content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import json
def load_config(config_file):
"""
加载配置文件
:param config_file:
:return:
"""
with open(config_file, encoding='UTF-8') as f:
return json.load(f)
|
85bab8a60e3abb8af56b0ae7483f2afe992d84b4
| 26,334 |
def decode(var, encoding):
"""
If not already unicode, decode it.
"""
if PY2:
if isinstance(var, unicode):
ret = var
elif isinstance(var, str):
if encoding:
ret = var.decode(encoding)
else:
ret = unicode(var)
else:
ret = unicode(var)
else:
ret = str(var)
return ret
|
da59232e9e7715c5c1e87fde99f19997c8e1e890
| 26,335 |
def vehicle_emoji(veh):
"""Maps a vehicle type id to an emoji
:param veh: vehicle type id
:return: vehicle type emoji
"""
if veh == 2:
return u"\U0001F68B"
elif veh == 6:
return u"\U0001f687"
elif veh == 7:
return u"\U000026F4"
elif veh == 12:
return u"\U0001F686"
else:
return u"\U0001F68C"
|
8068ce68e0cdf7f220c37247ba2d03c6505a00fe
| 26,337 |
import functools
def np_function(func=None, output_dtypes=None):
"""Decorator that allow a numpy function to be used in Eager and Graph modes.
Similar to `tf.py_func` and `tf.py_function` but it doesn't require defining
the inputs or the dtypes of the outputs a priori.
In Eager mode it would convert the tf.Tensors to np.arrays before passing to
`func` and then convert back the outputs from np.arrays to tf.Tensors.
In Graph mode it would create different tf.py_function for each combination
of dtype of the inputs and cache them for reuse.
NOTE: In Graph mode: if `output_dtypes` is not provided then `func` would
be called with `np.ones()` to infer the output dtypes, and therefore `func`
should be stateless.
```python
Instead of doing:
def sum(x):
return np.sum(x)
inputs = tf.constant([3, 4])
outputs = tf.py_function(sum, inputs, Tout=[tf.int64])
inputs = tf.constant([3., 4.])
outputs = tf.py_function(sum, inputs, Tout=[tf.float32])
Do:
@eager_utils.np_function
def sum(x):
return np.sum(x)
inputs = tf.constant([3, 4])
outputs = sum(inputs) # Infers that Tout is tf.int64
inputs = tf.constant([3., 4.])
outputs = sum(inputs) # Infers that Tout is tf.float32
# Output dtype is always float32 for valid input dtypes.
@eager_utils.np_function(output_dtypes=np.float32)
def mean(x):
return np.mean(x)
# Output dtype depends on the input dtype.
@eager_utils.np_function(output_dtypes=lambda x: (x, x))
def repeat(x):
return x, x
with context.graph_mode():
outputs = sum(tf.constant([3, 4]))
outputs2 = sum(tf.constant([3., 4.]))
sess.run(outputs) # np.array(7)
sess.run(outputs2) # np.array(7.)
with context.eager_mode():
inputs = tf.constant([3, 4])
outputs = sum(tf.constant([3, 4])) # tf.Tensor([7])
outputs = sum(tf.constant([3., 4.])) # tf.Tensor([7.])
```
Args:
func: A numpy function, that takes numpy arrays as inputs and return numpy
arrays as outputs.
output_dtypes: Optional list of dtypes or a function that maps input dtypes
to output dtypes. Examples: output_dtypes=[tf.float32],
output_dtypes=lambda x: x (outputs have the same dtype as inputs).
If it is not provided in Graph mode the `func` would be called to infer
the output dtypes.
Returns:
A wrapped function that can be used with TF code.
"""
def decorated(func):
"""Decorated func."""
dtype_map = {}
def wrapper(*args, **kwargs):
"""Wrapper to add nested input and outputs support."""
func_with_kwargs = functools.partial(func, **kwargs)
def func_flat_outputs(*args):
return tf.nest.flatten(func_with_kwargs(*args))
def compute_output_dtypes(*args):
"""Calls the func to compute output dtypes."""
result = func(*args, **kwargs)
return tf.nest.map_structure(lambda x: x.dtype, result)
if tf.executing_eagerly():
result = func_with_kwargs(
*tf.nest.map_structure(lambda x: x.numpy(), args))
convert = lambda x: x if x is None else tf.convert_to_tensor(value=x)
return tf.nest.map_structure(convert, result)
else:
input_dtypes = tuple([x.dtype for x in tf.nest.flatten(args)])
if input_dtypes not in dtype_map:
if output_dtypes is None:
dummy_args = tf.nest.map_structure(
lambda x: np.ones(x.shape, x.dtype.as_numpy_dtype), args)
dtype_map[input_dtypes] = compute_output_dtypes(*dummy_args)
elif isinstance(output_dtypes, (list, tuple)):
# output_dtypes define the output dtypes.
dtype_map[input_dtypes] = output_dtypes
else:
try:
# See if output_dtypes define the output dtype directly.
tf.as_dtype(output_dtypes)
dtype_map[input_dtypes] = output_dtypes
except TypeError:
if callable(output_dtypes):
# output_dtypes is mapping from input_dtypes to output_dtypes.
dtype_map[input_dtypes] = output_dtypes(*input_dtypes)
else:
raise ValueError(
'output_dtypes not a list of dtypes or a callable.')
flat_output_dtypes = tf.nest.flatten(dtype_map[input_dtypes])
flat_outputs = tf.py_function(func_flat_outputs,
inp=args,
Tout=flat_output_dtypes)
return tf.nest.pack_sequence_as(dtype_map[input_dtypes], flat_outputs)
return tf_decorator.make_decorator(func, wrapper)
# This code path is for the `foo = np_function(foo, ...)` use case
if func is not None:
return decorated(func)
# This code path is for the decorator
# @np_function(...)
# def foo(...):
return decorated
|
5ed18b1575ec88fe96c27e7de38b00c5a734ee91
| 26,338 |
from typing import List
from typing import Dict
def constituency_parse(doc: List[str]) -> List[Dict]:
"""
parameter: List[str] for each doc
return: List[Dict] for each doc
"""
predictor = get_con_predictor()
results = []
for sent in doc:
result = predictor.predict(sentence=sent)
results.append(result)
assert len(results) == len(doc)
return results
|
30dd8eca61412083f1f11db6dc8aeb27bc171de9
| 26,339 |
def extract_results(filename):
""" Extract intensity data from a FLIMfit results file.
Converts any fraction data (e.g. beta, gamma) to contributions
Required arguments:
filename - the name of the file to load
"""
file = h5py.File(filename,'r')
results = file['results']
keys = sorted_nicely(results.keys())
params = sorted_nicely(results['image 1'].keys())
groups = []
g = 1
while(param(g,'I_0') in params):
group = [param(g,'I_0')]
name_search = [param(g,'gamma'), param(g,'beta')]
for name in name_search:
if len(group) == 1:
group = group + [x for x in params if x.startswith(name)]
groups.append(group)
g = g + 1
print(groups)
X = []
mask = []
for k in keys:
A = []
m = np.array([False])
for group in groups:
I_0 = results[k][group[0]]
m = m | ~np.isfinite(I_0)
if len(group) == 1:
A.append(I_0)
else:
for i in range(1,len(group)):
A.append(results[k][group[i]][()] * I_0)
A = np.stack(A, axis=-1)
A[np.isnan(A)] = 0
X.append(A)
mask.append(m)
X = np.stack(X)
mask = np.stack(mask)
return X, groups, mask
|
c4a9f4f66a53050ea55cb1bd266edfa285000717
| 26,341 |
async def bundle_status(args: Namespace) -> ExitCode:
"""Query the status of a Bundle in the LTA DB."""
response = await args.di["lta_rc"].request("GET", f"/Bundles/{args.uuid}")
if args.json:
print_dict_as_pretty_json(response)
else:
# display information about the core fields
print(f"Bundle {args.uuid}")
print(f" Priority: {display_time(response['work_priority_timestamp'])}")
print(f" Status: {response['status']} ({display_time(response['update_timestamp'])})")
if response['status'] == "quarantined":
print(f" Reason: {response['reason']}")
print(f" Claimed: {response['claimed']}")
if response['claimed']:
print(f" Claimant: {response['claimant']} ({display_time(response['claim_timestamp'])})")
print(f" TransferRequest: {response['request']}")
print(f" Source: {response['source']} -> Dest: {response['dest']}")
print(f" Path: {response['path']}")
if 'files' in response:
print(f" Files: {len(response['files'])}")
else:
print(" Files: Not Listed")
# display additional information if available
if 'bundle_path' in response:
print(f" Bundle File: {response['bundle_path']}")
if 'size' in response:
print(f" Size: {response['size']}")
if 'checksum' in response:
print(" Checksum")
print(f" adler32: {response['checksum']['adler32']}")
print(f" sha512: {response['checksum']['sha512']}")
# display the contents of the bundle, if requested
if args.contents:
print(" Contents: Not Listed")
return EXIT_OK
|
2efb12b4bba3d9e920c199ad1e7262a24220d603
| 26,342 |
def determine_step_size(mode, i, threshold=20):
"""
A helper function that determines the next action to take based on the designated mode.
Parameters
----------
mode (int)
Determines which option to choose.
i (int)
the current step number.
threshold (float)
The upper end of our control.
Returns
-------
decision (float)
The value to push/pull the cart by, positive values push to the right.
"""
if mode == 1:
return 0
if mode == 2:
return np.random.uniform(low=-threshold, high=threshold)
if mode == 3:
side = -1 if i%2 == 0 else 1
return threshold*side
if mode == 4:
inp_str = "Enter a float value from -{} to {}:\n".format(threshold, threshold)
return float(input(inp_str))
|
9b59ebe5eeac13f06662e715328d2d9a3ea0e9a2
| 26,343 |
def scroll_down(driver):
"""
This function will simulate the scroll down of the webpage
:param driver: webdriver
:type driver: webdriver
:return: webdriver
"""
# Selenium supports execute JavaScript commands in current window / frame
# get scroll height
last_height = driver.execute_script("return document.body.scrollHeight")
# scroll to the end of the page
driver.execute_script("window.scrollTo(0, {});".format(last_height))
return driver
|
7d68201f3a49950e509a7e389394915475ed8c94
| 26,344 |
from datetime import datetime
def processing():
"""Renders the khan projects page."""
return render_template('stem/tech/processing/gettingStarted.html', title="Processing - Getting Started", year=datetime.now().year)
|
53f6c69692591601dcb41c7efccad60bbfaf4cf7
| 26,345 |
def conv_unit(input_tensor, nb_filters, mp=False, dropout=0.1):
"""
one conv-relu-bn unit
"""
x = ZeroPadding2D()(input_tensor)
x = Conv2D(nb_filters, (3, 3))(x)
x = relu()(x)
x = BatchNormalization(axis=3, momentum=0.66)(x)
if mp:
x = MaxPooling2D(pool_size=(3, 3), strides=(2, 2), padding='same')(x)
x = Dropout(dropout)(x)
return x
|
7c24dae045c38c073431e4fab20687439601b141
| 26,346 |
import torch
def combine_vectors(x, y):
"""
Function for combining two vectors with shapes (n_samples, ?) and (n_samples, ?).
Parameters:
x: (n_samples, ?) the first vector.
In this assignment, this will be the noise vector of shape (n_samples, z_dim),
but you shouldn't need to know the second dimension's size.
y: (n_samples, ?) the second vector.
Once again, in this assignment this will be the one-hot class vector
with the shape (n_samples, n_classes), but you shouldn't assume this in your code.
"""
combined = torch.cat((x, y), dim=1)
return combined
|
700ea418c6244dc745bf6add89ad786c4444d2fe
| 26,347 |
def expandMacros(context, template, outputFile, outputEncoding="utf-8"):
"""
This function can be used to expand a template which contains METAL
macros, while leaving in place all the TAL and METAL commands.
Doing this makes editing a template which uses METAL macros easier,
because the results of the macro can be seen immediately.
The macros referred to by the passed in template must be present in
the context so that their contents can be referenced. The
outputEncoding determines the encoding of the returned string, which
will contain the expanded macro.
"""
interp = MacroExpansionInterpreter()
interp.initialise(context, outputFile)
return template.expand(
context, outputFile, outputEncoding, interpreter=interp)
|
04aad464f975c5ee216e17f93167be51eea8f6e6
| 26,348 |
def graph_papers(path="papers.csv"):
"""
Spit out the connections between people by papers
"""
data = defaultdict(dict)
jkey = u'Paper'
for gkey, group in groupby(read_csv(path, key=jkey), itemgetter(jkey)):
for pair in combinations(group, 2):
for idx,row in enumerate(pair):
uid = dotify([row[u'Name']])
if uid not in data:
data[uid] = {
'name': uid,
'imports': [],
}
cpart = pair[0] if idx == 1 else pair[1]
data[uid]['imports'].append(dotify([cpart[u'Name']]))
return data
|
43cae08f303707b75da2b225112fa0bc448306d9
| 26,349 |
def tariterator1(fileobj, check_sorted=False, keys=base_plus_ext, decode=True):
"""Alternative (new) implementation of tariterator."""
content = tardata(fileobj)
samples = group_by_keys(keys=keys)(content)
decoded = decoder(decode=decode)(samples)
return decoded
|
8ea80d266dfe9c63336664aaf0fcac520e620382
| 26,350 |
def juego_nuevo():
"""Pide al jugador la cantidad de filas/columnas, cantidad de palabras y las palabras."""
show_title("Crear sopa de NxN letras")
nxn = pedir_entero("Ingrese un numero entero de la cantidad de\nfilas y columnas que desea (Entre 10 y 20):\n",10,20)
n_palabras = pedir_entero("Ingrese un numero entero de la cantidad de\npalabas que deasea agregar (Entre 0 y %d):\n"%(nxn/2),0,(nxn/2))
palabras = []
palabra_min_caracteres = 3
palabra_repetida = False
while len(palabras)<n_palabras:
if palabra_repetida :
show_msg("Ingreso una palabra repetida")
palabra_repetida = False
# Pedir una palabra que cumpla con los requisitos
palabra = pedir_palabra("[%d|%d]Ingrese una palabra entre %d y %d caracteres: "%(len(palabras)+1,n_palabras,palabra_min_caracteres,(nxn/2)),palabra_min_caracteres,(nxn/2))
if palabra in palabras:
palabra_repetida = True
else :
palabras.append(palabra)
matrix = crear_matrix(nxn)
matrix,posiciones,salteadas = procesar_palabras(matrix, nxn, palabras)
matrix = completar_matrix(matrix, nxn)
return procesar_juego(matrix,nxn,n_palabras,salteadas,posiciones)
|
ec42615c3934fd98ca5975f99d215f597f353842
| 26,351 |
def mk_sd_graph(pvalmat, thresh=0.05):
"""
Make a graph with edges as signifcant differences between treatments.
"""
digraph = DiGraph()
for idx in range(len(pvalmat)):
digraph.add_node(idx)
for idx_a, idx_b, b_bigger, p_val in iter_all_pairs_cmp(pvalmat):
if p_val > thresh:
continue
if b_bigger:
digraph.add_edge(idx_a, idx_b)
else:
digraph.add_edge(idx_b, idx_a)
return digraph
|
f219d964ec90d58162db5e72d272ec8138f8991e
| 26,352 |
def body2hor(body_coords, theta, phi, psi):
"""Transforms the vector coordinates in body frame of reference to local
horizon frame of reference.
Parameters
----------
body_coords : array_like
3 dimensional vector with (x,y,z) coordinates in body axes.
theta : float
Pitch (or elevation) angle (rad).
phi : float
Bank angle (rad).
psi : float
Yaw (or azimuth) angle (rad)
Returns
-------
hor_coords : array_like
3 dimensional vector with (x,y,z) coordinates in local horizon axes.
Raises
------
ValueError
If the values of the euler angles are outside the proper ranges.
See Also
--------
`hor2body` function.
Notes
-----
See [1] or [2] for frame of reference definition.
Note that in order to avoid ambiguities ranges in angles are limited to:
* -pi/2 <= theta <= pi/2
* -pi <= phi <= pi
* 0 <= psi <= 2*pi
References
----------
.. [1] B. Etkin, "Dynamics of Atmospheric Flight," Courier Corporation,
pp. 104-120, 2012.
.. [2] Gómez Tierno, M.A. et al, "Mecánica del Vuelo," Garceta, pp. 1-12,
2012
"""
# check_theta_phi_psi_range(theta, phi, psi)
# Transformation matrix from body to local horizon
Lhb = np.array([
[cos(theta) * cos(psi),
sin(phi) * sin(theta) * cos(psi) - cos(phi) * sin(psi),
cos(phi) * sin(theta) * cos(psi) + sin(phi) * sin(psi)],
[cos(theta) * sin(psi),
sin(phi) * sin(theta) * sin(psi) + cos(phi) * cos(psi),
cos(phi) * sin(theta) * sin(psi) - sin(phi) * cos(psi)],
[- sin(theta),
sin(phi) * cos(theta),
cos(phi) * cos(theta)]
])
hor_coords = np.squeeze(Lhb).dot(body_coords)
return hor_coords
|
2e0e8f6bf3432a944a350fb7df5bdfa067074448
| 26,353 |
def negloglikelihoodZTNB(args, x):
"""Negative log likelihood for zero truncated negative binomial."""
a, m = args
denom = 1 - NegBinom(a, m).pmf(0)
return len(x) * np.log(denom) + negloglikelihoodNB(args, x)
|
8458cbc02a00fd2bc37d661a7e34a61afccb6124
| 26,354 |
def combine(m1, m2):
"""
Returns transform that combines two other transforms.
"""
return np.dot(m1, m2)
|
083de20237f484806c356c0b29c42ff28aa801f6
| 26,355 |
import torch
def _acg_bound(nsim, k1, k2, lam, mtop = 1000):
# John T Kent, Asaad M Ganeiber, and Kanti V Mardia.
# A new unified approach forthe simulation of a wide class of directional distributions.
# Journal of Computational andGraphical Statistics, 27(2):291–301, 2018.
"""
Sampling approach used in Kent et al. (2018)
Samples the cartesian coordinates from bivariate ACG: x, y
Acceptance criterion:
- Sample values v, from uniform between 0 and 1
- If v < fg, accept x, y
Convert x, y to angles phi using atan2,
we have now simulated the bessel density.
"""
ntry = 0; nleft = nsim; mloop = 0
eig = torch.tensor([0., 0.5 * (k1 - lam**2/k2)]); eigmin = 0
if eig[1] < 0:
eigmin = eig[1]; eig = eig - eigmin
q = 2; b0 = bfind(eig)
phi = 1 + 2*eig/b0; den = log_im(0, k2)
values = torch.empty(nsim, 2); accepted = 0
while nleft > 0 and mloop < mtop:
x = Normal(0., 1.).sample((nleft*q,)).reshape(nleft, q) * torch.ones(nleft, 1) * torch.tensor( (1/phi).sqrt()).reshape(1, q)
r = (x*x).sum(-1).sqrt()
# Dividing a vector by its norm, gives the unit vector
# So the ACG samples unit vectors?
x = x / (r.reshape(nleft, 1) * torch.ones(1, q))
u = ((x*x) * torch.ones(nleft, 1) * torch.tensor(eig).reshape(1, q)).sum(-1)
v = Uniform(0, 1).sample((nleft, ))
# eq 7.3 + eq 4.2
logf = (k1*(x[:,0] - 1) + eigmin) + (log_im(0, torch.sqrt(k2**2 + lam**2 * x[:,1]**2 )) - den )
# eq 3.4
loggi = 0.5 * (q - b0) + q/2 * ((1+2*u/b0).log() + (b0/q).log())
logfg = logf + loggi
ind = (v < logfg.exp())
nacc = ind.sum(); nleft = nleft - nacc; mloop = mloop + 1; ntry=ntry+nleft
if nacc > 0:
start = accepted
accepted += x[ind].shape[0]
values[start:accepted,:] = x[ind,:]
print("Sampling efficiency:", (nsim - nleft.item())/ntry.item())
return torch.atan2(values[:,1], values[:,0])
|
45d96fee1b61d5c020e355df76d77c78483a3a0b
| 26,356 |
def melspecgrams_to_specgrams(logmelmag2 = None, mel_p = None, mel_downscale=1):
"""Converts melspecgrams to specgrams.
Args:
melspecgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [freq, time], mel scaling of frequencies.
Returns:
specgrams: Tensor of log magnitudes and instantaneous frequencies,
shape [freq, time].
"""
mel2l = _mel_to_linear_matrix(mel_downscale)
logmag = None
p = None
if logmelmag2 is not None:
logmelmag2 = logmelmag2.T
logmelmag2 = np.array([logmelmag2])
mag2 = np.tensordot(np.exp(logmelmag2), mel2l, 1)
logmag = 0.5 * np.log(mag2+1e-6)
logmag = logmag[0].T
if mel_p is not None:
mel_p = mel_p.T
mel_p = np.array([mel_p])
mel_phase_angle = np.cumsum(mel_p * np.pi, axis=1)
phase_angle = np.tensordot(mel_phase_angle, mel2l, 1)
p = instantaneous_frequency(phase_angle,time_axis=1)
p = p[0].T
return logmag, p
|
34090358eff2bf803af9b56c210d5e093b1f2900
| 26,358 |
from scipy.stats.mstats import gmean
import numpy as np
def ligandScore(ligand, genes):
"""calculate ligand score for given ligand and gene set"""
if ligand.ligand_type == "peptide" and isinstance(ligand.preprogene, str):
# check if multiple genes needs to be accounted for
if isinstance(eval(ligand.preprogene), list):
ligand_genes = list()
for gene in eval(ligand.preprogene):
try:
ligand_genes.append(genes[gene])
except KeyError:
#print(f"{gene} not found")
ligand_genes.append(0.0)
# use max, as there might be many orthologs genes for one original
# gene and not all have to be expressed
try:
ligand_score = max(ligand_genes)
except ValueError:
print(f"something is wrong with the list {ligand_genes}")
ligand_score = 0.0
return ligand_score
elif ligand.ligand_type == "molecule":
synthesis = ligand.synthesis
transport = ligand.transport
reuptake = ligand.reuptake
excluded = ligand.excluded
# get geometric mean of synthesis genes (all need to be present)
if not isinstance(synthesis, str):
# If no genes are needed, synthesis is set to nan
synthesis = np.nan
else:
synthesis_expression = list()
for gene in eval(synthesis):
try:
synthesis_expression.append(genes[gene])
except KeyError:
# If gene was not found append 0
#print(f"{gene} not found")
synthesis_expression.append(0.0)
synthesis = gmean(synthesis_expression)
# get maximum of vesicle transporters (only one is needed for molecule transport)
if not isinstance(transport, str):
# If no specific genes are needed, set transport to nan
transport = np.nan
else:
transport_expression = list()
for gene in eval(transport):
try:
transport_expression.append(genes[gene])
except KeyError:
# If gene was not found append 0
#print(f"{gene} not found")
transport_expression.append(0.0)
transport = max(transport_expression)
# Get maximum of reuptake genes (only one is needed)
if not isinstance(reuptake, str):
# If no specific genes are needed, set reuptake to nan
reuptake = np.nan
else:
reuptake_expression = list()
for gene in eval(reuptake):
try:
reuptake_expression.append(genes[gene])
except KeyError:
# If gene was not found append 0
#print(f"{gene} not found")
reuptake_expression.append(0.0)
reuptake = max(reuptake_expression)
# get maximum among exluding genes where any gene expression divert to other ligands
if not isinstance(excluded, str):
# If no specific genes are needed, set excluded to 0
excluded = 0
else:
excluded_expression = list()
for gene in eval(excluded):
try:
excluded_expression.append(genes[gene])
except KeyError:
# If gene was not found append 0
#print(f"{gene} not found")
excluded_expression.append(0.0)
excluded = max(excluded_expression)
# return geometric mean of synthesis, transport and reuptake multipled exclusion
promoting_factor = gmean(([x for x in [synthesis, transport, reuptake] if str(x) != "nan"])) # genes driving ligand production, remove nan values
if str(promoting_factor) == "nan": # capture cases where no promoting genes were present
print(f"no promoting genes detected for {ligand.ligand}")
return 0.0 # exit before running exclusion calculation
ligand_score = promoting_factor - excluded # correct ligand expression based on the exclusion factor
if ligand_score < 0: # ligand score should be 0 or positive
ligand_score = 0.0
return ligand_score
# If genes are missing from ligand gene list
else:
print("Big error! ligand type is not defined!")
return 0.0
|
68141e9a837619b087cf132c6ba593ba5b1ef43d
| 26,359 |
def eval(x):
"""Evaluates the value of a variable.
# Arguments
x: A variable.
# Returns
A Numpy array.
# Examples
```python
>>> from keras import backend as K
>>> kvar = K.variable(np.array([[1, 2], [3, 4]]), dtype='float32')
>>> K.eval(kvar)
array([[ 1., 2.],
[ 3., 4.]], dtype=float32)
```
"""
if isinstance(x, KerasSymbol):
if x.tensor is not None:
if x.name in x.get_bind_values() and _MODEL is not None:
_MODEL._sync_weights()
ret = x.eval().asnumpy()
else:
ret = _forward_pass(x)[0].asnumpy()
# If the Tensor shape is (1, ) and does not have attribute "_is_vector", then, it is considered to be scalar.
# Return the value.
if ret.shape == (1,) and not hasattr(x, '_is_vector'):
ret = ret[0]
return ret
elif isinstance(x, mx.nd.NDArray):
return x.asnumpy()
else:
return x
|
a9b5473cc71cd999d6e85fd760018d454c194c04
| 26,360 |
from typing import Optional
def triple_in_shape(expr: ShExJ.shapeExpr, label: ShExJ.tripleExprLabel, cntxt: Context) \
-> Optional[ShExJ.tripleExpr]:
""" Search for the label in a shape expression """
te = None
if isinstance(expr, (ShExJ.ShapeOr, ShExJ.ShapeAnd)):
for expr2 in expr.shapeExprs:
te = triple_in_shape(expr2, label, cntxt)
if te is not None:
break
elif isinstance(expr, ShExJ.ShapeNot):
te = triple_in_shape(expr.shapeExpr, label, cntxt)
elif isinstance(expr, ShExJ.shapeExprLabel):
se = reference_of(expr, cntxt)
if se is not None:
te = triple_in_shape(se, label, cntxt)
return te
|
a1e9ba9e7c282475c775c17f52b51a78c3dcfd71
| 26,361 |
def poly_learning_rate(base_lr, curr_iter, max_iter, power=0.9):
"""poly learning rate policy"""
lr = base_lr * (1 - float(curr_iter) / max_iter) ** power
return lr
|
fdb2b6ed3784deb3fbf55f6b23f6bd32dac6a988
| 26,362 |
def parent_path(xpath):
"""
Removes the last element in an xpath, effectively yielding the xpath to the parent element
:param xpath: An xpath with at least one '/'
"""
return xpath[:xpath.rfind('/')]
|
b435375b9d5e57c6668536ab819f40ae7e169b8e
| 26,363 |
from datetime import datetime
def change_project_description(project_id):
"""For backwards compatibility: Change the description of a project."""
description = read_request()
assert isinstance(description, (str,))
orig = get_project(project_id)
orig.description = description
orig.lastUpdated = datetime.datetime.utcnow()
orig.save()
return JsonResponse(orig)
|
c6b59cfbbffb353943a0a7ba4160ffb0e2382a51
| 26,364 |
import unittest
def run_all(examples_main_path):
"""
Helper function to run all the test cases
:arg: examples_main_path: the path to main examples directory
"""
# test cases to run
test_cases = [TestExample1,
TestExample2,
TestExample3,
TestExample4,
TestExample5s1,
TestExample5s2,
TestExample6,
TestExample7,
TestExample8,
TestExample9]
# load all the specified test cases
test_loader = unittest.TestLoader()
suite = unittest.TestSuite()
for test_case in test_cases:
test_names = test_loader.getTestCaseNames(test_case)
for test_name in test_names:
suite.addTest(test_case(methodName=test_name,
examples_path=examples_main_path))
# run the test suite
result = unittest.TextTestRunner().run(suite)
return int(not result.wasSuccessful())
|
9a5176bff4e2c82561e3b0dbee467cd1dec0e63e
| 26,365 |
def get_queue(queue):
"""
:param queue: Queue Name or Queue ID or Queue Redis Key or Queue Instance
:return: Queue instance
"""
if isinstance(queue, Queue):
return queue
if isinstance(queue, str):
if queue.startswith(Queue.redis_queue_namespace_prefix):
return Queue.from_queue_key(queue)
else:
return Queue.from_queue_key(Queue.redis_queue_namespace_prefix+queue)
raise TypeError('{0} is not of class {1} or {2}'.format(queue, str, Queue))
|
159860f2efa5c7a2643d4ed8b316e8abca85e67f
| 26,366 |
def ptttl_to_samples(ptttl_data, amplitude=0.5, wavetype=SINE_WAVE):
"""
Convert a PTTTLData object to a list of audio samples.
:param PTTTLData ptttl_data: PTTTL/RTTTL source text
:param float amplitude: Output signal amplitude, between 0.0 and 1.0.
:param int wavetype: Waveform type for output signal. Must be one of\
tones.SINE_WAVE, tones.SQUARE_WAVE, tones.TRIANGLE_WAVE, or tones.SAWTOOTH_WAVE.
:return: list of audio samples
:rtype: tones.tone.Samples
"""
parser = PTTTLParser()
data = parser.parse(ptttl_data)
return _generate_samples(data, amplitude, wavetype)
|
f4be93a315ff177cbdf69249f7efece55561b431
| 26,367 |
from typing import Union
from pathlib import Path
from typing import Tuple
import numpy
import pandas
def read_output_ascii(
path: Union[Path, str]
) -> Tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray, numpy.ndarray]:
"""Read an output file (raw ASCII format)
Args:
path (str): path to the file
Return:
list: The contents of the output file as a :py:class:`list` containing
four :py:class:`numpy.ndarray` instances. The first one contains all
simulation times. The other entries contain the norm, energy and
maximum SPF overlap of the wave function at all times.
"""
dataFrame = pandas.read_csv(
str(path), sep=r"\s+", names=["time", "norm", "energy", "overlap"]
)
return (
dataFrame["time"].values,
dataFrame["norm"].values,
dataFrame["energy"].values,
dataFrame["overlap"].values,
)
|
ef3008f6cf988f7bd42ccb75bfd6cfd1a58e28ae
| 26,368 |
def AliasPrefix(funcname):
"""Return the prefix of the function the named function is an alias of."""
alias = __aliases[funcname][0]
return alias.prefix
|
771c0f665ddad2427759a5592608e5467005c26d
| 26,369 |
from typing import Optional
from typing import Tuple
from typing import Callable
def connect(
sender: QWidget,
signal: str,
receiver: QObject,
slot: str,
caller: Optional[FormDBWidget] = None,
) -> Optional[Tuple[pyqtSignal, Callable]]:
"""Connect signal to slot for QSA."""
# Parameters example:
# caller: <clientes.FormInternalObj object at 0x7f78b5c230f0>
# sender: <pineboolib.qt3_widgets.qpushbutton.QPushButton object at 0x7f78b4de1af0>
# signal: 'clicked()'
# receiver: <clientes.FormInternalObj object at 0x7f78b5c230f0>
# slot: 'iface.buscarContacto()'
if caller is not None:
logger.trace("* * * Connect:: %s %s %s %s %s", caller, sender, signal, receiver, slot)
else:
logger.trace("? ? ? Connect:: %s %s %s %s", sender, signal, receiver, slot)
signal_slot = solve_connection(sender, signal, receiver, slot)
if not signal_slot:
return None
# http://pyqt.sourceforge.net/Docs/PyQt4/qt.html#ConnectionType-enum
conntype = Qt.QueuedConnection | Qt.UniqueConnection
new_signal, new_slot = signal_slot
# if caller:
# for sl in caller._formconnections:
# if sl[0].signal == signal_slot[0].signal and sl[1].__name__ == signal_slot[1].__name__:
# return False
try:
slot_done_fn: Callable = slot_done(new_slot, new_signal, sender, caller)
# MyPy/PyQt5-Stubs misses connect(type=param)
new_signal.connect(slot_done_fn, type=conntype) # type: ignore
except Exception:
logger.warning("ERROR Connecting: %s %s %s %s", sender, signal, receiver, slot)
return None
signal_slot = new_signal, slot_done_fn
return signal_slot
|
2ebeca355e721c5fad5ec6aac24a59587e4e86bd
| 26,371 |
import torch
def get_detection_input(batch_size=1):
"""
Sample input for detection models, usable for tracing or testing
"""
return (
torch.rand(batch_size, 3, 224, 224),
torch.full((batch_size,), 0).long(),
torch.Tensor([1, 1, 200, 200]).repeat((batch_size, 1)),
torch.full((batch_size,), 1).long(),
)
|
710a5ed2f89610555d347af568647a8768f1ddb4
| 26,372 |
def build_tables(ch_groups, buffer_size, init_obj=None):
""" build tables and associated I/O info for the channel groups.
Parameters
----------
ch_groups : dict
buffer_size : int
init_obj : object with initialize_lh5_table() function
Returns
-------
ch_to_tbls : dict or Table
A channel-indexed dictionary of tables for quick look-up, or if passed a
dummy group (no group name), return the one table made.
"""
ch_to_tbls = {}
# set up a table for each group
for group_name, group_info in ch_groups.items():
tbl = lh5.Table(buffer_size)
if init_obj is not None:
channel = None # for dummy ch_group
# Note: all ch in ch_list will be written to the same table. So it
# should suffice to initials for first channel in the list
if 'ch_list' in group_info: channel = group_info['ch_list'][0]
init_obj.initialize_lh5_table(tbl, channel)
group_info['table'] = tbl
if group_name == '':
if len(ch_groups) != 1:
print("Error: got dummy group (no name) in non-dummy ch_groups")
return None
return tbl
# cache the table to a ch-indexed dict for quick look-up
for ch in group_info['ch_list']: ch_to_tbls[ch] = tbl
return ch_to_tbls
|
964bc6a817688eb8426976cec2b0053f43c6ed79
| 26,373 |
def segmentspan(revlog, revs):
"""Get the byte span of a segment of revisions
revs is a sorted array of revision numbers
>>> revlog = _testrevlog([
... 5, #0
... 10, #1
... 12, #2
... 12, #3 (empty)
... 17, #4
... ])
>>> segmentspan(revlog, [0, 1, 2, 3, 4])
17
>>> segmentspan(revlog, [0, 4])
17
>>> segmentspan(revlog, [3, 4])
5
>>> segmentspan(revlog, [1, 2, 3,])
7
>>> segmentspan(revlog, [1, 3])
7
"""
if not revs:
return 0
end = revlog.end(revs[-1])
return end - revlog.start(revs[0])
|
51624b3eac7bba128a2e702c3387bbaab4974143
| 26,374 |
def is_stateful(change, stateful_resources):
""" Boolean check if current change references a stateful resource """
return change['ResourceType'] in stateful_resources
|
055465870f9118945a9e5f2ff39be08cdcf35d31
| 26,375 |
def get_session_from_webdriver(driver: WebDriver, registry: Registry) -> RedisSession:
"""Extract session cookie from a Selenium driver and fetch a matching pyramid_redis_sesssion data.
Example::
def test_newsletter_referral(dbsession, web_server, browser, init):
'''Referral is tracker for the newsletter subscription.'''
b = browser
b.visit(web_server + "/newsletter")
with transaction.manager:
r = ReferralProgram()
r.name = "Foobar program"
dbsession.add(r)
dbsession.flush()
ref_id, slug = r.id, r.slug
# Inject referral data to the active session. We do this because it is very hard to spoof external links pointing to localhost test web server.
session = get_session_from_webdriver(b.driver, init.config.registry)
session["referral"] = {
"ref": slug,
"referrer": "http://example.com"
}
session.to_redis()
b.fill("email", "[email protected]")
b.find_by_name("subscribe").click()
# Displayed as a message after succesful form subscription
assert b.is_text_present("Thank you!")
# Check we get an entry
with transaction.manager:
assert dbsession.query(NewsletterSubscriber).count() == 1
subscription = dbsession.query(NewsletterSubscriber).first()
assert subscription.email == "[email protected]"
assert subscription.ip == "127.0.0.1"
assert subscription.referral_program_id == ref_id
assert subscription.referrer == "http://example.com"
:param driver: The active WebDriver (usually ``browser.driver``)
:param registry: The Pyramid registry (usually ``init.config.registry``)
"""
# Decode the session our test browser is associated with by reading the raw session cookie value and fetching the session object from Redis
secret = registry.settings["redis.sessions.secret"]
session_cookie = driver.get_cookie("session")["value"]
session_id = signed_deserialize(session_cookie, secret)
class MockRequest:
def __init__(self, registry):
self.registry = registry
# Use pyramid_redis_session to get a connection to the Redis database
redis = get_default_connection(MockRequest(registry))
session = RedisSession(redis, session_id, new=False, new_session=None)
return session
|
0faaa394c065344117cec67ec824ec5186252ee2
| 26,377 |
from typing import Tuple
def paper() -> Tuple[str]:
"""
Use my paper figure style.
Returns
-------
Tuple[str]
Colors in the color palette.
"""
sns.set_context("paper")
style = { "axes.spines.bottom": True,
"axes.spines.left": True,
"axes.spines.right": False,
"axes.spines.top": False,
"axes.edgecolor": "0",
"xtick.bottom": True,
"ytick.left": True}
plt.rcParams["legend.frameon"] = False
palette = sns.color_palette("deep")
sns.set_palette(palette)
sns.set_style("ticks", rc=style)
return palette
|
6e53247c666db62be1d5bf5ad5d77288af277d2d
| 26,379 |
import difflib
def _get_diff_text(old, new):
"""
Returns the diff of two text blobs.
"""
diff = difflib.unified_diff(old.splitlines(1), new.splitlines(1))
return "".join([x.replace("\r", "") for x in diff])
|
bd8a3d49ccf7b6c18e6cd617e6ad2ad8324de1cc
| 26,380 |
def GetStatus(operation):
"""Returns string status for given operation.
Args:
operation: A messages.Operation instance.
Returns:
The status of the operation in string form.
"""
if not operation.done:
return Status.PENDING.name
elif operation.error:
return Status.ERROR.name
else:
return Status.COMPLETED.name
|
c9630528dd9b2e331a9d387cac0798bf07646603
| 26,382 |
def ft2m(ft):
"""
Converts feet to meters.
"""
if ft == None:
return None
return ft * 0.3048
|
ca2b4649b136c9128b5b3ae57dd00c6cedd0f383
| 26,384 |
def show_colors(*, nhues=17, minsat=10, unknown='User', include=None, ignore=None):
"""
Generate tables of the registered color names. Adapted from
`this example <https://matplotlib.org/examples/color/named_colors.html>`__.
Parameters
----------
nhues : int, optional
The number of breaks between hues for grouping "like colors" in the
color table.
minsat : float, optional
The threshold saturation, between ``0`` and ``100``, for designating
"gray colors" in the color table.
unknown : str, default: 'User'
Category name for color names that are unknown to proplot.
Set this to ``False`` to hide unknown color names.
include : str or sequence of str, default: None
Category names to be shown in the table. Use this to limit
the table to a subset of categories. Valid categories are
%(demos.colors)s.
ignore : str or sequence of str, default: 'CSS4'
Used only if `include` was not passed. Category names to be removed
from the colormap table.
Returns
-------
proplot.figure.Figure
The figure.
proplot.gridspec.SubplotGrid
The subplot grid.
"""
# Tables of known colors to be plotted
colordict = {}
if ignore is None:
ignore = 'css4'
if isinstance(include, str):
include = (include.lower(),)
if isinstance(ignore, str):
ignore = (ignore.lower(),)
if include is None:
include = COLORS_TABLE.keys()
include -= set(map(str.lower, ignore))
for cat in sorted(include):
if cat not in COLORS_TABLE:
raise ValueError(
f'Invalid categories {include!r}. Options are: '
+ ', '.join(map(repr, COLORS_TABLE)) + '.'
)
colordict[cat] = list(COLORS_TABLE[cat]) # copy the names
# Add "unknown" colors
if unknown:
unknown_colors = [
color for color in map(repr, pcolors._color_database)
if 'xkcd:' not in color and 'tableau:' not in color
and not any(color in list_ for list_ in COLORS_TABLE)
]
if unknown_colors:
colordict[unknown] = unknown_colors
# Divide colors into columns and rows
# For base and open colors, tables are already organized into like
# colors, so just reshape them into grids. For other colors, we group
# them by hue in descending order of luminance.
namess = {}
for cat in sorted(include):
if cat == 'base':
names = np.asarray(colordict[cat])
ncols, nrows = len(names), 1
elif cat == 'opencolor':
names = np.asarray(colordict[cat])
ncols, nrows = 7, 20
else:
hclpairs = [(name, to_xyz(name, 'hcl')) for name in colordict[cat]]
hclpairs = [
sorted(
[
pair for pair in hclpairs
if _filter_colors(pair[1], ihue, nhues, minsat)
],
key=lambda x: x[1][2] # sort by luminance
)
for ihue in range(nhues)
]
names = np.array([name for ipairs in hclpairs for name, _ in ipairs])
ncols, nrows = 4, len(names) // 4 + 1
names.resize((ncols, nrows)) # fill empty slots with empty string
namess[cat] = names
# Draw figures for different groups of colors
# NOTE: Aspect ratios should be number of columns divided by number
# of rows, times the aspect ratio of the slot for each swatch-name
# pair, which we set to 5.
shape = tuple(namess.values())[0].shape # sample *first* group
figwidth = 6.5
refaspect = (figwidth * 72) / (10 * shape[1]) # points
maxcols = max(names.shape[0] for names in namess.values())
hratios = tuple(names.shape[1] for names in namess.values())
fig, axs = ui.subplots(
figwidth=figwidth,
refaspect=refaspect,
nrows=len(include),
hratios=hratios,
)
title_dict = {
'css4': 'CSS4 colors',
'base': 'Base colors',
'opencolor': 'Open color',
'xkcd': 'XKCD colors',
}
for ax, (cat, names) in zip(axs, namess.items()):
# Format axes
ax.format(
title=title_dict.get(cat, cat),
titleweight='bold',
xlim=(0, maxcols - 1),
ylim=(0, names.shape[1]),
grid=False, yloc='neither', xloc='neither',
alpha=0,
)
# Draw swatches as lines
lw = 8 # best to just use trial and error
swatch = 0.45 # percent of column reserved for swatch
ncols, nrows = names.shape
for col, inames in enumerate(names):
for row, name in enumerate(inames):
if not name:
continue
y = nrows - row - 1 # start at top
x1 = col * (maxcols - 1) / ncols # e.g. idx 3 --> idx 7
x2 = x1 + swatch # portion of column
xtext = x1 + 1.1 * swatch
ax.text(
xtext, y, name, ha='left', va='center',
transform='data', clip_on=False,
)
ax.plot(
[x1, x2], [y, y],
color=name, lw=lw,
solid_capstyle='butt', # do not stick out
clip_on=False,
)
return fig, axs
|
34b45185af96f3ce6111989f83d584006ebceb49
| 26,385 |
def get_all_lights(scene, include_light_filters=True):
"""Return a list of all lights in the scene, including
mesh lights
Args:
scene (byp.types.Scene) - scene file to look for lights
include_light_filters (bool) - whether or not light filters should be included in the list
Returns:
(list) - list of all lights
"""
lights = list()
for ob in scene.objects:
if ob.type == 'LIGHT':
if hasattr(ob.data, 'renderman'):
if include_light_filters:
lights.append(ob)
elif ob.data.renderman.renderman_light_role == 'RMAN_LIGHT':
lights.append(ob)
else:
mat = getattr(ob, 'active_material', None)
if not mat:
continue
output = shadergraph_utils.is_renderman_nodetree(mat)
if not output:
continue
if len(output.inputs) > 1:
socket = output.inputs[1]
if socket.is_linked:
node = socket.links[0].from_node
if node.bl_label == 'PxrMeshLight':
lights.append(ob)
return lights
|
4570f36bdfbef287f38a250cddcdc7f8c8d8665d
| 26,386 |
def get_df(path):
"""Load raw dataframe from JSON data."""
with open(path) as reader:
df = pd.DataFrame(load(reader))
df['rate'] = 1e3 / df['ms_per_record']
return df
|
0e94506fcaa4bd64388eb2def4f9a66c19bd9b32
| 26,387 |
def _format_distribution_details(details, color=False):
"""Format distribution details for printing later."""
def _y_v(value):
"""Print value in distribution details."""
if color:
return colored.yellow(value)
else:
return value
# Maps keys in configuration to a pretty-printable name.
distro_pretty_print_map = {
"distro": lambda v: """Distribution Name: """ + _y_v(v),
"release": lambda v: """Release: """ + _y_v(v),
"arch": lambda v: """Architecture: """ + _y_v(Alias.universal(v)),
"pkgsys": lambda v: """Package System: """ + _y_v(v.__name__),
}
return "\n".join([
" - " + distro_pretty_print_map[key](value)
for key, value in details.items()
if key in distro_pretty_print_map
]) + "\n"
|
ccfa7d9b35b17ba9889f5012d1ae5aa1612d33b1
| 26,388 |
async def async_get_relation_id(application_name, remote_application_name,
model_name=None,
remote_interface_name=None):
"""
Get relation id of relation from model.
:param model_name: Name of model to operate on
:type model_name: str
:param application_name: Name of application on this side of relation
:type application_name: str
:param remote_application_name: Name of application on other side of
relation
:type remote_application_name: str
:param remote_interface_name: Name of interface on remote end of relation
:type remote_interface_name: Optional(str)
:returns: Relation id of relation if found or None
:rtype: any
"""
async with run_in_model(model_name) as model:
for rel in model.applications[application_name].relations:
spec = '{}'.format(remote_application_name)
if remote_interface_name is not None:
spec += ':{}'.format(remote_interface_name)
if rel.matches(spec):
return(rel.id)
|
2447c08c57d2ed4548db547fb4c347987f0ac88b
| 26,389 |
from operator import or_
def get_timeseries_references(session_id, search_value, length, offset, column, order):
"""
Gets a filtered list of timeseries references.
This function will generate a filtered list of timeseries references belonging to a session
given a search value. The length, offset, and order of the list can also be specified.
"""
Session = app.get_persistent_store_database(
"hydroshare_timeseries_manager",
as_sessionmaker=True
)
session = Session()
sortable_columns = [
"status",
"site_name",
"site_code",
"latitude",
"longitude",
"variable_name",
"variable_code",
"sample_medium",
"begin_date",
"end_date",
"value_count",
"method_link",
"method_description",
"network_name",
"url",
"service_type",
"ref_type",
"return_type"
]
full_query = session.\
query(
TimeSeriesCatalog.status,
TimeSeriesCatalog.status,
TimeSeriesCatalog.site_name,
TimeSeriesCatalog.site_code,
TimeSeriesCatalog.latitude,
TimeSeriesCatalog.longitude,
TimeSeriesCatalog.variable_name,
TimeSeriesCatalog.variable_code,
TimeSeriesCatalog.sample_medium,
TimeSeriesCatalog.begin_date,
TimeSeriesCatalog.end_date,
TimeSeriesCatalog.value_count,
TimeSeriesCatalog.method_link,
TimeSeriesCatalog.method_description,
TimeSeriesCatalog.network_name,
TimeSeriesCatalog.url,
TimeSeriesCatalog.service_type,
TimeSeriesCatalog.ref_type,
TimeSeriesCatalog.return_type,
TimeSeriesCatalog.timeseries_id,
TimeSeriesCatalog.selected
).filter(
TimeSeriesCatalog.session_id == session_id
)
if search_value != "":
filtered_query = full_query.filter(
or_(
TimeSeriesCatalog.status.ilike(f"%{search_value}%"),
TimeSeriesCatalog.site_name.ilike(f"%{search_value}%"),
TimeSeriesCatalog.site_code.ilike(f"%{search_value}%"),
TimeSeriesCatalog.variable_name.ilike(f"%{search_value}%"),
TimeSeriesCatalog.variable_code.ilike(f"%{search_value}%"),
TimeSeriesCatalog.sample_medium.ilike(f"%{search_value}%"),
TimeSeriesCatalog.network_name.ilike(f"%{search_value}%"),
TimeSeriesCatalog.service_type.ilike(f"%{search_value}%"),
TimeSeriesCatalog.ref_type.ilike(f"%{search_value}%"),
TimeSeriesCatalog.return_type.ilike(f"%{search_value}%"),
)
)
else:
filtered_query = full_query
if order == "asc":
ordered_query = filtered_query.order_by(
asc(getattr(TimeSeriesCatalog, sortable_columns[int(column)]))
)
elif order == "desc":
ordered_query = filtered_query.order_by(
desc(getattr(TimeSeriesCatalog, sortable_columns[int(column)]))
)
else:
ordered_query = filtered_query.order_by(
asc(TimeSeriesCatalog.timeseries_id)
)
paginated_query = ordered_query.offset(offset).limit(length)
selected_query = full_query.filter(
TimeSeriesCatalog.selected == True
)
full_query_count = full_query.count()
filtered_query_count = filtered_query.count()
selected_query_count = selected_query.count()
query_results = paginated_query.all()
engine = session.get_bind()
session.close()
engine.dispose()
return full_query_count, filtered_query_count, selected_query_count, query_results
|
67011d7d1956259c383cd2722ae4035c28e6a5f3
| 26,390 |
def mxprv_from_bip39_mnemonic(
mnemonic: Mnemonic, passphrase: str = "", network: str = "mainnet"
) -> bytes:
"""Return BIP32 root master extended private key from BIP39 mnemonic."""
seed = bip39.seed_from_mnemonic(mnemonic, passphrase)
version = NETWORKS[network].bip32_prv
return rootxprv_from_seed(seed, version)
|
ceb5f5e853f7964015a2a69ea2fdb26680acf2b3
| 26,392 |
def translate_text(
text: str, source_language: str, target_language: str
) -> str:
"""Translates text into the target language.
This method uses ISO 639-1 compliant language codes to specify languages.
To learn more about ISO 639-1, see:
https://www.w3schools.com/tags/ref_language_codes.asp
Args:
text: str. The text to be translated. If text contains html tags, Cloud
Translate only translates content between tags, leaving the tags
themselves untouched.
source_language: str. An allowlisted language code.
target_language: str. An allowlisted language code.
Raises:
ValueError. Invalid source language code.
ValueError. Invalid target language code.
Returns:
str. The translated text.
"""
if source_language not in LANGUAGE_CODE_ALLOWLIST:
raise ValueError('Invalid source language code: %s' % source_language)
if target_language not in LANGUAGE_CODE_ALLOWLIST:
raise ValueError('Invalid target language code: %s' % target_language)
if source_language == target_language:
return text
result = (
CLIENT.translate(
text, target_language=target_language,
source_language=source_language))
# Letting mypy know that result is a dict.
assert isinstance(result, dict)
translated_text = result['translatedText']
return translated_text
|
ed82dbb2fd89398340ed6ff39132f95758bfab97
| 26,394 |
def evt_cache_staged_t(ticket):
""" create event EvtCacheStaged from ticket ticket
"""
fc_keys = ['bfid' ]
ev = _get_proto(ticket, fc_keys = fc_keys)
ev['cache']['en'] = _set_cache_en(ticket)
return EvtCacheStaged(ev)
|
86543ca98257cab28e4bfccef229c8d8e5b6893b
| 26,395 |
from typing import Dict
def _get_setup_keywords(pkg_data: dict, keywords: dict) -> Dict:
"""Gather all setuptools.setup() keyword args."""
options_keywords = dict(
packages=list(pkg_data),
package_data={pkg: list(files)
for pkg, files in pkg_data.items()},
)
keywords['options'].update(options_keywords)
return keywords
|
34f2d52c484fc4e49ccaca574639929756cfa4dc
| 26,396 |
import six
def flatten(x):
"""flatten(sequence) -> list
Returns a single, flat list which contains all elements retrieved
from the sequence and all recursively contained sub-sequences
(iterables).
Examples:
>>> [1, 2, [3,4], (5,6)]
[1, 2, [3, 4], (5, 6)]
>>> flatten([[[1,2,3], (42,None)], [4,5], [6], 7, (8,9,10)])
[1, 2, 3, 42, None, 4, 5, 6, 7, 8, 9, 10]"""
result = []
for el in x:
# if isinstance(el, (list, tuple)):
if hasattr(el, "__iter__") and not isinstance(el, six.string_types):
result.extend(flatten(el))
else:
result.append(el)
return list(result)
|
041807c1622f644c062a5adb0404d14589cc543b
| 26,397 |
from clawpack.visclaw import colormaps, geoplot
from numpy import linspace
from clawpack.visclaw.data import ClawPlotData
from clawpack.visclaw import gaugetools
import pylab
import pylab
from numpy import ma
from numpy import ma
import pylab
import pylab
from pylab import plot, xticks, floor, xlabel
def setplot(plotdata=None):
#--------------------------
"""
Specify what is to be plotted at each frame.
Input: plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
Output: a modified version of plotdata.
"""
if plotdata is None:
plotdata = ClawPlotData()
plotdata.clearfigures() # clear any old figures,axes,items data
plotdata.format = 'binary'
# To plot gauge locations on pcolor or contour plot, use this as
# an afteraxis function:
def addgauges(current_data):
gaugetools.plot_gauge_locations(current_data.plotdata, \
gaugenos='all', format_string='ko', add_labels=True)
#-----------------------------------------
# Figure for surface
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
plotfigure.kwargs = {'figsize': (8,5)}
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes('pcolor')
plotaxes.title = 'Surface'
plotaxes.scaled = True
def fixup(current_data):
addgauges(current_data)
t = current_data.t
t = t / 3600. # hours
pylab.title('Surface at %4.2f hours' % t, fontsize=20)
pylab.grid(True)
#pylab.xticks(fontsize=15)
#pylab.yticks(fontsize=15)
plotaxes.afteraxes = fixup
# Water
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
#plotitem.plot_var = geoplot.surface
plotitem.plot_var = geoplot.surface_or_depth
plotitem.pcolor_cmap = colormaps.red_white_blue #geoplot.tsunami_colormap
plotitem.pcolor_cmin = sea_level - 0.1
plotitem.pcolor_cmax = sea_level + 0.1
plotitem.add_colorbar = False
#plotitem.colorbar_shrink = 0.5
plotitem.colorbar_shrink = 1.0
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
# Land
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = geoplot.land
plotitem.pcolor_cmap = geoplot.land_colors
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 100.0
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
plotaxes.xlimits = [-230,-115]
plotaxes.ylimits = [0,65]
# add contour lines of bathy if desired:
plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
plotitem.show = False
plotitem.plot_var = geoplot.topo
plotitem.contour_levels = linspace(-3000,-3000,1)
plotitem.amr_contour_colors = ['y'] # color on each level
plotitem.kwargs = {'linestyles':'solid','linewidths':2}
plotitem.amr_contour_show = [1,0,0]
plotitem.celledges_show = 0
plotitem.patchedges_show = 0
#-----------------------------------------
# Figure for adjoint
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Adjoint ', figno=20)
plotfigure.kwargs = {'figsize': (8,5)}
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes('adjoint')
plotaxes.scaled = True
plotaxes.title = 'Adjoint flag'
def fixup(current_data):
addgauges(current_data)
t = current_data.t
t = t / 3600. # hours
pylab.title('Adjoint flag at %4.2f hours' % t, fontsize=20)
pylab.grid(True)
plotaxes.afteraxes = fixup
adj_flag_tol = 0.000001
def masked_inner_product(current_data):
q = current_data.q
soln = ma.masked_where(q[4,:,:] < adj_flag_tol, q[4,:,:])
return soln
def masked_regions(current_data):
q = current_data.q
soln = ma.masked_where(q[4,:,:] < 1e9, q[4,:,:])
return soln
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = 4 #masked_inner_product
plotitem.pcolor_cmap = colormaps.white_red
plotitem.pcolor_cmin = 0.5*adj_flag_tol
plotitem.pcolor_cmax = 6*adj_flag_tol
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0]
plotitem.amr_data_show = [1,1,0,0,0,0,0]
plotitem.patchedges_show = 0
#plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
#plotitem.plot_var = masked_regions
#plotitem.pcolor_cmap = colormaps.white_blue
#plotitem.pcolor_cmin = 9e9
#plotitem.pcolor_cmax = 1.1e10
#plotitem.add_colorbar = False
#plotitem.amr_celledges_show = [0]
#plotitem.amr_data_show = [1,1,0,0]
#plotitem.patchedges_show = 0
# Land
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = geoplot.land
plotitem.pcolor_cmap = geoplot.land_colors
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 100.0
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
plotaxes.xlimits = [-230,-115]
plotaxes.ylimits = [0,65]
#-----------------------------------------
# Figure for levels
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Grid patches', figno=10)
plotfigure.kwargs = {'figsize': (8,5)}
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.title = 'Grid patches'
plotaxes.scaled = True
def aa_patches(current_data):
pylab.ticklabel_format(format='plain',useOffset=False)
pylab.xticks([180, 200, 220, 240], rotation=20, fontsize = 28)
pylab.yticks(fontsize = 28)
t = current_data.t
t = t / 3600. # hours
pylab.title('Grids patches at %4.2f hours' % t, fontsize=20)
a = pylab.gca()
a.set_aspect(1./pylab.cos(41.75*pylab.pi/180.))
pylab.grid(True)
def fixup(current_data):
addgauges(current_data)
t = current_data.t
t = t / 3600. # hours
pylab.title('Grids patches at %4.2f hours' % t, fontsize=20)
pylab.grid(True)
# Water
plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
plotitem.amr_patch_bgcolor = [[1,1,1], [0.8,0.8,0.8], [0.8,1,0.8], [1,.7,.7],[0.6,0.6,1]]
plotitem.amr_patchedges_color = ['k','k','g','r','b']
plotitem.amr_celledges_show = [0]
plotitem.amr_patchedges_show = [0,1,1,1,1]
# Land
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = geoplot.land
plotitem.pcolor_cmap = geoplot.land_colors
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 100.0
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0]
plotitem.amr_patchedges_show = [0]
plotaxes.afteraxes = fixup
plotaxes.xlimits = [-230,-115]
plotaxes.ylimits = [0,65]
#-----------------------------------------
# Zoom
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Crescent City', figno=1)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes('pcolor')
plotaxes.title = 'Surface'
plotaxes.scaled = True
plotaxes.afteraxes = fixup
# Water
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
#plotitem.plot_var = geoplot.surface
plotitem.plot_var = geoplot.surface_or_depth
plotitem.pcolor_cmap = geoplot.tsunami_colormap
plotitem.pcolor_cmin = sea_level - 0.1
plotitem.pcolor_cmax = sea_level + 0.1
plotitem.add_colorbar = True
#plotitem.colorbar_shrink = 0.5
plotitem.colorbar_shrink = 1.0
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
# Land
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = geoplot.land
plotitem.pcolor_cmap = geoplot.land_colors
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 100.0
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
######## Limits below encompass Crescent City
plotaxes.xlimits = [-127,-123.5]
plotaxes.ylimits = [40.5,44.5]
#-----------------------------------------
# Zoom2
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Crescent City Zoomed', figno=2)
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes('pcolor')
plotaxes.title = 'Surface'
plotaxes.scaled = True
plotaxes.afteraxes = fixup
# Water
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
#plotitem.plot_var = geoplot.surface
plotitem.plot_var = geoplot.surface_or_depth
plotitem.pcolor_cmap = geoplot.tsunami_colormap
plotitem.pcolor_cmin = sea_level - 0.1
plotitem.pcolor_cmax = sea_level + 0.1
plotitem.add_colorbar = True
#plotitem.colorbar_shrink = 0.5
plotitem.colorbar_shrink = 1.0
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
# Land
plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
plotitem.plot_var = geoplot.land
plotitem.pcolor_cmap = geoplot.land_colors
plotitem.pcolor_cmin = 0.0
plotitem.pcolor_cmax = 100.0
plotitem.add_colorbar = False
plotitem.amr_celledges_show = [0,0,0]
plotitem.patchedges_show = 0
######## Limits below encompass Crescent City zoomed area
plotaxes.xlimits = [-124.235,-124.143]
plotaxes.ylimits = [41.716,41.783]
#-----------------------------------------
# Figures for gauges
#-----------------------------------------
plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
type='each_gauge')
plotfigure.clf_each_gauge = True
# Set up for axes in this figure:
plotaxes = plotfigure.new_plotaxes()
plotaxes.xlimits = [9.5*3600, 15*3600]
plotaxes.ylimits = [-3,3]
plotaxes.title = 'Surface'
# Plot surface as blue curve:
plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
plotitem.plot_var = 3
plotitem.plotstyle = 'b-'
# Plot topo as green curve:
plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
plotitem.show = False
def gaugetopo(current_data):
q = current_data.q
h = q[0,:]
eta = q[3,:]
topo = eta - h
return topo
plotitem.plot_var = gaugetopo
plotitem.plotstyle = 'g-'
def add_zeroline(current_data):
t = current_data.t
gaugeno = current_data.gaugeno
plot(t, 0*t, 'k')
n = int(floor(t.max()/3600.) + 2)
#xticks([3600*i for i in range(n)], ['%i' % i for i in range(n)])
xticks([3600*i for i in range(9,n)], ['%i' % i for i in range(9,n)])
xlabel('time (hours)')
plotaxes.afteraxes = add_zeroline
#-----------------------------------------
# Parameters used only when creating html and/or latex hardcopy
# e.g., via pyclaw.plotters.frametools.printframes:
plotdata.printfigs = True # print figures
plotdata.print_format = 'png' # file format
plotdata.print_framenos = 'all' # list of frames to print
plotdata.print_gaugenos = 'all' # list of gauges to print
plotdata.print_fignos = 'all' # list of figures to print
plotdata.html = True # create html files of plots?
plotdata.html_homelink = '../README.html' # pointer for top of index
plotdata.latex = True # create latex file of plots?
plotdata.latex_figsperline = 2 # layout of plots
plotdata.latex_framesperline = 1 # layout of plots
plotdata.latex_makepdf = False # also run pdflatex?
plotdata.parallel = True # make multiple frame png's at once
return plotdata
|
a777686f5b8fafe8c2a109e486242a16d25a463b
| 26,398 |
from typing import Dict
import json
def load_spider_tables(filenames: str) -> Dict[str, Schema]:
"""Loads database schemas from the specified filenames."""
examples = {}
for filename in filenames.split(","):
with open(filename) as training_file:
examples.update(process_dbs(json.load(training_file)))
return examples
|
1575d0afd4efbe5f53d12be1c7dd3537e54fc46c
| 26,399 |
from typing import Dict
import array
def extract_float_arrays(blockids: str, data: bytes) -> Dict[str, array]:
"""Extracts float arrays from raw scope, background trace, and recorder
zoom binary data (block ids a, A, b, B, x, y, Y in the DLC pro 'Scope,
Lock, and Recorder Binary Data' format).
Args:
blockids: String of requested block id letters. Block ids not
available in the input data or in the above list are ignored.
data: Input byte sequence.
Returns:
Dictionary with found block ids as keys and arrays of floats
(typecode 'f') as values.
Raises:
DataFormatError: If the contents of `data` are not conform to the
'Scope, Lock, and Recorder Binary Data' format.
"""
retval = {}
for block in _binary_data_blocks(data):
if block.id in blockids and block.id in 'aAbBxyY':
values = array('f') # float (IEEE 754 single precision)
try:
values.frombytes(block.payload)
except ValueError as exc:
raise DataFormatError("Invalid payload length in block '{}'".format(block.id)) from exc
retval[block.id] = _letoh(values)
return retval
|
8789f73d175b9d0f244b33b61d0fe1effa702ded
| 26,400 |
def rotate_image(path):
"""Rotate the image from path and return wx.Image."""
img = Image.open(path)
try:
exif = img._getexif()
if exif[ORIENTATION_TAG] == 3:
img = img.rotate(180, expand=True)
elif exif[ORIENTATION_TAG] == 6:
img = img.rotate(270, expand=True)
elif exif[ORIENTATION_TAG] == 8:
img = img.rotate(90, expand=True)
except:
pass
return pil_image_to_wx_image(img)
|
b4f450a3f6cb01a4d9c8e6c384edeabd0366ac63
| 26,401 |
def predict():
"""Predict endpoint.
Chooses model for prediction and predcits
bitcoin price for the given time period.
@author: Andrii Koval, Yulia Khlyaka, Pavlo Mospan
"""
data = request.json
if data:
predict = bool(data["predict"])
if predict:
if predictor.pred_dict["model"] == 0:
# ARIMA
arima_forecast = predictor.get_prediction_arima()
plots.arima_df = arima_forecast
elif predictor.pred_dict["model"] == 1:
# Prophet
prophet_forecast = predictor.get_prediction_prophet()
plots.prophet_df = prophet_forecast
elif predictor.pred_dict["model"] == 2:
# LSTM
lstm_forecast = predictor.get_prediction_bidirectlstm()
plots.lstm_df = lstm_forecast
else:
pass
return 'Non tam praeclarum est scire latine, quam turpe nescire'
|
90fbc72e3a57ad7dae3617bec20268c87a0c158a
| 26,402 |
def splice_imgs(img_list, vis_path):
"""Splice pictures horizontally
"""
IMAGE_WIDTH, IMAGE_HEIGHT = img_list[0].size
padding_width = 20
img_num = len(img_list)
to_image = Image.new('RGB',
(img_num * IMAGE_WIDTH + (img_num - 1) * padding_width,
IMAGE_HEIGHT)) # Create a new picture
padding = Image.new('RGB', (padding_width, IMAGE_HEIGHT), (255, 255, 255))
# Loop through, paste each picture to the corresponding position in order
for i, from_image in enumerate(img_list):
to_image.paste(from_image, (i * (IMAGE_WIDTH + padding_width), 0))
if i < img_num - 1:
to_image.paste(padding,
(i * (IMAGE_WIDTH + padding_width) + IMAGE_WIDTH, 0))
return to_image.save(vis_path)
|
97d4ab32f1a734fbd04e7c558062867c2e6bd3b4
| 26,403 |
def create_segmented_colormap(cmap, values, increment):
"""Create colormap with discretized colormap.
This was created mainly to plot a colorbar that has discretized values.
Args:
cmap: matplotlib colormap
values: A list of the quantities being plotted
increment: The increment used to bin the values
Returns:
A tuple with the cmap, the norm, and the colors.
"""
bmin = values[0] - increment / 2
bmax = values[-1] + 3 * increment / 2
boundaries = np.arange(bmin, bmax, increment)
norm = mpl.colors.BoundaryNorm(boundaries, len(values) + 1)
norm2 = mpl.colors.Normalize(vmin=0, vmax=len(values))
norm3 = mpl.colors.BoundaryNorm(
np.arange(-0.5, len(values) + 0.5, 1), len(values) + 1
)
colors = cmap(norm2(norm(values + [values[-1] + increment])))
cmap = mpl.colors.ListedColormap(colors, "hate")
return cmap, norm3, colors
|
9ab8a0a95896e1ae0f8777b705f920196afc6627
| 26,404 |
from io import StringIO
def division_series_logs():
"""
Pull Retrosheet Division Series Game Logs
"""
s = get_text_file(gamelog_url.format('DV'))
data = pd.read_csv(StringIO(s), header=None, sep=',', quotechar='"')
data.columns = gamelog_columns
return data
|
414de8e0409bba9651bef81bbdc811e105d1d11f
| 26,405 |
def release_date(json):
"""
Returns the date from the json content in argument
"""
return json['updated']
|
635efd7140860c8f0897e90433a539c8bd585945
| 26,406 |
def init_embedding_from_graph(
_raw_data, graph, n_components, random_state, metric, _metric_kwds, init="spectral"
):
"""Initialize embedding using graph. This is for direct embeddings.
Parameters
----------
init : str, optional
Type of initialization to use. Either random, or spectral, by default "spectral"
Returns
-------
embedding : np.array
the initialized embedding
"""
if random_state is None:
random_state = check_random_state(None)
if isinstance(init, str) and init == "random":
embedding = random_state.uniform(
low=-10.0, high=10.0, size=(graph.shape[0], n_components)
).astype(np.float32)
elif isinstance(init, str) and init == "spectral":
# We add a little noise to avoid local minima for optimization to come
initialisation = spectral_layout(
_raw_data,
graph,
n_components,
random_state,
metric=metric,
metric_kwds=_metric_kwds,
)
expansion = 10.0 / np.abs(initialisation).max()
embedding = (initialisation * expansion).astype(
np.float32
) + random_state.normal(
scale=0.0001, size=[graph.shape[0], n_components]
).astype(
np.float32
)
else:
init_data = np.array(init)
if len(init_data.shape) == 2:
if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]:
tree = KDTree(init_data)
dist, ind = tree.query(init_data, k=2)
nndist = np.mean(dist[:, 1])
embedding = init_data + random_state.normal(
scale=0.001 * nndist, size=init_data.shape
).astype(np.float32)
else:
embedding = init_data
return embedding
|
22c2d939a47932b625491a1e685b055214753010
| 26,407 |
def basic_hash_table():
"""Not empty hash table."""
return HashTable(1)
|
b06e59c2a6767309e5394df6e51bdaf12c58d073
| 26,408 |
def scan_by_key(key, a, dim=0, op=BINARYOP.ADD, inclusive_scan=True):
"""
Generalized scan by key of an array.
Parameters
----------
key : af.Array
key array.
a : af.Array
Multi dimensional arrayfire array.
dim : optional: int. default: 0
Dimension along which the scan is performed.
op : optional: af.BINARYOP. default: af.BINARYOP.ADD.
Binary option the scan algorithm uses. Can be one of:
- af.BINARYOP.ADD
- af.BINARYOP.MUL
- af.BINARYOP.MIN
- af.BINARYOP.MAX
inclusive_scan: optional: bool. default: True
Specifies if the scan is inclusive
Returns
---------
out : af.Array
- will contain scan of input.
"""
out = Array()
safe_call(backend.get().af_scan_by_key(c_pointer(out.arr), key.arr, a.arr, dim, op.value, inclusive_scan))
return out
|
ea9556b3e2a87a08cca62d03da41edf5985d4156
| 26,409 |
def local_luminance_subtraction(image, filter_sigma, return_subtractor=False):
"""
Computes an estimate of the local luminance and removes this from an image
Parameters
----------
image : ndarray(float32 or uint8, size=(h, w, c))
An image of height h and width w, with c color channels
filter_sigma : float
The standard deviation of the isotropic gaussian kernel that we use to
compute a local estimate of the luminance
return_subtractor : bool, optional
If true, return the array used to do the luminance subtraction -- this
can be used to reverse the transform. Defualt False.
Returns
-------
filtered_image : ndarray(float32, size=(h, w, c))
subtractor : ndarray(float32, size=(h, w, c))
"""
gaussian_kernel = get_gaussian_filter_2d(
filter_sigma, (4*filter_sigma+1, 4*filter_sigma+1))
local_luminance = filter_sd(image, gaussian_kernel)
if return_subtractor:
return image - local_luminance, local_luminance
else:
return image - local_luminance
|
d9cc46a205f495c0107211d7222be27f40d6896b
| 26,410 |
def createBank():
"""Create the bank.
Returns:
Bank: The bank.
"""
return Bank(
123456,
'My Piggy Bank',
'Tunja Downtown'
)
|
676f0d6cf330e7832064393b543a5ffd1f1068d1
| 26,411 |
def str_to_bool(param):
"""
Convert string value to boolean
Attributes:
param -- inout query parameter
"""
if param.upper() == 'TRUE':
return True
elif param.upper() in ['FALSE', None]:
return False
else:
raise InputValidationError(
'Invalid query parameter. Param is {} and param type is {}'.format(param, type(param)))
|
ef860e2b2e623d98576c04ef1e397604576d8d48
| 26,412 |
from typing import Optional
from typing import List
from typing import Dict
from datetime import datetime
def fetch_log_messages(attempt_id: Optional[int] = None,
task_id: Optional[int] = None,
min_severity: Optional[int] = None):
"""
Fetch log messages from the database.
:param attempt_id:
Fetch only log messages associated with one particular task execution.
:param task_id:
Fetch only log messages associated with one particular task.
:param min_severity:
Fetch only log messages with a minimum severity level.
:return:
List[Dict]
"""
output: List[Dict] = []
# Open connection to the database
task_db = task_database.TaskDatabaseConnection()
# Build an SQL query for all matching log messages
constraints = ["1"]
if attempt_id is not None:
constraints.append("l.generatedByTaskExecution = {:d}".format(attempt_id))
if task_id is not None:
constraints.append("et.taskId = {:d}".format(task_id))
if min_severity is not None:
constraints.append("l.severity >= {:d}".format(min_severity))
# Search for all matching log messages
task_db.conn.execute("""
SELECT l.timestamp, l.generatedByTaskExecution, l.severity, l.message
FROM eas_log_messages l
LEFT JOIN eas_scheduling_attempt esa on l.generatedByTaskExecution = esa.schedulingAttemptId
LEFT JOIN eas_task et on esa.taskId = et.taskId
WHERE {constraint}
ORDER BY generatedByTaskExecution, timestamp;
""".format(constraint=" AND ".join(constraints)))
log_list = task_db.conn.fetchall()
# Convert log events into dictionaries
for item in log_list:
message_class = 'info'
if item['severity'] >= 30:
message_class = 'warning'
if item['severity'] >= 40:
message_class = 'error'
output.append({
'attempt_id': item['generatedByTaskExecution'],
'time': datetime.utcfromtimestamp(item['timestamp']).strftime('%Y-%m-%d %H:%M:%S'),
'class': message_class,
'message': item['message'].strip()
})
# Commit database
task_db.commit()
task_db.close_db()
# Return results
return output
|
10e78d0ee14647cf7a390287208a28aa957551a4
| 26,415 |
def part_1_solution_2(lines):
"""Shorter, but not very readable.
A good example of "clever programming" that saves a few lines of code, while
making it unbearably ugly.
Counts the number of times a depth measurement increases."""
return len([i for i in range(1, len(lines)) if lines[i] > lines[i - 1]])
|
d393f0385a1afbea4c2f3b4d3f51d8e7d0ade204
| 26,417 |
def get_lifecycle_configuration(bucket_name):
"""
Get the lifecycle configuration of the specified bucket.
Usage is shown in usage_demo at the end of this module.
:param bucket_name: The name of the bucket to retrieve.
:return: The lifecycle rules of the specified bucket.
"""
s3 = get_s3()
try:
config = s3.Bucket(bucket_name).LifecycleConfiguration()
logger.info("Got lifecycle rules %s for bucket '%s'.",
config.rules, bucket_name)
except:
logger.exception("Couldn't get lifecycle configuration for bucket '%s'.",
bucket_name)
raise
else:
return config.rules
|
380c884afddbf72db6474e60480bf75ebe67309e
| 26,418 |
def compute_reward(ori, new, target_ids):
"""
Compute the reward for each target item
"""
reward = {}
PE_dict = {}
ori_RI, ori_ERI, ori_Revenue = ori
new_RI, new_ERI, new_Revenue = new
max_PE, min_PE, total_PE = 0, 0, 0
for item in target_ids:
PE = new_Revenue[item] - ori_Revenue[item]
# Eq. (3) in paper
PE = min_PE if PE <= min_PE else PE
max_PE = PE if PE >= max_PE else max_PE
total_PE += PE
PE_dict[item] = PE
avg_PE = total_PE/len(target_ids)
PE_interval = max_PE - min_PE
# Eq. (9) in paper
for item, PE in PE_dict.items():
reward[item] = expit((PE - avg_PE)/PE_interval)
return reward
|
a64a1c47089924d373c7435c5018c63fd4edbe74
| 26,419 |
from typing import Any
import torch
import tqdm
def _compute_aspect_ratios_slow(dataset: Any, indices: Any = None) -> Any:
"""Compute the aspect ratios."""
print(
"Your dataset doesn't support the fast path for "
"computing the aspect ratios, so will iterate over "
"the full dataset and load every image instead. "
"This might take some time..."
)
if indices is None:
indices = range(len(dataset))
class SubsetSampler(Sampler): # type: ignore
"""Subset sampler."""
def __init__(self, indices: Any) -> None:
self.indices = indices
def __iter__(self) -> Any:
return iter(self.indices)
def __len__(self) -> int:
return len(self.indices)
sampler = SubsetSampler(indices)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1,
sampler=sampler,
num_workers=14, # you might want to increase it for faster processing
collate_fn=lambda x: x[0],
)
aspect_ratios = []
with tqdm(total=len(dataset)) as pbar:
for _i, (img, _) in enumerate(data_loader):
pbar.update(1)
height, width = img.shape[-2:]
aspect_ratio = float(width) / float(height)
aspect_ratios.append(aspect_ratio)
return aspect_ratios
|
8fd183a5c353503067666526bdf6722bb53a4317
| 26,420 |
import getopt
def parse_args(input_args):
"""
Parse the supplied command-line arguments and return the input file glob
and metric spec strings.
:param input_args: Command line arguments.
:return: A triplet, the first element of which is the input file glob,
the second element is the output file name (may be empty),
the third element is a list of metric spec strings.
"""
file_glob = ""
output_file_name = ""
try:
opts, args = getopt.getopt(input_args, "hi:o:")
except getopt.GetoptError as err:
print(str(err))
usage_and_die()
for o, a in opts:
if o == "-h":
usage_and_die()
elif o == "-i":
file_glob = a
elif o == "-o":
output_file_name = a
else:
usage_and_die()
if not file_glob:
usage_and_die()
return file_glob, output_file_name, args
|
a15327a3aa2aae86ef8ad14ebcae46b6f3593503
| 26,421 |
def _diffuse(field: jnp.ndarray, diffusion_coeff: float, delta_t: float) -> jnp.ndarray:
"""
Average each value in a vector field closer to its neighbors to simulate
diffusion and viscosity.
Parameters
----------
field
The vector field to diffuse. *Shape: [y, x, any].*
diffusion_coeff
A coefficient determining the amount of diffusion at each frame.
Must be static during JIT tracing.
delta_t
The time elapsed in each timestep. Must be static during JIT tracing.
Returns
-------
jnp.ndarray
`field`, with diffusion applied for this frame.
"""
# Compile-time: precompute neighbor averaging kernel
neighbor_weight = diffusion_coeff * delta_t
neighbor_kernel = np.array(
[
[0, neighbor_weight / 4, 0],
[neighbor_weight / 4, 1 - 4 * neighbor_weight, neighbor_weight / 4],
[0, neighbor_weight / 4, 0],
]
)
neighbor_kernel = jax.device_put(neighbor_kernel)
return jax.scipy.signal.convolve2d(field, neighbor_kernel, mode="same")
|
e05763df93164bd7b4baa778720dbecc32fea228
| 26,422 |
def dAdzmm_ron_s0(u0, M, n2, lamda, tsh, dt, hf, w_tiled):
"""
calculates the nonlinear operator for a given field u0
use: dA = dAdzmm(u0)
"""
print(u0.real.flags)
print(u0.imag.flags)
M3 = uabs(np.ascontiguousarray(u0.real), np.ascontiguousarray(u0.imag))
temp = fftshift(ifft(fft(M3)*hf))
# for i in (M, u0,M3, dt, temp):
# print(i.dtype)
N = nonlin_ram(M, u0, M3, dt, temp)
N *= -1j*n2*2*pi/lamda
return N
|
57c958bca07b77eaa406cb6b95bf5719af34075b
| 26,423 |
def create_support_bag_of_embeddings_reader(reference_data, **options):
"""
A reader that creates sequence representations of the input reading instance, and then
models each question and candidate as the sum of the embeddings of their tokens.
:param reference_data: the reference training set that determines the vocabulary.
:param options: repr_dim, candidate_split (used for tokenizing candidates), question_split
:return: a MultipleChoiceReader.
"""
tensorizer = SequenceTensorizer(reference_data)
candidate_dim = options['repr_dim']
support_dim = options['support_dim']
# question embeddings: for each symbol a [support_dim, candidate_dim] matrix
question_embeddings = tf.Variable(tf.random_normal((tensorizer.num_symbols, support_dim, candidate_dim), dtype=_FLOAT_TYPE), dtype=_FLOAT_TYPE)
# [batch_size, max_question_length, support_dim, candidate_dim]
question_encoding_raw = tf.gather(question_embeddings, tensorizer.questions)
# question encoding should have shape: [batch_size, 1, support_dim, candidate_dim], so reduce and keep
question_encoding = tf.reduce_sum(question_encoding_raw, 1, keep_dims=True)
# candidate embeddings: for each symbol a [candidate_dim] vector
candidate_embeddings = tf.Variable(tf.random_normal((tensorizer.num_symbols, candidate_dim), dtype=_FLOAT_TYPE), dtype=_FLOAT_TYPE)
# [batch_size, num_candidates, max_candidate_length, candidate_dim]
candidate_encoding_raw = tf.gather(candidate_embeddings, tensorizer.candidates)
# candidate embeddings should have shape: [batch_size, num_candidates, 1, candidate_dim]
candidate_encoding = tf.reduce_sum(candidate_encoding_raw, 2, keep_dims=True)
# each symbol has [support_dim] vector
support_embeddings = tf.Variable(tf.random_normal((tensorizer.num_symbols, support_dim), dtype=_FLOAT_TYPE), dtype=_FLOAT_TYPE)
# [batch_size, max_support_num, max_support_length, support_dim]
support_encoding_raw = tf.gather(support_embeddings, tensorizer.support)
# support encoding should have shape: [batch_size, 1, support_dim, 1]
support_encoding = tf.expand_dims(tf.expand_dims(tf.reduce_sum(support_encoding_raw, (1, 2)), 1), 3)
# scoring with a dot product
# [batch_size, num_candidates, support_dim, candidate_dim]
combined = question_encoding * candidate_encoding * support_encoding
scores = tf.reduce_sum(combined, (2, 3))
loss = create_softmax_loss(scores, tensorizer.target_values)
return MultipleChoiceReader(tensorizer, scores, loss)
|
0b09423e9d62d1e5c7c99bd1ebede22ca490797a
| 26,424 |
def get_hosts_cpu_frequency(ceilo, hosts):
"""Get cpu frequency for each host in hosts.
:param ceilo: A Ceilometer client.
:type ceilo: *
:param hosts: A set of hosts
:type hosts: list(str)
:return: A dictionary of (host, cpu_frequency)
:rtype: dict(str: *)
"""
hosts_cpu_total = dict() #dict of (host, cpu_max_frequency)
for host in hosts:
host_id = "_".join([host, host])
cpu_frequency_list = ceilo.samples.list(meter_name='compute.node.cpu.frequency',
limit=1, q=[{'field':'resource_id','op':'eq','value':host_id}])
if cpu_frequency_list:
hosts_cpu_total[host] = cpu_frequency_list[0].counter_volume
return hosts_cpu_total
|
aa6049b9d011d187e1a246a413835aafdbb5c6dc
| 26,425 |
def _cloture(exc):
"""
Return a function which will accept any arguments
but raise the exception when called.
Parameters
------------
exc : Exception
Will be raised later
Returns
-------------
failed : function
When called will raise `exc`
"""
# scoping will save exception
def failed(*args, **kwargs):
raise exc
return failed
|
b2e22f5b4bd267d1945b7f759f5ddfb1ee8c44e5
| 26,426 |
from typing import Dict
import json
def _with_environment_variables(cmd: str, environment_variables: Dict[str, object]):
"""Prepend environment variables to a shell command.
Args:
cmd (str): The base command.
environment_variables (Dict[str, object]): The set of environment
variables. If an environment variable value is a dict, it will
automatically be converted to a one line yaml string.
"""
as_strings = []
for key, val in environment_variables.items():
val = json.dumps(val, separators=(",", ":"))
s = "export {}={};".format(key, quote(val))
as_strings.append(s)
all_vars = "".join(as_strings)
return all_vars + cmd
|
ae27d9e7a62f49e836f1c1b116205f318d9d0dd3
| 26,427 |
def update_spam_assets(db: 'DBHandler') -> int:
"""
Update the list of ignored assets using query_token_spam_list and avoiding
the addition of duplicates. It returns the amount of assets that were added
to the ignore list
"""
spam_tokens = query_token_spam_list(db)
# order maters here. Make sure ignored_assets are queried after spam tokens creation
# since it's possible for a token to exist in ignored assets but not global DB.
# and in that case query_token_spam_list add it to the global DB
ignored_assets = {asset.identifier for asset in db.get_ignored_assets()}
assets_added = 0
for token in spam_tokens:
if token.identifier in ignored_assets:
continue
db.add_to_ignored_assets(token)
assets_added += 1
return assets_added
|
4e7f4e5ae8a6b92ebd5a60a34d9330330690b663
| 26,428 |
import png
def png_info(path):
"""Returns a dict with info about the png"""
r = png.Reader(filename=path)
x, y, frames, info = r.read()
return info
|
97b9df7dd7800f350695e8d678d25154c7a4b2b8
| 26,430 |
def _(data: ndarray, outliers: ndarray, show_report: bool = True) -> ndarray:
"""Process ndarrays"""
if type(data) != type(outliers):
raise TypeError("`data` and `outliers` must be same type")
# convert to DataFrame or Series
data = DataFrame(data).squeeze()
outliers = DataFrame(outliers).squeeze()
# dispatch to relevant function and convert back to ndarray
return trim(data, outliers).to_numpy()
|
1c478af8a6fffcf6240b2547782ee3fc256fdd0c
| 26,431 |
import six
def bool_from_string(subject, strict=False, default=False):
"""
将字符串转换为bool值
:param subject: 待转换对象
:type subject: str
:param strict: 是否只转换指定列表中的值
:type strict: bool
:param default: 转换失败时的默认返回值
:type default: bool
:returns: 转换结果
:rtype: bool
"""
TRUE_STRINGS = ('1', 't', 'true', 'on', 'y', 'yes')
FALSE_STRINGS = ('0', 'f', 'false', 'off', 'n', 'no')
if isinstance(subject, bool):
return subject
if not isinstance(subject, six.string_types):
subject = six.text_type(subject)
lowered = subject.strip().lower()
if lowered in TRUE_STRINGS:
return True
elif lowered in FALSE_STRINGS:
return False
elif strict:
acceptable = ', '.join(
"'%s'" % s for s in sorted(TRUE_STRINGS + FALSE_STRINGS))
msg = "Unrecognized value '%(val)s', acceptable values are: %(acceptable)s" % {'val': subject,
'acceptable': acceptable}
raise ValueError(msg)
else:
return default
|
3c6efa416471da391e60b82aec3753d823ee2878
| 26,432 |
def prot_to_vector(seq: str) -> np.ndarray:
"""Concatenate the amino acid features for each position of the sequence.
Args:
seq: A string representing an amino acid sequence.
Returns:
A numpy array of features, shape (len(seq), features)"""
# convert to uppercase
seq = seq.upper()
try:
chain = [aa_feats.loc[pos].values for pos in seq]
except KeyError as e:
print(e)
raise ValueError("Invalid string character encountered in prot_to_vector")
return np.concatenate(chain, axis=0).reshape(len(seq), -1)
|
ac5293ee67698243e4910c87944133f9697d8646
| 26,433 |
def set_partition(num, par):
"""
A function returns question for partitions of a generated set.
:param num: number of questions.
:param par: type of items in the set based on documentation.
:return: questions in JSON format.
"""
output = question_list_maker(num, par, 'set-partition')
return jsonify(output)
|
71540d753020e5333558098b7edf96c4318fb316
| 26,435 |
def meanS_heteroscedastic_metric(nout):
"""This function computes the mean log of the variance (log S) for the heteroscedastic model. The mean log is computed over the standard deviation prediction and the mean prediction is not taken into account.
Parameters
----------
nout : int
Number of outputs without uq augmentation
"""
def metric(y_true, y_pred):
"""
Parameters
----------
y_true : Keras tensor
Keras tensor including the ground truth
y_pred : Keras tensor
Keras tensor including the predictions of a heteroscedastic model. The predictions follow the order: (mean_0, S_0, mean_1, S_1, ...) with S_i the log of the variance for the ith output.
"""
if nout > 1:
log_sig2 = y_pred[:, 1::nout]
else:
log_sig2 = y_pred[:, 1]
return K.mean(log_sig2)
metric.__name__ = 'meanS_heteroscedastic'
return metric
|
75bc5ddb482cc0e99bb4f5f9b0d557321b57cf06
| 26,436 |
def ec2_connect(module):
""" Return an ec2 connection"""
region, ec2_url, boto_params = get_aws_connection_info(module)
# If we have a region specified, connect to its endpoint.
if region:
try:
ec2 = connect_to_aws(boto.ec2, region, **boto_params)
except (boto.exception.NoAuthHandlerFound, AnsibleAWSError), e:
module.fail_json(msg=str(e))
# Otherwise, no region so we fallback to the old connection method
elif ec2_url:
try:
ec2 = boto.connect_ec2_endpoint(ec2_url, **boto_params)
except (boto.exception.NoAuthHandlerFound, AnsibleAWSError), e:
module.fail_json(msg=str(e))
else:
module.fail_json(msg="Either region or ec2_url must be specified")
return ec2
|
d94b5a1359a31657aa2dffd1f0c11d9cd06493dd
| 26,437 |
import glob
def read_lris(raw_file, det=None, TRIM=False):
"""
Read a raw LRIS data frame (one or more detectors)
Packed in a multi-extension HDU
Based on readmhdufits.pro
Parameters
----------
raw_file : str
Filename
det : int, optional
Detector number; Default = both
TRIM : bool, optional
Trim the image?
This doesn't work....
Returns
-------
array : ndarray
Combined image
header : FITS header
sections : list
List of datasec, oscansec, ampsec sections
datasec, oscansec needs to be for an *unbinned* image as per standard convention
"""
# Check for file; allow for extra .gz, etc. suffix
fil = glob.glob(raw_file+'*')
if len(fil) != 1:
msgs.error("Found {:d} files matching {:s}".format(len(fil)))
# Read
msgs.info("Reading LRIS file: {:s}".format(fil[0]))
hdu = fits.open(fil[0])
head0 = hdu[0].header
# Get post, pre-pix values
precol = head0['PRECOL']
postpix = head0['POSTPIX']
preline = head0['PRELINE']
postline = head0['POSTLINE']
# Setup for datasec, oscansec
dsec = []
osec = []
# get the x and y binning factors...
binning = head0['BINNING']
xbin, ybin = [int(ibin) for ibin in binning.split(',')]
# First read over the header info to determine the size of the output array...
n_ext = len(hdu)-1 # Number of extensions (usually 4)
xcol = []
xmax = 0
ymax = 0
xmin = 10000
ymin = 10000
for i in np.arange(1, n_ext+1):
theader = hdu[i].header
detsec = theader['DETSEC']
if detsec != '0':
# parse the DETSEC keyword to determine the size of the array.
x1, x2, y1, y2 = np.array(parse.load_sections(detsec, fmt_iraf=False)).flatten()
# find the range of detector space occupied by the data
# [xmin:xmax,ymin:ymax]
xt = max(x2, x1)
xmax = max(xt, xmax)
yt = max(y2, y1)
ymax = max(yt, ymax)
# find the min size of the array
xt = min(x1, x2)
xmin = min(xmin, xt)
yt = min(y1, y2)
ymin = min(ymin, yt)
# Save
xcol.append(xt)
# determine the output array size...
nx = xmax - xmin + 1
ny = ymax - ymin + 1
# change size for binning...
nx = nx // xbin
ny = ny // ybin
# Update PRECOL and POSTPIX
precol = precol // xbin
postpix = postpix // xbin
# Deal with detectors
if det in [1,2]:
nx = nx // 2
n_ext = n_ext // 2
det_idx = np.arange(n_ext, dtype=np.int) + (det-1)*n_ext
ndet = 1
elif det is None:
ndet = 2
det_idx = np.arange(n_ext).astype(int)
else:
raise ValueError('Bad value for det')
# change size for pre/postscan...
if not TRIM:
nx += n_ext*(precol+postpix)
ny += preline + postline
# allocate output array...
array = np.zeros( (nx, ny) )
order = np.argsort(np.array(xcol))
# insert extensions into master image...
for kk, i in enumerate(order[det_idx]):
# grab complete extension...
data, predata, postdata, x1, y1 = lris_read_amp(hdu, i+1)
#, linebias=linebias, nobias=nobias, $
#x1=x1, x2=x2, y1=y1, y2=y2, gaindata=gaindata)
# insert components into output array...
if not TRIM:
# insert predata...
buf = predata.shape
nxpre = buf[0]
xs = kk*precol
xe = xs + nxpre
'''
if keyword_set(VERBOSITY) then begin
section = '['+stringify(xs)+':'+stringify(xe)+',*]'
message, 'inserting extension '+stringify(i)+ $
' predata in '+section, /info
endif
'''
array[xs:xe, :] = predata
# insert data...
buf = data.shape
nxdata = buf[0]
nydata = buf[1]
xs = n_ext*precol + kk*nxdata #(x1-xmin)/xbin
xe = xs + nxdata
#section = '[{:d}:{:d},{:d}:{:d}]'.format(preline,nydata-postline, xs, xe) # Eliminate lines
section = '[{:d}:{:d},{:d}:{:d}]'.format(preline*ybin, (nydata-postline)*ybin, xs*xbin, xe*xbin) # Eliminate lines
dsec.append(section)
#print('data',xs,xe)
array[xs:xe, :] = data # Include postlines
#; insert postdata...
buf = postdata.shape
nxpost = buf[0]
xs = nx - n_ext*postpix + kk*postpix
xe = xs + nxpost
#section = '[:,{:d}:{:d}]'.format(xs*xbin, xe*xbin)
section = '[{:d}:{:d},{:d}:{:d}]'.format(preline*ybin, (nydata-postline)*ybin, xs*xbin, xe*xbin)
osec.append(section)
'''
if keyword_set(VERBOSITY) then begin
section = '['+stringify(xs)+':'+stringify(xe)+',*]'
message, 'inserting extension '+stringify(i)+ $
' postdata in '+section, /info
endif
'''
array[xs:xe, :] = postdata
else:
buf = data.shape
nxdata = buf[0]
nydata = buf[1]
xs = (x1-xmin)//xbin
xe = xs + nxdata
ys = (y1-ymin)//ybin
ye = ys + nydata - postline
yin1 = preline
yin2 = nydata - postline
'''
if keyword_set(VERBOSITY) then begin
section = '['+stringify(xs)+':'+stringify(xe)+ $
','+stringify(ys)+':'+stringify(ye)+']'
message, 'inserting extension '+stringify(i)+ $
' data in '+section, /info
endif
'''
array[xs:xe, ys:ye] = data[:, yin1:yin2]
# make sure BZERO is a valid integer for IRAF
obzero = head0['BZERO']
head0['O_BZERO'] = obzero
head0['BZERO'] = 32768-obzero
# Return, transposing array back to goofy Python indexing
#from IPython import embed; embed()
return array.T, head0, (dsec, osec)
|
98351f63a78a37ac8cbb3282e71903ee6dd6bbb1
| 26,438 |
def mu(n: int) -> int:
"""Return the value of the Moebius function on n.
Examples:
>>> mu(3*5*2)
-1
>>> mu(3*5*2*17)
1
>>> mu(3*3*5*2)
0
>>> mu(1)
1
>>> mu(5)
-1
>>> mu(2**10-1)
-1
"""
if n == 1:
return 1
else:
facts = factor(n)
len_ = len(facts)
if len(set(facts)) < len_:
return 0
return (-1)**len_
|
b8347480041de2dc9dfc469096293e3815eebbcd
| 26,439 |
def find_last(arr, val, mask=None, compare="eq"):
"""
Returns the index of the last occurrence of *val* in *arr*.
Or the last occurrence of *arr* *compare* *val*, if *compare* is not eq
Otherwise, returns -1.
Parameters
----------
arr : device array
val : scalar
mask : mask of the array
compare: str ('gt', 'lt', or 'eq' (default))
"""
found_col = find_index_of_val(arr, val, mask=mask, compare=compare)
found_col = found_col.find_and_replace([arr.size], [None], True)
max_index = found_col.max()
return -1 if max_index is None or np.isnan(max_index) else max_index
|
376a21174bc26ca332768aadf96b84b06e7f55f5
| 26,440 |
def find_orphans(input_fits, header_ihdus_keys):
"""Return a dictionary with keys=(ihdu, key) and values='label' for missing cards in 'header_ihdus_keys'
Parameters:
-----------
input_fits: astropy.io.fits.HDUList instance
FITS file where to find orphan header cards
header_ihdus_keys: list
a list of tuples=(ihdu,key) for the reference header cards
Returns:
--------
orphans: list
list of orphan header keys
"""
ihdus, keys = zip(*header_ihdus_keys)
orphans = []
for ihdu, lvm_hdu in enumerate(input_fits):
hdu_mask = np.array(ihdus)==ihdu
orphan_keys = OrderedSet(lvm_hdu.header.keys()) - OrderedSet(np.array(keys)[hdu_mask])
orphans.extend(zip([ihdu]*len(orphan_keys), orphan_keys))
return orphans
|
bcc98722ba43450ff68367f776a84c0e193447d9
| 26,441 |
def Rotation_multiplyByBodyXYZ_NInv_P(cosxy, sinxy, qdot):
"""
Rotation_multiplyByBodyXYZ_NInv_P(Vec2 cosxy, Vec2 sinxy, Vec3 qdot) -> Vec3
Parameters
----------
cosxy: SimTK::Vec2 const &
sinxy: SimTK::Vec2 const &
qdot: SimTK::Vec3 const &
"""
return _simbody.Rotation_multiplyByBodyXYZ_NInv_P(cosxy, sinxy, qdot)
|
93303a83224b29d9dddf09a64f36d7004ae2ace0
| 26,443 |
def sqrt(x: float):
"""
Take the square root of a positive number
Arguments:
x (int):
Returns:
(float): √x
Raises:
(ValueError): If the number is negative
"""
if x < 0:
raise ValueError('Cannot square-root a negative number with this '
'function!')
return np.sqrt(x)
|
ab43573010044ffa3861f6a13a58135be52c02b4
| 26,444 |
def get_tree_type(tree):
"""Return the (sub)tree type: 'root', 'nucleus', 'satellite', 'text' or 'leaf'
Parameters
----------
tree : nltk.tree.ParentedTree
a tree representing a rhetorical structure (or a part of it)
"""
if is_leaf_node(tree):
return SubtreeType.leaf
tree_type = tree.label().lower().split(':')[0]
assert tree_type in SUBTREE_TYPES
return tree_type
|
15d292ab1f756594add92a6999c7874f6d7fc45b
| 26,445 |
def intersection(ls1, ls2):
"""
This function returns the intersection of two lists without
repetition. This function uses built in Python function set()
to get rid of repeated values so inputs must be cast to list
first.
Parameters:
-----------
ls1 : Python list
The first list. Cannot be array.
ls2 : Python list
The second list. Cannot be array.
Returns:
ls3 : Python list
The list of overlapping values between ls1 and ls2
"""
temp = set(ls1)
ls3 = [value for value in ls2 if value in temp]
return ls3
|
fb3bda67d8040da5f4f570e8ff10a8503e153f36
| 26,446 |
def params_count(model):
"""
Computes the number of parameters.
Args:
model (model): model to count the number of parameters.
"""
return np.sum([p.numel() for p in model.parameters()]).item()
|
12bb8463f6eb722a5cb7e7adfdf869764be67944
| 26,448 |
from pathlib import Path
import platform
import shutil
def open_cmd_in_path(file_path: Path) -> int:
""" Open a terminal in the selected folder. """
if platform.system() == "Linux":
return execute_cmd(["x-terminal-emulator", "-e", "cd", f"{str(file_path)}", "bash"], True)
elif platform.system() == "Windows":
cmd_path = shutil.which("cmd")
if cmd_path:
return execute_app(Path(cmd_path), True, f"/k cd {str(file_path)}")
return 0
|
899424cd8ab2d76a5ca47d7219a7057d29bb5abe
| 26,449 |
def get_f(user_id, ftype):
"""Get one's follower/following
:param str user_id: target's user id
:param str ftype: follower or following
:return: a mapping from follower/following id to screen name
:rtype: Dict
"""
p = dict(user_id=user_id, count=200, stringify_ids=True,
include_user_entities=True, cursor=-1)
f = []
if ftype == 'follower':
resource_uri = 'https://api.twitter.com/1.1/followers/list.json'
elif ftype == 'following':
resource_uri = 'https://api.twitter.com/1.1/friends/list.json'
else:
raise Exception('Unknown type: ' + ftype)
while True:
while 1:
try:
j = twitter().get(resource_uri, params=p).json()
break
except ConnectionError:
pass
if 'errors' in j:
raise Exception(j['errors'])
if 'error' in j:
raise Exception(j['error'])
f.extend([(str(u['id']), u['screen_name']) for u in j['users']])
if j['next_cursor'] != 0:
p['cursor'] = j['next_cursor']
else:
break
return dict(f)
|
31371d823509c8051660ca0869556253af6b99cc
| 26,450 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.