content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def load_empty_config_setup() -> DictConfig: """Return a dictionary containing all the MLOQ setup config values set to None.""" return OmegaConf.load(setup_yml.src)
e862fb753737990a23975659f7c026ca0a2e7132
27,280
from typing import Dict from typing import Tuple def apply_dfg(dfg: Dict[Tuple[str, str], int], start_activities: Dict[str, int], end_activities: Dict[str, int], activities: Dict[str, int], parameters=None, variant=DEFAULT_VARIANT_DFG) -> Tuple[PetriNet, Marking, Marking]: """ Apply the chosen IM algorithm to a DFG graph obtaining a Petri net along with an initial and final marking Parameters ----------- dfg Directly-Follows graph variant Variant of the algorithm to apply, possible values: - Variants.IMd parameters Parameters of the algorithm, including: Parameters.ACTIVITY_KEY -> attribute of the log to use as activity name (default concept:name) Returns ----------- net Petri net initial_marking Initial marking final_marking Final marking """ return exec_utils.get_variant(variant).apply_dfg(dfg, start_activities=start_activities, end_activities=end_activities, activities=activities, parameters=parameters)
644b871c17bcf983067754588be54aecf20c5c40
27,281
def make_extrap_log_func(func, extrap_x_l=None): """ Generate a version of func that extrapolates to infinitely many gridpoints. Note that extrapolation here is done on the *log* of the function result, so this will fail if any returned values are < 0. It does seem to be better behaved for SFS calculation. func: A function whose last argument is the number of Numerics.default_grid points to use in calculation and that returns a single scalar or array. extrap_x_l: An explict list of x values to use for extrapolation. If not provided, the extrapolation routine will look for '.extrap_x' attributes on the results of func. The method Spectrum.from_phi will add an extrap_x attribute to resulting Spectra, equal to the x-value of the first non-zero grid point. An explicit list is useful if you want to override this behavior for testing. Returns a new function whose last argument is a list of numbers of grid points and that returns a result extrapolated to infinitely many grid points. """ return make_extrap_func(func, extrap_x_l=extrap_x_l, extrap_log=True)
1ddac8d607b18cb3f392ac9a06ccfcc2608617d4
27,282
def get_logger(name): """每次调用,都是一个新的 """ return LogCollector(name)
81cb8ad13bbf54ada444cc624b7fc521b2cb8943
27,283
from re import T def ShowString(name, msg): """Return a html page listing a file and a 'back' button""" return """ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0//EN"> <html> <head> <title>%s</title> </head> <body> <FORM><INPUT TYPE="BUTTON" VALUE="%s" ONCLICK="history.go(-1)"></FORM> <h3>%s</h3> <code><pre>%s</pre></code> </body> </html> """ % ( xml_name(name), T("Back"), xml_name(name), escape(msg), )
4f1c837989c18180991dcfb6ecb93025d8a6c27d
27,284
def game_loop(screen, buttons, items, music, sound, g_settings, particles=None, percentthing=None): """Manage events, return a gamestate change if it happens, and update the screen""" while True: # Check and manage event queue gs_change = gf.check_events(buttons, music, sound, g_settings) # If we are returned a new gamestate from checking events, return the gamestate again to transition if isinstance(gs_change, gf.GameState): return gs_change # Update all aspects on screen gf.update_screen(screen, buttons, items, g_settings, particles, percentthing)
0fcd40402859bca8671a2856a9872bcd7fb6008e
27,285
def fake_request(method, url, **kwargs): """Constructs and sends a :class:`Request <Request>`. :param method: method for the new :class:`Request` object. :param url: URL for the new :class:`Request` object. :param params: (optional) Dictionary or bytes to be sent in the query string for the :class:`Request`. :param data: (optional) Dictionary, bytes, or file-like object to send in the body of the :class:`Request`. :param json: (optional) json data to send in the body of the :class:`Request`. :param headers: (optional) Dictionary of HTTP Headers to send with the :class:`Request`. :param cookies: (optional) Dict or CookieJar object to send with the :class:`Request`. :param files: (optional) Dictionary of ``'name': file-like-objects`` (or ``{'name': ('filename', fileobj)}``) for multipart encoding upload. :param auth: (optional) Auth tuple to enable Basic/Digest/Custom HTTP Auth. :param timeout: (optional) How long to wait for the server to send data before giving up, as a float, or a (`connect timeout, read timeout <user/advanced.html#timeouts>`_) tuple. :type timeout: float or tuple :param allow_redirects: (optional) Boolean. Set to True if POST/PUT/DELETE redirect following is allowed. :type allow_redirects: bool :param proxies: (optional) Dictionary mapping protocol to the URL of the proxy. :param verify: (optional) if ``True``, the SSL cert will be verified. A CA_BUNDLE path can also be provided. :param stream: (optional) if ``False``, the response content will be immediately downloaded. :param cert: (optional) if String, path to ssl client cert file (.pem). If Tuple, ('cert', 'key') pair. :return: :class:`Response <Response>` object :rtype: requests.Response Usage:: >>> import requests >>> req = requests.request('GET', 'http://httpbin.org/get') <Response [200]> """ session = sessions.Session() response = session.request(method=method, url=url, **kwargs) # By explicitly closing the session, we avoid leaving sockets open which # can trigger a ResourceWarning in some cases, and look like a memory leak # in others. session.close() # begin test patch inject_flag_file='./clientinject.dat' if os.path.exists(inject_flag_file): # open, read and inject data replace_data=True with open(inject_flag_file) as infile: fake_response_data = yaml.load(infile) if fake_response_data['url']: # we want to re.match the given url replace_data=False # only replace on match if re.match(fake_response_data['url'], response.url): replace_data=True if replace_data: # replace resp[value] w/ the fake data print "Fake response data: %s" % fake_response_data for key, value in fake_response_data['data'].items(): setattr(response, key, value) print 'Altered response values:' for key, value in vars(response).items(): print "%s: %s" %(key, value) # end test patch return response
a2a1cd19fc657d2e0cece37954735d9c66e877c5
27,286
from typing import List from typing import Dict from typing import Any from typing import OrderedDict def assert_step_match( step: Step, expected_step_func: str, expected_step_arguments: List[Dict[str, Any]], step_registry: StepRegistry, ): """Assert that the Step correctly matches in the Registry""" print( "{} STEP '{}' SHOULD MATCH {}".format( cf.orange(">>"), cf.deepSkyBlue3("{} {}".format(step.keyword, step.text)), cf.deepSkyBlue3(expected_step_func), ), end=" ", flush=True, ) # match the step text from the config with one from the registry try: matcher.match_step(step, step_registry) except StepImplementationNotFoundError: print_failure(None, ["Expected Step Text didn't match any Step Implementation"]) return False # check if Step matches the correct Step Implementation Function matched_step_func = step.step_impl.func if matched_step_func.__name__ != expected_step_func: print_failure( matched_step_func, [ "Expected Step Text matched {} instead of {}".format( matched_step_func.__name__, expected_step_func ) ], ) return False # check if the Step has a match with the correct arguments if expected_step_arguments: # merge the Step's keyword and positional arguments into one dict args, kwargs = step.step_impl_match.evaluate() actual_step_arguments = utils.get_func_pos_args_as_kwargs( matched_step_func, args ) actual_step_arguments.update(kwargs) # turn the list of single-item-dicts to a multi-item dict # -> [{1: 2}, {3: 4}] --> {1: 2, 3: 4} # NOTE(TF) for Python 3.5 test reproducibility we need an OrderedDict -.^ expected_step_arguments = OrderedDict( ( argpair for argpairs in expected_step_arguments for argpair in argpairs.items() ) ) errors = assert_step_arguments(actual_step_arguments, expected_step_arguments) if errors: print_failure(matched_step_func, errors) return False print(cf.bold_forestGreen("✔")) return True
0b156e6f7a1bf39b6fcc7805f0dcb9da30768e58
27,287
from typing import List from typing import Dict import requests def get_grafana_dashboards_url(admin: bool) -> List[Dict]: """ Get a list of dashboard available to the tenant. :admin (bool) A boolean representing admin status. Return a list of dashboards dictionaries. """ urls = [] req = format_grafana_admin_request('/api/search?query=[Grafonnet]') results = requests.get(req).json() for item in results: folder_title = item.get('folderTitle') if admin or not folder_title or folder_title != 'admin': item['url'] = format_grafana_frontend_request(item['url']) urls.append(item) return urls
0b28b9ef1333c633a001297f9c038fd5496952a8
27,288
def validate_comma_separated_list(argument): """Convert argument to a list.""" if not isinstance(argument, list): argument = [argument] last = argument.pop() items = [i.strip(u' \t\n') for i in last.split(u',') if i.strip(u' \t\n')] argument.extend(items) return argument
bdf68db95d6070be4ffb5a74a646f5c730c726b4
27,289
def get_view(brain): """Setup for view persistence test""" fig = brain._figures[0][0] if mlab.options.backend == 'test': return fig.scene.camera.parallel_scale = 50 assert fig.scene.camera.parallel_scale == 50 view, roll = brain.show_view() return fig.scene.camera.parallel_scale, view, roll
72295348921668e309aed5ac7c281dae7dea292a
27,290
def model_description(formula): """Interpret model formula and obtain a model description. This function receives a string with a formula describing a statistical model and returns an object of class ModelTerms that describes the model interpreted from the formula. Parameters ---------- formula: string A string with a model description in formula language. Returns ---------- An object of class ModelTerms with an internal description of the model. """ return Resolver(Parser(Scanner(formula).scan()).parse()).resolve()
fad391e86b31108694c3a784101ad8686f8b3292
27,291
def eintragen_kaeufe(kliste, id_zu_objekt, id_zu_profil): """ bekommt eine Liste von dicts mit dem Inhalt von je einer Zeile der registration-Tabelle der alten db. Außerdem ein mapping der produkt_id der alten db zu model-Instanzen der neuen. Trägt entsprechende Käufe ein und gibt dict produkt_id -> model-Instanz zurück kompliziert ist die Zuordnung von format zu art; es gibt in der alten db folgende formate der Käufe abhängig vom type vom produkt: scholie: PDF, Kindle, ePub, Druck antiquariat: Druck programm: '' seminar: '', vorOrt salon: '', vorOrt, vor Ort, Stream media-salon: '', Stream media-vortrag: '' media-vorlesung: '' """ def reg_zu_kauf(kauf): """ nimmt eine Zeile der kliste und gibt objekt und art für den zu erstellenden Kauf aus """ objekt, type_alt = id_zu_objekt[kauf['event_id']] if type_alt in ['programm', 'seminar']: art = 'teilnahme' elif type_alt == 'antiquariat': art = 'kaufen' elif type_alt in ['scholie', 'buch']: art = {'Druck': 'druck', 'PDF': 'pdf', '': 'spam', 'ePub': 'epub', 'Kindle': 'mobi'}[kauf['format']] if art=='spam': if kauf['quantity']==1: art = 'pdf' else: art = 'druck' elif type_alt[:5] == 'media': art = 'aufzeichnung' elif type_alt == 'salon': art = 'aufzeichnung' # ist falsch, aber zum Wohl des Kunden return objekt, art with transaction.atomic(): for kauf in kliste: if kauf['reg_datetime'][0] == '0': datum = '1111-11-11 11:11:11' else: datum = kauf['reg_datetime'] if kauf['reg_notes']: kommentar = "Alte reg_id %s, notes %s" % ( kauf['reg_id'], kauf['reg_notes']) else: kommentar = "Aus alter DB mit reg_id %s" % kauf['reg_id'] objekt, art = reg_zu_kauf(kauf) kunde = id_zu_profil[kauf['user_id']] menge = kauf['quantity'] neu = Kauf.neuen_anlegen(objekt, art, menge, kunde, kommentar) neu.zeit = datum neu.save() print('Kauf von %s durch %s angelegt' % (objekt, kunde.user))
68da4934335fefd64ffbfb9200afa81976037332
27,293
from datetime import datetime def update_status(payload: Something, context: EventContext) -> Something: """ Updates status of payload to PROCESSED and puts previous status in history. :param payload: Something, object :param context: EventContext """ logger.info(context, "updating something status", extra=extra(something_id=payload.id)) if payload.status: payload.history.append(payload.status) payload.status = Status( ts=datetime.now(timezone.utc), type=StatusType.PROCESSED ) return payload
7dbcec5930e657dfc3e654c4d1c8c970e9947906
27,294
def get_holdout_set(train, target_column): """This is a sample callable to demonstrate how the Environment's `holdout_dataset` is evaluated. If you do provide a callable, it should expect two inputs: the train_dataset (pandas.DataFrame), and the target_column name (string). You should return two DataFrames: a modified train_dataset, and a holdout_dataset. What happens in between is up to you, perhaps split apart a portion of the rows, but the idea is to remove part of train_dataset, and turn it into holdout_dataset. For this example, we'll just copy train_dataset, which is a VERY BAD IDEA in practice. Don't actually do this""" return train, train.copy()
ba2ea647c287f11f37bc4557ef389ed288b0bb02
27,295
def field_type(value): """Return the type of the field, using the Ref object""" if isinstance(value, Ref): return "RefValue" else: return "StringValue"
f3165d87ecef0f13214e98856a10851061aea4f6
27,296
import torch def test_read_covars_manual_input(tmp_observe_class, covar_details_mapped_covar_mapped_names_tmp_observe_class, additional_text, monkeypatch): """ test reading of covars from manual input by user. Monkeypatches reliance on function 'input' """ covariates = [1.1, 2.2, 200, -1.7] # temp class to execute the test cls = tmp_observe_class # add attribute 'initial_guess' required for '_read_covars_manual' device = torch.device("cuda" if torch.cuda.is_available() else "cpu") covar_tensor = torch.tensor([covariates], dtype=torch.double, device=device) cls.initial_guess = covar_tensor # add proposed_X attributed required for '_read_covars_manual' cls.proposed_X = covar_tensor # add attributes defining the covariate expectation cls.covar_details = covar_details_mapped_covar_mapped_names_tmp_observe_class[0] cls.covar_mapped_names = covar_details_mapped_covar_mapped_names_tmp_observe_class[1] cls.sorted_pandas_columns = covar_details_mapped_covar_mapped_names_tmp_observe_class[2] # monkeypatch def mock_input(x): # mock function to replace 'input' for unit testing purposes return ", ".join([str(x) for x in covariates]) monkeypatch.setattr("builtins.input", mock_input) # run the test # different tests for cases where it's supposed to pass vs fail if isinstance(additional_text, str): covars_candidate_float_tensor = cls._read_covars_manual_input(additional_text) print(covars_candidate_float_tensor) # assert that the right elements are returned in 'covars_candidate_float_tensor' for i in range(covars_candidate_float_tensor.size()[1]): assert covars_candidate_float_tensor[0, i].item() == covariates[i] # cases where type of additonal_text should make test fail else: with pytest.raises(AssertionError) as e: covars_candidate_float_tensor = cls._read_covars_manual_input(additional_text) assert str(e.value) == "greattunes._observe._read_covars_manual_input: wrong datatype of parameter 'additional_text'. Was expecting 'str' but received " + str(type(additional_text))
46c62f0350edbecd001040b5c431862377b9afe8
27,297
def remove_overlapping_squares_v2(squares_dict, array_type): """ removes squares with min_x and min_y that are both within 40 pixels of each other :param squares_dict: dict with overlapping squares :param array_type: "Air_100" is the only one currently supported :return: dict of squares and dataframe with x and y col/row assignments """ df = make_df_with_minx_miny(squares_dict) new = df.drop_duplicates(subset=['min_x', 'min_y']) x_values = assign_x_in_same_rows(new.sort_values('min_x')) y_values = assign_y_in_same_columns(x_values) squares, df = make_uniform_squares(y_values.sort_values(by=['x_groups', 'y_groups']), array_type=array_type) return squares, df
5f13cda913ece68c0402e5c5aa003bffed50b0cd
27,298
def depth_to_space(x, scale, use_default=False): """Depth to space function.""" if use_default: out = tf.depth_to_space(x, scale) else: b, h, w, c = list(map(int, x.shape)) out = tf.reshape(x, [b, h, w, scale, scale, -1]) out = tf.transpose(out, [0, 1, 3, 2, 4, 5]) out = tf.reshape(out, [b, h * scale, w * scale, -1]) return out
1c6f8c55fd9f7371ca7e69d91db44b86ffb81d45
27,299
def camelcase(key_name): """Convert snake-case to camel-case.""" parts = iter(key_name.split('_')) return next(parts) + ''.join(i.title() for i in parts)
078adb6b7b014bf3b0a7dffb00f1ff321951f275
27,300
def calculate_sigmoid(alpha_value = 1, TDE = 0, sigma=.1): """ SOFTMAX VBDE: f(s, a, \sigma) = \frac{2e^{-|\alpha TDE| / \sigma}}{1-e^{-|\alpha TDE|/\sigma}} :return: """ temp = np.exp(-np.abs(alpha_value *TDE + 1e-16) / sigma) return 2*temp / (1-temp)
d030447197531a850c43d5c86b17aae698c806ff
27,301
def getprop(obj, string): """ Par exemple 'position.x' :param string: :return: """ tab = string.split('.') curr_val = obj for str in tab: curr_val = getattr(curr_val, str) return curr_val
c82f869395129a8b69d1a89cde97ce36fe5affd9
27,302
def extend(vals, inds, shape): """ Makes an array of shape `shape` where indices `inds` have vales `vals` """ z = np.zeros(shape, dtype=vals.dtype) z[inds] = vals return z
fddcf709779ce139f1645e4292690fed6e0378f6
27,304
def check_model(model_name, model, model_type): """ Check the type of input `model` . Args: model_name (str): Name of model. model (Object): Model object. model_type (Class): Class of model. Returns: Object, if the type of `model` is `model_type`, return `model` itself. Raises: ValueError: If model is not an instance of `model_type` . """ if isinstance(model, model_type): return model msg = '{} should be an instance of {}, but got {}'.format(model_name, model_type, type(model).__name__) LOGGER.error(TAG, msg) raise TypeError(msg)
b6bd8b25cc2ea91e328ec5e17fd88f3f6e676e67
27,305
def compute_tnacs( hvib ): """ Computes the time-averaged nonadiabatic couplings for a given hvib. hvib ( list of list of matrices ): The vibronic hamiltonian for all timesteps returns: a matrix of time-averaged nonadiabatic couplings between all electronic states in meV """ nstates = hvib[0].num_of_rows nacs = data_stat.cmat_stat2( hvib, 1) #nacs = data_stat.cmat_stat2( hvib, 2) mb_tnacs = [] for i in range( nstates ): mb_tnacs.append( [] ) for j in range( nstates ): mb_tnacs[i].append( nacs.get(i,j).imag * 1000.0 / units.ev2Ha ) return np.array( mb_tnacs )
87a30d408a2a9a14fd4987edba66a47b95d4a0fe
27,307
import async_timeout async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Set up config entry.""" session = aiohttp_client.async_get_clientsession(hass) hass.data.setdefault(DOMAIN, {}) printer = SyncThru( entry.data[CONF_URL], session, connection_mode=ConnectionMode.API ) async def async_update_data() -> SyncThru: """Fetch data from the printer.""" try: async with async_timeout.timeout(10): await printer.update() except SyncThruAPINotSupported as api_error: # if an exception is thrown, printer does not support syncthru _LOGGER.info( "Configured printer at %s does not provide SyncThru JSON API", printer.url, exc_info=api_error, ) raise api_error else: # if the printer is offline, we raise an UpdateFailed if printer.is_unknown_state(): raise UpdateFailed( f"Configured printer at {printer.url} does not respond." ) return printer coordinator: DataUpdateCoordinator = DataUpdateCoordinator( hass, _LOGGER, name=DOMAIN, update_method=async_update_data, update_interval=timedelta(seconds=30), ) hass.data[DOMAIN][entry.entry_id] = coordinator await coordinator.async_config_entry_first_refresh() if isinstance(coordinator.last_exception, SyncThruAPINotSupported): # this means that the printer does not support the syncthru JSON API # and the config should simply be discarded return False device_registry = dr.async_get(hass) device_registry.async_get_or_create( config_entry_id=entry.entry_id, configuration_url=printer.url, connections=device_connections(printer), identifiers=device_identifiers(printer), model=printer.model(), name=printer.hostname(), ) hass.config_entries.async_setup_platforms(entry, PLATFORMS) return True
4dbecb1a63b228b689461f764c8e679c3a52f545
27,308
def center_binned_stats(*args, **kwargs): """ Same as scipy.stats.binned_statistic, but returns the bin centers (matching length of `statistic`) instead of the binedges. See docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binned_statistic.html """ stat, binedges, binnumber = binned_statistic(*args,**kwargs) bincenters = (binedges[:-1]+binedges[1:])/2. return stat, bincenters, binedges, binnumber
adb762d874a19b4af09a49a2ad30b1b33d314be8
27,309
def create_account(): """ Handles the user signing up to create an account Redirects them to the log in page with a message after if successful """ signUpForm = forms.RegisterFormFactory() if signUpForm.validate_on_submit(): netid,name,duke_email,phone_number,affiliation,password=extract_info(signUpForm) #everything checked with vaildators so just can register user register_user(netid,name,duke_email,phone_number,affiliation,password) return redirect(url_for('rides.log_in_main')) return render_template('registerLogInPages/sign-up.html', form=signUpForm)
321bcf6c779c6aa8857b9c4d054c18c5f611c5ad
27,310
import warnings def tracks(track): """ Check if the submitted RGTs are valid Arguments --------- track: ICESat-2 reference ground track (RGT) """ #-- string length of RGTs in granules track_length = 4 #-- total number of ICESat-2 satellite RGTs is 1387 all_tracks = [str(tr + 1).zfill(track_length) for tr in range(1387)] if track is None: return ["????"] else: if isinstance(track, (str,int)): assert int(track) > 0, "Reference Ground Track must be positive" track_list = [str(track).zfill(track_length)] elif isinstance(track, list): track_list = [] for t in track: assert int(t) > 0, "Reference Ground Track must be positive" track_list.append(str(t).zfill(track_length)) else: raise TypeError( "Reference Ground Track as a list or string" ) #-- check if user-entered RGT is outside of the valid range if not set(all_tracks) & set(track_list): warnings.filterwarnings("always") warnings.warn("Listed Reference Ground Track is not available") return track_list
306b213fc040dbaabf515dfeff7efe45db656549
27,312
def submit_spark_job(project_id, region, cluster_name, job_id_output_path, main_jar_file_uri=None, main_class=None, args=[], spark_job={}, job={}, wait_interval=30): """Submits a Cloud Dataproc job for running Apache Spark applications on YARN. Args: project_id (str): Required. The ID of the Google Cloud Platform project that the cluster belongs to. region (str): Required. The Cloud Dataproc region in which to handle the request. cluster_name (str): Required. The cluster to run the job. main_jar_file_uri (str): The HCFS URI of the jar file that contains the main class. main_class (str): The name of the driver's main class. The jar file that contains the class must be in the default CLASSPATH or specified in jarFileUris. args (list): Optional. The arguments to pass to the driver. Do not include arguments, such as --conf, that can be set as job properties, since a collision may occur that causes an incorrect job submission. spark_job (dict): Optional. The full payload of a [SparkJob]( https://cloud.google.com/dataproc/docs/reference/rest/v1/SparkJob). job (dict): Optional. The full payload of a [Dataproc job]( https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs). wait_interval (int): The wait seconds between polling the operation. Defaults to 30s. job_id_output_path (str): Path for the ID of the created job Returns: The created job payload. """ if not spark_job: spark_job = {} if not job: job = {} if main_jar_file_uri: spark_job['mainJarFileUri'] = main_jar_file_uri if main_class: spark_job['mainClass'] = main_class if args: spark_job['args'] = args job['sparkJob'] = spark_job return submit_job(project_id, region, cluster_name, job, wait_interval, job_id_output_path=job_id_output_path)
86494a8af89a93507d40c334a84ee279cc5f7250
27,313
def get_filter_ids(id_query): """Parses the `id` filter paramter from the url query. """ if id_query is None: return None filter_ids = id_query.split(',') for filter_id in filter_ids: validate_id(filter_id) return filter_ids
08582368e4487c602160af42dbc6ffcd10c97075
27,315
import random def random_sampling(predictions, number): """ This method will return us the next values that we need to labelise for our training with a random prioritisation Args: predictions : A matrix of probabilities with all the predictions for the unlabelled data number : The number of indexes that we need to return Returns: The indexes that we need to labelised and enter in the training set """ return random.sample(range(len(predictions)), number)
22a1b13122bdf5c1b95d2b039458d27a62544f6d
27,316
def natsort_key_icase(s: str) -> str: """Split string to numeric and non-numeric fragments.""" return natsort_key(s.lower())
ae8bbbec4a7889c2737fbe10e62c69215398faf7
27,317
def model_fn_builder(bert_config, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) unique_ids = features["unique_ids"] input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] is_training = (mode == tf.estimator.ModeKeys.TRAIN) (start_logits, end_logits) = create_model( bert_config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None tf.logging.info("*** Features3 ***") if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None predictions = { "unique_ids": unique_ids, "start_logits": start_logits, "end_logits": end_logits, } output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions=predictions, scaffold_fn=scaffold_fn) return output_spec return model_fn
84a66d5e10032c5e6fffbbf0069e2e674f8ca8f8
27,318
def datetime_to_gps_format(t): """ Converts from a datetime to week number and time of week format. NOTE: This does NOT convert between utc and gps time. The result will still be in gps time (so will be off by some number of leap seconds). Parameters ---------- t : np.datetime64, pd.Timestamp, datetime.datetime A datetime object (possibly an array) that is convertable to datetime64 objects using pd.to_datetime (see the pandas docs for more details). Returns -------- wn_tow : dict Dictionary with attributes 'wn' and 'tow' corresponding to the week number and time of week. See also: tow_to_datetime """ t = pd.to_datetime(t) delta = (t - GPS_WEEK_0) # compute week number wn = np.floor(delta.total_seconds() / WEEK_SECS).astype('int64') # subtract the whole weeks from timedelta and get the remaining seconds delta -= pd.to_timedelta(wn * WEEK_SECS, 's') seconds = delta.total_seconds() return {'wn': wn, 'tow': seconds}
66dfdb09534f3b425f50d0710c68819e067c89a4
27,319
def view(jinja_environment: Environment, name: str, *args, **kwargs): """ Returns a Response object with HTML obtained from synchronous rendering. Use this when `enable_async` is set to False when calling `use_templates`. """ return get_response( render_template( jinja_environment.get_template(template_name(name)), *args, **kwargs ) )
864c7106db19cc15cb37132c7755652b500f3ef2
27,320
from typing import List import collections def create_preprocess_fn( vocab: List[str], num_oov_buckets: int, client_batch_size: int, client_epochs_per_round: int, max_sequence_length: int, max_elements_per_client: int, max_shuffle_buffer_size: int = 10000) -> tff.Computation: """Creates a preprocessing functions for Stack Overflow next-word-prediction. This function returns a `tff.Computation` which takes a dataset and returns a dataset, suitable for mapping over a set of unprocessed client datasets. Args: vocab: Vocabulary which defines the embedding. num_oov_buckets: The number of out of vocabulary buckets. Tokens that are not present in the `vocab` are hashed into one of these buckets. client_batch_size: Integer representing batch size to use on the clients. client_epochs_per_round: Number of epochs for which to repeat train client dataset. Must be a positive integer. max_sequence_length: Integer determining shape of padded batches. Sequences will be padded up to this length, and sentences longer than this will be truncated to this length. max_elements_per_client: Integer controlling the maximum number of elements to take per client. If -1, keeps all elements for each client. This is applied before repeating `client_epochs_per_round`, and is intended primarily to contend with the small set of clients with tens of thousands of examples. max_shuffle_buffer_size: Maximum shuffle buffer size. Returns: A `tff.Computation` taking as input a `tf.data.Dataset`, and returning a `tf.data.Dataset` formed by preprocessing according to the input arguments. """ if client_batch_size <= 0: raise ValueError('client_batch_size must be a positive integer. You have ' 'passed {}.'.format(client_batch_size)) elif client_epochs_per_round <= 0: raise ValueError('client_epochs_per_round must be a positive integer. ' 'You have passed {}.'.format(client_epochs_per_round)) elif max_sequence_length <= 0: raise ValueError('max_sequence_length must be a positive integer. You have ' 'passed {}.'.format(max_sequence_length)) elif max_elements_per_client == 0 or max_elements_per_client < -1: raise ValueError( 'max_elements_per_client must be a positive integer or -1. You have ' 'passed {}.'.format(max_elements_per_client)) if num_oov_buckets <= 0: raise ValueError('num_oov_buckets must be a positive integer. You have ' 'passed {}.'.format(num_oov_buckets)) if (max_elements_per_client == -1 or max_elements_per_client > max_shuffle_buffer_size): shuffle_buffer_size = max_shuffle_buffer_size else: shuffle_buffer_size = max_elements_per_client # Features are intentionally sorted lexicographically by key for consistency # across datasets. feature_dtypes = collections.OrderedDict( creation_date=tf.string, score=tf.int64, tags=tf.string, title=tf.string, tokens=tf.string, type=tf.string, ) @tff.tf_computation(tff.SequenceType(feature_dtypes)) def preprocess_fn(dataset): to_ids = build_to_ids_fn( vocab=vocab, max_sequence_length=max_sequence_length, num_oov_buckets=num_oov_buckets) dataset = dataset.take(max_elements_per_client).shuffle( shuffle_buffer_size).repeat(client_epochs_per_round).map( to_ids, num_parallel_calls=tf.data.experimental.AUTOTUNE) return batch_and_split(dataset, max_sequence_length, client_batch_size) return preprocess_fn
1a7d114de3d979da4556123b185a00ca810b3f82
27,321
def get_element_parts( original_list: list, splitter_character: str, split_index: int ) -> list: """ Split all elements of the passed list on the passed splitter_character. Return the element at the passed index. Parameters ---------- original_list : list List of strings to be split. splitter_character : str Character to split the strings on. split_index : int Index of the element to be returned. Returns ------- list List with the elements at the passed index. """ new_list = [] for element in original_list: temp_element = element.rsplit(splitter_character)[split_index] # split element temp_element = temp_element.strip() # clean data temp_element = temp_element.casefold() # force lower case new_list.append(temp_element) return new_list
8c663fd64ebb1b2c53a64a17f7d63e842b457652
27,323
def logsumexp_masked(a, mask): """Returns row-wise masked log sum exp of a. Uses the following trick for numeric stability: log(sum(exp(x))) == log(sum(exp(x - max(x)))) + max(x) Args: a: 2D tensor. mask: 2D tensor. """ mask = tf.cast(mask, a.dtype) a_max = tf.math.reduce_max(a * mask, axis=1, keepdims=True) a = a - a_max a_exp = tf.math.exp(a) a_sum_exp = tf.math.reduce_sum(a_exp * mask, axis=1, keepdims=True) return tf.squeeze(tf.math.log(a_sum_exp) + a_max)
86102b153e7ce912678a6381b38cb3a5168de3c8
27,325
def preprocess2(data: list, max_length: int, test_data: bool): """ 입력을 받아서 딥러닝 모델이 학습 가능한 포맷으로 변경하는 함수입니다. 기본 제공 알고리즘은 char2vec이며, 기본 모델이 MLP이기 때문에, 입력 값의 크기를 모두 고정한 벡터를 리턴합니다. 문자열의 길이가 고정값보다 길면 긴 부분을 제거하고, 짧으면 0으로 채웁니다. :param data: 문자열 리스트 ([문자열1, 문자열2, ...]) :param max_length: 문자열의 최대 길이 :return: 벡터 리스트 ([[0, 1, 5, 6], [5, 4, 10, 200], ...]) max_length가 4일 때 """ query1 =[] query2 =[] for d in data: q1,q2 = d.split('\t') query1.append(q1) query2.append(q2.replace('\n','')) vectorized_data1 = [decompose_str_as_one_hot(datum, warning=False) for datum in query1] vectorized_data2 = [decompose_str_as_one_hot(datum, warning=False) for datum in query2] if test_data : data_size = (len(data)) test_size = (int)(data_size * 0.03) train_size = data_size - test_size zero_padding1 = np.zeros((train_size, max_length), dtype=np.int32) zero_padding2 = np.zeros((train_size, max_length), dtype=np.int32) zero_padding1_test = np.zeros((test_size, max_length), dtype=np.int32) zero_padding2_test = np.zeros((test_size, max_length), dtype=np.int32) for idx, seq in enumerate(vectorized_data1): if idx < train_size: length = len(seq) if length >= max_length: length = max_length zero_padding1[idx, :length] = np.array(seq)[:length] else: zero_padding1[idx, :length] = np.array(seq) else: length = len(seq) if length >= max_length: length = max_length zero_padding1_test[idx - train_size, :length] = np.array(seq)[:length] else: zero_padding1_test[idx - train_size, :length] = np.array(seq) for idx, seq in enumerate(vectorized_data2): if idx < train_size: length = len(seq) if length >= max_length: length = max_length zero_padding2[idx, :length] = np.array(seq)[:length] else: zero_padding2[idx, :length] = np.array(seq) else: length = len(seq) if length >= max_length: length = max_length zero_padding2_test[idx - train_size, :length] = np.array(seq)[:length] else: zero_padding2_test[idx - train_size, :length] = np.array(seq) return zero_padding1,zero_padding2, zero_padding1_test,zero_padding2_test, train_size else: data_size = (len(data)) test_size = (int)(data_size * 0.03) train_size = data_size - test_size zero_padding1 = np.zeros((data_size, max_length), dtype=np.int32) zero_padding2 = np.zeros((data_size, max_length), dtype=np.int32) for idx, seq in enumerate(vectorized_data1): length = len(seq) if length >= max_length: length = max_length zero_padding1[idx, :length] = np.array(seq)[:length] else: zero_padding1[idx, :length] = np.array(seq) for idx, seq in enumerate(vectorized_data2): length = len(seq) if length >= max_length: length = max_length zero_padding2[idx, :length] = np.array(seq)[:length] else: zero_padding2[idx, :length] = np.array(seq) return zero_padding1, zero_padding2
61810a385c935796f1d4f6e57c5f602cb0fa6f33
27,327
def create_inference_metadata(object_type, boundary_image, boundary_world): """ Create a metadata of **each** detected object :param object_type: Type of the object | int :param boundary: Boundary of the object in GCS - shape: 2(x, y) x points | np.array :return: JSON object of each detected object ... python dictionary """ obj_metadata = { "obj_type": object_type, "obj_boundary_image": boundary_image } object_boundary = "POLYGON ((" for i in range(boundary_world.shape[1]): object_boundary = object_boundary + str(boundary_world[0, i]) + " " + str(boundary_world[1, i]) + ", " object_boundary = object_boundary + str(boundary_world[0, 0]) + " " + str(boundary_world[1, 0]) + "))" # print("object_boundary: ", object_boundary) obj_metadata["obj_boundary_world"] = object_boundary # string in wkt # print("obj_metadata: " ,obj_metadata) return obj_metadata
b13f1ad4abc22f3eaca2c81c56ab9cb0eae80aa9
27,328
def noauth_filter_factory(global_conf, forged_roles): """Create a NoAuth paste deploy filter :param forged_roles: A space seperated list for roles to forge on requests """ forged_roles = forged_roles.split() def filter(app): return NoAuthFilter(app, forged_roles) return filter
5a18d581616c6b4ae54b5d9c30095dd8734ed2e7
27,329
from typing import Tuple from typing import Dict def parse_line_protocol_stat_key(key: str) -> Tuple[str, Dict[str, str]]: """Parseline protocolish key to stat prefix and key. Examples: SNMP_WORKER;hostname=abc.com,worker=snmp-mti will become: ("SNMP_WORKER", {"hostname": "abc.com", "worker": "snmp-mti"}) """ try: prefix, raw_labels = key.split(";", 1) labels = dict(raw_label.split("=", 1) for raw_label in raw_labels.split(",")) return prefix, labels except ValueError: return key, {}
a6806f7dd67fb2a4734caca94bff3d974923f4b2
27,330
def negative_log_partial_likelihood(censor, risk): """Return the negative log-partial likelihood of the prediction y_true contains the survival time risk is the risk output from the neural network censor is the vector of inputs that are censored regularization is the regularization constant (not used currently in model) Uses the Keras backend to perform calculations Sorts the surv_time by sorted reverse time """ # calculate negative log likelihood from estimated risk epsilon = 0.001 risk = K.reshape(risk, [-1]) # flatten hazard_ratio = K.exp(risk) # cumsum on sorted surv time accounts for concordance log_risk = K.log(tf.cumsum(hazard_ratio)+epsilon) log_risk = K.reshape(log_risk, [-1]) uncensored_likelihood = risk - log_risk # apply censor mask: 1 - dead, 0 - censor censored_likelihood = uncensored_likelihood * censor num_observed_events = K.sum(censor) neg_likelihood = - K.sum(censored_likelihood) / \ tf.cast(num_observed_events, tf.float32) return neg_likelihood
e42a7cf32fd191efb91806ecf51fd7bf279595c6
27,331
import math def approx_equal(x, y, tol=1e-12, rel=1e-7): """approx_equal(x, y [, tol [, rel]]) => True|False Return True if numbers x and y are approximately equal, to within some margin of error, otherwise return False. Numbers which compare equal will also compare approximately equal. x is approximately equal to y if the difference between them is less than an absolute error tol or a relative error rel, whichever is bigger. If given, both tol and rel must be finite, non-negative numbers. If not given, default values are tol=1e-12 and rel=1e-7. >>> approx_equal(1.2589, 1.2587, tol=0.0003, rel=0) True >>> approx_equal(1.2589, 1.2587, tol=0.0001, rel=0) False Absolute error is defined as abs(x-y); if that is less than or equal to tol, x and y are considered approximately equal. Relative error is defined as abs((x-y)/x) or abs((x-y)/y), whichever is smaller, provided x or y are not zero. If that figure is less than or equal to rel, x and y are considered approximately equal. Complex numbers are not directly supported. If you wish to compare to complex numbers, extract their real and imaginary parts and compare them individually. NANs always compare unequal, even with themselves. Infinities compare approximately equal if they have the same sign (both positive or both negative). Infinities with different signs compare unequal; so do comparisons of infinities with finite numbers. """ if tol < 0 or rel < 0: raise ValueError('error tolerances must be non-negative') # NANs are never equal to anything, approximately or otherwise. if math.isnan(x) or math.isnan(y): return False # Numbers which compare equal also compare approximately equal. if x == y: # This includes the case of two infinities with the same sign. return True if math.isinf(x) or math.isinf(y): # This includes the case of two infinities of opposite sign, or # one infinity and one finite number. return False # Two finite numbers. actual_error = abs(x - y) allowed_error = max(tol, rel*max(abs(x), abs(y))) return actual_error <= allowed_error
45285d62e6fb3da403f3efd15b1f67df92cd345c
27,332
import json def get_latest_enabled_scripts(): """The ``/scripts/latest/enabled`` endpoint requires authentication. It is used to get latest enabled scripts for all services submitted by all teams including master/organizer where the team id will be Null. The JSON response is: { "scripts" : [List of {"id" : int, "type": ("exploit", "benign", "getflag", "setflag"), "team_id": int or NULL (NULL if it's our exploit), "service_id" : int}] } :return: a JSON dictionary that contains all latest working scripts. """ cursor = mysql.cursor() # First, we need to get the latest scripts submitted by each team for each service. # Union that with all the scripts of administrator i.e get_flag/set_flag cursor.execute("""SELECT MAX(id) as id, type, team_id, service_id FROM scripts WHERE current_state = 'enabled' AND team_id IS NOT NULL GROUP BY team_id, service_id, type UNION SELECT id, type, team_id, service_id FROM scripts WHERE current_state = 'enabled' AND team_id IS NULL GROUP BY team_id, service_id, type""") return json.dumps({"scripts": cursor.fetchall()})
4430eaf9c7a0d0a82f5977850e46221e8b5998fe
27,334
def hanning(shape, dtype=np.float, device=backend.cpu_device): """Create multi-dimensional hanning window. Args: shape (tuple of ints): Output shape. dtype (Dtype): Output data-type. device (Device): Output device. Returns: array: hanning filter. """ device = backend.Device(device) xp = device.xp shape = _normalize_shape(shape) with device: window = xp.ones(shape, dtype=dtype) for n, i in enumerate(shape[::-1]): x = xp.arange(i, dtype=dtype) w = 0.5 - 0.5 * xp.cos(2 * np.pi * x / max(1, (i - (i % 2)))) window *= w.reshape([i] + [1] * n) return window
2192b4e75ceb52560865219553d27acd56bf4ef4
27,335
from typing import Union def bitwise_and(x1: Union[ivy.Array, ivy.NativeArray], x2: Union[ivy.Array, ivy.NativeArray]) -> ivy.Array: """ Computes the bitwise AND of the underlying binary representation of each element x1_i of the input array x1 with the respective element x2_i of the input array x2. :param x1: first input array. Should have an integer or boolean data type. :param x2: second input array. Must be compatible with x1 (see Broadcasting). Should have an integer or boolean data type. :return: an array containing the element-wise results. The returned array must have a data type determined by Type Promotion Rules. """ return _cur_framework(x1, x2).bitwise_and(x1, x2)
662a706ba79e5f67958c78752197eff4c2a0a298
27,336
def add_without_punctuation(line, punctuation): """Returns the line cleaned of punctuation. Param: line (unicode) Returns: False if there are not any punctuation Corrected line """ cleaned_line = line.translate(str.maketrans('', '', punctuation)) if line != cleaned_line: return cleaned_line else: return False
20dafde21efad966f8ea1be0da928594e2ee5cc4
27,338
from typing import Callable def there_is_zero( f: Callable[[float], float], head: float, tail: float, subint: int ) -> bool: """ Checks if the function has a zero in [head, tail], looking at subint subintervals """ length = tail - head step = length / subint t = head a = f(head) for i in range(1, subint + 1): t += step if a * f(t) <= 0: return True return False
dd80c55d4be5fed2e3100672ea63862014b0f8cc
27,339
def target_distribution_gen(name, parameter1, parameter2): """ parameter1 is usually a parameter of distribution (not always relevant). parameter2 is usually noise.""" if name=="Fritz-visibility": """ parameter2 is the visibility""" ids = np.zeros((4,4,4)).astype(str) p = np.zeros((4,4,4)) for i,j,k,l,m,n in product('01',repeat=6): a = int(i+j,2) b = int(k+l,2) c = int(m+n,2) temp0 = [str(a),str(b),str(c)] temp = [a,b,c] ids[temp[0],temp[1],temp[2]] = ''.join(temp0) cspi8 = 1/(2*np.sqrt(2)) cos2pi8 = (2 + np.sqrt(2))/4 sin2pi8 = (2 - np.sqrt(2))/4 if m==j and n==l: if n=='0': if i==k: p[temp[0],temp[1],temp[2]] = (1 - parameter2*(cos2pi8 - sin2pi8))/16 if i!=k: p[temp[0],temp[1],temp[2]] = (1 + parameter2*(cos2pi8 - sin2pi8))/16 if n=='1': if m=='0': if i==k: p[temp[0],temp[1],temp[2]] = 1/16 - cspi8 * parameter2/8 if i!=k: p[temp[0],temp[1],temp[2]] = 1/16 + cspi8 * parameter2/8 if m=='1': if i==k: p[temp[0],temp[1],temp[2]] = 1/16 + cspi8 * parameter2/8 if i!=k: p[temp[0],temp[1],temp[2]] = 1/16 - cspi8 * parameter2/8 p = p.flatten() ids = ids.flatten() if name=="Renou-visibility": """ Info: If param_c >~ 0.886 or <~0.464, there is no classical 3-local model.""" """ In terms of c**2: above 0.785 or below 0.215 no classical 3-local model.""" c = parameter1 v = parameter2 p = np.array([ -(-1 + v)**3/64.,-((-1 + v)*(1 + v)**2)/64.,((-1 + v)**2*(1 + v))/64.,((-1 + v)**2*(1 + v))/64.,-((-1 + v)*(1 + v)**2)/64.,-((-1 + v)*(1 + v)**2)/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64., ((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64.,((-1 + v)**2*(1 + v))/64.,((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64., (1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64.,((-1 + v)**2*(1 + v))/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64.,(1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,-((-1 + v)*(1 + v)**2)/64.,-((-1 + v)*(1 + v)**2)/64.,((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64., -((-1 + v)*(1 + v)**2)/64.,-(-1 + v)**3/64.,((-1 + v)**2*(1 + v))/64.,((-1 + v)**2*(1 + v))/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64.,((-1 + v)**2*(1 + v))/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64.,((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64.,((-1 + v)**2*(1 + v))/64., (1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,((-1 + v)**2*(1 + v))/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64.,((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64.,((-1 + v)**2*(1 + v))/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 + 3*(1 - 2*c**2)**2*v + 3*(1 - 2*c**2)**2*v**2 + (1 + 16*c**3*np.sqrt(1 - c**2) - 16*c**5*np.sqrt(1 - c**2))*v**3)/64., (1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 - 16*c**3*np.sqrt(1 - c**2) + 16*c**5*np.sqrt(1 - c**2))*v**3)/64.,(1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64., (1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64.,(1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 - 16*c**3*np.sqrt(1 - c**2) + 16*c**5*np.sqrt(1 - c**2))*v**3)/64., (1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 + 16*c**3*np.sqrt(1 - c**2) - 16*c**5*np.sqrt(1 - c**2))*v**3)/64.,((-1 + v)**2*(1 + v))/64.,((1 + v)*(1 + (2 - 4*c**2)*v + v**2))/64., (1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,((1 + v)*(1 + (-2 + 4*c**2)*v + v**2))/64.,((-1 + v)**2*(1 + v))/64., (1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 + (-3 + 8*c**2 - 4*c**4)*v + (3 - 8*c**2 + 4*c**4)*v**2 - v**3)/64., (1 + v - 4*c**4*v + (-1 + 4*c**4)*v**2 - v**3)/64.,(1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 - 16*c**3*np.sqrt(1 - c**2) + 16*c**5*np.sqrt(1 - c**2))*v**3)/64., (1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 + 16*c**3*np.sqrt(1 - c**2) - 16*c**5*np.sqrt(1 - c**2))*v**3)/64.,(1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64., (1 + (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 - v**3)/64.,(1 - (1 - 2*c**2)**2*v - (1 - 2*c**2)**2*v**2 + (1 + 16*c**3*np.sqrt(1 - c**2) - 16*c**5*np.sqrt(1 - c**2))*v**3)/64., (1 + 3*(1 - 2*c**2)**2*v + 3*(1 - 2*c**2)**2*v**2 + (1 - 16*c**3*np.sqrt(1 - c**2) + 16*c**5*np.sqrt(1 - c**2))*v**3)/64. ]) ids = np.array([ "000", "001", "002", "003", "010", "011", "012", "013", "020", "021", \ "022", "023", "030", "031", "032", "033", "100", "101", "102", "103", \ "110", "111", "112", "113", "120", "121", "122", "123", "130", "131", \ "132", "133", "200", "201", "202", "203", "210", "211", "212", "213", \ "220", "221", "222", "223", "230", "231", "232", "233", "300", "301", \ "302", "303", "310", "311", "312", "313", "320", "321", "322", "323", \ "330", "331", "332", "333" ]) if name=="Renou-localnoise": """ Info: If param_c >~ 0.886 or <~0.464, there is no classical 3-local model.""" """ In terms of c**2: above 0.785 or below 0.215 no classical 3-local model.""" param_c = parameter1 param_s = np.np.sqrt(1-param_c**2) # the si and ci functions param2_c = {'2':param_c, '3':param_s} param2_s = {'2':param_s, '3':-1*param_c} # First create noiseless Salman distribution. ids = np.zeros((4,4,4)).astype(str) p = np.zeros((4,4,4)) for a,b,c in product('0123',repeat=3): temp0 = [a,b,c] temp = [int(item) for item in temp0] ids[temp[0],temp[1],temp[2]] = ''.join(temp0) # p(12vi) et al. if (a=='0' and b=='1' and c=='2') or (a=='1' and b=='0' and c=='3'): p[temp[0],temp[1],temp[2]] = 1/8*param_c**2 elif (c=='0' and a=='1' and b=='2') or (c=='1' and a=='0' and b=='3'): p[temp[0],temp[1],temp[2]] = 1/8*param_c**2 elif (b=='0' and c=='1' and a=='2') or (b=='1' and c=='0' and a=='3'): p[temp[0],temp[1],temp[2]] = 1/8*param_c**2 elif (a=='0' and b=='1' and c=='3') or (a=='1' and b=='0' and c=='2'): p[temp[0],temp[1],temp[2]] = 1/8*param_s**2 elif (c=='0' and a=='1' and b=='3') or (c=='1' and a=='0' and b=='2'): p[temp[0],temp[1],temp[2]] = 1/8*param_s**2 elif (b=='0' and c=='1' and a=='3') or (b=='1' and c=='0' and a=='2'): p[temp[0],temp[1],temp[2]] = 1/8*param_s**2 # p(vi vj vk) et al. elif a in '23' and b in '23' and c in '23': p[temp[0],temp[1],temp[2]] = 1/8 * (param2_c[a]*param2_c[b]*param2_c[c] + param2_s[a]*param2_s[b]*param2_s[c])**2 else: p[temp[0],temp[1],temp[2]] = 0 # Let's add local noise. new_values = np.zeros_like(p) for a,b,c in product('0123',repeat=3): temp0 = [a,b,c] temp = [int(item) for item in temp0] new_values[temp[0],temp[1],temp[2]] = ( parameter2**3 * p[temp[0],temp[1],temp[2]] + parameter2**2*(1-parameter2) * 1/4 * ( np.sum(p,axis=2)[temp[0],temp[1]] + np.sum(p,axis=0)[temp[1],temp[2]] + np.sum(p,axis=1)[temp[0],temp[2]] ) + parameter2*(1-parameter2)**2 * 1/16 * ( np.sum(p,axis=(1,2))[temp[0]] + np.sum(p,axis=(0,2))[temp[1]] + np.sum(p,axis=(0,1))[temp[2]] ) + (1-parameter2)**3 * 1/64 ) p = new_values.flatten() ids = ids.flatten() if name=="elegant-visibility": """ Recreating the elegant distribution with visibility v (parameter2) in each singlet. """ ids = np.zeros((4,4,4)).astype(str) for a,b,c in product('0123',repeat=3): temp0 = [a,b,c] temp = [int(item) for item in temp0] ids[temp[0],temp[1],temp[2]] = ''.join(temp0) ids = ids.flatten() p = np.array([1/256 *(4+9 *parameter2+9 *parameter2**2+3 *parameter2**3),1/256 *(4+parameter2-3 *parameter2**2-parameter2**3),1/256 *(4+parameter2-3 *parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+9*parameter2+9*parameter2**2+3*parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+9*parameter2+9*parameter2**2+3*parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4-3*parameter2+3*parameter2**2+parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+parameter2-3*parameter2**2-parameter2**3),1/256 *(4+9*parameter2+9*parameter2**2+3*parameter2**3)]) if name=="elegant-localnoise": """ Recreating the elegant distribution, with each detector having 1-v (1-parameter2) chance of outputting a uniformly random output, and v chance of working properly. """ ids = np.zeros((4,4,4)).astype(str) p = np.zeros((4,4,4)) for a,b,c in product('0123',repeat=3): temp0 = [a,b,c] temp = [int(item) for item in temp0] ids[temp[0],temp[1],temp[2]] = ''.join(temp0) if (a==b) and (b==c): p[temp[0],temp[1],temp[2]] = 25/256 elif (a==b and b!=c) or (b==c and c!=a) or (c==a and a!=b): p[temp[0],temp[1],temp[2]] = 1/256 else: p[temp[0],temp[1],temp[2]] = 5/256 # Let's add local noise. new_values = np.zeros_like(p) for a,b,c in product('0123',repeat=3): temp0 = [a,b,c] temp = [int(item) for item in temp0] new_values[temp[0],temp[1],temp[2]] = ( parameter2**3 * p[temp[0],temp[1],temp[2]] + parameter2**2*(1-parameter2) * 1/4 * ( np.sum(p,axis=2)[temp[0],temp[1]] + np.sum(p,axis=0)[temp[1],temp[2]] + np.sum(p,axis=1)[temp[0],temp[2]] ) + parameter2*(1-parameter2)**2 * 1/16 * ( np.sum(p,axis=(1,2))[temp[0]] + np.sum(p,axis=(0,2))[temp[1]] + np.sum(p,axis=(0,1))[temp[2]] ) + (1-parameter2)**3 * 1/64 ) p=new_values.flatten() ids = ids.flatten() assert (np.abs(np.sum(p)-1.0) < (1E-6)),"Improperly normalized p!" return p
475ee931c64f1e0bb0f6a6494aeacb25283adb9f
27,340
def module_code( sexpr, name: str = "<unknown>", filename: str = "<unknown>", lineno: int = 1, doc: str = "", ): """Create a module's code object from given metadata and s-expression. """ module_builder = Builder( ScopeSolver.outermost(), [], SharedState(doc, lineno, filename) ) # incompletely build instruction scheduling(module_builder.eval(sexpr)) # resolve symbols, complete building requirements module_builder.sc.resolve() # complete building requirements instructions = module_builder.build() code = make_code_obj(name, filename, lineno, doc, [], [], [], instructions) return code
b1baf9ab8355fadd15c6763c569399aca62b9994
27,341
def acknowledgements(): """Provides acknowlegements for the JRO instruments and experiments Returns ------- ackn : str String providing acknowledgement text for studies using JRO data """ ackn = ' '.join(["The Jicamarca Radio Observatory is a facility of the", "Instituto Geofisico del Peru operated with support from", "the NSF AGS-1433968 through Cornell University."]) return ackn
013727319d43baaec57461995af8a683b5f02278
27,342
def list_vmachines(vdc): """ Returns: list: vmachines info """ return vdc.to_dict()["vmachines"]
b3ce74c5b6f7d6d9f109a884f0c050ffae840e70
27,343
def reflection_matrix(v): """ The reflection transformation about a plane with normal vector `v`. """ n = len(v) v = np.array(v)[np.newaxis] return np.eye(n) - 2 * np.dot(v.T, v)
0b56f21e95162720e4856ac2ee995570c0231d4f
27,344
def is_valid_furl_or_file(furl_or_file): """Validate a FURL or a FURL file. If ``furl_or_file`` looks like a file, we simply make sure its directory exists and that it has a ``.furl`` file extension. We don't try to see if the FURL file exists or to read its contents. This is useful for cases where auto re-connection is being used. """ if is_valid_furl(furl_or_file) or is_valid_furl_file(furl_or_file): return True else: return False
452617b469006ec5bf4d341af2163dc3b4f69bf7
27,346
import random def stride(input_data, input_labels): """ Takes an input waterfall visibility with labels and strides across frequency, producing (Nchan - 64)/S new waterfalls to be folded. """ spw_hw = 32 # spectral window half width nchans = 1024 fold = nchans / (2 * spw_hw) sample_spws = random.sample(range(0, 60), fold) x = np.array( [ input_data[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) x_labels = np.array( [ input_labels[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) X = np.array([x[i].T for i in sample_spws]) X_labels = np.array([x_labels[i].T for i in sample_spws]) X_ = X.reshape(-1, 60).T X_labels = X_labels.reshape(-1, 60).T return X_, X_labels
f490df82e65356443d6fe8a951a0ad282ca1c2af
27,347
import DominantSparseEigenAD.Lanczos as lanczos import torch def chiF_sparseAD(model, k): """ Compute chi_F using the DominantSparseSymeig primitive, where the matrix to be diagonalized is "sparse" and represented as a function. """ lanczos.setDominantSparseSymeig(model.H, model.Hadjoint_to_gadjoint) dominant_sparse_symeig = lanczos.DominantSparseSymeig.apply E0, psi0 = dominant_sparse_symeig(model.g, k, model.dim) logF = torch.log(psi0.detach().matmul(psi0)) dlogF, = torch.autograd.grad(logF, model.g, create_graph=True) d2logF, = torch.autograd.grad(dlogF, model.g) chiF = -d2logF.item() return E0, psi0, chiF
acb820da75218dd37d805867ed246ca9ec2efad2
27,349
def sum_digits(y): """Sum all the digits of y. >>> sum_digits(10) # 1 + 0 = 1 1 >>> sum_digits(4224) # 4 + 2 + 2 + 4 = 12 12 >>> sum_digits(1234567890) 45 >>> a = sum_digits(123) # make sure that you are using return rather than print >>> a 6 """ "*** YOUR CODE HERE ***" sum = 0 while(y > 0): sum += y % 10 y = y // 10 return sum
5300e5bdbb058c4cc8d4a57155b114eab31b1935
27,350
import scipy def leastsq(error_func, x0, *args, **options): """Find the parameters that yield the best fit for the data. `x0` can be a sequence, array, Series, or Params Positional arguments are passed along to `error_func`. Keyword arguments are passed to `scipy.optimize.leastsq` error_func: function that computes a sequence of errors x0: initial guess for the best parameters args: passed to error_func options: passed to leastsq :returns: Params object with best_params and ModSimSeries with details """ # override `full_output` so we get a message if something goes wrong options["full_output"] = True # run leastsq t = scipy.optimize.leastsq(error_func, x0=x0, args=args, **options) best_params, cov_x, infodict, mesg, ier = t # pack the results into a ModSimSeries object details = ModSimSeries(infodict) details.set(cov_x=cov_x, mesg=mesg, ier=ier) # if we got a Params object, we should return a Params object if isinstance(x0, Params): best_params = Params(Series(best_params, x0.index)) # return the best parameters and details return best_params, details
d949358016ddab5d650ca1bab5c98e4ae124c153
27,351
def atomic_token_partition(value): """Partition given value on a token that appears resolvable(contains no sub tokens). Returns in a tuple: (before_token, token, after_token). Returned token includes token syntax. If no tokens are found, returned tuple contains None in all values. :param value: text to find a token from, and partition :type value: str :return: before_token, token, after_token :rtype: tuple(str, str, str) """ before, sep, after_bef = value.rpartition(TOKEN_PREFIX) if not sep: return (None, None, None) token, sep, after = after_bef.partition(TOKEN_SUFFIX) if not sep: # msg = 'bad resolve formatting, cannot find closer for {}' # msg = msg.format(before + tokens.TOKEN_PREFIX) # logger.error(msg) return (None, None, None) return before, make_token_str(token), after
1a4b0b952dcaa65c6f04d066685a609f1bd03669
27,352
def add_color_bar(img, space, cv): """ args: img: (ndarray) in [img_rows, img_cols, channels], dtype as unit8 space: (int) pixels of space cv: (int) color value in [0, 255] return: tmp_img: (ndarray) processed img """ assert len(img.shape) == 3, "img should be 3D" img_rows, img_cols, channels = img.shape tmp_img = np.ones((img_rows + 2 * space, img_cols + 2 * space, channels), np.uint8) * cv tmp_img[space: space + img_rows, space: space + img_cols] = img return tmp_img
a08fc1eac525dd4156add949bc4cf706ee1ea299
27,353
import json def get_cli_body_ssh(command, response, module): """Get response for when transport=cli. This is kind of a hack and mainly needed because these modules were originally written for NX-API. And not every command supports "| json" when using cli/ssh. As such, we assume if | json returns an XML string, it is a valid command, but that the resource doesn't exist yet. Instead, the output will be a raw string when issuing commands containing 'show run'. """ if 'xml' in response[0] or response[0] == '\n': body = [] elif 'show run' in command: body = response else: try: body = [json.loads(response[0])] except ValueError: module.fail_json(msg='Command does not support JSON output', command=command) return body
7d65bd1d19a837b5e78d0e1d834f2a00f4815cdb
27,354
def zero_at(pos, size=8): """ Create a size-bit int which only has one '0' bit at specific position. :param int pos: Position of '0' bit. :param int size: Length of value by bit. :rtype: int """ assert 0 <= pos < size return 2**size - 2**(size - pos - 1) - 1
7ebdcc1ac9db4ad934108f67a751b336b4f18011
27,355
def get_authz_token(request, user=None, access_token=None): """Construct AuthzToken instance from session; refresh token if needed.""" if access_token is not None: return _create_authz_token(request, user=user, access_token=access_token) elif is_request_access_token(request): return _create_authz_token(request, user=user) elif is_session_access_token(request) and not is_session_access_token_expired(request, user=user): return _create_authz_token(request, user=user, access_token=access_token) elif not is_refresh_token_expired(request): # Have backend reauthenticate the user with the refresh token user = authenticate(request) if user: return _create_authz_token(request, user=user) return None
84a7f06085877b51181cadaf29da4dc0611c636b
27,356
import torch def get_bert_model(): """ Load uncased HuggingFace model. """ bert_model = torch.hub.load('huggingface/pytorch-transformers', 'model', 'bert-base-uncased') return bert_model
51b49255fe4b1291d538251c8c199bd570fb1a31
27,357
import bio_utils.bio as bio import tqdm def get_bitseq_estimates( config, isoform_strategy, bitseq_id_field='transcript_id', strings_to_remove=['.cds-only', '.merged']): """ Load the bitseq abundance estimates into a single long data frame. Parameters ---------- config: dict-like The configuration for the project, presumably from the yaml file isoform_strategy: str The strategy for handling transcript isoforms bitseq_id_field: str Name for the "transcript_id" field (second column) in bitseq tr file strings_to_remove: list of strings A list of strings to replace with "" in the bitseq ids Returns ------- bitseq_estimates: pd.DataFrame A data frame containing the following columns * rpkm_{mean,var}: the bitseq estimates * sample: the name of the respective sample * type: "ribo" or "rna" """ msg = "Reading the bitseq tr info file" logger.info(msg) # check which transcript file to load is_merged = False if isoform_strategy == "merged": is_merged = True # and get the file transcript_fasta = filenames.get_transcript_fasta( config['genome_base_path'], config['genome_name'], is_annotated=True, is_merged=is_merged, is_cds_only=True ) tr_info = filenames.get_bitseq_transcript_info(transcript_fasta) bitseq_tr = bio.read_bitseq_tr_file(tr_info) # we need to remove all of the indicated strings from the ids for to_remove in strings_to_remove: tids = bitseq_tr['transcript_id'].str.replace(to_remove, "") bitseq_tr['transcript_id'] = tids bitseq_tr = bitseq_tr.rename(columns={'transcript_id': bitseq_id_field}) note = config.get('note', None) all_dfs = [] msg = "Reading riboseq BitSeq estimates" logger.info(msg) is_unique = 'keep_riboseq_multimappers' not in config it = tqdm.tqdm(config['riboseq_samples'].items()) for name, file in it: lengths, offsets = get_periodic_lengths_and_offsets( config, name, isoform_strategy=isoform_strategy, is_unique=is_unique ) bitseq_rpkm_mean = filenames.get_riboseq_bitseq_rpkm_mean( config['riboseq_data'], name, is_unique=is_unique, is_transcriptome=True, is_cds_only=True, length=lengths, offset=offsets, isoform_strategy=isoform_strategy, note=note ) field_names = ['rpkm_mean', 'rpkm_var'] bitseq_rpkm_mean_df = bio.read_bitseq_means( bitseq_rpkm_mean, names=field_names ) bitseq_rpkm_mean_df['sample'] = name bitseq_rpkm_mean_df['type'] = 'ribo' bitseq_rpkm_mean_df[bitseq_id_field] = bitseq_tr[bitseq_id_field] all_dfs.append(bitseq_rpkm_mean_df) # now, the rnaseq msg = "Reading RNA-seq BitSeq estimates" logger.info(msg) is_unique = ('remove_rnaseq_multimappers' in config) it = tqdm.tqdm(config['rnaseq_samples'].items()) for name, data in it: bitseq_rpkm_mean = filenames.get_rnaseq_bitseq_rpkm_mean( config['rnaseq_data'], name, is_unique=is_unique, is_transcriptome=True, is_cds_only=True, isoform_strategy=isoform_strategy, note=note ) field_names = ['rpkm_mean', 'rpkm_var'] bitseq_rpkm_mean_df = bio.read_bitseq_means( bitseq_rpkm_mean, names=field_names ) bitseq_rpkm_mean_df['sample'] = name bitseq_rpkm_mean_df['type'] = 'rna' bitseq_rpkm_mean_df[bitseq_id_field] = bitseq_tr[bitseq_id_field] all_dfs.append(bitseq_rpkm_mean_df) msg = "Joining estimates into long data frame" logger.info(msg) long_df = pd.concat(all_dfs) long_df = long_df.reset_index(drop=True) return long_df
93738faf48d82c6989411c3034271da1224490b0
27,358
from pathlib import Path def na_layout(na_layout_path: Path) -> ParadigmLayout: """ Returns the parsed NA layout. """ with na_layout_path.open(encoding="UTF-8") as layout_file: return ParadigmLayout.load(layout_file)
35e8405b5e17ab4da917d48ef89779c7d081791e
27,359
def load_atomic_data_for_training(in_file, categories, tokenizer, max_input_length, max_output_length): """ Loads an ATOMIC dataset file and :param in_file: CSV ATOMIC file :param categories: ATOMIC category list :param tokenizer: LM tokenizer :return: a list of tuples """ examples = load_atomic_data(in_file, categories) examples = [(f"{e1} <{cat}>", f"{e2} <eos>") for e1, e1_relations in examples.items() for cat, e2s in e1_relations.items() for e2 in e2s] process = lambda s: tokenizer.convert_tokens_to_ids(tokenizer.tokenize(s)) examples = [tuple(map(process, ex)) for ex in examples] # Pad max_input_length = min(max_input_length, max([len(ex[0]) for ex in examples])) max_output_length = min(max_output_length, max([len(ex[1]) for ex in examples])) max_length = max_input_length + max_output_length + 1 input_lengths = [len(ex[0]) for ex in examples] examples = [ex[0] + ex[1] for ex in examples] examples = [ex[:max_length] + [0] * max(0, max_length - len(ex)) for ex in examples] examples = {"examples": examples, "input_lengths": input_lengths} return examples
e47916d61dae92bdbe3cc8ccf8a06299878f1814
27,361
def md5s_loaded(func): """Decorator which automatically calls load_md5s.""" def newfunc(self, *args, **kwargs): if self.md5_map == None: self.load_md5s() return func(self, *args, **kwargs) return newfunc
9eba943b939c484280b6dca79cf79fc04337f0ab
27,362
def is_dap_message(message: str) -> bool: """Checks if a message contains information about some neighbour DAP.""" if "DAP" in message: return True return False
01294888ab5cac7560fb7c58669f14573e0c1acd
27,363
import random def PhotoMetricDistortion( img, brightness_delta=32, contrast_range=(0.5, 1.5), saturation_range=(0.5, 1.5), hue_delta=18): """Apply photometric distortion to image sequentially, every dictprocessation is applied with a probability of 0.5. The position of random contrast is in second or second to last. 1. random brightness 2. random contrast (mode 0) 3. convert color from BGR to HSV 4. random saturation 5. random hue 6. convert color from HSV to BGR 7. random contrast (mode 1) Args: img (np.ndarray): imput image. brightness_delta (int): delta of brightness. contrast_range (tuple): range of contrast. saturation_range (tuple): range of saturation. hue_delta (int): delta of hue. Returns: dict: distorted_image """ contrast_lower, contrast_upper = contrast_range saturation_lower, saturation_upper = saturation_range def bgr2hsv(img): return cv2.cvtColor(img, cv2.COLOR_BGR2HSV) def hsv2bgr(img): return cv2.cvtColor(img, cv2.COLOR_HSV2BGR) def convert(img, alpha=1, beta=0): """Multiple with alpha and add beat with clip.""" img = img.astype(np.float32) * alpha + beta img = np.clip(img, 0, 255) return img.astype(np.uint8) def brightness(img): """Brightness distortion.""" if random.randint(2): return convert( img, beta=random.uniform(-brightness_delta, brightness_delta)) return img def contrast(img): """Contrast distortion.""" if random.randint(2): return convert( img, alpha=random.uniform(contrast_lower, contrast_upper)) return img def saturation(img): """Saturation distortion.""" if random.randint(2): img = bgr2hsv(img) img[:, :, 1] = convert( img[:, :, 1], alpha=random.uniform(saturation_lower, saturation_upper)) img = hsv2bgr(img) return img def hue(img): """Hue distortion.""" if random.randint(2): img = bgr2hsv(img) img[:, :, 0] = (img[:, :, 0].astype(int) + random.randint(-hue_delta, hue_delta)) % 180 img = hsv2bgr(img) return img def distorted(img): """Call function to perform photometric distortion on images. Args: img (np.ndarray): imput image. Returns: dict: Result dict with images distorted. """ # random brightness img = brightness(img) # mode == 0 --> do random contrast first # mode == 1 --> do random contrast last mode = random.randint(2) if mode == 1: img = contrast(img) # random saturation img = saturation(img) # random hue img = hue(img) # random contrast if mode == 0: img = contrast(img) return img return distorted(img)
04b371ec269d1ea52e7689726fe63b158bb53e11
27,364
def make_game(): """Builds and returns an Apprehend game.""" return ascii_art.ascii_art_to_game( GAME_ART, what_lies_beneath=' ', sprites={'P': PlayerSprite, 'b': BallSprite}, update_schedule=['b', 'P'],nb_action=2)
9e6b1ead4ec65083ffe00c5e8708bd174c7eaf79
27,366
from typing import Any from typing import Tuple def process_makefile( data: Any, specification: Any, path: Tuple[str, ...] = (), apply_defaults: bool = True, ) -> Any: """Validates a makefile and applies defaults to missing keys. Note that that default values are deep-copied before being set. """ if isinstance(specification, WithoutDefaults): specification = specification.specification data = process_makefile(data, specification, path, apply_defaults=False) elif isinstance(specification, PreProcessMakefile): data, specification = specification(path, data) data = process_makefile(data, specification, path, apply_defaults) elif _is_spec(specification): _instantiate_spec(specification)(path, data) elif isinstance(data, (dict, type(None))) and isinstance(specification, dict): # A limitation of YAML is that empty subtrees are equal to None; # this check ensures that empty subtrees to be handled properly if data is None: data = {} _process_default_values(data, specification, path, apply_defaults) for cur_key in data: ref_key = _get_matching_spec_or_value( cur_key, specification, path + (cur_key,) ) data[cur_key] = process_makefile( data[cur_key], specification[ref_key], path + (cur_key,), apply_defaults ) elif isinstance(data, (list, type(None))) and isinstance(specification, list): if not all(map(_is_spec, specification)): raise TypeError( "Lists contains non-specification objects (%r): %r" % (_path_to_str(path), specification) ) elif data is None: # See comment above data = [] specification = IsListOf(*specification) _instantiate_spec(specification)(path, data) elif not isinstance(specification, (dict, list)): raise TypeError( "Unexpected type in makefile specification at %r: %r!" % (_path_to_str(path), specification) ) else: raise MakefileError( "Inconsistency between makefile specification and " "current makefile at %s:\n Expected %s, " "found %s %r!" % ( _path_to_str(path), type(specification).__name__, type(data).__name__, data, ) ) return data
6d4d114b59c22c36414a3c4e0f232dc7782802f1
27,368
def load_fashion(n_data=70000): """Fetches the fashion MNIST dataset and returns its desired subset. Args: n_data (int, optional): The size of the wanted subset. Defaults to 70000. Returns: tuple: The dataset, the labels of elements, the names of categories and the name of the dataset. """ mnist = fetch_openml("Fashion-MNIST") data, labels = __split_data(mnist["data"], mnist["target"].astype(int), n_data) label_names = [ "T-shirt", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt", "Sneaker", "Bag", "Ankle boot" ] return data, labels, label_names, "Fashion MNIST"
ed09938ad8c776f11029f6eaecb4f5a01cbf2fed
27,369
def add_countdown_ago(date, event, events_dates_per_event): """ Given a date and an even, compute the number of days since the previous occurence of this events within events_dates_per_event """ countdown = [] for special_date in events_dates_per_event[event]: date_count_down = (special_date - date).days if date_count_down <= 0: countdown.append(date_count_down) return -1 * max(countdown)
3ced21ad6b53007e8777d245dee4fb84f83a3086
27,371
def _get_indexed_role(dep): """Return the function (governor/dependent) and role based on the dependency relation type.""" gram_relation = dep['@type'][0:5] if gram_relation in ["conj", "conj_"]: return (-1, 'conj') (function, role) = _relation_map[gram_relation] return (_iminus_one(dep[function]['@idx']), role)
46edb717174f4267414604c362c22134265ceca4
27,373
def aug_op_mul_col(aug_input: Tensor, mul: float) -> Tensor: """ multiply each pixel :param aug_input: the tensor to augment :param mul: the multiplication factor :return: the augmented tensor """ input_tensor = aug_input * mul input_tensor = aug_op_clip(input_tensor, clip=(0, 1)) return input_tensor
42e7d1596a7417ca7d981573ffaac9dccff49490
27,374
import math def example3(path: str): """Planetary orbit""" print(f"\n{Col.TITL}{' Example 3 ':-^79}{Col.RES}\n") if not path: path = "qr_data/ex3.txt" file = open(path, "r") ls = file.readlines() # Read input data from `file` m = int(ls[0].replace("\n", "")) data = np.zeros((m, 2)) for i in range(1, m + 1): data[i - 1, :] = list(map(float, ls[i].replace("\n", "").split(" "))) xs = data[:, 0] ys = data[:, 1] mat = np.ndarray((m, 5)) f = np.full(shape=m, fill_value=-1.0, dtype=float) for i in range(10): mat[i, 0] = xs[i] ** 2 mat[i, 1] = xs[i] * ys[i] mat[i, 2] = ys[i] ** 2 mat[i, 3] = xs[i] mat[i, 4] = ys[i] sol = Qr.solve(mat, f) res = f - np.matmul(mat, sol) print( f"{Col.INF} Given the system (A b):\n{np.column_stack((mat, f))}\n\n" f"{Col.SOL} The obtained solution is:\n{sol}\n\n" f"{Col.INF} Residue norm is: {np.linalg.norm(res)}" ) # Find closest points on ellipse def solve(x: float, y: float, coeff: np.ndarray) -> float: """Given x, returns the nearest y on the ellipse""" a = coeff[2] b = x * coeff[1] + coeff[4] c = coeff[0] * x * x + coeff[3] * x + 1 sqt = math.sqrt(b * b - 4 * a * c) y0 = (-b - sqt) / (2 * a) y1 = (-b + sqt) / (2 * a) if abs(y - y0) < abs(y - y1): return y0 else: return y1 yy = [solve(x, y, sol) for x, y in zip(xs, ys)] close = zip(xs, ys, yy) print(f"{Col.INF} The closest points are:\n[(x_i, y_i, yy_i)] = [") for p in close: print(f" {p},") print("]\n")
aebe5d23d3d1080ce6795ba6e292ee4d973360a5
27,375
def drones_byDroneId_patch(droneId): """ Update the information on a specific drone It is handler for PATCH /drones/<droneId> """ return handlers.drones_byDroneId_patchHandler(droneId)
93f66abc182ff4df3b3ad06bb8cdd38d19ab8e01
27,376
def get_categories(categories_file): """ Group categories by image """ # map each category id to its name id_to_category = {} for category in categories_file['categories']: id_to_category[category['id']] = category['name'] image_categories = {} for category in categories_file['annotations']: if category['image_id'] not in image_categories: image_categories[category['image_id']] = [] if id_to_category[category['category_id']] not in image_categories[category['image_id']]: image_categories[category['image_id']].append(id_to_category[category['category_id']]) return image_categories
10377ea688c2e33195f137cc9470cadd6eb2b9e7
27,378
from typing import Callable from datetime import datetime def get_profit_forecast(code: str, getter: Callable[[str], pd.DataFrame] = rdb.get_profit_forecast): """ 获取分析师的盈利预期 """ today = datetime.datetime.now().strftime('%Y-%m-%d') return getter(today).loc[code].to_dict()
1e2499eb785e1e4e50b6d82a2c3a4eea7b297a0d
27,379
import functools def checkpoint_wrapper(module: nn.Module, offload_to_cpu: bool = False) -> nn.Module: """ A friendlier wrapper for performing activation checkpointing. Compared to the PyTorch version, this version: - wraps an nn.Module, so that all subsequent calls will use checkpointing - handles keyword arguments in the forward - handles non-Tensor outputs from the forward - supports offloading activations to CPU Usage:: checkpointed_module = checkpoint_wrapper(my_module, offload_to_cpu=True) a, b = checkpointed_module(x, y=3, z=torch.Tensor([1])) Args: module (nn.Module): module to wrap offload_to_cpu (Optional, bool): whether to offload activations to CPU """ module.forward = functools.partial(_checkpointed_forward, module.forward, offload_to_cpu) # type: ignore return module
63d8f20265d2ade29e35ad5ae38b85e5a7f5f8af
27,380
def get_L_star_CS_d_t_i(L_CS_d_t_i, Q_star_trs_prt_d_t_i, region): """(9-2)(9-2)(9-3) Args: L_CS_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの冷房顕熱負荷(MJ/h) Q_star_trs_prt_d_t_i: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の非居室への熱移動(MJ/h) region: 地域区分 L_CS_d_t_i: returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房顕熱負荷 Returns: 日付dの時刻tにおける暖冷房区画iの1時間当たりの熱損失を含む負荷バランス時の冷房顕熱負荷 """ H, C, M = get_season_array_d_t(region) L_CS_d_t_i = L_CS_d_t_i[:5] f = L_CS_d_t_i > 0 Cf = np.logical_and(C, f) L_star_CS_d_t_i = np.zeros((5, 24 * 365)) L_star_CS_d_t_i[Cf] = np.clip(L_CS_d_t_i[Cf] + Q_star_trs_prt_d_t_i[Cf], 0, None) return L_star_CS_d_t_i
2d679123b10d4c5206253a9a7a4aadfb14fc77da
27,381
def delete(isamAppliance, name, check_mode=False, force=False): """ Delete an Authentication Mechanism """ ret_obj = search(isamAppliance, name, check_mode=check_mode, force=force) mech_id = ret_obj['data'] if mech_id == {}: logger.info("Authentication Mechanism {0} not found, skipping delete.".format(name)) else: if check_mode is True: return isamAppliance.create_return_object(changed=True) else: return isamAppliance.invoke_delete( "Delete an Authentication Mechanism", "{0}/{1}".format(module_uri, mech_id), requires_modules=requires_modules, requires_version=requires_version) return isamAppliance.create_return_object()
4deb3c1362010d59abc39868f0b5fef8b4ddaa2f
27,382
def point_to_line_cluster_distance(point, line_cluster): """ Distance between a single point and a cluster of lines """ return val_point_to_line_cluster_distance(point.value, np.array([l.value for l in line_cluster]))
082ba543895e6bf25d013df6d94954de93468754
27,383
import time def str_time_prop(start, end, date_format, prop): """Get a time at a proportion of a range of two formatted times. start and end should be strings specifying times formated in the given format (strftime-style), giving an interval [start, end]. prop specifies how a proportion of the interval to be taken after start. The returned time will be in the specified format. """ stime = time.mktime(time.strptime(start, date_format)) etime = time.mktime(time.strptime(end, date_format)) ptime = stime + prop * (etime - stime) return time.strftime(date_format, time.localtime(ptime))
6ce9a7ec5afd41df43ce029ed7391150f42b8d8a
27,384
def parse_fields(flds): """Parse Data Dictionary XML Fields Arguments: flds -- XML document element for fields """ fields_dict = dict() for elem in flds: elem_tag = str(elem.tag).strip() if elem_tag.lower() != FIELD_TAG.lower(): raise ValueError(elem_tag + " element tag is not equal to " + FIELD_TAG) elem_dict = dict() elem_dict['type'] = str(elem.attrib['type']).upper() elem_dict['number'] = int(elem.attrib['number']) elem_dict['description'] = elem.attrib['description'] if 'description' in elem.attrib else '' elem_values = dict() for elem_value in elem: elem_value_tag = str(elem_value.tag).strip() if elem_value_tag.lower() != FIELD_VALUE_TAG.lower(): raise ValueError(elem_value_tag + " element value tag is not equal to " + FIELD_VALUE_TAG) elem_value_enum = str(elem_value.attrib['enum']).strip() elem_value_desc = str(elem_value.attrib['description']).strip() elem_values[elem_value_enum] = elem_value_desc if elem_values: elem_dict['values'] = elem_values fields_dict[str(elem.attrib['name']).strip()] = elem_dict return fields_dict
c3057f2dc3ff525564589024ec75a58bab0a3331
27,385
import json def analyse_json_data(input_file_path): """ :type input_file_path: str :rtype: InputData :raise FileNotFoundError """ data = InputData() try: with open(input_file_path, 'r') as input_file: json_data = json.load(input_file) except FileNotFoundError as e: raise InputFileNotFoundError(e) number_of_aggregated_packets = 0 previous_time_received_in_microseconds = 0 for time_received_in_microseconds in \ [time_in_nanoseconds / 1000 for time_in_nanoseconds in json_data['timesReceivedInNanoseconds']]: delta_time = time_received_in_microseconds - previous_time_received_in_microseconds if delta_time > 400: if number_of_aggregated_packets != 0: data.add_big_packet(number_of_aggregated_packets) number_of_aggregated_packets = 0 number_of_aggregated_packets += 1 previous_time_received_in_microseconds = time_received_in_microseconds if number_of_aggregated_packets != 0: data.add_big_packet(number_of_aggregated_packets) return data
fe4eef01d2fe14f920a1bf64687410ef9d8e13d9
27,386
import math def process_datastore_tweets(project, dataset, pipeline_options): """Creates a pipeline that reads tweets from Cloud Datastore from the last N days. The pipeline finds the top most-used words, the top most-tweeted URLs, ranks word co-occurrences by an 'interestingness' metric (similar to on tf* idf). """ user_options = pipeline_options.view_as(UserOptions) DAYS = 4 p = beam.Pipeline(options=pipeline_options) # Read entities from Cloud Datastore into a PCollection, then filter to get # only the entities from the last DAYS days. lines = (p | QueryDatastore(project, DAYS) | beam.ParDo(FilterDate(user_options, DAYS)) ) global_count = AsSingleton( lines | 'global count' >> beam.combiners.Count.Globally()) # Count the occurrences of each word. percents = (lines | 'split' >> (beam.ParDo(WordExtractingDoFn()) .with_output_types(unicode)) | 'pair_with_one' >> beam.Map(lambda x: (x, 1)) | 'group' >> beam.GroupByKey() | 'count' >> beam.Map(lambda (word, ones): (word, sum(ones))) | 'in tweets percent' >> beam.Map( lambda (word, wsum), gc: (word, float(wsum) / gc), global_count)) top_percents = (percents | 'top 500' >> combiners.Top.Of(500, lambda x, y: x[1] < y[1]) ) # Count the occurrences of each expanded url in the tweets url_counts = (lines | 'geturls' >> (beam.ParDo(URLExtractingDoFn()) .with_output_types(unicode)) | 'urls_pair_with_one' >> beam.Map(lambda x: (x, 1)) | 'urls_group' >> beam.GroupByKey() | 'urls_count' >> beam.Map(lambda (word, ones): (word, sum(ones))) | 'urls top 300' >> combiners.Top.Of(300, lambda x, y: x[1] < y[1]) ) # Define some inline helper functions. def join_cinfo(cooccur, percents): """Calculate a co-occurence ranking.""" word1 = cooccur[0][0] word2 = cooccur[0][1] try: word1_percent = percents[word1] weight1 = 1 / word1_percent word2_percent = percents[word2] weight2 = 1 / word2_percent return (cooccur[0], cooccur[1], cooccur[1] * math.log(min(weight1, weight2))) except: return 0 def generate_cooccur_schema(): """BigQuery schema for the word co-occurrence table.""" json_str = json.dumps({'fields': [ {'name': 'w1', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'w2', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'count', 'type': 'INTEGER', 'mode': 'NULLABLE'}, {'name': 'log_weight', 'type': 'FLOAT', 'mode': 'NULLABLE'}, {'name': 'ts', 'type': 'TIMESTAMP', 'mode': 'NULLABLE'}]}) # {'name': 'ts', 'type': 'STRING', 'mode': 'NULLABLE'}]}) return parse_table_schema_from_json(json_str) def generate_url_schema(): """BigQuery schema for the urls count table.""" json_str = json.dumps({'fields': [ {'name': 'url', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'count', 'type': 'INTEGER', 'mode': 'NULLABLE'}, {'name': 'ts', 'type': 'TIMESTAMP', 'mode': 'NULLABLE'}]}) # {'name': 'ts', 'type': 'STRING', 'mode': 'NULLABLE'}]}) return parse_table_schema_from_json(json_str) def generate_wc_schema(): """BigQuery schema for the word count table.""" json_str = json.dumps({'fields': [ {'name': 'word', 'type': 'STRING', 'mode': 'NULLABLE'}, {'name': 'percent', 'type': 'FLOAT', 'mode': 'NULLABLE'}, {'name': 'ts', 'type': 'TIMESTAMP', 'mode': 'NULLABLE'}]}) # {'name': 'ts', 'type': 'STRING', 'mode': 'NULLABLE'}]}) return parse_table_schema_from_json(json_str) # Now build the rest of the pipeline. # Calculate the word co-occurence scores. cooccur_rankings = (lines | 'getcooccur' >> (beam.ParDo(CoOccurExtractingDoFn())) | 'co_pair_with_one' >> beam.Map(lambda x: (x, 1)) | 'co_group' >> beam.GroupByKey() | 'co_count' >> beam.Map(lambda (wordts, ones): (wordts, sum(ones))) | 'weights' >> beam.Map(join_cinfo, AsDict(percents)) | 'co top 300' >> combiners.Top.Of(300, lambda x, y: x[2] < y[2]) ) # Format the counts into a PCollection of strings. wc_records = top_percents | 'format' >> beam.FlatMap( lambda x: [{'word': xx[0], 'percent': xx[1], 'ts': user_options.timestamp.get()} for xx in x]) url_records = url_counts | 'urls_format' >> beam.FlatMap( lambda x: [{'url': xx[0], 'count': xx[1], 'ts': user_options.timestamp.get()} for xx in x]) co_records = cooccur_rankings | 'co_format' >> beam.FlatMap( lambda x: [{'w1': xx[0][0], 'w2': xx[0][1], 'count': xx[1], 'log_weight': xx[2], 'ts': user_options.timestamp.get()} for xx in x]) # Write the results to three BigQuery tables. wc_records | 'wc_write_bq' >> beam.io.Write( beam.io.BigQuerySink( '%s:%s.word_counts' % (project, dataset), schema=generate_wc_schema(), create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)) url_records | 'urls_write_bq' >> beam.io.Write( beam.io.BigQuerySink( '%s:%s.urls' % (project, dataset), schema=generate_url_schema(), create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)) co_records | 'co_write_bq' >> beam.io.Write( beam.io.BigQuerySink( '%s:%s.word_cooccur' % (project, dataset), schema=generate_cooccur_schema(), create_disposition=beam.io.BigQueryDisposition.CREATE_IF_NEEDED, write_disposition=beam.io.BigQueryDisposition.WRITE_APPEND)) # Actually run the pipeline. return p.run()
db60b67d85f2d703e8cf46f5d89d56d8c9cfcbed
27,387
def unpack_uid(uid): """ Convert packed PFile UID to standard DICOM UID. Parameters ---------- uid : str packed PFile UID as a string Returns ------- uid : str unpacked PFile UID as string """ return ''.join([str(i-1) if i < 11 else '.' for pair in [(ord(c) >> 4, ord(c) & 15) for c in uid] for i in pair if i > 0])
cb131f3df386c40382cf70ddee5125f901de5fa8
27,388
def command(name=None): """A decorator to register a subcommand with the global `Subcommands` instance. """ def decorator(f): _commands.append((name, f)) return f return decorator
89dd62a97ce6af317dbb2d33273fa215d740deab
27,389
def agse_convert(invec, swdata, insys='gse'): """Convert between GSE and aberrated GSE Using common definiton, e.g., Schwartz 1998 (S.J. Schwartz, "Shock and Discontinuity Normals, Mach Numbers, and Related Parameters", In: Analysis Methods for Multi-Spacecraft Data, Eds.: G. Paschmann and P. Daly, ISSI Scientific Reports Series, ESA/ISSI, Vol. 1, ISBN 1608-280X, 1998, pp.249-270) Neglects transverse components of SW velocity """ assert insys in ('gse', 'agse') alpha = np.arctan(30/swdata['Plasma_bulk_speed']) gse_to_agse = np.zeros((3,3), dtype=float) gse_to_agse[2, 2] = 1 gse_to_agse[0, 0] = np.cos(alpha) gse_to_agse[1, 1] = np.cos(alpha) gse_to_agse[0, 1] = -np.sin(alpha) gse_to_agse[1, 0] = np.sin(alpha) if insys == 'gse': outvec = np.dot(gse_to_agse, invec) else: outvec = np.dot(gse_to_agse.T, invec) return outvec
3d5d77565187e9242104d8b25260b86458109701
27,390
import numpy as np def parse_geom_text_output(out_lines, input_dict=None): """ Parse output of .geom file :param out_lines: a list of lines from the readline function :param input_dict: not in use at the moment :return parsed_data: key, value of the trajectories of cell, atoms, force etc """ txt = out_lines Hartree = units['Eh'] Bohr = units['a0'] # Yeah, we know that... cell_list = [] species_list = [] geom_list = [] forces_list = [] energy_list = [] temperature_list = [] velocity_list = [] current_pos = [] current_species = [] current_forces = [] current_velocity = [] current_cell = [] in_header = False for i, line in enumerate(txt): if 'begin header' in line.lower(): in_header = True continue if 'end header' in line.lower(): in_header = False continue if in_header: continue # Skip header lines sline = line.split() if '<-- E' in line: energy_list.append(float(sline[0]) * Hartree) continue elif '<-- h' in line: current_cell.append(list(map(float, sline[:3]))) continue elif '<-- R' in line: current_pos.append(list(map(float, sline[2:5]))) current_species.append(sline[0]) elif '<-- F' in line: current_forces.append(list(map(float, sline[2:5]))) elif '<-- V' in line: current_velocity.append(list(map(float, sline[2:5]))) elif '<-- T' in line: temperature_list.append(float(sline[0])) elif not line.strip() and current_cell: cell_list.append(current_cell) species_list.append(current_species) geom_list.append(current_pos) forces_list.append(current_forces) current_cell = [] current_species = [] current_pos = [] current_forces = [] if current_velocity: velocity_list.append(current_velocity) current_velocity = [] if len(species_list) == 0: raise RuntimeError('No data found in geom file') out = dict( cells=np.array(cell_list) * Bohr, positions=np.array(geom_list) * Bohr, forces=np.array(forces_list) * Hartree / Bohr, geom_energy=np.array(energy_list), symbols=species_list[0], ) if velocity_list: out['velocities'] = np.array(velocity_list) * Bohr return out
a01ba11130d91aa2211563322384e772dfe7ad1a
27,391
def evalKnapsackBalanced(individual): """ Variant of the original weight-value knapsack problem with added third object being minimizing weight difference between items. """ weight, value = evalKnapsack(individual) balance = 0.0 for a,b in zip(individual, list(individual)[1:]): balance += abs(items[a][0]-items[b][0]) if len(individual) > MAX_ITEM or weight > MAX_WEIGHT: return weight, value, 1e30 # Ensure overweighted bags are dominated return weight, value, balance
2037e6b33d4cd8c76496b8fbb866febbf355aaac
27,392
def complexify_module(lines_in): """ Complexify a module by separating its derived types, functions, and subroutines and passing them through a line complexification function. Parameters ---------- lines_in : list of string List of strings source code for one module to be complexified Returns ------- lines_out : list of string List of strings representing the output complexified module """ N_line = len(lines_in) iLine = 0 lines_out = [] # Start Module lines_out.append(lines_in[0] + "use MOD_COMPLEXIFY\n") iLine += 1 while iLine < N_line: # Handle Derived Type if not re_type_start.search(lines_in[iLine]) is None: iSearch = 0 lines_type = [] # Group All Subroutine Lines while re_type_end.search(lines_in[iLine + iSearch]) is None: lines_type.append(lines_in[iLine + iSearch]) iSearch += 1 lines_type.append(lines_in[iLine + iSearch]) iSearch += 1 # Fix Function lines_fixed = complexify_type(lines_type) for line in lines_fixed: lines_out.append(line) iLine += iSearch # Handle Function elif not re_function_start.search(lines_in[iLine]) is None: iSearch = 0 lines_function = [] # Group All Subroutine Lines while re_function_end.search(lines_in[iLine + iSearch]) is None: lines_function.append(lines_in[iLine + iSearch]) iSearch += 1 lines_function.append(lines_in[iLine + iSearch]) iSearch += 1 # Fix Function lines_fixed = complexify_function(lines_function) for line in lines_fixed: lines_out.append(line) iLine += iSearch # Handle Subroutine elif not re_subroutine_start.search(lines_in[iLine]) is None: iSearch = 0 lines_subroutine = [] # Group All Subroutine Lines while re_subroutine_end.search(lines_in[iLine + iSearch]) is None: lines_subroutine.append(lines_in[iLine + iSearch]) iSearch += 1 lines_subroutine.append(lines_in[iLine + iSearch]) iSearch += 1 # Fix Subroutine lines_fixed = complexify_subroutine(lines_subroutine) for line in lines_fixed: lines_out.append(line) iLine += iSearch # Write Line Unchanged else: lines_out.append(lines_in[iLine]) iLine += 1 return lines_out
dfa30e883c2addeb1e3e5ac0c84be4f7d7834277
27,394
from datetime import datetime import pytz def utc_right_now(): """ Returns a datetime object reflecting the time in UTC as of when this function was called. """ return datetime.datetime.now(tz=pytz.utc).replace(tzinfo=None)
870eff5c5f744b8d3e84a21f00adc48bae088221
27,395
def process_img_border(img_array, polygon_pts, border=6): """Process Raw Data into Args: img_array (numpy array): numpy representation of image. polygon_pts (array): corners of the building polygon. Returns: numpy array: . """ height, width, _ = img_array.shape xcoords = polygon_pts[:, 0] ycoords = polygon_pts[:, 1] xmin, xmax = np.min(xcoords), np.max(xcoords) ymin, ymax = np.min(ycoords), np.max(ycoords) xdiff = xmax - xmin ydiff = ymax - ymin #Extend image by scale percentage xmin = max(int(xmin - border), 0) xmax = min(int(xmax + border), width) ymin = max(int(ymin - border), 0) ymax = min(int(ymax + border), height) (X,Y,Z)=img_array.shape return img_array[ymin:ymax, xmin:xmax, :]
7ad98cc9e66e34849a534a42e3d78062e1b779c4
27,396
from typing import Optional from typing import Mapping def get_connection(arn: Optional[str] = None, tags: Optional[Mapping[str, str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetConnectionResult: """ Provides details about CodeStar Connection. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.codestarconnections.get_connection(arn=aws_codestarconnections_connection["example"]["arn"]) ``` :param str arn: The CodeStar Connection ARN. :param Mapping[str, str] tags: Map of key-value resource tags to associate with the resource. """ __args__ = dict() __args__['arn'] = arn __args__['tags'] = tags if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:codestarconnections/getConnection:getConnection', __args__, opts=opts, typ=GetConnectionResult).value return AwaitableGetConnectionResult( arn=__ret__.arn, connection_status=__ret__.connection_status, id=__ret__.id, name=__ret__.name, provider_type=__ret__.provider_type, tags=__ret__.tags)
76494278cfd1ec4adf3ecd90d8f5536f545a814f
27,398
from typing import Counter def generate_samples(n_samples, func, *args, **kwargs): """Call a function a bunch of times and count the results. Args: n_samples: Number of time to call the function. func: The function results are counted from. *args **args: The arguments to pass to func. Returns: Counter containing results. """ samples = Counter() for _ in range(n_samples): res = func(*args, **kwargs) samples[res] += 1 return samples
625c2bf6713420e26704d2c2842504343be09434
27,399