content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def flatten_mock_calls(mock): """ Flatten the calls performed on a particular mock object, into a list of calls with arguments. """ result = [] for call in mock.mock_calls: call = list(call) call_name = call[0] if '.' in str(call_name): call_name = str(call_name).split('.')[-1] result.append([call_name] + call[1:]) return result
7c41025382f4ca25db1ccd328e9eb17e1d72a01a
5,115
from typing import Any def clean_setting( name: str, default_value: object, min_value: int = None, max_value: int = None, required_type: type = None, choices: list = None, ) -> Any: """cleans the user input for an app's setting in the Django settings file Will use default_value if setting is not defined. Will use minimum or maximum value if respective boundary is exceeded. Args: default_value: value to use if setting is not defined min_value: minimum allowed value (0 assumed for int) max_value: maximum value value required_type: Mandatory if `default_value` is `None`, otherwise derived from default_value Returns: cleaned value for setting This function is designed to be used in a dedicated module like ``app_settings.py`` as layer between the actual settings and all other modules. ``app_settings.py`` will import and clean all settings and all other modules are supposed to import the settings it. Example for app_settings: .. code-block:: python from app_utils.django import clean_setting EXAMPLE_SETTING = clean_setting("EXAMPLE_SETTING", 10) """ if default_value is None and not required_type: raise ValueError("You must specify a required_type for None defaults") if not required_type: required_type = type(default_value) if min_value is None and issubclass(required_type, int): min_value = 0 if issubclass(required_type, int) and default_value is not None: if min_value is not None and default_value < min_value: raise ValueError("default_value can not be below min_value") if max_value is not None and default_value > max_value: raise ValueError("default_value can not be above max_value") if not hasattr(settings, name): cleaned_value = default_value else: dirty_value = getattr(settings, name) if dirty_value is None or ( isinstance(dirty_value, required_type) and (min_value is None or dirty_value >= min_value) and (max_value is None or dirty_value <= max_value) and (choices is None or dirty_value in choices) ): cleaned_value = dirty_value elif ( isinstance(dirty_value, required_type) and min_value is not None and dirty_value < min_value ): logger.warn( "You setting for {} it not valid. Please correct it. " "Using minimum value for now: {}".format(name, min_value) ) cleaned_value = min_value elif ( isinstance(dirty_value, required_type) and max_value is not None and dirty_value > max_value ): logger.warn( "You setting for {} it not valid. Please correct it. " "Using maximum value for now: {}".format(name, max_value) ) cleaned_value = max_value else: logger.warn( "You setting for {} it not valid. Please correct it. " "Using default for now: {}".format(name, default_value) ) cleaned_value = default_value return cleaned_value
91066dd26987ad04fc9ae9b8447e35fa64f8365d
5,116
def update_not_existing_kwargs(to_update, update_from): """ This function updates the keyword aguments from update_from in to_update, only if the keys are not set in to_update. This is used for updated kwargs from the default dicts. """ if to_update is None: to_update = {} to_update.update({k:v for k,v in update_from.items() if k not in to_update}) return to_update
a66de151e6bc6d8f5b2f1b0ff32e30d2c8cb5277
5,117
def linear_forward(A, W, b): """Returns Z, (A, W, b)""" Z = (W @ A) + b cache = (A, W, b) return Z, cache
41d223473d2d8f084f13ca0f90f483b66e479a04
5,119
import contextlib import wave def read_wave(path): """Reads a .wav file. Takes the path, and returns (PCM audio data, sample rate). """ with contextlib.closing(wave.open(path, 'rb')) as wf: num_channels = wf.getnchannels() assert num_channels == 1 sample_width = wf.getsampwidth() assert sample_width == 2 sample_rate = wf.getframerate() assert sample_rate in (16000, 22050, 32000, 48000) pcm_data = wf.readframes(wf.getnframes()) return pcm_data, sample_rate
5148e788cb5f4bfe63b3e6f2cac24fe704fd9596
5,120
def update_rho_hat(rho_hat_q, rho_hat_g, phi_hat, K, Q, Y_tp1, gamma_t, W): """ rho_hat is an intermediate quantity rho_hat_{n, nu, theta}(x) = 1/n E[ sum_{t=1}^n s(X_{t-1}, X_t, Y_t | Y_{0:n}, X_n=x)] where s() are the sufficient statistics see Cappe (2.5) In our case (discrete emissions HMM), it be broken down into two separable components: rho_hat_q{n, nu, theta}(i,j,k; theta) = 1/n E[ sum_{t=1}^n I_{X_{t-1}=i, X_t=j} | Y_{0:n}, X_n=k)] rho_hat_g{n, nu, theta}(i,k; theta) = 1/n E[ sum_{t=0}^n I_{X_t=i} s(Y_t)| Y_{0:n}, X_n=k)] where s() here is just a multinoulli vector with W entries, so we can re-express it as rho_hat_g{n, nu, theta}(i,w,k; theta) = 1/n E[ sum_{t=0}^n I_{X_t=i, Y_t=w}| Y_{0:n}, X_n=k)] rho_hat_q has KxKxK entries rho_hat_g has KxWxK entries """ rho_hat_q = update_rho_hat_q(rho_hat_q, phi_hat, Q, gamma_t, K) rho_hat_g = update_rho_hat_g(rho_hat_g, Y_tp1, phi_hat, Q, gamma_t, K, W) return rho_hat_q, rho_hat_g
55713f9456ad3e8a5a1bf2fadf58e0befddf717a
5,121
def obtain_dihedral_angles(system_coords, bond_distance): """ system_coords: coords for 1 frame """ ref_selection = system_coords[0] # Process bonds for reference frame (first) bonds = [] sq_bond_distance = bond_distance**2 for i in range(len(ref_selection)-1): for j in range(i+1, len(ref_selection)): if mathTools.sq_distance(ref_selection[i], ref_selection[j]) <= sq_bond_distance: bonds.append(tuple(sorted([i, j]))) print "DBG: Found %d bonds"%(len(bonds)) # Find angles angles = [] for i in range(len(bonds)-1): for j in range(i+1, len(bonds)): if bonds_are_linked(bonds[i], bonds[j]): angles.append(tuple(sorted([bonds[i], bonds[j]]))) print "DBG: Found %d angles"%(len(angles)) # Finally, find dihedrals dihedrals = [] for i in range(len(angles)-1): for j in range(i+1, len(angles)): if angles_share_bond(angles[i], angles[j]): dihedrals.append(tuple(sorted([angles[i], angles[j]]))) print "DBG: Found %d dihedrals"%(len(dihedrals)) # Now reorganize atoms in dihedrals so that # they are consecutive and we can calculate the # actual dihedral angle r_dihedrals = [] for dihedral in dihedrals: indices = get_dihedral_indices(dihedral) # Get permutation of minimum distance distances = [] for perm in itertools.permutations(indices): #print dihedral, perm distances.append(( mathTools.sq_distance(ref_selection[perm[0]],ref_selection[perm[1]])+ mathTools.sq_distance(ref_selection[perm[1]],ref_selection[perm[2]])+ mathTools.sq_distance(ref_selection[perm[2]],ref_selection[perm[3]]), perm)) # We will pick the one which summed distances is smaller distances.sort() r_dihedrals.append(distances[0][1]) all_angles = [] for ref in system_coords: #Calculate the angles for a ref angles = [] for dihedral_indexes in r_dihedrals: atom1 = ref[dihedral_indexes[0]] atom2 = ref[dihedral_indexes[1]] atom3 = ref[dihedral_indexes[2]] atom4 = ref[dihedral_indexes[3]] angles.append( mathTools.calc_dihedral(atom1, atom2, atom3, atom4)) all_angles.append(angles) return numpy.array(all_angles)
7aba964f81c550e6d6204d28327d65020e7372b0
5,122
def piecewise_accel(duration,initial,final): """Defines a piecewise acceleration. Args: duration (float): Length of time for the acceleration to complete. initial (float): Initial value. final (float): Final value. """ a = (final-initial) return lambda t: initial + a * ( (9./2 * t**3/duration**3) * (t<duration/3) + (-9*t**3/duration**3 + 27./2*t**2/duration**2 - 9./2*t/duration + 1./2) * (t<2*duration/3)*(t>=duration/3) + (9./2*t**3/duration**3 - 27./2 * t**2/duration**2 + 27./2*t/duration - 7./2) * (t>= 2*duration/3))
7f6acd7ba2610a2e56cc1f0758b3a39543bfe8c2
5,123
def get_displayed_views(id): """ get views in window rect by view id str :param res_id: :return: """ return get_solo().get_displayed_views(id)
f3058f78ae1a2d70a3771a52cc852f1119a51f6a
5,124
def get_build_version(xform): """ there are a bunch of unreliable places to look for a build version this abstracts that out """ version = get_version_from_build_id(xform.domain, xform.build_id) if version: return version, BuildVersionSource.BUILD_ID version = get_version_from_appversion_text( get_meta_appversion_text(xform) ) if version: return version, BuildVersionSource.APPVERSION_TEXT xform_version = xform.version if xform_version and xform_version != '1': return int(xform_version), BuildVersionSource.XFORM_VERSION return None, BuildVersionSource.NONE
417debd5d3daf10c28222d42e6cc90869f5779ec
5,125
import typing def get_shortlist(routing_table: 'TreeRoutingTable', key: bytes, shortlist: typing.Optional[typing.List['KademliaPeer']]) -> typing.List['KademliaPeer']: """ If not provided, initialize the shortlist of peers to probe to the (up to) k closest peers in the routing table :param routing_table: a TreeRoutingTable :param key: a 48 byte hash :param shortlist: optional manually provided shortlist, this is done during bootstrapping when there are no peers in the routing table. During bootstrap the shortlist is set to be the seed nodes. """ if len(key) != constants.HASH_LENGTH: raise ValueError("invalid key length: %i" % len(key)) return shortlist or routing_table.find_close_peers(key)
884e4444cca22eaf9495dad8ff28bfc601b4c778
5,126
from typing import Dict from typing import Any def get_merged_contextvars(bound_logger: BindableLogger) -> Dict[str, Any]: """ Return a copy of the current context-local context merged with the context from *bound_logger*. .. versionadded:: 21.2.0 """ ctx = get_contextvars() ctx.update(structlog.get_context(bound_logger)) return ctx
3ee59f57ee10c4f57c4085e660cc054830688416
5,127
import warnings def policy_iteration(policy, env, value_function=None, threshold=0.00001, max_steps=1000, **kwargs): """ Policy iteration algorithm, which consists on iterative policy evaluation until convergence for the current policy (estimate over many sweeps until you can't estimate no more). And then finally updates policy to be greedy. """ value_function = last_converged_v_fun = np.zeros(env.world.size) if value_function is None else value_function greedy_policy = policy for step_number in range(max_steps): new_value_function = utils.single_step_policy_evaluation(greedy_policy, env, value_function=value_function, **kwargs) delta_eval = np.max(value_function - new_value_function) value_function = new_value_function if delta_eval < threshold: # policy evaluation converged new_policy = utils.greedy_policy_from_value_function(greedy_policy, env, value_function=value_function, **kwargs) delta = np.max(last_converged_v_fun - new_value_function) last_converged_v_fun = new_value_function if delta < threshold: # last converged value functions difference converged break else: greedy_policy = new_policy elif step_number == max_steps - 1: greedy_policy = utils.greedy_policy_from_value_function(greedy_policy, env, value_function=last_converged_v_fun, **kwargs) warning_message = 'Policy iteration did not reach the selected threshold. Finished after reaching ' \ 'the maximum {} steps with delta_eval {}'.format(step_number + 1, delta_eval) warnings.warn(warning_message, UserWarning) return last_converged_v_fun, greedy_policy
090fc3a4e87986afc9dfd3565a2d234c7d2e8005
5,128
def create_blueprint(app): """Register blueprint routes on app.""" blueprint = Blueprint( "invenio_records_marc21", __name__, template_folder="../templates", url_prefix="/marc21", ) blueprint = init_theme_views(blueprint, app) blueprint = init_records_views(blueprint, app) return blueprint
8aa53185d3d41e4e5aabfa2efaa6a73b94dc02f5
5,130
import json def mock_machine(): """Fixture localapi Machine init with the data/response.json file.""" with requests_mock.Mocker() as mock_resp: f = open(response_test_path,) data = json.load(f) machine_ipaddr = "0.0.0.0" mock_addr = f"http://{machine_ipaddr}:3000/api/v1/hvac" mock_resp.post(mock_addr, json=data) return Machine(machine_ipaddr)
726aecd3195d39f8a0c48d93a00299a5d61ac90a
5,131
def get_files_links(service, v): """Print links of uploaded files. :param: service (object): Goolge Drive service object. :param: v (string): Version of Tor Browser to look for. """ windows_re = 'torbrowser-install-%s_\w\w(-\w\w)?\.exe(\.asc)?' % v linux_re = 'tor-browser-linux\d\d-%s_(\w\w)(-\w\w)?\.tar\.xz(\.asc)?' % v osx_re = 'TorBrowser-%s-osx\d\d_(\w\w)(-\w\w)?\.dmg(\.asc)?' % v # dictionary to store file names and IDs files_dict = dict() print "Trying to fetch links of uploaded files..." links = service.files().list().execute() items = links.get('items', []) if not items: raise ValueError('No files found.') else: for item in items: if re.search(windows_re, item['title']): files_dict[item['title']] = item['id'] elif re.search(linux_re, item['title']): files_dict[item['title']] = item['id'] elif re.search(osx_re, item['title']): files_dict[item['title']] = item['id'] return files_dict
bda4af382bb629ce40721ccff64553cd2b98d558
5,132
def list_(context, field, mpd_query=None): """ *musicpd.org, music database section:* ``list {TYPE} [ARTIST]`` Lists all tags of the specified type. ``TYPE`` should be ``album``, ``artist``, ``date``, or ``genre``. ``ARTIST`` is an optional parameter when type is ``album``, ``date``, or ``genre``. This filters the result list by an artist. *Clarifications:* The musicpd.org documentation for ``list`` is far from complete. The command also supports the following variant: ``list {TYPE} {QUERY}`` Where ``QUERY`` applies to all ``TYPE``. ``QUERY`` is one or more pairs of a field name and a value. If the ``QUERY`` consists of more than one pair, the pairs are AND-ed together to find the result. Examples of valid queries and what they should return: ``list "artist" "artist" "ABBA"`` List artists where the artist name is "ABBA". Response:: Artist: ABBA OK ``list "album" "artist" "ABBA"`` Lists albums where the artist name is "ABBA". Response:: Album: More ABBA Gold: More ABBA Hits Album: Absolute More Christmas Album: Gold: Greatest Hits OK ``list "artist" "album" "Gold: Greatest Hits"`` Lists artists where the album name is "Gold: Greatest Hits". Response:: Artist: ABBA OK ``list "artist" "artist" "ABBA" "artist" "TLC"`` Lists artists where the artist name is "ABBA" *and* "TLC". Should never match anything. Response:: OK ``list "date" "artist" "ABBA"`` Lists dates where artist name is "ABBA". Response:: Date: Date: 1992 Date: 1993 OK ``list "date" "artist" "ABBA" "album" "Gold: Greatest Hits"`` Lists dates where artist name is "ABBA" and album name is "Gold: Greatest Hits". Response:: Date: 1992 OK ``list "genre" "artist" "The Rolling Stones"`` Lists genres where artist name is "The Rolling Stones". Response:: Genre: Genre: Rock OK *GMPC:* - does not add quotes around the field argument. *ncmpc:* - does not add quotes around the field argument. - capitalizes the field argument. """ field = field.lower() query = _list_build_query(field, mpd_query) if field == u'artist': return _list_artist(context, query) elif field == u'album': return _list_album(context, query) elif field == u'date': return _list_date(context, query) elif field == u'genre': pass
b95b6e4e5be01a1796d1708fc214821ce4f78491
5,133
def palindrome(d: int)-> str: """ Function is getting the digits of the number, left shifting it by multiplying it with 10 at each iteration and adding it the previous result. Input: Integer Output: String (Sentence telling if the number is palindrome or not) """ remainder = 0 revnum = 0 n = len(str(d)) copynum2 = d while copynum2 != 0: remainder = copynum2%10 revnum = revnum * 10 + remainder copynum2 //= 10 if d == revnum: return "Given Numer {} is palindrome".format(d) else: return "Given Numer {} is not palindrome".format(d)
fe654ab92a905e265987856bcd2106c7b082b490
5,134
import json def import_from_file(request): """ Import a part of a source site's page tree via an import of a JSON file exported to a user's filesystem from the source site's Wagtail Admin The source site's base url and the source page id of the point in the tree to import defined what to import and the destination parent page defines where to import it to. """ if request.method == 'POST': form = ImportFromFileForm(request.POST, request.FILES) if form.is_valid(): import_data = json.loads(form.cleaned_data['file'].read().decode('utf-8-sig')) parent_page = form.cleaned_data['parent_page'] try: page_count = import_pages(import_data, parent_page) except LookupError as e: messages.error(request, _( "Import failed: %(reason)s") % {'reason': e} ) else: messages.success(request, ungettext( "%(count)s page imported.", "%(count)s pages imported.", page_count) % {'count': page_count} ) return redirect('wagtailadmin_explore', parent_page.pk) else: form = ImportFromFileForm() return render(request, 'wagtailimportexport/import_from_file.html', { 'form': form, })
0dd6d4f2499a05c13002a0c410a8558b8f5b3b29
5,135
def _build_groupby_indices(df, table_name, join_columns): """ Pre-computes indexes based on the group-by columns. Returns a dictionary of tuples to the list of indices. """ log.info("Grouping table '{}' by: {}.".format(table_name, ", ".join(join_columns))) ret = df.groupby(join_columns).indices if len(join_columns) == 1: # Manually patch the dictionary to make sure its keys are tuples. ret = {(k,): v for k, v in ret.items()} return ret
16ba9cd231aac2560a5735dc4727dd5c15b90fc2
5,138
from typing import List def add_multiple_package(package_list: List[str]) -> str: """ Generate latex code to add multiple package to preamble :param package_list: List of package to add in preamble """ usepackage_command_list = [] for package in package_list: usepackage_command_list.append(rf"""\usepackage{{{package}}}""") return "\n".join(usepackage_command_list)
90bdd0a521c094d92c35ef92e62d6b43f6b135b4
5,139
from metrics.models import Group def emailAdmins(msgData): """ Emails all admins with given message. States which admin created/is sending the message to everyone. Return: {bool} """ try: if not msgData['msg']: print('No message was provided to send.') return False admins = list(Group.objects.get(name='admins').user_set.all().values_list('username', flat=True)) returnMessage, emailSent = sendEmail({ 'subject': '[Omnia] Admins communication', 'recipients': admins, 'fromEmail': msgData['fromEmail'], 'message': f'<div style="font-family:sans-serif;font-size:14px;line-height:20px;"><p>Message from {msgData["sender"]} to all {len(admins)} Omnia admins:</p><p>{msgData["msg"]}</p></div>' }) return (returnMessage, emailSent) except Exception as ex: return (f"Error: Admin email failed to send. Error message: {returnMessage}", False)
d44989205c2c60bc618cffcfc9a08ad141f35e4b
5,140
def add(isamAppliance, name, chainItems=[], description=None, check_mode=False, force=False): """ Create an STS chain template """ if force is False: ret_obj = search(isamAppliance, name) if force is True or ret_obj['data'] == {}: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: json_data = { "name": name, "chainItems": chainItems } if description is not None: json_data['description'] = description return isamAppliance.invoke_post( "Create an STS chain template", uri, json_data, requires_modules=requires_modules, requires_version=requires_version) return isamAppliance.create_return_object()
7050cfbb052164ed9c570c065b62d5d90609df2c
5,141
def MinHamDistance(pattern, dna_list): """Calculate the minimum Hamming distance from a DNA list.""" return sum(HammingDistanceDiffLen(pattern, sequence) for sequence in dna_list)
37b1bc96e8a9622060ee6c1361f30df3b69b844f
5,142
from datetime import datetime def _add_note(text: str, user: KarmaUser) -> str: """Adds a new note to the database for the given user.""" _, note_msg = _parse_note_cmd(text) if not note_msg: return f"Sorry {user.username}, could not find a note in your message." if _note_exists(note_msg, user): return f"Sorry {user.username}, you already have an identical note." note = KarmaNote( user_id=user.user_id, timestamp=datetime.datetime.now(), note=note_msg ) session = db_session.create_session() session.add(note) session.commit() return f"Hey {user.username}, you've just stored a note."
4b81f45c9839a919b41b6f45a09beaf322821211
5,143
def process_line(this_line, do_stemming=False, remove_stopwords=False): """ Given a line from the CSV file, gets the stemmed tokens. """ speech = process_csv_line(this_line) speech_tokens = process_raw_speech_text(speech.contents, perform_stemming=do_stemming, delete_stopwords=remove_stopwords) return speech_tokens
2730bc7e942a2031f96cc40e889d72cf728bd45a
5,145
def metadef_tag_count(context, namespace_name): """Get metadef tag count in a namespace""" namespace = metadef_namespace_get(context, namespace_name) _check_namespace_visibility(context, namespace, namespace_name) count = 0 for tag in DATA['metadef_tags']: if tag['namespace_id'] == namespace['id']: count = count + 1 return count
bc863cdbdde5abe4d845f01f49eed1a357e008e4
5,146
from typing import Literal def act2graph(graph: Graph, xml_root: Xml, registry: dict, namespaces: dict, tag: str) -> Graph: """ Transform activityName tag into RDF graph. The function transforms the Activity MasterData into identifier. The output is a RDF graph that represents a part of the Ecoinvent nomenclature structured with The IEO ontology. The output represents the centrally registrered identifier (CRID) by the database version and the activity name identifier, e.g. ecoinvent3.0:88d6c0aa-0053-4367-b0be-05e4b49ff3c5 for the copper production, primary. Variables: - graph: the graph to update - xml_root: the root of the xml file - registry: dictionary containing the reference/info of the data registry - tag: string containing the namespace tag - namespaces: dictionary containing the namespaces with tags """ # crid_reg: CRID registry, e.g Ecoinvent crid_reg = registry['reg_id'] crid_reg_label = registry['label'] # Database identifier, e.g. EcoInvent3.1 major_release = xml_root.attrib['majorRelease'] minor_release = xml_root.attrib['minorRelease'] database_version = f'v{major_release}_{minor_release}' database_label = f'{crid_reg_label}{major_release}.{minor_release}' database_id = crid_reg+database_version graph.add((ECO[crid_reg], RDFS.label, Literal(crid_reg_label, lang='en'))) graph.add((ECO.activityId, RDFS.subClassOf, ACT_CRID)) activity_id_label = 'EcoInvent activity identifier' graph.add((ECO.activityId, RDFS.label, Literal(activity_id_label, lang='en'))) graph.add((ECO.activity_name, RDFS.subClassOf, REF_ACTIVITY)) activity_label = 'EcoInvent activity label' graph.add((ECO.activity_name, RDFS.label, Literal(activity_label, lang='en'))) for activity_name in xml_root.findall(tag, namespaces): activity_name_id = activity_name.attrib['id'] crid = activity_name_id+database_version graph.add((ECO[crid], RDF.type, ECO.activityId)) graph.add((ECO[activity_name_id], RDF.type, ECO.activity_name)) # Define the property relation between the symbols of the CRID graph.add((ECO[crid], BFO.has_part, ECO[database_id])) graph.add((ECO[database_id], BFO.part_of, ECO[crid])) graph.add((ECO[crid], BFO.has_part, ECO[activity_name_id])) graph.add((ECO[activity_name_id], BFO.part_of, ECO[crid])) # Define the labels with the different languages xml_ns = namespaces['xml'] for name in activity_name.findall('eco:name', namespaces): lang = name.attrib['{'+xml_ns+'}lang'] activity_label = name.text crid_label = f'{database_label}:{activity_label}' graph.add((ECO[crid], RDFS.label, Literal(crid_label, lang=lang))) graph.add((ECO[activity_name_id], RDFS.label, Literal(activity_label, lang=lang))) return graph
899522fa59aa8acf8c0f55377793fc70be6c112b
5,147
from typing import AnyStr def to_checksum_address(value: AnyStr) -> ChecksumAddress: """ Makes a checksum address given a supported format. """ norm_address = to_normalized_address(value) address_hash = encode_hex(keccak(text=remove_0x_prefix(norm_address))) checksum_address = add_0x_prefix( "".join( ( norm_address[i].upper() if int(address_hash[i], 16) > 7 else norm_address[i] ) for i in range(2, 42) ) ) return ChecksumAddress(HexAddress(checksum_address))
7223c1fa612a1445c5c7d66410b9f34e4c302a74
5,148
def is_volatile(type): """returns True, if type represents C++ volatile type, False otherwise""" nake_type = remove_alias(type) return isinstance(nake_type, cpptypes.volatile_t)
d60e4ea471a818b878267e6f6f9a2e05f2728b1c
5,149
def load_adult(as_frame: bool = False): """Load and return the higly imbalanced binary classification [adult income datatest](http://www.cs.toronto.edu/~delve/data/adult/desc.html). you may find detailed description [here](http://www.cs.toronto.edu/~delve/data/adult/adultDetail.html) """ with resources.path( "pytorch_widedeep.datasets.data", "adult.parquet.brotli" ) as fpath: df = pd.read_parquet(fpath) if as_frame: return df else: return df.to_numpy()
432ef18a197dba1a0e64b7606ba2d350fc402f28
5,150
from typing import Optional from typing import Union from typing import Callable import json import types from typing import NoReturn def sam( body: Optional[Union[bool,Callable]] = json.loads, pathParams: Optional[Union[bool,Callable]] = False, queryString: Optional[Union[bool,Callable]] = False, headers: Optional[Union[bool,Callable]] = False, authenticate: Optional[Callable[[dict], types.AuthUser]] = None, authorize: Optional[Callable[[types.AuthUser], bool]] = None, jsonize_response: bool = True, keep_event: bool = False, keep_context: bool = False, pass_auth_user: bool = True, ): """Wraps an AWS lambda handler function to handle auth, to catch and handle errors, and to convert lambda handler default parameters to a functions declared parameters. :param body: Should the wrapper function pass `event`'s "body" attribute as an arg to inner function (called "body")? If `body` is callable, it will be used to parse the values. For example, if the body is string-ified JSON, you can use `json.loads` to load the request (or `parsers.json`, a wrapper around `json.loads`). Or, you could use a `pydantic` model to parse and validate the input. If this param parsing raises an error, it will be caught and returned as an `errors.RequestParseError`. See also other params: `pathParams`, `queryString`, and `headers`. :param pathParams: Should the wrapper function pass `event`'s "pathParams" attribute as an arg to inner function (called "path")? If `pathParams` is callable, it will be used to parse the values. See also other params: `body`, `queryString`, and `headers`. :param queryString: Should the wrapper function pass `event`'s "queryString" attribute as an arg to inner function (called "query")? If `queryString` is callable, it will be used to parse the values. See also other params: `pathParams`, `body`, and `headers`. :param headers: Should the wrapper function pass `event`'s "headers" attribute as an arg to inner function (called "headers")? If `headers` is callable, it will be used to parse the values. See also other params: `pathParams`, `queryString`, and `body`. :param authenticate: Function to authenticate the requesting user. Takes the full `event` as an input and returns a User. :param authorize: Function to authorize the requesting user. Note: `authenticate` must also be present. :param jsonize_response: Should the response body be wrapped in JSON? If so, the response's body will be a string-ified json dict of the following form: `{"success": true, "result": ...}` If `jsonize_response` is `True` but the function's signature shows a return value of `None` or `NoReturn`, and the function does in fact return `None`, the body will not have a "result" attribute, only "success". If `jsonize_response` is `True` and the returned value is a dict, that value will be merged with a dict: `{"success": True}` :param keep_event: Should the `event` dict be passed to the wrapped function from AWS Lambda? :param keep_context: Should the `context` object be passed to the wrapped function from AWS Lambda? :param pass_auth_user: If authentication function supplied, should `authUser` be passed as a kwarg to the wrapped function? :returns: Decorated lambda handler function """ # Check authorize/authenticate if authorize is not None: assert authenticate is not None, "If `authorize` is not `None`, "+\ "`authenticate` can't be `None`." def wrapper(fn: Callable): # Get the function's return type, to use later when # deciding how to format response return_type = args.get_return_type(fn) @ft.wraps(fn) def inner(event: dict, context) -> dict: # Store function arguments kwargs = {} if authenticate is not None: # Authenticate the user try: user = authenticate(event) except errors.HttpError as e: return e.json() if authorize is not None: # Authorize the user try: if not authorize(user): raise errors.AuthorizationError() except errors.HttpError as e: return e.json() # Does the user want the authorized # user as an argument? if pass_auth_user: kwargs["authUser"] = user # Get the query/path/body/header params if body: try: kwargs["body"] = body(event["body"]) if callable(body) else event["body"] except Exception as e: return errors.RequestParseError().json( f"Unable to read request body." ) if pathParams: try: kwargs["path"] = pathParams(event["pathParameters"]) if callable(pathParams) \ else event["pathParameters"] except Exception as e: return errors.RequestParseError().json( f"Unable to read request path parameters." ) if queryString: try: kwargs["query"] = queryString(event["queryStringParameters"]) if callable(queryString) \ else event["queryStringParameters"] except Exception as e: return errors.RequestParseError().json( f"Unable to read request query string parameters." ) if headers: try: kwargs["headers"] = headers(event["headers"]) if callable(headers) else event["headers"] except Exception as e: return errors.RequestParseError().json( f"Unable to read request headers." ) # Add event/context if requested if keep_event: kwargs["event"] = event if keep_context: kwargs["context"] = context # Call the function try: res = fn(**kwargs) except errors.HttpError as e: return e.json() except Exception as e: print(f"UNCAUGHT ERROR: \"{e}\"") return errors.InternalServerError().json() # Return a response if jsonize_response: # If there isn't a return (as expected) # just return the success-ness if res is None and return_type in (None, NoReturn): return { "statusCode": 200, "body": json.dumps({ "success": True, }) } # If the response is a dict, merge # it with the `success`-ness flag if isinstance(res, dict): return { "statusCode": 200, "body": json.dumps({ "success": True, **res }) } # Otherwise (if result isn't a dict) # return it as the value to key "result" return { "statusCode": 200, "body": json.dumps({ "success": True, "result": res, }) } else: # If not json-izing the response, pass # it as the value to the key "body" # (still with a status-code of 200) return { "statusCode": 200, "body": res } return inner return wrapper
4ccdbfc843fd07197819fae730faec97dc2316f7
5,151
import logging def get_logger(name=None): """return a logger """ global logger if logger is not None: return logger print('Creating logger========================================>') logger = logging.getLogger(name) logger.setLevel(logging.INFO) sh = logging.StreamHandler() sh.setLevel(logging.INFO) formatter = logging.Formatter('[%(asctime)s][%(levelname)s]{%(pathname)s:%(lineno)d} %(message)s') sh.setFormatter(formatter) logger.addHandler(sh) return logger
34e0aa41b3e8c878574e1ab57eff41238b291672
5,152
import re def LF_degen_spine(report): """ Checking for degenerative spine """ reg_01 = re.compile('degen',re.IGNORECASE) reg_02 = re.compile('spine',re.IGNORECASE) for s in report.report_text.text.split("."): if reg_01.search(s) and reg_02.search(s): return ABNORMAL_VAL return ABSTAIN_VAL
d0211476a3f179c26648546c21176866bad7c61e
5,153
def make_log_format(fields, sep=" - "): """ Build a custom log format, as accepted by the logging module, from a list of field names. :param fields: list or tuple of str - names of fields to use in log messages :param sep: str - separator to put between fields. Default is ' - ' :return: a log format string usable to configure log formatters """ assert all(f in log_fields for f in fields), "Only fields from {} are valid".format( tuple(log_fields) ) return sep.join("%({}){}".format(f, log_fields[f]) for f in fields)
7e05f4bced180ef98025576e9fa1b2cf4f296b92
5,154
def tweets_for(type, args, per_user=None): """ Retrieve tweets for a user, list or search term. The optional ``per_user`` arg limits the number of tweets per user, for example to allow a fair spread of tweets per user for a list. """ lookup = {} lookup[type] = args[0].strip("\"'") tweets = Tweet.objects.get_for(**lookup) if per_user is not None: _tweets = defaultdict(list) for tweet in tweets: if len(_tweets[tweet.user_name]) < per_user: _tweets[tweet.user_name].append(tweet) tweets = sum(_tweets.values(), []) tweets.sort(key=lambda t: t.created_at, reverse=True) if len(args) > 1 and args[-1].isdigit(): tweets = tweets[:int(args[-1])] return tweets
ae393d887de9d87a13c3d46a30bcc08d78867827
5,155
def sum_var(A): """summation over axis 1 (var) equivalent to np.sum(A, 1)""" if issparse(A): return A.sum(1).A1 else: return np.sum(A, axis=1) if A.ndim > 1 else np.sum(A)
af866cb018a46746456efdb2e0c013a6410f9be4
5,156
def success_schema(): """Pytest fixture for successful SchemaModel object""" scm = SchemaVersion("1.0") scm.success = True return scm
c7a918a1be0d77607bccdedf80c3acaf5a56bd32
5,157
def _interfaces(config): """ list system interfaces based on shape """ shape = lib.metadata.get_instance()['shape'] print if config.getboolean('DEFAULT', 'auto') is True: interfaces = lib.interfaces.get_interfaces_by_shape(shape) else: interfaces = config['DEFAULT']['interfaces'].split(',') return interfaces
7ea4d493293d910532b514edf4ec7efee2253a34
5,158
def getColumninfo(columns): """ See ElementFaceToThickness. """ ColumnC, problematicColumns = ElementFaceToThickness(columns) return ColumnC
985fbdabf95932ae4a8b57169ad6e1aaaa36f146
5,159
from typing import Any from typing import Optional def script( command: str, inputs: Any = [], outputs: Any = NULL, tempdir=False, **task_options ) -> Any: """ Execute a shell script as a redun task with file staging. """ if outputs == NULL: outputs = File("-") command_parts = [] # Prepare tempdir if requested. temp_path: Optional[str] if tempdir: temp_path = mkdtemp(suffix=".tempdir") command_parts.append('cd "{}"'.format(temp_path)) else: temp_path = None # Stage inputs. command_parts.extend(input.render_stage() for input in iter_nested_value(inputs)) # User command. command_parts.append(get_wrapped_command(prepare_command(command))) # Unstage outputs. file_stages = [value for value in iter_nested_value(outputs) if isinstance(value, Staging)] command_parts.extend(file_stage.render_unstage() for file_stage in file_stages) full_command = "\n".join(command_parts) # Get input files for reactivity. def get_file(value: Any) -> Any: if isinstance(value, Staging): # Staging files and dir turn into their remote versions. cls = type(value.remote) return cls(value.remote.path) else: return value input_args = map_nested_value(get_file, inputs) return _script( full_command, input_args, outputs, task_options=task_options, temp_path=temp_path )
fb7b404d7d46680240863778b541afa83dec4528
5,160
import requests def get_forms(console: Console, sess: requests.Session, form_id: str = "General_Record_2020v2.0"): """ Method to get every form for a given FormID """ raw_resp = get_url(url=f"https://forms.agterra.com/api/{form_id}/GetAll/0", sess=sess) if raw_resp.status_code != 200: console.log(f"[red] Something went wrong, we got status [white]{raw_resp.status_code}") json_data = raw_resp.json() console.log(f"Message Data: {json_data}") json_data = raw_resp.json() return json_data
129a8789a51db7a6e043fe6c8fbb30c1af984a74
5,161
def load_dataset(input_files, input_vocab, mode, batch_size=32, min_seq_len=5, num_buckets=4): """Returns an iterator over the training data.""" def _make_dataset(text_files, vocab): dataset = tf.data.TextLineDataset(text_files) dataset = dataset.map(lambda x: tf.string_split([x]).values) dataset = dataset.map(vocab.lookup) return dataset def _key_func(x): if mode == constants.TRAIN: bucket_width = 6 bucket_id = x["length"] // bucket_width bucket_id = tf.minimum(bucket_id, num_buckets) return tf.to_int64(bucket_id) else: return 0 def _reduce_func(unused_key, dataset): return dataset.padded_batch(batch_size, padded_shapes={ "ids": [None], "ids_in": [None], "ids_out": [None], "ids_in_out": [None], "length": [], }, ) bos = tf.constant([constants.START_OF_SENTENCE_ID], dtype=tf.int64) eos = tf.constant([constants.END_OF_SENTENCE_ID], dtype=tf.int64) # Make a dataset from the input and translated file. input_dataset = _make_dataset(input_files, input_vocab) dataset = tf.data.Dataset.zip(input_dataset) if mode == constants.TRAIN: dataset = dataset.shuffle(200000) # Define the input format. dataset = dataset.map(lambda x: { "ids": x, "ids_in": tf.concat([bos, x], axis=0), "ids_out": tf.concat([x, eos], axis=0), "ids_in_out": tf.concat([bos, x, eos], axis=0), "length": tf.shape(x)[0]}) # Filter out invalid examples. if mode == constants.TRAIN: dataset = dataset.filter(lambda x: tf.greater(x["length"], min_seq_len - 1)) # Batch the dataset using a bucketing strategy. dataset = dataset.apply(tf.contrib.data.group_by_window( _key_func, _reduce_func, window_size=batch_size)) return dataset.make_initializable_iterator()
b71c6c8aa1bd2143c911fdd9e7e4ec1526656a39
5,162
def _get_results(**kwargs): """ Generate a command with the parameters, run it, and return the normalized results """ output, error, rc = testoob.run_cmd.run_command(_generate_command(**kwargs)) return tt._normalize_newlines(output), tt._normalize_newlines(error), rc
83dc64973fe4cfafd56391186361d3dbcc485f7d
5,163
def infer_from_discretized_mix_logistic(params): """ Sample from discretized mixture of logistic distributions Args: params (Tensor): B x C x T, [C/3,C/3,C/3] = [logit probs, means, log scales] Returns: Tensor: sample in range of [-1, 1]. """ log_scale_min = float(np.log(1e-14)) assert params.shape[1] % 3 == 0 nr_mix = params.shape[1] // 3 # B x T x C y = params #np.transpose(params, (1, 0)) logit_probs = y[:, :nr_mix] temp = np.random.uniform(low=1e-5, high=1.0 - 1e-5, size=logit_probs.shape) temp = logit_probs - np.log(- np.log(temp)) argmax = np.argmax(temp, axis=-1) one_hot = get_one_hot(argmax, nr_mix).astype(dtype=float) means = np.sum(y[:, nr_mix:2 * nr_mix] * one_hot, axis=-1) log_scales = np.clip(np.sum( y[:, 2 * nr_mix:3 * nr_mix] * one_hot, axis=-1), a_min=log_scale_min, a_max=None) u = np.random.uniform(low=1e-5, high=1.0 - 1e-5, size=means.shape) x = means + np.exp(log_scales) * (np.log(u) - np.log(1. - u)) x = np.clip(x, a_min=-1., a_max=1.) return x
993e5c64abd0b623057256b868c7e94570e28574
5,164
from pathlib import Path def _load_reft_data(reft_file, index_name="btl_fire_num"): """ Loads reft_file to dataframe and reindexes to match bottle data dataframe """ reft_data = pd.read_csv(reft_file, usecols=["btl_fire_num", "T90", "REFTMP_FLAG_W"]) reft_data.set_index(index_name) reft_data["SSSCC_TEMP"] = Path(reft_file).stem.split("_")[0] reft_data["REFTMP"] = reft_data["T90"] return reft_data
c9ae2a9d5212f5d9234fc95fb4cc008688db07b4
5,166
def commit_veto(environ, status, headers): """Veto a commit. This hook is called by repoze.tm in case we want to veto a commit for some reason. Return True to force a rollback. By default we veto if the response's status code is an error code. Override this method, or monkey patch the instancemethod, to fine tune this behaviour. """ return not 200 <= int(status.split(None, 1)[0]) < 400
9fc96fe8cdbedde20cb325e189b71d9df94cf176
5,167
def rate_limited_api(view_func): """ Checks users last post to rate limited endpoints (adding comments or recipes) and rejects if within timeout period for api requests (returns JSON response) """ @wraps(view_func) def _wrapped_view(request, *args, **kwargs): exceeded, msg = request.user.profile.rate_limit_exceeded() if exceeded: return JsonResponse({"error": msg}) else: return view_func(request, *args, **kwargs) return _wrapped_view
3db16cd742339015efbbb9016a32a91e902453a3
5,168
from .tvdfunctions import CalculateTVD from .backend import fetchoptions as fo from .backend.exceptions import TVDLimiterFunctionInputError def SecondOrderTVD(Uo, Courant, diffX, LimiterFunc, Limiter, Eps=0.01): """Return the numerical solution of dependent variable in the model eq. This function uses the explicit second-order TVD method and their various Limiter functions and Limiters to obtain the solution of the 1D non-linear viscous Burgers equation. Call signature: SecondOrderTVD(Uo, Courant, diffX, LimiterFunc, Limiter, Eps) Parameters ---------- Uo: ndarray[float], =1d The dependent variable at time level, n within the entire domain. (Non-dimensionalized quantity) Courant: float Courant number that appears in the convection component of the PDE. diffX: float Diffusion number for x-component that appears in the diffusion component of the PDE. LimiterFunc: str Flux limiter function. Limiter: Limiter type. Eps: float, optional A positive constant in the entropy correction term, si in Eq. 6-127 in CFD Vol. 1 by Hoffmann. Its value must be between 0 and 0.125. Default is 0.1. Returns ------- U: ndarray[float], =1d The dependent variable at time level, n+1 within the entire domain. (Non-dimensionalized quantity) """ shapeU = Uo.shape # Obtain Dimension if len(shapeU) == 2: raise DimensionError("2D", "viscous Bergers", "second-order TVD") iMax, = shapeU U = Uo.copy() # Initialize U E = Uo*Uo/2 fetch = fo.FetchOptions() limfunc_options = fetch.TVDLimiterFunctionOptions() if LimiterFunc not in limfunc_options: raise TVDLimiterFunctionInputError(LimiterFunc) for i in range(2, iMax-2): phiPlus, phiMinus = CalculateTVD(i, Uo, E, Eps, Courant, Limiter, LimiterFunc) # Equation 6-124 and 6-125 in Hoffmann Vol. 1 hPlus = 0.5 * (E[i+1]+E[i]+phiPlus) hMinus = 0.5 * (E[i]+E[i-1]+phiMinus) # Calculate diffusion terms in the viscous Bergers equation. # Equation 7-58 diffusion = diffX*(Uo[i+1] - 2.0*Uo[i] + Uo[i-1]) # Equation 6-123 U[i] = Uo[i] - Courant*(hPlus-hMinus) + diffusion return U
3433d3af49d1972868af7e21f02249c82de1a549
5,169
def login_required(func): """ Allow only auth users """ async def wrapped(self, *args, **kwargs): if self.request.user is None: add_message(self.request, "LogIn to continue.") redirect(self.request, "sign_in") return await func(self, *args, **kwargs) return wrapped
80837caa726ce46e4728141208a575b25fe5dcb6
5,170
def _hunnyb_search_func(name): """search function required by ``codecs.register``""" if name in (HUNNYB_ENC_NAME,) + HB_ALIASES: return (_encode, _decode, None, None)
c9b1a6b68da2706d7568858d7211593e0bfa4086
5,171
def fingerprint_file(file): """Open, read file and calculate MD5 on its contents""" with open(file,'rb') as fd: # read contents of the file _file_data = fd.read() # pipe contents of the file through file_fingerprint = md5(_file_data).hexdigest() return file_fingerprint
030412ad6a057b2cd2aae4032e6122df73817e41
5,172
def toOTLookup(self, font, ff): """Converts a fontFeatures.Routine object to binary. Args: font: A ``TTFont`` object. ff: The parent ``FontFeatures`` object containing this routine. Returns a list of ``fontTools.otlLib.builder`` Builder objects allowing this routine to be converted to binary layout format. """ lookuptypes = [x.lookup_type() for x in self.rules] if not all([lu == lookuptypes[0] for lu in lookuptypes]): raise ValueError("For now, a routine can only contain rules of the same type") if not all([self.rules[0].flags == rule.flags for rule in self.rules]): raise ValueError("For now, a routine can only contain rules of the same flags") self.flags = self.rules[0].flags if self.stage == "pos": return buildPos(self, font, lookuptypes[0], ff) if self.stage == "sub": return buildSub(self, font, lookuptypes[0], ff)
ea08870cfec146135584bb8e85f2e861adfa3e05
5,173
def apply_to_all(func, results, datasets): """Apply the given function to all results Args: func: the function to apply results: nested dictionary where the nested levels are: algorithm name, sensitive attribute and split ID datasets: nested dictionary where the nested levels are: sensitive attribute and split ID Returns: a nested dictionary with the same structure as `results` that contains the output of the given function """ output = {} for algo in results: output[algo] = {} for sensitive in results[algo]: output[algo][sensitive] = {} for split_id in results[algo][sensitive]: output[algo][sensitive][split_id] = func( results[algo][sensitive][split_id], datasets[sensitive][split_id]) return output
6ea085b3541a84ac97f63389ba83c3a06d5e0b85
5,174
def any_value_except(mapping, excluded_keys): """Return a random value from a dict that is not associated with excluded_key. Raises StopIteration if there are no other keys than excluded_key""" return next(mapping[key] for key in mapping if key not in excluded_keys)
8d633713b93cfd1f0324d5c4a56a18fa7931ff06
5,175
import torch def one_hot(y, num_dim=10): """ One Hot Encoding, similar to `torch.eye(num_dim).index_select(dim=0, index=y)` :param y: N-dim tenser :param num_dim: do one-hot labeling from `0` to `num_dim-1` :return: shape = (batch_size, num_dim) """ one_hot_y = torch.zeros(y.size(0), num_dim) if y.is_cuda: one_hot_y = one_hot_y.cuda() return one_hot_y.scatter_(1, y.view(-1, 1), 1.)
694bfea18ecbb5c5737e0d38c0aa0f5f52a82a55
5,176
def IdentityMatrix(): """Creates an identity rotation matrix. Returns a rotation matrix that has no effect on orientation. This matrix can be the starting point for other operations, such as using a series of calls to #Pivot to create a custom rotation matrix. Returns ------- RotationMatrix The identity rotation matrix. """ return RotationMatrix([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ])
f156a67000fb36360134d3c696dc9caefebf736a
5,178
def compute_K_from_vanishing_points(vanishing_points): """Compute intrinsic matrix given vanishing points. Args: vanishing_points: A list of vanishing points. Returns: K: The intrinsic camera matrix (3x3 matrix). """ # vanishing points used v1 = vanishing_points[0] v2 = vanishing_points[1] v3 = vanishing_points[2] # construct constraint matrix A from each pair of vanishing points A = np.zeros((3, 3)) # 1 + 2 vi = v1 vj = v2 A[0] = np.array([(vi[0]*vj[0]+vi[1]*vj[1]), (vi[0]+vj[0]), (vi[1]+vj[1])]) # 1 + 3 vi = v1 vj = v3 A[1] = np.array([(vi[0]*vj[0]+vi[1]*vj[1]), (vi[0]+vj[0]), (vi[1]+vj[1])]) # 2 + 3 vi = v2 vj = v3 A[2] = np.array([(vi[0]*vj[0]+vi[1]*vj[1]), (vi[0]+vj[0]), (vi[1]+vj[1])]) # add one column of ones A_ones = np.ones((A.shape[0], 1)) A = np.hstack((A, A_ones)) # SVD U, s, VT = np.linalg.svd(A) w = VT[-1, :] omega = np.array([[w[0], 0, w[1]], [0, w[0], w[2]], [w[1], w[2], w[3]]]) # find K matrix from omega KT_inv = np.linalg.cholesky(omega) K = np.linalg.inv(KT_inv.T) # normalize K /= K[2, 2] return K
972cba32caee46d9d9c7ed30a3f4ad23bfafe070
5,179
def _tpd2vec(seq, dtype=float): """ Convert a tpd file string to a vector, return a NumPy array. EXAMPLES: >>> _tpd2vec('1|13|4; 20; 25|28') array([ 1., 5., 9., 13., 20., 25., 26., 27., 28.]) >>> _tpd2vec('5.5; 1.2@3; 3|7|2') array([ 5.5, 1.2, 1.2, 1.2, 3. , 5. , 7. ]) >>> _tpd2vec(' ') array([], dtype=float64) """ finalvec = np.array([], dtype) for s in seq.split(';'): if s.count('|'): values = [dtype(v) for v in s.split('|')] values[1] += 1 vec = np.arange(*values) elif s.count('@'): value, num = s.split('@') try: vec = np.ones(int(num)) * dtype(value) except ValueError: raise ValueError('%s is incorrectly specified' % seq) else: try: vec = [dtype(s)] except ValueError: vec = np.array([], dtype) finalvec = np.append(finalvec, vec) return finalvec
c561852d27025fc4f7db7f027fba0e18b2ca157c
5,181
from typing import Dict def get_notification_html(*, notification_type: str, options: Dict, sender: str) -> str: """ Returns the formatted html for the notification based on the notification_type :return: A string representing the html markup to send in the notification """ validate_options(options=options) url_base = app.config['FRONTEND_BASE'] resource_url = '{url_base}{resource_path}?source=notification'.format(resource_path=options.get('resource_path'), url_base=url_base) joined_chars = resource_url[len(url_base) - 1:len(url_base) + 1] if joined_chars.count('/') != 1: raise Exception('Configured "FRONTEND_BASE" and "resource_path" do not form a valid url') notification_strings = NOTIFICATION_STRINGS.get(notification_type) if notification_strings is None: raise Exception('Unsupported notification_type') greeting = 'Hello,<br/>' notification = notification_strings.get('notification', '').format(resource_url=resource_url, resource_name=options.get('resource_name'), sender=sender) comment = notification_strings.get('comment', '') end_note = notification_strings.get('end_note', '') salutation = '<br/>Thanks,<br/>Amundsen Team' if notification_type == NotificationType.METADATA_REQUESTED: options_comment = options.get('comment') need_resource_description = options.get('description_requested') need_fields_descriptions = options.get('fields_requested') if need_resource_description and need_fields_descriptions: notification = notification + 'and requests improved table and column descriptions.<br/>' elif need_resource_description: notification = notification + 'and requests an improved table description.<br/>' elif need_fields_descriptions: notification = notification + 'and requests improved column descriptions.<br/>' else: notification = notification + 'and requests more information about that resource.<br/>' if options_comment: comment = ('<br/>{sender} has included the following information with their request:' '<br/>{comment}<br/>').format(sender=sender, comment=options_comment) if notification_type == NotificationType.DATA_ISSUE_REPORTED: greeting = 'Hello data owner,<br>' data_issue_url = options.get('data_issue_url') comment = comment.format(data_issue_url=data_issue_url) return '{greeting}{notification}{comment}{end_note}{salutation}'.format(greeting=greeting, notification=notification, comment=comment, end_note=end_note, salutation=salutation)
7996c8f472de89498b04ed6563b893381f680209
5,182
def step(parents: be.Population, fitness: be.Fitness) -> tuple: """ The step function defines how an algorithm generation will be conducted. This function must receive a population and a fitness object and return another population. In this case we will define the parameters of the algorithm within the function itself and use report objects to monitor the evolution of the population. In this algorithm the main steps consists of: 1. Get elite -> Elite 2. Apply tournament selection -> Best individuals 3. Apply one point cross over to best individuals -> Offspring 4. Mutate offspring 5. Evaluate offspring 6. Annihilate worst individuals in offspring and replace them with the best. 7. Merge elite and offspring -> Population for next generation """ # Put parameters recombination_schema = 'one_point_i' # Alternatives: 'n_point_i' or 'uniform_i' mutation_schema = 'random_resetting' # Alternatives: 'creep' mutation_probability = 0.1 max_mutation_events = 2 ranking_selection_schema = 'tournament' # Alternatives: 'roulette' or 'sus' tournament_k = 2 tournament_w = 1 tournament_replacement = False elitism_percentage = 0.1 # Get elite elite = be.survivor_selection(population=parents, schema='elitism', select=elitism_percentage) # Apply selection to get the mating pool mating_pool = be.ranking_selection( population=parents, n=len(parents) - len(elite), schema=ranking_selection_schema, w=tournament_w, k=tournament_k, replacement=tournament_replacement) # Generate offspring offspring = be.recombination(population=mating_pool, n=len(mating_pool), schema=recombination_schema) # Mutate offspring be.mutation(population=offspring, probability=mutation_probability, schema=mutation_schema, max_mutation_events=max_mutation_events) # Evaluate offspring be.evaluate_parallel(population=offspring, fitness_function=fitness) # Merge elite and offspring next_generation = be.merge_populations(offspring, elite) report.create_report(population=next_generation, population_name='Population', increment_generation=True) # With this indicator we keep the best solution of each generation return next_generation, be.SaveBestSolution(next_generation)
700c5a9a28145b9454fc68356eab328a84418461
5,183
def asset_dividend_record(self, **kwargs): """Asset Dividend Record (USER_DATA) Query asset dividend record. GET /sapi/v1/asset/assetDividend https://binance-docs.github.io/apidocs/spot/en/#asset-dividend-record-user_data Keyword Args: asset (str, optional) startTime (int, optional) endTime (int, optional) limit (int, optional): Default 20, max 500 recvWindow (int, optional): The value cannot be greater than 60000 """ return self.sign_request("GET", "/sapi/v1/asset/assetDividend", kwargs)
80ecbf4f03bb4431829130f3da546b937cf53d13
5,184
def heuristic(node_1, node_2): """ Heuristic when only 4 directions are posible (Manhattan) """ (x_node_1, y_node_1) = node_1 (x_node_2, y_node_2) = node_2 return abs(x_node_1 - x_node_2) + abs(y_node_1 - y_node_2)
e431ed9d8a7acb34604b3e83c3f3d7774cd27d51
5,185
def exercise_2(inputs): # DO NOT CHANGE THIS LINE """ Output should be the name of the class. """ output = Party return output # DO NOT CHANGE THIS LINE
6bf574921760aa2569d0a44ced8b9a3712d67faa
5,186
def undistort(img, mtx, dist): """Undistort an image using camera matrix and distortion coefficients""" h, w = img.shape[:2] # return undistorted image with minimum unwanted pixels. It's okay to remove some pixesl at image corners. newcameramtx, roi = cv2.getOptimalNewCameraMatrix(mtx, dist, (w,h), 0, (w,h)) undist = cv2.undistort(img, mtx, dist, None, newcameramtx) return undist
e8d32a8662a998c90f856116b97e555f2bdfeee4
5,187
def get_order(order_id, sandbox=False): """Get a single order using the Sell Fulfillment API.""" return single_api_call('sell_fulfillment_get_order', order_id=order_id, field_groups='TAX_BREAKDOWN', sandbox=sandbox)
74054dc63e6d57f162f6099389fa9c1870d8e08d
5,188
def extend_dict(x, *y): """Similar to Object.assign() / _.extend() in Javascript, using 'dict.update()' Args: x (dict): the base dict to merge into with 'update()' *y (dict, iter): any number of dictionary or iterable key/value pairs to be sequentially merged into 'x'. Skipped if None. """ z = x.copy() for d in [d for d in y if d is not None]: z.update(d) return z
f10a5bc7d5ed3646e6a9f8f9535a16bd800c7fcd
5,189
def ErrorCriteria(errors): """Monitor the number of unexpected errors logged in the cluster. If more than five errors have occurred on the cluster during this time period, post an alert. Posts a warning if between one and four errors have occurred. """ ERROR_ALERT_THRESHOLD = 5 alerts = [] warnings = [] if errors['cluster_total'] > ERROR_ALERT_THRESHOLD: alerts.append(CLUSTER_TOKEN) elif errors['cluster_total'] > 0: warnings.append(CLUSTER_TOKEN) return alerts, warnings
0b388ca55009bb5219bd30ead91ce67521c0e743
5,190
def bdnyc_skyplot(): """ Create a sky plot of the database objects """ # Load the database db = astrodb.Database('./database.db') t = db.query('SELECT id, ra, dec, shortname FROM sources', fmt='table') # Convert to Pandas data frame data = t.to_pandas() data.index = data['id'] # Remove objects without RA/Dec num_missing = np.sum(pd.isnull(data['ra'])) if num_missing > 0: warning_message = 'Note: {} objects had missing coordinate information and were removed.'.format(num_missing) data = data[pd.notnull(data['ra'])] else: warning_message = '' # Coerce to numeric data['ra'] = pd.to_numeric(data['ra']) data['dec'] = pd.to_numeric(data['dec']) # Coordinate conversion c = SkyCoord(ra=data['ra'] * u.degree, dec=data['dec'] * u.degree) pi = np.pi proj = 'hammer' data['x'], data['y'] = projection(c.ra.radian - pi, c.dec.radian, use=proj) data['l'], data['b'] = c.galactic.l, c.galactic.b # Make the plots p1 = make_sky_plot(data, proj) data['x'], data['y'] = projection(c.galactic.l.radian - pi, c.galactic.b.radian, use=proj) p2 = make_sky_plot(data, proj) tab1 = Panel(child=p1, title="Equatorial") tab2 = Panel(child=p2, title="Galactic") tabs = Tabs(tabs=[tab1, tab2]) script, div = components(tabs) return render_template('skyplot.html', script=script, plot=div, warning=warning_message)
7ceba0d0b5cf151e5629fefa943fa1a48f62d430
5,191
def get_model_config(model_name, dataset, params): """Map model name to model network configuration.""" model_map = _get_model_map(dataset.name) if model_name not in model_map: raise ValueError('Invalid model name \'%s\' for dataset \'%s\'' % (model_name, dataset.name)) else: return model_map[model_name](params=params)
88ce2fbb3415b0d5fa2348b9f9ba5dd029e49a73
5,192
def post_search(request): """Allow text matching search. """ form = SearchForm() query = None results = [] if 'query' in request.GET: # check if result is submitted by looking for query form = SearchForm(request.GET) if form.is_valid(): query = form.cleaned_data['query'] # results = Post.objects.annotate(search=SearchVector('title','body'),).filter(search=query) # a search is more relevant if the search term is in the title """ Search weights are D,C,B and A corresponding to 0.1,0.2,0.4 and 1.0 """ search_vector = SearchVector('title', weight='A') + SearchVector('body',weight='B') search_query = SearchQuery(query) # filter results to display only the ones ranking higher than 0.3 results = Post.objects.annotate(search=search_vector,rank=SearchRank(search_vector,search_query) ).filter(rank__gte=0.3).order_by('-rank') return render(request,'blog/post/search.html', {'form':form, 'query':query, 'results':results})
ff6f36f28a0dbaaba8957049eb2fc64ff76470dc
5,193
import numba def PrimacyCodingNumeric_receptor_activity_monte_carlo_numba_generator(conc_gen): """ generates a function that calculates the receptor activity for a given concentration generator """ func_code = receptor_activity_monte_carlo_numba_template.format( CONCENTRATION_GENERATOR=conc_gen) # make sure all necessary objects are in the scope scope = {'np': np, 'nlargest_indices_numba': nlargest_indices_numba} exec(func_code, scope) func = scope['function'] return numba.jit(nopython=NUMBA_NOPYTHON, nogil=NUMBA_NOGIL)(func)
8ca9758227fe6b7e57269e929a6a7dc4a7d6b549
5,194
def subtoken_counts(proposed, ground_truth): """ Compute the number of precise tokens, proposed tokens and ground truth tokens from two strings representing tokens. """ gt_subtokens = set(compute_subtokens(ground_truth)) proposed_subtokens = set(compute_subtokens(proposed)) precise_subtokens = proposed_subtokens.intersection(gt_subtokens) return len(precise_subtokens), len(proposed_subtokens), len(gt_subtokens)
496abf452a09c521b71acfe2951232b5a4c7b40d
5,195
import random def welcome(): """ Define welcome reply """ hello = random.choice(_HELLO_) nick = random.choice(_NICK_NAME_) welcome = random.choice(_WELCOME_) proposal = random.choice(_PROPOSAL_) return hello + " " + nick + ", " + welcome + " ! " + proposal + " ?"
87da460bde7bae59e54c108a68291d8c3b4258de
5,196
def EDCN(linear_feature_columns, dnn_feature_columns, bridge_type='attention_pooling', tau=0.1, use_dense_features=True, cross_num=2, cross_parameterization='vector', l2_reg_linear=1e-5, l2_reg_embedding=1e-5, l2_reg_cross=1e-5, l2_reg_dnn=0, seed=10000, dnn_dropout=0, dnn_use_bn=False, dnn_activation='relu', task='binary'): """Instantiates the Enhanced Deep&Cross Network architecture. :param linear_feature_columns: An iterable containing all the features used by linear part of the model. :param dnn_feature_columns: An iterable containing all the features used by deep part of the model. :param bridge_type: The type of bridge interaction, one of 'pointwise_addition', 'hadamard_product', 'concatenation', 'attention_pooling' :param tau: Positive float, the temperature coefficient to control distribution of field-wise gating unit :param use_dense_features: Whether to use dense features, if True, dense feature will be projected to sparse embedding space :param cross_num: positive integet,cross layer number :param cross_parameterization: str, ``"vector"`` or ``"matrix"``, how to parameterize the cross network. :param l2_reg_linear: float. L2 regularizer strength applied to linear part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_cross: float. L2 regularizer strength applied to cross net :param l2_reg_dnn: float. L2 regularizer strength applied to DNN :param seed: integer ,to use as random seed. :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate. :param dnn_use_bn: bool. Whether use BatchNormalization before activation or not DNN :param dnn_activation: Activation function to use in DNN :param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss :return: A Keras model instance. """ if cross_num == 0: raise ValueError("Cross layer num must > 0") if bridge_type == 'pointwise_addition': BridgeLayer = tf.keras.layers.Add elif bridge_type == 'hadamard_product': BridgeLayer = tf.keras.layers.Multiply elif bridge_type == 'concatenation': BridgeLayer = ConcatenationBridge elif bridge_type == 'attention_pooling': BridgeLayer = AttentionPoolingLayer else: raise NotImplementedError print('EDCN brige type: ', bridge_type) features = build_input_features(dnn_feature_columns) inputs_list = list(features.values()) linear_logit = get_linear_logit(features, linear_feature_columns, seed=seed, prefix='linear', l2_reg=l2_reg_linear) sparse_embedding_list, dense_value_list = input_from_feature_columns( features, dnn_feature_columns, l2_reg_embedding, seed) # project dense value to sparse embedding space, generate a new field feature if use_dense_features: sparse_embedding_dim = sparse_embedding_list[0].shape[-1] dense_value_feild = concat_func(dense_value_list) dense_value_feild = DNN([sparse_embedding_dim], dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn)(dense_value_feild) dense_value_feild = tf.expand_dims(dense_value_feild, axis=1) sparse_embedding_list.append(dense_value_feild) deep_in = sparse_embedding_list cross_in = sparse_embedding_list field_size = len(sparse_embedding_list) cross_dim = field_size * cross_in[0].shape[-1] for i in range(cross_num): deep_in = RegulationLayer(tau)(deep_in) cross_in = RegulationLayer(tau)(cross_in) cross_out = CrossNet(1, parameterization=cross_parameterization, l2_reg=l2_reg_cross)(deep_in) deep_out = DNN([cross_dim], dnn_activation, l2_reg_dnn, dnn_dropout, dnn_use_bn, seed=seed)(cross_in) bridge_out = BridgeLayer()([cross_out, deep_out]) bridge_out_list = tf.split(tf.expand_dims(bridge_out, axis=1), field_size, axis=-1) deep_in = bridge_out_list cross_in = bridge_out_list stack_out = tf.keras.layers.Concatenate()( [cross_out, deep_out, bridge_out]) final_logit = tf.keras.layers.Dense(1, use_bias=False, kernel_initializer=tf.keras.initializers.glorot_normal(seed))(stack_out) final_logit = add_func([final_logit, linear_logit]) output = PredictionLayer(task)(final_logit) model = tf.keras.models.Model(inputs=inputs_list, outputs=output) return model
61e3f6868613111001420d88b8c9b99f91361653
5,197
def cart_to_polar(arr_c): """Return cartesian vectors in their polar representation. Parameters ---------- arr_c: array, shape (a1, a2, ..., d) Cartesian vectors, with last axis indexing the dimension. Returns ------- arr_p: array, shape of arr_c Polar vectors, using (radius, inclination, azimuth) convention. """ if arr_c.shape[-1] == 1: arr_p = arr_c.copy() elif arr_c.shape[-1] == 2: arr_p = np.empty_like(arr_c) arr_p[..., 0] = vector_mag(arr_c) arr_p[..., 1] = np.arctan2(arr_c[..., 1], arr_c[..., 0]) elif arr_c.shape[-1] == 3: arr_p = np.empty_like(arr_c) arr_p[..., 0] = vector_mag(arr_c) arr_p[..., 1] = np.arccos(arr_c[..., 2] / arr_p[..., 0]) arr_p[..., 2] = np.arctan2(arr_c[..., 1], arr_c[..., 0]) else: raise Exception('Invalid vector for polar representation') return arr_p
c4c2256fcc9b01849dc4012ceac017273dcc4ddb
5,198
def createList(listSize): """ Creates list block that creates input instances for each element and an output instance for connecting to the resulting list. List size is limited to 300 elements. Larger lists will be truncated. :param listSize: The size of the list of point inputs that will be created :return: A list of the input instances and the output of the list block """ listInst = psc.createInstance("ListBlock", "ListInstance") inputInstances = [None] * listSize psc.connect(psc.Constant((listSize, 0, 0)), listInst.size) for i in range(listSize): inputInstances[i] = getattr(listInst, "element" + str(i)) return {"inputs":inputInstances, "output":listInst.out}
91b508674ad6f26e9e7dd43cb372fb0804db7ccd
5,199
def trash_description(spl, garbage, keyword, description="description_1"): """description_1 OR description_2""" relocate = spl[spl[description].str.contains(keyword, na=False, regex=True)] spl = spl[~spl[description].str.contains(keyword, na=False, regex=True)] garbage = pd.concat([garbage, relocate], ignore_index=True, sort=False) return (spl, garbage, relocate)
16a1512ddaf914bd5ebcd00f2dcdfa11d59ec73c
5,201
import random def prepositionalPhrase(): """Builds and returns a prepositional phrase.""" return random.choice(prepositions) + " " + nounPhrase()
33a6f1111f752c160ef90eedde4bf56b79b1100a
5,202
def check_possible_dtype(df): """Guess dtypes for each column in a dataframe, where dataframe must contains only string values. Raise an exception if dataframe contains non-string values. :param df: a DataFrame whose all values must be strings. """ column = [] int_cnt = [] dec_cnt = [] str_cnt = [] d = {"column": column, "int_cnt": int_cnt, "dec_cnt": dec_cnt, "str_cnt": str_cnt} for i in df.columns: ser = df[i].drop_duplicates() column.append(i) int_cnt.append(ser.apply(lambda x: is_int_str(x)).sum()) dec_cnt.append(ser.apply(lambda x: is_dec_str(x)).sum()) str_cnt.append(ser.apply(lambda x: not is_number_str(x)).sum()) dtype_options_df = pd.DataFrame(d, columns=["column", "int_cnt", "dec_cnt", "str_cnt"]) # Best-effort guess on dtype guessed_dtype = dtype_options_df.apply(guess_dtype, axis=1).rename("guessed_type_for_non_nan") return pd.concat([dtype_options_df, guessed_dtype], axis=1)
0e9759959af04fbf1bb9db3672f6a188afe7f6ab
5,203
from typing import List def filter_objects_avoiding_duplicated(objects: List[Object], max_distance: int = 20) -> List[Object]: """Filtra los objetos evitando aquellas posibles que sean detecciones múltiples. El fundamento del algoritmo es que si se detectan dos objetos con un centroide muy cercano, a una distancia máxima indicada por ``max_distance``, entonces es una detección múltiple. El conflicto se resuelve eliminando las detecciones múltiple y escogiendo la que mejor puntuación ha obtenido en la detección. :param objects: lista de objetos. :param max_distance: máxima distancia entre centros para considerar que ese objeto puede ser un duplicado. :return: lista de objetos filtrados. """ # Lista de las posiciones en 'objects' de los objetos eliminados. removed_objects_id = list() # Buscar los posibles candidatos para cada objeto. for obj_id, obj_detection in enumerate(objects): for candidate_id, candidate_detection in enumerate(objects): # Ignorar el mismo objeto como posible candidato. if obj_id == candidate_id: continue # Ignorar si alguno de los que se está comparando ha sido eliminado ya. if obj_id in removed_objects_id or candidate_id in removed_objects_id: continue # Calcular la distancia euclídea entre ambas detecciones. p = np.array(obj_detection.center) q = np.array(candidate_detection.center) distance = np.linalg.norm(p - q) # Si hay poca distancia, puede ser el mismo objeto. if distance <= max_distance: # Eliminar el que menos puntuación tiene. if obj_detection.score > candidate_detection.score: removed_objects_id.append(candidate_id) else: removed_objects_id.append(obj_id) # Lista de los objetos que han pasado el filtro. objects_filtered: List[Object] = list() for obj_id, obj_detection in enumerate(objects): if obj_id not in removed_objects_id: objects_filtered.append(obj_detection) return objects_filtered
042fee5df94dc1c72fb53635577c8006c57f73f9
5,204
def print_hdr(soup, hdr, file = None): """ :param soup: [bs4.BeautifulSoup] document context :param hdr: [dict] header node to process :param file: [stream] I/O stream to print to :return: [stream] pass on the I/O stream so descent continues """ tag = hdr['tag'] tag_id = tag['id'] indent = (hdr['level'] - 1) * ' ' # do this replacement for (relative) readability content_tags = ["<%s>" % (h.name) if h.name else h.string for h in hdr['content']] print("%s%s - %s %s" % (indent, tag.name, tag_id, content_tags), file=file) return file
2c6fd613a5c6ddb5ec842fb7cee845d1a8771ccd
5,207
from unittest.mock import Mock def __empty_2(): """ Empty used as parent of cube_2 """ obj = Mock() obj.name = 'empty_2' obj.mode = 'OBJECT' obj.to_mesh.return_value = None obj.matrix_world = Matrix.Identity(4) obj.visible_get.return_value = False obj.hide_viewport = True obj.hide_render = True return obj
024614d7967da5da6d6629167a20eda4188e812f
5,208
def get_gradient(bf_data: np.ndarray, smooth=10): """ Removes first dimension, Computes gradient of the image, applies gaussian filter Returns SegmentedImage object """ data = strip_dimensions(bf_data) gradient = get_2d_gradient(data) smoothed_gradient = gaussian_filter(gradient, smooth) # sm = multiwell.gaussian_filter(well, smooth) return smoothed_gradient.reshape(bf_data.shape)
864b3bc118d08099c56657b2f2883e20de5c663e
5,210
def sum_seq(seq): """ Lambda wrapper for sum. """ return K.sum(seq, axis=1, keepdims=False)
e2bf342f6cda9bda50dc15814c7808a42e8a9925
5,211
def split_by_time(files_rad): """Separate a list of files by their timestamp""" out = {} if type(files_rad) == dict: for k in files_rad.keys(): out[k] = _split_by_time(files_rad[k]) else: out = _split_by_time(files_rad) return out
9a77b3db2e21c27198337b1a1852494bca5acefb
5,212
def make_general_csv_rows(general_csv_dict): """ Method for make list of metrics from general metrics dict. Rows using in general metrics writer :param general_csv_dict: dict with all metrics :type general_csv_dict: dict :return: all metrics as rows :rtype: list """ rows = [] for key, value in general_csv_dict.items(): row = [key[0], key[1]] row.extend(value) rows.append(row) return rows
45ca165d312b39cd0b7088e0bcbfb402a92e7e2b
5,213
def build_hstwcs(crval1, crval2, crpix1, crpix2, naxis1, naxis2, pscale, orientat): """ Create an HSTWCS object for a default instrument without distortion based on user provided parameter values. """ wcsout = wcsutil.HSTWCS() wcsout.wcs.crval = np.array([crval1,crval2]) wcsout.wcs.crpix = np.array([crpix1,crpix2]) wcsout.naxis1 = naxis1 wcsout.naxis2 = naxis2 wcsout.wcs.cd = fileutil.buildRotMatrix(orientat)*[-1,1]*pscale/3600.0 # Synchronize updates with PyWCS/WCSLIB objects wcsout.wcs.set() wcsout.setPscale() wcsout.setOrient() wcsout.wcs.ctype = ['RA---TAN','DEC--TAN'] return wcsout
0247a8dc7e6aa083db50f21d82676216583be206
5,214
def build_regressor_for_ranking_positive_class(dataset, features, regression_target=TARGET_COLUMN): """This function builds a regressor based exclusively on positive class' examples present in the dataset """ if regression_target in features: print('The target for the regression task cannot be one of the features') return positive_examples = dataset.loc[dataset[TARGET_COLUMN] > ALPHA] X = positive_examples[features] y = positive_examples[regression_target] regressor = RandomForestRegressor(random_state=20) regressor.fit(X, y) return regressor
1312751425f79c1e4fec09f705f0ea551e2a60b3
5,215
def get_speakable_timestamp(timestamp): """Return a 'speakable' timestamp, e.g. 8am, noon, 9pm, etc.""" speakable = f"{timestamp.strftime('%I').lstrip('0')} {timestamp.strftime('%p')}" if speakable == '12 PM': return 'noon' elif speakable == '12 AM': return 'midnight' return speakable
0b724686ebd5d3152d9017dc456d2945c78be0ee
5,216
def createColor(red: int, green: int, blue: int) -> tuple: """ Create color Parameters: red -> 0-255 green -> 0-255 blue -> 0-255 """ return tuple( max(min(red, 255), 0), max(min(green, 255), 0), max(min(blue, 255), 0) )
3e8ee43e9d458668f4312f9fd75050b5875036d7
5,217
from typing import List def export_nodeclass_list(node_classes: List[NodeClass]) -> str: """Writes the Node data as a XML string. Does not write to a file -- use ``with open(output_file) as out_stream:`` etc. """ # This is the data string, the rest is formalities node_classes_string = '\n'.join([str(c) for c in node_classes]) lines = list() lines.append('<?xml version="1.0" encoding="utf-8"?>') lines.append('<NodeClasses noNamespaceSchema="mff-muscima-mlclasses.xsd">') lines.append(node_classes_string) lines.append('</NodeClasses>') return '\n'.join(lines)
f50638e9b3a7ab2f1df6e49703b9ed3e39916f9d
5,218
import time def recognition(request): """ style transform service """ if request.method == 'POST': name = '' predicitons = '' try: # load image now = time.localtime() img = request.FILES['image'] image_name = '{}{}{}{}{}object.jpg'.format(now[1], now[2], now[3], now[4], now[5]) # get prediction predicitons = predict_app(img) # save to database Image = ContentImage() Image.name = 'static/images/predict/' + image_name Image.save() # save to disk addr = BASE_DIR + 'predict/' + image_name save_to_disk(addr, img) image_url = 'images/predict/' + image_name except Exception as e: print(e) return render(request, 'recognition/basic.html', {}) return render(request, 'recognition/basic.html', {'image_url':image_url, 'predictions': predicitons}) if request.method == 'GET': return render(request, 'recognition/basic.html', {})
d8de5ab5c33e6ca0c2ac5afbec81c402f7151187
5,219
def url(s): """Validate url input""" u = urlparse(s) if u.scheme not in ["http", "https"]: raise ValueError(s) return u.geturl()
82683af4ad6fb35b6d74409a9a429c4dfd81a723
5,220
import pickle def getGPLCs(df, savepath='./',plotpath='./', bands='ugrizY', ts='0000000', fn='GPSet'): """Short summary. Parameters ---------- df : type Description of parameter `df`. savepath : type Description of parameter `savepath`. plotpath : type Description of parameter `plotpath`. bands : type Description of parameter `bands`. ts : type Description of parameter `ts`. fn : type Description of parameter `fn`. Returns ------- type Description of returned object. """ #num_bands = len(np.unique(band_idx)) Npt = 100 tmin = -30 tmax = 150 num_bands = len(bands) GP_dict = {} # make our plots look nice stylePlots() for idx, row in df.iterrows(): t = np.array(row["T"]) f = np.array(row["Flux"]) f[f<0.] = 0. #getting rid of negative flux #the magnitude-like array for the sake of the conversion y = np.log(f + 1) yerr = np.array(row["Flux_Err"]) / np.array(row["Flux"]) t_test = np.linspace(tmin, tmax, Npt) band = row["Filter"] band_idx = pd.Series(row['Filter']).astype('category').cat.codes.values matrix = [t_test] def build_gp(params): time_kernel = tinygp.kernels.Matern32(jnp.exp(params["log_scale"])) kernel = Multiband(time_kernel, jnp.exp(params["log_diagonal"]), params["off_diagonal"]) diag = yerr ** 2 + jnp.exp(2 * params["log_jitter"][X[1]]) return tinygp.GaussianProcess(kernel, X, diag=diag, mean=lambda x: params["mean"][x[1]]) #the GP parameters @jax.jit def loss(params): return -build_gp(params).condition(y) X = (t, band_idx) solver = jaxopt.ScipyMinimize(fun=loss) soln = solver.run(params) gp = build_gp(soln.params) df_t = [] df_flux = [] df_flux_err = [] df_filt = [] if idx%50 == 0: plt.figure(figsize=(10,7)) for n in np.unique(band_idx): m = band_idx == n plt.errorbar(t[m], np.exp(y[m])-1,yerr=row['Flux_Err'][m], fmt="o", color=f"C{n}") mu, var = gp.predict(y, X_test=(t_test, np.full_like(t_test, n, dtype=int)), return_var=True) std = np.sqrt(var) if idx%50 == 0: plt.plot(t_test, np.exp(mu)-1, '.-', ms=2, color=f"C{n}") plt.fill_between(t_test,np.exp(mu - std)-1, np.exp(mu + std)+1, color=f"C{n}", alpha=0.3, label=bands[n]) #going in order of band here--don't forget it! matrix.append(np.exp(mu)-1) matrix.append(std) if idx%50 == 0: plt.xlim((t_test[0], t_test[-1])) plt.xlabel("Phase from Trigger (Days)") plt.ylabel("Flux") plt.legend() plt.savefig(plotpath + "/GP_%i.png"%row.CID,dpi=200, bbox_inches='tight') stacked = np.vstack(matrix) GP_dict[row.CID] = stacked with open(savepath + '/%s_%i.pkl'%(fn, ts), 'wb') as f: pickle.dump(GP_dict, f) return GP_dict
755dec48771ae17c058565ef88087d6ec6a78aec
5,221
import torch def _featurize(inputs,model): """ Helper function used to featurize exemplars before feeding into buffer. """ with torch.no_grad(): # Forward pass outputs = model(*inputs).detach() #Featurize raw exem return outputs
191fd1b362f38309a35618284fcf3f1910a06bd6
5,222
def ligth_condition(img, args): """ Change ligthning condition in the image Inputs: img: Image to change ligthning args: Dictionary with "gamma" argument Return: Image with ligthning values changed """ invGamma = 1.0 / args["gamma"] table = np.array([((i / 255.0) ** invGamma) * 255 for i in np.arange(0, 256)]).astype("uint8") return cv2.LUT(img, table)
dc5273a1df8e13292147b00be45452a7ccf4a197
5,223
import numpy as np from sklearn.metrics import mean_squared_error def calc_RMSE(varx,vary,lats,lons,weight): """ Calculates root mean square weighted average Parameters ---------- varx : 2d array vary : 2d array lons : 1d array of latitude weight : string (yes or no) Returns ------- rmse : 1d array Usage ----- rmse = calc_RMSE(varx,vary,lats,lons) """ print('\n>>> Using calc_RMSE function!') ### Import modules if weight == 'yes': # Computed weighted correlation coefficient ### mask mask = 'yes' if mask == 'yes': latq = np.where(lats > 30)[0] lats = lats[latq] varx = varx[latq,:] vary = vary[latq,:] print('MASKING LATITUDES!') ### Create 2d meshgrid for weights lon2,lat2 = np.meshgrid(lons,lats) ### Create 2d array of weights based on latitude gw = np.cos(np.deg2rad(lat2)) ### Calculate rmse sq_err = (varx - vary)**2 rmse = np.sqrt((np.sum(sq_err*gw))/np.sum(gw)) elif weight == 'no': ### Root mean square error from sklearn (not weighted) rmse = np.sqrt(mean_squared_error(varx.ravel(),vary.ravel())) print('Completed: Computed NON-weighted correlation!') else: ValueError('Wrong weighted arguement in function!') print('*Completed: Finished calc_RMSE function!') return rmse
150d08e0790f3a8ce59a2054cdc042ff6cdc2969
5,224
def sample(internal_nodes, alpha=0.5, beta=0.5, only_tree=False): """ Generates a junction tree with order internal nodes with the junction tree expander. Args: internal_nodes (int): number of nodes in the underlying graph alpha (float): parameter for the subtree kernel beta (float): parameter for the subtree kernel directory (string): path to Returns: NetworkX graph: a junction tree """ nodes = None if type(internal_nodes) is int: nodes = range(internal_nodes) else: nodes = internal_nodes tree = JunctionTree() #from trilearn.graph.junction_tree_gt import JunctionTreeGT #tree = JunctionTreeGT() tree.add_node(frozenset([nodes[0]])) # print tree.nodes() # for n in tree.nodes(): # lab = tuple(n) # if len(n) == 1: # lab = "("+str(list(n)[0])+")" # tree.node[n] = {"color": "black", "label": lab} for j in nodes[1:]: if only_tree: jte.sample(tree, j, alpha, beta, only_tree=only_tree) else: (tree, _, _, _, _, _) = jte.sample(tree, j, alpha, beta, only_tree=only_tree) #print("vert dict: " + str(tree.gp.vert_dict)) #print("nodes: " + str(list(tree.vp.nodes))) return tree
d0cc00e7ad96491147149aa4be396af970a9f68f
5,225
def _get_version_tuple(): """ version as a tuple """ return major, minor, revision
1d82390224de07964dce7c4e7fd3e32595b189a0
5,226