content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def remove_suboptimal_parses(parses: Parses, just_one: bool) -> Parses: """ Return all parses that have same optimal cost. """ minimum = min(parse_cost(parse) for parse in parses) minimal_parses = [parse for parse in parses if parse_cost(parse) == minimum] if just_one: return Parses([minimal_parses[0]]) return Parses(minimal_parses)
c223229e73a5319bdb40ac58695aa6f5a8c0bb4b
27,042
def local_ranking(results): """ Parameters ---------- results : list Dataset with initial hand ranking and the global hand ranking. Returns ------- results : list Dataset with the initial hand ranking and the game-local hand ranking (from 0 - nplayers). """ for i in range(len(results)): results[i][1] = np.argsort(results[i][1]) return results
2be1ff269ad18ba9439d183f5899f5034927b5d7
27,043
def is_monotonic_increasing(bounds: np.ndarray) -> bool: """Check if int64 values are monotonically increasing.""" n = len(bounds) if n < 2: return True prev = bounds[0] for i in range(1, n): cur = bounds[i] if cur < prev: return False prev = cur return True
e745ce3825f4e052b2f62c7fdc23e66b5ee5d4d1
27,044
def parse(data): """ Takes binary data, detects the TLS message type, parses the info into a nice Python object, which is what is returned. """ if data[0] == TLS_TYPE_HANDSHAKE: obj = TlsHandshake() obj.version = data[1:3] obj.length = unpack(">H", data[3:5])[0] if data[5] == TLS_TYPE_CLIENT_HELLO: obj.data = ClientHello() obj.data.length = unpack(">I", (b"\x00" + data[6:9]))[0] # 3-byte length obj.data.version = data[9:11] obj.data.random = data[11:43] # 32 bytes of random if data[43] == 0x00: obj.data.session_id = None else: obj.data.session_id = data[44:44+data[43]] offset = 44 + data[43] cipher_suite_length = unpack(">H", data[offset:offset+2])[0] offset += 2 obj.data.cipher_suites = data[offset:offset+cipher_suite_length] offset += cipher_suite_length obj.data.compression_methods = data[offset+1:offset+data[offset]+1] offset += 1 + data[offset] extensions_length = unpack(">H", data[offset:offset+2])[0] offset += 2 extension_data = data[offset:] obj.data.extension_data = [] while len(extension_data): extension, extension_data = parse_tls_extension(extension_data) obj.data.extension_data.append(extension) return obj raise NotImplemented("Only CLIENT_HELLO handshake message is currently implemented") raise NotImplemented("Only handshake messages are currently implemented")
64698fde904d702181f4d8bacda648d9fbea68a7
27,045
def recoverSecretRanks_GPT(mod_rec, tok_rec, startingText, outInd, finishSentence=True): """ Function to calculate the secret ranks of GPT2 LM of a cover text given the cover text """ startingInd=tok_rec.encode(startingText) endingInd=outInd[len(startingInd):] secretTokensRec=[] for i in range(len(endingInd)): token=getTokens_GPT(mod_rec, tok_rec, startingInd, endingInd[i]) if (finishSentence): if (token==3): break if(token>2): token-=1 startingInd.append(endingInd[i]) secretTokensRec.append(token[0].tolist()) return secretTokensRec
be08520901b5c010d89a248814f96681265bb467
27,046
def threshold_strategies(random_state=None): """Plan (threshold): - [x] aggregated features: (abs(mean - median) < 3dBm) || (2*stdev(x) < 8dBm) - [x] histogram: x < 85dBm - [ ] timeseries batch: p < 10**-3 """ dummy = lambda: dummy_anomaly_injector(scaler=None, random_state=random_state) spikes = lambda: spike_anomaly_injector(scaler=None, random_state=random_state) norecovery = lambda: norecovery_anomaly_injector(scaler=None, random_state=random_state) recovery = lambda: recovery_anomaly_injector(scaler=None, random_state=random_state) slow = lambda: slow_anomaly_injector(scaler=None, random_state=random_state) datasets = { #'dummy': dummy, 'norecovery': norecovery, 'recovery': recovery, 'spikes': spikes, 'slow': slow, } lin2log = lambda x: 10 * np.log10(x) def aggr_approach(df, offset_threshold=3.0, stdev_threshold=2.5): y_true, y_pred = [], [] unique_pairs = df.apply(lambda row: (row['src'], row['dst'], row['noise']), axis=1).unique() for src, dst, noise in unique_pairs: query = (df.src==src) & (df.dst==dst) & (df.noise==noise) view = df[query] x = view.rss.ravel() # Difference between mean and median has to be lower than threshold criteria1 = np.abs(np.mean(x) - np.median(x)) > offset_threshold # Deviation has to be lower than threshold criteria2 = 2 * np.std(x) > stdev_threshold #criteria2 = (np.mean(x) + 2*np.std() result = np.any(criteria1 | criteria2) #print(criteria1 + criteria2) y_pred.append(result) y_true.append(np.any(view['anomaly'])) #print(np.any(view['anomaly']), 2*np.std(x)) #print() return y_true, y_pred def hist_approach(df, threshold=-85.0): y_true, y_pred = [], [] unique_pairs = df.apply(lambda row: (row['src'], row['dst'], row['noise']), axis=1).unique() for src, dst, noise in unique_pairs: query = (df.src==src) & (df.dst==dst) & (df.noise==noise) view = df[query] x = view.rss.ravel() result = np.any(x < threshold) y_pred.append(result) y_true.append(np.any(view['anomaly'])) return y_true, y_pred def ts_as_feature_vector(df, alpha=1e-3): y_true, y_pred = [], [] unique_pairs = df.apply(lambda row: (row['src'], row['dst'], row['noise']), axis=1).unique() for src, dst, noise in unique_pairs: query = (df.src==src) & (df.dst==dst) & (df.noise==noise) view = df[query] x = view.rss.ravel() k2, p = sp.stats.normaltest(x) result = (p < alpha) # if p < alpha, it is not normal distribution, therefore anomaly y_pred.append(result) y_true.append(np.any(view['anomaly'])) return y_true, y_pred #def fft_approach(x): # freq = np.abs(np.fft.fft(x)) # freq_db = lin2log(freq) # # [N/2] - 1; frequency for each sample is i * samplingFrequency / N; 10Hz / (300 / 2 - 1) # ratio = 300 // 5 # return (np.sum(freq_db[:ratio] > -20.0) > ratio // 2) #df = norecovery_anomaly_injector(scaler=None, random_state=SEED) for dataset_name, dataset in datasets.items(): string = f'% computer generated: anomaly={dataset_name}\nBaseline & Threshold (Tab.~\\ref{{tab:threshold-config}})' for name, func in (('time-value', ts_as_feature_vector), ('aggr', aggr_approach), ('hist', hist_approach)): df = dataset() y_true, y_pred = func(df) #print(metrics.classification_report(y_true=y_true, y_pred=y_pred)) prec = metrics.precision_score(y_true, y_pred, labels=[False, True]) rec = metrics.recall_score(y_true, y_pred, labels=[False, True]) f1 = metrics.f1_score(y_true, y_pred, labels=[False, True]) string += f'\t& {prec:.2f} & {rec:.2f} & {f1:.2f}\\tnote{{1}} &' string = string + '& - & - ' + '\\\\' print(string)
d127a36d36360f6733e26538c37d3cbb47f199a4
27,047
import math def ellipse_properties(x, y, w): """ Given a the (x,y) locations of the foci of the ellipse and the width return the center of the ellipse, width, height, and angle relative to the x-axis. :param double x: x-coordinates of the foci :param double y: y-coordinates of the foci :param double w: width of the ellipse :rtype: tuple of doubles :returns: (center_coordinates, width, height, angle_in_rads) """ p1 = [x[0], y[0]] p2 = [x[1], y[1]] #center point xy = [(p1[0] + p2[0])/2, (p1[1] + p2[1])/2] #distance between points d = ((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2)**(0.5) #theta to positive Xaxis angle = math.atan((p1[1] - p2[1])/(p1[0] - p2[0])) #sin = math.sin(-angle) #cos = math.cos(-angle) #width will be the axis the points lie on width = 2*((0.5*d)**2 + (0.5*w)**2)**(0.5) height = w return (xy, width, height, angle*180/math.pi)
95864eac0feb9c34546eefed5ca158f330f88e3d
27,048
def build_func(f, build_type): """ Custom decorator that is similar to the @conf decorator except that it is intended to mark build functions specifically. All build functions must be decorated with this decorator :param f: build method to bind :type f: function :parm build_type: The WAF build type (see BuildTargetType) :type build_type: string """ def fun(*k, **kw): kw[BUILD_FUNC_KW] = f.__name__ kw[BUILD_TYPE_KW] = build_type result = f(*k, **kw) return result setattr(OptionsContext, f.__name__, fun) setattr(ConfigurationContext, f.__name__, fun) setattr(BuildContext, f.__name__, fun) return f
e880b7d5a3c4ac79a3caff48f1a3f991ed321262
27,049
def getnumoflinesinblob(ext_blob): """ Get number of lines in blob """ ext, blob_id = ext_blob return (ext, blob_id, int(getpipeoutput(['git cat-file blob %s' % blob_id, 'wc -l']).split()[0]))
ccc492cc66e046d73389f6822ad04cd943376f7b
27,050
import requests def fetch_data(full_query): """ Fetches data from the given url """ url = requests.get(full_query) # Parse the json dat so it can be used as a normal dict raw_data = url.json() # It's a good practice to always close opened urls! url.close() return raw_data
576b2548c1b89827e7586542e4d7e3f0cc89051d
27,052
import http def post(*args, **kwargs): # pragma: no cover """Make a post request. This method is needed for mocking.""" return http.post(*args, **kwargs)
d5c91da5f39ece36183a8265f74378a35f11c4c7
27,053
def shear_x(image: tf.Tensor, level: float, replace: int) -> tf.Tensor: """Equivalent of PIL Shearing in X dimension.""" # Shear parallel to x axis is a projective transform # with a matrix form of: # [1 level # 0 1]. image = transform( image=wrap(image), transforms=[1., level, 0., 0., 1., 0., 0., 0.]) return unwrap(image, replace)
230fb5d346a966c4945b0bb39f336c1fddeb94fd
27,054
def extract_const_string(data): """Extract const string information from a string Warning: strings array seems to be practically indistinguishable from strings with ", ". e.g. The following is an array of two elements const/4 v0, 0x1 new-array v0, v0, [Ljava/lang/String; const/4 v1, 0x0 const-string v2, "NIzaSyCuxR_sUTfFJZBDkIsauakeuqXaFxhbur4, OIzaSyCuxR_sUTfFJZBDkIsauakeuqXaFxhbur4" aput-object v2, v0, v1 It seems equal to this other case: const/4 v0, 0x2 new-array v0, v0, [Ljava/lang/String; const/4 v1, 0x0 const-string v2, "LIzaSyCuxR_sUTfFJZBDkIsauakeuqXaFxhbur4" aput-object v2, v0, v1 But who says that in the second case the const-string last argument is just a string while in the first case the last arg are two elements of the array? :data: Data would be sth like: v0, "this is a string" :return: Returns a const string object, otherwise None :rtype: dict or list """ match = regex_var.search(data) if match: # A const string is usually saved in this form # <variable name>,<value> name = match.group('var') value = match.group('value') if ", " not in value: c = { # Variable 'name': name, # Value of string 'value': value } return c else: c = [] for val in value.split(", "): c.append({ 'name': name, 'value': val }) return c else: return None
70229ea1a6183218577244f185a5e37d170fe4be
27,056
def choose_action(q, sx, so, epsilon): """ Choose action index for given state. """ # Get valid action indices a_vindices = np.where((sx+so)==False) a_tvindices = np.transpose(a_vindices) q_max_index = tuple(a_tvindices[np.argmax(q[a_vindices])]) # Choose next action based on epsilon-greedy policy if np.random.random() <= epsilon: # Choose random action from list of valid actions a_index = tuple(a_tvindices[np.random.randint(len(a_tvindices))]) else: # Choose valid action w/ max Q a_index = q_max_index return q_max_index, a_index
626ccda15c24d983a060bdd6dd90a836c461b1ba
27,057
def soliswets(function, sol, fitness, lower, upper, maxevals, delta): """" Implements the solis wets algorithm """ bias = zeros(delta.shape) evals = 0 num_success = 0 num_failed = 0 dim = len(sol) while evals < maxevals: dif = uniform(0, delta, dim) newsol = clip(sol+bias+dif, lower, upper) new_fitness = function(newsol) evals += 1 if new_fitness < fitness: sol = newsol fitness = new_fitness bias = _increm_bias(bias, dif) num_success += 1 num_failed = 0 elif evals < maxevals: new_sol = clip(sol - bias - dif, lower, upper) new_fitness = function(new_sol) evals += 1 if new_fitness < fitness: sol = new_sol fitness = new_fitness bias = _dec_bias(bias, dif) num_success += 1 num_failed = 0 else: bias = 0.5 * bias num_success = 0 num_failed += 1 if num_success >= 5: num_success = 0 delta *= 2 elif num_failed >= 3: num_failed = 0 delta /= 2 return EAresult(solution=sol, fitness=fitness, evaluations=maxevals), delta
19104e717af6701ce3d838d526059575306018cf
27,059
def _get_precision_type(network_el): """Given a network element from a VRP-REP instance, returns its precision type: floor, ceil, or decimals. If no such precision type is present, returns None. """ if 'decimals' in network_el: return 'decimals' if 'floor' in network_el: return 'floor' if 'ceil' in network_el: return 'ceil' return None
b3b451a26ec50ce5f2424ea7a3652123ae96321d
27,060
import json def user_list(): """Retrieves a list of the users currently in the db. Returns: A json object with 'items' set to the list of users in the db. """ users_json = json.dumps(({'items': models.User.get_items_as_list_of_dict()})) return flask.Response(ufo.XSSI_PREFIX + users_json, headers=ufo.JSON_HEADERS)
b216b41b35b4b25c23ea2cc987ff4fe2b6464775
27,062
import hashlib def md5_str(content): """ 计算字符串的MD5值 :param content:输入字符串 :return: """ m = hashlib.md5(content.encode('utf-8')) return m.hexdigest()
affe4742c2b44a60ef6dafa52d7a330594a70ed9
27,063
import requests def hurun_rank(indicator: str = "百富榜", year: str = "2020") -> pd.DataFrame: """ 胡润排行榜 http://www.hurun.net/CN/HuList/Index?num=3YwKs889SRIm :param indicator: choice of {"百富榜", "富豪榜", "至尚优品"} :type indicator: str :param year: 指定年份; {"百富榜": "2015至今", "富豪榜": "2015至今", "至尚优品": "2017至今"} :type year: str :return: 指定 indicator 和 year 的数据 :rtype: pandas.DataFrame """ if indicator == "百富榜": symbol_map = { "2015": "5", "2016": "1", "2017": "11", "2018": "15", "2019": "19", "2020": "22", } elif indicator == "全球榜": symbol_map = { "2015": "6", "2016": "4", "2017": "2", "2018": "14", "2019": "18", "2020": "20", } elif indicator == "至尚优品": symbol_map = { "2017": "10", "2018": "13", "2019": "17", "2020": "21", } url = f"http://www.hurun.net/CN/HuList/BobListJson/{symbol_map[year]}" payload = {"order": "asc", "search": ""} r = requests.post(url, json=payload) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = [ "_", "_", "_", "类别", "_", "_", "奖项", "_", "排名", "品牌", "_", "_", ] temp_df = temp_df[ [ "类别", "奖项", "排名", "品牌", ] ] temp_df["类别"].replace("", np.nan, inplace=True) temp_df.fillna(method="ffill", inplace=True) return temp_df url = f"http://www.hurun.net/CN/HuList/ListJson/{symbol_map[year]}" payload = {"order": "asc", "search": ""} r = requests.post(url, json=payload) data_json = r.json() temp_df = pd.DataFrame(data_json) temp_df.columns = [ "_", "排名", "姓名", "财富", "出生日期", "关联企业", "主营行业", ] temp_df = temp_df[ [ "排名", "姓名", "财富", "出生日期", "关联企业", "主营行业", ] ] return temp_df
d8540f3b7482f8f56f0ec40ac2592ef0cfae4035
27,064
def yamartino_method(a, axis=None): """This function calclates the standard devation along the chosen axis of the array. This function has been writen to calculate the mean of complex numbers correctly by taking the standard devation of the argument & the angle (exp(1j*theta) ). This uses the Yamartino method which is a one pass method of estimating the standard devation of an angle. Input : a : N-D numpy array axis : The axis to perform the operation over The Default is over all axies Output: This returns a an array or a one value array Example: """ if a.dtype.kind == 'c': r = np.sqrt(a.real ** 2 + a.imag ** 2).std(axis=axis)#mean th = np.arctan2(a.imag,a.real) if axis is None : sa = (np.sin(th) / len(th)).sum() ca = (np.cos(th) / len(th)).sum() else: sa = (np.sin(th) / len(th)).sum(axis=axis) ca = (np.cos(th) / len(th)).sum(axis=axis) e = np.sqrt(1. - (sa ** 2 + ca ** 2)) thsd = np.arcsin(e)*(1. + (2. / np.sqrt(3) - 1.) * e ** 3) return r * np.exp(1j * thsd) else: return np.std(a, axis=axis)
1a313ac97495a0822de1f071191be08ec5b65269
27,065
def calc_half_fs_axis(total_points, fs): """ Геренирует ось до половины частоты дискр. с числом точек равным заданному """ freq_axis = arange(total_points)*fs/2/total_points # Hz до половины fs return freq_axis
35ef0482e3062d0af6f0e03e03e58e1c3cd33406
27,066
def fetch_weather(): """ select flight records for display """ sql = "select station, latitude,longitude,visibility,coalesce(nullif(windspeed,''),cast(0.0 as varchar)) as windspeed, coalesce(nullif(precipitation,''),cast(0.00 as varchar)) as precipitation from (select station_id AS station, info ->> 'Latitude' as latitude, info ->> 'Longitude' as longitude, info ->> 'Mean_Visibility' as visibility, info ->> 'Mean_Windspeed' as windspeed, info ->> 'Precipitation' as precipitation from weather w where date_trunc('day',w.create_date) >= date_trunc('day',current_timestamp - interval '1' day) and create_date = (select max(create_date) from weather wi where wi.station_id = w.station_id) limit 300) b;" conn = None state_id = None try: # read database configuration params = config() # connect to the PostgreSQL database conn = psycopg2.connect(**params) # create a new cursor cur = conn.cursor() # execute the INSERT statement cur.execute(sql) r = [dict((cur.description[i][0], value) \ for i, value in enumerate(row)) for row in cur.fetchall()] cur.connection.close() return r except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close()
8ab9f20255a64cfdaa5bfd6ed9aa675ed76f2f5d
27,067
def update_params(old_param, new_param, errors="raise"): """ Update 'old_param' with 'new_param' """ # Copy old param updated_param = old_param.copy() for k,v in new_param.items(): if k in old_param: updated_param[k] = v else: if errors=="raise": raise Exception(f"Parameters {k} not recognized as a default parameter for this estimator") else: pass return updated_param
95de4e8e1278b07d2bd8ccc61af4e2dc43f87ca2
27,068
from datetime import datetime def rng_name(): """Generate random string for a username.""" name = "b{dt.second}{dt.microsecond}" return name.format(dt=datetime.datetime.utcnow())
81be1b40770b08ec6b9adce0c3c9970ff1f3d442
27,070
def collections(id=None): """ Return Collections Parameters ---------- id : STR, optional The default is None, which returns all know collections. You can provide a ICOS URI or DOI to filter for a specifict collection Returns ------- query : STR A query, which can be run against the SPARQL endpoint. """ if not id: coll = '' # create an empyt string insert into sparql query else: coll = ''.join(['FILTER(str(?collection) = "' + id+ '" || ?doi = "' + id + '") .']) query = """ prefix cpmeta: <http://meta.icos-cp.eu/ontologies/cpmeta/> prefix dcterms: <http://purl.org/dc/terms/> select * where{ ?collection a cpmeta:Collection . %s OPTIONAL{?collection cpmeta:hasDoi ?doi} . ?collection dcterms:title ?title . OPTIONAL{?collection dcterms:description ?description} FILTER NOT EXISTS {[] cpmeta:isNextVersionOf ?collection} } order by ?title """ % coll return query
0cd1704d2ac43f34d6e83a3f9e9ead39db390c2e
27,071
def zmat_to_coords(zmat, keep_dummy=False, skip_undefined=False): """ Generate the cartesian coordinates from a zmat dict. Considers the zmat atomic map so the returned coordinates is ordered correctly. Most common isotopes assumed, if this is not the case, then isotopes should be reassigned to the xyz. This function assumes that all zmat variables relate to already defined atoms with a lower index in the zmat. This function implements the SN-NeRF algorithm as described in: J. Parsons, J.B. Holmes, J.M Rojas, J. Tsai, C.E.M. Strauss, "Practical Conversion from Torsion Space to Cartesian Space for In Silico Protein Synthesis", Journal of Computational Chemistry 2005, 26 (10), 1063-1068, https://doi.org/10.1002/jcc.20237 Tested in converterTest.py rather than zmatTest Args: zmat (dict): The zmat. keep_dummy (bool): Whether to keep dummy atoms ('X'), ``True`` to keep, default is ``False``. skip_undefined (bool): Whether to skip atoms with undefined variables, instead of raising an error. ``True`` to skip, default is ``False``. Returns: list: The cartesian coordinates. Returns: list: The atomic symbols corresponding to the coordinates. Raises: ZMatError: If zmat if of wrong type or does not contain all keys. """ if not isinstance(zmat, dict): raise ZMatError(f'zmat has to be a dictionary, got {type(zmat)}') if 'symbols' not in zmat or 'coords' not in zmat or 'vars' not in zmat or 'map' not in zmat: raise ZMatError(f'Expected to find symbols, coords, vars, and map in zmat, got instead: {list(zmat.keys())}.') if not len(zmat['symbols']) == len(zmat['coords']) == len(zmat['map']): raise ZMatError(f'zmat sections symbols, coords, and map have different lengths: {len(zmat["symbols"])}, ' f'{len(zmat["coords"])}, and {len(zmat["map"])}, respectively.') var_list = list(zmat['vars'].keys()) coords_to_skip = list() for i, coords in enumerate(zmat['coords']): for coord in coords: if coord is not None and coord not in var_list: if skip_undefined: coords_to_skip.append(i) else: raise ZMatError(f'The parameter {coord} was not found in the "vars" section of ' f'the zmat:\n{zmat["vars"]}') coords = list() for i in range(len(zmat['symbols'])): coords = _add_nth_atom_to_coords(zmat=zmat, coords=coords, i=i, coords_to_skip=coords_to_skip) # reorder the xyz according to the zmat map and remove dummy atoms ordered_coords, ordered_symbols = list(), list() for i in range(len([symbol for symbol in zmat['symbols'] if symbol != 'X'])): zmat_index = key_by_val(zmat['map'], i) if zmat_index < len(coords) and i not in coords_to_skip: ordered_coords.append(coords[zmat_index]) ordered_symbols.append(zmat['symbols'][zmat_index]) if keep_dummy: for key, val in zmat['map'].items(): if 'X' in str(val): ordered_coords.append(coords[key]) ordered_symbols.append(zmat['symbols'][key]) return ordered_coords, ordered_symbols
0859a549b611347b4e3d94e4f0965a8a550e198e
27,073
def get_module_version(module_name: str) -> str: """Check module version. Raise exception when not found.""" version = None if module_name == "onnxrt": module_name = "onnx" command = [ "python", "-c", f"import {module_name} as module; print(module.__version__)", ] proc = Proc() proc.run(args=command) if proc.is_ok: for line in proc.output: version = line proc.remove_logs() if version is None: raise ClientErrorException(f"Could not found version of {module_name} module.") return version
caadba47f46d96b0318cd90b0f85f8a2ca2275b0
27,074
def pd_images(foc_offsets=[0,0], xt_offsets = [0,0], yt_offsets = [0,0], phase_zernikes=[0,0,0,0], amp_zernikes = [0], outer_diam=200, inner_diam=0, \ stage_pos=[0,-10,10], radians_per_um=None, NA=0.58, wavelength=0.633, sz=512, \ fresnel_focal_length=None, um_per_pix=6.0): """ Create a set of simulated phase diversity images. Note that dimensions here are in microns. Parameters ---------- foc_offsets: (n_images-1) numpy array Focus offset in radians for the second and subsequent images xt_offsets: (n_images-1) numpy array X tilt offset yt_offsets: (n_images-1) numpy array Y tilt offset phase_zernikes: numpy array Zernike terms for phase, excluding piston. amp_zernikes: numpy array Zernike terms for amplitude, including overall normalisation. outer_rad, inner_rad: float Inner and outer radius of annular pupil in pixels. Note that a better model would have a (slightly) variable pupil size as the focus changes. radians_per_micron: float Radians in focus term per micron of stage movement. This is approximately 2*np.pi * NA^2 / wavelength. stage_pos: (n_images) numpy array Nominal stage position in microns. fresnel_focal_length: float Focal length in microns if we are in the Fresnel regime. If this is None, a Fraunhofer calculation will be made. um_per_pix: float If we are in the Fresnel regime, we need to define the pixel scale of the input pupil. """ #Firstly, sort out focus, and tilt offsets. This focus offset is a little of a #guess... if radians_per_um is None: radians_per_um = np.pi*NA**2/wavelength total_focus = np.array(stage_pos) * radians_per_um total_focus[1:] += np.array(foc_offsets) #Add a zero (for ref image) to the tilt offsets xt = np.concatenate([[0],xt_offsets]) yt = np.concatenate([[0],yt_offsets]) #Create the amplitude zernike array. Normalise so that the #image sum is zero for a evenly illuminated pupil (amplitude zernikes #all 0). pup_even = circle(sz, outer_diam, interp_edge=True) - \ circle(sz, inner_diam, interp_edge=True) pup_even /= np.sqrt(np.sum(pup_even**2))*sz pup = pup_even*zernike_amp(sz, amp_zernikes, diam=outer_diam) #Needed for the Fresnel calculation flux_norm = np.sum(pup**2)/np.sum(pup_even**2) #Prepare for fresnel propagation if needed. if fresnel_focal_length is not None: lens = FocusingLens(sz, um_per_pix, um_per_pix, fresnel_focal_length, wavelength) print("Using Fresnel propagation...") #Now iterate through the images at different foci. n_ims = len(total_focus) ims = np.zeros( (n_ims, sz, sz) ) for i in range(n_ims): #Phase zernikes for this image im_phase_zernikes = np.concatenate([[0.], phase_zernikes]) im_phase_zernikes[1] += xt[i] im_phase_zernikes[2] += yt[i] im_phase_zernikes[4] += total_focus[i] wf = pup*zernike_wf(sz, im_phase_zernikes, diam=outer_diam) if fresnel_focal_length is None: ims[i] = np.fft.fftshift(np.abs(np.fft.fft2(wf))**2) else: #For a Fresnel propagation, we need to normalise separately, #because the lens class was written with inbuilt normalisation. ims[i] = lens.focus(wf) * flux_norm return ims
71a7dd7206936541cc55d8909be7795261aeaefa
27,075
def add_tickets(create_user, add_flights): """Fixture to add tickets""" user = create_user(USER) tickets = [{ "ticket_ref": "LOS29203SLC", "paid": False, "flight": add_flights[0], "type": "ECO", "seat_number": "E001", "made_by": user, }, { "ticket_ref": "LOS24933SLC", "paid": False, "flight": add_flights[1], "type": "ECO", "seat_number": "E001", "made_by": user }] return [Ticket.objects.create(**ticket) for ticket in tickets]
27f9ed9a5231c71e98a79632a97137b73831a0e0
27,076
def compute_depth_errors(gt, pred): """Computation of error metrics between predicted and ground truth depths Args: gt (N): ground truth depth pred (N): predicted depth """ thresh = np.maximum((gt / pred), (pred / gt)) a1 = (thresh < 1.25).mean() a2 = (thresh < 1.25 ** 2).mean() a3 = (thresh < 1.25 ** 3).mean() rmse = (gt - pred) ** 2 rmse = np.sqrt(rmse.mean()) rmse_log = (np.log(gt) - np.log(pred)) ** 2 rmse_log = np.sqrt(rmse_log.mean()) log10 = np.mean(np.abs((np.log10(gt) - np.log10(pred)))) abs_rel = np.mean(np.abs(gt - pred) / gt) sq_rel = np.mean(((gt - pred) ** 2) / gt) if args.dataset == 'nyu': return abs_rel, log10, rmse, a1, a2, a3 elif args.dataset == 'kitti': return abs_rel, sq_rel, rmse, rmse_log, a1, a2, a3
a781d5a8c1e61b5562870d75124de64e05fe2789
27,077
def sanitize_bvals(bvals, target_bvals=[0, 1000, 2000, 3000]): """ Remove small variation in bvals and bring them to their closest target bvals """ for idx, bval in enumerate(bvals): bvals[idx] = min(target_bvals, key=lambda x: abs(x - bval)) return bvals
a92b170748b5dbc64c4e62703a3c63103675b702
27,078
def fetch_engines(): """ fetch_engines() : Fetches documents from Firestore collection as JSON all_engines : Return all documents """ all_engines = [] for doc in engine_ref.stream(): engine = doc.to_dict() engine["id"] = doc.id all_engines.append(engine) return make_response(jsonify(all_engines), 200)
a79a623140209ed4e9e7cbea2d8944b3434f720a
27,079
def isone(a: float) -> bool: """Work around with float precision issues""" return np.isclose(a, 1.0, atol=1.0e-8, rtol=0.0)
ee44d5d7a9b00457e51501d8ce5680cd95726e3f
27,080
def kerr(E=0, U=0, gs=None): """ Setup the Kerr nonlinear element """ model = scattering.Model( omegas=[E]*1, links=[], U=[U]) if gs is None: gs = (0.1, 0.1) channels = [] channels.append(scattering.Channel(site=0, strength=gs[0])) channels.append(scattering.Channel(site=0, strength=gs[1])) se = scattering.Setup(model, channels) se.label = 'U={0}'.format(U) return se
a94ecb4618405a2817267609008bc56ef97033b9
27,082
from typing import Dict import requests import logging def get_estate_urls(last_estate_id: str) -> Dict: """Fetch urls of newly added estates Args: last_estate_id (str): estate_id of the most recent estate added (from last scrape) Returns: Dict: result dict in format {estate_id_1: {estate_url_1}, ... estate_id_N: {estate_url_N}} """ # Calculate number of API pages based on result size and estates per page base_url = 'https://www.sreality.cz/api/' res = requests.get(base_url + 'cs/v2/estates?per_page=1&page=1') num_pages = res.json()['result_size'] // 500 # Obtain url suffix for each estate up until the newest from last scrape estate_urls = {} for page in range(1, num_pages): url = base_url + f'cs/v2/estates?per_page=500&page={page}' # EAFP try: res = requests.get(url) res.raise_for_status() except requests.exceptions.HTTPError as error: logging.error(error) # Some API responses are missing the content # which causes the entire scraper to fail res = res.json().get("_embedded") if res is None: continue estates = res["estates"] for estate in estates: estate_url = estate["_links"]["self"]["href"] estate_id = estate_url.split("/")[-1] # Break once we hit an estate from last scraping already_scraped = estate_id == last_estate_id if already_scraped: return estate_urls estate_urls[estate_id] = estate_url return estate_urls
d93299002204edc9d26b3c77e2dff1f56f4b93d8
27,083
from datetime import datetime def revert_transaction(): """Revert a transaction.""" if not (current_user.is_admin or current_user.is_bartender): flash("You don't have the rights to access this page.", 'danger') return redirect(url_for('main.dashboard')) transaction_id = request.args.get('transaction_id', -1, type=int) # Transactions that are already reverted can't be reverted again transaction = Transaction.query.filter_by(id=transaction_id).first_or_404() if transaction.is_reverted or 'Revert' in transaction.type: flash("You can't revert this transaction.", 'warning') return redirect(request.referrer) # Revert client balance if transaction.client: # Check if user balance stays positive before reverting if transaction.client.balance - transaction.balance_change < 0: flash(transaction.client.first_name + ' ' + transaction.client.last_name + '\'s balance would be ' + 'negative if this transaction were reverted.', 'warning') return redirect(request.referrer) transaction.client.balance -= transaction.balance_change if transaction.item and transaction.item.is_alcohol: transaction.client.last_drink = None # Revert item quantity if transaction.item and transaction.item.is_quantifiable: transaction.item.quantity += 1 # Transaction is now reverted: it won't ever be 'unreverted' transaction.is_reverted = True transaction = Transaction(client_id=None, barman=current_user.username, date=datetime.datetime.utcnow(), type='Revert #'+str(transaction_id), balance_change=None) db.session.add(transaction) db.session.commit() flash('The transaction #'+str(transaction_id)+' has been reverted.', 'primary') return redirect(request.referrer)
39f4fc0c6af9c58197c514d5d648e07da20558aa
27,084
def is_number(s): """returns true if input can be converted to a float""" try: float(s) return True except ValueError: return False
d9fc4411bbc5e5fd8d02b3c105a770e8859048e0
27,085
def bib_to_string(bibliography): """ dict of dict -> str Take a biblatex bibliography represented as a dictionary and return a string representing it as a biblatex file. """ string = '' for entry in bibliography: string += '\n@{}{{{},\n'.format( bibliography[entry]['type'], bibliography[entry]['id'] ) for field in bibliography[entry]: if field != 'id' and field != 'type': string += '\t{} = {{{}}},\n'.format( field, bibliography[entry][field] ) string = string[:-2] + '}\n' return string
c8fc4247210f74309929fdf9b210cd6f1e2ece3f
27,086
import io def make_plot(z, figsize=(20, 20), scale=255 * 257, wavelength=800, terrain=None, nir_min=0.2, offset=3.5): """ Make a 3-D plot of image intensity as z-axis and RGB image as an underlay on the z=0 plane. :param z: NIR intensities :param figsize: size of the figure to default (20,20) :param scale: Scale to resize intensities for aesthetics (make intensities <= 1) :param wavelength: The wavelength to include in the legend :param terrain: The rgb image to include as the x-y plane (default is no underlay) :param nir_min: Cutoff for the minimum level of NIR intensity (0 - 1) so the plot is cleaner :param offset: Shift the RGB underlay by this amount for visual appeal so there is a space :return: a PIL Image """ fig = plt.figure(figsize=figsize) ax = fig.gca(projection='3d') z = np.float32(bw) Z = z / scale X, Y = np.arange(0, z.shape[1], 1), np.arange(0, z.shape[0], 1) X, Y = np.meshgrid(X, Y) surf = ax.plot_surface(X, Y, Z, rstride=3, cstride=3, cmap=cm.coolwarm, alpha=0.3, linewidth=0, antialiased=False, vmin=0, vmax=1) if terrain is not None: ax.plot_surface(X, Y, -offset * np.ones_like(Z, dtype=np.float32), rstride=5, cstride=5, facecolors=terrain / 255) ''' Now overlay the fluorescence ''' z_fluorescence = Z.copy() z_fluorescence[z_fluorescence < nir_min] = 0 z_rgba = np.ones((Z.shape[0], Z.shape[1], 4)) z_rgba[:, :, 3] = z_fluorescence[:, :] ax.plot_surface(X, Y, -offset * np.ones_like(Z, dtype=np.float32), rstride=5, cstride=5, facecolors=z_rgba) ax.set_zlim(-offset, 1) else: ax.plot_surface(X, Y, (Z / 257) - offset, rstride=3, cstride=3, cmap=cm.coolwarm, alpha=0.4, linewidth=0, antialiased=False, vmin=-offset, vmax=(1.0 / 257.0) - offset) ax.set_zlim(-offset, 1) ax.zaxis.set_major_locator(FixedLocator([0.0, 0.5, 1.0])) ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.set_xlabel('\nHeight (Pixels)') ax.set_ylabel('\nWidth (Pixels)') ax.set_zlabel('\nRelative NIR\nIntensity') ax.view_init(azim=30) # Add a color bar which maps values to colors. fig.colorbar(surf, shrink=0.4, aspect=5, orientation="horizontal", label='Relative Intensity of fluorescence \nat wavelength ' + r"$\lambda_{f} =$" + "{}nm".format( wavelength)) buf = io.BytesIO() plt.tight_layout(h_pad=1) plt.savefig(buf, format='png') buf.seek(0) img = Image.open(buf) plt.close('all') return img
1a4dde23a11b320e6564b6657a871a33ecb65eea
27,087
def check_prio_and_sorted(node): """Check that a treap object fulfills the priority requirement and that its sorted correctly.""" if node is None: return None # The root is empty else: if (node.left_node is None) and (node.right_node is None): # No children to compare with pass # Do nothing elif node.left_node is None: # No left child assert node.prio <= node.right_node.prio # Check priority of right child and node assert node.data < node.right_node.data # Check sorting elif node.right_node is None: # No right child assert node.prio <= node.left_node.prio # Check priority of left child and node assert node.data > node.left_node.data # Check sorting else: # Two children assert node.prio <= (node.left_node.prio and node.right_node.prio) # Check priority of both left and right child with node assert (node.data > node.left_node.data) and (node.data < node.right_node.data) # Check sorting check_prio_and_sorted(node.left_node) # Recursion. Goes down the left tree first check_prio_and_sorted(node.right_node) # Recursion. Goes down the right tree next
64100fd4ba9af699ab362d16f5bbf216effa2da5
27,088
import pickle async def wait_for_msg(channel): """Wait for a message on the specified Redis channel""" while await channel.wait_message(): pickled_msg = await channel.get() return pickle.loads(pickled_msg)
dca398cb3adeb778458dd6be173a53cdd204bcb9
27,090
def abandoned_baby_bull(high, low, open_, close, periods = 10): """ Abandoned Baby Bull Parameters ---------- high : `ndarray` An array containing high prices. low : `ndarray` An array containing low prices. open_ : `ndarray` An array containing open prices. close : `ndarray` An array containing close prices. periods : `int`, optional Specifying number of periods for trend identification. Returns ------- pattern : `ndarray` A numpy ndarray of type bool specifying true whether a pattern has been found or false otherwise. """ type_ = "bull" pattern = abandoned_baby_calc(high, low, open_, close, periods, type_) return pattern
5fb0f2e3063e7b7aa03663d1e2d04d565ec8e885
27,091
def split_line_num(line): """Split each line into line number and remaining line text Args: line (str): Text of each line to split Returns: tuple consisting of: line number (int): Line number split from the beginning of line remaining text (str): Text for remainder of line with whitespace stripped """ line = line.lstrip() acc = [] while line and line[0].isdigit(): acc.append(line[0]) line = line[1:] return (int(''.join(acc)), line.lstrip())
d232fd046ee60ac804fff032494c8c821456c294
27,092
def rad_to_arcmin(angle: float) -> float: """Convert radians to arcmins""" return np.rad2deg(angle)*60
c342286befd79a311edda18e8a7a2e978d8312ad
27,093
def get_tile_prefix(rasterFileName): """ Returns 'rump' of raster file name, to be used as prefix for tile files. rasterFileName is <date>_<time>_<sat. ID>_<product type>_<asset type>.tif(f) where asset type can be any of ["AnalyticMS","AnalyticMS_SR","Visual","newVisual"] The rump is defined as <date>_<time>_<sat. ID>_<product type> """ return rasterFileName.rsplit("_", 1)[0].rsplit("_AnalyticMS")[0]
15b517e5ba83b2cfb5f3b0014d800402c9683815
27,094
def get_indices_by_groups(dataset): """ Only use this to see F1-scores for how well we can recover the subgroups """ indices = [] for g in range(len(dataset.group_labels)): indices.append( np.where(dataset.targets_all['group_idx'] == g)[0] ) return indices
864aad8eef0339afd04cce34bee65f46c9fb030b
27,095
def ranksumtest(x, y): """Calculates the rank sum statistics for the two input data sets ``x`` and ``y`` and returns z and p. This method returns a slight difference compared to scipy.stats.ranksumtest in the two-tailed p-value. Should be test drived... Returns: z-value for first data set ``x`` and two-tailed p-value """ x, y = map(np.asarray, (x, y)) n1 = len(x) n2 = len(y) alldata = np.concatenate((x, y)) ranked = rankdata(alldata) x = ranked[:n1] y = ranked[n1:] s = np.sum(x, axis=0) assert s + np.sum(y, axis=0) == np.sum(range(n1 + n2 + 1)) expected = n1 * (n1 + n2 + 1) / 2.0 z = (s - expected) / np.sqrt(n1 * n2 * (n1 + n2 + 1) / 12.0) prob = 2 * (1.0 - zprob(abs(z))) return z, prob
d01d0a56cf888983fa1b8358f2f6f0819ca824d9
27,096
def inchi_to_can(inchi, engine="openbabel"): """Convert InChI to canonical SMILES. Parameters ---------- inchi : str InChI string. engine : str (default: "openbabel") Molecular conversion engine ("openbabel" or "rdkit"). Returns ------- str Canonical SMILES. """ if engine == "openbabel": obconversion = openbabel.OBConversion() obconversion.SetInAndOutFormats("inchi", "can") obmol = openbabel.OBMol() obconversion.ReadString(obmol, inchi) outinchi = obconversion.WriteString(obmol) can = outinchi.rstrip() elif engine == "rdkit": mol = Chem.MolFromInchi(inchi) can = Chem.MolToSmiles(mol) else: raise AttributeError( "Engine must be either 'openbabel' or 'rdkit'." ) return can
040d091f1cdbc1556fd60b9ee001953e1a382356
27,098
from typing import List from re import T def swap(arr: List[T], i: int, j: int) -> List[T]: """Swap two array elements. :param arr: :param i: :param j: :return: """ arr[i], arr[j] = arr[j], arr[i] return arr
e34c983b816f255a8f0fb438c14b6c81468b38c6
27,099
def is_anno_end_marker(tag): """ Checks for the beginning of a new post """ text = tag.get_text() m = anno_end_marker_regex.match(text) if m: return True else: return False
28b7d216c38dabedaef33f4d71f9749e72344b65
27,100
async def fetch_and_parse(session, url): """ Parse a fatality page from a URL. :param aiohttp.ClientSession session: aiohttp session :param str url: detail page URL :return: a dictionary representing a fatality. :rtype: dict """ # Retrieve the page. # page = await fetch_text(session, url) page = await fetch_detail_page(session, url) # Parse it. d = parse_page(page) # Add the link. d[Fields.LINK] = url # Return the result. return d
525bf965854a098507046b3408de5e73bcd4abc9
27,101
def wmt_diag_base(): """Set of hyperparameters.""" hparams = iwslt_diag() hparams.batch_size = 4096 hparams.num_hidden_layers = 6 hparams.hidden_size = 512 hparams.filter_size = 2048 hparams.num_heads = 8 # VAE-related flags. hparams.latent_size = 512 hparams.n_posterior_layers = 4 hparams.n_decoder_layers = 6 hparams.dropout = 0.1 hparams.layer_prepostprocess_dropout = 0.1 hparams.attention_dropout = 0.1 hparams.relu_dropout = 0.1 return hparams
384820d2fadc13711968a666a6f4d7b1be0726c5
27,102
def K_axialbending(EA, EI_x, EI_y, x_C=0, y_C=0, theta_p=0): """ Axial bending problem. See KK for notations. """ H_xx = EI_x*cos(theta_p)**2 + EI_y*sin(theta_p)**2 H_yy = EI_x*sin(theta_p)**2 + EI_y*cos(theta_p)**2 H_xy = (EI_y-EI_x)*sin(theta_p)*cos(theta_p) return np.array([ [EA , EA*y_C , -EA*x_C ] , [EA*y_C , H_xx + EA*y_C**2 , -H_xy - EA*x_C*y_C ] , [-EA*x_C , -H_xy - EA*x_C*y_C , H_yy + EA*x_C**2 ] ])
f187b35c5324a0aa46e5500a0f37aebbd2b7cc62
27,103
def get_closest_intersection_pt_dist(path1, path2): """Returns the manhattan distance from the start location to the closest intersection point. Args: path1: the first path (list of consecutive (x,y) tuples) path2: the secong path Returns: int of lowest manhattan distance for an intersection """ pts1 = get_pts(path1) pts2 = get_pts(path2) intersections = get_intersections(pts1, pts2) return get_closest_dist(intersections)
07bbe3a2d5f817f28b4e077989a89a78747c676f
27,104
def is_voiced_offset(c_offset): """ Is the offset a voiced consonant """ return c_offset in VOICED_LIST
6dfad8859ba8992e2f05c9946e9ad7bf9428d181
27,105
def add_boundary_label(lbl, dtype=np.uint16): """ Find boundary labels for a labelled image. Parameters ---------- lbl : array(int) lbl is an integer label image (not binarized). Returns ------- res : array(int) res is an integer label image with boundary encoded as 2. """ b = find_boundaries(lbl, mode='outer') res = (lbl > 0).astype(dtype) res[b] = 2 return res
31bae32ad08c66a66b19379d30d6210ba2b61ada
27,107
def kmax(array, k): """ return k largest values of a float32 array """ I = np.zeros(k, dtype='int64') D = np.zeros(k, dtype='float32') ha = float_minheap_array_t() ha.ids = swig_ptr(I) ha.val = swig_ptr(D) ha.nh = 1 ha.k = k ha.heapify() ha.addn(array.size, swig_ptr(array)) ha.reorder() return D, I
41037c924ae240636309f272b95a3c9dcfe10c5e
27,108
def adcp_ins2earth(u, v, w, heading, pitch, roll, vertical): """ Description: This function converts the Instrument Coordinate transformed velocity profiles to the Earth coordinate system. The calculation is defined in the Data Product Specification for Velocity Profile and Echo Intensity - DCN 1341-00750. Implemented by: 2013-04-10: Christopher Wingard. Initial code. 2014-04-04: Russell Desiderio. Optimized code performance by replacing the for loops previously used to calculate vectorized matrix multiplication products with calls to np.einsum (numpy Einstein summation function). 2015-06-24: Russell Desiderio. Changed implementation of 'vertical' in the roll calculation so that if these values are equal to the CI fill value (-999999999), when these fill values are replaced with nans, the nans will propagate through to the data product output. 2015-06-24: Russell Desiderio. Incorporated int fillvalue -> Nan. Usage: uu, vu, ww = adcp_ins2earth(u, v, w, heading, pitch, roll, vertical) where uu = "east" velocity profiles in earth coordinates [mm s-1] vv = "north" velocity profiles in earth coordinates [mm s-1] ww = "vertical" velocity profiles in earth coordinates [mm s-1] u = east velocity profiles in instrument coordinates [mm s-1] v = north velocity profiles in instrument coordinates [mm s-1] w = vertical velocity profiles in instrument coordinates [mm s-1] heading = instrument's uncorrected magnetic heading [centidegrees] pitch = instrument pitch [centidegrees] roll = instrument roll [centidegrees] vertical = instrument's vertical orientation (0 = downward looking and 1 = upward looking) References: OOI (2012). Data Product Specification for Velocity Profile and Echo Intensity. Document Control Number 1341-00750. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00050_Data_Product_SPEC_VELPROF_OOI.pdf) """ ### the input beam data for adcp_ins2earth are always called using the output ### of adcp_beam2ins, so the following lines are not needed. # insure we are dealing with array inputs #u = np.atleast_2d(u) #v = np.atleast_2d(v) #w = np.atleast_2d(w) # check for CI fill values before changing units. # this function 'conditions' (np.atleast_1d) its inputs. # TRDI does not apply its ADCP fill/bad value sentinels to compass data. heading, pitch, roll, vertical = replace_fill_with_nan(None, heading, pitch, roll, vertical) # change units from centidegrees to degrees heading = heading / 100.0 pitch = pitch / 100.0 roll = roll / 100.0 # better way to calculate roll from the vertical orientation toggle; # this will propagate R as nans if the vertical variable is missing from the data. R = roll + vertical * 180.0 # roll Rrad = np.radians(R) cos_R = np.cos(Rrad) sin_R = np.sin(Rrad) # heading Hrad = np.radians(heading) cos_H = np.cos(Hrad) sin_H = np.sin(Hrad) # pitch t1rad = np.radians(pitch) t2rad = np.radians(roll) Prad = np.arctan(np.tan(t1rad) * np.cos(t2rad)) cos_P = np.cos(Prad) sin_P = np.sin(Prad) # determine array size n_packets = u.shape[0] n_uvw = u.shape[1] # initialize vectors to be used as matrix elements ones = np.ones(n_packets) zeros = ones * 0.0 # the rollaxis calls reorient the matrices so that their lead index is # the data packet index M1 = np.array([[cos_H, sin_H, zeros], [-sin_H, cos_H, zeros], [zeros, zeros, ones]]) M1 = np.rollaxis(M1, 2) M2 = np.array([[ones, zeros, zeros], [zeros, cos_P, -sin_P], [zeros, sin_P, cos_P]]) M2 = np.rollaxis(M2, 2) M3 = np.array([[cos_R, zeros, sin_R], [zeros, ones, zeros], [-sin_R, zeros, cos_R]]) M3 = np.rollaxis(M3, 2) # construct input array of coordinates (velocities) to be transformed. # the basis set is 3D (E,N,U) so that the middle dimension is sized at 3. uvw = np.zeros((n_packets, 3, n_uvw)) # pack the coordinates (velocities) to be transformed into the appropriate # slices. uvw[:, 0, :] = u uvw[:, 1, :] = v uvw[:, 2, :] = w # the Einstein summation is here configured to do the matrix # multiplication MM(i,l) = M1(i,j) * M2(j,k) * M3(k,l) on each slice h. MM = np.einsum('hij,hjk,hkl->hil', M1, M2, M3) # the Einstein summation is here configured to do the matrix # multiplication uvw_earth(i,m) = MM(i,l) * uvw(l,m) on each slice h. uvw_earth = np.einsum('hil,hlm->him', MM, uvw) # NOTE: # these last two executable statements run about a factor of 2 # faster in the 10000 data packet performance tests versus combining # these operations into the one statement: # uvw_earth = np.einsum('hij,hjk,hkl,hlm->him', M1, M2, M3, uvw) # break out the coordinate slices and return them uu = uvw_earth[:, 0, :] vv = uvw_earth[:, 1, :] ww = uvw_earth[:, 2, :] return (uu, vv, ww)
0a51db6b5d6186c4f9208e4fa2425160e8c43925
27,109
import math def strength(data,l): """ Returns the strength of earthquake as tuple (P(z),S(xy)) """ # FFT # https://momonoki2017.blogspot.com/2018/03/pythonfft-1-fft.html # Fast Fourier Transform # fx = np.fft.fft(data[0]) # fy = np.fft.fft(data[1]) # fz = np.fft.fft(data[2]) # What's is the filter?? # https://www.data.jma.go.jp/svd/eqev/data/kyoshin/kaisetsu/calc_sindo.htm # Inverse Fast Fourier Transform # ifx = np.fft.ifft(fx) # ify = np.fft.ifft(fy) # ifz = np.fft.ifft(fz) # rpi-seismometer # https://github.com/p2pquake/rpi-seismometer # for i in range(3): # rv[i] = rv[i] * 0.94 + d[i]*0.06 # gals[i] = (rv[i] - avgs[i]) * 1.13426 avgs = [0,0,0] for i in range(3): avgs[i] = sum(data[i][-l:]) / len(data[i][-l:]) gals_z = [] # P wave? gals_xy = [] # S wave? for d in np.array(data).T[-l:]: dd = 0 for i in range(2): dd += (d[i] - avgs[i])**2 gals_xy.append(math.sqrt(dd)) gals_z.append(math.sqrt((d[2]-avgs[2])**2)) avg_z = sum(gals_z) / len(gals_z) * 100 avg_xy = sum(gals_xy) / len(gals_xy) * 100 return avg_z,avg_xy
705b04644002c2cf826ca6a03838cab66ccea1f8
27,110
def humanize(tag, value): """Make the metadata value human-readable :param tag: The key of the metadata value :param value: The actual raw value :return: Returns ``None`` or a human-readable version ``str`` :rtype: ``str`` or ``None`` """ for formatter in find_humanizers(tag): human_readable = formatter(value) if human_readable is not None: return human_readable
42a4e1506b4655a86607495790f555cc318b6d82
27,112
import itertools def cartesian(sequences, dtype=None): """ Generate a cartesian product of input arrays. Parameters ---------- sequences : list of array-like 1-D arrays to form the cartesian product of. dtype : data-type, optional Desired output data-type. Returns ------- out : ndarray 2-D array of shape (M, len(arrays)) containing cartesian products formed of input arrays. Examples -------- >>> cartesian(([1, 2, 3], [4, 5], [6, 7])) array([[1, 4, 6], [1, 4, 7], [1, 5, 6], [1, 5, 7], [2, 4, 6], [2, 4, 7], [2, 5, 6], [2, 5, 7], [3, 4, 6], [3, 4, 7], [3, 5, 6], [3, 5, 7]]) """ if dtype is None: dtype = np.dtype(type(sequences[0][0])) return np.array(list(itertools.product(*sequences)), dtype=dtype)
51e6031c568eee425f2ea86c16b472474ae499eb
27,113
def nasa_date_to_iso(datestr): """Convert the day-number based NASA format to ISO. Parameters ---------- datestr : str Date string in the form Y-j Returns ------- Datestring in ISO standard yyyy-mm-ddTHH:MM:SS.MMMMMM """ date = dt.datetime.strptime(datestr, nasa_date_format) return date.isoformat()
d77114c874fdd41a220aae907ce7eabd6dd239bf
27,114
def auto_label_color(labels): """ ???+ note "Create a label->hex color mapping dict." """ use_labels = set(labels) use_labels.discard(module_config.ABSTAIN_DECODED) use_labels = sorted(use_labels, reverse=False) assert len(use_labels) <= 20, "Too many labels to support (max at 20)" palette = Category10[10] if len(use_labels) <= 10 else Category20[20] color_dict = { module_config.ABSTAIN_DECODED: "#dcdcdc", # gainsboro hex code **{_l: _c for _l, _c in zip(use_labels, palette)}, } return color_dict
791de575e500bf2c2e0e1d56c390c59a2f62381c
27,116
import re def dedentString(text): """Dedent the docstring, so that docutils can correctly render it.""" dedent = min([len(match) for match in space_re.findall(text)] or [0]) return re.compile('\n {%i}' % dedent, re.M).sub('\n', text)
a384b0c9700a17a7ce621bca16175464192c9aee
27,117
def preprocess(df): """Preprocess the DataFrame, replacing identifiable information""" # Usernames: <USER_TOKEN> username_pattern = r"(?<=\B|^)@\w{1,18}" df.text = df.text.str.replace(username_pattern, "<USERNAME>") # URLs: <URL_TOKEN> url_pattern = ( r"https?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]" r"|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+" ) df.text = df.text.str.replace(url_pattern, "<URL>") # Email: <EMAIL_TOKEN> email_pattern = r"[-.+\w]+@[-\w]+\.[-.\w]+" df.text = df.text.str.replace(email_pattern, "<EMAIL>") # Replace tokens in Wikipedia Talk dataset df.text = df.text.str.replace("NEWLINE;?_TOKEN", "\n") df.text = df.text.str.replace("TAB_TOKEN", "\t") return df
d592d9e56af9ec17dcebede31d458dfdc001c220
27,118
def mobilenetv3_large_w7d20(**kwargs): """ MobileNetV3 Small 224/0.35 model from 'Searching for MobileNetV3,' https://arxiv.org/abs/1905.02244. Parameters: ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.chainer/models' Location for keeping the model parameters. """ return get_mobilenetv3(version="large", width_scale=0.35, model_name="mobilenetv3_small_w7d20", **kwargs)
550f8273dfe52c67b712f8cd12d1e916f7a917cc
27,119
def random_forest_classifier(model, inputs, method="predict_proba"): """ Creates a SKAST expression corresponding to a given random forest classifier """ trees = [decision_tree(estimator.tree_, inputs, method="predict_proba", value_transform=lambda v: v/len(model.estimators_)) for estimator in model.estimators_] return classifier(sum_(trees), method)
d13e28e05d01a2938116a1bac5ddbd64f7b5438c
27,120
from cowbird.utils import get_settings as real_get_settings import functools def mock_get_settings(test): """ Decorator to mock :func:`cowbird.utils.get_settings` to allow retrieval of settings from :class:`DummyRequest`. .. warning:: Only apply on test methods (not on class TestCase) to ensure that :mod:`pytest` can collect them correctly. """ def mocked(container): if isinstance(container, DummyRequest): return container.registry.settings return real_get_settings(container) @functools.wraps(test) def wrapped(*_, **__): # mock.patch("cowbird.services.get_settings", side_effect=mocked) with mock.patch("cowbird.utils.get_settings", side_effect=mocked): return test(*_, **__) return wrapped
8332d08846bcee6e9637f75c5c15fb763d9978a4
27,121
def _convert_to_interbatch_order(order: pd.Series, batch: pd.Series) -> pd.Series: """ Convert the order values from a per-batch order to a interbatch order. Parameters ---------- order: pandas.Series order and batch must share the same index, size and be of dtype int. batch: pandas.Series Returns ------- interbatch_order: pandas.Series Raises ------ ValueError: if the order values are already unique. Examples -------- >>>order = pd.Series([1, 2, 3, 1, 2, 3]) >>>batch = pd.Series([1, 1, 1, 2, 2, 2]) >>>_convert_to_interbatch_order(order, batch) pd.Series([1, 2, 3, 4, 5, 6]) """ if order.unique().size == order.size: return order # find a value to add to each batch to make unique and sorted order values max_order = order.groupby(batch).max() add_to_order = np.roll(max_order, 1) add_to_order[0] = 0 add_to_order = add_to_order.cumsum() add_to_order = pd.Series(data=add_to_order, index=max_order.index) add_to_order = batch.map(add_to_order) interbatch_order = order + add_to_order return interbatch_order
235e99d8a93ebeecde7bfe274b82fe32980288dd
27,122
def CV_INIT_3X3_DELTAS(*args): """CV_INIT_3X3_DELTAS(double deltas, int step, int nch)""" return _cv.CV_INIT_3X3_DELTAS(*args)
cbcbd6de2593d548c8e5bc02992d1df9a3d66460
27,123
def is_instance_cold_migrated_alarm(alarms, instance, guest_hb=False): """ Check if an instance cold-migrated alarm has been raised """ expected_alarm = {'alarm_id': fm_constants.FM_ALARM_ID_VM_COLD_MIGRATED, 'severity': fm_constants.FM_ALARM_SEVERITY_CRITICAL} return _instance_alarm_raised(alarms, expected_alarm, instance)
8b6db3498d09d4d538382507ffac249226a2912f
27,124
def precision_macro(y_target, y_predicted): """ y_target: m x n 2D array. {0, 1} real labels y_predicted: m x n 2D array {0, 1} prediction labels m (y-axis): # of instances n (x-axis): # of classes """ average = 'macro' score = precision_score(y_target, y_predicted, average=average) return score
4038eb838f35da93b24301809e5f0c3d5c37e2c9
27,125
def layout(mat,widths=None,heights=None): """layout""" ncol=len(mat[0]) nrow=len(mat) arr=[] list(map(lambda m: arr.extend(m),mat)) rscript='layout(matrix(c(%s), %d, %d, byrow = TRUE),' %(str(arr)[1:-1],nrow,ncol) if widths: rscript+='widths=c(%s),' %(str(widths)[1:-1]) if heights: rscript+='heights=c(%s),' %(str(heights)[1:-1]) rscript=rscript[:-1]+')\n' return rscript
813fb351b4e09d4762255ecbbe6f9ee7e050efd0
27,126
def get_file_language(filename, text=None): """Get file language from filename""" ext = osp.splitext(filename)[1] if ext.startswith('.'): ext = ext[1:] # file extension with leading dot language = ext if not ext: if text is None: text, _enc = encoding.read(filename) for line in text.splitlines(): if not line.strip(): continue if line.startswith('#!'): shebang = line[2:] if 'python' in shebang: language = 'python' else: break return language
7cfcd49d94cc1c2246f03946cfea1c99b866f941
27,127
import re def _get_output_name(fpattern,file_ind,ind): """ Returns an output name for volumetric image This function returns a file output name for the image volume based on the names of the file names of the individual z-slices. All variables are kept the same as in the original filename, but the z values are transformed into a range surrounded by <>. For example, if the following files are processed: image_c000_z000.ome.tif image_c000_z001.ome.tif image_c000_z002.ome.tif then the output file will be: image_c000_z<000-002>.ome.tif Inputs: fpattern - A filename pattern indicating variables in filenames file_ind - A parsed dictionary of file names ind - A dictionary containing the indices for the file name (i.e. {'r':1,'t':1}) Outputs: fname - an output file name """ # If no regex was supplied, return default image name if fpattern==None or fpattern=='': return 'image.ome.tif' for key in ind.keys(): assert key in VARIABLES, "Input dictionary key not a valid variable: {}".format(key) # Parse variables expr = [] variables = [] for g in re.finditer(r"\{[pxyzctr]+\}",fpattern): expr.append(g.group(0)) variables.append(expr[-1][1]) # Return an output file name fname = fpattern for e,v in zip(expr,variables): if v not in STATICS: minval = min([int(z) for z in file_ind.keys()]) maxval = max([int(z) for z in file_ind.keys()]) fname = fname.replace(e,'<' + str(minval).zfill(len(e)-2) + '-' + str(maxval).zfill(len(e)-2) + '>') elif v not in ind.keys(): fname = fname.replace(e,str(0).zfill(len(e)-2)) else: fname = fname.replace(e,str(ind[v]).zfill(len(e)-2)) return fname
8ce392acab2984b5012d8de7a0aa205f9a5e5e3b
27,128
import re def MatchNameComponent(key, name_list, case_sensitive=True): """Try to match a name against a list. This function will try to match a name like test1 against a list like C{['test1.example.com', 'test2.example.com', ...]}. Against this list, I{'test1'} as well as I{'test1.example'} will match, but not I{'test1.ex'}. A multiple match will be considered as no match at all (e.g. I{'test1'} against C{['test1.example.com', 'test1.example.org']}), except when the key fully matches an entry (e.g. I{'test1'} against C{['test1', 'test1.example.com']}). @type key: str @param key: the name to be searched @type name_list: list @param name_list: the list of strings against which to search the key @type case_sensitive: boolean @param case_sensitive: whether to provide a case-sensitive match @rtype: None or str @return: None if there is no match I{or} if there are multiple matches, otherwise the element from the list which matches """ if key in name_list: return key re_flags = 0 if not case_sensitive: re_flags |= re.IGNORECASE key = key.upper() name_re = re.compile(r"^%s(\..*)?$" % re.escape(key), re_flags) names_filtered = [] string_matches = [] for name in name_list: if name_re.match(name) is not None: names_filtered.append(name) if not case_sensitive and key == name.upper(): string_matches.append(name) if len(string_matches) == 1: return string_matches[0] if len(names_filtered) == 1: return names_filtered[0] return None
ad522feba9cabb3407e3b8e1e8c221f3e9800e16
27,129
import requests def news_api(): """Uses news API and returns a dictionary containing news """ news_base_url = "https://newsapi.org/v2/top-headlines?" news_api_key = keys["news"] country = location["country"] news_url = news_base_url + "country=" + country + "&apiKey=" + news_api_key n_api = requests.get(news_url) return n_api.json()
45e8a9d42d64066e2259fc95727d52e6b5bdfc9e
27,130
def compress(mesh, engine_name="draco"): """ Compress mesh data. Args: mesh (:class:`Mesh`): Input mesh. engine_name (``string``): Valid engines are: * ``draco``: `Google's Draco engine <https://google.github.io/draco/>`_ [#]_ Returns: A binary string representing the compressed mesh data. A simple usage example: >>> mesh = pymesh.generate_icosphere(1.0, [0, 0, 0]) >>> data = pymesh.compress(mesh) >>> with open("out.drc", 'wb') as fout: ... fout.write(data) .. [#] Draco uses lossy compression. Both accuarcy and vertices/face order will be lost due to compression. Draco only works with triangular mesh or point cloud. """ engine = PyMesh.CompressionEngine.create(engine_name) data = engine.compress(mesh.raw_mesh) return data
67d8ec030d006f6720bacffad7bacd0c36b9df42
27,131
import configparser def get_hotkey_next(config: configparser.RawConfigParser): """ 获取热键:下一个桌面背景 """ return __get_hotkey(config, 'Hotkey', 'hk_next')
3af499c01778a1defb0a440d042538885d829398
27,133
def get_soup(url): """ Returns beautiful soup object of given url. get_soup(str) -> object(?) """ req = urllib2.Request(url) response = urllib2.urlopen(req) html = response.read() soup = bs4(html) return soup
8d0bb43ae1d404cef5a3873dfd089b88461bf9fd
27,135
def internal_server_error(error): """ Handles unexpected server error with 500_SERVER_ERROR """ message = error.message or str(error) app.logger.info(message) return make_response(jsonify(status=500, error='Internal Server Error', message=message), 500)
8e80a4502a4656a1ccdb2c720177090dd7bcf53a
27,136
import math def diffsnorms(A, S, V, n_iter=20): """ 2-norm accuracy of a Schur decomp. of a matrix. Computes an estimate snorm of the spectral norm (the operator norm induced by the Euclidean vector norm) of A-VSV', using n_iter iterations of the power method started with a random vector; n_iter must be a positive integer. Increasing n_iter improves the accuracy of the estimate snorm of the spectral norm of A-VSV'. Notes ----- To obtain repeatable results, reset the seed for the pseudorandom number generator. Parameters ---------- A : array_like first matrix in A-VSV' whose spectral norm is being estimated S : array_like third matrix in A-VSV' whose spectral norm is being estimated V : array_like second matrix in A-VSV' whose spectral norm is being estimated n_iter : int, optional number of iterations of the power method to conduct; n_iter must be a positive integer, and defaults to 20 Returns ------- float an estimate of the spectral norm of A-VSV' (the estimate fails to be accurate with exponentially low probability as n_iter increases; see references DS1_, DS2_, and DS3_ below) Examples -------- >>> from fbpca import diffsnorms, eigenn >>> from numpy import diag >>> from numpy.random import uniform >>> from scipy.linalg import svd >>> >>> A = uniform(low=-1.0, high=1.0, size=(2, 100)) >>> A = A.T.dot(A) >>> (U, s, Va) = svd(A, full_matrices=False) >>> A = A / s[0] >>> >>> (d, V) = eigenn(A, 2) >>> err = diffsnorms(A, diag(d), V) >>> print(err) This example produces a rank-2 approximation V diag(d) V' to A such that the columns of V are orthonormal and the entries of d are nonnegative and are nonincreasing. diffsnorms(A, diag(d), V) outputs an estimate of the spectral norm of A - V diag(d) V', which should be close to the machine precision. References ---------- .. [DS1] Jacek Kuczynski and Henryk Wozniakowski, Estimating the largest eigenvalues by the power and Lanczos methods with a random start, SIAM Journal on Matrix Analysis and Applications, 13 (4): 1094-1122, 1992. .. [DS2] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert, Randomized algorithms for the low-rank approximation of matrices, Proceedings of the National Academy of Sciences (USA), 104 (51): 20167-20172, 2007. (See the appendix.) .. [DS3] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert, A fast randomized algorithm for the approximation of matrices, Applied and Computational Harmonic Analysis, 25 (3): 335-366, 2008. (See Section 3.4.) See also -------- eigenn, eigens """ (m, n) = A.shape (m2, k) = V.shape (k2, k3) = S.shape assert m == n assert m == m2 assert k == k2 assert k2 == k3 assert n_iter >= 1 if np.isrealobj(A) and np.isrealobj(V) and np.isrealobj(S): isreal = True else: isreal = False # Promote the types of integer data to float data. dtype = (A * 1.0).dtype # # Generate a random vector x. # if isreal: x = np.random.normal(size=(n, 1)).astype(dtype) else: x = np.random.normal(size=(n, 1)).astype(dtype) \ + 1j * np.random.normal(size=(n, 1)).astype(dtype) x = x / norm(x) # # Run n_iter iterations of the power method. # for it in range(n_iter): # # Set y = (A-VSV')x. # y = mult(A, x) - V.dot(S.dot(V.conj().T.dot(x))) # # Set x = (A'-VS'V')y. # x = mult(y.conj().T, A).conj().T \ - V.dot(S.conj().T.dot(V.conj().T.dot(y))) # # Normalize x, memorizing its Euclidean norm. # snorm = norm(x) if snorm == 0: return 0 x = x / snorm snorm = math.sqrt(snorm) return snorm
2f446a08c6ff5d8377cca22ffcd1570c68f46748
27,137
from typing import Iterator from typing import Tuple def data_selection(workload: spec.Workload, input_queue: Iterator[Tuple[spec.Tensor, spec.Tensor]], optimizer_state: spec.OptimizerState, current_param_container: spec.ParameterContainer, hyperparameters: spec.Hyperparamters, global_step: int, rng: spec.RandomState) -> Tuple[spec.Tensor, spec.Tensor]: """Select data from the infinitely repeating, pre-shuffled input queue. Each element of the queue is a single training example and label. We left out `current_params_types` because we do not believe that it would # be necessary for this function. Return a tuple of input label batches. """ del workload del optimizer_state del current_param_container del hyperparameters del global_step del rng return next(input_queue)
6daa0950e5ce82da081b71a01572dc29374f17f8
27,138
def graph_cases_factory(selenium): """ :type selenium: selenium.webdriver.remote.webdriver.WebDriver :rtype: callable :return: Constructor method to create a graph cases factory with a custom host. """ return lambda host: GraphCaseFactory(selenium=selenium, host=host)
b41b02c148b340c07859e707cbaf4810db3b6004
27,139
def clean_scene_from_file(file_name): """ Args: file_name: The name of the input sequence file Returns: Name of the scene used in the sequence file """ scene = scenename_from_file(file_name) print('Scene: ', scene) mesh_file = SCENE_PATH + scene + '/10M_clean.ply' return mesh_file
cd706c900ca3e3fce6736ce5c4288cce6079b3e0
27,140
def _non_overlapping_chunks(seq, size): """ This function takes an input sequence and produces chunks of chosen size that strictly do not overlap. This is a much faster implemetnation than _overlapping_chunks and should be preferred if running on very large seq. Parameters ---------- seq : tuple or list Sequence of integers. size : int Length of each produced chunk. Returns ------- zip zip object that produces chunks of specified size, one at a time. """ return zip(*[iter(seq)] * size)
15b5d2b4a7d8df9785ccc02b5369a3f162704e9e
27,141
import logging def Compute_Error(X_data, pinn, K, mu, Lf, deltamean, epsilon, ndim) : """ Function to determine error for input data X_data :param array X_data: input data for PINN :param PINN pinn: PINN under investigation :param float K: key parameter for using trapezoidal rule and estimating the number of required subintervals :param float mu: smoothening parameter for creating delta from deviation R :param float Lf: Lipschitz constant or spectral abscissa of system under investigation :param float deltamean: a priori determined average deviation in ODE/PDE :param float epsilon: contribution the error of the numerical integration may give to the overall a posteriori error :param int ndim: dimensions of input data """ # initialize variables for error and number of support points E_pred = np.zeros((X_data.shape[0], 2)) N_SP = np.repeat(0, X_data.shape[0], axis=0) # compute target value and error for all times for x_index in range(X_data.shape[0]): # get current item x_item = np.reshape(X_data[x_index], (1, X_data.shape[1])) # predict value at time 0 and compare to input values to get r0 t = x_item[0,0] x_item[0,0] = 0 r0 = np.sqrt(np.sum((pinn.predict(x_item)[0] - x_item[0, -ndim:])**2)) x_item[0,0] = t # compute predicted machine learning error and number of required support points E_ML = np.exp(Lf * x_item[0,0])*(r0 + (1-np.exp(-x_item[0,0]*Lf))*deltamean/Lf) N_SP[x_index] = np.ceil(np.sqrt(K*x_item[0,0]**3 / (12*E_ML*epsilon))).astype(int) # compute prediction of support points T_test = np.transpose(np.array([np.linspace(0,x_item[0,0],2*(N_SP[x_index]+1))])) X_test = np.repeat(x_item, T_test.shape[0], axis=0) X_test[:,0] = T_test[:,0] _, F_pred = pinn.predict(X_test) # compute integral for error targetfun = (np.sqrt(np.reshape(np.sum(F_pred**2, axis=1),(F_pred.shape[0],1)) + np.full((F_pred.shape[0],1), mu, dtype="float64")**2) * np.exp(-Lf*T_test)) I_1 = compute_integral_trpz(targetfun, T_test[1]-T_test[0]) if x_item[0,0] > 0: I_2 = compute_integral_trpz(targetfun[0::2], T_test[2]-T_test[0]) # determine error E_pred[x_index, 0] = np.exp(Lf*x_item[0,0])*(r0) if x_item[0,0] == 0: E_pred[x_index, 1] = 0 else: E_pred[x_index, 1] = np.exp(Lf*x_item[0,0])*(I_1 + 0.75*np.absolute(I_1-I_2)) if x_index % 100 == 0: logging.info(f'Predicted error for index {x_index}: {E_pred[x_index]}') return E_pred, N_SP
0789d7c52c96aed5cb40aa45c44c4df09f5cffaf
27,143
import itertools def sort_fiducials(qr_a, qr_b): """Sort 2d fiducial markers in a consistent ordering based on their relative positions. In general, when we find fiducials in an image, we don't expect them to be returned in a consistent order. Additionally, the image coordinate may be rotated from image to image. Here we match fiducials by trying all permutations of matches and taking the best fit. We assume that the fiducials are all aligned in similar directions; this is a constraint on fiducials placement. """ qr_a = np.array(qr_a) qr_b = np.array(qr_b) # Get unit vectors defining our common coordinate system in each image ux_a = np.array([0.0, 0.0]) ux_b = np.array([0.0, 0.0]) for qr in qr_a: ux_a += qr[1] - qr[0] for qr in qr_b: ux_b += qr[1] - qr[0] ux_a /= np.linalg.norm(ux_a) ux_b /= np.linalg.norm(ux_b) def displacements(qrcodes, ux): uy = np.array([ux[1], ux[0]]) #uy_b = np.array([ux_b[1], ux_b[0]]) displacements = [] for i in range(1, len(qrcodes)): d = qrcodes[i][0] - qrcodes[0][0] d2 = np.array([np.dot(ux, d), np.dot(uy, d)]) displacements.append(d2) return np.array(displacements) best_error = float("inf") best_permutation = [] d_a = displacements(qr_a, ux_a) for perm in itertools.permutations(qr_b): d_perm = displacements(perm, ux_b) error = np.sum(np.square(d_perm - d_a)) if error < best_error: best_error = error best_permutation = perm return qr_a.tolist(), [p.tolist() for p in list(best_permutation)]
daa96f12ef2e94fed86970979e4d140f8a3fa3d5
27,144
from pathlib import Path import jinja2 def form_render(path: str, **kwargs) -> str: """ Just jinja2 """ file_text = Path(path).read_text() template = jinja2.Template(file_text) return template.render(**kwargs)
b5da5afdedcac922c164f644eabeae5f038f9169
27,145
def _names(fg, bg): """3/4 bit encoding part c.f. https://en.wikipedia.org/wiki/ANSI_escape_code#3.2F4_bit Parameters: """ if not (fg is None or fg in _FOREGROUNDS): raise ValueError('Invalid color name fg = "{}"'.format(fg)) if not (bg is None or bg in _BACKGROUNDS): raise ValueError('Invalid color name bg = "{}"'.format(bg)) fg_ = _FOREGROUNDS.get(fg, '') bg_ = _BACKGROUNDS.get(bg, '') return _join_codes(fg_, bg_)
50e4dfe9aa56c1f3fc7622c468045b26da9b4175
27,146
def preprocess(code): """Preprocess a code by removing comments, version and merging includes.""" if code: #code = remove_comments(code) code = merge_includes(code) return code
b4ecbf28fa2043559b744e7351f268a2ba1e8200
27,147
import types def _from_schemas_get_model( stay_within_model: bool, schemas: _oa_types.Schemas, schema: _oa_types.Schema ) -> types.ModelArtifacts: """ Get artifacts for a model. Assume the schema is valid. Args: schema: The schema of the model to get artifacts for. schemas: All defined schemas used to resolve any $ref. stay_within_model: Whether only properties from within a model should be included. Returns: The artifacts of the model. """ model_artifacts = model.get(schemas, schema) properties_artifacts = _from_schemas_get_properties_artifacts( stay_within_model, schemas, schema ) return types.ModelArtifacts( tablename=model_artifacts.tablename, inherits=model_artifacts.inherits, parent=model_artifacts.parent, description=model_artifacts.description, mixins=model_artifacts.mixins, kwargs=model_artifacts.kwargs, composite_index=model_artifacts.composite_index, composite_unique=model_artifacts.composite_unique, backrefs=model_artifacts.backrefs, properties=list(properties_artifacts), )
0c5166c6baaabda64795729554b7bb3444a902c9
27,148
def solution2(inp): """Solves the second part of the challenge""" return "done"
8e20e1a81911b3f2e54fac058df8a44e54945af0
27,149
import math def juld_to_grdt(juld: JulianDay) -> GregorianDateTime: """ユリウス通日をグレゴリオ曆の日時に變換する.""" A = math.floor(juld.julian_day + 68569.5) B = juld.julian_day + 0.5 a = math.floor(A / 36524.25) b = A - math.floor(36524.25 * a + 0.75) c = math.floor((b + 1) / 365.25025) d = b - math.floor(365.25 * c) + 31 e = math.floor(d / 30.59) f = math.floor(e / 11.0) u = 100 * (a - 49) + c + f v = e - 12 * f + 2 w = d - math.floor(30.59 * e) + (B % 1) (hour, minute) = divmod(round(juld.second), 60 * 60) hour = (hour + 12) % 24 (minute, second) = divmod(minute, 60) return GregorianDateTime(u, v, math.floor(w), hour, minute, second, None)
94559bbec7fef45e6c7f6d8594d20c8039b58672
27,150
def users_all(request): """ Returns name + surname and email of all users Note: This type of function can only be justified when considering the current circumstances: An *INTERNAL* file sharing app (used by staff) Hence, all names and emails may be fetched be other authenticated users For Example: Select the users you want to share a folder with """ users = User.objects.exclude(id=request.user.id).values( "id", "first_name", "last_name", "email") resp = { "users": list(users) } return JsonResponse(resp)
53302d074ee1bbbc1156ffa2f94da4f834e9cb3c
27,151
def _resolve_categorical_entities(request, responder): """ This function retrieves all categorical entities as listed below and filters the knowledge base using these entities as filters. The final search object containing the shortlisted employee data is returned back to the calling function. """ # Finding all categorical entities categorical_entities = [e for e in request.entities if e['type'] in ('state', 'sex', 'maritaldesc', 'citizendesc', 'racedesc', 'performance_score', 'employment_status', 'employee_source', 'position', 'department', 'reason_for_termination')] # Building custom search qa = app.question_answerer.build_search(index='employee_data') # Querying the knowledge base for all categorical filters if categorical_entities: try: for categorical_entity in categorical_entities: key = categorical_entity['type'] if key == 'reason_for_termination': key = 'rft' val = categorical_entity['value'][0]['cname'] kw = {key: val} qa = qa.filter(**kw) except KeyError: pass # return size of the whole dataset to prevent the execute function from restricting # the responses to 10 (Which is the default) return qa, SIZE
d6671d030699df1b0400b1d478dc98f86be06c29
27,152
def filter_c13(df): """ Filter predicted formulas with 13C. Returns filtered df and n excluded """ shape_i = df.shape[0] df = df[df['C13'] == 0] df = df.reset_index(drop=True) shape_f = df.shape[0] n_excluded = shape_i - shape_f return df, n_excluded
4f0d3eb6c9de7c07bc2e3f285ad5502bb6d6dd06
27,153
import random import gzip def getContent(url): """ 此函数用于抓取返回403禁止访问的网页 """ random_header = random.choice(HEARDERS) """ 对于Request中的第二个参数headers,它是字典型参数,所以在传入时 也可以直接将个字典传入,字典中就是下面元组的键值对应 """ req = Request(url) req.add_header("User-Agent", random_header) req.add_header("Host", "datachart.500.com") content = urlopen(req).read() html = gzip.decompress(content) html = html.decode('gbk') return html
da396d664fb23737ea2d87b6548521948adad709
27,154
def neighbour(x,y,image): """Return 8-neighbours of image point P1(x,y), in a clockwise order""" img = image.copy() x_1, y_1, x1, y1 = x-1, y-1, x+1, y+1; return [img[x_1][y], img[x_1][y1], img[x][y1], img[x1][y1], img[x1][y], img[x1][y_1], img[x][y_1], img[x_1][y_1]]
8e645f7634d089a0e65335f6ea3363d4ed66235b
27,155
def deconv2d(x, kernel, output_shape, strides=(1, 1), border_mode='valid', dim_ordering='default', image_shape=None, filter_shape=None): """2D deconvolution (i.e. transposed convolution). # Arguments x: input tensor. kernel: kernel tensor. output_shape: 1D int tensor for the output shape. strides: strides tuple. border_mode: string, `"same"` or `"valid"`. dim_ordering: `"tf"` or `"th"`. Whether to use Theano or TensorFlow dimension ordering for inputs/kernels/ouputs. # Returns A tensor, result of transposed 2D convolution. """ if dim_ordering == 'default': dim_ordering = image_dim_ordering() x = _preprocess_convnd_input(x, dim_ordering) layout_kernel, nb_filter = _layout_kernel(dim_ordering, kernel.shape) kernel = _preprocess_deconvnd_kernel(kernel, dim_ordering) output_shape = _preprocess_deconvnd_output(output_shape, dim_ordering) s = mx.sym.Deconvolution(data=x.symbol, name=kernel.name, kernel=layout_kernel, stride=strides, num_filter=nb_filter, weight=kernel.symbol, no_bias=True, target_shape=output_shape) out = _postprocess_convnd_output(KerasSymbol(s), dim_ordering) return out
d1ed452b627764f0f08c669e4bea749886ebd0a6
27,157