content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def linear_forward(A, W, b):
"""
Implement the linear part of a layer's forward propagation.
Arguments:
A -- activations from previous layer (or input data): (size of previous layer, number of examples)
W -- weights matrix: numpy array of shape (size of current layer, size of previous layer)
b -- bias vector, numpy array of shape (size of the current layer, 1)
Returns:
Z -- the input of the activation function, also called pre-activation parameter
cache -- a python dictionary containing "A", "W" and "b" ; stored for computing the backward pass efficiently
"""
Z = np.dot(W, A) + b
assert (Z.shape == (W.shape[0], A.shape[1]))
cache = (A, W, b)
return Z, cache
|
db9120f983b20ea67e9806c71b32463f47fe2839
| 26,568 |
from typing import Sequence
from typing import Match
import glob
async def mp_force(p: 'Player', m: 'Match', msg: Sequence[str]) -> str:
"""Force a player into the current match by name."""
if len(msg) != 1:
return 'Invalid syntax: !mp force <name>'
if not (t := await glob.players.get(name=' '.join(msg))):
return 'Could not find a user by that name.'
await t.join_match(m, m.passwd)
return 'Welcome.'
|
58f8d0c8ad0e623973b49792253344cba430b8d5
| 26,570 |
def draw_concat(Gs, Zs, reals, NoiseAmp, in_s, mode, opt):
"""get image at previous scale"""
G_z = in_s
if Gs:
if mode == 'rand':
count = 0
for G, Z_opt, real_curr, real_next, noise_amp in zip(Gs, Zs, reals, reals[1:], NoiseAmp):
if count == 0:
z = functions.generate_noise([1, Z_opt.shape[2], Z_opt.shape[3]])
z = Tensor(np.broadcast_to(z, (1, 3, z.shape[2], z.shape[3])))
else:
z = Tensor(functions.generate_noise([opt.nc_z, Z_opt.shape[2], Z_opt.shape[3]]))
G_z = G_z[:, :, 0:real_curr.shape[2], 0:real_curr.shape[3]]
z_in = noise_amp * z + G_z
G_z = G(z_in, G_z)
G_z = Tensor(imresize(G_z.asnumpy(), 1/opt.scale_factor, opt))
G_z = G_z[:, :, 0:real_next.shape[2], 0:real_next.shape[3]]
count += 1
if mode == 'rec':
count = 0
for G, Z_opt, real_curr, real_next, noise_amp in zip(Gs, Zs, reals, reals[1:], NoiseAmp):
G_z = G_z[:, :, 0:real_curr.shape[2], 0:real_curr.shape[3]]
z_in = noise_amp * Z_opt + G_z
G_z = G(z_in, G_z)
G_z = Tensor(imresize(G_z.asnumpy(), 1/opt.scale_factor, opt))
G_z = G_z[:, :, 0:real_next.shape[2], 0:real_next.shape[3]]
count += 1
return G_z
|
a52db339e6e657148dcf74ef815dd265929f545f
| 26,571 |
def read(filename):
"""
Read TOUGHREACT chemical input file.
Parameters
----------
filename : str
Input file name.
"""
with open_file(filename, "r") as f:
out = read_buffer(f)
return out
|
acf88a707048bed3f0c59aab3c1f328a5f0d8bf5
| 26,573 |
def visit_bottomup(f, d):
"""Visits and rewrites a nested-dict ``d`` from the bottom to the top,
using the ``f`` predicate."""
if isinstance(d, dict):
return f({k: visit_bottomup(f, v) for (k, v) in d.items()})
else:
return f(d)
|
9fb4884f1280afe06a1819a44e3055c1173284b1
| 26,574 |
def processNonTerminal(nt):
"""
Finds the rule expansion for a nonterminal and returns its expansion.
"""
return processRHS(grammar.getRHS(nt))
|
c938ee877e8b66d9ed9aad6cf3708b5d2241279d
| 26,576 |
def get_attributes_as_highlighted_html(rid):
"""Get column descriptions for a given CSV file. The columns are described in EML
attribute elements.
"""
return {
k: dex.util.get_etree_as_highlighted_html(v)
for k, v in get_attributes_as_etree(rid).items()
}
|
0e19ccca6d09b6cdaac9361a02c5e38e84ae9190
| 26,577 |
import timeit
import multiprocessing
import itertools
def bound_update(unary,X,kernel,bound_lambda,bound_iteration =20, batch = False, manual_parallel =False):
"""
Here in this code, Q refers to Z in our paper.
"""
start_time = timeit.default_timer()
print("Inside Bound Update . . .")
N,K = unary.shape;
oldE = float('inf')
# Initialize the unary and Normalize
if manual_parallel == False:
# print 'Parallel is FALSE'
Q = normalize(-unary)
for i in range(bound_iteration):
printProgressBar(i + 1, bound_iteration,length=12)
additive = -unary
mul_kernel = kernel.dot(Q)
Q = -bound_lambda*mul_kernel
additive = additive -Q
Q = normalize(additive)
E = entropy_energy(Q,unary,kernel,bound_lambda,batch)
# print('entropy_energy is ' +repr(E) + ' at iteration ',i)
report_E = E
if (i>1 and (abs(E-oldE)<= 1e-5*abs(oldE))):
print('Converged')
break
else:
oldE = E.copy(); oldQ = Q.copy(); report_E = E
else:
print('Manual Parallel is TRUE')
Q = normalize(-unary)
init(kernel_s_data = n2m(kernel.data))
init(kernel_s_indices = n2m(kernel.indices))
init(kernel_s_indptr = n2m(kernel.indptr))
init(kernel_s_shape = n2m(kernel.shape))
irange = range(N);
krange = range(K);
for i in range(bound_iteration):
printProgressBar(i + 1, bound_iteration,length=15)
additive = -unary
init(Q_s = n2m(Q))
pool = multiprocessing.Pool(processes=5,initializer=init, initargs = list(SHARED_VARS.items()))
pool.map(mpassing,itertools.product(irange,krange))
_,Q = get_shared_arrays('kernel_s_indptr','Q_s')
Q = -bound_lambda*Q
# assert (Q.all()==SHARED_array['Q_s'].all())
additive -= Q
Q = normalize(additive)
pool.close()
pool.join()
pool.terminate()
E = entropy_energy(Q,unary,kernel,bound_lambda,batch)
# print ('entropy_energy is ' +repr(E) + ' at iteration ',i)
if (i>1 and (abs(E-oldE)<=1e-4*abs(oldE))):
print('Converged')
break
else:
oldE = E.copy(); oldQ = Q.copy(); report_E = E
elapsed = timeit.default_timer() - start_time
print('\n Elapsed Time in bound_update', elapsed)
l = np.argmax(Q,axis=1)
ind = np.argmax(Q,axis=0)
C= X[ind,:]
return l,C,ind,Q,report_E
|
c5b1be8fb881d2b2bb8596843747441c5e6ca99a
| 26,578 |
from typing import List
def get_walkable_field_names(model: Model, field_types: List[Field] = None) -> List[str]:
"""Get a list with names of all fields that can be walked"""
if field_types is None:
field_types = [ManyToManyField, ManyToOneRel]
fields_to_walk = []
fields = getattr(model, '_meta').get_fields()
for field in fields:
if isinstance(field, tuple(field_types)):
fields_to_walk.append(field.name)
return fields_to_walk
|
0ef53ce31072913861e6e78a22eb387b2e185ca8
| 26,579 |
def normalize(email):
"""
Returns a NormalizedEmail with the appropriate contents
"""
try:
v = validate_email(email)
return NormalizedEmail(v['email'])
except EmailNotValidError as e:
return NormalizedEmail(str(e), error=True)
|
4379966f68810b22c06b81597b706454f46a8247
| 26,580 |
def valid_flavor_list():
"""
this includes at least 'BIAS', 'LIGHT' based on forDK.tar.gz samples
capitalization inconsistent in forDK.tar.gz samples
need to keep an eye out for additional valid flavors to add
"""
# not sure how to deal with reduced image flavors that I've invented:
# REDUCED, INVVAR, BITMASK
valid_flavors = ['BIAS', 'LIGHT', 'FLAT', 'MASK']
return valid_flavors
|
b12451ff4725f5fcea3592373ef6e53cbe04b23c
| 26,581 |
from pathlib import Path
async def show_tile_with_body(
request: Request, response: Response,
body: TileRequest,
path: Path = Depends(imagepath_parameter),
extension: OutputExtension = Depends(extension_path_parameter),
headers: ImageRequestHeaders = Depends(),
config: Settings = Depends(get_settings)
):
"""
**`GET with body` - when a GET with URL encoded query parameters is not possible due to URL
size limits, a POST with body content must be used.**
Get a 8-bit normalized tile optimized for visualisation, with given channels, focal planes
and timepoints. If multiple channels are given (slice or selection), they are merged. If
multiple focal planes or timepoints are given (slice or selection), a reduction function
must be provided.
**By default**, all image channels are used and when the image is multidimensional, the
tile is extracted from the median focal plane at first timepoint.
"""
return await _show_tile(
request, response,
path, **body.dict(), normalized=True,
extension=extension, headers=headers, config=config
)
|
6f6767f4831496796e2cf622a0362fab11dee844
| 26,583 |
def create_mesh(ob_name, coords, edges=[], faces=[]):
"""Create point cloud object based on given coordinates and name.
Keyword arguments:
ob_name -- new object name
coords -- float triplets eg: [(-1.0, 1.0, 0.0), (-1.0, -1.0, 0.0)]
"""
# Create new mesh and a new object
me = bpy.data.meshes.new(ob_name + "Mesh")
ob = bpy.data.objects.new(ob_name, me)
# Make a mesh from a list of vertices/edges/faces
me.from_pydata(coords, edges, faces)
# Display name and update the mesh
ob.show_name = True
me.update(calc_edges=True)
return ob
|
b57baf08c2a2b07516e36e741b2aa55054883bf8
| 26,584 |
def get_time_from_datetime(data):
""" Returns a timedelta64 series the form "hh:mm:ss" from data, being a
datetime64 series
"""
time = data.apply(lambda x: np.timedelta64(x.hour, 'h') + np.timedelta64(x.minute, 'm') + np.timedelta64(x.second, 's'))
return time
|
d7af50beadbb426d7b1d0671cabf16546707a1b6
| 26,585 |
def tokenize(text):
"""Converts text to tokens. Case-folds, removes stop words, lemmatises text.
This is the same tokenization as is done on the training data for the model.
"""
# Set up dict for lemmatisation
tag_map = defaultdict(lambda : "n") # by default, assume nouns
tag_map['J'] = "a" # adjectives
tag_map['V'] = "v" # verbs
tag_map['R'] = "r" # adverbs
# Get stopword list
stops = stopwords.words("english")
# Create lemmatizer object
lemma = WordNetLemmatizer()
# Case fold
tokens = word_tokenize(text.lower())
# Tag tokens with parts of speech
tokens = [(token[0], tag_map[token[1][0]]) for token in pos_tag(tokens)]
# Lemmatise text
tokens = [lemma.lemmatize(word=w[0], pos=w[1]) for w in tokens]
# Remove stop & short words
tokens = [w for w in tokens if w not in stops and len(w) > 2]
# Return tokens
return tokens
|
d7c6a124d13bd2d0360a22edc24a4d079bb9d93b
| 26,587 |
def do_command(client, command, indices, params=None):
"""
Do the command.
"""
if command == "alias":
return alias(
client, indices, alias=params['name'], remove=params['remove']
)
if command == "allocation":
return allocation(client, indices, rule=params['rule'])
if command == "bloom":
return bloom(client, indices, delay=params['delay'])
if command == "close":
return close(client, indices)
if command == "delete":
return delete(client, indices)
if command == "open":
return opener(client, indices)
if command == "optimize":
return optimize(
client, indices, max_num_segments=params['max_num_segments'],
delay=params['delay'], request_timeout=params['request_timeout']
)
if command == "replicas":
return replicas(client, indices, replicas=params['count'])
if command == "snapshot":
return create_snapshot(
client, indices=indices, name=params['name'],
prefix=params['prefix'], repository=params['repository'],
ignore_unavailable=params['ignore_unavailable'],
include_global_state=params['include_global_state'],
partial=params['partial'],
wait_for_completion=params['wait_for_completion'],
request_timeout=params['request_timeout'],
)
|
e33325a941ee4ed7e50c90cc8fb1067abe377d52
| 26,588 |
def filetostr(filename):
"""
filetostr
"""
try:
with open(filename, "rb") as stream:
return stream.read()
except:
return None
|
52683ada0008fb22e1c48301adf3fd7c48c21d06
| 26,589 |
def valid_for(days):
"""Return a text saying for how many days
the certificate is valid for or years if it spans over years."""
delta = timedelta(days=days)
value = ''
if delta.days / 365 > 1:
value += '%d years' % (delta.days / 365)
else:
value += '%d days' % delta.days
return value
|
fe26213d17477602a8c9dc60ed3fe62297df5390
| 26,590 |
def vcr_config() -> dict:
"""VCR config that adds a custom before_record_request callback."""
nessie_test_config.cleanup = False
return {
"before_record_request": before_record_cb,
}
|
8b61e1c825e1470571445e60da8880fa8dbaa14b
| 26,592 |
import mimetypes
import binascii
def main(): # pylint: disable=R0914,R0912,R0915
"""The main method"""
images = {}
materials = {}
meshes = {}
objects = {}
groups = {}
texts = {}
# Set up our FileDescription
fileid = FileId(filename = bpy.path.abspath(bpy.data.filepath))
file_descr = FileDescription(file=fileid)
file_descr.assets = []
def get_file_id(obj):
"""If the object is in a library, return a file for it, else return this fileid."""
if obj.library:
return FileId(filename = relpath(obj.library.filepath))
return fileid
"""
Images:
- Can be packed, so expose them with 'x-blender.image' mimetype.
"""
for image in bpy.data.images:
image_fileid = get_file_id(image)
image_mimetype = mimetypes.guess_type(image.filepath)[0]
if image.source == 'FILE' and not image.packed_file:
image_fileid = FileId(filename = relpath(image.filepath, start=image.library.filepath if image.library else None))
if image.packed_file:
image_mimetype = 'application/x-blender.image'
asset_descr = AssetDescription(asset = AssetId(subname = image.name, mimetype = image_mimetype, file = image_fileid))
if image.packed_file:
asset_descr.metadata = metadata.MetaDataBlenderImage.extract({'image': image})
file_descr.assets.append(asset_descr)
images[image.name] = asset_descr
"""
Materials:
Have images as dependency.
"""
for material in bpy.data.materials:
asset_descr = AssetDescription(asset = AssetId(subname = material.name, mimetype = 'application/x-blender.material', file = get_file_id(material)))
asset_descr.dependencies = []
image_names = {}
for slot in material.texture_slots:
if slot and slot.texture and slot.texture.type == 'IMAGE' and slot.texture.image:
image_names[slot.texture.image.name] = None
for name in image_names:
if name in images:
dep = images[name].asset
asset_descr.dependencies.append(dep)
file_descr.assets.append(asset_descr)
materials[material.name] = asset_descr
"""
Meshes:
Have materials as dependency
And the images assigned its faces.
"""
for mesh in bpy.data.meshes:
mesh.update(calc_tessface=True)
asset_descr = AssetDescription(asset = AssetId(subname = mesh.name, mimetype = 'application/x-blender.mesh', file = get_file_id(mesh)))
asset_descr.dependencies = []
# Collect materials from the mesh
for material in mesh.materials:
if material:
if material.name in materials:
dep = materials[material.name].asset
asset_descr.dependencies.append(dep)
# Collect images from the faces
image_names = {}
for face in mesh.uv_textures:
for data in face.data:
if data.image:
image_names[data.image.name] = None
for name in image_names:
if name in images:
dep = images[name].asset
asset_descr.dependencies.append(dep)
asset_descr.metadata = metadata.MetaDataBlenderMesh.extract({'mesh': mesh})
file_descr.assets.append(asset_descr)
meshes[mesh.name] = asset_descr
"""
Objects:
Has a Mesh as a dependency.
And materials assigned to the object
"""
for obj in bpy.data.objects:
if obj.type == 'MESH':
object_type = ''
else:
object_type = '-'+str(obj.type).lower()
type = obj.type.lower()
asset_descr = AssetDescription(asset = AssetId(subname = obj.name, mimetype = 'application/x-blender.object'+object_type, file = get_file_id(obj)))
asset_descr.dependencies = []
# Add the mesh as dependency
if obj.data and obj.data.name in meshes:
dep = meshes[obj.data.name].asset
asset_descr.dependencies.append(dep)
# Now the materials
for slot in obj.material_slots:
if slot and slot.material and slot.link == 'OBJECT':
if slot.material.name in materials:
dep = materials[slot.material.name].asset
asset_descr.dependencies.append(dep)
asset_descr.metadata = metadata.MetaDataBlenderObject.extract({'object': obj})
file_descr.assets.append(asset_descr)
objects[obj.name] = asset_descr
"""
Group:
Has its objects as a dependencies.
"""
for group in bpy.data.groups:
asset_descr = AssetDescription(asset = AssetId(subname = group.name, mimetype = 'application/x-blender.group', file = get_file_id(group)))
asset_descr.dependencies = []
# Add the objects as dependencies
for obj in group.objects:
dep = objects[obj.name].asset
asset_descr.dependencies.append(dep)
file_descr.assets.append(asset_descr)
groups[group.name] = asset_descr
"""
Texts:
Can be packed, so expose them with 'x-blender.text' mimetype.
"""
for text in bpy.data.texts:
text_fileid = get_file_id(text)
text_mimetype = 'application/x-blender.text'
if not text.is_in_memory:
path = text.filepath if text.filepath else 'UNKNOWN'
text_fileid = FileId(filename = relpath(path, start=text.library.filepath if text.library else None))
text_mimetype = mimetypes.guess_type(path)[0]
if not text_mimetype:
text_mimetype = 'text/plain'
asset_descr = AssetDescription(asset = AssetId(subname = text.name, mimetype = text_mimetype, file = text_fileid))
file_descr.assets.append(asset_descr)
texts[text.name] = asset_descr
data = SerializeThriftMsg(file_descr)
print('-**-')
print(binascii.hexlify(data))
print('-**-')
|
66494f7904c956f67614cb159c346ad3b0e5283b
| 26,593 |
import random
def get_best(get_fitness, optimalFitness, geneSet, display,
show_ion, target, parent_candidates, seed=None,
hull=None, simplex=None, verbose=0, hull_bounds=[0, 1],
inner_search=True, parent_cap=25, mutation_cap=1000):
"""
the primary public function of the engine
Parameters
----------
get_fitness : function
the fitness function. Usually based on a molecular property.
An example can be found in the salt_generator module
optimalFitness : float
0-1 the user specifies how close the engine should get to
the target (1 = exact)
geneSet : object
consists of atomtypes (by periodic number), rdkit molecular
fragments and custom fragments (that are currently hard
coded into the engine). These are the building blocks that
the engine can use to mutate the molecular candidate via the
_mutate() function
display : function
for printing results to the screen. Display is called for
every accepted mutation
show_ion : function
for printing results to the screen. show_ion is called when
a candidate has achieved the desired fitness score and is
returned by the engine
target : array, float, or int
the desired property value to be achieved by the engine.
If an array, a model containing multi-output targets must
be supplied to the engine
parent_candidates : array
an array of smiles strings that the engine uses to choose
a starting atomic configuration
seed : int, optional
optional randint seed for unittest consistency
hull : pandas DataFrame, optional
nxm pandas DataFrame to use convex hull search strategy. hull
columns should be the same properties used in the genetic algorithm
fitness test
simplex : array, optional
array to access boundary datapoints in the convex hull. This is used
during target resampling defined by the convex hull/simplex
verbose : int, optional, default 0
0 : most verbose. Best child, parent/target resampling,
sanitization failure
1 : parent/target resampling, solution metadata, sanitization failure
2 : solution metdata, sanitization failure
3 : target resampling, csv-formatted solution metadata
4 : csv-formatted solution metadata
hull_bounds : array, optional
if hull and simplex are not none, hull_bounds describes the
proximity convex_search should be to the simplex
inner_search : bool, optional
if hull and simplex are not none, inner_search specifies if
convex_search should return values only within the convex hull
Returns
----------
child : Chromosome object
the accepted molecular configuration. See Chromosome class
for details
"""
mutation_attempts = 0
attempts_since_last_adoption = 0
parents_sampled = 0
targets_sampled = 0
if seed:
random.seed(seed)
bestParent = _generate_parent(parent_candidates, get_fitness, target)
if verbose == 0:
display(bestParent, "starting structure", target)
if bestParent.Fitness >= optimalFitness:
return bestParent
while True:
with suppress_rdkit_sanity():
child, mutation = _mutate(bestParent, geneSet, get_fitness, target)
mutation_attempts += 1
attempts_since_last_adoption += 1
if attempts_since_last_adoption > mutation_cap:
if hull is not None and parents_sampled > parent_cap:
target = convex_search(hull, simplex, hull_bounds,
inner_search)
targets_sampled += 1
if verbose in [0, 1, 3]:
print("assigning new target: {}".format(target))
child = _generate_parent(parent_candidates, get_fitness, target)
parents_sampled += 1
if verbose in [0, 1]:
print("starting from new parent")
elif bestParent.Fitness >= child.Fitness:
continue
if verbose == 0:
display(child, mutation, target)
attempts_since_last_adoption = 0
if child.Fitness >= optimalFitness:
sim_score, sim_index = molecular_similarity(child,
parent_candidates)
molecular_relative = parent_candidates[sim_index]
if verbose in [0, 1, 2]:
show_ion(child.Genes, target, mutation_attempts, sim_score,
molecular_relative)
return child
bestParent = child
|
5ebc9757b4518eabf2968bda9dc6cabd10e5cdb1
| 26,594 |
from datetime import datetime
def generate_info_endpoint_reply(request):
"""
This just returns a hardcoded introspection string.
"""
available_api_versions = {}
for ver in optimade_supported_versions:
available_api_versions[optimade_supported_versions[ver]] = request['baseurl'] + ver
response = {
"links": {
"base_url": request['baseurl']
},
"data": [
{
"type": "info",
"id": "/",
"attributes": {
"api_version": 'v'+request['version'],
"available_api_versions": available_api_versions,
"formats": [
"json"
],
"entry_types_by_format": {
"json": [
"structure",
"calculation"
],
},
"available_endpoints": [
"entry",
"all",
"info"
]
}
}
],
"meta": {
"query": {
"representation": request['representation']
},
"api_version": request['version'],
"time_stamp": datetime.datetime.now().isoformat(),
"data_returned": 0,
"more_data_available": False,
}
}
return response
|
93e0b818c95742d0b7db679e0b3d3ade034cc0e8
| 26,595 |
def M(s,o):
"""
M -
s - array of predictions (or simulated)
o - array of observations (or targets)
"""
s,o = np.array(s),np.array(o)
return np.nansum( np.abs( np.divide(s-o,o) ))/len(o)
|
5c53c8b02c88a37204f478d71fb74f2536848af0
| 26,596 |
def check_link_exist(destination: str):
"""Check if link already exists and return otherwise return None"""
session: Session = db_session.create_session()
result = session.execute(
f"SELECT short_link FROM links WHERE destination = '{destination}'",
) # fix possible SQL injection
for row in result:
return row[0]
else:
return None
|
57f27da14c4ee551f6eb1e9424cd2b446658ae2f
| 26,597 |
from communities.models import Community
def smart_404(request):
"""Returns a 404 message that tries to help the user."""
base_url = settings.HOST_URL
not_found = {
'type': None,
'redirect_url': base_url
}
path_arguments = request.path.split('/')[1:]
if path_arguments and path_arguments[0].isdigit():
try:
c = Community.objects.get(pk=path_arguments[0])
if path_arguments[1] == 'issues':
not_found['type'] = 'no_issue'
not_found['redirect_url'] = base_url + '/' + str(c.pk) + '/issues/'
if path_arguments[2] == 'procedures':
not_found['type'] = 'no_procedure'
not_found['redirect_url'] = base_url + '/' + str(c.pk) + '/issues/procedures/'
else:
not_found['type'] = 'no_community_route'
not_found['redirect_url'] = base_url + '/' + str(c.pk) + '/'
except Community.DoesNotExist:
not_found['type'] = 'no_community'
return {'not_found': not_found}
|
62252efb658054b88933109ce7b162cd43962186
| 26,598 |
def get_basemap():
"""
Use cached copy of basemap from the script's parent folder
otherwise download basemap from imgur
"""
url = "https://i.imgur.com/yIVogZH.png"
image = "basemap.png"
location = PATH + image
print(location)
try:
basemap = cbook.get_sample_data(location)
except BaseException:
download_img(url, image)
basemap = cbook.get_sample_data(location)
return basemap
|
b1d8267da582206c60006268b5a576cabbe30d28
| 26,599 |
def pairs_to_annotations(annotation_pairs):
"""
Convert an array of annotations pairs to annotation array.
:param annotation_pairs: list(AnnotationPair) - annotations
:return: list(Annotation)
"""
annotations = []
for ap in annotation_pairs:
if ap.ann1 is not None:
annotations.append(ap.ann1)
if ap.ann2 is not None:
annotations.append(ap.ann2)
return annotations
|
b0e08889f541b14d596616d08b366f59b7f8ddd3
| 26,600 |
def sanitize_param(value, valid_characters=valid_chars, character_map=mapped_chars, invalid_character='X'):
"""Clean incoming parameters (strings or lists)"""
if isinstance(value, string_types):
return sanitize_text(value, valid_characters=valid_characters, character_map=character_map, invalid_character=invalid_character)
elif isinstance(value, list):
return [sanitize_text(x, valid_characters=valid_characters, character_map=character_map, invalid_character=invalid_character) for x in value]
else:
raise Exception('Unknown parameter type (%s)' % (type(value)))
|
e3ed0d1a62bdbff0c2b3a204836d4d3afe467ced
| 26,601 |
def default_meta(inherit=True):
"""Initialize default meta for particular plugin.
Default Meta is inherited by all children comparing to Meta which is unique
per plugin.
:param inherit: Whatever to copy parents default meta
"""
def decorator(plugin):
plugin._default_meta_init(inherit)
return plugin
return decorator
|
174b37f389160c007e7a609a78b5071031970004
| 26,602 |
def get_default_database_name():
"""
gets default database name.
:rtype: str
"""
return get_component(DatabasePackage.COMPONENT_NAME).get_default_database_name()
|
23bf228a284b5880a5155beced606ef4d6f81d16
| 26,603 |
def npm_local_packages():
"""
Get list of local packages
:return: a tuple of dicts
"""
local_dependencies = {}
local_dev_dependencies = {}
package_json = get_package_json()
for name, version in package_json.get("dependencies", {}).items():
match = LOCAL_PACKAGE.match(version)
if match:
[local_dependencies[name]] = match.groups()
for name, version in package_json.get("devDependencies", {}).items():
match = LOCAL_PACKAGE.match(version)
if match:
[local_dev_dependencies[name]] = match.groups()
return local_dependencies, local_dev_dependencies
|
cb9f52bb97f402b00e3dac0c6a69332f2199ccd5
| 26,604 |
def lagrangian_descriptor(u, v, p_value = 0.5):
"""
Vector field equation for Lagrangian descriptor.
Parameters
----------
v : ndarray, shape(n,2)
Vector field at given point.
p_value : float, optional
Exponent in Lagrangian descriptor definition.
0 is the acton-based LD,
0 < p_value < 1 is the Lp quasinorm,
1 <= p_value < 2 is the Lp norm LD,
2 is the arclength LD.
The default is 0.5.
Returns
-------
LD : ndarray, shape(n,1)
Vector field for Lagrangian descriptor dimension.
"""
if p_value == 0:
LD = np.abs(u[:,1]*v[:,0])
elif p_value>0:
LD = np.sum(np.abs(v)**p_value, axis=1)
else:
LD = np.zeros(len(u[:,0]))
return LD
|
ddd6bb7fb8538b6d44f2507e7b065cbe70338c39
| 26,605 |
def xymatch(x1, y1, x2, y2, tol=None, nnearest=1):
"""Fast cross-matching of xy coordinates: from https://gist.github.com/eteq/4599814"""
x1 = np.array(x1, copy=False)
y1 = np.array(y1, copy=False)
x2 = np.array(x2, copy=False)
y2 = np.array(y2, copy=False)
if x1.shape != y1.shape:
raise ValueError('x1 and y1 do not match!')
if x2.shape != y2.shape:
raise ValueError('x2 and y2 do not match!')
# this is equivalent to, but faster than just doing np.array([x1, y1])
coords1 = np.empty((x1.size, 2))
coords1[:, 0] = x1
coords1[:, 1] = y1
# this is equivalent to, but faster than just doing np.array([x2, y2])
coords2 = np.empty((x2.size, 2))
coords2[:, 0] = x2
coords2[:, 1] = y2
kdt = KDT(coords2)
if nnearest == 1:
ds,idxs2 = kdt.query(coords1)
elif nnearest > 1:
retval = kdt.query(coords1, nnearest)
ds = retval[0]
idxs2 = retval[1][:, -1]
else:
raise ValueError('invalid nnearest ' + str(nnearest))
idxs1 = np.arange(x1.size)
if tol is not None:
msk = ds < tol
idxs1 = idxs1[msk]
idxs2 = idxs2[msk]
ds = ds[msk]
return idxs1, idxs2, ds
|
0c81add24308fdbe90144776fb4b72e9801ddd11
| 26,606 |
def get_infection_probas_mean_field(probas, transmissions):
"""
- probas[i,s] = P_s^i(t)
- transmissions = csr sparse matrix of i, j, lambda_ij(t)
- infection_probas[i] = sum_j lambda_ij P_I^j(t)
"""
infection_probas = transmissions.dot(probas[:, 1])
return infection_probas
|
70d5585b405bdff54f65bced166dead6ae45d26b
| 26,607 |
import time
import ast
def eval_task(algo, specific_testsets, measures, head_items, crossfold_index, save_path=None, load_path=None, uid_plus_iid_to_row=None):
"""
Evaluate on specific testsets.
This function exists to make testset evaluation easier to parallelize.
"""
ret = []
if load_path and uid_plus_iid_to_row is None:
tic = time.time()
load_from = '{}_seed0_fold{}_all_predictions.txt'.format(load_path, crossfold_index)
print('load_from', load_from)
with open(load_from, 'r') as file_handler:
content = ['[' + x.strip('\n') + ']' for x in file_handler.readlines()]
assert(content[0] == '[uid,iid,r_ui,est,details,crossfold_index]')
all_predictions = [Prediction(*ast.literal_eval(line)[:-1]) for line in content[1:]]
uid_plus_iid_to_row = {}
for prediction in all_predictions:
uid_plus_iid = str(prediction[0]) + '_' + str(prediction[1])
uid_plus_iid_to_row[uid_plus_iid] = prediction
print('Loading predictions within eval_task took {}'.format(time.time() - tic))
for key, specific_testset in specific_testsets.items():
start_specific_testset = time.time()
if uid_plus_iid_to_row:
# if this dict is populated we should use it. if it is empty we can't use it, need to run algo.test
predictions = []
tic = time.time()
if isinstance(specific_testset, np.ndarray):
iterate_on = specific_testset.tolist()
else:
iterate_on = specific_testset
for prediction in iterate_on:
uid_plus_iid = str(prediction[0]) + '_' + str(prediction[1])
predictions.append(uid_plus_iid_to_row[uid_plus_iid])
#print('Took {} seconds to load {} predictions from uid_plus_iid_to_row'.format(time.time() - tic, len(predictions)))
else:
predictions = algo.test(specific_testset)
if save_path and load_path is None and uid_plus_iid_to_row is None: # if you just loaded the predictions, don't save them again, waste of time...
with open('{}_seed0_fold{}_{}_predictions.txt'.format(save_path, crossfold_index, key), 'w') as file_handler:
file_handler.write('uid,iid,r_ui,est,details,crossfold_index\n')
for prediction in predictions:
file_handler.write(','.join([str(x) for x in prediction] + [str(crossfold_index)]) + '\n')
if not predictions:
ret.append([key, {}, 0, 0])
continue
test_measures = {}
for m in measures:
tic = time.time()
eval_func = getattr(accuracy, m.lower())
result = eval_func(predictions, verbose=0)
# NMV 10/26: rewriting this whole chunk b/c we refactored accuracy.py.
#if 'ndcg' in m:
if m == 'list_metrics':
tail_result = eval_func(predictions, verbose=0, head_items=head_items)
for metric_name in result.keys():
mean_val, frac_of_users = result[metric_name]
tail_mean_val, tail_frac = tail_result[metric_name]
test_measures[metric_name] = mean_val
test_measures[metric_name + '_frac'] = frac_of_users
test_measures['tail' + metric_name] = tail_mean_val
test_measures['tail' + metric_name + '_frac'] = tail_frac
# sub_measures = m.split('_')
# for i_sm, sub_measure in enumerate(sub_measures):
# mean_val, frac_of_users = result[i_sm]
# tail_mean_val, _ = tail_result[i_sm]
# test_measures[sub_measure] = mean_val
# test_measures[sub_measure + '_frac'] = frac_of_users
# test_measures['tail' + sub_measure] = tail_mean_val
else:
test_measures[m] = result
test_time = time.time() - start_specific_testset
ret.append([key, test_measures, test_time, len(specific_testset)])
return ret
|
4f5171ea4473505237b2c353e164ba4b78d07357
| 26,608 |
def newton(RJ, x0, verbose = False, rtol = 1.0e-6, atol = 1.0e-10, miter = 50,
linesearch = 'none', bt_tau = 0.5, bt_c = 1.0e-4):
"""
Manually-code newton-raphson so that I can output convergence info, if
requested.
Parameters:
RJ function return the residual + jacobian
x0 initial guess
Optional:
verbose verbose output
rtol relative tolerance
atol absolute tolerance
miter maximum iterations
linesearch available options: "none" and "backtracking"
bt_tau tau factor for backtracking line search
bt_c c factor for backtracking line search
"""
R, J = RJ(x0)
nR = la.norm(R)
nR0 = nR
x = np.copy(x0)
i = 0
if verbose:
print("Iter.\tnR\t\tnR/nR0\t\tcond\t\tlinesearch")
print("%i\t%e\t%e\t" % (i, nR, nR / nR0))
while (nR > rtol * nR0) and (nR > atol):
a = la.solve(J, R)
if linesearch == 'none':
f = 1.0
elif linesearch == 'backtracking':
f = backtrack(RJ, R, J, x, -a, tau = bt_tau, c = bt_c, verbose = verbose)
else:
raise ValueError("Unknown linesearch type.")
x -= (a * f)
R, J = RJ(x)
nR = la.norm(R)
i += 1
if verbose:
print("%i\t%e\t%e\t%e\t%f" % (i, nR, nR / nR0,la.cond(J), f))
if i > miter:
if verbose:
print("")
raise MaximumIterations()
if verbose:
print("")
return x
|
b6baa3288c6f417ca4ec7284237ea35d4f2442dd
| 26,609 |
from typing import List
from pathlib import Path
def gen_oltp_trace(
tpcc_weight: str, tpcc_rates: List[int], pattern_iter: int) -> bool:
"""
Generates the trace by running OLTP TPCC benchmark on the built database
:param tpcc_weight: Weight for the TPCC workload
:param tpcc_rates: Arrival rates for each phase in a pattern
:param pattern_iter: Number of patterns
:return: True when data generation succeeds
"""
# Remove the old query_trace/query_text.csv
Path(DEFAULT_QUERY_TRACE_FILE).unlink(missing_ok=True)
# Server is running when this returns
oltp_server = TestOLTPBench(DEFAULT_OLTP_SERVER_ARGS)
db_server = oltp_server.db_instance
db_server.run_db()
# Download the OLTP repo and build it
oltp_server.run_pre_suite()
# Load the workload pattern - based on the tpcc.json in
# testing/oltpbench/config
test_case_config = DEFAULT_OLTP_TEST_CASE
test_case_config["weights"] = tpcc_weight
test_case = TestCaseOLTPBench(test_case_config)
# Prep the test case build the result dir
test_case.run_pre_test()
rates = tpcc_rates * pattern_iter
config_forecast_data(test_case.xml_config, rates)
# Turn on query trace metrics tracing
db_server.execute("SET query_trace_metrics_enable='true'", expect_result=False)
# Run the actual test
ret_val, _, stderr = run_command(test_case.test_command,
test_case.test_error_msg,
cwd=test_case.test_command_cwd)
if ret_val != ErrorCode.SUCCESS:
LOG.error(stderr)
return False
# Clean up, disconnect the DB
db_server.stop_db()
db_server.delete_wal()
if not Path(DEFAULT_QUERY_TRACE_FILE).exists():
LOG.error(
f"Missing {DEFAULT_QUERY_TRACE_FILE} at CWD after running OLTP TPCC")
return False
return True
|
8ac09fd8f85d7c83944759829775c3dbb1b0741e
| 26,610 |
def plot_hmesh(mesh, box=None, proj='pc', figsize=[9,4.5],
title=None, do_save=None, do_lsmask='fesom', color_lsmask=[0.6, 0.6, 0.6],
linecolor='k', linewidth=0.2, linealpha=0.75, pos_extend=None,):
"""
---> plot FESOM2 horizontal mesh:
___INPUT:___________________________________________________________________
mesh : fesom2 mesh object, with all mesh information
box : None, list (default: None) regional limitation of plot [lonmin,
lonmax, latmin, latmax]
proj : str, (default: 'pc') which projection should be used, 'pc'=
ccrs.PlateCarree(), 'merc'=ccrs.Mercator(), 'nps'=
ccrs.NorthPolarStereo(), 'sps'=ccrs.SouthPolarStereo(),
'rob'=ccrs.Robinson()
fig_size : list (default:[9,4.5] ), list with figure width and figure
height [w, h]
title : None, str,(default:None) give every plot panel a title string
IF: None ... no title is plotted
'descript' ... use data 'descript' attribute for title string
'string' ... use given string as title
do_save : None, str (default:None) if None figure will by not saved, if
string figure will be saved, strings must give directory and
filename where to save.
do_lsmask : None, str (default: 'fesom') plot land-sea mask.
If: None ... no land sea mask is used,
'fesom' ... overlay fesom shapefile land-sea mask using
color color_lsmask
'stock' ... use cartopy stock image as land sea mask
'bluemarble' ... use bluemarble image as land sea mask
'etopo' ... use etopo image as land sea mask
do_bottom : bool, (default:True) highlight nan bottom topography
with gray color defined by color_bot
color_lsmask: list, (default: [0.6, 0.6, 0.6]) RGB facecolor value for fesom
shapefile land-sea mask patch
linecolor : str, list, (default:'k') either color string or RGB list
linewidth : float, (default:0.2) linewidth of mesh
linealpha : float, (default:0.75) alpha value of mesh
___RETURNS:_________________________________________________________________
fig : returns figure handle
ax : returns list with axes handle
____________________________________________________________________________
"""
fontsize = 12
str_rescale = None
n_rc = [1,1]
pos_fac = 1.0
pos_gap = [0.02, 0.02]
#___________________________________________________________________________
# make matrix with row colum index to know where to put labels
rowlist = np.zeros((n_rc[0],n_rc[1]))
collist = np.zeros((n_rc[0],n_rc[1]))
for ii in range(0,n_rc[0]): rowlist[ii,:]=ii
for ii in range(0,n_rc[1]): collist[:,ii]=ii
rowlist = rowlist.flatten()
collist = collist.flatten()
#___________________________________________________________________________
# create box if not exist
if box is None: box = [ -180+mesh.focus, 180+mesh.focus, -90, 90 ]
#___________________________________________________________________________
# Create projection
if proj=='pc':
which_proj=ccrs.PlateCarree()
which_transf = None
elif proj=='merc':
which_proj=ccrs.Mercator()
which_transf = ccrs.PlateCarree()
elif proj=='nps':
which_proj=ccrs.NorthPolarStereo()
which_transf = ccrs.PlateCarree()
elif proj=='sps':
which_proj=ccrs.SouthPolarStereo()
which_transf = ccrs.PlateCarree()
elif proj=='rob':
which_proj=ccrs.Robinson()
which_transf = ccrs.PlateCarree()
#___________________________________________________________________________
# create lon, lat ticks
xticks,yticks = do_ticksteps(mesh, box)
#___________________________________________________________________________
# create figure and axes
fig, ax = plt.subplots( n_rc[0],n_rc[1],
figsize=figsize,
subplot_kw =dict(projection=which_proj),
gridspec_kw=dict(left=0.06, bottom=0.05, right=0.95, top=0.95, wspace=0.05, hspace=0.05,),
constrained_layout=False, )
#___________________________________________________________________________
# flatt axes if there are more than 1
if isinstance(ax, np.ndarray): ax = ax.flatten()
else: ax = [ax]
nax = len(ax)
#___________________________________________________________________________
# create mesh triangulation
tri = Triangulation(np.hstack((mesh.n_x,mesh.n_xa)),
np.hstack((mesh.n_y,mesh.n_ya)),
np.vstack((mesh.e_i[mesh.e_pbnd_0,:],mesh.e_ia)))
# Limit points to projection box
if proj=='nps' or proj=='sps' or 'pc':
e_idxbox = grid_cutbox_e(tri.x, tri.y, tri.triangles, box, which='hard')
else:
points = which_transf.transform_points(which_proj,
tri.x[tri.triangles].sum(axis=1)/3,
tri.y[tri.triangles].sum(axis=1)/3)
xpts, ypts = points[:,0].flatten().tolist(), points[:,1].flatten().tolist()
crs_pts = list(zip(xpts,ypts))
fig_pts = ax[0].transData.transform(crs_pts)
ax_pts = ax[0].transAxes.inverted().transform(fig_pts)
x, y = ax_pts[:,0], ax_pts[:,1]
e_idxbox = (x>=-0.05) & (x<=1.05) & (y>=-0.05) & (y<=1.05)
tri.triangles = tri.triangles[e_idxbox,:]
#___________________________________________________________________________
# loop over axes
for ii in range(0,nax):
#_______________________________________________________________________
# set axes extent
ax[ii].set_extent(box, crs=ccrs.PlateCarree())
#_______________________________________________________________________
# add grid mesh on top
ax[ii].triplot(tri.x, tri.y, tri.triangles,
color=linecolor, linewidth=linewidth,
alpha=linealpha)
#_______________________________________________________________________
# add mesh land-sea mask
ax[ii] = do_plotlsmask(ax[ii],mesh, do_lsmask, box, which_proj,
color_lsmask=color_lsmask, edgecolor=linecolor,
linewidth=0.5)
#_______________________________________________________________________
# add gridlines
ax[ii] = do_add_gridlines(ax[ii], rowlist[ii], collist[ii],
xticks, yticks, proj, which_proj)
#_______________________________________________________________________
# set title and axes labels
if title is not None:
# is title string:
if isinstance(title,str) :
ax[ii].set_title(title, fontsize=fontsize+2)
# is title list of string
elif isinstance(title,list):
ax[ii].set_title(title[ii], fontsize=fontsize+2)
nax_fin = ii+1
#___________________________________________________________________________
# delete axes that are not needed
for jj in range(nax_fin, nax): fig.delaxes(ax[jj])
#___________________________________________________________________________
# repositioning of axes and colorbar
ax, cbar = do_reposition_ax_cbar(ax, None, rowlist, collist, pos_fac,
pos_gap, title=title, proj=proj, extend=pos_extend)
#___________________________________________________________________________
# save figure based on do_save contains either None or pathname
do_savefigure(do_save, fig)
#___________________________________________________________________________
return(fig, ax)
|
9a921224440f359c33686822411b928ebd939550
| 26,611 |
def _get_feature_proportion(features_percentage: int,
indices_number: int) -> int:
"""
Computes a number of features based on the given percentage.
"""
assert (isinstance(features_percentage, int)
and 0 <= features_percentage <= 100
and isinstance(indices_number, int))
feature_proportion = int((features_percentage / 100) * indices_number)
if feature_proportion:
features_number = feature_proportion
else:
logger.warning(
'Since the number of features to be extracted was not given '
'%d%% of features will be used. This percentage translates to '
'0 features, therefore the number of features to be used is '
'overwritten to 1. To prevent this from happening, you should '
'either explicitly set the number of features via the '
'features_number parameter or increase the value of the '
'features_percentage parameter.', features_percentage)
features_number = feature_proportion + 1
return features_number
|
78a5d5515b479b20fcfbbf25cdd2339f0bc8b99f
| 26,612 |
def orthoProjectionMatrix(left, right, bottom, top, nearClip=0.01, farClip=100.,
out=None, dtype=None):
"""Compute an orthographic projection matrix with provided frustum
parameters.
Parameters
----------
left : float
Left clipping plane coordinate.
right : float
Right clipping plane coordinate.
bottom : float
Bottom clipping plane coordinate.
top : float
Top clipping plane coordinate.
nearClip : float
Near clipping plane distance from viewer.
farClip : float
Far clipping plane distance from viewer.
out : ndarray, optional
Optional output array. Must be same `shape` and `dtype` as the expected
output if `out` was not specified.
dtype : dtype or str, optional
Data type for arrays, can either be 'float32' or 'float64'. If `None` is
specified, the data type is inferred by `out`. If `out` is not provided,
the default is 'float64'.
Returns
-------
ndarray
4x4 projection matrix
See Also
--------
perspectiveProjectionMatrix : Compute a perspective projection matrix.
Notes
-----
* The returned matrix is row-major. Values are floats with 32-bits of
precision stored as a contiguous (C-order) array.
"""
if out is None:
dtype = np.float64 if dtype is None else np.dtype(dtype).type
else:
dtype = np.dtype(out.dtype).type
projMat = np.zeros((4, 4,), dtype=dtype) if out is None else out
if out is not None:
projMat.fill(0.0)
u = dtype(2.0)
projMat[0, 0] = u / (right - left)
projMat[1, 1] = u / (top - bottom)
projMat[2, 2] = -u / (farClip - nearClip)
projMat[0, 3] = -((right + left) / (right - left))
projMat[1, 3] = -((top + bottom) / (top - bottom))
projMat[2, 3] = -((farClip + nearClip) / (farClip - nearClip))
projMat[3, 3] = 1.0
return projMat
|
f1b80b8eeda514ff02142ffe6dcdd761cd789e73
| 26,613 |
def get_nsnames(zone):
"""Get list of nameservers names to query"""
if Prefs.NO_NSSET:
if not Prefs.ADDITIONAL:
print("ERROR: -n requires specifying -a")
usage()
return Prefs.ADDITIONAL
answers = dns.resolver.resolve(zone, 'NS', 'IN')
return Prefs.ADDITIONAL + sorted([str(x.target) for x in answers.rrset])
|
1c5da972922afc0724144545a57bc1d01012dd11
| 26,614 |
def pbmcs_10x_cite_seq(
save_path: str = "data/",
protein_join: str = "inner",
run_setup_anndata: bool = True,
) -> anndata.AnnData:
"""
Filtered PBMCs from 10x Genomics profiled with RNA and protein.
Datasets were filtered for doublets and other outliers as in
https://github.com/YosefLab/totalVI_reproducibility/blob/master/data/data_filtering_scripts/pbmc_10k/pbmc_10k.py
Parameters
----------
save_path
Location to use when saving/loading the data.
protein_join
Whether to take an inner join or outer join of proteins
run_setup_anndata
If true, runs setup_anndata() on dataset before returning
Returns
-------
AnnData with batch info (``.obs['batch']``),
and protein expression (``.obsm["protein_expression"]``)
Missing protein values are zero, when ``protein_join == "outer`` and are identified during ``AnnData`` setup.
Examples
--------
>>> import scvi
>>> adata = scvi.data.pbmcs_10x_cite_seq()
"""
return _load_pbmcs_10x_cite_seq(
save_path=save_path,
protein_join=protein_join,
run_setup_anndata=run_setup_anndata,
)
|
eccb235496b6c466ffd2e234ab6b20487c7cf233
| 26,615 |
def binom(n, k):
"""Binomial coefficients for :math:`n choose k`
:param n,k: non-negative integers
:complexity: O(k)
"""
prod = 1
for i in range(k):
prod = (prod * (n - i)) // (i + 1)
return prod
|
73e06e4c312f6634d9a97914f330ade845a9ce00
| 26,616 |
def get_not_found_swagger_schema():
""" """
class NotFoundResponseModel(Schema):
""" """
type = "object"
properties = {
"message": {
"type": "string",
}
}
return NotFoundResponseModel
|
c1ac8c85224c2e885ade68593a1d250af09a465b
| 26,618 |
def find_project(testrun_url):
"""
Find a project name from this Polarion testrun URL.
:param testrun_url: Polarion test run URL
:returns: project name eg "CEPH" or "ContainerNativeStorage"
"""
url_suffix = testrun_url[59:]
index = url_suffix.index('/')
return url_suffix[:index]
|
a19019846fa084398a4967cb99417e7aebc90499
| 26,619 |
def c2ip(c2, uname):
""" return complete ip address for c2 with substituted username """
return c2['ip_address'].replace('USER', uname)
|
c6f79b2330e78c8ebc85a3fb99ce1c5be407f158
| 26,620 |
def beacon(config):
"""
Watch the configured directories
Example Config
.. code-block:: yaml
beacons:
watchdog:
- directories:
/path/to/dir:
mask:
- create
- modify
- delete
- move
The mask list can contain the following events (the default mask is create,
modify delete, and move):
* create - File or directory is created in watched directory
* modify - The watched directory is modified
* delete - File or directory is deleted from watched directory
* move - File or directory is moved or renamed in the watched directory
"""
_config = {}
list(map(_config.update, config))
queue = _get_queue(_config)
ret = []
while queue:
ret.append(to_salt_event(queue.popleft()))
return ret
|
5981f150276c2f9b9512c33864de02b0ce37094e
| 26,621 |
import json
def scenario(request):
"""
Retrieve the parameters and nodes for a scenario
Parameters:
model_uuid (uuid): required
scenario_id (int): required
Returns: HttpResponse
Example:
GET: /component/scenario/
"""
model_uuid = request.GET['model_uuid']
scenario_id = request.GET['scenario_id']
request.session['scenario_id'] = scenario_id
model = Model.by_uuid(model_uuid)
can_edit = model.handle_view_access(request.user)
# Scenario Parameters
colors = model.color_lookup
parameters = Scenario_Param.objects.filter(
model_id=model.id, scenario_id=scenario_id,
run_parameter__user_visibility=True)
# All Loc Techs
loc_techs = []
lts = model.loc_techs
lts = lts.values('id', 'technology_id', 'technology__pretty_name',
'technology__pretty_tag',
'technology__abstract_tech__icon',
'location_1__pretty_name', 'location_2__pretty_name')
for lt in lts:
tech_id = lt["technology_id"]
color = colors[tech_id] if tech_id in colors.keys() else "#000"
loc_techs.append({
"id": lt['id'],
"technology_id": lt['technology_id'],
"tag": lt["technology__pretty_tag"],
"technology": lt["technology__pretty_name"],
"location_1": lt["location_1__pretty_name"],
"location_2": lt["location_2__pretty_name"],
"color": color,
"icon": lt["technology__abstract_tech__icon"]})
# Active Loc Techs
active_lts = Scenario_Loc_Tech.objects.filter(scenario_id=scenario_id)
active_lt_ids = list(active_lts.values_list("loc_tech_id", flat=True))
# Filters Data
unique_techs = [v['technology'] for v in loc_techs]
unique_tags = [v['tag'] for v in loc_techs]
locations = [(v['location_1'],
v['location_2']) for v in loc_techs]
unique_locations = [item for sublist in locations for item in sublist]
context = {
"model": model,
"parameters": parameters,
"can_edit": can_edit}
scenario_settings = list(render(request,
'scenario_settings.html',
context))[0]
context = {
"model": model,
"colors": colors,
"carrier_ins": model.carrier_lookup(True),
"carrier_outs": model.carrier_lookup(False),
"active_lt_ids": active_lt_ids,
"loc_techs": loc_techs,
"scenario_id": scenario_id,
"unique_techs": sorted(filter(None, set(unique_techs))),
"unique_tags": sorted(filter(None, set(unique_tags))),
"unique_locations": sorted(filter(None, set(unique_locations))),
"can_edit": can_edit}
scenario_configuration = list(render(request,
'scenario_configuration.html',
context))[0]
payload = {
'model_id': model.id,
'scenario_id': scenario_id,
'loc_techs': loc_techs,
'active_lt_ids': active_lt_ids,
'scenario_settings': scenario_settings.decode('utf-8'),
'scenario_configuration': scenario_configuration.decode('utf-8')}
return HttpResponse(json.dumps(payload, indent=4),
content_type="application/json")
|
795bad706c97c20b566d9fcc999b7e01b0b79194
| 26,622 |
def already_voted(replied: str, user_id: str, db: dataset.Database) -> bool:
"""Search in the database for an existing vote of the user on the replied message
Args:
replied: id of the message which the vote is a reply
user_id: id of the user who's voting
Returns:
The return value. True if the user already voted on the message, False otherwise.
"""
table = db['messages']
row = table.find_one(replied=replied, user_id=user_id)
return row is not None
|
89ec426df156776ab4a494f0dab0079881b45db2
| 26,623 |
def create_bi_sequence_embedding(inputs, seq_lengths, repr_dim, vocab_size, emb_name, rnn_scope, reuse_scope=False):
"""
Bidirectional encoding
:param inputs: tensor [d1, ... ,dn] of int32 symbols
:param seq_lengths: [s1, ..., sn] lengths of instances in the batch
:param repr_dim: dimension of embeddings
:param vocab_size: number of symbols
:return: return outputs_fw, last_state_fw, outputs_bw, last_state_bw
"""
# use a shared embedding matrix for now, test if this outperforms separate matrices later
embedding_matrix = tf.Variable(tf.random_uniform([vocab_size, repr_dim], -0.1, 0.1, dtype=_FLOAT_TYPE),
name=emb_name, trainable=True, dtype=_FLOAT_TYPE)
# [batch_size, max_seq_length, input_size]
embedded_inputs = tf.nn.embedding_lookup(embedding_matrix, inputs)
# dummy test to see if the embedding lookup is working
# Reduce along dimension 1 (`n_input`) to get a single vector (row) per input example
# embedding_aggregated = tf.reduce_sum(embedded_inputs, [1])
### first FW LSTM ###
with tf.variable_scope(rnn_scope + "_FW") as scope:
if reuse_scope == True:
scope.reuse_variables()
cell_fw = tf.nn.rnn_cell.LSTMCell(repr_dim, state_is_tuple=True)
#cell_fw = tf.contrib.rnn.AttentionCellWrapper(cell_fw, 3, state_is_tuple=True) # not working
cell_fw = tf.nn.rnn_cell.DropoutWrapper(cell=cell_fw, output_keep_prob=0.9)
# outputs shape: [batch_size, max_time, cell.output_size]
# last_states shape: [batch_size, cell.state_size]
outputs_fw, last_state_fw = tf.nn.dynamic_rnn(
cell=cell_fw,
dtype=_FLOAT_TYPE,
sequence_length=seq_lengths,
inputs=embedded_inputs)
embedded_inputs_rev = tf.reverse(embedded_inputs, [False, True, False]) # reverse the sequence
### first BW LSTM ###
with tf.variable_scope(rnn_scope + "_BW") as scope:
if reuse_scope == True:
scope.reuse_variables()
cell_bw = tf.nn.rnn_cell.LSTMCell(repr_dim, state_is_tuple=True)
cell_bw = tf.nn.rnn_cell.DropoutWrapper(cell=cell_bw, output_keep_prob=0.9)
# outputs shape: [batch_size, max_time, cell.output_size]
# last_states shape: [batch_size, cell.state_size]
outputs_bw, last_state_bw = tf.nn.dynamic_rnn(
cell=cell_bw,
dtype=_FLOAT_TYPE,
sequence_length=seq_lengths,
inputs=embedded_inputs_rev)
return outputs_fw, last_state_fw, outputs_bw, last_state_bw, embedding_matrix
|
1f160100745801ac4baf3d82d8ee7b76900c0547
| 26,624 |
import mmap
async def input_checker(user_guess: str) -> bool:
"""Check if the user's input is actually a word.
Method for checking if input is in text file: https://stackoverflow.com/a/4944929"""
if len(user_guess) != 5:
valid = False
else:
with open(wordfile_path, encoding='utf-8', errors='ignore') as f, \
mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) as s:
if s.find(str.encode(user_guess)) != -1:
valid = True
else:
valid = False
return valid
|
60ffad6529b1a7b6d68309cc9804ff6e39e2e539
| 26,625 |
def computeBasisFunctionsReferenceElement(edge_orientation, face_orientation, Nord, points):
"""Compute the basis function for the reference element.
:param ndarray edges_orientation: orientation for edges
:param ndarray faces_orientation: orientation for faces
:param int Nord: polynomial order of nedelec basis functions
:param ndarray points: spatial points at which basis functions will be computed
:return: basis functions on reference element
:rtype: ndarray
"""
# Get number of points
if points.ndim == 1:
num_points = 1
points = points.reshape((1,3))
else:
num_points = points.shape[0]
# Compute number of dofs for element
num_dof_in_element = np.int(Nord*(Nord+2)*(Nord+3)/2)
# Allocate
basis = np.zeros((3, num_dof_in_element, num_points), dtype=np.float)
for i in np.arange(num_points):
# Get gauss point coordinates
X = points[i,:]
# Polynomial order (6 edges, 4 faces, 1 volume)
Nord_vector = np.ones(11, dtype=np.int)*Nord
# Edge orientation (6 edges)
NoriE = edge_orientation
# Face orientation (4 faces)
NoriF = face_orientation
# Compute basis for iPoint
NrdofE, ShapE, CurlE = shape3DETet(X, Nord_vector, NoriE, NoriF)
# Verify consistency of number of dofs for this point
if (NrdofE != num_dof_in_element):
Print.master(' Number of DOFs is not consistent')
exit(-1)
# Niref=Ni in reference element
Niref = ShapE[0:3, 0:NrdofE]
# Store basis functions for i
basis[:,:,i] = Niref
return basis
|
10579b5b6af4d5d270faf043186197c345a593d2
| 26,627 |
def t_returns(inv, pfl, prices, date):
""" Computes the total return of a portfolio.
Parameters:
- `inv` : :class:`list` investment session `db` row
- `pfl` : :class:`string` name of the portfolio
- `prices` : :class:`dict` latest investment's ticker prices
- `date` : :class:`string` date of the purchase
Computes the sum of the shares when the invesment was made to the sum of the
shares now. The absolute change and returns are calculated with the same
formulas as in :py:func:`check.returns`
Returns a :class:`dict` containing the total initial price, the new
price, the absolute change, the returns and the date of the purchase.
"""
t_old = sum(map(lambda key: inv[pfl][key]*inv['prc'][key], inv[pfl].keys()))
t_old = round(t_old, 1)
t_new = sum(map(lambda key: inv[pfl][key]*prices[key], inv[pfl].keys()))
t_new = round(t_new, 1)
abs = round(t_new - t_old, 1)
rel = round(((t_new - t_old) / t_old) * 100, 2)
return {'abs': abs, 'rel': rel, 'old': t_old,
'new': t_new, 'qty': 'NA', 'date': date}
|
8a928e0806b0e87d2a0539ff905112ad0d3d66ae
| 26,630 |
def center_crop_pad(img, buffer=0, min_mean=10):
"""dynamically center crop image, cropping away black space left and right"""
g = np.array(img).mean(-1)
h, w = g.shape
zeros = g.mean(0)
zero_inds = np.where(zeros < min_mean)[0]
lo, hi = zero_inds[zero_inds < w // 2].max(), zero_inds[zero_inds > w // 2].min()
return expand2square(img.crop((lo - buffer, 0, hi + buffer, h)))
|
97326539464826441f283303e21a17b6ae2954d6
| 26,631 |
def DiagPart(a):
"""
Diag op that returns only the diagonal elements.
"""
return np.diagonal(a),
|
4993f7034042303926f94f3dae28d7d8f8dc5058
| 26,633 |
def _ensure_webhook_access(func):
"""Decorate WS function to ensure user owns the webhook ID."""
@callback
@wraps(func)
def with_webhook_access(hass, connection, msg):
# Validate that the webhook ID is registered to the user of the websocket connection
config_entry = hass.data[DOMAIN][DATA_CONFIG_ENTRIES].get(msg["webhook_id"])
if config_entry is None:
connection.send_error(
msg["id"], websocket_api.ERR_NOT_FOUND, "Webhook ID not found"
)
return
if config_entry.data[CONF_USER_ID] != connection.user.id:
connection.send_error(
msg["id"],
websocket_api.ERR_UNAUTHORIZED,
"User not linked to this webhook ID",
)
return
func(hass, connection, msg)
return with_webhook_access
|
c1b64e5f435f79e52e8c69788b4354481d2a6f5b
| 26,635 |
import copy
def episode_to_examples(episode, histsz):
"""Converts an episode (list of Parleys) into self-feeding compatible examples
WARNING: we no longer require a histz when making a self-feeding file. Shortening of
the history is typically done in the teacher file or in interactive mode.
"""
examples = []
history = []
for parley in episode:
# Update memories and history
# memories.extend(parley.memories)
history.append(parley.context)
# Concatenate history and add speaker tokens as necessary
# if history_size == 1, the bot (p2) only sees the immediately
# preceding utterance (the prompt from the human, p1).
if histsz < 0:
utterances = history
context = add_person_tokens(utterances, last_speaker=1)
elif histsz == 0:
context = '__null__'
else:
utterances = history[-histsz:]
context = add_person_tokens(utterances, last_speaker=1)
example = Parley(
context,
parley.response,
parley.reward,
copy.deepcopy(parley.candidates),
# copy.deepcopy(memories),
)
examples.append(example)
# Add current turn's response to the history
history.append(parley.response)
return examples
|
a95abd0183dc70e195312d82117b16720d2c4353
| 26,636 |
import torch
def camera_from_polyhedron(polyhedronFcn, camera_distance=1, to_spherical=False, device='cuda:0'):
"""
Returns the positions of a camera lying on the vertices of a given polyhedron
Parameters
----------
polyhedronFcn : callable
the polyhedron creation function
camera_distance : float (optional)
the camera distance from the origin (default is 1)
to_spherical : bool (optional)
if True, converts the coordinates into spherical (default is False)
device : str or torch.device
the device the tensors will be stored to (default is 'cuda:0')
Returns
-------
(Tensor,LongTensor)
the positions and the edge tensor of the camera views
"""
P, T = polyhedronFcn(device=device)[0:2]
theta = PI/100
R = torch.tensor([[1, 0, 0],
[0, cos(theta), -sin(theta)],
[0, sin(theta), cos(theta)]], dtype=torch.float, device=device)
P = torch.mul(torch.mm(normr(P), torch.t(R)), camera_distance)
if to_spherical:
P = cart2sph(P)
return P, poly2edge(T)[0]
|
30c782b616299c101cc7130703563fae1327d364
| 26,637 |
def cifar10(args, dataset_paths):
""" Loads the CIFAR-10 dataset.
Returns: train/valid/test set split dataloaders.
"""
transf = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(0.5),
transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding),
transforms.ToTensor(),
# Standardize()]),
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))]),
'test': transforms.Compose([
transforms.ToTensor(),
# Standardize()])}
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))])
}
config = {'train': True, 'test': False}
datasets = {i: CIFAR10(root=dataset_paths[i], transform=transf[i],
train=config[i], download=True) for i in config.keys()}
# weighted sampler weights for full(f) training set
f_s_weights = sample_weights(datasets['train'].targets)
# return data, labels dicts for new train set and class-balanced valid set
data, labels = random_split(data=datasets['train'].data,
labels=datasets['train'].targets,
n_classes=10,
n_samples_per_class=np.repeat(500, 10).reshape(-1))
# define transforms for train set (without valid data)
transf['train_'] = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomHorizontalFlip(0.5),
transforms.RandomCrop((args.crop_dim, args.crop_dim), padding=args.padding),
transforms.ToTensor(),
# Standardize()])
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))])
# define transforms for class-balanced valid set
transf['valid'] = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(),
# Standardize()])
transforms.Normalize((0.49139968, 0.48215841, 0.44653091),
(0.24703223, 0.24348513, 0.26158784))])
# save original full training set
datasets['train_valid'] = datasets['train']
# make new training set without validation samples
datasets['train'] = CustomDataset(data=data['train'],
labels=labels['train'], transform=transf['train_'])
# make class balanced validation set
datasets['valid'] = CustomDataset(data=data['valid'],
labels=labels['valid'], transform=transf['valid'])
# weighted sampler weights for new training set
s_weights = sample_weights(datasets['train'].labels)
config = {
'train': WeightedRandomSampler(s_weights,
num_samples=len(s_weights), replacement=True),
'train_valid': WeightedRandomSampler(f_s_weights,
num_samples=len(f_s_weights), replacement=True),
'valid': None, 'test': None
}
if args.distributed:
config = {'train': DistributedSampler(datasets['train']),
'train_valid': DistributedSampler(datasets['train_valid']),
'valid': None, 'test': None}
dataloaders = {i: DataLoader(datasets[i], sampler=config[i],
num_workers=8, pin_memory=True, drop_last=True,
batch_size=args.batch_size) for i in config.keys()}
return dataloaders
|
867d3a6e7ff4ed72c02583c2eafab2885218c0ad
| 26,638 |
def read_words(file="words.txt"):
"""
Reads a list of words from a file.
There needs to be one word per line, for this to work properly.
Args:
file: the file to read from
Returns:
An array of all the words in the file
"""
with open(file, "r") as f:
return f.read().lower().splitlines()
|
d3d82c4f9afc7db73b4f82f4715cab9b2e99973c
| 26,640 |
def get_intersphinx_label(is_map, cur_project_dir):
"""
The top set of keys in the intersphinx map are shortname labels that intersphinx uses to identify different projects
A sub-tuple in the dict (here invdata[1]) is a list of possible locations for the project's objects.inv file
This utility checks all the locations (only filepath ones) to see if the current project dir name is in the filepath
If a match is found this immediately returns the shortname label, which can be used to locate current project data in the intersphinx map
This is a 'good guess' to determine which intersphinx entry relates to the current project
"""
for shortname, invdata in is_map.items():
for invpath in invdata[1]:
if invpath and not invpath.startswith("http"):
if cur_project_dir in invpath:
return shortname
return None
|
87115f45c966b838566d6909d3a66af5359a2a1d
| 26,641 |
async def patch_user(user: User):
"""update a `user` in the list of users"""
try:
session = Session()
selected_user = session.query(
UserTable
).filter(
UserTable.key == user.key
).first()
selected_user.firstname = user.firstname
selected_user.lastname = user.lastname
selected_user.classname = user.classname
session.commit()
except sqlalchemy.exc.IntegrityError:
return {"status": PatchUserResponseStatus.fail}
return {"status": PatchUserResponseStatus.success}
|
911b2c3f5f5e5c2ec7aa7be7595b5106ccf17b0d
| 26,642 |
import torchvision
def get_test_dataloader(mean, std, batch_size=16, num_workers=2, shuffle=True,task="cifar100",train=False):
""" return training dataloader
Args:
mean: mean of cifar100 test dataset
std: std of cifar100 test dataset
path: path to cifar100 test python dataset
batch_size: dataloader batchsize
num_workers: dataloader num_works
shuffle: whether to shuffle
Returns: cifar100_test_loader:torch dataloader object
"""
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std)
])
#cifar100_test = CIFAR100Test(path, transform=transform_test)
if task == "cifar100":
cifar100_test = torchvision.datasets.CIFAR100(root='./data', train=train, download=True, transform=transform_test)
elif task == "cifar10":
cifar100_test = torchvision.datasets.CIFAR10(root='./data', train=train, download=True, transform=transform_test)
cifar100_test_loader = DataLoader(
cifar100_test, shuffle=shuffle, num_workers=num_workers, batch_size=batch_size)
return cifar100_test_loader
|
402e119430a3d260e0e15238e6f55b91f929848a
| 26,643 |
from typing import Set
def get(tags: Set[str]):
""" get options marked by `tags`
Options tagged by wildcard '*' are always returned
"""
# use specifically tagged options + those tagged with wildcard *
return (o for tag in ('*',) + tuple(tags) for o in _options[tag])
|
164e808c5dcd76febad488b8fb5bf0b76835ec2a
| 26,644 |
def jitter_boxes(boxes, noise_scale=0.025):
"""Jitter the box coordinates by some noise distribution.
Args:
boxes: a tensor whose last dimension is 4 representing the coordinates
of boxes in ymin, xmin, ymax, xmax order.
noise_scale: a python float which specifies the magnitude of noise. The
rule of thumb is to set this between (0, 0.1]. The default value is found
to mimic the noisy detections best empirically.
Returns:
jittered_boxes: a tensor whose shape is the same as `boxes` representing
the jittered boxes.
Raises:
ValueError: If the last dimension of boxes is not 4.
"""
if boxes.shape[-1] != 4:
raise ValueError(
'boxes.shape[1] is {:d}, but must be 4.'.format(boxes.shape[1]))
with tf.name_scope('jitter_boxes'):
bbox_jitters = tf.random_normal([4], stddev=noise_scale)
ymin = boxes[..., 0:1]
xmin = boxes[..., 1:2]
ymax = boxes[..., 2:3]
xmax = boxes[..., 3:4]
width = xmax - xmin
height = ymax - ymin
new_center_x = (xmin + xmax) / 2.0 + bbox_jitters[0] * width
new_center_y = (ymin + ymax) / 2.0 + bbox_jitters[1] * height
new_width = width * tf.exp(bbox_jitters[2])
new_height = height * tf.exp(bbox_jitters[3])
jittered_boxes = tf.concat([
new_center_y - new_height * 0.5,
new_center_x - new_width * 0.5,
new_center_y + new_height * 0.5,
new_center_x + new_width * 0.5], axis=-1)
return jittered_boxes
|
e0ac4b003b77190390f397f3ef80a915ca5214d3
| 26,645 |
def soil_props(soil_type, depth):
"""
Parameters c, Ks, n, Beta, s_h, s_w, s_bal, s_fc, bulk_d:
Laio et al., 2001, Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamic
Parameters p1 through p5:
Ezlit et al., 2013, Modification of the McNeal Clay Swelling Model Improves Prediction of Saturated Hydraulic Conductivity as a Function of Applied Water Quality
"""
# 5.7% clay
class_1 = {'c':4.8, 'Ks':1000.0, 'n':0.42, 'Beta':12.7, 's_h':0.08,
's_w':0.11, 's_bal':0.31, 's_fc':0.52, 'bulk_d':1.5,
'p1':0.649, 'p2':0.003, 'p3':8.837, 'p4':4.046,
'p7':0.008, 'p6':6.356, 'p5':30.818, 'CEC': 50}
# 16.2% clay
class_2 = {'c':6.5, 'Ks':800.0, 'n':0.43, 'Beta':13.8, 's_h':0.14,
's_w':0.18, 's_bal':0.46, 's_fc':0.56, 'bulk_d':1.5,
'p1':1.00, 'p2':0.912, 'p3':1.438, 'p4':7.29,
'p7':0.204, 'p6':4.105, 'p5':-5.054, 'CEC': 150}
# 48.5% clay
class_3 = {'c':9.8, 'Ks':200.0, 'n':0.45, 'Beta':14.8, 's_h':0.19,
's_w':0.24, 's_bal':0.57, 's_fc':0.65, 'bulk_d':1.2,
'p1':0.449, 'p2':1.005, 'p3':0.846, 'p4':10.968,
'p7':0.53, 'p6':4.0799, 'p5':-11.15, 'CEC': 300}
if soil_type == "class_1":
soil_dict = {**class_1}
elif soil_type == "class_2":
soil_dict = {**class_2}
elif soil_type == "class_3":
soil_dict = {**class_3}
gapon = 0.01475
mass = soil_dict['bulk_d']*depth
soil_dict.update(Kg=gapon, Zr=depth, Msoil = mass)
return soil_dict
|
a6d421d5606d4a00e6a621a513939af8ce2ad62c
| 26,646 |
from typing import List
def DoMeshesBelongToSameMainMesh(list_mesh_identifiers: List[str]) -> bool:
"""checks whether all meshes given a list of mesh identifiers belong to the same main mesh
Throws if an mesh identifier does not belong to a mesh
"""
main_mesh_identifiers = []
for mesh_identifier in list_mesh_identifiers:
mesh_obj = salome_utilities.GetSalomeObject(mesh_identifier)
if IsMeshProxy(mesh_obj):
main_mesh_identifiers.append(mesh_identifier)
elif IsSubMeshProxy(mesh_obj) or IsMeshGroup(mesh_obj):
main_mesh_identifiers.append(salome_utilities.GetSalomeID(mesh_obj.GetMesh()))
else:
obj_type = type(mesh_obj)
obj_name = salome_utilities.GetObjectName(mesh_identifier)
raise Exception('Object with identifier "{}" is not a mesh! Name: "{}" , Type: "{}"'.format(mesh_identifier, obj_name, obj_type))
return len(set(main_mesh_identifiers)) <= 1
|
2e8e47c0b5bf4e6d67adf5a0a46a35bacba42bce
| 26,647 |
def active_roles(account, days_back):
""" Returns query for finding active roles (since days_back value). """
query_string = f"""SELECT DISTINCT useridentity.sessioncontext.sessionissuer.arn
FROM behold
WHERE account = '{account}'
AND useridentity.type = 'AssumedRole'
AND from_iso8601_timestamp(eventtime) > date_add('day', -{days_back}, now());"""
return (query_string, f"athena_results/active_roles/{account}")
|
e6842696aa40d4f0b30f17d0d53afdcc5d1d0de9
| 26,650 |
import asyncio
async def run_command(*args, **kwargs):
"""Shortcut for asyncronous running of a command"""
fn = asyncio.subprocess.create_subprocess_exec
if kwargs.pop("shell", False):
fn = asyncio.subprocess.create_subprocess_shell
check = kwargs.pop("check", False)
process = await fn(*args, **kwargs)
stdout, stderr = await process.communicate()
if check:
if process.returncode != 0:
raise Exception("Command failed: %s" % args)
return process.returncode, stdout, stderr
|
948ccb127afb8cf1c2a1731a5198bc493a1e9fe4
| 26,652 |
import torch
def scaled_dot_product_attention(q, k, v, mask=None):
"""
#计算注意力权重。
q, k, v 必须具有匹配的前置维度。 且dq=dk
k, v 必须有匹配的倒数第二个维度,例如:seq_len_k = seq_len_v。
#虽然 mask 根据其类型(填充或前瞻)有不同的形状,
#但是 mask 必须能进行广播转换以便求和。
#参数:
q: 请求的形状 == (..., seq_len_q, depth)
k: 主键的形状 == (..., seq_len_k, depth)
v: 数值的形状 == (..., seq_len_v, depth_v) seq_len_k = seq_len_v
mask: Float 张量,其形状能转换成
(..., seq_len_q, seq_len_k)。默认为None。
#返回值:
#输出,注意力权重
"""
# matmul(a,b)矩阵乘:a b的最后2个维度要能做乘法,即a的最后一个维度值==b的倒数第2个纬度值,
# 除此之外,其他维度值必须相等或为1(为1时会广播)
matmul_qk = torch.matmul(q, k.transpose(-1, -2)) # 矩阵乘 =>[..., seq_len_q, seq_len_k]
# 缩放matmul_qk
dk = torch.tensor(k.shape[-1], dtype=torch.float32) # k的深度dk,或叫做depth_k
scaled_attention_logits = matmul_qk / torch.sqrt(dk) # [..., seq_len_q, seq_len_k]
# 将 mask 加入到缩放的张量上(重要!)
if mask is not None: # mask: [b, 1, 1, seq_len]
# mask=1的位置是pad,乘以-1e9(-1*10^9)成为负无穷,经过softmax后会趋于0
scaled_attention_logits += (mask * -1e9)
# softmax 在最后一个轴(seq_len_k)上归一化
attention_weights = torch.nn.functional.softmax(scaled_attention_logits, dim=-1) # [..., seq_len_q, seq_len_k]
output = torch.matmul(attention_weights, v) # =>[..., seq_len_q, depth_v]
return output, attention_weights
|
3d51de38ca553c3b769bd1ba4936159034cd68e0
| 26,653 |
def _get_parent_entity(entities, entity_id):
"""
Gets the parent entity from the collection, or throws ParentDoesNotExist.
"""
try:
return entities[entity_id]
except KeyError:
raise ParentDoesNotExist(object_type='Entity', key=entity_id)
|
d898252058f191a2685803fc6d4495eb75ce56eb
| 26,654 |
def tstop(f):
"""
Dust stopping time
"""
units = sutil.get_all_units(f)
grainSize = f['u_dustGrainSize']
grainDensity = SimArray(sutil.get_snap_param(f, 'dDustGrainDensity'), units['rho_unit'])
if sutil.is_isothermal(f):
gamma = 1.
else:
gamma = sutil.get_snap_gamma(f)
t = ((grainSize*grainDensity)/(f['rho'] * f['cs'])) * np.sqrt(np.pi*gamma/8.)
return t.in_units(units['t_unit'])
|
e1f13c3b87104d366dd0c5239dd5d24de954897c
| 26,655 |
def solve_2d_discrete_observations_continuous_modelling(
cond_xy0s_list: tp.List[tp.Tuple[float, float]],
cond_xytGammas_list: tp.List[tp.Tuple[float, float, float]],
cond_f0s_list: tp.List[float],
cond_fGammas_list: tp.List[float],
a: float,
b: float,
c: float,
d: float,
T: float,
f: tp.Callable[[float, float, float], float],
g: tp.Callable[[float, float, float], float],
) -> tp.Callable[[float, float, float], float]:
"""
:param cond_xy0s_list: list of space points for initial conditions:
u(cond_x0_i, cond_y0_i, 0) = cond_f0_i
:param cond_xytGammas_list: list of space-time for boundary conditions:
u(cond_xGamma_i, cond_yGamma_i, cond_tGamma_i) = cond_fGamma_i
:param cond_f0s_list: list of real values for initial conditions:
cond_f0_i = u(cond_x0_i, cond_y0_i, 0)
:param cond_fGammas_list: list of real values for boundary conditions:
cond_fGamma_i = u(cond_xGamma_i, cond_yGamma_i, cond_tGamma_i)
:param a: lower bound of the x-domains of g and u
:param b: upper bound of the x-domains of g and u
:param c: lower bound of the y-domains of g and u
:param d: upper bound of the y-domains of g and u
:param T: end time
:param f: real-valued function of space and time,
represents external perturbations in the system.
:param g: Green's function of the linear differential operator L
:return: real-valued function u of space and time,
least squares solution to L u(x, y, t) = f(x, y, t)
under initial conditions u(cond_x0_i, cond_y0_i, 0) = cond_f0_i,
and boundary conditions u(cond_xGamma_i, cond_yGamma_i, cond_tGamma_i) = cond_fGamma_i.
"""
def u_infty(x: float, y: float, t: float) -> float:
return integrate.tplquad(lambda t_, x_, y_: g(x - x_, y - y_, t - t_) * f(x_, y_, t_), c, d, a, b, 0, T)[0]
vec_u0 = np.array([[
cond_f0_i - u_infty(cond_xy0_i[0], cond_xy0_i[1], 0.0)
] for cond_f0_i, cond_xy0_i in zip(cond_f0s_list, cond_xy0s_list)])
vec_uGamma = np.array([[
cond_fGamma_i - u_infty(cond_xytGamma_i[0], cond_xytGamma_i[1], cond_xytGamma_i[2])
] for cond_fGamma_i, cond_xytGamma_i in zip(cond_fGammas_list, cond_xytGammas_list)])
vec_u = np.vstack((vec_u0, vec_uGamma))
def A11(x: float, y: float) -> np.array:
return np.array([[g(
cond_x0_i - x,
cond_y0_i - y,
0.0 - 0.0,
)] for cond_x0_i, cond_y0_i in cond_xy0s_list])
def A12(x: float, y: float, t: float) -> np.array:
return np.array([[g(
cond_x0_i - x,
cond_y0_i - y,
0.0 - t,
)] for cond_x0_i, cond_y0_i in cond_xy0s_list])
def A21(x: float, y: float) -> np.array:
return np.array([[g(
cond_xGamma_i - x,
cond_yGamma_i - y,
cond_tGamma_i - 0.0,
)] for cond_xGamma_i, cond_yGamma_i, cond_tGamma_i in cond_xytGammas_list])
def A22(x: float, y: float, t: float) -> np.array:
return np.array([[g(
cond_xGamma_i - x,
cond_yGamma_i - y,
cond_tGamma_i - t,
)] for cond_xGamma_i, cond_yGamma_i, cond_tGamma_i in cond_xytGammas_list])
def A(x: float, y: float, t: float) -> np.matrix:
return np.vstack((
np.hstack((A11(x, y), A12(x, y, t))),
np.hstack((A21(x, y), A22(x, y, t))),
))
len0, lenGamma = len(cond_xy0s_list), len(cond_xytGammas_list)
P11 = np.matrix([[(
integrate.dblquad(lambda x, y: A11(x, y)[i] * A11(x, y)[j], c, d, a, b)[0] +
integrate.dblquad(lambda t, y: A12(a, y, t)[i] * A12(a, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, y: A12(b, y, t)[i] * A12(b, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, x: A12(x, c, t)[i] * A12(x, c, t)[j], a, b, 0, T)[0] +
integrate.dblquad(lambda t, x: A12(x, d, t)[i] * A12(x, d, t)[j], a, b, 0, T)[0]
) for j in range(len0)] for i in range(len0)])
P12 = np.matrix([[(
integrate.dblquad(lambda x, y: A11(x, y)[i] * A21(x, y)[j], c, d, a, b)[0] +
integrate.dblquad(lambda t, y: A12(a, y, t)[i] * A22(a, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, y: A12(b, y, t)[i] * A22(b, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, x: A12(x, c, t)[i] * A22(x, c, t)[j], a, b, 0, T)[0] +
integrate.dblquad(lambda t, x: A12(x, d, t)[i] * A22(x, d, t)[j], a, b, 0, T)[0]
) for j in range(lenGamma)] for i in range(len0)])
P21 = np.matrix([[(
integrate.dblquad(lambda x, y: A21(x, y)[i] * A11(x, y)[j], c, d, a, b)[0] +
integrate.dblquad(lambda t, y: A22(a, y, t)[i] * A12(a, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, y: A22(b, y, t)[i] * A12(b, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, x: A22(x, c, t)[i] * A12(x, c, t)[j], a, b, 0, T)[0] +
integrate.dblquad(lambda t, x: A22(x, d, t)[i] * A12(x, d, t)[j], a, b, 0, T)[0]
) for j in range(len0)] for i in range(lenGamma)])
P22 = np.matrix([[(
integrate.dblquad(lambda x, y: A21(x, y)[i] * A21(x, y)[j], c, d, a, b)[0] +
integrate.dblquad(lambda t, y: A22(a, y, t)[i] * A22(a, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, y: A22(b, y, t)[i] * A22(b, y, t)[j], c, d, 0, T)[0] +
integrate.dblquad(lambda t, x: A22(x, c, t)[i] * A22(x, c, t)[j], a, b, 0, T)[0] +
integrate.dblquad(lambda t, x: A22(x, d, t)[i] * A22(x, d, t)[j], a, b, 0, T)[0]
) for j in range(lenGamma)] for i in range(lenGamma)])
P = np.vstack((
np.hstack((P11, P12)),
np.hstack((P21, P22)),
))
def vec_f(x: float, y: float, t: float) -> np.array:
return A(x, y, t).T * np.linalg.pinv(P) * vec_u
def vec_f0(x: float, y: float, t: float) -> float:
return vec_f(x, y, t)[0]
def vec_fGamma(x: float, y: float, t: float) -> float:
return vec_f(x, y, t)[1]
def u_0(x: float, y: float, t: float) -> float:
return integrate.dblquad(lambda x_, y_: g(x - x_, y - y_, t - 0.0) * vec_f0(x_, y_, 0.0), c, d, a, b)[0]
def u_Gamma(x: float, y: float, t: float) -> float:
return integrate.dblquad(lambda t_, y_: g(x - a, y - y_, t - t_) * vec_fGamma(a, y_, t_), c, d, 0, T)[0] + \
integrate.dblquad(lambda t_, y_: g(x - b, y - y_, t - t_) * vec_fGamma(b, y_, t_), c, d, 0, T)[0] + \
integrate.dblquad(lambda t_, x_: g(x - x_, y - c, t - t_) * vec_fGamma(x_, c, t_), a, b, 0, T)[0] + \
integrate.dblquad(lambda t_, x_: g(x - x_, y - d, t - t_) * vec_fGamma(x_, d, t_), a, b, 0, T)[0]
def u(x: float, y: float, t: float) -> float:
return u_infty(x, y, t) + u_0(x, y, t) + u_Gamma(x, y, t)
return u
|
a8139c014c292b44aee1cf4533a7576413a7e685
| 26,656 |
import logging
from typing import Callable
from typing import Any
def log_calls_on_exception(
logger: logging.Logger, log_exception: bool = True
) -> GenericDecorator:
"""
Log calls to the decorated function, when exceptions are raised.
Can also decorate classes to log calls to all its methods.
:param logger: object to log to
:param log_exception: True, to log stacktrace and exception
"""
def log_function(
target: Callable[..., TargetReturnT], # TargetFunctionT,
*args: Any,
**kwargs: Any
) -> TargetReturnT:
try:
result = target(*args, **kwargs)
except BaseException:
if log_exception:
logger.exception("Exception")
else:
logger.info(f"{target.__name__} args: {args!r} {kwargs!r}")
raise
return result
decorator = GenericDecorator(log_function)
return decorator
|
98a186d116547c2929c010b66b9395ba5d5c8603
| 26,657 |
def convert_2d_list_to_string(data):
"""Utility function."""
s = ''
for row in data:
c = '{'
for e in row:
c += str(e) + ','
s += c[:-1] + '},\n'
return s[:-2]
|
a6ac2c05f481a339c68ffc3543baba1f1d0d5e8e
| 26,659 |
def get_info(sheet, row_num, percentage, sheet_name,
mandatory_tables):
"""
Function is used to create a dictionary that contains
the number of flawed records for a particular site.
:param
sheet (dataframe): pandas dataframe to traverse. Represents a
sheet with numbers indicating data quality.
row_num (int): row (0-index) with all of the information for
the specified site's data quality
percentage (boolean): used to determine whether or not the
number is a simple record count (e.g. duplicates)
versus the percentage of records (e.g. the success rate
for each of the tables)
sheet_name (str): name for the sheet for use in the error
message
analytics_type (str): the data quality metric the user wants to
investigate
mandatory_tables (lst): contains the tables that should be
documented for every table and at every date.
:return:
err_dictionary (dictionary): key:value pairs represent the
column name:number that represents the quality of the data
NOTE: This function was modified from the e-mail generator. This
function, however, logs ALL of the information in the returned
error dictionary. This includes 0 values if the data is wholly
complete.
"""
if row_num is not None:
data_info = sheet.iloc[row_num, :] # series, row labels and values
else: # row in future sheets but not current sheet
data_info = sheet.iloc[1, :] # just to get the columns
column_names = data_info.keys()
null_list = [None] * len(column_names)
data_info = pd.Series(null_list, column_names)
err_dictionary = {}
for col_label, number in data_info.iteritems():
if col_label in mandatory_tables:
if number is None or number == 'No Data': # row does not exist
err_dictionary[col_label] = float('NaN')
else:
try:
number = float(number)
except ValueError:
pass
else:
if number < 0: # just in case
raise ValueError("Negative number detected in sheet "
"{} for column {}".format(
sheet_name, col_label))
elif percentage and number > 100:
raise ValueError("Percentage value > 100 detected in "
"sheet {} for column {}".format(
sheet_name, col_label))
elif percentage and target_low: # proportion w/ errors
err_dictionary[col_label] = round(100 - number, 1)
elif percentage and not target_low: # effective
err_dictionary[col_label] = round(number, 1)
elif not percentage and number > -1:
err_dictionary[col_label] = int(number)
else:
pass # do nothing; do not want to document the column
# adding all the tables; maintaining consistency for versatility
for table in mandatory_tables:
if table not in err_dictionary.keys():
err_dictionary[table] = float('NaN')
return err_dictionary
|
76552ee6cd366642d29c945a289b69efda28ba37
| 26,661 |
def get_structural_topology_reactions(filename, dset_path="readdy/config/structural_topology_reactions"):
"""
Construct a dictionary where the keys are reaction ids and value is corresponding name.
:param filename: the file name
:param dset_path: path to the dataset
:return: dictionary of reactions
"""
result = dict()
with h5py.File(filename, "r") as f:
if dset_path in f:
structural_reactions = f[dset_path]
for r in structural_reactions:
result[r["id"]] = r["name"]
return result
|
a3bb4f75740b540c8428d760c087df4dea782a4e
| 26,662 |
def PyMapping_Keys(space, w_obj):
"""On success, return a list of the keys in object o. On failure, return NULL.
This is equivalent to the Python expression o.keys()."""
return space.call_function(space.w_list,
space.call_method(w_obj, "keys"))
|
452b384a421fd675a53ff20d868b8f7353eb3d79
| 26,663 |
import aiohttp
import json
import asyncio
async def safebooru(ctx, tag, page='1'):
"""Searches safebooru. Usage: safebooru [tags]"""
async with aiohttp.ClientSession() as session:
invoker = ctx.message.author
post = await fetch(session, "https://safebooru.org/index.php?page=dapi&s=post&q=index&limit=1&tags={}&pid={}&json=1".format(tag, page))
obj = json.loads(post)
try:
directory = obj[0]['directory']
file_name = obj[0]['image']
url = 'https://safebooru.org/images/{}/{}'.format(directory, file_name)
tags_raw = obj[0]['tags']
rating = obj[0]['rating']
tags = tags_raw[:200] + (tags_raw[200:] and '..')
except Exception as e:
await ctx.send('Tag not found.', delete_after=5)
return 1
embed = discord.Embed(
title="Safebooru", url='https://safebooru.org', color=0x00fff)
embed.add_field(name='Rating', value=rating, inline=True)
embed.add_field(name='Tags', value=tags, inline=True)
embed.set_image(url=url)
msg = await ctx.send(embed=embed)
if int(page) > 1:
await msg.add_reaction('\U00002B05')
await msg.add_reaction('\U000027A1')
await msg.add_reaction('\U0001F1FD')
def check(reaction, user):
return user == invoker and reaction.message.id == msg.id and (str(reaction.emoji) == '\U00002B05' or str(reaction.emoji) == '\U000027A1' or str(reaction.emoji) == '\U0001F1FD')
try:
reaction, user = await bot.wait_for('reaction_add', timeout=120.0, check=check)
except asyncio.TimeoutError:
return 1
else:
if str(reaction.emoji) == '\U00002B05':
page = int(page)
page -= 1
page = str(page)
await msg.delete()
await ctx.invoke(safebooru, tag, page)
elif str(reaction.emoji) == '\U000027A1':
page = int(page)
page += 1
page = str(page)
await msg.delete()
await ctx.invoke(safebooru, tag, page)
elif str(reaction.emoji) == '\U0001F1FD':
await msg.delete()
return
|
782000d62de1d36abc4b81e0bb4b025707e79940
| 26,664 |
import re
def is_arabicrange(text):
""" Checks for an Arabic Unicode block characters
@param text: input text
@type text: unicode
@return: True if all charaters are in Arabic block
@rtype: Boolean
"""
if re.search(u"([^\u0600-\u06ff\ufb50-\ufdff\ufe70-\ufeff\u0750-\u077f])", text):
return False
return True
|
70862e901236eb94fec95ac6f7eb673729397e49
| 26,665 |
def del_pool(batch_client, config, pool_id=None):
# type: (azure.batch.batch_service_client.BatchServiceClient, dict,
# str) -> bool
"""Delete a pool
:param batch_client: The batch client to use.
:type batch_client: `azure.batch.batch_service_client.BatchServiceClient`
:param dict config: configuration dict
:param str pool_id: pool id
:rtype: bool
:return: if pool was deleted
"""
if util.is_none_or_empty(pool_id):
pool_id = settings.pool_id(config)
if not util.confirm_action(
config, 'delete {} pool'.format(pool_id)):
return False
logger.info('Deleting pool: {}'.format(pool_id))
batch_client.pool.delete(pool_id)
return True
|
fad5a672920a98305f12e9a7e7c6d665ff874f0a
| 26,666 |
def str_repeat(space, s, repeat):
"""Repeat a string."""
return space.newstr(s * repeat)
|
3e947da1fa3bf403b0836bd4e7ae0052d310636e
| 26,667 |
def alarm(duration=250):
"""
Red alarm; flashing bright red to dark red.
:param int duration: The duration between hi/lo brightness,in milliseconds.
:returns: An infinite Flow consisting of 2 transitions.
:rtype: Flow
"""
return Flow(count=0, action=Action.recover, transitions=transitions.alarm(duration))
|
a501c6a85c78cd37eadba200ca327660945dd4d7
| 26,668 |
def mkvc(x, numDims=1):
"""Creates a vector with the number of dimension specified
e.g.::
a = np.array([1, 2, 3])
mkvc(a, 1).shape
> (3, )
mkvc(a, 2).shape
> (3, 1)
mkvc(a, 3).shape
> (3, 1, 1)
"""
if type(x) == np.matrix:
x = np.array(x)
if hasattr(x, 'tovec'):
x = x.tovec()
if isinstance(x, Zero):
return x
assert isinstance(x, np.ndarray), "Vector must be a numpy array"
if numDims == 1:
return x.flatten(order='F')
elif numDims == 2:
return x.flatten(order='F')[:, np.newaxis]
elif numDims == 3:
return x.flatten(order='F')[:, np.newaxis, np.newaxis]
|
e749e0feadcdf69625355477fd22e2f9d363768f
| 26,669 |
def location_distance_meters(a: Location, b: Location) -> float:
"""Calculates the distance between two points.
Returns:
A number of meters between two points.
"""
return location_distance_kilometers(a, b).m
|
91179bc0fc2647d502a290ecc1df28eda8b149f5
| 26,670 |
import json
def file_to_dict(file: str):
"""Dump json file to dictionary"""
try:
with open(file) as json_file:
return json.load(json_file)
except json.decoder.JSONDecodeError:
print(f'File {file} is not a valid json file. Returning empty dict')
return {}
except FileNotFoundError:
print(f'File {file} does not exist. Returning empty dict')
return {}
|
2265f2ad5e10931e93a08bafd8e8a7e20c91ae93
| 26,671 |
def fieldtype(field):
"""Return classname"""
return field.__class__.__name__
|
afda2f7a13a2d0be991eadf31ac591762c519f05
| 26,672 |
from typing import Dict
def basic_extractor(
data: Dict,
) -> list:
"""
Returns list of the total_recieved token, the total sent token and the number of transactions the wallet participated in.
"""
return [data["total_received"],data["total_sent"],data["n_tx"]]
|
946611423cf98c6104fa49e0ccb82308d741f900
| 26,673 |
def expand_stages_cfg(stage_cfgs):
""" For a list of stages """
assert isinstance(stage_cfgs, list)
ret = []
for x in stage_cfgs:
ret.append(expand_stage_cfg(x))
return ret
|
bb562da9ca5a547fc1c442e3ba8d73b7f7d0768e
| 26,674 |
def find_team():
"""find a team by using filters from request arguments"""
# partial -> allow skipping of required fields
ts = TeamSchema(
partial=True,
only=(
"name",
"event_id",
"team_identifier",
"payment_status",
"single",
"page",
),
)
try:
_filter = ts.load(request.args)
except ValidationError as err:
raise FieldValidationFailed(error=err.messages)
team_paginated = TeamModel.find(_filter) # returns pagination obj
pagination_response = PaginatedResponse(
team_paginated,
TeamSchema(
partial=True,
many=True,
exclude=("team_identifier", "event_id", "payment.transaction_no"),
),
)
return pagination_response.dump()
|
98aa1a67450aa9c117c5d9d7c158c169c2f7969c
| 26,675 |
def clusterbased_permutation_1d_1samp_1sided(results, level=0, p_threshold=0.05, clusterp_threshold=0.05, n_threshold=2,
iter=1000):
"""
1-sample & 1-sided cluster based permutation test for 2-D results
Parameters
----------
results : array
A result matrix.
The shape of results should be [n_subs, x]. n_subs represents the number of subjects.
level : float. Default is 0.
An expected value in null hypothesis. (Here, results > level)
p_threshold : float. Default is 0.05.
The threshold of p-values.
clusterp_threshold : float. Default is 0.05.
The threshold of cluster-defining p-values.
n_threshold : int. Default is 2.
The threshold of number of values in one cluster (number of values per cluster > n_threshold).
iter : int. Default is 1000.
The times for iteration.
Returns
-------
ps : float
The permutation test resultz, p-values.
The shape of ps is [x]. The values in ps should be 0 or 1, which represent not significant point or significant
point after cluster-based permutation test, respectively.
"""
nsubs, x = np.shape(results)
ps = np.zeros([x])
ts = np.zeros([x])
for t in range(x):
ts[t], p = ttest_1samp(results[:, t], level, alternative='greater')
if p < p_threshold and ts[t] > 0:
ps[t] = 1
else:
ps[t] = 0
cluster_index, cluster_n = get_cluster_index_1d_1sided(ps)
if cluster_n != 0:
cluster_ts = np.zeros([cluster_n])
for i in range(cluster_n):
for t in range(x):
if cluster_index[t] == i + 1:
cluster_ts[i] = cluster_ts[i] + ts[t]
permu_ts = np.zeros([iter])
chance = np.full([nsubs], level)
print("\nPermutation test")
for i in range(iter):
permu_cluster_ts = np.zeros([cluster_n])
for j in range(cluster_n):
for t in range(x):
if cluster_index[t] == j + 1:
v = np.hstack((results[:, t], chance))
vshuffle = np.random.permutation(v)
v1 = vshuffle[:nsubs]
v2 = vshuffle[nsubs:]
permu_cluster_ts[j] = permu_cluster_ts[j] + ttest_rel(v1, v2, alternative="greater")[0]
permu_ts[i] = np.max(permu_cluster_ts)
show_progressbar("Calculating", (i+1)*100/iter)
if i == (iter - 1):
print("\nCluster-based permutation test finished!\n")
for i in range(cluster_n):
index = 0
for j in range(iter):
if cluster_ts[i] > permu_ts[j]:
index = index + 1
if index < iter * (1-clusterp_threshold):
for t in range(x):
if cluster_index[t] == i + 1:
ps[t] = 0
newps = np.zeros([x + 2])
newps[1:x + 1] = ps
for i in range(x):
if newps[i + 1] == 1 and newps[i] != 1:
index = 0
while newps[i + 1 + index] == 1:
index = index + 1
if index < n_threshold:
newps[i + 1:i + 1 + index] = 0
ps = newps[1:x + 1]
return ps
|
ade205fdd4c256567e0f1ce908f7a711caad2f5d
| 26,676 |
def getObjectsContainers(mQueryObject = []):
"""
Return a list of containers that the passed in objects reside in.
@param [] mQueryObject: list of objects you are wanting to know, in which container they exists.
@return: key = container name, value = container MObject.
@rtype: {}
"""
containerDict = {}
nodeFn = om2.MFnContainerNode()
selNodeFn = om2.MFnDependencyNode()
containerObjs = getAllDagContainers()
for selObj in mQueryObject:
for obj in containerObjs:
nodeFn.setObject(obj)
if selObj in nodeFn.getMembers():
selNodeFn.setObject(selObj)
containerName = str(nodeFn.name())
# Adds the object to a dictionary, using the container as the key
if containerDict.has_key(nodeFn.name()):
containerDict[containerName].append(selNodeFn.object())
else:
containerDict[containerName] = [selNodeFn.object()]
return containerDict
|
83da454e85067a2d74f2f251f255a74f3bba41ee
| 26,677 |
from webdnn.backend.webgl.attributes.texture_shape import TextureShape
from webdnn.backend.webgl.attributes.channel_mode import ChannelMode
from typing import Optional
def dump_dot(graph: Graph, name: Optional[str] = None) -> str: # pragma: no cover
"""
Dumps graph into dot language for visualization.
Args:
graph: Target graph
name:
Returns:
source code of dot language.
"""
dot_source = ""
dot_source += "digraph webdnn_ir {\n"
# graph setting
dot_source += "graph [\n"
if name:
dot_source += f"label=\"{name}\"\n"
dot_source += "];\n"
added_variables = set()
def visualize_variable(var: Variable) -> str:
if var in added_variables:
return ""
node_attrs = {}
node_attrs["label"] = f"\"{var.name}\n{var.shape}\nOrder={var.order}"
if var.has_attribute(TextureShape):
node_attrs["label"] += f"\nTextureShape={TextureShape.get(var)}"
if var.has_attribute(ChannelMode):
node_attrs["label"] += f"\nChannelMode={ChannelMode.get(var).name}"
node_attrs["label"] += "\""
if isinstance(var, ConstantVariable):
node_attrs["shape"] = "doubleoctagon"
else:
node_attrs["shape"] = "octagon"
if var in graph.inputs:
node_attrs["style"] = "\"dashed\""
if var in graph.outputs:
node_attrs["style"] = "\"bold\""
dot_source_var = ""
dot_source_var += f"var_{id(var)} [\n"
dot_source_var += ",".join(f"{attr_key}={attr_value}" for attr_key, attr_value in node_attrs.items())
dot_source_var += "];\n"
added_variables.add(var)
return dot_source_var
for op in listup_operators(graph):
op_params = getattr(op, "parameters", {})
op_params_str = "\n".join(f"{k}={v}" for k, v in op_params.items())
dot_source += f"op_{op.name} [label=\"{op.name}\n{op.__class__.__name__}\n{op_params_str}\", shape=box];\n"
for connection_name, var in op.inputs.items():
dot_source += visualize_variable(var)
dot_source += f"var_{id(var)} -> op_{op.name} [label=\"{connection_name}\"];\n"
for connection_name, var in op.outputs.items():
dot_source += visualize_variable(var)
dot_source += f"op_{op.name} -> var_{id(var)} [label=\"{connection_name}\"];\n"
dot_source += "}"
return dot_source
|
61e993c7383e939109463fd872501a6d7bda3d0d
| 26,678 |
def RPL_LUSERCLIENT(sender, receipient, message):
""" Reply Code 251 """
return "<" + sender + ">: " + message
|
4863c4d6945378f315932fadbf8f2615f020c611
| 26,679 |
def multiply_inv_gaussians_batch(mus, lambdas):
"""Multiplies a series of Gaussians that is given as a list of mean vectors and a list of precision matrices.
mus: list of mean with shape [..., d]
lambdas: list of precision matrices with shape [..., d, d]
Returns the mean vector, covariance matrix, and precision matrix of the product
"""
assert len(mus) == len(lambdas)
batch_size = mus[0].shape.as_list()[:-1]
d_z = lambdas[0].shape.as_list()[-1]
identity_matrix = tf.tile(tf.expand_dims(tf.expand_dims(tf.eye(d_z), axis=0), axis=0), batch_size+[1,1])
lambda_new = tf.reduce_sum(lambdas, axis=0) + identity_matrix
mus_summed = tf.reduce_sum([tf.einsum("bcij, bcj -> bci", lamb, mu)
for lamb, mu in zip(lambdas, mus)], axis=0)
sigma_new = tf.linalg.inv(lambda_new)
mu_new = tf.einsum("bcij, bcj -> bci", sigma_new, mus_summed)
return mu_new, sigma_new, lambda_new
|
3239ee6c472506c0b0fcc90c8543deeca0edb02e
| 26,680 |
def replace_if_present_else_append(
objlist,
obj,
cmp=lambda a, b: a == b,
rename=None):
"""
Add an object to a list of objects, if that obj does
not already exist. If it does exist (`cmp(A, B) == True`),
then replace the property in the property_list. The names
are compared in a case-insensitive way.
Input
=====
:objlist, list: list of objects.
:obj, object: object to Add
Options
=======
:cmp, (bool) cmp (A, B): compares A to B. If True, then the
objects are the same and B should replace A. If False,
then B should be appended to `objlist`.
:param rename: Should A be renamed instead of overwritten? If not False,
then rename should be a unary function that changes the name of A.
:type rename: bool or unary function
Output
======
List is modified in place. A reference to the list is returned.
"""
print(type (objlist))
for i in range(len(objlist)):
# was a matching object found in the list?
if cmp(objlist[i], obj):
# if so, should the old object be renamed?
if rename is not None:
newA = rename(objlist[i])
# is the renamed object distinct from the object
# (`obj`) that is to be added to the list?
if cmp(newA, obj):
msg = '`rename` does not make {} unique.'.format(
str(objlist[i])[:32])
raise ValueError(msg)
# now that we have newA, replace the original
# object in the list with `obj`...
objlist[i] = obj
#... and replace_if_present_else_append newA.
replace_if_present_else_append(
objlist, newA, cmp=cmp, rename=rename)
# if the existing object should not be renamed,
# simply replace.
else:
objlist[i] = obj
# short circuit to exit the for loop and the function.
return objlist
# if we get here, then the property was not found. Append. HI
objlist.append(obj)
return objlist
|
f76b3a76fe973ef91176f8ff4afd34d52ce89317
| 26,681 |
def rating_value(value):
"""Check that given value is integer and between 1 and 5."""
if 1 <= int(value) <= 5:
return int(value)
raise ValueError("Expected rating between 1 and 5, but got %s" % value)
|
cadb45a131a423940e1b3a763935f5e40d84285b
| 26,682 |
def hsc_to_hs(ctx):
"""Process all hsc files into Haskell source files.
Args:
ctx: Rule context.
Returns:
list of File: New Haskell source files to use.
"""
ghc_defs_dump = _make_ghc_defs_dump(ctx)
sources = []
for f in ctx.files.srcs:
if f.extension == "hsc":
sources.append(_process_hsc_file(ctx, ghc_defs_dump, f))
else:
sources.append(f)
return sources
|
7672ad9b3679fc663b461f4bcb9eb421293dc185
| 26,683 |
from shapely.geometry import Polygon
def calculate_iou_box(pts1, pts2):
"""
Measure the two list of points IoU
:param pts1: ann.geo coordinates
:param pts2: ann.geo coordinates
:return: `float` how Intersection over Union of tho shapes
"""
try:
except (ImportError, ModuleNotFoundError) as err:
raise RuntimeError('dtlpy depends on external package. Please install ') from err
if len(pts1) == 2:
# regular box annotation (2 pts)
pt1_left_top = [pts1[0][0], pts1[0][1]]
pt1_right_top = [pts1[0][0], pts1[1][1]]
pt1_right_bottom = [pts1[1][0], pts1[1][1]]
pt1_left_bottom = [pts1[1][0], pts1[0][1]]
else:
# rotated box annotation (4 pts)
pt1_left_top = pts1[0]
pt1_right_top = pts1[3]
pt1_left_bottom = pts1[1]
pt1_right_bottom = pts1[2]
poly_1 = Polygon([pt1_left_top,
pt1_right_top,
pt1_right_bottom,
pt1_left_bottom])
if len(pts2) == 2:
# regular box annotation (2 pts)
pt2_left_top = [pts2[0][0], pts2[0][1]]
pt2_right_top = [pts2[0][0], pts2[1][1]]
pt2_right_bottom = [pts2[1][0], pts2[1][1]]
pt2_left_bottom = [pts2[1][0], pts2[0][1]]
else:
# rotated box annotation (4 pts)
pt2_left_top = pts2[0]
pt2_right_top = pts2[3]
pt2_left_bottom = pts2[1]
pt2_right_bottom = pts2[2]
poly_2 = Polygon([pt2_left_top,
pt2_right_top,
pt2_right_bottom,
pt2_left_bottom])
iou = poly_1.intersection(poly_2).area / poly_1.union(poly_2).area
return iou
|
fe915dc952852e28214ce1a16f781c55600fc1ec
| 26,684 |
def nextafter(x, direction, dtype, itemsize):
"""Return the next representable neighbor of x in the appropriate
direction."""
assert direction in [-1, 0, +1]
assert dtype.kind == "S" or type(x) in (bool, float, int)
if direction == 0:
return x
if dtype.kind == "S":
return string_next_after(x, direction, itemsize)
if dtype.kind in ['b']:
return bool_type_next_after(x, direction, itemsize)
elif dtype.kind in ['i', 'u']:
return int_type_next_after(x, direction, itemsize)
elif dtype.kind == "f":
if direction < 0:
return np.nextafter(x, x - 1)
else:
return np.nextafter(x, x + 1)
# elif dtype.name == "float32":
# if direction < 0:
# return PyNextAfterF(x,x-1)
# else:
# return PyNextAfterF(x,x + 1)
# elif dtype.name == "float64":
# if direction < 0:
# return PyNextAfter(x,x-1)
# else:
# return PyNextAfter(x,x + 1)
raise TypeError("data type ``%s`` is not supported" % dtype)
|
c14f6695eb4285afe3001ac6db019af26a95c78c
| 26,685 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.