
def add_service(): """ Used to register a new service """ form = ServiceForm() if form.validate_on_submit(): try: srv = Services() srv.populate_from_form(form) srv.authentication.value = {"db":request.form.get('authdb'),"user":request.form.get('authuser'),"pswd":request.form.get("authpass")} srv.save() flash('Datele au fost adaugate!', category='alert-success') return redirect(url_for('services.list_services')) except Exception as err: flash('Datele nu pot fi adaugate!', category='alert-danger') return render_template('services/settings/add.html', pagetitle='Adauga serviciu', form=form)
56ce52c293d42710a9d4d5ac57b21f5ba1c0c0ac
5,251
def parse_resolution(resolution): """ return: width, height, resolution """ resolution = resolution.strip() splits = resolution.split(',') return int(splits[0]), int(splits[1]), int(splits[2])
de937e440c4540d11cedd868e3f4a046baa99f22
5,253
import inspect def get_arguments(func): """Returns list of arguments this function has.""" if hasattr(func, '__code__'): # Regular function. return inspect.getargspec(func).args elif hasattr(func, '__call__'): # Callable object. print(func) return _get_arguments(func.__call__) elif hasattr(func, 'func'): # Partial function. return _get_arguments(func.func)
f93133f20c819c590c30e25b6c339c07732daebe
5,256
def _check(isamAppliance, name): """ Check if suffix exists """ ret_obj = get(isamAppliance) check_value, warnings = False, ret_obj['warnings'] if warnings == []: for suffix in ret_obj['data']: if suffix['name'] == name: logger.info("Suffix found in embedded ldap: " + name) check_value = True return check_value, suffix['id'], warnings logger.info("Suffix *not* found in embedded ldap: " + name) return check_value, None, warnings
be2a6226ebdccb92ec3361df79e50165a22d6981
5,257
def check_listening_address(address: str) -> bool: """Check entered ip address for validity.""" if address == 'localhost': return True return address in get_local_addresses()
eaa5cecfee4e8be2947150a537213f4159ee6baf
5,258
import base64 def multibase_b64decode(data): """ Follow forge's base64 urlsafe encode convention to decode string Args: data(string): encoded string Returns: bytes Examples: >>> multibase_b64decode('aGVsbG8') b'hello' """ if isinstance(data, str): data = data.encode() return base64.urlsafe_b64decode( (data + b'=' * (-len(data) % 4)))
fdbc0f937e33d7994737a3a515973598cac3debd
5,259
from typing import List def parse_ordering_params(param: List[str]) -> List[str]: """ Ignores the request to sort by "ord". Returns a sorting order based on the params and includes "readable_id" sorting in passed params if the sorting request contains title otherwise, it returns the requested order. """ if "ord" in param: order = [] elif "title" in param: prefix = "-" if param[0] == "-" else "" order = ["{prefix}coursepage__course__readable_id".format(prefix=prefix), param] else: order = [param] return order
a6a5f4665515a292ad2367945a6b8407000d656a
5,260
def file_senzing_rabbitmq(): """#!/usr/bin/env bash # --- Functions --------------------------------------------------------------- function up { echo -ne "\033[2K${CONTAINER_NAME} status: starting...\r" mkdir -p ${RABBITMQ_DIR} chmod 777 ${RABBITMQ_DIR} if [ "${CONTAINER_VERSION}" == "latest" ] then ${SENZING_SUDO} docker pull ${SENZING_DOCKER_REGISTRY_URL}/bitnami/rabbitmq:${CONTAINER_VERSION} >> ${CONTAINER_LOG} 2>&1 fi ${SENZING_SUDO} docker run \\ --detach \\ --env RABBITMQ_PASSWORD=${SENZING_RABBITMQ_PASSWORD} \\ --env RABBITMQ_USERNAME=${SENZING_RABBITMQ_USERNAME} \\ --interactive \\ --name ${CONTAINER_NAME} \\ --publish ${CONTAINER_PORT}:15672 \\ --publish ${SENZING_DOCKER_PORT_RABBITMQ}:5672 \\ --restart always \\ --tty \\ --volume ${RABBITMQ_DIR}:/bitnami \\ ${SENZING_DOCKER_RUN_PARAMETERS_GLOBAL} \\ ${SENZING_DOCKER_RUN_PARAMETERS_RABBITMQ} \\ ${SENZING_NETWORK_PARAMETER} \\ ${SENZING_PRIVILEGED_PARAMETER} \\ bitnami/rabbitmq:${CONTAINER_VERSION} \\ >> ${CONTAINER_LOG} 2>&1 COUNTER=0 COUNTER_NOTICE=5 TIME_STRING=".." CONTAINER_STATUS="$( docker container inspect -f '{{.State.Status}}' ${CONTAINER_NAME})" while [ "${CONTAINER_STATUS}" != "running" ]; do COUNTER=$((${COUNTER}+1)) if [ "${COUNTER}" -eq "${COUNTER_NOTICE}" ]; then echo -ne "\033[2K" echo "" echo "To see what is happening behind-the-scenes, view the log at" echo "${CONTAINER_LOG}" echo "and/or run 'docker logs ${CONTAINER_NAME}'" echo "" fi TIME_STRING="${TIME_STRING}." echo -ne "\033[2K${CONTAINER_NAME} status: ${CONTAINER_STATUS}${TIME_STRING}\r" sleep 5 CONTAINER_STATUS="$( docker container inspect -f '{{.State.Status}}' ${CONTAINER_NAME})" done sleep 10 echo "${SENZING_HORIZONTAL_RULE}" echo "${SENZING_HORIZONTAL_RULE:0:2} ${CONTAINER_NAME} running on http://${SENZING_DOCKER_HOST_IP_ADDR}:${CONTAINER_PORT}" echo "${SENZING_HORIZONTAL_RULE:0:2} Username: ${SENZING_RABBITMQ_USERNAME} Password: ${SENZING_RABBITMQ_PASSWORD}" echo "${SENZING_HORIZONTAL_RULE:0:2} Mount information: (Format: in container > on host)" echo "${SENZING_HORIZONTAL_RULE:0:2} /bitnami > ${RABBITMQ_DIR}" echo "${SENZING_HORIZONTAL_RULE:0:2} Logs:" echo "${SENZING_HORIZONTAL_RULE:0:2} ${CONTAINER_LOG}" echo "${SENZING_HORIZONTAL_RULE:0:2} and/or run 'docker logs ${CONTAINER_NAME}'" echo "${SENZING_HORIZONTAL_RULE:0:2} For more information:" echo "${SENZING_HORIZONTAL_RULE:0:2} ${SENZING_REFERENCE_URL}#senzing-rabbitmq" echo "${SENZING_HORIZONTAL_RULE}" } function down { ${SENZING_SUDO} docker stop ${CONTAINER_NAME} >> ${CONTAINER_LOG} 2>&1 ${SENZING_SUDO} docker rm ${CONTAINER_NAME} >> ${CONTAINER_LOG} 2>&1 } function usage { echo "usage: $0 [up | down | restart]" echo "For more information:" echo "${SENZING_REFERENCE_URL}#senzing-rabbitmq" } # --- Main -------------------------------------------------------------------- SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )" source ${SCRIPT_DIR}/docker-environment-vars.sh CONTAINER_LOG="${SENZING_LOG_RABBITMQ}" CONTAINER_NAME="${SENZING_DOCKER_CONTAINER_NAME_RABBITMQ}" CONTAINER_PORT="${SENZING_DOCKER_PORT_RABBITMQ_UI}" CONTAINER_VERSION="${SENZING_DOCKER_IMAGE_VERSION_RABBITMQ}" if [ "$1" == "up" ]; then up elif [ "$1" == "down" ]; then down elif [ "$1" == "restart" ]; then down up else usage fi """ return 0
95396425074096d17561b20cd197e77f1d550476
5,261
def mse(predictions, targets): """Calculate MSE: (Mean squared error) """ return ((predictions - targets) ** 2).mean()
79d87a3422d4d24201cae86ee861614c83f6770f
5,262
def export1d(hist): """Export a 1-dimensional `Hist` object to uproot This allows one to write a coffea histogram into a ROOT file, via uproot. Parameters ---------- hist : Hist A 1-dimensional histogram object Returns ------- out A ``uproot_methods.classes.TH1`` object Examples -------- Creating a coffea histogram, filling, and writing to a file:: import coffea, uproot, numpy h = coffea.hist.Hist("Events", coffea.hist.Bin("var", "some variable", 20, 0, 1)) h.fill(var=numpy.random.normal(size=100)) fout = uproot.create('output.root') fout['myhist'] = coffea.hist.export1d(h) fout.close() """ if hist.dense_dim() != 1: raise ValueError("export1d() can only support one dense dimension") if hist.sparse_dim() != 0: raise ValueError("export1d() expects zero sparse dimensions") axis = hist.axes()[0] sumw, sumw2 = hist.values(sumw2=True, overflow='all')[()] edges = axis.edges(overflow='none') out = TH1.__new__(TH1) out._fXaxis = TAxis(len(edges) - 1, edges[0], edges[-1]) out._fXaxis._fName = axis.name out._fXaxis._fTitle = axis.label if not axis._uniform: out._fXaxis._fXbins = edges.astype(">f8") centers = (edges[:-1] + edges[1:]) / 2.0 out._fEntries = out._fTsumw = out._fTsumw2 = sumw[1:-1].sum() out._fTsumwx = (sumw[1:-1] * centers).sum() out._fTsumwx2 = (sumw[1:-1] * centers**2).sum() out._fName = "histogram" out._fTitle = hist.label out._classname = b"TH1D" out.extend(sumw.astype(">f8")) out._fSumw2 = sumw2.astype(">f8") return out
ffe09495a268c68d26f9861e6d732649f2f74497
5,263
def filter_words(w_map, emb_array, ck_filenames): """ delete word in w_map but not in the current corpus """ vocab = set() for filename in ck_filenames: for line in open(filename, 'r'): if not (line.isspace() or (len(line) > 10 and line[0:10] == '-DOCSTART-')): line = line.rstrip('\n').split() assert len(line) >= 3, 'wrong ck file format' word = line[0] vocab.add(word) word = word.lower() vocab.add(word) new_w_map = {} new_emb_array = [] for (word, idx) in w_map.items(): if word in vocab or word in ['<unk>', '<s>', '< >', '<\n>']: assert word not in new_w_map new_w_map[word] = len(new_emb_array) new_emb_array.append(emb_array[idx]) print('filtered %d --> %d' % (len(emb_array), len(new_emb_array))) return new_w_map, new_emb_array
efdef92093acf25c992dba86da25a4118ba728ec
5,264
def get_cache_template(sources, grids, geopackage, table_name="tiles"): """ Returns the cache template which is "controlled" settings for the application. The intent is to allow the user to configure certain things but impose specific behavior. :param sources: A name for the source :param grids: specific grid for the data source :param geopackage: Location for the geopackage :return: The dict template """ if sources == ["None"]: sources = [] return { "sources": sources, "cache": {"type": "geopackage", "filename": str(geopackage), "table_name": table_name}, "grids": [grid for grid in grids if grid == "default"] or grids, "format": "mixed", "request_format": "image/png", }
dc83a155d28e0b39f12a7dc7142b61a4bf27512b
5,265
from datetime import datetime def plotter(fdict): """ Go """ pgconn = get_dbconn('coop') ccursor = pgconn.cursor(cursor_factory=psycopg2.extras.DictCursor) ctx = get_autoplot_context(fdict, get_description()) station = ctx['station'] lagmonths = ctx['lag'] months = ctx['months'] month = ctx['month'] highyears = [int(x) for x in ctx['year'].split(",")] h = ctx['h'] wantmonth = month + lagmonths yearoffset = 0 if month + lagmonths < 1: wantmonth = 12 - (month + lagmonths) yearoffset = 1 wanted = [] deltas = [] for m in range(month, month+months): if m < 13: wanted.append(m) deltas.append(0) else: wanted.append(m-12) deltas.append(-1) table = "alldata_%s" % (station[:2],) nt = network.Table("%sCLIMATE" % (station[:2],)) elnino = {} ccursor.execute("""SELECT monthdate, soi_3m, anom_34 from elnino""") for row in ccursor: if row[0].month != wantmonth: continue elnino[row[0].year + yearoffset] = dict(soi_3m=row[1], anom_34=row[2]) ccursor.execute(""" SELECT year, month, sum(precip), avg((high+low)/2.) from """ + table + """ where station = %s GROUP by year, month """, (station, )) yearly = {} for row in ccursor: (_year, _month, _precip, _temp) = row if _month not in wanted: continue effectiveyear = _year + deltas[wanted.index(_month)] nino = elnino.get(effectiveyear, {}).get('soi_3m', None) if nino is None: continue data = yearly.setdefault(effectiveyear, dict(precip=0, temp=[], nino=nino)) data['precip'] += _precip data['temp'].append(float(_temp)) fig = plt.figure(figsize=(10, 6)) ax = plt.axes([0.1, 0.12, 0.5, 0.75]) msg = ("[%s] %s\n%s\n%s SOI (3 month average)" ) % (station, nt.sts[station]['name'], title(wanted), datetime.date(2000, wantmonth, 1).strftime("%B")) ax.set_title(msg) cmap = plt.get_cmap("RdYlGn") zdata = np.arange(-2.0, 2.1, 0.5) norm = mpcolors.BoundaryNorm(zdata, cmap.N) rows = [] xs = [] ys = [] for year in yearly: x = yearly[year]['precip'] y = np.average(yearly[year]['temp']) xs.append(x) ys.append(y) val = yearly[year]['nino'] c = cmap(norm([val])[0]) if h == 'hide' and val > -0.5 and val < 0.5: ax.scatter(x, y, facecolor='#EEEEEE', edgecolor='#EEEEEE', s=30, zorder=2, marker='s') else: ax.scatter(x, y, facecolor=c, edgecolor='k', s=60, zorder=3, marker='o') if year in highyears: ax.text(x, y + 0.2, "%s" % (year, ), ha='center', va='bottom', zorder=5) rows.append(dict(year=year, precip=x, tmpf=y, soi3m=val)) ax.axhline(np.average(ys), lw=2, color='k', linestyle='-.', zorder=2) ax.axvline(np.average(xs), lw=2, color='k', linestyle='-.', zorder=2) sm = plt.cm.ScalarMappable(norm, cmap) sm.set_array(zdata) cb = plt.colorbar(sm, extend='both') cb.set_label("<-- El Nino :: SOI :: La Nina -->") ax.grid(True) ax.set_xlim(left=-0.01) ax.set_xlabel("Total Precipitation [inch], Avg: %.2f" % (np.average(xs),)) ax.set_ylabel((r"Average Temperature $^\circ$F, " "Avg: %.1f") % (np.average(ys), )) df = pd.DataFrame(rows) ax2 = plt.axes([0.67, 0.6, 0.28, 0.35]) ax2.scatter(df['soi3m'].values, df['tmpf'].values) ax2.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax2.set_ylabel(r"Avg Temp $^\circ$F") slp, intercept, r_value, _, _ = stats.linregress(df['soi3m'].values, df['tmpf'].values) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax2.plot([-2, 2], [y1, y2]) ax2.text(0.97, 0.9, "R$^2$=%.2f" % (r_value**2, ), ha='right', transform=ax2.transAxes, bbox=dict(color='white')) ax2.grid(True) ax3 = plt.axes([0.67, 0.1, 0.28, 0.35]) ax3.scatter(df['soi3m'].values, df['precip'].values) ax3.set_xlabel("<-- El Nino :: SOI :: La Nina -->") ax3.set_ylabel("Total Precip [inch]") slp, intercept, r_value, _, _ = stats.linregress(df['soi3m'].values, df['precip'].values) y1 = -2.0 * slp + intercept y2 = 2.0 * slp + intercept ax3.plot([-2, 2], [y1, y2]) ax3.text(0.97, 0.9, "R$^2$=%.2f" % (r_value**2, ), ha='right', transform=ax3.transAxes, bbox=dict(color='white')) ax3.grid(True) return fig, df
0f41a53336f2bf65805adaf83a8f3f17c006e161
5,266
def _action_spec(): """Returns the action spec.""" paddle_action_spec = dm_env_rpc_pb2.TensorSpec( dtype=dm_env_rpc_pb2.INT8, name=_ACTION_PADDLE) tensor_spec_utils.set_bounds( paddle_action_spec, minimum=np.min(_VALID_ACTIONS), maximum=np.max(_VALID_ACTIONS)) return {1: paddle_action_spec}
130b7b2fe9f56d925d4ec1206eb3fb2752fee716
5,267
def stdin(sys_stdin): """ Imports standard input. """ inputs = [x.strip("[]\n") for x in sys_stdin] a = [int(x) for x in inputs[0].split(",")] x = int(inputs[1][0]) return a, x
4c34e1bc80da31c6c7aff0d71a0c65f6fc01ed00
5,268
def _row_key(row): """ :param row: a normalized row from STATEMENT_METRICS_QUERY :return: a tuple uniquely identifying this row """ return row['database_name'], row['user_name'], row['query_signature'], row['query_hash'], row['query_plan_hash']
2984e0e0b5fcc4e51a26af188e51fe65c52077a2
5,269
from io import StringIO def get (url, user_agent=UA, referrer=None): """Make a GET request of the url using pycurl and return the data (which is None if unsuccessful)""" data = None databuffer = StringIO() curl = pycurl.Curl() curl.setopt(pycurl.URL, url) curl.setopt(pycurl.FOLLOWLOCATION, 1) curl.setopt(pycurl.CONNECTTIMEOUT, 5) curl.setopt(pycurl.TIMEOUT, 8) curl.setopt(pycurl.WRITEFUNCTION, databuffer.write) curl.setopt(pycurl.COOKIEFILE, '') if user_agent: curl.setopt(pycurl.USERAGENT, user_agent) if referrer is not None: curl.setopt(pycurl.REFERER, referrer) try: curl.perform() data = databuffer.getvalue() except Exception: pass curl.close() return data
e18de239a598be249d81c2a15486a66af763bc85
5,270
from typing import List from typing import Tuple from typing import Any def apply_filters( stream: StreamMeta, filters: List[Tuple[str, str]], config: Any ) -> StreamMeta: """Apply enabled filters ordered by priority on item""" filter_pool = get_filter_pool(filters, config) for filter_instance in filter( lambda x: x.enabled, sorted(filter_pool, key=lambda x: x.priority) ): filter_instance.apply(stream) return stream
2ff50b5d31e84ba69afe694b4beb4116dbc5fc55
5,272
def threading_d(func): """ A decorator to run function in background on thread Args: func:``function`` Function with args Return: background_thread: ``Thread`` """ @wraps(func) def wrapper(*args, **kwags): background_thread = Thread(target=func, args=(*args,)) background_thread.daemon = True background_thread.start() return background_thread return wrapper
ff4d86ded189737d68d4cdc98c0e9ba9f1a28664
5,273
def create_anchors_3d_stride( feature_size, sizes=[1.6, 3.9, 1.56], anchor_strides=[0.4, 0.4, 0.0], anchor_offsets=[0.2, -39.8, -1.78], rotations=[0, np.pi / 2], velocities=[], dtype=np.float32, ): """ Args: feature_size: list [D, H, W](zyx) sizes: [N, 3] list of list or array, size of anchors, xyz Returns: anchors: [*feature_size, num_sizes, num_rots, 7] tensor. """ # almost 2x faster than v1 x_stride, y_stride, z_stride = anchor_strides x_offset, y_offset, z_offset = anchor_offsets z_centers = np.arange(feature_size[0], dtype=dtype) y_centers = np.arange(feature_size[1], dtype=dtype) x_centers = np.arange(feature_size[2], dtype=dtype) z_centers = z_centers * z_stride + z_offset y_centers = y_centers * y_stride + y_offset x_centers = x_centers * x_stride + x_offset sizes = np.reshape(np.array(sizes, dtype=dtype), [-1, 3]) rotations = np.array(rotations, dtype=dtype) velocities = np.array(velocities, dtype=dtype).reshape([-1, 2]) combines = np.hstack([sizes, velocities]).reshape([-1, 5]) rets = np.meshgrid(x_centers, y_centers, z_centers, rotations, indexing="ij") tile_shape = [1] * 5 tile_shape[-2] = int(sizes.shape[0]) for i in range(len(rets)): rets[i] = np.tile(rets[i][..., np.newaxis, :], tile_shape) rets[i] = rets[i][..., np.newaxis] # for concat # sizes = np.reshape(sizes, [1, 1, 1, -1, 1, 3]) combines = np.reshape(combines, [1, 1, 1, -1, 1, 5]) tile_size_shape = list(rets[0].shape) tile_size_shape[3] = 1 # sizes = np.tile(sizes, tile_size_shape) combines = np.tile(combines, tile_size_shape) # rets.insert(3, sizes) rets.insert(3, combines) ret = np.concatenate(rets, axis=-1) return np.transpose(ret, [2, 1, 0, 3, 4, 5])
6834d20f44196f5dad19d1917a673196334adf9f
5,274
import hashlib def sha1_file(filename): """ Return the hex string representation of the SHA1 checksum of the filename """ s = hashlib.sha1() with open(filename, "rb") as f: for line in f: s.update(line) return s.hexdigest()
b993ac9f025d69124962905f87b1968617bb33f5
5,275
def read_from_file(file_path): """ Read a file and return a list with all the lines in the file """ file_in_list = [] with open(file_path, 'r') as f: for line in f.readlines(): file_in_list.append(line) return file_in_list
5fef3a3f50528c1a9786451666ae7e43be282bf9
5,277
def count(predicate, iterable): """ Iterate over iterable, pass the value to the predicate predicate and return the number of times the predicate returns value considered True. @param predicate: Predicate function. @param iterable: Iterable containing the elements to count. @return: The number of true element. """ result = 0L for i in iterable: if predicate(i): result += 1 return result
1a2d9a05203f32a6f1a8349b6e31d14cb1b82b71
5,278
def get_object_from_path(path): """ :param path: dot seperated path. Assumes last item is the object and first part is module path(str) - example: cls = get_object_from_path("a.module.somewhere.MyClass") you can create a path like this: class_path = "{0}.{1}".format(MyClass.__module__, MyClass.__name__) """ module_path, _, obj_name = path.rpartition(".") module = __import__(module_path, globals(), locals(), [obj_name], -1) obj = getattr(module, obj_name, None) return obj
e722b040486288d53fe4a357d81ddec8dfc9820e
5,279
def _get_collection_memcache_key(collection_id, version=None): """Returns a memcache key for the collection. Args: collection_id: str. ID of the collection. version: int. Schema version of the collection. Returns: str. The memcache key of the collection. """ if version: return 'collection-version:%s:%s' % (collection_id, version) else: return 'collection:%s' % collection_id
cc054d726d1d2642701803a816e214eed4d9663d
5,280
def biKmeans(dataSet, k, distMeas=calcEuclideanDistance): """ 二分K-均值算法 :param dataSet: :param k: :param distMeas: :return: """ m = np.shape(dataSet)[0] clusterAssment = np.mat(np.zeros((m, 2))) centroid0 = np.mean(dataSet, axis=0).tolist()[0] centList = [centroid0] # create a list with one centroid for j in range(m): # calc initial Error clusterAssment[j, 1] = distMeas(np.mat(centroid0), dataSet[j, :]) ** 2 while len(centList) < k: lowestSSE = np.inf for i in range(len(centList)): # get the data points currently in cluster i ptsInCurrCluster = dataSet[np.nonzero(clusterAssment[:, 0].A == i)[0], :] centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) sseSplit = sum(splitClustAss[:, 1]) # compare the SSE to the currrent minimum sseNotSplit = sum(clusterAssment[np.nonzero(clusterAssment[:, 0].A != i)[0], 1]) print "sseSplit, and notSplit: ", sseSplit, sseNotSplit if (sseSplit + sseNotSplit) < lowestSSE: bestCentToSplit = i bestNewCents = centroidMat bestClustAss = splitClustAss.copy() lowestSSE = sseSplit + sseNotSplit bestClustAss[np.nonzero(bestClustAss[:, 0].A == 1)[0], 0] = len(centList) # change 1 to 3,4, or whatever bestClustAss[np.nonzero(bestClustAss[:, 0].A == 0)[0], 0] = bestCentToSplit print 'the bestCentToSplit is: ', bestCentToSplit print 'the len of bestClustAss is: ', len(bestClustAss) centList[bestCentToSplit] = bestNewCents[0, :].tolist()[0] # replace a centroid with two best centroids centList.append(bestNewCents[1, :].tolist()[0]) # reassign new clusters, and SSE clusterAssment[np.nonzero(clusterAssment[:, 0].A == bestCentToSplit)[0], :] = bestClustAss return np.mat(centList), clusterAssment
1421dfa95c44e046bd7d729ad343e98eb83bbbcd
5,281
def cleanup(args, repo): """Clean up undeployed pods.""" if args.keep < 0: raise ValueError('negative keep: %d' % args.keep) def _is_enabled_or_started(pod): for instance in pod.iter_instances(): if scripts.systemctl_is_enabled(instance.unit_name): return True if scripts.systemctl_is_active(instance.unit_name): return True return False for pod_dir_name in repo.get_pod_dir_names(): LOG.info('%s - cleanup', pod_dir_name) all_pods = list(repo.iter_pods(pod_dir_name)) num_left = len(all_pods) for pod in all_pods: if num_left <= args.keep: break if _is_enabled_or_started(pod): LOG.info('refuse to undeploy pod: %s', pod) continue _undeploy_pod(repo, pod) num_left -= 1 return 0
b015c1dbfeb3ad50218afaadfe198123ff2ab6df
5,283
from typing import Dict def optimizer_builder( config: Dict): """ Instantiate an optimizer. :param config: :return: """ # --- argument checking if not isinstance(config, dict): raise ValueError("config must be a dictionary") # --- read configuration decay_rate = config["decay_rate"] decay_steps = config["decay_steps"] learning_rate = config["learning_rate"] gradient_clipping_by_norm = config["gradient_clipping_by_norm"] # --- set up schedule lr_schedule = \ keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=learning_rate, decay_steps=decay_steps, decay_rate=decay_rate) return \ keras.optimizers.RMSprop( learning_rate=lr_schedule, global_clipnorm=gradient_clipping_by_norm),\ lr_schedule
2194408d74d4f03bc54371b98b12c8dbe85fb585
5,284
def psi(z: float, a: float, b: float) -> float: """Penalty function with uniformly bounded derivative (Eq. 20) Args: z: Relative distance a: Cohesion strength b: Separation strength """ c = np.abs(a - b) / (2 * np.sqrt(a * b)) return ((a + b) / 2) * (np.sqrt(1 + (z + c) ** 2) - np.sqrt(1 + c ** 2)) + ((a - b) / 2) * z
df88e57d80a32d95367f30ce52af84308349387a
5,285
def caselessSort(alist): """Return a sorted copy of a list. If there are only strings in the list, it will not consider case. """ try: return sorted(alist, key=lambda a: (a.lower(), a)) except TypeError: return sorted(alist)
7558a57e28255817c71846da84230ced49553bb6
5,286
def EnableRing(serialPort): """ Enable the ISU to listen for SBD Ring Alerts. When SBD Ring Alert indication is enabled, the 9602 asserts the RI line and issues the unsolicited result code SBDRING when an SBD Ring Alert is received. """ # Enables Ring message to indicate there's a message to read. Log("EnableRing()") if not WriteAndCheck(serialPort, "AT+SBDMTA=1\r", "OK", 30): Log("Issue enabling ring notifications.") return False Log("OK.") return True
7036610523802f659c7a69ae192f1009401a6ac3
5,287
def render(template, **context): """Render the given template. :param template: The template file name or string to render. :param **context: Context keyword-arguments. """ class Undefined(BaseUndefined): def _fail_with_undefined_error(self, *args, **kwargs): try: super(Undefined, self)._fail_with_undefined_error(*args, **kwargs) except Exception, error: return "{{{{ {0} }}}}".format(error) try: try: template_file = file(expanduser(template)) loader = FileSystemLoader(dirname(template_file.name)) environment = Environment(loader=loader, undefined=Undefined) try: template = environment.get_template(basename( template_file.name)) except TemplateSyntaxError, error: message = "Template {0}:{1}, {2}{3}".format(error.filename, error.lineno, error.message[:1].lower(), error.message[1:]) exit(message) except IOError: try: template = Template(template, undefined=Undefined) except TemplateSyntaxError, error: message = "Template \"{0}\" {1}{2}".format(template, error.message[:1].lower(), error.message[1:]) exit(message) except TemplateError, error: message = "Template error: {0}".format(error.message) exit(message) return template.render(context)
6680f163e1b89424e88b1a3046784083cdbb6520
5,288
def audio(src: str) -> str: """ Insert audio tag The tag is currently not supported by Nuance, please use `audio_player` kit: docs/use_kits_and_actions.md :param src: :return: """ return f'<audio src="{src}"/>'
f9396d5f82eeca27089de41187fd7d5e967cc9cf
5,290
import math def PerpendicularDistanceToFinish(point_b_angle: float, point_b: gps_pb2.Point) -> float: """ cos(B) = Adjacent / Hypotenuse https://www.mathsisfun.com/algebra/trig-finding-side-right-triangle.html """ return math.cos(math.radians(point_b_angle)) * point_b.start_finish_distance
3c18c323c625893ab474c48eb00d48da543956ba
5,292
import requests from typing import List def get_revolut_stocks() -> List[str]: """ Gets all tickers offered on Revolut trading platform. Returns: list(str) """ req = requests.get("https://globefunder.com/revolut-stocks-list/") tickers = list(pd.read_html(req.content)[0]["Symbol"]) tickers = [ticker.replace(".", "-") for ticker in tickers] return tickers
3e7f41a04c653a954609cee618cbf89d962fef1d
5,293
from typing import Tuple def create_rankings( a: Dataset, b: Dataset, n_samples: int = 100, unravel: bool = False, **kwargs: int ) -> Tuple[ndarray, ndarray]: """ Sample a dataset 'a' with 'n' negative samples given interactions in dataset 'a' and 'b'. Practically, this function allows you to generate evaluation data as described in the work of He et al. [1]. The evaluation procedure assumes that the input datasets 'a' and 'b' have been generated with a leave 'n' out policy, such that dataset 'b' corresponds to the 'training' dataset (i.e. dataset with 'left out' samples removed) and 'a' corresponds to the 'test' dataset with 'n' for each user with n_interactions > n. For each user in 'a', the function will return that user's 'n' left-out interactions, plus 'n_samples' negative samples (items the user has not interacted with in both the 'train' and 'test' datasets). Parameters ---------- a: Dataset The 'test' dataset (the dataset you wish to use for evaluation). b: Dataset The 'train' dataset (the dataset you wish to include for purposes of sampling items the user has not interacted with -- negative samples). n_samples: int The total number of negative samples per user to generate. For example, if the dataset 'a' was generated from a leave-one-out split, and n_samples=100, that user would receive 101 samples. unravel: bool If 'True', the function will return two arrays, where the first element of the first array corresponds to the user _vector_ (i.e. user ID + optional metadata), the first element of the first array corresponds to an associated sampled item vector(i.e. item ID + optional metadata). Returns ------- output: (ndarray, List[ndarray]) If 'unravel=False', the first element corresponds to an array of _ordered_ user ids, the second the `n_samples+1`per-user samples. If `unravel=True`, the first element corresponds to an array of _ordered_ user vectors, the second to each individual item vector. See `unravel` argument and `_unravel_ranked`, below. This function is provided for use when evaluating Keras Models with the `predict` method. References ---------- [1] He et al. https://dl.acm.org/doi/10.1145/3038912.3052569 """ users, items, _ = a.to_components( negative_samples=n_samples, aux_matrix=b.interactions.tocsr(), shuffle=False, sampling_mode="absolute", ) unique_users = unique(users) sampled_users, sampled_items = ( users[len(unique_users) :], items[len(unique_users) :], ) _, grouped = groupby(sampled_users, sampled_items) grouped = c_[grouped, items[: len(unique_users)]] if unravel: return _unravel_sampled(unique_users, grouped, a, **kwargs) else: return unique_users, grouped
28282fc14d02b7f93d58d209d143a315e7b25422
5,295
def make_even(x): """Make number divisible by 2""" if x % 2 != 0: x -= 1 return x
10129eb6abd718414d0ada53915672dcf4d7b5b6
5,296
def get_num_vehicles(session, query_filters): """Gets the total number of annotations.""" # pylint: disable-msg=E1101 num_vehicles_query = session.query( func.count(Vehicle.id)) \ .join(Photo) \ .filter(Photo.test == True) \ # pylint: enable-msg=E1101 for query_filter in query_filters: num_vehicles_query = num_vehicles_query.filter(query_filter) num_vehicles, = num_vehicles_query.one() return num_vehicles
bf626edad29b136bb595dabb7e878649c08c0d84
5,297
def task_status_edit(request, status_id, response_format='html'): """TaskStatus edit""" status = get_object_or_404(TaskStatus, pk=status_id) if not request.user.profile.has_permission(status, mode='w'): return user_denied(request, message="You don't have access to this Task Status") if request.POST: if 'cancel' not in request.POST: form = TaskStatusForm( request.user.profile, request.POST, instance=status) if form.is_valid(): status = form.save() return HttpResponseRedirect(reverse('projects_index_by_status', args=[status.id])) else: return HttpResponseRedirect(reverse('projects_index_by_status', args=[status.id])) else: form = TaskStatusForm(request.user.profile, instance=status) context = _get_default_context(request) context.update({'form': form, 'status': status}) return render_to_response('projects/status_edit', context, context_instance=RequestContext(request), response_format=response_format)
593384ab55bf889a1e87d7909e848a2dbacad68e
5,298
import platform def is_windows_system(): """ | ##@函数目的: 获取系统是否为Windows | ##@参数说明:True or False | ##@返回值: | ##@函数逻辑: | ##@开发人:jhuang | ##@时间: """ return 'Windows' in platform.system()
6bfe296188b9dccf8338f0b2bbaaf146d9b22243
5,299
def seepage_from_unitary(U): """ Calculates leakage by summing over all in and output states in the computational subspace. L1 = 1- sum_i sum_j abs(|<phi_i|U|phi_j>|)**2 """ sump = 0 for i in range(2): for j in range(2): bra_i = qtp.tensor(qtp.ket([i], dim=[2]), qtp.ket([2], dim=[3])).dag() ket_j = qtp.tensor(qtp.ket([j], dim=[2]), qtp.ket([2], dim=[3])) p = np.abs((bra_i*U*ket_j).data[0, 0])**2 sump += p sump /= 2 # divide by dimension of comp subspace L1 = 1-sump return L1
8bd4185a69d7280868871dc3c62bb10abac1579c
5,300
def auto_get(*args): """ auto_get(type, lowEA, highEA) -> ea_t Retrieve an address from queues regarding their priority. Returns 'BADADDR' if no addresses not lower than 'lowEA' and less than 'highEA' are found in the queues. Otherwise *type will have queue type. @param type (C++: atype_t *) @param lowEA (C++: ea_t) @param highEA (C++: ea_t) """ return _ida_auto.auto_get(*args)
810ea49a414e3a044bc94cac4d780c7b624433a2
5,301
def isLineForUser(someLine=None, username=None): """determins if a raw output line is for a user""" doesMatch = False try: doesMatch = utils.isLineForMatch(someLine, username) except Exception as matchErr: logs.log(str(type(matchErr)), "Error") logs.log(str(matchErr), "Error") logs.log(str((matchErr.args)), "Error") matchErr = None del matchErr doesMatch = False return doesMatch
dbf6b92976c8419fc3b9271eb87871c8c7cf6a1b
5,302
def create_multipart_upload(s3_obj, bucketname, object_key): """ Initiates Multipart Upload Args: s3_obj (obj): MCG or OBC object bucketname (str): Name of the bucket on which multipart upload to be initiated on object_key (str): Unique object Identifier Returns: str : Multipart Upload-ID """ mpu = s3_obj.s3_client.create_multipart_upload(Bucket=bucketname, Key=object_key) upload_id = mpu["UploadId"] return upload_id
375d7d04aefa0ef4f91a42e2478ae624057e1bee
5,304
import sqlite3 def cn(DB): """Return the cursor and connection object.""" conn = sqlite3.connect(DB) c = conn.cursor() return (c,conn)
76abbec283d45732213f8b94031242146cdb4ee0
5,305
def _build_category_tree(slug, reference=None, items=None): """ Builds a recursive tree with category relations as children. """ if items is None: items = [] for key in reference: category = reference[key] if category["parent"] == slug: children = _build_category_tree(category["nicename"], reference=reference) category["children"] = children items.append(category) return items
d06cb736b12025b862363a724b2497a71a8a8a30
5,306
import copy def partially_matched_crossover(random, mom, dad, args): """Return the offspring of partially matched crossover on the candidates. This function performs partially matched crossover (PMX). This type of crossover assumes that candidates are composed of discrete values that are permutations of a given set (typically integers). It produces offspring that are themselves permutations of the set. .. Arguments: random -- the random number generator object mom -- the first parent candidate dad -- the second parent candidate args -- a dictionary of keyword arguments Optional keyword arguments in args: - *crossover_rate* -- the rate at which crossover is performed (default 1.0) """ crossover_rate = args.setdefault('crossover_rate', 1.0) if random.random() < crossover_rate: size = len(mom) points = random.sample(range(size), 2) x, y = min(points), max(points) bro = copy.copy(dad) bro[x:y+1] = mom[x:y+1] sis = copy.copy(mom) sis[x:y+1] = dad[x:y+1] for parent, child in zip([dad, mom], [bro, sis]): for i in range(x, y+1): if parent[i] not in child[x:y+1]: spot = i while x <= spot <= y: spot = parent.index(child[spot]) child[spot] = parent[i] return [bro, sis] else: return [mom, dad]
b0d5132cf4ca14095f3d7c637cb50db3fe37d244
5,307
import re def regex_trim(input, regex, replace=''): """ Trims or replaces the regex match in an input string. input (string): the input string to search for matches regex (string): regex to match replace (string - optional): a string to replace any matches with. Defaults to trimming the match. """ return re.sub(regex, replace, input)
169bfaa0d2bfd7a1f32c1e05a63b41993f82bf4b
5,308
def LoadAllSuitesOfProject(project_name): """Loads all of the suites of a project.""" project_key = db.Key.from_path(bite_project.BiteProject.kind(), project_name) return BiteSuite.all().ancestor(project_key)
7a1a27229542ed364dddd2cc9a9cd3343c1d934d
5,310
def calc_temps(start_date, end_date): """TMIN, TAVG, and TMAX for a list of dates. Args: start_date (string): A date string in the format %Y-%m-%d end_date (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVG, and TMAX """ return session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all()
567bc943ecfe34c0604427e0fa8cea11f10c7205
5,311
def train_model(ad, rsrc_loc, algo='IR', log_dir=None): """ Train a CellO model based on the genes of an input dataset. Parameters ---------- ad : AnnData object Expression matrix of n cells by m genes algo : String The name of the algorithm used to train the model. 'IR' trains a model using isotonic regression. 'CLR' trains a model using cascaded logistic regression. rsrc_loc: String The location of the "resources" directory downloaded via the '' log_dir : String Path to a directory in which to write logging information Returns ------- A trained CellO model """ _download_resources(rsrc_loc) genes = ad.var.index # Load the training data r = load_training_data.load(UNITS, rsrc_loc) og = r[0] label_graph = r[1] label_to_name = r[2] the_exps = r[3] exp_to_index = r[4] exp_to_labels = r[5] exp_to_tags = r[6] exp_to_study = r[7] study_to_exps = r[8] exp_to_ms_labels = r[9] X = r[10] all_genes = r[11] # Match genes in test data to those in training # data train_genes, gene_to_indices = _match_genes( genes, all_genes, rsrc_loc, log_dir=log_dir ) # Take a subset of the columns for the training-genes. Note # that if a given gene in the test set maps to multiple training # genes, then we sum over the training genes. X_train = [] for gene in train_genes: indices = gene_to_indices[gene] X_train.append(np.sum(X[:,indices], axis=1)) X_train = np.array(X_train).T assert X_train.shape[1] == len(train_genes) # Train the model on these genes print('Training model...') mod = model.train_model( ALGO_TO_INTERNAL[algo], ALGO_TO_PARAMS[algo], X_train, the_exps, exp_to_labels, label_graph, item_to_group=exp_to_study, features=train_genes, preprocessor_names=PREPROCESSORS, preprocessor_params=PREPROCESSOR_PARAMS ) print('done.') return mod
46c7736a4f0127ec882d54075564fd447336a332
5,313
def ps_roi_max_align_2d( x, rois, roi_indices, outsize, spatial_scale, group_size, sampling_ratio=None ): """Position Sensitive Region of Interest (ROI) Max align function. This function computes position sensitive max value of input spatial patch with the given region of interests. Each ROI is splitted into :math:`(group\_size, group\_size)` regions, and position sensitive values in each region is computed. Args: x (~chainer.Variable): Input variable. The shape is expected to be 4 dimentional: (n: batch, c: channel, h, height, w: width). rois (array): Input roi. The shape is expected to be :math:`(R, 4)`, and each datum is set as below: (y_min, x_min, y_max, x_max). The dtype is :obj:`numpy.float32`. roi_indices (array): Input roi indices. The shape is expected to be :math:`(R, )`. The dtype is :obj:`numpy.int32`. outsize ((int, int, int) or (int, int) or int): Expected output size after pooled: (channel, height, width) or (height, width) or outsize. ``outsize=o`` and ``outsize=(o, o)`` are equivalent. Channel parameter is used to assert the input shape. spatial_scale (float): Scale of the roi is resized. group_size (int): Position sensitive group size. sampling_ratio ((int, int) or int): Sampling step for the alignment. It must be an integer over :math:`1` or :obj:`None`, and the value is automatically decided when :obj:`None` is passed. Use of different ratio in height and width axis is also supported by passing tuple of int as ``(sampling_ratio_h, sampling_ratio_w)``. ``sampling_ratio=s`` and ``sampling_ratio=(s, s)`` are equivalent. Returns: ~chainer.Variable: Output variable. See the original paper proposing PSROIPooling: `R-FCN <https://arxiv.org/abs/1605.06409>`_. See the original paper proposing ROIAlign: `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_. """ return PSROIMaxAlign2D( outsize, spatial_scale, group_size, sampling_ratio)(x, rois, roi_indices)
394879a014d855dd71786cb0941a3aefd30b70b8
5,314
def received_date_date(soup): """ Find the received date in human readable form """ return utils.date_text(history_date(soup, date_type="received"))
5fbba6129da8d6facc66f9ec21e9b6f45fcb399a
5,315
import uuid def get_cert_sha256_by_openssl(certraw: str) -> str: """calc the sha1 of a certificate, return openssl result str""" res: str = None tmpname = None try: tmpname = tmppath / f"{uuid.uuid1()}.crt" while tmpname.exists(): tmpname = tmppath / f"{uuid.uuid1()}.crt" tmpname.write_text(certraw, encoding="utf-8") cmd = f"openssl x509 -in {tmpname} -fingerprint -noout -sha256" res = exec_openssl(cmd) except Exception as ex: raise Exception(f"Parse ssl data error, err:{ex}") finally: if tmpname is not None: tmpname.unlink() return res
9cd095bd8d2d710b1cf7e4a3155a0b4fc08587f5
5,317
def analytic_pi(x, c, w, h): """Analytic response function for an even pair of Lorentz distributions. Correspond to .. math:: \\Pi(x) = \\int_{-\infty}^{\\infty} \\frac{\\omega^2}{\\omega^2+x^2}\sigma()_{i} where :math:`\\sigma(\\omega)` is :func:`~even_lorentzian`. Args: x (array): matsubara at which the response function is evaluated c (float): Center of the distribution (+ or -) w (float): Width of the distribution (variance) h (float): Height/weight of the distribtuion (area under the curve) Returns: array: Values of the integral at imaginary `x` """ return 2*h*c/(c**2+(x+w)**2)
fc622e79a6692105c15e05ea353ba925b8378831
5,318
def run(canvas): """ This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas) @Args: -- canvas : canvas of population to run the rules on. @returns: -- None """ canvas = np.array(canvas) next_gen_canvas = np.array(create_canvas(canvas.shape[0])) for r, row in enumerate(canvas): for c, pt in enumerate(row): # print(r-1,r+2,c-1,c+2) next_gen_canvas[r][c] = __judge_point( pt, canvas[r - 1: r + 2, c - 1: c + 2] ) canvas = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. return canvas.tolist()
4a7ae84cf245755f51c3c7a5c22e646e452e6d7a
5,319
def initialize_vocabulary(vocabulary_path): """Initialize vocabulary from file. We assume the vocabulary is stored one-item-per-line, so a file: dog cat will result in a vocabulary {"dog": 0, "cat": 1}, and this function will also return the reversed-vocabulary ["dog", "cat"]. Args: vocabulary_path: path to the file containing the vocabulary. Returns: a pair: the vocabulary (a dictionary mapping string to integers), and the reversed vocabulary (a list, which reverses the vocabulary mapping). Raises: ValueError: if the provided vocabulary_path does not exist. """ if tf.gfile.Exists(vocabulary_path): rev_vocab = [] with tf.gfile.GFile(vocabulary_path, mode="rb") as f: rev_vocab.extend(f.readlines()) rev_vocab = [line.strip() for line in rev_vocab] vocab = dict([(x, y) for (y, x) in enumerate(rev_vocab)]) return vocab, rev_vocab else: raise ValueError("Vocabulary file %s not found.", vocabulary_path)
bf56054aab47ac959fc38929445fc15a1d59b8a9
5,320
def ravel_space(space): """ Convert the space into a Discrete space. """ dims = _nested_dim_helper(space) return Discrete(dims[0])
baa04d3dd16e1c797bbdb83ff5f42474e77c57b4
5,321
def _add_col(dataframe, metadata, col_limits, families, weights, random_state): """Add a new column to the end of the dataframe by sampling a distribution from ``families`` according to the column limits and distribution weights and sampling the required number of values from that distribution.""" nrows, ncols = dataframe.shape if isinstance(col_limits[1], tuple): family_counts = get_family_counts(metadata, families) while len(dataframe.columns) != ncols + 1: family = random_state.choice(families, p=weights) idx = families.index(family) if family_counts[family] < col_limits[1][idx]: pdf = family.make_instance(random_state) dataframe[ncols] = pdf.sample(nrows, random_state) metadata.append(pdf) dataframe = _rename(dataframe) return dataframe, metadata family = random_state.choice(families, p=weights) pdf = family.make_instance(random_state) dataframe[ncols] = pdf.sample(nrows, random_state) metadata.append(pdf) dataframe = _rename(dataframe) return dataframe, metadata
b0a711a132f78188cc8b40fe3fb907d022aaa37a
5,322
import struct def read_and_decrypt_mylogin_cnf(f): """Read and decrypt the contents of .mylogin.cnf. This decryption algorithm mimics the code in MySQL's mysql_config_editor.cc. The login key is 20-bytes of random non-printable ASCII. It is written to the actual login path file. It is used to generate the real key used in the AES cipher. :param f: an I/O object opened in binary mode :return: the decrypted login path file :rtype: io.BytesIO or None """ # Number of bytes used to store the length of ciphertext. MAX_CIPHER_STORE_LEN = 4 LOGIN_KEY_LEN = 20 # Move past the unused buffer. buf = f.read(4) if not buf or len(buf) != 4: logger.error('Login path file is blank or incomplete.') return None # Read the login key. key = f.read(LOGIN_KEY_LEN) # Generate the real key. rkey = [0] * 16 for i in range(LOGIN_KEY_LEN): try: rkey[i % 16] ^= ord(key[i:i+1]) except TypeError: # ord() was unable to get the value of the byte. logger.error('Unable to generate login path AES key.') return None rkey = struct.pack('16B', *rkey) # Create a decryptor object using the key. decryptor = _get_decryptor(rkey) # Create a bytes buffer to hold the plaintext. plaintext = BytesIO() while True: # Read the length of the ciphertext. len_buf = f.read(MAX_CIPHER_STORE_LEN) if len(len_buf) < MAX_CIPHER_STORE_LEN: break cipher_len, = struct.unpack("<i", len_buf) # Read cipher_len bytes from the file and decrypt. cipher = f.read(cipher_len) plain = _remove_pad(decryptor.update(cipher)) if plain is False: continue plaintext.write(plain) if plaintext.tell() == 0: logger.error('No data successfully decrypted from login path file.') return None plaintext.seek(0) return plaintext
84b0831a139db80e0a8d48c7fbaacaef377c93e9
5,323
def list_files(tag=None, inst_id=None, data_path=None, format_str=None, supported_tags=None, file_cadence=dt.timedelta(days=1), two_digit_year_break=None, delimiter=None, file_type=None): """Return a Pandas Series of every file for chosen Instrument data. Parameters ---------- tag : string or NoneType Denotes type of file to load. Accepted types are <tag strings>. (default=None) inst_id : string or NoneType Specifies the satellite ID for a constellation. Not used. (default=None) data_path : string or NoneType Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : string or NoneType User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) supported_tags : dict or NoneType keys are inst_id, each containing a dict keyed by tag where the values file format template strings. (default=None) file_cadence : dt.timedelta or pds.DateOffset pysat assumes a daily file cadence, but some instrument data file contain longer periods of time. This parameter allows the specification of regular file cadences greater than or equal to a day (e.g., weekly, monthly, or yearly). (default=dt.timedelta(days=1)) two_digit_year_break : int or NoneType If filenames only store two digits for the year, then '1900' will be added for years >= two_digit_year_break and '2000' will be added for years < two_digit_year_break. If None, then four-digit years are assumed. (default=None) delimiter : string or NoneType Delimiter string upon which files will be split (e.g., '.'). If None, filenames will be parsed presuming a fixed width format. (default=None) file_type : str or NoneType File format for Madrigal data. Load routines currently accepts 'hdf5', 'simple', and 'netCDF4', but any of the Madrigal options may be used here. If None, will look for all known file types. (default=None) Returns ------- out : pds.Series A pandas Series containing the verified available files """ # Initialize the transitional variables list_file_types = file_types.keys() if file_type is None else [file_type] sup_tags = {inst_id: {tag: supported_tags[inst_id][tag]}} out_series = list() # Cycle through each requested file type, loading the requested files for ftype in list_file_types: if supported_tags[inst_id][tag].find('{file_type}') > 0: sup_tags[inst_id][tag] = supported_tags[inst_id][tag].format( file_type=file_types[ftype]) out_series.append(pysat.instruments.methods.general.list_files( tag=tag, inst_id=inst_id, data_path=data_path, format_str=format_str, supported_tags=sup_tags, file_cadence=file_cadence, two_digit_year_break=two_digit_year_break, delimiter=delimiter)) # Combine the file lists, ensuring the files are correctly ordered if len(out_series) == 0: out = pds.Series(dtype=str) elif len(out_series) == 1: out = out_series[0] else: out = pds.concat(out_series).sort_index() return out
e8dd3c25c953fb6d8ccef6cbef4fd31c579826fd
5,324
def is_on_top(bb1, bb2): """ For obj 1 to be on top of obj 2: - obj1 must be above obj 2 - the bottom of obj 1 must be close to the top of obj 2 """ bb1_min, _ = bb1 _, bb2_max = bb2 x1,y1,z1 = bb1_min x2,y2,z2 = bb2_max return z1 < z2 + ONTOP_EPSILON and is_above(bb1, bb2)
666b7a424fc1b8769cc436c07981ae134e6241a9
5,325
def prepare_definitions(defs, prefix=None): """ prepares definitions from a dictionary With a provided dictionary of definitions in key-value pairs and builds them into an definition list. For example, if a dictionary contains a key ``foo`` with a value ``bar``, the returns definitions will be a list with the values ``['foo=bar']``. If a key contains a value of ``None``, the key will be ignored and will not be part of the final definition list. If a ``prefix`` value is provided, each definition entry will be prefixed with the provided value. Args: defs: the arguments to process prefix (optional): prefix value to prefix each definition Returns: list of arguments """ final = [] if defs: for key, val in defs.items(): if val is None: continue if prefix: key = prefix + key if val: final.append('{}={}'.format(key, val)) else: final.append(key) return final
ddc6d14cc18f8afba766efee65ab365df1d226c2
5,326
def load_training_data(mapsize=512, grfized=False, exclude_fid=False, dense_grid=False, random_split=False, from_files=False): """Load data for different training scenarios.""" if not grfized and (not dense_grid) and (not random_split): # the default data to loas X_train, X_test, y_train, y_test = load_sparse_grid(imsize=mapsize, from_files=from_files) elif grfized: # equivalent gaussian random filed maps assert not from_files X_train, X_test, y_train, y_test = load_grf_sparse_grid() elif dense_grid: assert not from_files # data with additional points around a cosmology X_train, X_test, y_train, y_test = load_dense_grid(imsize=mapsize) elif random_split: # random train and test split X_train, X_test, y_train, y_test = load_randomsplit_grid( imsize=mapsize, from_files=from_files) # aleays predict newidf, why not, it takes not time # anyway we will not use it with the experiemnts fn = '../../data/columbia_data_fiducial_new_idf_pix'+str(mapsize)+'.npy' X_new_idf = np.load(fn) y_new_idf = np.ones((len(y_test),2)) y_new_idf[:,0], y_new_idf[:,1] = 0.309, 0.816 if exclude_fid: # exclude fiducial cosmo params if asked for idx = (y_train[:,0] == 0.309) & (y_train[:,1] == 0.816) X_train, y_train = X_train[~idx], y_train[~idx] return X_train, X_test, X_new_idf, y_train, y_test, y_new_idf
2e2ddf93311c315f070c91af8bcc1a0df5e94343
5,327
def concat_features(args, feature_dim_name='feature'): """Concatenate Xs along a set of feature dimensions Parameters ---------- args : iterable list of tuples of the form (dims, DataArray) where dims is a tuple of dimensions that will be considered feature dimensions Returns ------- stacked : xr.DataArray The output where the data has been stacked along the feature_dim_name """ indexes = [] arrays = [] for dims, xarr in args: stacked_arr = xarr.stack(**{feature_dim_name: dims}) indexes.append(stacked_arr.indexes[feature_dim_name]) arrays.append(stacked_arr) index = concat_multi_indexes(indexes) return xr.concat(arrays, dim=index)
d7b44931a5b8a626ca81e5260566c60379d64fc2
5,328
def _inspect_mixin( self, geoctx=None, format="pyarrow", file=None, timeout=30, client=None, **params ): """ Quickly compute this proxy object using a low-latency, lower-reliability backend. Inspect is meant for getting simple computations out of Workflows, primarily for interactive use. It's quicker but less resilient, won't be retried if it fails, and has no progress updates. If you have a larger computation (longer than ~30sec), or you want to be sure the computation will succeed, use `~.compute` instead. `~.compute` creates a `.Job`, which runs asynchronously, will be retried if it fails, and stores its results for later retrieval. Parameters ---------- geoctx: `.scenes.geocontext.GeoContext`, `~.workflows.types.geospatial.GeoContext`, or None The GeoContext parameter under which to run the computation. Almost all computations will require a `~.workflows.types.geospatial.GeoContext`, but for operations that only involve non-geospatial types, this parameter is optional. format: str or dict, default "pyarrow" The serialization format for the result. See the `formats <https://docs.descarteslabs.com/descarteslabs/workflows/docs/formats.html#output-formats>`_ documentation for more information. If "pyarrow" (the default), returns an appropriate Python object, otherwise returns raw bytes. file: path or file-like object, optional If specified, writes results to the path or file instead of returning them. timeout: int, optional, default 30 The number of seconds to wait for the result. Raises `~descarteslabs.workflows.models.JobTimeoutError` if the timeout passes. client: `.workflows.inspect.InspectClient`, optional Allows you to use a specific InspectClient instance with non-default auth and parameters **params: Proxytype Parameters under which to run the computation. Returns ------- result: Python object or bytes When ``format="pyarrow"`` (the default), returns an appropriate Python object representing the result, either as a plain Python type, or object from `descarteslabs.workflows.result_types`. For other formats, returns raw bytes. Consider using `file` in that case to save the results to a file. """ if geoctx is not None: params["geoctx"] = GeoContext._promote(geoctx) if client is None: client = _get_global_inspect_client() return client.inspect(self, format=format, file=file, timeout=timeout, **params)
fd66a1728ca99806dc2c5056cf4a612ca7cac79b
5,329
def list_dvs(service_instance): """ Returns a list of distributed virtual switches associated with a given service instance. service_instance The Service Instance Object from which to obtain distributed virtual switches. """ return utils_common.list_objects(service_instance, vim.DistributedVirtualSwitch)
2223fe68c13868bea2884b292318e21cb1c2b99c
5,330
from typing import Optional def gdb_cli_args(request: FixtureRequest) -> Optional[str]: """ Enable parametrization for the same cli option """ return getattr(request, 'param', None) or request.config.getoption('gdb_cli_args', None)
635c5cfd397fe286003add99e094778f835a88d9
5,331
from datetime import datetime def coerce_rfc_3339_date(input_date): """This function returns true if its argument is a valid RFC 3339 date.""" if input_date: return datetime.datetime.strptime(input_date, "%Y-%m-%dT%H:%M:%SZ") return False
83cc2c32b74ad896d79db1a91f4a0fd88b26731e
5,332
def extract_job_url(job): """ parse the job data and extract the str for the URL of the job posted params: job str: html str representation from bs4 returns: url str: relative URL path of the job ad """ return job.a["href"]
7517badcc2814e641c04a8f880353d897d434b7f
5,333
import sh def commit(experiment_name, time): """ Try to commit repo exactly as it is when starting the experiment for reproducibility. """ try: sh.git.commit('-a', m='"auto commit tracked files for new experiment: {} on {}"'.format(experiment_name, time), allow_empty=True ) commit_hash = sh.git('rev-parse', 'HEAD').strip() return commit_hash except: return '<Unable to commit>'
a5a75cad77d605ef60905e8b36c6df9913b7bd3c
5,334
def weighted_loss(class_weights): """ Create a weighted loss function. Penalise the misclassification of classes more with the higher usage """ weight_values = list(class_weights.values()) def weighted_binary_crossentropy(y_true, y_pred): # add another dimension to compute dot product expanded_weights = K.expand_dims(weight_values, axis=-1) return K.dot(K.binary_crossentropy(y_true, y_pred), expanded_weights) return weighted_binary_crossentropy
804a643dff3916f376545a9f481edc418ebf5d8e
5,335
def delete_cluster(resource_root, name): """ Delete a cluster by name @param resource_root: The root Resource object. @param name: Cluster name @return: The deleted ApiCluster object """ resp = resource_root.delete("%s/%s" % (CLUSTERS_PATH, name)) return ApiCluster.from_json_dict(resp, resource_root)
2ed12d7f927d6579cbea81765b353f0eecae8f4a
5,336
def mk_test(x, alpha = 0.05): """This perform the MK (Mann-Kendall) test to check if there is any trend present in data or not Args: x: a vector of data alpha: significance level Returns: trend: tells the trend (increasing, decreasing or no trend) h: True (if trend is present) or False (if trend is absence) p: p value of the sifnificance test z: normalized test statistics Examples:: >>> x = np.random.rand(100) >>> trend = mk_test(x,0.05) >>> print(trend.trend) increasing Credit: http://pydoc.net/Python/ambhas/0.4.0/ambhas.stats/ """ n = len(x) ta = n*(n-1)/2 # calculate S s = 0 for k in xrange(n-1): for j in xrange(k+1,n): s += np.sign(x[j] - x[k]) # calculate the unique data unique_x = np.unique(x) g = len(unique_x) # calculate the var(s) if n == g: # there is no tie var_s = (n*(n-1)*(2*n+5))/18 else: # there are some ties in data tp = np.zeros(unique_x.shape) for i in xrange(len(unique_x)): tp[i] = sum(unique_x[i] == x) var_s = (n*(n-1)*(2*n+5) - np.sum(tp*(tp-1)*(2*tp+5)))/18 if s>0: z = (s - 1)/np.sqrt(var_s) elif s == 0: z = 0 elif s<0: z = (s + 1)/np.sqrt(var_s) else: z = 0 # calculate the p_value p = 2*(1- norm.cdf(abs(z))) # two tail test h = abs(z) > norm.ppf(1-alpha/2) if (z<0) and h: trend = 'decreasing' elif (z>0) and h: trend = 'increasing' else: trend = 'no trend' return pd.Series({'trend':trend, 'varS':round(var_s,3), 'p':round(p,3), 'z':round(z,3), 's':round(s,3), 'n':n, 'ta':ta})
8586c7ee5cf71ea79db9f57ebc6cc77d942962f7
5,337
from typing import List def convert_event_to_boxes(event: Event) -> List[EventBox]: """Takes in an event and converts this into a list of boxes that when combined completely cover the time allocated to this event. Usually, this list will contain a single EventBox as many events start and end on the same day, but any events split across multiple day boundaries will be split into multiple boxes.""" start_date = event.start_datetime.date() end_date = event.end_datetime.date() start_time_float = time_to_float(event.start_datetime.time()) end_time_float = time_to_float(event.end_datetime.time()) days_spanned = (end_date - start_date).days + 1 boxes = [] if days_spanned == 1: boxes.append(EventBox(0, start_time_float, end_time_float)) else: boxes.append(EventBox(0, start_time_float, 24.0)) for i in range(max(0, days_spanned - 2)): boxes.append(EventBox(i + 1, 0.0, 24.0)) boxes.append(EventBox(days_spanned - 1, 0.0, end_time_float)) return boxes
c8f93fb2480792540e9052dd79c654e835021030
5,338
import copy def _reduce_consecutive_layers(conv_defs, start_id, end_id, multiplier=0.5): """Reduce the outputs of consecutive layers with multiplier. Args: conv_defs: Mobilenet conv_defs. start_id: 0-based index of the starting conv_def to be reduced. end_id: 0-based index of the last conv_def to be reduced. multiplier: The multiplier by which to reduce the conv_defs. Returns: Mobilenet conv_defs where the output sizes from layers [start_id, end_id], inclusive, are reduced by multiplier. Raises: ValueError if any layer to be reduced does not have the 'num_outputs' attribute. """ defs = copy.deepcopy(conv_defs) for d in defs['spec'][start_id:end_id+1]: d.params.update({ 'num_outputs': np.int(np.round(d.params['num_outputs'] * multiplier)) }) return defs
ffcfad4956f72cf91aeaa5e795e9568d0808417f
5,339
def ajax_save_content(request): """ Save front end edited content """ site = get_current_site(request) content_name = request.POST['content_name'] cms_content = CmsContent.objects.get(site=site, name=content_name) cms_content.content = request.POST['content'] cms_content.save() return HttpResponse('SUCCESS')
f99bcfaa7ff5773870ed6ba76bfb0cc97fab248b
5,340
def add_regional_group_costs(ws, data_sheet): """ """ ws.sheet_properties.tabColor = "92D050" ##Color white ws.sheet_view.showGridLines = False #Set blue and red border strips set_cell_color(ws, 'A1:AZ1', "004C97") set_cell_color(ws, 'A2:AZ2', "C00000") ws = bar_chart(ws, "Estimates!$C$64:$C$71", "Estimates!$B$65:$B$71", "Total Cost by Region", 'Cost ($Bn)', "B4") ws = bar_chart(ws, "Estimates!$F$64:$F$71", "Estimates!$E$65:$E$71", "Mean Annual 10-Year GDP by Region",'GDP ($Bn)', "L4") ws = bar_chart(ws, "Estimates!$I$64:$I$71", "Estimates!$H$65:$H$71", "Initial Investment by Region",'Cost ($Bn)', "B20") ws = bar_chart(ws, "Estimates!$C$75:$C$82", "Estimates!$B$76:$B$82", "GDP Share by Region",'Percent of GDP (%)', "L20") return ws
a325b33b705819be81725e6fb6c4f277c6add097
5,341
def random_data(num): """ will return json random float, hex, int and a random password {0: { 'float': 186.66541583209647, 'hex': '43435c553c722359e386804f6b28d2c2ee3754456c38f5e7e68f', 'int': 851482763158959204, 'password': '5AJ]-02X0J' } }""" data = {} count = 0 while count < num: data.update( { count: { "hex": random_hex(), "int": randint(1, 10**18), "float": uniform(0.1, 10**3.01), "password": randPwStr() } } ) count += 1 return data
108ebabe8b156218a452cbade729dc09356d2d0b
5,343
def denied(request): """Authentication failed and user was denied.""" return render(request, 'djangosaml2/denied.html')
9341e694163de3d8cd63d448ac39294003046dac
5,344
import time def monday_of_week(year, week): """ Returns a datetime for the monday of the given week of the given year. """ str_time = time.strptime('{0} {1} 1'.format(year, week), '%Y %W %w') date = timezone.datetime(year=str_time.tm_year, month=str_time.tm_mon, day=str_time.tm_mday, tzinfo=timezone.utc) if timezone.datetime(year, 1, 4).isoweekday() > 4: # ISO 8601 where week 1 is the first week that has at least 4 days in # the current year date -= timezone.timedelta(days=7) return date
886c16df011f86eaa95254e360062d5530e05512
5,346
from typing import Mapping from typing import Any from typing import Dict def object_meta(metadata: Metadata) -> Mapping[str, Any]: """ Return a minimal representation of an ObjectMeta with the supplied information. Spec: https://github.com/argoproj/argo-workflows/blob/v3.0.4/docs/fields.md#objectmeta """ meta: Dict[str, Any] = {} if metadata.generate_name_from_prefix: meta["generateName"] = metadata.name else: meta["name"] = metadata.name if metadata.annotations: meta["annotations"] = metadata.annotations if metadata.labels: meta["labels"] = metadata.labels if metadata.namespace: meta["namespace"] = metadata.namespace return meta
fc4d30954f9c61c90511fbfc00b403017f41f6c9
5,347