content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def get_devp2p_cmd_id(msg: bytes) -> int:
"""Return the cmd_id for the given devp2p msg.
The cmd_id, also known as the payload type, is always the first entry of the RLP, interpreted
as an integer.
"""
return rlp.decode(msg[:1], sedes=rlp.sedes.big_endian_int)
|
bd930be7205871183ac9cb4814ae793f5524964d
| 26,926 |
def custom_cached(name, *old_method, **options):
"""
decorator to convert a method or function into a lazy one.
note that this cache type supports expire time and will consider method inputs
in caching. the result will be calculated once and then it will be cached.
each result will be cached using a tuple of class type, method name, inputs,
current user and component key as a key in the cache.
that this decorator could be used on both instance or class level methods and
properties or stand-alone functions.
:param str name: the cache name to be used.
for example: `redis`, `memcached`, `complex` or ...
:param function | property old_method: the original decorated method or function.
:keyword bool consider_user: specifies that current user must be included in
key generation. if not provided, it will be get
from `caching` config store.
:keyword int expire: expire time for given key in milliseconds.
if not provided, it will be get from `caching`
config store.
:keyword bool refreshable: specifies that cached item's expire time must be
extended on each hit. if not provided, it will be
get from `caching` config store.
:returns: method or function result.
"""
def decorator(method):
"""
decorates the given method or function and makes it a lazy one.
:param function | property method: decorated method or function.
:returns: method or function result.
"""
def wrapper(*args, **kwargs):
"""
decorates the given method or function and makes it a lazy one.
:param object args: function positional arguments.
:param object kwargs: function keyword arguments.
:returns: method or function result.
"""
result = caching_services.try_get(name, method, args,
kwargs, **options)
if result is not None:
return result
result = method(*args, **kwargs)
caching_services.try_set(name, result, method,
args, kwargs, **options)
return result
return update_wrapper(wrapper, method)
if len(old_method) > 0:
return decorator(old_method[0])
return decorator
|
a6732fee6cd484068d3171079bf4989d5367adbc
| 26,927 |
def _full_url(url):
"""
Assemble the full url
for a url.
"""
url = url.strip()
for x in ['http', 'https']:
if url.startswith('%s://' % x):
return url
return 'http://%s' % url
|
cfb56cf98d3c1dd5ee2b58f53a7792e927c1823f
| 26,928 |
from rx.core.operators.replay import _replay
from typing import Optional
import typing
from typing import Callable
from typing import Union
def replay(mapper: Optional[Mapper] = None,
buffer_size: Optional[int] = None,
window: Optional[typing.RelativeTime] = None,
scheduler: Optional[typing.Scheduler] = None
) -> Callable[[Observable], Union[Observable, ConnectableObservable]]:
"""The `replay` operator.
Returns an observable sequence that is the result of invoking the
mapper on a connectable observable sequence that shares a single
subscription to the underlying sequence replaying notifications
subject to a maximum time length for the replay buffer.
This operator is a specialization of Multicast using a
ReplaySubject.
Examples:
>>> res = replay(buffer_size=3)
>>> res = replay(buffer_size=3, window=0.5)
>>> res = replay(None, 3, 0.5)
>>> res = replay(lambda x: x.take(6).repeat(), 3, 0.5)
Args:
mapper: [Optional] Selector function which can use the
multicasted source sequence as many times as needed,
without causing multiple subscriptions to the source
sequence. Subscribers to the given source will receive all
the notifications of the source subject to the specified
replay buffer trimming policy.
buffer_size: [Optional] Maximum element count of the replay
buffer.
window: [Optional] Maximum time length of the replay buffer.
scheduler: [Optional] Scheduler the observers are invoked on.
Returns:
An operator function that takes an observable source and
returns an observable sequence that contains the elements of a
sequence produced by multicasting the source sequence within a
mapper function.
"""
return _replay(mapper, buffer_size, window, scheduler=scheduler)
|
8a5ff1cbbc5c12d63e0773f86d02550bf5be65c4
| 26,929 |
import io
import torch
def read_from_mc(path: str, flush=False) -> object:
"""
Overview:
read file from memcache, file must be saved by `torch.save()`
Arguments:
- path (:obj:`str`): file path in local system
Returns:
- (:obj`data`): deserialized data
"""
global mclient
_ensure_memcached()
value = mc.pyvector()
if flush:
mclient.Get(path, value, mc.MC_READ_THROUGH)
return
else:
mclient.Get(path, value)
value_buf = mc.ConvertBuffer(value)
value_str = io.BytesIO(value_buf)
value_str = torch.load(value_str, map_location='cpu')
return value_str
|
c606b131ba3d65c6b3dd320ae6a71983a79420c8
| 26,930 |
import wave
import struct
def write_wav(file, samples, nframes=-1, nchannels=2, sampwidth=2, framerate=44100, bufsize=2048):
"""
Writes the samples to a wav file.
:param file: can be a filename, or a file object.
:param samples: the samples
:param nframes: the number of frames
:param nchannels: the number of channels
:param sampwidth: the width of the sample in bytes
:param framerate: the frame rate
:param bufsize: the size of the buffer to write into the file
:return: file
"""
w = wave.open(file, 'wb')
w.setparams((nchannels, sampwidth, framerate, nframes, 'NONE', 'not compressed'))
max_amplitude = float(int((2 ** (sampwidth * 8)) / 2) - 1)
# split the samples into chunks (to reduce memory consumption and improve performance)
for chunk in grouper(bufsize, samples):
frames = b''.join(
b''.join(struct.pack('h', int(max_amplitude * sample)) for sample in channels) for channels in chunk if
channels is not None)
w.writeframesraw(frames)
w.close()
return file
|
ec38069d59dde8dafd5aa98a826ee699ded15b29
| 26,931 |
async def check_login(self) -> dict:
"""Check loging and return user credentials."""
session = await get_session(self.request)
loggedin = UserAdapter().isloggedin(session)
if not loggedin:
informasjon = "Logg inn for å se denne siden"
return web.HTTPSeeOther(location=f"/login?informasjon={informasjon}") # type: ignore
return {"name": session["username"], "token": session["token"]}
|
48dd910c143e4ca8f90d8d3da2be2ce6ed275b1b
| 26,932 |
from typing import Callable
def get_knn_func_data_points(
data_points: np.ndarray,
pairwise_distances: np.ndarray = None,
approx_nn: ApproxNN = None,
metric: Callable = fastdist.euclidean,
metric_name: str = "euclidean",
) -> KnnFunc:
"""
Gets a K-nearest neighbour callable for data points, used in `compute_gad`.
Parameters
----------
data_points : np.ndarray
Data points.
pairwise_distances : np.ndarray, optional
Pairwise distances of data points (defaults to None).
approx_nn : ApproxNN, optional
ApproxNN instance.
metric : Callable, optional
fastdist metric; only required if `pairwise_distances` and `approx_nn` are None
(defaults to fastdist.euclidean).
metric_name : str, optional
String name of the `metric` callable (defaults to "euclidean").
Returns
-------
knn_func : KnnFunc
K-nearest neighbour callable for data points.
"""
if approx_nn is not None:
return lambda point_idx, k_neighbours: approx_nn.search(
query_vector=data_points[point_idx],
k_neighbours=k_neighbours,
excluded_neighbour_indices=[point_idx],
return_distances=True,
)
elif pairwise_distances is not None:
return lambda point_idx, k_neighbours: get_nearest_neighbours(
distances=pairwise_distances[point_idx],
k_neighbours=k_neighbours,
)
else:
return lambda point_idx, k_neighbours: get_nearest_neighbours(
distances=fastdist.vector_to_matrix_distance(
u=data_points[point_idx],
m=data_points,
metric=metric,
metric_name=metric_name,
),
k_neighbours=k_neighbours,
)
|
897289271aef24610dc949fefd14761a3bea4322
| 26,933 |
from aiida import orm
def get_database_nodecount():
"""Description pending"""
query = orm.QueryBuilder()
query.append(orm.Node)
return query.count()
|
dcb71a022d36c2602125cbba4dccd1c7ccb16281
| 26,934 |
def shower_profile(xdat, alpha, beta, x0):
"""Function that represents the shower profile.
Takes in the event and predicts total gamma energy using alpha and beta to fit.
Described in source in README.
shower_optimize() fits for alpha and beta.
"""
#measured_energy = event.measured_energy
#hits = event.hits
#measured_energy, x, y, z = xdat
#pos = np.array((x, y, z))
gamma_energy, distance = xdat
#start_pos = hits[0]
#end_pos = hits[-1]
#distance = np.linalg.norm(start_pos - end_pos)
gamma = special.gamma(alpha)
numerator = (beta * distance)**(alpha - 1) * beta * np.exp(-1 * beta * distance * x0)
return gamma_energy * (numerator / gamma)
|
99c94604a742ffd44e21b4c5cd2061f6293a4d72
| 26,935 |
def has_prefix(s, sub_index):
"""
This function can make sure that the current string(recorded in index) is in the dictionary.
(or it will return False and stop finding.
:param s: string, the user input word
:param sub_index: list, current list (recorded in the index type)
:return: (bool) If there is any words with prefix stored in current list(recorded in index)
"""
current_str = ''
for digit in sub_index:
current_str += s[digit]
for word in dictionary:
if word.startswith(current_str):
return True
return False
|
a33ce5d13b473f264636bfb430d0191450103020
| 26,936 |
def get_experiment_tag(name):
"""Interfaces to callables that add a tag to the matplotlib axis.
This is a light-weight approach to a watermarking of a plot in a way
that is common in particle physics experiments and groups.
`name` can be an identifier for one of the styles provided here.
Alternatively, a custom callable can be defined.
By using this function we have a common interface for both cases.
"""
if name in provided_experiment_tags:
return provided_experiment_tags[name]
elif callable(name):
# This option allows providing your own tags.
return name
else:
valid_keys = ", ".join(provided_experiment_tags)
print(
f"Ignored invalid experiment tag: {name}. " f"Choose one of: {valid_keys}."
)
return do_nothing
|
9dc11a6caac2010aa99e288897a6f60273d1a372
| 26,937 |
def _add_layer1(query, original_data):
"""Add data from successful layer1 MIB query to original data provided.
Args:
query: MIB query object
original_data: Two keyed dict of data
Returns:
new_data: Aggregated data
"""
# Process query
result = query.layer1()
new_data = _add_data(
result, original_data)
# Return
return new_data
|
ab2d3ad95435dd2fcc6b99745f115cab08aa6699
| 26,938 |
def encodeUcs2(text):
""" UCS2 text encoding algorithm
Encodes the specified text string into UCS2-encoded bytes.
@param text: the text string to encode
@return: A bytearray containing the string encoded in UCS2 encoding
@rtype: bytearray
"""
result = bytearray()
for b in map(ord, text):
result.append(b >> 8)
result.append(b & 0xFF)
return result
|
da2243ffc959db64a196a312522f967dce1da9d1
| 26,939 |
def w_kvtype(stype: str, ctx: dict) -> dict:
"""
Make definition from ktype or vtype option
"""
stypes = {'Boolean': 'boolean', 'Integer': 'integer', 'Number': 'number', 'String': 'string'}
if stype in stypes:
return {'type': stypes[stype]}
if stype[0] in (OPTION_ID['enum'], OPTION_ID['pointer']):
tdef = ctx['type_defs'][stype[1:]]
topts = topts_s2d(tdef[TypeOptions])
fields = get_enum_items(tdef, topts, ctx['type_defs'])
idopt = 'id' in topts
return w_enum(fields, FieldID if idopt else FieldName, FieldDesc, idopt, ctx)
return {'$ref': f'#/definitions/{stype}'}
|
e09bc0ceaed2edc2927ddbc4b6bc38bcec5a345d
| 26,940 |
from typing import Optional
def create_article_number_sequence(
shop_id: ShopID, prefix: str, *, value: Optional[int] = None
) -> ArticleNumberSequence:
"""Create an article number sequence."""
sequence = DbArticleNumberSequence(shop_id, prefix, value=value)
db.session.add(sequence)
try:
db.session.commit()
except IntegrityError as exc:
db.session.rollback()
raise ArticleNumberSequenceCreationFailed(
f'Could not sequence with prefix "{prefix}"'
) from exc
return _db_entity_to_article_number_sequence(sequence)
|
3be2f0399fee0c01a117ffef0f790bae80750db0
| 26,941 |
import math
def transform_side(side,theta):
"""Transform the coordinates of the side onto the perpendicular plane using Euler-Rodrigues formula
Input: side coordinates, plane
Output: new coordinates
"""
new_side = list()
#calculating axis of rotation
axis = side[len(side)-1][0]-side[0][0],0,0
#converting theta to radians
rad = math.radians(theta)
for i in side:
#calculating vector for each point in side
side_vector = i[0],i[1],0
#Euler-Rodrigues formula to rotate vectors
axis = np.asarray(axis)
theta = np.asarray(rad)
axis = axis/math.sqrt(np.dot(axis, axis))
a = math.cos(theta/2)
b, c, d = -axis*math.sin(theta/2)
aa, bb, cc, dd = a*a, b*b, c*c, d*d
bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d
multiplier = np.array([[aa+bb-cc-dd, 2*(bc+ad), 2*(bd-ac)],
[2*(bc-ad), aa+cc-bb-dd, 2*(cd+ab)],
[2*(bd+ac), 2*(cd-ab), aa+dd-bb-cc]])
transform_vector = (np.dot(multiplier, side_vector))
#round points to nearest whole number, add to list of transformed side coordinates
folded_vector = round(transform_vector[0]),round(transform_vector[1]),round(transform_vector[2])
new_side.append(folded_vector)
return new_side
#moved_side = move_to_actual_coord(new_side,actual_coordinates)
#return moved_side
|
41e71676ee138cc355ae3990e74aeae6176d4f94
| 26,945 |
def get_approved_listings():
"""
Gets pending listings for a user
:param user_id
:return:
"""
user_id = request.args.get('user_id')
approved_listings = []
if user_id:
approved_listings = Listing.query.filter_by(approved=True, created_by=user_id)
else:
approved_listings = Listing.query.filter_by(approved=True)
return jsonify({
"listings": [listing.serialize for listing in approved_listings]
})
|
1d20094c8b3ca10a23a49aa6c83020ae3cdf65e3
| 26,946 |
def edit_profile(request):
"""
编辑公司信息
:param request:
:return:
"""
user_id = request.session.get("user_id")
email = request.session.get("email")
# username = request.session.get("username")
if request.session.get("is_superuser"):
# 管理员获取全部公司信息
data = models.IotProfile.objects.all().values() # 测试时间 分页 换算
# values方便转化为json
else:
data = models.Message.objects.filter(user_id=user_id).values()
return JsonResponse({"result":0,"message":"sussess", "data": data})
|
f106b3f6f35497bf5db0a71b81b520ac023c2b37
| 26,947 |
from typing import Optional
def get_vault(vault_id: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetVaultResult:
"""
This data source provides details about a specific Vault resource in Oracle Cloud Infrastructure Kms service.
Gets the specified vault's configuration information.
As a provisioning operation, this call is subject to a Key Management limit that applies to
the total number of requests across all provisioning read operations. Key Management might
throttle this call to reject an otherwise valid request when the total rate of provisioning
read operations exceeds 10 requests per second for a given tenancy.
## Example Usage
```python
import pulumi
import pulumi_oci as oci
test_vault = oci.kms.get_vault(vault_id=oci_kms_vault["test_vault"]["id"])
```
:param str vault_id: The OCID of the vault.
"""
__args__ = dict()
__args__['vaultId'] = vault_id
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('oci:kms/getVault:getVault', __args__, opts=opts, typ=GetVaultResult).value
return AwaitableGetVaultResult(
compartment_id=__ret__.compartment_id,
crypto_endpoint=__ret__.crypto_endpoint,
defined_tags=__ret__.defined_tags,
display_name=__ret__.display_name,
freeform_tags=__ret__.freeform_tags,
id=__ret__.id,
is_primary=__ret__.is_primary,
management_endpoint=__ret__.management_endpoint,
replica_details=__ret__.replica_details,
restore_from_file=__ret__.restore_from_file,
restore_from_object_store=__ret__.restore_from_object_store,
restore_trigger=__ret__.restore_trigger,
restored_from_vault_id=__ret__.restored_from_vault_id,
state=__ret__.state,
time_created=__ret__.time_created,
time_of_deletion=__ret__.time_of_deletion,
vault_id=__ret__.vault_id,
vault_type=__ret__.vault_type)
|
586bc794d066cd3e4040aff04a39a81762016c41
| 26,948 |
def _make_dist_mat_sa_utils():
"""Generate a sample distance matrix to test spatial_analysis_utils
Returns:
xarray.DataArray:
a sample distance matrix to use for testing spatial_analysis_utils
"""
dist_mat = np.zeros((10, 10))
np.fill_diagonal(dist_mat, 0)
# Create distance matrix where cells positive for marker 1 and 2 are within the dist_lim of
# each other, but not the other groups. This is repeated for cells positive for marker 3 and 4,
# and for cells positive for marker 5.
dist_mat[1:4, 0] = 50
dist_mat[0, 1:4] = 50
dist_mat[4:9, 0] = 200
dist_mat[0, 4:9] = 200
dist_mat[9, 0] = 500
dist_mat[0, 9] = 500
dist_mat[2:4, 1] = 50
dist_mat[1, 2:4] = 50
dist_mat[4:9, 1] = 150
dist_mat[1, 4:9] = 150
dist_mat[9, 1:9] = 200
dist_mat[1:9, 9] = 200
dist_mat[3, 2] = 50
dist_mat[2, 3] = 50
dist_mat[4:9, 2] = 150
dist_mat[2, 4:9] = 150
dist_mat[4:9, 3] = 150
dist_mat[3, 4:9] = 150
dist_mat[5:9, 4] = 50
dist_mat[4, 5:9] = 50
dist_mat[6:9, 5] = 50
dist_mat[5, 6:9] = 50
dist_mat[7:9, 6] = 50
dist_mat[6, 7:9] = 50
dist_mat[8, 7] = 50
dist_mat[7, 8] = 50
# add some randomization to the ordering
coords_in_order = np.arange(dist_mat.shape[0])
coords_permuted = deepcopy(coords_in_order)
np.random.shuffle(coords_permuted)
dist_mat = dist_mat[np.ix_(coords_permuted, coords_permuted)]
# we have to 1-index coords because people will be labeling their cells 1-indexed
coords_dist_mat = [coords_permuted + 1, coords_permuted + 1]
dist_mat = xr.DataArray(dist_mat, coords=coords_dist_mat)
return dist_mat
|
706ce73e1a5e66cdf521df7d0e1bf2c43bd09d02
| 26,950 |
def _workSE(args):
"""Worker function for batch source extraction."""
imageKey, imagePath, weightPath, weightType, psfPath, configs, \
checkImages, catPostfix, workDir, defaultsPath = args
catalogName = "_".join((str(imageKey), catPostfix))
se = SourceExtractor(imagePath, catalogName, weightPath=weightPath,
weightType=weightType, psfPath=psfPath, configs=configs,
workDir=workDir,
defaultsPath=defaultsPath)
if checkImages is not None:
se.set_check_images(checkImages, workDir)
se.run()
return imageKey, se
|
be98194a91108268bb7873fb275416a394aee3c1
| 26,951 |
def split_match(date,time,station):
"""
Function to find and extract the measuremnt from Jack Walpoles splititng data for the same event.
This matching is done by finding an entry with the same date stamp. Inital testing has shown this to be a unique identifier.
station MUST be a string of a station code
date MUST be a int/float of with the format yyyyjjj where j is julian day
"""
# -------
# First we need to read in the splitting observations made by Jack Walpole.
# We also slice out splitting observations just from the station of interest and then reset the indexing so WL_split's indicies start from [0]
# -------
WL_split = Jacks_SKS_RAW(station)
# -------
# Using a Pandas DataFrame we can slice out any rows that match out dare stamp
# The the iloc function is used to extract the requisite values (Here this is trivial as match should be a single row dataframe, but the values still need to be extracted this way)
#
match = WL_split[(WL_split['DATE'] == date)] # slicies rows in WL_split that have the same datestamp as date. In theory this should return a single row DataFrame
if len(match) == 1:
(fast,dfast,tlag,dtlag,wbeg,wend) = (match.iloc[0]['FAST'],match.iloc[0]['DFAST'],match.iloc[0]['TLAG'],match.iloc[0]['DTLAG'],match.iloc[0]['WBEG'],match.iloc[0]['WEND'])
elif len(match) == 0:
print("The provided datestamp {} does not match any obervations made by JW".format(date))
(fast,dfast,tlag,dtlag,wbeg,wend) = ('NaN','NaN','NaN','NaN','40','80')
else:
print("There has been more than one match, now testing by timestamp also!\n")
time_test = int(str(time).zfill(6)[0:4]) #Jacks timestamps are only hhmm so I need to strip off the seconds from my timestamps. WARNING it is possible my timestamps are different to Jacks!!
print('My timestamp {}, Jacks timestamp {}'.format(time_test,match.iloc[0]['TIME']))
match2 = WL_split[(WL_split['DATE'] == date) & (WL_split['TIME'] == time_test)]
# print(match2)
(fast,dfast,tlag,dtlag,wbeg,wend) = (match.iloc[0]['FAST'],match.iloc[0]['DFAST'],match.iloc[0]['TLAG'],match.iloc[0]['DTLAG'],match.iloc[0]['WBEG'],match.iloc[0]['WEND'])
if len(match2) == 0: #If there is still no match
(fast,dfast,tlag,dtlag,wbeg,wend) = ('NaN','NaN','NaN','NaN','NaN','NaN')
print("No match found")
return fast,dfast,tlag,dtlag,wbeg,wend
|
b1a7a1b4265719c8d79274169593754a7f683bc2
| 26,952 |
import numpy
def schoolf_eq(temps, B0, E, E_D, T_pk):
"""Schoolfield model, used for calculating trait values at a given temperature"""
function = B0 * exp(-E * ((1/(K*temps)) - (1/(K*283.15)))) / (1 + (E/(E_D - E)) * exp((E_D / K) * (1 / T_pk - 1 / temps)))
return numpy.array(map(log,function), dtype=numpy.float64)
|
67969317bee63d759071c86840e4ae9ecfb924b4
| 26,953 |
from typing import Union
from typing import Type
from typing import Any
from typing import Iterable
def heat_type_of(
obj: Union[str, Type[datatype], Any, Iterable[str, Type[datatype], Any]]
) -> Type[datatype]:
"""
Returns the corresponding HeAT data type of given object, i.e. scalar, array or iterable. Attempts to determine the
canonical data type based on the following priority list:
1. dtype property
2. type(obj)
3. type(obj[0])
Parameters
----------
obj : scalar or DNDarray or iterable
The object for which to infer the type.
Raises
-------
TypeError
If the object's type cannot be inferred.
"""
# attempt to access the dtype property
try:
return canonical_heat_type(obj.dtype)
except (AttributeError, TypeError):
pass
# attempt type of object itself
try:
return canonical_heat_type(type(obj))
except TypeError:
pass
# last resort, type of the object at first position
try:
return canonical_heat_type(type(obj[0]))
except (KeyError, IndexError, TypeError):
raise TypeError("data type of {} is not understood".format(obj))
|
2637d7559bb1ff3d6a1b07d9cedd10f1eb57e564
| 26,955 |
from typing import Union
from typing import Tuple
from typing import Dict
from typing import Any
def get_field_from_acc_out_ty(
acc_out_ty_or_dict: Union[Tuple, Dict[str, Any]], field: str
):
"""
After tracing NamedTuple inputs are converted to standard tuples, so we cannot
access them by name directly. Use this helper instead.
"""
if isinstance(acc_out_ty_or_dict, dict):
acc_out_ty = acc_out_ty_or_dict["acc_out_ty"]
else:
acc_out_ty = acc_out_ty_or_dict
return acc_out_ty[TensorMetadata._fields.index(field)]
|
44b0cac3737823c6ea7aa4b924683d17184711a6
| 26,956 |
def bhc(data,alpha,beta=None):
"""
This function does a bayesian clustering.
Alpha: Hyperparameter
Beta: Hyperparameter
If beta is not given, it uses the Multinomial-Dirichlet.
Otherwise it uses Bernoulli-Beta.
"""
n_cluster = data.shape[0]
nodekey = n_cluster
list_clusters = [i for i in range(n_cluster)]
clusters = dict()
clusters["n_cluster"] = n_cluster
clusters[n_cluster] = (1,[str(i+1) for i in range(n_cluster)])
tree = {str(i+1):Node(key=i+1,data=np.array([data[i,:]]),alpha=alpha,beta=beta,left=None,right=None,parent=None)
for i in range(n_cluster)}
while n_cluster > 1:
"Find the pair with the highest probability of the merged hypothesis"
r_k_max = -1000000
for left,right in list(it.combinations(tree.keys(), 2)):
nodekey += 1
aux_data = np.vstack((tree[left].data,tree[right].data))
aux_node = Node(nodekey,aux_data,alpha,beta=beta,left=tree[left],right=tree[right])
r_k = posterior(aux_node)
#print(r_k)
if r_k > r_k_max:
r_k_max = r_k
merged_left = left
merged_right = right
merged_node = aux_node
merged_node.r_k = r_k_max
merged_node.left.parent = merged_node
merged_node.right.parent = merged_node
newkey = merged_left+','+ merged_right
del tree[merged_left]
del tree[merged_right]
tree[newkey] = merged_node
n_cluster -= 1
clusters[n_cluster] = (r_k_max,list(tree.keys()))
nodekey +=1
return clusters,merged_node
|
a0c6cb588a66dce92a2041a02eb60b66a12422ae
| 26,958 |
import logging
def get_sql_value(conn_id, sql):
"""
get_sql_value executes a sql query given proper connection parameters.
The result of the sql query should be one and only one numeric value.
"""
hook = _get_hook(conn_id)
result = hook.get_records(sql)
if len(result) > 1:
logging.info("Result: %s contains more than 1 entry", str(result))
raise ValueError("Result from sql query contains more than 1 entry")
if len(result) < 1:
raise ValueError("No result returned from sql query")
if len(result[0]) != 1:
logging.info("Result: %s does not contain exactly 1 column", str(result[0]))
raise ValueError("Result from sql query does not contain exactly 1 column")
return result[0][0]
|
24cc8c633f855b5b07c602d247a543268972d615
| 26,959 |
def get_rendered_config(path: str) -> str:
"""Return a config as a string with placeholders replaced by values of the corresponding
environment variables."""
with open(path) as f:
txt = f.read()
matches = pattern.findall(txt)
for match in matches:
txt = txt.replace("[" + match + "]", _get_env_var(match))
return txt
|
93445db04960fd66cc88673f397eb959d2e982ec
| 26,960 |
def units_to_msec(units, resolution):
"""Convert BLE specific units to milliseconds."""
time_ms = units * float(resolution) / 1000
return time_ms
|
49588d7961593b2ba2e57e1481d6e1430b4a3671
| 26,961 |
def IR(numOfLayer, useIntraGCN, useInterGCN, useRandomMatrix, useAllOneMatrix, useCov, useCluster, class_num):
"""Constructs a ir-18/ir-50 model."""
model = Backbone(numOfLayer, useIntraGCN, useInterGCN, useRandomMatrix, useAllOneMatrix, useCov, useCluster, class_num)
return model
|
dbe638d3cd38c66387c67e0854b07ea7f800909f
| 26,962 |
import re
def extractNextPageToken(resultString):
"""
Calling GASearchVariantsResponse.fromJsonString() can be slower
than doing the variant search in the first place; instead we use
a regexp to extract the next page token.
"""
m = re.search('(?<=nextPageToken": )(?:")?([0-9]*?:[0-9]*)|null',
resultString)
if m is not None:
return m.group(1)
return None
|
151a5697561b687aeff8af51c4ec2f73d47c441d
| 26,963 |
def underscore(msg):
""" return underlined msg """
return __apply_style(__format['underscore'],msg)
|
ded741e58d1f6e46fc4b9f56d57947903a8a2587
| 26,964 |
def get_slice(dimspins, y):
"""
Get slice of variable `y` inquiring the spinboxes `dimspins`.
Parameters
----------
dimspins : list
List of tk.Spinbox widgets of dimensions
y : ndarray or netCDF4._netCDF4.Variable
Input array or netcdf variable
Returns
-------
ndarray
Slice of `y` chosen by with spinboxes.
Examples
--------
>>> vy = vardim2var(y)
>>> yy = self.fi.variables[vy]
>>> miss = get_miss(self, yy)
>>> yy = get_slice_y(self.yd, yy).squeeze()
>>> yy = set_miss(miss, yy)
"""
methods = ['all']
methods.extend(DIMMETHODS)
dd = []
ss = []
for i in range(y.ndim):
dim = dimspins[i].get()
if dim in methods:
s = slice(0, y.shape[i])
else:
idim = int(dim)
s = slice(idim, idim+1)
dd.append(dim)
ss.append(s)
if len(ss) > 0:
imeth = list_intersection(dd, DIMMETHODS)
if len(imeth) > 0:
yout = y[tuple(ss)]
ii = [ i for i, d in enumerate(dd) if d in imeth ]
ii.reverse() # last axis first
for i in ii:
if dd[i] == 'mean':
yout = np.ma.mean(yout, axis=i)
elif dd[i] == 'std':
yout = np.ma.std(yout, axis=i)
elif dd[i] == 'min':
yout = np.ma.min(yout, axis=i)
elif dd[i] == 'max':
yout = np.ma.max(yout, axis=i)
elif dd[i] == 'ptp':
yout = np.ma.ptp(yout, axis=i)
elif dd[i] == 'sum':
yout = np.ma.sum(yout, axis=i)
elif dd[i] == 'median':
yout = np.ma.median(yout, axis=i)
elif dd[i] == 'var':
yout = np.ma.var(yout, axis=i)
return yout
else:
return y[tuple(ss)]
else:
return np.array([], dtype=y.dtype)
|
3545391babb06c7cae5dc8fc6f413d34e40da57c
| 26,965 |
import requests
import json
def query_real_confs(body=None): # noqa: E501
"""
query the real configuration value in the current hostId node
query the real configuration value in the current hostId node # noqa: E501
:param body:
:type body: dict | bytes
:rtype: List[RealConfInfo]
"""
if connexion.request.is_json:
body = ConfHost.from_dict(connexion.request.get_json()) # noqa: E501
domain = body.domain_name
host_list = body.host_ids
check_res = Format.domainCheck(domain)
if not check_res:
num = 400
base_rsp = BaseResponse(num, "Failed to verify the input parameter, please check the input parameters.")
return base_rsp, num
# check the domain is Exist
is_exist = Format.isDomainExist(domain)
if not is_exist:
code_num = 400
base_rsp = BaseResponse(code_num, "The current domain does not exist, please create the domain first.")
return base_rsp, code_num
# check whether the host is configured in the domain
is_host_list_exist = Format.isHostInDomain(domain)
print("is_host_list_exist is : {}".format(is_host_list_exist))
if not is_host_list_exist:
code_num = 400
base_rsp = BaseResponse(code_num, "The host information is not set in the current domain." +
"Please add the host information first")
return base_rsp, code_num
# get all hosts managed by the current domain.
# If host_list is empty, query all hosts in the current domain.
# If host_list is not empty, the actual contents of the currently given host are queried.
conf_tools = ConfTools()
port = conf_tools.load_port_by_conf()
exist_host = []
failed_host = []
if len(host_list) > 0:
host_tool = HostTools()
exist_host, failed_host = host_tool.getHostExistStatus(domain, host_list)
else:
print("############## get the host in domain ##############")
url = "http://0.0.0.0:" + port + "/host/getHost"
headers = {"Content-Type": "application/json"}
get_man_host = DomainName(domain_name=domain)
response = requests.post(url, data=json.dumps(get_man_host), headers=headers) # post request
print("host/getHost response is : {}".format(response.text))
res_code = response.status_code
res_text = json.loads(response.text)
print("host/getHost return code is : {}".format(response.status_code))
if len(exist_host) == 0 or len(failed_host) == len(host_list):
code_num = 400
base_rsp = BaseResponse(code_num, "The host information is not set in the current domain." +
"Please add the host information first")
return base_rsp, code_num
# get the management conf in domain
print("############## get the management conf in domain ##############")
url = "http://0.0.0.0:" + port + "/management/getManagementConf"
headers = {"Content-Type": "application/json"}
get_man_conf_body = DomainName(domain_name=domain)
print("body is : {}".format(get_man_conf_body))
response = requests.post(url, data=json.dumps(get_man_conf_body), headers=headers) # post request
print("response is : {}".format(response.text))
res_code = response.status_code
res_text = json.loads(response.text)
print("return code is : {}".format(response.status_code))
if res_code != 200:
code_num = res_code
base_rsp = BaseResponse(code_num, "Failed to query the configuration items managed in the current domain. " +
"The failure reason is:" + res_text)
return base_rsp, code_num
conf_files = res_text.get("confFiles")
if len(conf_files) == 0:
code_num = 400
base_rsp = BaseResponse(code_num, "The configuration is not set in the current domain." +
"Please add the configuration information first")
return base_rsp, code_num
res = []
# get the real conf in host
conf_list = []
for d_conf in conf_files:
file_path = d_conf.get("filePath").split(":")[-1]
conf_list.append(file_path)
print("############## get the real conf in host ##############")
get_real_conf_body = {}
get_real_conf_body_info = []
for d_host in exist_host:
get_real_conf_body_infos = {}
get_real_conf_body_infos["host_id"] = d_host
get_real_conf_body_infos["config_list"] = conf_list
get_real_conf_body_info.append(get_real_conf_body_infos)
get_real_conf_body["infos"] = get_real_conf_body_info
url = conf_tools.load_url_by_conf().get("collect_url")
headers = {"Content-Type": "application/json"}
response = requests.post(url, data=json.dumps(get_real_conf_body), headers=headers) # post request
resp = json.loads(response.text).get("resp")
resp_code = json.loads(response.text).get("code")
if (resp_code != 200) and (resp_code != 206):
code_num = 404
code_string = "Failed to obtain the actual configuration, please check the file exists."
base_rsp = BaseResponse(code_num, code_string)
return base_rsp, code_num
if not resp or len(resp) == 0:
code_num = 500
code_string = "Failed to obtain the actual configuration, please check the host info for conf/collect."
base_rsp = BaseResponse(code_num, code_string)
return base_rsp, code_num
success_lists = {}
failed_lists = {}
for d_res in resp:
d_host_id = d_res.get("host_id")
fail_files = d_res.get("fail_files")
if len(fail_files) > 0:
failed_lists["host_id"] = d_host_id
failed_lists_conf = []
for d_failed in fail_files:
failed_lists_conf.append(d_failed)
failed_lists["failed_conf"] = failed_lists_conf
failed_lists["success_conf"] = []
else:
success_lists["host_id"] = d_host_id
success_lists["success_conf"] = []
success_lists["failed_conf"] = []
read_conf_info = RealConfInfo(domain_name=domain,
host_id=d_host_id,
conf_base_infos=[])
d_res_infos = d_res.get("infos")
for d_file in d_res_infos:
file_path = d_file.get("path")
content = d_file.get("content")
object_parse = ObjectParse()
content_string = object_parse.parse_conf_to_json(file_path, content)
file_atrr = d_file.get("file_attr").get("mode")
file_owner = "({}, {})".format(d_file.get("file_attr").get("group"), d_file.get("file_attr").get("owner"))
real_conf_base_info = RealconfBaseInfo(file_path=file_path,
file_attr=file_atrr,
file_owner=file_owner,
conf_contens=content_string)
read_conf_info.conf_base_infos.append(real_conf_base_info)
if len(fail_files) > 0:
failed_lists.get("success_conf").append(file_path)
else:
success_lists.get("success_conf").append(file_path)
res.append(read_conf_info)
print("***************************************")
print("success_lists is : {}".format(success_lists))
print("failed_lists is : {}".format(failed_lists))
if len(res) == 0:
code_num = 400
res_text = "The real configuration does not found."
base_rsp = BaseResponse(code_num, "Real configuration query failed." +
"The failure reason is : " + res_text)
return base_rsp, code_num
return res
|
1313792649942f402694713df0d413fe39b8a77c
| 26,966 |
def is_data(data):
""" Check if a packet is a data packet. """
return len(data) > 26 and ord(data[25]) == 0x08 and ord(data[26]) in [0x42, 0x62]
|
edb2a6b69fde42aef75923a2afbd5736d1aca660
| 26,968 |
def _bool_value(ctx, define_name, default, *, config_vars = None):
"""Looks up a define on ctx for a boolean value.
Will also report an error if the value is not a supported value.
Args:
ctx: A Starlark context. Deprecated.
define_name: The name of the define to look up.
default: The value to return if the define isn't found.
config_vars: A dictionary (String to String) of configuration variables. Can be from ctx.var.
Returns:
True/False or the default value if the define wasn't found.
"""
if not config_vars:
config_vars = ctx.var
value = config_vars.get(define_name, None)
if value != None:
if value.lower() in ("true", "yes", "1"):
return True
if value.lower() in ("false", "no", "0"):
return False
fail("Valid values for --define={} are: true|yes|1 or false|no|0.".format(
define_name,
))
return default
|
c60799e3019c6acefd74115ca02b76feb9c72237
| 26,969 |
def get_tf_metric(text):
"""
Computes the tf metric
Params:
text (tuple): tuple of words
Returns:
tf_text: format: ((word1, word2, ...), (tf1, tf2, ...))
"""
counts = [text.count(word) for word in text]
max_count = max(counts)
tf = [counts[i]/max_count for i in range(0, len(counts))]
return text, tf
|
6397e150fa55a056358f4b28cdf8a74abdc7fdb6
| 26,970 |
import torch
def R_transform_th(R_src, R_delta, rot_coord="CAMERA"):
"""transform R_src use R_delta.
:param R_src: matrix
:param R_delta:
:param rot_coord:
:return:
"""
if rot_coord.lower() == "model":
R_output = torch.matmul(R_src, R_delta)
elif rot_coord.lower() == "camera" or rot_coord.lower() == "naive" or rot_coord.lower() == "camera_new":
# dR_m2c x R_src_m2c
R_output = torch.matmul(R_delta, R_src)
else:
raise Exception("Unknown rot_coord in R_transform: {}".format(rot_coord))
return R_output
|
67d4b94bcc9382fae93cc926246fb2436eac7173
| 26,971 |
def calculate_UMI_with_mismatch(UMIs):
"""
Corrected the mismatches in UMIs
input: UMI sequences and their counts;
return: Corrected unique UMI sequences
"""
if len(UMIs.keys()) == 1:
return [x for x in UMIs if UMIs[x]>0]
UMIs = sorted(UMIs.items(), key=lambda k: k[1], reverse=True)
UMI_info = {x[0]:x[1] for x in UMIs}
umi_num = len(UMIs)
if umi_num <= 10:
for idx1 in range(0, umi_num-1):
for idx2 in range(idx1+1, umi_num):
umi_1 = UMIs[idx1][0]
umi_2 = UMIs[idx2][0]
if HammingDistance(umi_1, umi_2) <= 1:
UMI_info[umi_1] += UMI_info[umi_2]
UMI_info[umi_2] = 0
return [x for x in UMI_info if UMI_info[x]>0]
|
c0e24bf7043b3041043187ca78c8b8f5cafae7cc
| 26,972 |
def create_import_data(properties):
"""
This function collects and creates all the asset data needed for the import process.
:param object properties: The property group that contains variables that maintain the addon's correct state.
:return list: A list of dictionaries containing the both the mesh and action import data.
"""
# if using ue2rigify un-hide the source rig
if properties.use_ue2rigify:
set_source_rig_hide_value(False)
# get the mesh and rig objects from their collections
mesh_objects = utilities.get_from_collection(properties.mesh_collection_name, 'MESH', properties)
rig_objects = utilities.get_from_collection(properties.rig_collection_name, 'ARMATURE', properties)
# if the combine meshes option is on, get only meshes with unique armature parents
mesh_objects = utilities.get_unique_parent_mesh_objects(rig_objects, mesh_objects, properties)
# get the asset data for all the mesh objects
mesh_data = create_mesh_data(mesh_objects, rig_objects, properties)
# get the asset data for all the actions on the rig objects
action_data = create_action_data(rig_objects, properties)
# if using ue2rigify re-hide the source rig
if properties.use_ue2rigify:
set_source_rig_hide_value(True)
return mesh_data + action_data
|
b8b28ac4a1d753214dbcd1361b1ababf7f366b55
| 26,973 |
def _parse_vertex_tuple(s):
"""Parse vertex indices in '/' separated form (like 'i/j/k', 'i//k'.
...).
"""
vt = [0, 0, 0]
for i, c in enumerate(s.split("/")):
if c:
vt[i] = int(c)
return tuple(vt)
|
37e53236ef7a96f55aed36e929abe4472911b9ea
| 26,975 |
def getKeyFromValue(dictionary, value):
"""
dictionary内に指定したvalueを持つKeyを検索して取得
"""
keys = [key for key, val in dictionary.items() if val == value]
if len(keys) > 0:
return keys[0]
return None
|
d2bb42938a809677f4a96e869e9e03c194a28561
| 26,976 |
def withdraw(dest):
"""
This function defines all the FlowSpec rules to be withdrawn via the iBGP Update.
////***update*** Add port-range feature similar to announce() - ADDED in TBowlby's code.
Args:
dest (str): IP Address of the Victim host.
Calls:
send_requests(messages): Calls a function to execute requests API commands to be sent to the Flask Server.
Returns:
Returns the string 'route_withdrawn' to confirm the withdrawal of routes so the entry can be deleted
from the MySQL database.
"""
messages = [
'withdraw flow route { match { destination %s/32; source-port =53; protocol udp; } then { rate-limit DNS_RATE_LIMIT; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; source-port =123; protocol udp; packet-length =468; } then { discard; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; protocol icmp; } then { rate-limit ICMP_RATE_LIMIT; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; source-port =17 =19 =69 =111 =137 =138 =161 =162 =389 =520 =1434 =1701 =1900 =5353 =11211; protocol udp; } then { discard; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; source-port =53; destination-port =4444; protocol udp; } then { discard; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; protocol udp; fragment is-fragment; } then { discard; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; protocol tcp; tcp-flags [ syn ]; } then { rate-limit SYN_RATE_LIMIT; community [ COMMUNITY ]; } }' % dest,
'sleep',
'withdraw flow route { match { destination %s/32; } then { rate-limit MAX_SPEED; community [ COMMUNITY ]; } }' % dest,
]
send_requests(messages)
return 'route_withdrawn'
|
2e0767630c72d69a914175e6bcc808d9b088b247
| 26,977 |
def get_prefix(node):
"""
Strips off the name in the URI to give the prefixlabel...
:param node: The full URI string
:return: (prefix, label) as (string, string)
"""
if '#' in node:
name = node.split("#")[-1]
else:
# there must be no # in the prefix e.g. schema.org/
name = node.split("/")[-1]
return node[:-len(name)]
|
5d005548da722751cdd0ae022994de5f39f9ac56
| 26,978 |
def sY(qubit: Qubit, coefficient: complex = 1.0) -> Pauli:
"""Return the Pauli sigma_Y operator acting on the given qubit"""
return Pauli.sigma(qubit, 'Y', coefficient)
|
8d2444f4e9a4b9e3734a1d7ec1e686f06ded0c89
| 26,979 |
def load_data_and_labels(filename):
"""Load sentences and labels"""
df = pd.read_csv(filename, compression='zip', dtype={'faits': object}, encoding = 'utf8')
selected = [ATTRIBUTE_TO_PREDICT, 'faits']
non_selected = list(set(df.columns) - set(selected))
df = df.drop(non_selected, axis=1) # Drop non selected columns
df = df.dropna(axis=0, how='any', subset=selected) # Drop null rows
df = df.reindex(np.random.permutation(df.index)) # Shuffle the dataframe
# Map the actual labels to one hot labels
labels = sorted(list(set(df[selected[0]].tolist())))
one_hot = np.zeros((len(labels), len(labels)), int)
np.fill_diagonal(one_hot, 1)
label_dict = dict(zip(labels, one_hot))
chk_count['n'] = len(df[selected[1]])
x_raw = df[selected[1]].apply(lambda x: clean_str(x)).tolist()
y_raw = df[selected[0]].apply(lambda y: label_dict[y]).tolist()
return x_raw, y_raw, df, labels
|
651b156801dcdd5b847ab1eb3330afe569c6b63e
| 26,980 |
def ovc_search(request):
"""Method to do ovc search."""
try:
results = search_master(request)
except Exception as e:
print('error with search - %s' % (str(e)))
return JsonResponse(results, content_type='application/json',
safe=False)
else:
return JsonResponse(results, content_type='application/json',
safe=False)
|
f571627dba30a3f0a1e958e484c528fa3338defa
| 26,981 |
import struct
def incdata(data, s):
"""
add 's' to each byte.
This is useful for finding the correct shift from an incorrectly shifted chunk.
"""
return b"".join(struct.pack("<B", (_ + s) & 0xFF) for _ in data)
|
89633d232d655183bee7a20bd0e1c5a4a2cc7c05
| 26,982 |
from typing import Tuple
def nonsquare_hungarian_matching(
weights: tf.Tensor) -> Tuple[tf.Tensor, tf.Tensor]:
"""Hungarian matching with arbitrary shape.
The matchers_ops.hungarian_matching supports only squared weight matrices.
This function generalizes the hungarian matching to nonsquare cases by padding
the weights to a square and running the square version matching. The property
of hungarian matching ensures that the solutions are equivalent for the padded
square problem and the original nonsquare problem.
Args:
weights: A [batch, shape1, shape2] float32 tf.Tensor.
Returns:
square_permutation: A [batch, max(shape1, shape2), max(shape1, shape2)]
float32 tf.Tensor that is the permutation matrix that achieves the minimum
total weight. Note that a permutation matrix contains only value 0.0 and
1.0, with each row and each column sums to 1.0.
nonsquare_permutation: A [batch, shape1, shape2] float32 tf.Tensor. The
nonsquare part of the permutation matrix.
"""
_, height, width = weights.get_shape().as_list()
max_height_width = max(height, width)
# Padding a constant on one axis does not affect matching results.
weights = tf.pad(weights,
[[0, 0], # Do not pad the batch dimension.
[0, max_height_width - height],
[0, max_height_width - width]],
constant_values=_MATCHING_NEGATIVE_CONSTANT)
square_permutation = matchers_ops.hungarian_matching(weights)
square_permutation = tf.cast(square_permutation, tf.float32)
return square_permutation, square_permutation[:, :height, :width]
|
02968da51da1d65020b544bb2467ecbe3ba4ab96
| 26,983 |
import string
def strip_non_printable(value):
"""
Removes any non-printable characters and adds an indicator to the string
when binary characters are fonud
:param value: the value that you wish to strip
"""
if value is None:
return None
# Filter all non-printable characters
# (note that we must use join to account for the fact that Python 3
# returns a generator)
printable_value = ''.join(filter(lambda c: c in string.printable, value))
if printable_value != value:
if printable_value:
printable_value += ' '
printable_value += '(contains binary)'
return printable_value
|
279ea769bd7d57ee3e4feb9faf10f2a3af3aa657
| 26,985 |
def flatten(name):
"""Get a flatten layer.
Parameters
----------
name : string
the name of the flatten layer
Returns
-------
flatten : keras.layers.core.Flatten
"""
if LIB_TYPE == "keras":
return Flatten(name=name)
|
b395162b7551d4292a89a2128b651305df294069
| 26,986 |
import math
def tangent_circle(dist, radius):
"""
return tangent angle to a circle placed at (dist, 0.0) with radius=radius
For non-existing tangent use 100 degrees.
"""
if dist >= radius:
return math.asin(radius/float(dist))
return math.radians(100)
|
bcde88456a267239566f22bb6ea5cf00f64fa08e
| 26,987 |
import re
def find_backup_path(docsents, q, cand, k=40):
"""
If no path is found create a dummy backup path
:param docsents:
:param q:
:param cand:
:param k:
:return:
"""
path_for_cand_dict = {"he_docidx": None,
"he_locs": None,
"e1wh_loc": None,
"e1_docidx": None,
"e1_locs": None,
"cand_docidx": None,
"cand_locs": None,
"he_words": ["BACKUP"],
"e1wh": "BACKUP",
"e1": "BACKUP",
"cand_words": ["BACKUP"]
}
ent_words = [qtok for qtok in q if qtok not in STOPWORDS]
flag = 0
for entw in ent_words:
he = entw.lower()
if len(he.split()) == 0:
path_for_cand_dict['he_docidx'] = 0
path_for_cand_dict['he_locs'] = [(-1, -1)]
else:
pat_he = re.compile('(^|\W)' + re.escape(he) + '\W')
for docssidx, docss in enumerate(docsents):
doc = ' '.join(' '.join(sum(docss, [])).split())
doc = doc.lower()
he_objs = []
for x in pat_he.finditer(doc):
he_objs.append(x)
if len(he_objs) > 0:
flag = 1
path_for_cand_dict['he_docidx'] = docssidx
path_for_cand_dict['he_locs'] = get_locs_given_objs(doc, he, he_objs)[:k]
break
if flag == 1:
break
cand_toks = cand.split()
cand_words = [candtok for candtok in cand_toks if candtok not in STOPWORDS]
flag = 0
for cand in cand_words:
cand = cand.lower()
pat_cand = re.compile('(^|\W)' + re.escape(cand) + '\W')
for docssidx, docss in enumerate(docsents):
doc = ' '.join(' '.join(sum(docss, [])).split())
doc = doc.lower()
ca_objs = []
for x in pat_cand.finditer(doc):
ca_objs.append(x)
if len(ca_objs) > 0:
flag = 1
path_for_cand_dict['cand_docidx'] = docssidx
path_for_cand_dict['cand_locs'] = get_locs_given_objs(doc, cand, ca_objs)[:k]
break
if flag == 1:
break
if path_for_cand_dict['he_docidx'] is None or path_for_cand_dict['he_locs'] is None:
path_for_cand_dict['he_docidx'] = 0
path_for_cand_dict['he_locs'] = [(-1, -1)]
if path_for_cand_dict['cand_docidx'] is None or path_for_cand_dict['cand_locs'] is None:
path_for_cand_dict['cand_docidx'] = 0
path_for_cand_dict['cand_locs'] = [(0, 0)]
return path_for_cand_dict
|
10a71c623da6c185a1e1cc1242b2e0402208837c
| 26,988 |
def state_transitions():
"""Simplified state transition dictionary"""
return {
"E": {"A": {"(0, 9)": 1}},
"A": {"I": {"(0, 9)": 1}},
"I": {"H": {"(0, 9)": 1}},
"H": {"R": {"(0, 9)": 1}}
}
|
f8c79f8071f2b61ceacaacf3406a198b2c54c917
| 26,989 |
import json
def send(socket, action, opts=None, request_response=True, return_type='auto'):
"""Send a request to an RPC server.
Parameters
----------
socket : zmq socket
The ZeroMQ socket that is connected to the server.
action : str
Name of action server should perform. See :func:`RPCClient.send()` for
a list of actions and their associated options.
opts : dict or None
An optional dict of options specifying the behavior of the action.
request_response : bool
If True, then the server is asked to send a response.
return_type : str
'proxy' to force the server to send return values by proxy, or 'auto'
to allow the server to decide whether to return by proxy or by value.
"""
global next_req_id
# If we want the server to send a response, then we must supply a unique ID
# for the request. Otherwise, send -1 as the request ID to indicate that
# the server should not send a reply.
if request_response:
req_id = next_req_id
next_req_id += 1
else:
req_id = -1
# Serialize opts if it was specified, otherwise send an empty string.
if opts is None:
opts_str = b''
else:
opts_str = json.dumps(opts).encode()
# Tell the server which serializer we are using
ser_type = b'json'
# Send the request as a multipart message
msg = [str(req_id).encode(), action.encode(), return_type.encode(), ser_type, opts_str]
socket.send_multipart(msg)
# Print so we can see what the final json-encoded message looks like
msg = '\n'.join([' ' + m.decode() for m in msg])
print("\n>>> send to %s:\n%s" % (socket.last_endpoint.decode(), msg))
# Return the request ID we can use to listen for a response later.
return req_id
|
9a2dcf2fb78c1458c0dead23c4bcc451f1316731
| 26,990 |
def brighter(data, data_mean=None):
"""
Brighter set of parameters for density remap.
Parameters
----------
data : numpy.ndarray
data_mean : None|float|int
Returns
-------
numpy.ndarray
"""
return clip_cast(amplitude_to_density(data, dmin=60, mmult=40, data_mean=data_mean))
|
d00688ac99fb509ad0fe0e2f35cc5c03f598bfee
| 26,991 |
import logging
import sqlite3
def get_lensed_host_fluxes(host_truth_db_file, image_dir, bands='ugrizy',
components=('bulge', 'disk'),
host_types=('agn', 'sne'), verbose=False):
"""
Loop over entries in `agn_hosts` and `sne_hosts` tables in
the host_truth_db_file and compute fluxes (with and without MW
extinction) in each band. Return dicts of fluxes and coordinates
keyed by object ids.
Parameters
----------
host_truth_db_file: str
File containing model parameters for lensed host of AGNs and SNe.
image_dir: str
Directory containing the FITS stamps.
bands: str or list-like ['ugrizy']
Bands for which to return magnorms.
components: list-like [('bulge', 'disk')]
Galaxy components of lensed hosts.
host_types: list-like [('agn', 'sne')]
Types of hosted objects.
verbose: bool [False]
Verbose flag.
Returns
-------
(dict, dict, dict): dicts of fluxes with MW extinction, w/out MW
extinction, and a dict of (ra, dec, redshift) tuples, all keyed
by object id.
"""
logger = logging.getLogger('get_lensed_host_fluxes')
if verbose:
logger.setLevel(logging.INFO)
logger.info('processing %s', host_truth_db_file)
band_fluxes = lambda: {band:0 for band in bands}
fluxes = defaultdict(band_fluxes)
fluxes_noMW = defaultdict(band_fluxes)
num_photons = defaultdict(band_fluxes)
coords = dict()
mag_norms = dict()
with sqlite3.connect(host_truth_db_file) as conn:
for host_type in host_types:
df = pd.read_sql(f'select * from {host_type}_hosts', conn)
for component in components:
mag_norms[component] = get_mag_norms(host_type, component,
image_dir)
for iloc in range(len(df)):
logger.info('%s %d %d', host_type, iloc, len(df))
row = df.iloc[iloc]
ra = row['ra_lens']
dec = row['dec_lens']
redshift = row['redshift']
unique_id = str(row['unique_id'])
coords[unique_id] = [ra, dec, redshift]
gAv = row['av_mw']
gRv = row['rv_mw']
for component in components:
if unique_id not in mag_norms[component]:
continue
sed_file = find_sed_file(
row[f'sed_{component}_host'].lstrip('b').strip("'"))
iAv = row[f'av_internal_{component}']
iRv = row[f'rv_internal_{component}']
for band in bands:
mag_norm = mag_norms[component][unique_id][band]
synth_phot = SyntheticPhotometry(sed_file, mag_norm,
redshift=redshift,
iAv=iAv, iRv=iRv)
fluxes_noMW[unique_id][band] \
+= synth_phot.calcFlux(band)
synth_phot.add_dust(gAv, gRv, 'Galactic')
fluxes[unique_id][band] += synth_phot.calcFlux(band)
bp = synth_phot.bp_dict[band]
photpars = PhotometricParameters(nexp=1, exptime=30,
gain=1, bandpass=band)
num_photons[unique_id][band] \
+= synth_phot.sed.calcADU(bp, photpars)
return dict(fluxes), dict(fluxes_noMW), dict(num_photons), coords
|
1b28c58ed824b988e02d40091ac633bc8187d27a
| 26,994 |
from pathlib import Path
def load_challenges() -> list[Challenge]:
"""
Loads all challenges.
Returns
-------
list[Challenge]
All loaded challenges.
"""
__challenges.clear()
modules = []
for lib in (Path(__file__).parent / "saves/challenges").iterdir():
if not lib.name.endswith(".py") or lib.name.startswith("_"):
continue
modules.append(lib.name.removesuffix(".py"))
for module in sorted(modules):
__challenges.append(
import_module(".saves.challenges." + module, __package__).challenge # noqa
)
return __challenges
|
d6cd5d65d572ba081d5f2ba0bca67c755bc57d2d
| 26,995 |
def get_new_user_data(GET_params):
"""Return the data necessary to create a new OLD user or update an existing one.
:param GET_params: the ``request.GET`` dictionary-like object generated by
Pylons which contains the query string parameters of the request.
:returns: A dictionary whose values are lists of objects needed to create or
update user.
If ``GET_params`` has no keys, then return all data. If ``GET_params`` does
have keys, then for each key whose value is a non-empty string (and not a
valid ISO 8601 datetime) add the appropriate list of objects to the return
dictionary. If the value of a key is a valid ISO 8601 datetime string, add
the corresponding list of objects *only* if the datetime does *not* match
the most recent ``datetime_modified`` value of the resource. That is, a
non-matching datetime indicates that the requester has out-of-date data.
"""
# model_name_map maps param names to the OLD model objects from which they are
# derived.
model_name_map = {'orthographies': 'Orthography'}
# getter_map maps param names to getter functions that retrieve the
# appropriate data from the db.
getter_map = {'orthographies': h.get_mini_dicts_getter('Orthography')}
# result is initialized as a dict with empty list values.
result = dict([(key, []) for key in getter_map])
result['roles'] = h.user_roles
result['markup_languages'] = h.markup_languages
# There are GET params, so we are selective in what we return.
if GET_params:
for key in getter_map:
val = GET_params.get(key)
# Proceed so long as val is not an empty string.
if val:
val_as_datetime_obj = h.datetime_string2datetime(val)
if val_as_datetime_obj:
# Value of param is an ISO 8601 datetime string that
# does not match the most recent datetime_modified of the
# relevant model in the db: therefore we return a list
# of objects/dicts. If the datetimes do match, this
# indicates that the requester's own stores are
# up-to-date so we return nothing.
if val_as_datetime_obj != h.get_most_recent_modification_datetime(
model_name_map[key]):
result[key] = getter_map[key]()
else:
result[key] = getter_map[key]()
# There are no GET params, so we get everything from the db and return it.
else:
for key in getter_map:
result[key] = getter_map[key]()
return result
|
61ee952088bb37a2f5171f0bdd0ed9a59d66bed7
| 26,996 |
import six
def add_heatmap_summary(feature_query, feature_map, name):
"""Plots dot produce of feature_query on feature_map.
Args:
feature_query: Batch x embedding size tensor of goal embeddings
feature_map: Batch x h x w x embedding size of pregrasp scene embeddings
name: string to name tensorflow summaries
Returns:
Batch x h x w x 1 heatmap
"""
batch, dim = feature_query.shape
reshaped_query = tf.reshape(feature_query, (int(batch), 1, 1, int(dim)))
heatmaps = tf.reduce_sum(
tf.multiply(feature_map, reshaped_query), axis=3, keep_dims=True)
tf.summary.image(name, heatmaps)
shape = tf.shape(heatmaps)
softmaxheatmaps = tf.nn.softmax(tf.reshape(heatmaps, (int(batch), -1)))
tf.summary.image(
six.ensure_str(name) + 'softmax', tf.reshape(softmaxheatmaps, shape))
return heatmaps
|
d7807942a2e3d92b4653d822b24686b649a6df88
| 26,997 |
def ParseVecFile(filename):
"""Parse a vector art file and return an Art object for it.
Right now, handled file types are: EPS, Adobe Illustrator, PDF
Args:
filename: string - name of the file to read and parse
Returns:
geom.Art: object containing paths drawn in the file.
Return None if there was a major problem reading the file.
"""
(major, minor) = ClassifyFile(filename)
if (major == "error"):
print("Couldn't get Art:", minor)
return None
if major == "pdf" or (major == "ai" and minor == "pdf"):
contents = pdf.ReadPDFPageOneContents(filename)
if contents:
toks = TokenizeAIEPS(contents)
return ParsePS(toks, major, minor)
else:
return None
elif major == "eps" or (major == "ai" and minor == "eps"):
toks = TokenizeAIEPSFile(filename)
return ParsePS(toks, major, minor)
elif major == "svg":
return svg.ParseSVGFile(filename)
else:
return None
|
accf0446a4600de77cf41fdc5a586f930156dfd6
| 26,998 |
import torch
def batchnorm_to_float(module):
"""Converts batch norm to FP32"""
if isinstance(module, torch.nn.modules.batchnorm._BatchNorm):
module.float()
for child in module.children():
batchnorm_to_float(child)
return module
|
bf9ad7cbda5984465f5dcb5f693ba71c8a0ab583
| 26,999 |
def get_mat_2d(sequence, rnn=False):
"""Uses aa_to_map to turn a sequence into a 3D array representation of the
protein.
"""
if rnn:
mat = np.zeros((len(sequence), 36))
for i, aa in enumerate(sequence):
mat[i] = aa_to_map(aa)[:,:6,:].flatten()
else:
mat = np.zeros((2*len(sequence), 8, 6))
for i, aa in enumerate(sequence):
mat[2*i] = aa_to_map(aa)
return mat
|
122eb7f890995eb4d95226251bb5f2c9a4ba38df
| 27,000 |
from datetime import datetime
def TimeSec():
"""[Takes current time in and convert into seconds.]
Returns:
[float]: [Time in seconds]
"""
now = datetime.now()
return now.second+(now.minute*60)+(now.hour*60*60)
|
58892b89feb05a56c27d4fd62ba174f9d1c09591
| 27,001 |
def partition_variable(variable, partition_dict):
"""
As partition_shape() but takes a mapping of dimension-name to number
of partitions as it's second argument. <variable> is a VariableWrapper
instance.
"""
partitions = []
for dim in variable.dimensions:
if dim.name in partition_dict:
partitions.append(partition_dict[dim.name])
else:
partitions.append(1)
return partition_shape(variable.shape, partitions)
|
7ffd4075bbb6bbd156f76c9271101003c5db8c1e
| 27,002 |
def _get_object_properties(agent,
properties,
obj_type,
obj_property_name,
obj_property_value,
include_mors=False):
"""
Helper method to simplify retrieving of properties
This method is used by the '*.get' vPoller Worker methods and is
meant for collecting properties for a single managed object.
We first search for the object with property name and value,
then create a list view for this object and
finally collect it's properties.
Args:
agent (VConnector): A VConnector instance
properties (list): List of properties to be collected
obj_type pyVmomi.vim.*): Type of vSphere managed object
obj_property_name (str): Property name used for searching for the object
obj_property_value (str): Property value identifying the object in question
Returns:
The collected properties for this managed object in JSON format
"""
logger.info(
'[%s] Retrieving properties for %s managed object of type %s',
agent.host,
obj_property_value,
obj_type.__name__
)
# Find the Managed Object reference for the requested object
try:
obj = agent.get_object_by_property(
property_name=obj_property_name,
property_value=obj_property_value,
obj_type=obj_type
)
except Exception as e:
return {'success': 1, 'msg': 'Cannot collect properties: {}'.format(e.message)}
if not obj:
return {
'success': 1,
'msg': 'Cannot find object {}'.format(obj_property_value)
}
# Create a list view for this object and collect properties
view_ref = agent.get_list_view(obj=[obj])
try:
data = agent.collect_properties(
view_ref=view_ref,
obj_type=obj_type,
path_set=properties,
include_mors=include_mors
)
except Exception as e:
return {'success': 1, 'msg': 'Cannot collect properties: {}'.format(e.message)}
view_ref.DestroyView()
result = {
'success': 0,
'msg': 'Successfully retrieved object properties',
'result': data,
}
return result
|
d2e43bcc1700e76a7ca117eaf419d1c5ef941975
| 27,003 |
def get_crypto_currency_pairs(info=None):
"""Gets a list of all the cypto currencies that you can trade
:param info: Will filter the results to have a list of the values that correspond to key that matches info.
:type info: Optional[str]
:returns: If info parameter is left as None then the list will contain a dictionary of key/value pairs for each ticker. \
Otherwise, it will be a list of strings where the strings are the values of the key that corresponds to info.
"""
url = urls.crypto_currency_pairs()
data = helper.request_get(url, 'results')
return(helper.filter(data, info))
|
b44a013d6bbf348321c4f00006262e1ab02e0459
| 27,004 |
def sparse_graph_convolution_layers(name, inputs, units, reuse=True):
"""
This one is used by the Joint_SMRGCN model;
A crude prototypical operation
"""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE if reuse else False):
# adj_tensor: list (size nb_bonds) of [length, length] matrices
adj_tensor, hidden_tensor, node_tensor = inputs
annotations = hidden_tensor if hidden_tensor is not None else node_tensor
input_dim = annotations.get_shape().as_list()[-1]
nb_bonds = len(adj_tensor)
output = []
for i in range(nb_bonds):
msg_bond = linear('lt_bond_%d' % (i + 1), input_dim, units,
annotations, biases=False, variables_on_cpu=False)
output.append(tf.sparse_tensor_dense_matmul(adj_tensor[i], msg_bond))
output = tf.add_n(output) / nb_bonds
# self-connection \approx residual connection
output = output + linear('self-connect', input_dim, units, annotations, variables_on_cpu=False)
return output
|
c5c16242fb175e851a78a34249c2f902bd2e9cb4
| 27,005 |
def update_or_create_tags(observer, repo, tag=None, type_to_update=None):
"""Create or update tags."""
observer.update_state(
state='PROGRESS',
meta='Retrieving data and media from Github'
)
git = GithubAPI(repo)
if tag:
data, media = git.get_data(tag)
if type_to_update == "ssot":
populate_media(observer, media, tag)
populate_data(observer, data, tag)
populate_index(observer, tag, type_to_update)
observer.update_state(
state='SUCCESS',
meta='All tasks complete'
)
return True
|
3f478c66cda9648cb72325e9668ea08b52147fbf
| 27,007 |
def confirm_api_access_changes(request):
"""Renders the confirmation page to confirm the successful changes made to
the API access settings for the superuser's group.
Parameters:
request - The request object sent with the call to the confirm page if
the requested changes were successfully made to the API
access settings.
"""
product_name = request.user.get_profile().api_access_data.product_name
return render_to_response('confirm_api_access_changes.html',
{'product_name': product_name},
context_instance=RequestContext(request))
|
b31ce15ec72607200edd66e72df99b5ad9cb4afc
| 27,008 |
def mpl_hill_shade(data, terrain=None,
cmap=DEF_CMAP, vmin=None, vmax=None, norm=None, blend_function=rgb_blending,
azimuth=DEF_AZIMUTH, elevation=DEF_ELEVATION):
""" Hill shading that uses the matplotlib intensities. Is only for making comparison between
blending methods where we need to include the matplotlib hill shading. For all other
plots we can use the combined_intensities function that is used in the regular hill_shade()
"""
if terrain is None:
terrain = data
assert data.ndim == 2, "data must be 2 dimensional"
assert terrain.shape == data.shape, "{} != {}".format(terrain.shape, data.shape)
norm_intensities = mpl_surface_intensity(terrain, azimuth=azimuth, elevation=elevation)
rgba = color_data(data, cmap=cmap, vmin=vmin, vmax=vmax, norm=norm)
return blend_function(rgba, norm_intensities)
|
6a881794b486e581f817bf073c7cbef465d8d504
| 27,009 |
def img_docs(filename='paths.ini', section='PATHS'):
"""
Serve the PATH to the img docs directory
"""
parser = ConfigParser()
parser.read(filename)
docs = {}
if parser.has_section(section):
params = parser.items(section)
for param in params:
docs[param[0]] = param[1]
else:
raise Exception('Section {0} not found in the {1} file'.format(section, filename))
return docs['path_to_img_db']
|
c76cc9ae17fb5dd8cfc6387349b6f47545fe01ad
| 27,010 |
def KGPhenio(
directed = False, preprocess = "auto", load_nodes = True, load_node_types = True,
load_edge_weights = True, auto_enable_tradeoffs = True,
sort_tmp_dir = None, verbose = 2, cache = True, cache_path = None,
cache_sys_var = "GRAPH_CACHE_DIR", version = "current", **kwargs
) -> Graph:
"""Return kg-phenio graph
Parameters
----------
directed = False
preprocess = "auto"
Preprocess for optimal load time & memory peak.
Will preprocess in Linux/macOS but not Windows.
load_nodes = True
Load node names or use numeric range
auto_enable_tradeoffs = True
Enable when graph has < 50M edges
cache_path = None
Path to store graphs
Defaults either to `GRAPH_CACHE_DIR` sys var or `graphs`
cache_sys_var = "GRAPH_CACHE_DIR"
version = "current"
Version to retrieve
The available versions are:
- 20220304
- 20220414
- 20220428
- 20220429
- 20220504
- 20220506
- 20220511
- 20220513
- 20220516
- 20220525
- 20220601
- 20220606
- current
"""
return AutomaticallyRetrievedGraph(
"KGPhenio", version, "kghub", directed, preprocess, load_nodes,
load_node_types, load_edge_weights, auto_enable_tradeoffs, sort_tmp_dir, verbose, cache,
cache_path, cache_sys_var, kwargs
)()
|
e4a3647013c0b250e29007c0db08a6d6813c8976
| 27,011 |
def _x_mul(a, b, digit=0):
"""
Grade school multiplication, ignoring the signs.
Returns the absolute value of the product, or None if error.
"""
size_a = a.numdigits()
size_b = b.numdigits()
if a is b:
# Efficient squaring per HAC, Algorithm 14.16:
# http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
# Gives slightly less than a 2x speedup when a == b,
# via exploiting that each entry in the multiplication
# pyramid appears twice (except for the size_a squares).
z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
i = UDIGIT_TYPE(0)
while i < size_a:
f = a.widedigit(i)
pz = i << 1
pa = i + 1
carry = z.widedigit(pz) + f * f
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
assert carry <= MASK
# Now f is added in twice in each column of the
# pyramid it appears. Same as adding f<<1 once.
f <<= 1
while pa < size_a:
carry += z.widedigit(pz) + a.widedigit(pa) * f
pa += 1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
carry += z.widedigit(pz)
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
z.setdigit(pz, z.widedigit(pz) + carry)
assert (carry >> SHIFT) == 0
i += 1
z._normalize()
return z
elif digit:
if digit & (digit - 1) == 0:
return b.lqshift(ptwotable[digit])
# Even if it's not power of two it can still be useful.
return _muladd1(b, digit)
# a is not b
# use the following identity to reduce the number of operations
# a * b = a_0*b_0 + sum_{i=1}^n(a_0*b_i + a_1*b_{i-1}) + a_1*b_n
z = rbigint([NULLDIGIT] * (size_a + size_b), 1)
i = UDIGIT_TYPE(0)
size_a1 = UDIGIT_TYPE(size_a - 1)
size_b1 = UDIGIT_TYPE(size_b - 1)
while i < size_a1:
f0 = a.widedigit(i)
f1 = a.widedigit(i + 1)
pz = i
carry = z.widedigit(pz) + b.widedigit(0) * f0
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
j = UDIGIT_TYPE(0)
while j < size_b1:
# this operation does not overflow using
# SHIFT = (LONG_BIT // 2) - 1 = B - 1; in fact before it
# carry and z.widedigit(pz) are less than 2**(B - 1);
# b.widedigit(j + 1) * f0 < (2**(B-1) - 1)**2; so
# carry + z.widedigit(pz) + b.widedigit(j + 1) * f0 +
# b.widedigit(j) * f1 < 2**(2*B - 1) - 2**B < 2**LONG)BIT - 1
carry += z.widedigit(pz) + b.widedigit(j + 1) * f0 + \
b.widedigit(j) * f1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
j += 1
# carry < 2**(B + 1) - 2
carry += z.widedigit(pz) + b.widedigit(size_b1) * f1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
# carry < 4
if carry:
z.setdigit(pz, carry)
assert (carry >> SHIFT) == 0
i += 2
if size_a & 1:
pz = size_a1
f = a.widedigit(pz)
pb = 0
carry = _widen_digit(0)
while pb < size_b:
carry += z.widedigit(pz) + b.widedigit(pb) * f
pb += 1
z.setdigit(pz, carry)
pz += 1
carry >>= SHIFT
if carry:
z.setdigit(pz, z.widedigit(pz) + carry)
z._normalize()
return z
|
84dc948c03106ce26d9b4abf67c57b5d13438ef1
| 27,012 |
import re
def server_version(headers):
"""Extract the firmware version from HTTP headers."""
version_re = re.compile(r"ServerTech-AWS/v(?P<version>\d+\.\d+\w+)")
if headers.get("Server"):
match = version_re.match(headers["Server"])
if match:
return match.group("version")
|
24151f3898430f5395e69b4dd7c42bd678626381
| 27,013 |
def slice_constant(data, batch_size=32, name='constant_data', global_step=None):
"""Provide a slice based on the global_step.
This is useful when the entire data array can be stored in memory because it
allows you to feed the data very efficiently.
Args:
data: A numpy array or tensor.
batch_size: The batch size for the produced data.
name: An optional name for this data.
global_step: A global step variable that is used to read the data. If None
then the default prettytensor global_step is used.
Returns:
A tensor that produces the given data.
"""
with tf.name_scope(name):
all_data = tf.convert_to_tensor(data)
global_step = global_step or bookkeeper.global_step()
count = len(data) / batch_size
extra = len(data) - count * batch_size
if extra:
offset = tf.mod(global_step, count)
return tf.slice(all_data, offset * batch_size, batch_size)
else:
offset = tf.mod(global_step, count + 1)
return tf.slice(all_data, offset * batch_size,
tf.where(tf.equal(offset, count), extra, batch_size))
|
53ebf9a6216841a4a4db8c2d77bd9545328454ac
| 27,015 |
def es_subcadena(adn1, adn2):
"""
(str, str) -> bool
>>> es_subcadena('gatc', 'tta')
False
>>> es_subcadena('gtattt', 'atcgta')
False
:param:adn1:str:primera cadena a comparar
:param:adn2:str:segunda cadena a comparar
:return:bool:verificacion si una es subcadena de la otra
"""
if adn2 in adn1:
return True
else:
return False
|
9c3605e74e1c9dbf227695a4f0f6431cc845a5f1
| 27,016 |
def get_labels_and_features(nested_embeddings):
""" returns labels and embeddings
"""
x = nested_embeddings[:,:-1]
y = nested_embeddings[:,-1]
return x,y
|
302505bd3aa769570fa602760f7da1ddd017e940
| 27,017 |
def all_(f : a >> bool, t : r(a)) -> bool:
"""
all :: Foldable r => (a -> bool) -> r a -> bool
Determines whether all elements of the structure satisfy the predicate.
"""
return DL.all_(toList(t))
|
ec19ae23b282affd99580b9614edaec8a8a2fd44
| 27,018 |
def log_binom_sum(lower, upper, obs_vote, n0_curr, n1_curr, b_1_curr, b_2_curr, prev):
"""
Helper function for computing log prob of convolution of binomial
"""
# votes_within_group_count is y_0i in Wakefield's notation, the count of votes from
# given group for given candidate within precinct i (unobserved)
votes_within_group_count = tt.arange(lower, upper)
component_for_current_precinct = pm.math.logsumexp(
pm.Binomial.dist(n0_curr, b_1_curr).logp(votes_within_group_count)
+ pm.Binomial.dist(n1_curr, b_2_curr).logp(obs_vote - votes_within_group_count)
)[0]
return prev + component_for_current_precinct
|
2a2d80671b594d2c56d6db5dc770833d5d8aa129
| 27,019 |
def parse_locator(src):
""" (src:str) -> [pathfile:str, label:either(str, None)]
"""
pathfile_label = src.split('#')
if len(pathfile_label)==1:
pathfile_label.append(None)
if len(pathfile_label)!=2:
raise ValueError('Malformed src: %s' % (src))
return pathfile_label
|
970bc1e2e60eec4a54cd00fc5984d22ebc2b8c7a
| 27,020 |
def detect_seperator(path, encoding):
"""
:param path: pathlib.Path objects
:param encoding: file encoding.
:return: 1 character.
"""
# After reviewing the logic in the CSV sniffer, I concluded that all it
# really does is to look for a non-text character. As the separator is
# determined by the first line, which almost always is a line of headers,
# the text characters will be utf-8,16 or ascii letters plus white space.
# This leaves the characters ,;:| and \t as potential separators, with one
# exception: files that use whitespace as separator. My logic is therefore
# to (1) find the set of characters that intersect with ',;:|\t' which in
# practice is a single character, unless (2) it is empty whereby it must
# be whitespace.
text = ""
for line in path.open('r', encoding=encoding): # pick the first line only.
text = line
break
seps = {',', '\t', ';', ':', '|'}.intersection(text)
if not seps:
if " " in text:
return " "
else:
raise ValueError("separator not detected")
if len(seps) == 1:
return seps.pop()
else:
frq = [(text.count(i), i) for i in seps]
frq.sort(reverse=True) # most frequent first.
return frq[0][-1]
|
8436359a602d2b8caf72a6dbdac4870c502d1bad
| 27,021 |
def pr_at_k(df, k):
"""
Returns p/r for a specific result at a specific k
df: pandas df with columns 'space', 'time', 'y_true', and 'y_pred'
k: the number of obs you'd like to label 1 at each time
"""
#static traits of df
universe = df['time'].nunique()
p = df['y_true'].sum()
#needs to be sorted by (time, y_pred)
#group by time and find the num tp in the top k
tp = df.groupby('time').pipe(tp_group, k)
fp = (universe*k) - tp
precision = tp/(tp+fp)
recall = tp/p
return precision, recall
|
79997405f360fa66c4e0cbe35d54a15976cc6e3b
| 27,022 |
def draw_segm(im, np_segms, np_label, np_score, labels, threshold=0.5, alpha=0.7):
"""
Draw segmentation on image.
"""
mask_color_id = 0
w_ratio = .4
color_list = get_color_map_list(len(labels))
im = np.array(im).astype('float32')
clsid2color = {}
np_segms = np_segms.astype(np.uint8)
for i in range(np_segms.shape[0]):
mask, score, clsid = np_segms[i], np_score[i], np_label[i] + 1
if score < threshold:
continue
if clsid not in clsid2color:
clsid2color[clsid] = color_list[clsid]
color_mask = clsid2color[clsid]
for c in range(3):
color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255
idx = np.nonzero(mask)
color_mask = np.array(color_mask)
im[idx[0], idx[1], :] *= 1.0 - alpha
im[idx[0], idx[1], :] += alpha * color_mask
sum_x = np.sum(mask, axis=0)
x = np.where(sum_x > 0.5)[0]
sum_y = np.sum(mask, axis=1)
y = np.where(sum_y > 0.5)[0]
x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1]
cv2.rectangle(im, (x0, y0), (x1, y1), tuple(color_mask.astype('int32').tolist()), 1)
bbox_text = '%s %.2f' % (labels[clsid], score)
t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0]
cv2.rectangle(im, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), tuple(color_mask.astype('int32').tolist()),
-1)
cv2.putText(im, bbox_text, (x0, y0 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), 1, lineType=cv2.LINE_AA)
return Image.fromarray(im.astype('uint8'))
|
f2248256a0be01efb1e9402d1e51e04a5fde365d
| 27,023 |
def solve(board):
"""
solve a sudoku board using backtracking
param board: 2d list of integers
return: solution
"""
space_found = find_empty_space(board)
if not space_found:
return True
else:
row, col = space_found
for i in range(1, 10):
if valid_number(board, i, (row, col)):
board[row][col] = i
if solve(board):
return True
board[row][col] = 0
return False
|
5b94db3ba4873c0fc5e91355dab6c59ed0603fa0
| 27,024 |
from typing import List
from typing import Optional
def check(s: str) -> None:
"""
Checks if the given input string of brackets are balanced or not
Args:
s (str): The input string
"""
stack: List[str] = []
def get_opening(char: str) -> Optional[str]:
"""
Gets the corresponding opening braces of the given input character.
Args:
char (str): The closing braces
Returns:
str: The corresponding open braces.
"""
if char == ")":
return "("
if char == "]":
return "["
if char == "}":
return "{"
return None
# for every character in the given input string
for char in s:
# if the string is an opening brace, push to stack
if char in ("(", "{", "["):
stack.append(char)
else:
try:
# if the top element of the stack is the same as
# the corresponding opening bracket of the current
# character, pop the element
if get_opening(char) == stack[-1]:
stack.pop()
# else, the input string is unbalanced, break out of the
# loop
else:
break
except IndexError:
break
else:
# if the loop terminated normally, and stack is empty, print success message
if len(stack) == 0:
print("Balanced.")
# else print unsuccessful message
else:
print("Not balanced.")
return
# since at this point the loop terminated abnormally,
# print unsuccessful message
print("Not balanced.")
|
720018e5b39e070f48e18c502e8a842feef32840
| 27,025 |
def format_address(msisdn):
"""
Format a normalized MSISDN as a URI that ParlayX will accept.
"""
if not msisdn.startswith('+'):
raise ValueError('Only international format addresses are supported')
return 'tel:' + msisdn[1:]
|
f5a5cc9f8bcf77f1185003cfd523d7d6f1212bd8
| 27,026 |
def get_nag_statistics(nag):
"""Return a report containing all NAG statistics"""
report = """Constants: {0}
Inputs: {1}
NANDs: {2}
Outputs: {3}
Min. I/O distance: {4}
Max. I/O distance: {5}""".format(
nag.constant_number,
nag.input_number,
nag.nand_number,
nag.output_number,
nag.input_to_output_min_distance,
nag.input_to_output_max_distance)
return report
|
44d3f32bc0b05d8b1d81c3b32dc140af4fd20aa0
| 27,027 |
def create_backup(storage, remote, parent=None):
""" Create a new backup of provided remote and return its backup object.
.. warning:: Do not forget to add a label on returned backup to avoid its
removal by the garbage collector.
"""
if parent:
parent_ref = storage.resolve(parent)
parent_backup = storage.get_backup(parent_ref)
if parent_backup:
parent_root = storage.get_tree(parent_backup.root)
else:
parent_ref = None
parent_root = None
backup = Backup(parent=parent_ref)
with backup, remote:
backup.errors, backup.stats, backup.root = walk_and_ingest_remote(remote, storage, parent=parent_root)
ref, size, stored_size = storage.ingest(backup)
return ref, backup
|
7c4f5b424d6c48474fce74396eb6e47d0935f559
| 27,029 |
def get_pairwise_correlation(population_df, method="pearson"):
"""Given a population dataframe, calculate all pairwise correlations.
Parameters
----------
population_df : pandas.core.frame.DataFrame
Includes metadata and observation features.
method : str, default "pearson"
Which correlation matrix to use to test cutoff.
Returns
-------
list of str
Features to exclude from the population_df.
"""
# Check that the input method is supported
method = check_correlation_method(method)
# Get a symmetrical correlation matrix
data_cor_df = population_df.corr(method=method)
# Create a copy of the dataframe to generate upper triangle of zeros
data_cor_natri_df = data_cor_df.copy()
# Replace upper triangle in correlation matrix with NaN
data_cor_natri_df = data_cor_natri_df.where(
np.tril(np.ones(data_cor_natri_df.shape), k=-1).astype(np.bool)
)
# Acquire pairwise correlations in a long format
# Note that we are using the NaN upper triangle DataFrame
pairwise_df = data_cor_natri_df.stack().reset_index()
pairwise_df.columns = ["pair_a", "pair_b", "correlation"]
return data_cor_df, pairwise_df
|
85f1df4357f9996492bac6053a2f0852b2318f14
| 27,030 |
def plot_route(cities, route, name='diagram.png', ax=None):
"""Plot a graphical representation of the route obtained"""
mpl.rcParams['agg.path.chunksize'] = 10000
if not ax:
fig = plt.figure(figsize=(5, 5), frameon = False)
axis = fig.add_axes([0,0,1,1])
axis.set_aspect('equal', adjustable='datalim')
plt.axis('off')
axis.scatter(cities['x'], cities['y'], color='red', s=4)
route = cities.reindex(route)
route.loc[route.shape[0]] = route.iloc[0]
axis.plot(route['x'], route['y'], color='purple', linewidth=1)
plt.savefig(name, bbox_inches='tight', pad_inches=0, dpi=200)
plt.close()
else:
ax.scatter(cities['x'], cities['y'], color='red', s=4)
route = cities.reindex(route)
route.loc[route.shape[0]] = route.iloc[0]
ax.plot(route['x'], route['y'], color='purple', linewidth=1)
return ax
|
b8ceadb0a26e6f8c2eacea66ede9db948d73ca65
| 27,032 |
import math
def bertScore(string):
"""
Function to generate the output list consisting top K replacements for each word in the sentence using BERT.
"""
corrector = SpellCorrector()
temp1 = []
temp2 = []
temp3 = []
con = list(string.split(" "))
tf.reset_default_graph()
sess = tf.InteractiveSession()
model = Model()
sess.run(tf.global_variables_initializer())
var_lists = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="bert")
for word in con:
possible_states = corrector.edit_candidates(word, fast=False)
if len(possible_states) == 1:
word = possible_states[0]
if word in possible_states:
temp1.append([word])
continue
text = string
text_mask = text.replace(word, "**mask**")
print(text_mask)
cls = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope="cls")
replaced_masks = [
text_mask.replace("**mask**", state) for state in possible_states
]
# print(replaced_masks)
val = math.ceil(len(replaced_masks) / 5)
m = 0
n = 5
for i in range(0, val):
rep_new = replaced_masks[m:n]
tokens = tokenizer.tokenize(rep_new[0])
input_ids = [maskedId(tokens, i) for i in range(len(tokens))]
tokens_ids = tokenizer.convert_tokens_to_ids(tokens)
ids = [generateId(mask) for mask in rep_new]
tokens, input_ids, tokens_ids = list(zip(*ids))
indices, ids = [], []
for i in range(len(input_ids)):
indices.extend([i] * len(input_ids[i]))
ids.extend(input_ids[i])
masked_padded = tf.keras.preprocessing.sequence.pad_sequences(
ids, padding="post"
)
preds = sess.run(
tf.nn.log_softmax(model.logits), feed_dict={model.X: masked_padded}
)
preds = np.reshape(
preds, [masked_padded.shape[0], masked_padded.shape[1], 119547]
)
indices = np.array(indices)
scores = []
for i in range(len(tokens) - 1):
filter_preds = preds[indices == i]
total = np.sum(
[filter_preds[k, k + 1, x] for k, x in enumerate(tokens_ids[i])]
)
scores.append(total)
prob_scores = np.array(scores) / np.sum(scores)
probs = list(zip(possible_states, prob_scores))
for i in probs:
temp3.append(i)
m += 5
n += 5
temp3.sort(key=lambda x: x[1])
list(temp3)
j = 0
for i in temp3:
if j != 3:
temp2.append(i[0])
if j == 3:
break
j = j + 1
if len(temp2) != 0:
temp1.append(temp2)
else:
temp1.append([word])
temp2 = []
temp3 = []
sess.close()
return temp1
|
9edf75111a0df95532a1332f6b0f4b5dbe495ac2
| 27,033 |
import dataclasses
def configuration_stub(configuration_test: Configuration) -> Configuration:
"""
Configuration for tests.
"""
return dataclasses.replace(
configuration_test,
distance_between_wheels=DISTANCE_BETWEEN_WHEELS,
)
|
ea2fe84c19f86062fd728bd10814303026776c03
| 27,034 |
def join_smiles(df, df_smiles=None, how="left"):
"""Join Smiles from Compound_Id."""
if df_smiles is None:
load_resource("SMILES")
df_smiles = SMILES
result = df.merge(df_smiles, on="Compound_Id", how=how)
result = result.apply(pd.to_numeric, errors='ignore')
result = result.fillna("*")
return result
|
e36bc5d31764e5eb8fdcf006b05e4fe75eeff36a
| 27,035 |
def signature(*types, **kwtypes):
"""Type annotations and conversions for methods.
Ignores first parameter.
"""
conversions = [(t if isinstance(t, tuple) else (t, t)) for t in types]
kwconversions = {k: (t if isinstance(t, tuple) else (t, t))
for k, t in kwtypes.items()}
def decorator(fn):
@wraps(fn)
def wrapped(self, *args, **kwargs):
args = [(arg if isinstance(arg, t) else conv(arg))
for (t, conv), arg in zip(conversions, args)]
kwargs = {k: (v if isinstance(v, t) else conv(v))
for k, (t, conv), v
in ((k, kwconversions[k], v)
for k, v in kwargs.items())}
return fn(self, *args, **kwargs)
return wrapped
return decorator
|
414ecfd4738b431e8e059319c347a6e7bedabc80
| 27,036 |
def mean(image):
"""The mean pixel value"""
return image.mean()
|
176dd8d483008fa1071f0f0be20c4b53ad0e2a5f
| 27,037 |
import yaml
def read_event_file(file_name):
"""Read a file and return the corresponding objects.
:param file_name: Name of file to read.
:type file_name: str
:returns: ServiceEvent from file.
:rtype: ServiceEvent
"""
with open(file_name, 'r') as f:
contents = yaml.safe_load(f)
event = ServiceEvent(
contents['timestamp'],
contents['service'],
contents['reason'],
contents['action'],
policy_requestor_name=contents.get('policy_requestor_name'),
policy_requestor_type=contents.get('policy_requestor_type'))
return event
|
66da0a76f064dd99c9b2eff5594aa58f5d1d8cca
| 27,038 |
def get_layer_information(cloudsat_filenames, get_quality=True, verbose=0):
""" Returns
CloudLayerType: -9: error, 0: non determined, 1-8 cloud types
"""
all_info = []
for cloudsat_path in cloudsat_filenames:
sd = SD(cloudsat_path, SDC.READ)
if verbose:
# List available SDS datasets.
print("hdf datasets:", sd.datasets())
# get cloud types at each height
for value in all_info:
value.append(sd.select('CloudLayerType').get())
for value in all_info:
value = np.vstack(value).astype(np.int8)
return all_info
|
e3c52cd9284730c35da3ddbc1879d0e083fa63bd
| 27,040 |
import torch
def from_magphase(mag_spec, phase, dim: int = -2):
"""Return a complex-like torch tensor from magnitude and phase components.
Args:
mag_spec (torch.tensor): magnitude of the tensor.
phase (torch.tensor): angle of the tensor
dim(int, optional): the frequency (or equivalent) dimension along which
real and imaginary values are concatenated.
Returns:
:class:`torch.Tensor`:
The corresponding complex-like torch tensor.
"""
return torch.cat([mag_spec * torch.cos(phase), mag_spec * torch.sin(phase)], dim=dim)
|
2f33de266fa295d0c21cf5002f6420c60eb07071
| 27,041 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.