content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def status(request): """ Status page for the Product Database """ app_config = AppSettings() is_cisco_api_enabled = app_config.is_cisco_api_enabled() context = { "is_cisco_api_enabled": is_cisco_api_enabled } if is_cisco_api_enabled: # test access (once every 30 minutes) cisco_eox_api_test_successful = cache.get("CISCO_EOX_API_TEST", False) # defaults, overwritten if an exception is thrown cisco_eox_api_available = True cisco_eox_api_message = "successful connected to the Cisco EoX API" if not cisco_eox_api_test_successful: try: result = utils.check_cisco_eox_api_access(client_id=app_config.get_cisco_api_client_id(), client_secret=app_config.get_cisco_api_client_secret(), drop_credentials=False) cache.set("CISCO_EOX_API_TEST", result, 60 * 30) except Exception as ex: cisco_eox_api_available = True cisco_eox_api_message = str(ex) context["cisco_eox_api_available"] = cisco_eox_api_available context["cisco_eox_api_message"] = cisco_eox_api_message # determine worker status context['worker_status'] = mark_safe(utils.get_celery_worker_state_html()) return render(request, "config/status.html", context=context)
ef4c2f5444cfa38b46edd5e138531846f3ac04ee
26,107
import torch from typing import Optional def _evaluate_batch( batch: torch.LongTensor, # statements model: QualifierModel, column: int, evaluator: RankBasedEvaluator, all_pos_triples: Optional[torch.LongTensor], # statements? relation_filter: Optional[torch.BoolTensor], filtering_necessary: bool, data_geometric: Optional[Data] = None, padding_idx: int = 0, ignore_entity_mask: Optional[torch.BoolTensor] = None, ) -> torch.BoolTensor: """Evaluate on a single batch.""" if column not in {0, 2}: raise ValueError(f'column must be either 0 or 2, but is column={column}') # Predict scores once if column == 2: # tail scores batch_scores_of_corrupted = model.score_t(batch[:, 0:2], qualifiers=batch[:, 3:], data_geometric=data_geometric) else: batch_scores_of_corrupted = model.score_h(batch[:, 1:3], qualifiers=batch[:, 3:], data_geometric=data_geometric) assert (batch[:, column] < batch_scores_of_corrupted.shape[1]).all() # Select scores of true batch_scores_of_true = batch_scores_of_corrupted[ torch.arange(0, batch.shape[0]), batch[:, column], ] # Create positive filter for all corrupted if filtering_necessary: # Needs all positive triples if all_pos_triples is None: raise ValueError('If filtering_necessary of positive_masks_required is True, all_pos_triples has to be ' 'provided, but is None.') # Create filter positive_filter, relation_filter = create_sparse_positive_filter_( hrt_batch=batch, all_pos_triples=all_pos_triples, relation_filter=relation_filter, filter_col=column, ) batch_scores_of_corrupted = filter_scores_( scores=batch_scores_of_corrupted, filter_batch=positive_filter, ) # The scores for the true triples have to be rewritten to the scores tensor batch_scores_of_corrupted[ torch.arange(0, batch.shape[0]), batch[:, column], ] = batch_scores_of_true # mask padding idx batch_scores_of_corrupted[:, padding_idx] = float("nan") # Restrict evaluation to certain entities, e.g. non-qualifier entities if ignore_entity_mask is not None: batch_scores_of_corrupted = torch.masked_fill(batch_scores_of_corrupted, ignore_entity_mask.unsqueeze(dim=0), value=float("nan")) evaluator._update_ranks_( true_scores=batch_scores_of_true[:, None], all_scores=batch_scores_of_corrupted, side="head" if column == 0 else "tail", ) return relation_filter
2cba006cf6ceb7ec0941c436cb26cf8b1a34bdeb
26,108
import codecs def readFile(f): """ This helper method returns an appropriate file handle given a path f. This handles UTF-8, which is itself an ASCII extension, so also ASCII. """ return codecs.open(f, 'r', encoding='UTF-8')
b3eb20cf26c6ebe58aec181f1dafc77997f36b6c
26,109
import re def _RegistryGetValue(key, value): """Use _winreg or reg.exe to obtain the value of a registry key. Using _winreg is preferable because it solves an issue on some corporate environments where access to reg.exe is locked down. However, we still need to fallback to reg.exe for the case where the _winreg module is not available (for example in cygwin python). Args: key: The registry key. value: The particular registry value to read. Return: contents of the registry key's value, or None on failure. """ try: return _RegistryGetValueUsingWinReg(key, value) except ImportError: pass # Fallback to reg.exe if we fail to import _winreg. text = _RegistryQuery(key, value) if not text: return None # Extract value. match = re.search(r'REG_\w+\s+([^\r]+)\r\n', text) if not match: return None return match.group(1)
5a458b165b999dda809b61433fec0cdfd2eb5a54
26,110
def reverse_complement_sequence(sequence, complementary_base_dict): """ Finds the reverse complement of a sequence. Parameters ---------- sequence : str The sequence to reverse complement. complementary_base_dict: dict A dict that maps bases (`str`) to their complementary bases (`str`). Returns ------- str The reverse complement of the input sequence. """ rev_comp_bases = [complementary_base_dict[b] for b in sequence[::-1]] return ''.join(rev_comp_bases)
1130f5b321daf72cdd40704fc8671ba331376ded
26,111
def mergeWithFixes(pullRequest: PullRequest.PullRequest, commit_title: str, commit_message: str, merge_method: str, sha: str): """Fixed version of PyGithub merge with commit_title, merge_method, and sha.""" post_parameters = dict() post_parameters["commit_title"] = commit_title post_parameters["commit_message"] = commit_message post_parameters["merge_method"] = merge_method post_parameters["sha"] = sha headers, data = pullRequest._requester.requestJsonAndCheck( "PUT", pullRequest.url + "/merge", input=post_parameters ) return github.PullRequestMergeStatus.PullRequestMergeStatus(pullRequest._requester, headers, data, completed=True)
25709e30d209e18cffe34a6dd09c29d5e2286f08
26,112
import math def top2daz(north, east, up): """Compute azimouth, zenith and distance from a topocentric vector. Given a topocentric vector (aka north, east and up components), compute the azimouth, zenith angle and distance between the two points. Args: north (float): the north component (in meters) east (float) : the east component (in meters) up (float) : the up component (in meters) Returns: tuple (floats): a tuple of three floats is returned, as: [distance, azimouth, zenith], where distance is in meters, and azimouth and zenith are in radians. """ distance = math.sqrt(north*north + east*east + up*up) a = math.atan2(east, north) % (math.pi*2e0) # normalized [0, 2pi] zenith = math.acos(up/distance); return distance, a, zenith
67a127957b0dc131a6fe5505de05b89871542009
26,113
import torch def get_ground_truth_vector(classes : torch.Tensor, n_domains : int, n_classes : int) -> torch.Tensor: """ Get the ground truth vector for the phase where the feature extractor tries that discriminator cannot distinguish the domain that the sample comes from. Args: classes (torch.Tensor): Class labels. n_domains (int): Number of domains. n_classes (int): Number of classes. Returns: torch.Tensor: Tensor containing the ground truth for each sample. """ # Create the ground truth tensor total_size = n_domains * n_classes gt = torch.zeros(len(classes), total_size) # Value to be placed in the corresponding categories and domains positions # It is uniform so the discriminator cannot distinguish which domain the # sample comes from non_zero_value = 1 / n_domains for row in range(len(classes)): # The indices are the corresponding position for each class into each # domain non_zero_indices = [i+classes[row] for i in range(0, total_size, n_classes)] gt[row, non_zero_indices] = non_zero_value return gt
429c0c69d85572073aab66372d651d4981324e2b
26,114
from numpy import array from numpy import array, log10 def get_midpoints(ar, mode='linear'): """ Returns the midpoints of an array; i.e. if you have the left edge of a set of bins and want the middle, this will do that for you. :param ar: The array or list of length L to find the midpoints of :param mode: Whether to find the midpoint in logspace ('log') or linear space ('linear') :returns: An array of the midpoints of length L - 1 """ _valid_modes = ['linear', 'log'] if mode not in _valid_modes: raise TypeError("Unrecognize midpoint method; must be one of {}}.".format( _valid_modes)) if mode == 'linear': lst = [ar[i] + (ar[i+1]-ar[i])/2 for i in range(len(ar)) if i != len(ar) - 1] return array(lst) elif mode == 'log': lst = [10**(log10(ar[i]) + (log10(ar[i+1])-log10(ar[i]))/2) for i in range(len(ar)) if i != len(ar) - 1] return array(lst) else: raise TypeError("How did I get here? provided mode = {}".format(mode))
5bb8ccd674d6a1eb71c02ff8577149f495f3bed4
26,115
def tokenize(text): """ INPUT: text (str): message strings which need to be cleaned OUTPUT: clean_tokens: tokens of the messages which are cleaned """ # remove punctuations tokenizer = RegexpTokenizer(r'\w+') tokens = tokenizer.tokenize(text) tokens = [w for w in tokens if w not in stopwords.words('english')] # lemmatize as shown in the classroom lemmatizer = WordNetLemmatizer() clean_tokens = [] # remove extra spaces if any and convert all the strings to lowercase for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens
8d8bf0cc4933bd79db7e59870ae50d33b0fe2fb2
26,116
import random import example def time(is_train): """Questions for calculating start, end, or time differences.""" context = composition.Context() start_minutes = random.randint(1, 24*60 - 1) while True: duration_minutes = random.randint(1, 12*60 - 1) if train_test_split.is_train(duration_minutes) == is_train: break end_minutes = start_minutes + duration_minutes def format_12hr(minutes): """Format minutes from midnight in 12 hr format.""" hours = (minutes // 60) % 24 minutes %= 60 #am_pm = 'AM' if hours < 12 else 'PM' #hours = (hours - 1) % 12 + 1 return '{}:{:02}'.format(hours, minutes) #return '{}:{:02} {}'.format(hours, minutes, am_pm) start = format_12hr(start_minutes) end = format_12hr(end_minutes) which_question = random.randint(0, 3) if which_question == 0: # Question: What is start = end - duration? template = random.choice([ 'Che ore sono se mancano {duration} minuti alle {end}?', ]) return example.Problem( question=example.question( context, template, duration=duration_minutes, end=end), answer=start) elif which_question == 1: # Question: What is end = start + duration? template = random.choice([ 'Che ore sono se sono passati {duration} minuti dalle {start}?', ]) return example.Problem( question=example.question( context, template, duration=duration_minutes, start=start), answer=end) else: # Question: What is duration = end - start? template = random.choice([ 'Quanti minuti ci sono tra le {start} e le {end}?', ]) return example.Problem( question=example.question(context, template, start=start, end=end), answer=duration_minutes)
19c4726282776db74bac09c76f1c8b59dce99f4d
26,117
def countpaths(pseq, distinct=True, trim=True): """ This function returns the number of paths in a path dictionary or list. The distinct parameter excludes paths that are reverses of other paths in the count. The trim parameter excludes loops. """ if isinstance(pseq, list): if not distinct: count = 0 for path in pseq: if path[0] != path[-1] or not trim: count += 1 return count else: pd = distinctpaths(pseq, nolist=True) count = 0 for src in pd: count += len(pd[src]) if trim and src in pd[src]: count -= 1 return count elif isinstance(pseq, dict): if not distinct: count = 0 for src in pseq: count += len(pseq[src]) if trim and src in pseq[src]: count -= 1 return count else: count = 0 for src in pseq: for dst in pseq[src]: if src == dst: count += int(not trim) elif src < dst: count += 1 else: # src > dst count += int(not (reversepath(pseq[src][dst]) == pseq.get(dst, dict()).get(src, None))) return count else: raise TypeError
0b15bcdc3277e812cbbc0d51a764269f5db6135a
26,119
def get_all_active_alerts(strategy): """ Generate and return an array of all the actives alerts : symbol: str market identifier id: int alert identifier """ results = [] with strategy._mutex: try: for k, strategy_trader in strategy._strategy_traders.items(): with strategy_trader._mutex: for alert in strategy_trader.alerts: results.append({ 'mid': strategy_trader.instrument.market_id, 'sym': strategy_trader.instrument.symbol, 'id': alert._id, 'vers': alert.version(), 'name': alert.name(), 'ts': alert._created, 'tf': timeframe_to_str(alert._timeframe), 'expiry': alert._expiry, 'ctd': alert._countdown, 'msg': alert._message, 'cond': alert.condition_str(strategy_trader.instrument), 'cancel': alert.cancellation_str(strategy_trader.instrument), }) except Exception as e: error_logger.error(repr(e)) return results
85c3f1f43bb701fa6adb7dde8b2bac4423ece143
26,120
def one_hot_vector(val, lst): """ Converts a value to a one-hot vector based on options in lst """ if val not in lst: val = lst[-1] return map(lambda x: x == val, lst)
101865c6ddb3fae03838ecdd73d517ca8bd19828
26,121
def to_rgb(array): """Add a channel dimension with 3 entries""" return np.tile(array[:, :, np.newaxis], (1, 1, 3))
1fba6b7ab8a0ea4c4a2b36cfbf6315b1870bcc80
26,122
import re import keyword def is_valid_identifier(string): """ Check if string is a valid package name :param string: package name as string :return: boolean """ if not re.match("[_A-Za-z][_a-zA-Z0-9]*$", string): return False if keyword.iskeyword(string): return False return True
138d740dbe335f094af46bfe0f8d7b6636311d61
26,123
from typing import Callable from typing import Any import time def _wait_for_indexer(func: Callable) -> Callable: """A decorator function to automatically wait for indexer timeout when running `func`. """ # To preserve the original type signature of `func` in the sphinx docs @wraps(func) def wrapped(*args: Any, **kwargs: Any) -> Any: # First wait for the indexer to catch up with the latest `algod_round` algod_round = _algod_client().status()["last-round"] while _indexer_client().health()["round"] < algod_round: time.sleep(1) # Give the indexer a number of tries before erroring out timeout = 0 while timeout < ConfigParams.indexer_timeout: try: ret = func(*args, **kwargs) break except IndexerHTTPError: time.sleep(1) timeout += 1 else: raise TimeoutError("Timeout reached waiting for indexer.") return ret return wrapped
10d3f5070a88ed3c592022442e1fdb1547b8fef7
26,124
def test10(args): """ CIFAR-10 test set creator. It returns a reader creator, each sample in the reader is image pixels in [0, 1] and label in [0, 9]. :return: Test reader creator. :rtype: callable """ return reader_creator_filepath(args.data, 'test_batch', False, args)
cf403342c879e6e1a199d21472fd2991ec8c196d
26,125
def get_saver(moving_average_decay, nontrainable_restore_names=None): """ Gets the saver that restores the variavles for testing by default, restores to moving exponential average versions of trainable variables if nontrainable_restore_names is set, then restores nontrainable variables that match (this can be used for restoring mean averages for batch normalization) """ variable_averages = tf.train.ExponentialMovingAverage( moving_average_decay ) variables_to_restore = {} for v in tf.global_variables(): # if the variable is trainable or its name has the desird substring if v in tf.trainable_variables() or nontrainable_restore_names is not None and nontrainable_restore_names in v.name: print(v.name) restore_name = variable_averages.average_name(v) else: restore_name = v.op.name variables_to_restore[restore_name] = v saver = tf.train.Saver(variables_to_restore) return saver
ddb3670b323d310a7ab24a7c507d65afa5abfcaa
26,126
def _get_data(preload=False): """Get data.""" raw = read_raw_fif(raw_fname, preload=preload, verbose='warning') events = read_events(event_name) picks = pick_types(raw.info, meg=True, eeg=True, stim=True, ecg=True, eog=True, include=['STI 014'], exclude='bads') return raw, events, picks
7fbafeb3a21d653388c35988e26871293e69fb69
26,128
def make_full_filter_set(filts, signal_length=None): """Create the full set of filters by extending the filterbank to negative FFT frequencies. Args: filts (array_like): Array containing the cochlear filterbank in frequency space, i.e., the output of make_erb_cos_filters_nx. Each row of ``filts`` is a single filter, with columns indexing frequency. signal_length (int, optional): Length of the signal to be filtered with this filterbank. This should be equal to filter length * 2 - 1, i.e., 2*filts.shape[1] - 1, and if signal_length is None, this value will be computed with the above formula. This parameter might be deprecated later. Returns: ndarray: **full_filter_set** -- Array containing the complete filterbank in frequency space. This output can be directly applied to the frequency representation of a signal. """ if signal_length is None: signal_length = 2 * filts.shape[1] - 1 # note that filters are currently such that each ROW is a filter and COLUMN idxs freq if np.remainder(signal_length, 2) == 0: # even -- don't take the DC & don't double sample nyquist neg_filts = np.flipud(filts[1:filts.shape[0] - 1, :]) else: # odd -- don't take the DC neg_filts = np.flipud(filts[1:filts.shape[0], :]) fft_filts = np.vstack((filts, neg_filts)) # we need to switch representation to apply filters to fft of the signal, not sure why, but do it here return fft_filts.T
3d5bdd176ced736c6b06468a90510e9af5a1c635
26,129
def from_autonetkit(topology): """Convert an AutoNetKit graph into an FNSS Topology object. The current implementation of this function only renames the weight attribute from *weight* to *ospf_cost* Parameters ---------- topology : NetworkX graph An AutoNetKit NetworkX graph Returns ------- fnss_topology : FNSS Topology FNSS topology """ topology = topology.copy() rename_edge_attribute(topology, 'ospf_cost', 'weight') return topology
a087af7739506d86b91aaaeb31d8db4eb1dcc075
26,130
def create_default_fake_filter(): """Return the default temporal, spatial, and spatiotemporal filters.""" nx, ny, nt = get_default_filter_size() time = np.arange(nt) return create_spatiotemporal_filter(nx, ny, nt)
01a64ecd2b599810c61690c67c1539c5126eb160
26,131
def ClementsBekkers(data, sign='+', samplerate=0.1, rise=2.0, decay=10.0, threshold=3.5, dispFlag=True, subtractMode=False, direction=1, lpfilter=2000, template_type=2, ntau=5, markercolor=(1, 0, 0, 1)): """Use Clementes-Bekkers algorithm to find events in a data vector. The Clementes-Bekkers algorithm uses a template event shape (set by `template_type`) that is "swept" across the `data` set to find potential events similar to the template. Parameters ---------- data : array One-dimensional array that will be searched for matching events. sign : str {'+', '-'}, default '+' Sign of events that will be searched. samplerate : float (default 0.1) the sampling rate for the data, (milliseconds) rise : float (default 2.0) The rise time of the events to be detected (milliseconds) decay : float (default 10.0) The decay time of the events to be detected (milliseconds) threshold : float (default 3.5) Threshold of event relative to stdev of data to pass detection. dispFlag : boolean (True) Controls whether or not data is displayed while searching (inactive in Python version) subtractMode : boolean (False) subtracts the best matched templates from the data array as we go. Used to find overlapping events. direction : int (1) Controls direction of the search: 1 is forward from beginning, -1 is backwards from end of data array lpfilter : float (2000.) Low pass filter to apply to the data set before starting search. (Hz) template_type : int (2) The template type that will be used. Templates are: 1 : alpha function (template = ((ti - predelay) / decay) * np.exp((-(t[i] - predelay)) / decay)) 2 : exp rise to power, exp fall 3 : exp rise to power, double exp fall 4 : average waveform (not implemented) 5 : (see cb_template for details) ntau : int (5) number of decay time constants to use when computing template markerclor : (rgba) (1, 0, 0, 1) color of the marker used to identify matches when dispFlag is True Returns ------- eventlist : np.array array of event times peaklist : np.array array of event points in the original data crit : numpy array the critierion array, a waveform of the same length as the data array scale : numpy array the scale array, a waveform of the same length as the data array cx : numpy array the cx array template : numpy array the template used for the matching algorithm """ # fsamp = 1000.0/samplerate; # get sampling frequency # fco = 1600.0; # cutoff frequency in Hz # wco = fco/(fsamp/2); # wco of 1 is for half of the sample rate, so set it like this... # if(wco < 1) # if wco is > 1 then this is not a filter! # [b, a] = butter(8, wco); # fir type filter... seems to work best, with highest order min distortion of dv/dt... # data = filter(b, a, data); # filter all the traces... # generate the template [template, predelay] = cb_template(funcid=template_type, samplerate=samplerate, rise=rise, decay=decay, lpfilter=lpfilter, ntau=ntau) N = len(template) if template_type is 4: # use data Npost = len(template) else: Npost = int(decay * ntau / samplerate) isign = 1 if sign is '-': isign = -1.0 # template = isign*template sumD = 0.0 sumD2 = 0.0 sumT = np.sum(template) # only need to compute once. sumT2 = np.sum(np.multiply(template, template)) nData = len(data) # initialize arrays used in the computation critwave = np.zeros(nData) # waves for internal reference scalewave = np.zeros(nData) offsetwave = np.zeros(nData) cx = [] scale = [] pkl = [] eventlist = [] evn = [] # list of events isamp = [] icoff = [] # cutoff crit = [] # criteria nevent = 0 # number of events minspacing = int(25.0 / samplerate) # 2.0 msec minimum dt. Events cannot # be closer than this direction determines whether detection is done in # forward or reverse time. if direction == 1: start = 0 finish = nData - N else: start = nData - N - 1 finish = 0 fN = float(N) lasti = start resetFlag = False # force reset of running sum calculations # subtractMode determines whether we subtract the best fits from the data # as we go i = start for i in range(start, finish, direction): iEnd = N + i if i == start or resetFlag is True: # print "resetting i = %d" % (i) sumD = np.sum(data[i:iEnd]) # optimization... sumD2 = np.sum(np.multiply(data[i:iEnd], data[i:iEnd])) ld = data[iEnd] fd = data[i] resetFlag = False else: # only add or subtract the end points if direction == 1: sumD = sumD + data[iEnd] - fd sumD2 = sumD2 + np.multiply(data[iEnd], data[iEnd]) - (fd * fd) fd = data[i] if direction == -1: sumD = sumD - ld + data[i] sumD2 = sumD2 - (ld * ld) + np.multiply(data[i], data[i]) ld = data[iEnd] sumTxD = np.sum(np.multiply(data[i:iEnd], template)) S = (sumTxD - (sumT * sumD / fN)) / (sumT2 - (sumT * sumT / fN)) C = (sumD - S * sumT) / fN # if S*isign < 0.0: # only work with correct signed matches in scaling. # S = 0.0 # added, pbm 7/20/09 # f = S*template+C SSE = sumD2 + (S * S * sumT2) + (fN * C * C) - 2.0 * \ (S * sumTxD + C * sumD - S * C * sumT) if SSE < 0: # needed to prevent round-off errors in above calculation CRITERIA = 0.0 else: CRITERIA = S / np.sqrt(SSE / (fN - 1.0)) critwave[i] = CRITERIA scalewave[i] = S offsetwave[i] = C # best fit to template has the wrong sign, so skip it if isign * S < 0.0: continue # get this peak position peak_pos = np.argmax(isign * data[i:iEnd]) + i addevent = False replaceevent = False # criteria must exceed threshold in the right direction if isign * CRITERIA > threshold: if len(eventlist) == 0: # always add the first event addevent = True else: # and events that are adequately spaced if abs(peak_pos - pkl[-1]) > minspacing: addevent = True else: # events are close, but fit is better for this point - # replace if isign * CRITERIA > isign * crit[-1]: replaceevent = True if addevent: eventlist.append(i) jEnd = iEnd pkl.append(peak_pos) crit.append(CRITERIA) scale.append(S) cx.append(C) if replaceevent: if subtractMode is True: j = eventlist[-1] jEnd = j + N data[j:jEnd] = data[j:jEnd] + \ (scale[-1] * template + cx[-1]) # add it back # replace last event in the list with the current event eventlist[-1] = i pkl[-1] = peak_pos crit[-1] = CRITERIA scale[-1] = S cx[-1] = C if subtractMode is True and (addevent or replaceevent): resetFlag = True # and subtract the better one data[i:iEnd] = data[i:iEnd] - (S * template + C) il = i i = jEnd # restart... lasti = i nevent = len(eventlist) if nevent == 0: print('ClementsBekkers: No Events Detected') else: print('ClementsBekkers: %d Events Detected' % (nevent)) if dispFlag is True and nevent > 0: mpl.figure(1) t = samplerate * np.arange(0, nData) mpl.subplot(4, 1, 1) mpl.plot(t, data, 'k') mpl.hold(True) mpl.plot(t[pkl], data[pkl], marker='o', markerfacecolor=markercolor, linestyle='') mpl.plot(t[eventlist], data[eventlist], marker='s', markerfacecolor=markercolor, linestyle='') for i in range(0, len(eventlist)): tev = t[eventlist[i]: eventlist[i] + len(template)] mpl.plot(tev, cx[i] + scale[i] * template, color=markercolor) mpl.subplot(4, 1, 2) mpl.plot(t, critwave, color=markercolor) mpl.hold(True) mpl.plot([t[0], t[-1]], [threshold, threshold], 'k-') mpl.plot([t[0], t[-1]], [-threshold, -threshold], 'k-') mpl.subplot(4, 1, 3) mpl.plot(t, scalewave, color=markercolor, linestyle='-') mpl.hold(True) mpl.plot(t, offsetwave, color=markercolor, linestyle='--') tt = samplerate * np.arange(0, len(template)) mpl.subplot(4, 2, 7) mpl.plot(tt, template, color=markercolor) mpl.draw() return(np.array(eventlist), np.array(pkl), np.array(crit), np.array(scale), np.array(cx), np.array(template))
242e7cdcbed9b8c85d08a086ed08dd2889756029
26,132
import re def extract_words(path_to_file): """ Takes a path to a file and returns the non-stop words, after properly removing nonalphanumeric chars and normalizing for lower case """ words = re.findall('[a-z]{2,}', open(path_to_file).read().lower()) stopwords = set(open('../stop_words.txt').read().split(',')) return [w for w in words if w not in stopwords]
4f5031693d10542c31a3055341d1794d0d7bf4f0
26,133
import math def umass_coherence(T, corpus): """ Find the UMass coherence of a topic input: T (list of strings): topic to find coherence of """ sum = 0 # Go through all distinct pairs in the topic for i, item_i in enumerate(T): w_i, weight_i = item_i for j, item_j in enumerate(T): w_j, weight_j = item_j if not (i < j): continue # Calculate how many documents w_i appears in and how many # documents w_i and w_j both appear in counts = D(corpus, w_i, second_word=w_j) # Update sum val = (counts["both"] + 1) / counts[w_i] sum += math.log(val, 10) return sum
d92a8f463b123eb62f4732db358cc8e401091c9f
26,134
def get_train_test_sents(corpus, split=0.8, shuffle=True): """Get train and test sentences. Args: corpus: nltk.corpus that supports sents() function split (double): fraction to use as training set shuffle (int or bool): seed for shuffle of input data, or False to just take the training data as the first xx% contiguously. Returns: train_sentences, test_sentences ( list(list(string)) ): the train and test splits """ sentences = np.array(corpus.sents(), dtype=object) fmt = (len(sentences), sum(map(len, sentences))) print "Loaded %d sentences (%g tokens)" % fmt if shuffle: rng = np.random.RandomState(shuffle) rng.shuffle(sentences) # in-place train_frac = 0.8 split_idx = int(train_frac * len(sentences)) train_sentences = sentences[:split_idx] test_sentences = sentences[split_idx:] fmt = (len(train_sentences), sum(map(len, train_sentences))) print "Training set: %d sentences (%d tokens)" % fmt fmt = (len(test_sentences), sum(map(len, test_sentences))) print "Test set: %d sentences (%d tokens)" % fmt return train_sentences, test_sentences
796ce26db107f3582e9002a5df7144fbcb2fb960
26,135
def load_cifar10(filename): """ Load the Preprocessed data """ features, labels = pckl.load(open(filename, mode="rb")) return features, labels
9f6ee68c5b580370e1165287c9a26ab80d666615
26,136
import unittest def suite(): """Gather all the tests from this package in a test suite.""" test_suite = unittest.TestSuite() test_suite.addTest(unittest.makeSuite(TestBodyEval, "test")) return test_suite
2b3c4c642e1964d887e7b3d18db89d0cb69555c3
26,137
from typing import List def fetch_quality(data: dict, classification: ClassificationResult, attenuations: dict) -> dict: """Returns Cloudnet quality bits. Args: data: Containing :class:`Radar` and :class:`Lidar` instances. classification: A :class:`ClassificationResult` instance. attenuations: Dictionary containing keys `liquid_corrected`, `liquid_uncorrected`. Returns: Dictionary containing `quality_bits`, an integer array with the bits: - bit 0: Pixel contains radar data - bit 1: Pixel contains lidar data - bit 2: Pixel contaminated by radar clutter - bit 3: Molecular scattering present (currently not implemented!) - bit 4: Pixel was affected by liquid attenuation - bit 5: Liquid attenuation was corrected - bit 6: Data gap in radar or lidar data """ bits: List[np.ndarray] = [np.ndarray([])] * 7 radar_echo = data["radar"].data["Z"][:] bits[0] = ~radar_echo.mask bits[1] = ~data["lidar"].data["beta"][:].mask bits[2] = classification.is_clutter bits[4] = attenuations["liquid_corrected"] | attenuations["liquid_uncorrected"] bits[5] = attenuations["liquid_corrected"] qbits = _bits_to_integer(bits) return {"quality_bits": qbits}
4de1fd337ed31c7b3434458c31aa8bd350b7a8fa
26,138
from typing import Any def _batch_set_multiple(batch: Any, key: Any, value: Any) -> Any: """Sets multiple key value pairs in a non-tuple batch.""" # Numpy arrays and Torch tensors can take tuples and lists as keys, so try to do a normal # __getitem__ call before resulting to list comprehension. try: # Check if one can do a __getitem__ before doing a __setitem__ because dicts can # do __setitem__ for elements not in the dict and we do not want that. batch[key] batch[key] = value return batch # Indexing a list with a sequence results in TypeError # Indexing an array/tensor with a sequence that is longer than the rank of the array # results in an IndexError. except (IndexError, TypeError, KeyError): pass if not hasattr(value, '__len__') or isinstance(value, str): raise ValueError(f'value must be a sequence or array or tensor! and not {type(value)}') if len(key) != len(value): raise ValueError(f'value must be the same length as key ({len(key)}), but it is {len(value)} instead') for single_key, single_value in zip(key, value): batch = _batch_set(batch, single_key, single_value) return batch
224c560698bf00e31eb6e9df616773bb7f3ebc5e
26,139
def add_subscription_channel(username, profile_name, device_id, channel): """ :param username: Username of a user requesting the data :param profile_name: :param device_id: :param channel: :return: """ def append_channel(subscriptions): subscriptions.append(channel) return subscriptions get_set_subscription_channels(username, profile_name, device_id, append_channel)
62ca9028a46119389bd21182c5aef84671d2ee0e
26,141
def fft2erb(fft, fs, nfft): """ Convert Bark frequencies to Hz. Args: fft (np.array) : fft bin numbers. Returns: (np.array): frequencies in Bark [Bark]. """ return hz2erb((fft * fs) / (nfft + 1))
fbc699b3474405a1d939d38389bed62df7545e57
26,142
def get_activity_id(activity_name): """Get activity enum from it's name.""" activity_id = None if activity_name == 'STAND': activity_id = 0 elif activity_name == 'SIT': activity_id = 1 elif activity_name == 'WALK': activity_id = 2 elif activity_name == 'RUN': activity_id = 3 elif activity_name == 'WALK_UPSTAIRS': activity_id = 4 elif activity_name == 'WALK_DOWNSTAIRS': activity_id = 5 elif activity_name == 'LIE': activity_id = 6 elif activity_name == 'BIKE': activity_id = 7 elif activity_name == 'DRIVE': activity_id = 8 elif activity_name == 'RIDE': activity_id = 9 else: activity_id = 10 return activity_id
b5e18063b5448c3f57636daa732dfa2a4f07d801
26,143
import socket def is_ipv4(v): """ Check value is valid IPv4 address >>> is_ipv4("192.168.0.1") True >>> is_ipv4("192.168.0") False >>> is_ipv4("192.168.0.1.1") False >>> is_ipv4("192.168.1.256") False >>> is_ipv4("192.168.a.250") False >>> is_ipv4("11.24.0.09") False """ X = v.split(".") if len(X) != 4: return False try: return len([x for x in X if 0 <= int(x) <= 255]) == 4 and bool(socket.inet_aton(v)) except Exception: return False
e81fae435a8e59dbae9ab1805941ce3ba9909ba9
26,144
from typing import Optional from typing import Callable import warnings def deprecated(help_message: Optional[str] = None): """Decorator to mark a function as deprecated. Args: help_message (`Optional[str]`): An optional message to guide the user on how to switch to non-deprecated usage of the library. """ def decorator(deprecated_function: Callable): global _emitted_deprecation_warnings warning_msg = ( ( f"{deprecated_function.__name__} is deprecated and will be removed " "in the next major version of datalab." ) + f" {help_message}" if help_message else "" ) @wraps(deprecated_function) def wrapper(*args, **kwargs): func_hash = hash(deprecated_function) if func_hash not in _emitted_deprecation_warnings: warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) _emitted_deprecation_warnings.add(func_hash) return deprecated_function(*args, **kwargs) wrapper._decorator_name_ = "deprecated" return wrapper return decorator
cc353ac874c61e679ebac5c00e85d1266ee831e5
26,145
def permitted_info_attributes(info_layer_name, permissions): """Get permitted attributes for a feature info result layer. :param str info_layer_name: Layer name from feature info result :param obj permissions: OGC service permissions """ # get WMS layer name for info result layer wms_layer_name = permissions.get('feature_info_aliases', {}) \ .get(info_layer_name, info_layer_name) # return permitted attributes for layer return permissions['layers'].get(wms_layer_name, {})
57fcb05e5cd1c7e223c163929e78ecdb00d1ad09
26,146
def generate_balanced_tree(branching, depth, return_all=False): """ Returns a DirectedGraph that is a balanced Tree and the root of the tree. (From left to right) branching = 2, depth = 2 Depth 0 : "ROOT" Depth 1 : "!#_B0_" "!#_B1_" Depth 2 : "B0_B0_" "B1_B0_" "B0_B1_" "B1_B1_" """ total_size = branching**depth-1 alphabet = Alphabet(branching) graph = nx.DiGraph() root = get_root_name(depth) graph.add_node(root) #root _generate_balanced_tree(graph, alphabet, root, 0, branching, depth) if return_all: return graph, root, alphabet.alphabet else: return graph
b78f65af8b8609cb6db2e5d7c2cd6da2634c588a
26,147
import string def rand_ssn(): """Random SSN. (9 digits) Example:: >>> rand_ssn() 295-50-0178 """ return "%s-%s-%s" % (rand_str(3, string.digits), rand_str(2, string.digits), rand_str(4, string.digits))
c878de150989e040683280493b931350e9191d40
26,148
from typing import Dict from typing import Any def cast_arguments(args: Dict[str, Any]) -> Dict[str, str]: """Cast arguments. :param args: args :return: casted args """ casted_args = {} for arg_name, arg_value in args.items(): casted_args[arg_name] = cast_argument(arg_value) return casted_args
bedf813f1b4cb07468bc59c31ac4656757b547f2
26,149
def lmax_modes(lmax): """Compute all (l, m) pairs with 2<=l<=lmax""" return [(l, m) for l in range(2, lmax + 1) for m in range(-l, l + 1)]
10ca6d19c2e4f4ffa07cf52c3b6e9b14f8242d09
26,150
def scale_image(image, flag, nodata_value=VALUE_NO_DATA): """ Scale an image based on preset flag. Arguments: image - 3d array with assumed dimensions y,x,band flag - scaling flag to use (None if no scaling) Return: An image matching the input image dimension with scaling applied to it. """ if flag is None: return image elif flag == "mean_std": return scale_image_mean_std(image, nodata_value) elif flag == "mean": return scale_image_mean(image, nodata_value) elif flag == "minmax": return scale_image_minmax(image, nodata_value) else: raise NotImplementedError("Unknown scaling flag")
03bba109b7e5da098b2ef80beb399daf62dfda20
26,151
import re def import_student_to_module(request, pk): """ Take .xlsx file, as produced by def:export_student_import_format and retrieve all students and metainformation from it. Case 1 - Known User - Add the user to the active module edition with the right study and role by making a new Studying object Case 2 - Unknown User - Add the student to the database by making a new Person object and proceed like Case 1 Case 3 - Already Added User - Ignore row The function returns a view in which all newly added users, all users that are now added to the module edition and all users that were already in the module are shown. :param request: Django request :param pk: The module edition id :return: /students-module-imported.html redirect in which all fails, successes and addeds are given :raises: Permission denied if the user is not the Module Coordinator :raises: SuspiciousOperation in case of faulty file input """ # Check if user is a module coordinator. module_edition = get_object_or_404(ModuleEdition, pk=pk) person = Person.objects.filter(user=request.user).first() if not is_coordinator_or_assistant_of_module(person, module_edition): raise PermissionDenied('Not allowed to upload students to module.') if request.method == "POST": student_form = ImportStudentForm(request.POST, request.FILES) if student_form.is_valid(): file = request.FILES['file'] dict = file.get_book_dict() # Select first page students_to_module = dict[list(dict.keys())[0]] key_rows = {} emailpattern = re.compile('e[-]?mail*') for i in range(0,len(students_to_module[0])): if 'number' in students_to_module[0][i].lower(): key_rows['number'] = i elif 'name' in students_to_module[0][i].lower(): key_rows['name'] = i elif emailpattern.match(students_to_module[0][i].lower()): key_rows['email'] = i elif 'role' in students_to_module[0][i].lower(): key_rows['role'] = i # Check dimensions if not (len(students_to_module) > 1 and len(key_rows) == 4): return bad_request(request, {'message': 'Not all required columns [university_number, name, email, ' 'role] are in the excel sheet, or no rows to import.'}) context = {'created': [], 'studying': [], 'failed': []} for i in range(1, len(students_to_module)): # Sanitize number input try: if str(students_to_module[i][key_rows['number']])[0] == 's' and int(students_to_module[i][key_rows['number']][1:]) > 0: username = str(students_to_module[i][key_rows['number']]) elif str(students_to_module[i][key_rows['number']])[0] == 'm' and int(students_to_module[i][key_rows['number']][1:]) > 0: return HttpResponseBadRequest('Trying to add an employee as a student to a module.') elif int(students_to_module[i][key_rows['number']]) > 0: username = 's{}'.format(str(students_to_module[i][key_rows['number']])) else: raise ValueError except ValueError: return bad_request(request, {'message': '{} is not a student number.' .format(students_to_module[i][key_rows['number']])}) user, created = User.objects.get_or_create( username=username, defaults={ 'email': students_to_module[i][key_rows['email']] } ) student, created = Person.objects.get_or_create( university_number=username, defaults={ 'user': user, 'name': students_to_module[i][key_rows['name']], 'email': students_to_module[i][key_rows['email']], } ) # Update name and email student.name = students_to_module[i][key_rows['name']] student.email = students_to_module[i][key_rows['email']] student.save() if created: context['created'].append([student.name, student.full_id]) studying, created = Studying.objects.get_or_create( person=student, module_edition=ModuleEdition.objects.get(pk=pk), defaults={ 'role': students_to_module[i][key_rows['role']], } ) if created: module_ed = ModuleEdition.objects.get(id=studying.module_edition.pk) module = Module.objects.get(moduleedition=module_ed) context['studying'].append( [student.name, student.full_id, module.name, module_ed.code]) # studying.study]) else: module_ed = ModuleEdition.objects.get(id=studying.module_edition.pk) module = Module.objects.get(moduleedition=module_ed) context['failed'].append( [student.name, student.full_id, module.name, module_ed.code]) # studying.study]) context['studying'].append( [student.name, student.full_id, module.name, module_ed.code]) # studying.study]) return render(request, 'importer/students-module-imported.html', context={'context': context}) else: raise SuspiciousOperation('Bad POST') else: # if Module_ed.objects.filter(pk=pk): student_form = ImportStudentModule() return render(request, 'importer/import-module-student.html', {'form': student_form, 'pk': pk, 'module_edition': ModuleEdition.objects.get(pk=pk)})
607341968909fa5442832e7e27c0df9e70020650
26,152
def adjust_poses(poses,refposes): """poses, poses_ref should be in direct""" # atoms, take last step as reference for i in range(len(poses)): for x in range(3): move = round(poses[i][x] - refposes[i][x], 0) poses[i][x] -= move refposes = poses.copy() return poses, refposes
9bf0ea3a07efdd8666a3482798c28fe5256c5556
26,153
def eval_validation( left: pd.DataFrame, right: pd.DataFrame, left_on: IndexLabel, right_on: IndexLabel, validate: str, ): """ Evaluate the validation relationship between left and right and ensures that the left and right dataframes are compatible with the validation strategy. Parameters ---------- left : pd.DataFrame Left dataframe right : pd.DataFrame Right dataframe left_on : IndexLabel Left index label right_on : IndexLabel Right index label validate : str {'one_to_one', 'one_to_many', 'many_to_one'} Validation strategy. Returns ------- tuple[pd.DataFrame, pd.DataFrame] Left and right dataframes after validation. """ if validate == "one_to_many": left = left.drop_dup_and_log(subset=left_on) elif validate == "many_to_one": right = right.drop_dup_and_log(subset=right_on) elif validate == "one_to_one": left = left.drop_dup_and_log(subset=left_on) right = right.drop_dup_and_log(subset=right_on) else: raise ValueError(f'Unsupported "validate" argument {validate}') return left, right
184f73e77133fef751b4aeec6cdfccbca0a817ad
26,154
def get_region_props_binary_fill(heatmapbinary, heatmap): """ The function is to get location and probability of heatmap using ndimage. :param heatmapbinary: the binarized heatmap :type heatmap_binary: array :param heatmap: the original heat_map :type heatmap: array :returns: regionprops :rtype: object """ # heatmapbinary = closing(heatmapbinary, square[3]) # heatmapbinary = clear_border(heatmapbinary) # open_heatmapbinary = nd.binary_opening(heatmapbinary) # close_heatmapbinary = nd.binary_closing(open_heatmapbinary) heatmap_binary = heatmapbinary.astype("uint8") filled_image = nd.morphology.binary_fill_holes(heatmap_binary) #kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10)) #kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (20, 20)) #heatmap_close = cv2.morphologyEx(heatmap_binary, cv2.MORPH_CLOSE, kernel) #heatmap_open = cv2.morphologyEx(heatmap_close, cv2.MORPH_OPEN, kernel) matplotlib.image.imsave('%s/%s.png' % (result_folder, label_heatmap_paths[i].split('/')[-3]), filled_image) labeled_img = label(filled_image, connectivity=2) return regionprops(labeled_img, intensity_image=heatmap)
0b7351e7a52f0c1d71b4839894fb2f71aa4e0774
26,156
def login_response(request, username, password): """ Authenticates user and redirects with the appropriate state. """ user = authenticate(username=username, password=password) if user: login(request, user) logger.info("User '{}' logged in.".format(user.username)) return redirect('index') logger.warning("User '{}' tried to login with '{}' password IP: {}".format( username, password, request.META.get('REMOTE_ADDR') )) return render(request, 'index.html', {'invalid_authentication': True})
99c9dc48052a0b99728babd591c0c5e3edae8969
26,157
def is_metageneration_specified(query_params): """Return True if if_metageneration_match is specified.""" if_metageneration_match = query_params.get("ifMetagenerationMatch") is not None return if_metageneration_match
d37c513f3356aef104e7f6db909d5245e2664c90
26,158
import functools def converter(fmt): """ Create a converter function for some specific format Parameters ---------- fmt : str The format to convert to, e.g. `"html"` or `"latex"`. Returns ------- function """ return functools.partial(convert, fmt=fmt)
b1ff4830a42eb5ced35205f1041367784eab4be6
26,159
def createRunner(name, account, user, conf={}): """ Creates a reusable spark runner Params: name: a name for the runner account: an account user: a user conf: a json encoded configuration dictionary """ master = "" if LOCAL: master = "local" else: masterInfos = getSparkMasters() master = "spark://%s" % ','.join(["%s:%s" % (info['host'], info['port']) for info in masterInfos]) return JobRunner(account=account, master=master, conf=conf, uploadFolder=UPLOAD_FOLDER, iamUsername=IAM_USERNAME, accessKeyId=ACCESS_KEY_ID, accessKeySecret=ACCESS_KEY_SECRET)
cf434ddd8b234776eb1269fe461e1f420b8f50ef
26,160
def auth_req_generator( rf, mocker, rq_mocker, jwks_request, settings, openid_configuration ): """Mock necessary functions and create an authorization request""" def func(id_token, user=None, code="code", state="state", nonce="nonce"): # Mock the call to the external token API rq_mocker.post( openid_configuration["token_endpoint"], json={"id_token": id_token} ) # Mock the user association call authenticate = mocker.patch("nens_auth_client.views.django_auth.authenticate") authenticate.return_value = user # Disable automatic RemoteUser creation settings.NENS_AUTH_AUTO_CREATE_REMOTE_USER = False # Create the request request = rf.get( "http://testserver/authorize/?code={}&state={}".format(code, state) ) request.session = { "_cognito_authlib_state_": state, "_cognito_authlib_nonce_": nonce, LOGIN_REDIRECT_SESSION_KEY: "http://testserver/success", } return request return func
56990b36dff74a8c27dcb6261066902a83f17184
26,161
from datetime import datetime def get_current_time(): """ Returns the current system time @rtype: string @return: The current time, formatted """ return str(datetime.datetime.now().strftime("%H:%M:%S"))
1a3c2ae5427ba53ebdffc08d26e0d0c28643b6ef
26,162
def mock_addon_options(addon_info): """Mock add-on options.""" return addon_info.return_value["options"]
52d20879710e60b4973b302279a624f617bbc6c2
26,163
from typing import Optional import torch from typing import Tuple def run( task: Task, num_samples: int, num_simulations: int, num_observation: Optional[int] = None, observation: Optional[torch.Tensor] = None, population_size: Optional[int] = None, distance: str = "l2", epsilon_decay: float = 0.2, distance_based_decay: bool = True, ess_min: Optional[float] = None, initial_round_factor: int = 5, batch_size: int = 1000, kernel: str = "gaussian", kernel_variance_scale: float = 0.5, use_last_pop_samples: bool = True, algorithm_variant: str = "C", save_summary: bool = False, sass: bool = False, sass_fraction: float = 0.5, sass_feature_expansion_degree: int = 3, lra: bool = False, lra_sample_weights: bool = True, kde_bandwidth: Optional[str] = "cv", kde_sample_weights: bool = False, ) -> Tuple[torch.Tensor, int, Optional[torch.Tensor]]: """Runs SMC-ABC from `sbi` SMC-ABC supports two different ways of scheduling epsilon: 1) Exponential decay: eps_t+1 = epsilon_decay * eps_t 2) Distance based decay: the new eps is determined from the "epsilon_decay" quantile of the distances of the accepted simulations in the previous population. This is used if `distance_based_decay` is set to True. Args: task: Task instance num_samples: Number of samples to generate from posterior num_simulations: Simulation budget num_observation: Observation number to load, alternative to `observation` observation: Observation, alternative to `num_observation` population_size: If None, uses heuristic: 1000 if `num_simulations` is greater than 10k, else 100 distance: Distance function, options = {l1, l2, mse} epsilon_decay: Decay for epsilon; treated as quantile in case of distance based decay. distance_based_decay: Whether to determine new epsilon from quantile of distances of the previous population. ess_min: Threshold for resampling a population if effective sampling size is too small. initial_round_factor: Used to determine initial round size batch_size: Batch size for the simulator kernel: Kernel distribution used to perturb the particles. kernel_variance_scale: Scaling factor for kernel variance. use_last_pop_samples: If True, samples of a population that was quit due to budget are used by filling up missing particles from the previous population. algorithm_variant: There are three SMCABC variants implemented: A, B, and C. See doctstrings in SBI package for more details. save_summary: Whether to save a summary containing all populations, distances, etc. to file. sass: If True, summary statistics are learned as in Fearnhead & Prangle 2012. sass_fraction: Fraction of simulation budget to use for sass. sass_feature_expansion_degree: Degree of polynomial expansion of the summary statistics. lra: If True, posterior samples are adjusted with linear regression as in Beaumont et al. 2002. lra_sample_weights: Whether to weigh LRA samples kde_bandwidth: If not None, will resample using KDE when necessary, set e.g. to "cv" for cross-validated bandwidth selection kde_sample_weights: Whether to weigh KDE samples Returns: Samples from posterior, number of simulator calls, log probability of true params if computable """ assert not (num_observation is None and observation is None) assert not (num_observation is not None and observation is not None) log = sbibm.get_logger(__name__) smc_papers = dict(A="Toni 2010", B="Sisson et al. 2007", C="Beaumont et al. 2009") log.info(f"Running SMC-ABC as in {smc_papers[algorithm_variant]}.") prior = task.get_prior_dist() simulator = task.get_simulator(max_calls=num_simulations) kde = kde_bandwidth is not None if observation is None: observation = task.get_observation(num_observation) if population_size is None: population_size = 100 if num_simulations > 10_000: population_size = 1000 population_size = min(population_size, num_simulations) initial_round_size = clip_int( value=initial_round_factor * population_size, minimum=population_size, maximum=max(0.5 * num_simulations, population_size), ) inference_method = SMCABC( simulator=simulator, prior=prior, simulation_batch_size=batch_size, distance=distance, show_progress_bars=True, kernel=kernel, algorithm_variant=algorithm_variant, ) # Output contains raw smcabc samples or kde object from them. output, summary = inference_method( x_o=observation, num_particles=population_size, num_initial_pop=initial_round_size, num_simulations=num_simulations, epsilon_decay=epsilon_decay, distance_based_decay=distance_based_decay, ess_min=ess_min, kernel_variance_scale=kernel_variance_scale, use_last_pop_samples=use_last_pop_samples, return_summary=True, lra=lra, lra_with_weights=lra_sample_weights, sass=sass, sass_fraction=sass_fraction, sass_expansion_degree=sass_feature_expansion_degree, kde=kde, kde_sample_weights=kde_sample_weights, kde_kwargs={} if kde_bandwidth is None else dict(kde_bandwidth=kde_bandwidth), ) if save_summary: log.info("Saving smcabc summary to csv.") pd.DataFrame.from_dict( summary, ).to_csv("summary.csv", index=False) assert simulator.num_simulations == num_simulations # Return samples from kde or raw samples. if kde: kde_posterior = output samples = kde_posterior.sample(num_simulations) # LPTP can only be returned with KDE posterior. if num_observation is not None: true_parameters = task.get_true_parameters(num_observation=num_observation) log_prob_true_parameters = kde_posterior.log_prob(true_parameters.squeeze()) return samples, simulator.num_simulations, log_prob_true_parameters else: samples = output return samples, simulator.num_simulations, None
ebcec3f8985dd30cbffbfa01cdd6a686123806dc
26,165
def _preprocess_symbolic_input(x, data_format, mode, **kwargs): """Preprocesses a tensor encoding a batch of images. # Arguments x: Input tensor, 3D or 4D. data_format: Data format of the image tensor. mode: One of "caffe", "tf" or "torch". - caffe: will convert the images from RGB to BGR, then will zero-center each color channel with respect to the ImageNet dataset, without scaling. - tf: will scale pixels between -1 and 1, sample-wise. - torch: will scale pixels between 0 and 1 and then will normalize each channel with respect to the ImageNet dataset. # Returns Preprocessed tensor. """ backend = keras.backend if mode == 'tf': x /= 127.5 x -= 1. return x if mode == 'torch': x /= 255. mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] # print("torch") else: if data_format == 'channels_first': # 'RGB'->'BGR' if backend.ndim(x) == 3: x = x[::-1, ...] else: x = x[:, ::-1, ...] else: # 'RGB'->'BGR' x = x[..., ::-1] mean = [103.939, 116.779, 123.68] std = None mean_tensor = backend.constant(-np.array(mean)) # Zero-center by mean pixel if backend.dtype(x) != backend.dtype(mean_tensor): x = backend.bias_add( x, backend.cast(mean_tensor, backend.dtype(x)), data_format=data_format) else: x = backend.bias_add(x, mean_tensor, data_format) if std is not None: x /= std return x
2a42723cc1c61f143b8e1df20622f5d83ce5e719
26,166
from typing import Dict def line_column(position: Position) -> Dict[str, int]: """Translate pygls Position to Jedi's line / column Returns a dictionary because this return result should be unpacked as a function argument to Jedi's functions. Jedi is 1-indexed for lines and 0-indexed for columns. LSP is 0-indexed for lines and 0-indexed for columns. Therefore, add 1 to LSP's request for the line. """ return dict(line=position.line + 1, column=position.character)
b7f41db9d748b5d3c4f29470d4c5479aa59f95ec
26,168
import math def rotZ(theta): """ returns Rotation matrix such that R*v -> v', v' is rotated about z axis through theta_d. theta is in radians. rotZ = Rz' """ st = math.sin(theta) ct = math.cos(theta) return np.matrix([[ ct, -st, 0. ], [ st, ct, 0. ], [ 0., 0., 1. ]])
0daf8b021f0011c1bd70adf6c86fb2b91308232a
26,170
import json def main(event, context): """Validate POST request and trigger Lambda copy function.""" try: body = json.loads(event['body']) bucket = body['bucket'] project = body['project'] token = body['token'] except (TypeError, KeyError): return { "statusCode": 400, "body": json.dumps({"message": "Please provide bucket, project and token"}) } # Simple authentication if not token == FRAMEIO_TOKEN: return { "statusCode": 401, "body": json.dumps({"message": "Unauthorized"}) } # Validate project and bucket root_asset_id = project_root_asset_id(project) if not root_asset_id: return { "statusCode": 400, "body": json.dumps({"message": f"Unable to find Frame.io project {project}"}) } try: s3.meta.client.head_bucket(Bucket=bucket) except ClientError as e: print(e) return { "statusCode": 400, "body": json.dumps({"message": f"Unable to find bucket {bucket}"}) } lambda_client.invoke( FunctionName='s3-to-frameio-lambda-copy-dev-copy', InvocationType='Event', Payload=json.dumps({ 'bucket_name': bucket, 'previous_asset': '', 'continued_run': 'false', 'parent_ids': {'': root_asset_id}}) # Dict with folder:asset_id pairs. '' is root. ) return { "statusCode": 200, "body": json.dumps({"message": "Copy started!"}) }
66742763a71c55006072f99b8c13309bec913cde
26,171
import random def random_k(word_vectors, k): """ :return: ({cluster_id: [cluster elements]}) """ clusters = defaultdict(list) for word in word_vectors.vocab: chosen_cluster = random.randint(0, k-1) clusters[chosen_cluster].append(word) return clusters
e22e28f1836f8701edbefb92b16751713f1580af
26,172
from typing import Optional def get_human_label(scope: str) -> Optional[str]: """The the human-readable label for a scope, for display to end users.""" return _HUMAN_LABELS.get(scope)
d3259e5dc3b1ab825c3fe9c3f0a860f0a1ebe7c0
26,173
import inspect def lineno(): """Returns the current line number in our program.""" return str(' - RuleDumper - line number: '+str(inspect.currentframe().f_back.f_lineno))
c6956415e297b675082913d8e17c606d45a01147
26,174
def run_simulation(input_dataframe, num_cells_per_module, temperature_series, lookup_table, mod_temp_path, module_start, module_end, database_path, module_name, bypass_diodes, subcells, num_irrad_per_module): """ :param input_dataframe: irradiation on every cell/subcell :param num_cells_per_module: cells_per_module :param temperature_series: :param lookup_table: :return: """ modules_in_df = (len(input_dataframe.columns) - 4) / num_irrad_per_module if database_path==None: print "Please add the module database path" # Data is looked up in CEC module database module_df = pvsyst.retrieve_sam(path=database_path) # e.g. [module0[hour0[i[],v[]]], module1[hour1[i[],v[]]], ..., modulen[hour8759[i[],v[]]] # basically for every module there is a sublist for hourly values, for each hour there is a sublist with i and v # a specific i or v list can be called as follows: modules_iv[module][hour][i/v] # for module in range(modules_in_df): for module in range(module_start, module_end + 1, 1): columns_from = module * num_irrad_per_module + 4 # The module data starts at column 4 columns_to = columns_from + num_irrad_per_module - 1 # -1 because the column from already counts to the module module_df_temp = input_dataframe.loc[:, columns_from:columns_to] hourly_iv_curves = [] for row in range(len(module_df_temp.index)): irradiation_on_module = module_df_temp.loc[row, :].tolist() # print irradiation_on_module if max(irradiation_on_module) == 0: # Filter out the hours without irradiation i_module_sim = np.asarray(0) v_module_sim = np.asarray(0) hourly_iv_curves.append([i_module_sim, v_module_sim]) print "hour = " + str(row) else: i_module_sim, v_module_sim, lookup_table = ps.partial_shading(irradiation_on_module, temperature=temperature_series[row], irrad_temp_lookup_df=lookup_table, module_df=module_df, module_name=module_name, numcells=num_cells_per_module, n_bypass_diodes=bypass_diodes, num_subcells=subcells) hourly_iv_curves.append([i_module_sim, v_module_sim]) print "hour = " + str(row) # The results for each module are saved in a file. This is required to lower the memory consumption # of the program when a high amount of modules is considered module_path = mod_temp_path + "\module" + str(module) + ".pkl" with open(module_path, 'w') as f: pickle.dump(hourly_iv_curves, f) print "module done = " + str(module) return lookup_table
43c25140d5a619479160d0f723ad7150e82db5b4
26,175
import six def qualified_name(obj): """Return the qualified name (e.g. package.module.Type) for the given object.""" try: module = obj.__module__ qualname = obj.__qualname__ if six.PY3 else obj.__name__ except AttributeError: type_ = type(obj) module = type_.__module__ qualname = type_.__qualname__ if six.PY3 else type_.__name__ return qualname if module in ('typing', 'builtins') else '{}.{}'.format(module, qualname)
02444c19d200650de8dc9e2214f7788fca0befd2
26,176
def cast_mip_start(mip_start, cpx): """ casts the solution values and indices in a Cplex SparsePair Parameters ---------- mip_start cplex SparsePair cpx Cplex Returns ------- Cplex SparsePair where the indices are integers and the values for each variable match the variable type specified in CPLEX Object """ assert isinstance(cpx, Cplex) assert isinstance(mip_start, SparsePair) vals = list(mip_start.val) idx = np.array(list(mip_start.ind), dtype = int).tolist() types = cpx.variables.get_types(idx) for j, t in enumerate(types): if t in ['B', 'I']: vals[j] = int(vals[j]) elif t in ['C']: vals[j] = float(vals[j]) return SparsePair(ind = idx, val = vals)
df51191d5621cf65d39897ff474785a05ae722d1
26,177
def encode(value, unchanged = None): """ encode/decode are performed prior to sending to mongodb or after retrieval from db. The idea is to make object embedding in Mongo transparent to the user. - We use jsonpickle package to embed general objects. These are encoded as strings and can be decoded as long as the original library exists when decoding. - pandas.DataFrame are encoded to bytes using pickle while numpy arrays are encoded using the faster array.tobytes() with arrays' shape & type exposed and searchable. :Example: ---------- >>> from pyg import *; import numpy as np >>> value = Dict(a=1,b=2) >>> assert encode(value) == {'a': 1, 'b': 2, '_obj': '{"py/type": "pyg_base._dict.Dict"}'} >>> assert decode({'a': 1, 'b': 2, '_obj': '{"py/type": "pyg_base._dict.Dict"}'}) == Dict(a = 1, b=2) >>> value = dictable(a=[1,2,3], b = 4) >>> assert encode(value) == {'a': [1, 2, 3], 'b': [4, 4, 4], '_obj': '{"py/type": "pyg_base._dictable.dictable"}'} >>> assert decode(encode(value)) == value >>> assert encode(np.array([1,2])) == {'data': bytes, >>> 'shape': (2,), >>> 'dtype': '{"py/reduce": [{"py/type": "numpy.dtype"}, {"py/tuple": ["i4", false, true]}, {"py/tuple": [3, "<", null, null, null, -1, -1, 0]}]}', >>> '_obj': '{"py/function": "pyg_base._encode.bson2np"}'} :Example: functions and objects ------------------------------- >>> from pyg import *; import numpy as np >>> assert encode(ewma) == '{"py/function": "pyg.timeseries._ewm.ewma"}' >>> assert encode(Calendar) == '{"py/type": "pyg_base._drange.Calendar"}' :Parameters: ---------------- value : obj An object to be encoded :Returns: ------- A pre-json object """ return _encode(value, unchanged)
c7ab759a5c25199e3de2f5e2a691c09cca77eaa7
26,178
def ConvertToCamelCase(input): """Converts the input string from 'unix_hacker' style to 'CamelCase' style.""" return ''.join(x[:1].upper() + x[1:] for x in input.split('_'))
8070516c61768ea097eccc62633fc6dea2fa7096
26,179
from supersmoother import SuperSmoother as supersmoother def flatten(time, flux, window_length=None, edge_cutoff=0, break_tolerance=None, cval=None, return_trend=False, method='biweight', kernel=None, kernel_size=None, kernel_period=None, proportiontocut=constants.PROPORTIONTOCUT, robust=False, max_splines=constants.PSPLINES_MAX_SPLINES, return_nsplines=False, mask=None, verbose=False ): """ ``flatten`` removes low frequency trends in time-series data. Parameters ---------- time : array-like Time values flux : array-like Flux values for every time point window_length : float The length of the filter window in units of ``time`` (usually days), or in cadences (for cadence-based sliders ``savgol`` and ``medfilt``). method : string, default: ``biweight`` Detrending method. Rime-windowed sliders: ``median``, ``biweight``, ``hodges``, ``tau``, ``welsch``, ``huber``, ``huber_psi``, ``andrewsinewave``, ``mean``, ``hampel``, ``ramsay``, ``trim_mean``, ``hampelfilt``, ``winsorize``. Cadence based slider: ``medfilt``. Splines: ``hspline``, ``rspline`, ``pspline``. Locally weighted scatterplot smoothing: ``lowess``. Savitzky-Golay filter: ``savgol``. Gaussian processes: ``gp``. Cosine Filtering with Autocorrelation Minimization: ``cofiam``. Cosine fitting: ``cosine``, Friedman's Super-Smoother: ``supersmoother``. Gaussian regressions: ``ridge``, ``lasso``, ``elasticnet``. break_tolerance : float, default: window_length/2 If there are large gaps in time (larger than ``window_length``/2), flatten will split the flux into several sub-lightcurves and apply the filter to each individually. ``break_tolerance`` must be in the same unit as ``time`` (usually days). To disable this feature, set ``break_tolerance`` to 0. If the method is ``supersmoother`` and no ``break_tolerance`` is provided, it will be taken as `1` in units of ``time``. edge_cutoff : float, default: None Trends near edges are less robust. Depending on the data, it may be beneficial to remove edges. The ``edge_cutoff`` defines the length (in units of time) to be cut off each edge. Default: Zero. Cut off is maximally ``window_length``/2, as this fills the window completely. Applicable only for time-windowed sliders. cval : float or int Tuning parameter for the robust estimators. See documentation for defaults. Larger values for make the estimate more efficient but less robust. For the super-smoother, cval determines the bass enhancement (smoothness) and can be `None` or in the range 0 < ``cval`` < 10. For the ``savgol``, ``cval`` determines the (integer) polynomial order (default: 2). proportiontocut : float, default: 0.1 Fraction to cut off (or filled) of both tails of the distribution using methods ``trim_mean`` (or ``winsorize``) kernel : str, default: `squared_exp` Choice of `squared_exp` (squared exponential), `matern`, `periodic`, `periodic_auto`. kernel_size : float, default: 1 The length scale of the Gaussian Process kernel. kernel_period : float The periodicity of the Gaussian Process kernel (in units of ``time``). Must be provided for the kernel `periodic`. Can not be specified for the `periodic_auto`, for which it is determined automatically using a Lomb-Scargle periodogram pre-search. robust : bool, default: False If `True`, the fitting process will be run iteratively. In each iteration, 2-sigma outliers from the fitted trend will be clipped until convergence. Supported by the Gaussian Process kernels `squared_exp` and `matern`, as well as `cosine` fitting. return_trend : bool, default: False If `True`, the method will return a tuple of two elements (``flattened_flux``, ``trend_flux``) where ``trend_flux`` is the removed trend. Returns ------- flatten_flux : array-like Flattened flux. trend_flux : array-like Trend in the flux. Only returned if ``return_trend`` is `True`. """ if method not in constants.methods: raise ValueError('Unknown detrending method') # Numba can't handle strings, so we're passing the location estimator as an int: if method == 'biweight': method_code = 1 elif method == 'andrewsinewave': method_code = 2 elif method == 'welsch': method_code = 3 elif method == 'hodges': method_code = 4 elif method == 'median': method_code = 5 elif method == 'mean': method_code = 6 elif method == 'trim_mean': method_code = 7 elif method == 'winsorize': method_code = 8 elif method == 'hampelfilt': method_code = 9 elif method == 'huber_psi': method_code = 10 elif method == 'tau': method_code = 11 error_text = 'proportiontocut must be >0 and <0.5' if not isinstance(proportiontocut, float): raise ValueError(error_text) if proportiontocut >= 0.5 or proportiontocut <= 0: raise ValueError(error_text) # Default cval values for robust location estimators if cval is None: if method == 'biweight': cval = 5 elif method == 'andrewsinewave': cval = 1.339 elif method == 'welsch': cval = 2.11 elif method == 'huber': cval = 1.5 elif method == 'huber_psi': cval = 1.28 elif method in ['trim_mean', 'winsorize']: cval = proportiontocut elif method == 'hampelfilt': cval = 3 elif method == 'tau': cval = 4.5 elif method == 'hampel': cval = (1.7, 3.4, 8.5) elif method == 'ramsay': cval = 0.3 elif method == 'savgol': # polyorder cval = 2 # int elif method in 'ridge lasso elasticnet': cval = 1 else: cval = 0 # avoid numba type inference error: None type multi with float if cval is not None and method == 'supersmoother': if cval > 0 and cval < 10: supersmoother_alpha = cval else: supersmoother_alpha = None # Maximum gap in time should be half a window size. # Any larger is nonsense, because then the array has a full window of data if window_length is None: window_length = 2 # so that break_tolerance = 1 in the supersmoother case if break_tolerance is None: break_tolerance = window_length / 2 if break_tolerance == 0: break_tolerance = inf # Numba is very fast, but doesn't play nicely with NaN values # Therefore, we make new time-flux arrays with only the floating point values # All calculations are done within these arrays # Afterwards, the trend is transplanted into the original arrays (with the NaNs) if mask is None: mask = np.ones(len(time)) else: mask = array(~mask, dtype=float64) # Invert to stay consistent with TLS time = array(time, dtype=float64) flux = array(flux, dtype=float64) mask_nans = isnan(time * flux) time_compressed = np.ma.compressed(np.ma.masked_array(time, mask_nans)) flux_compressed = np.ma.compressed(np.ma.masked_array(flux, mask_nans)) mask_compressed = np.ma.compressed(np.ma.masked_array(mask, mask_nans)) # Get the indexes of the gaps gaps_indexes = get_gaps_indexes(time_compressed, break_tolerance=break_tolerance) trend_flux = array([]) trend_segment = array([]) nsplines = array([]) # Chosen number of splines per segment for method "pspline" # Iterate over all segments for i in range(len(gaps_indexes) - 1): time_view = time_compressed[gaps_indexes[i]:gaps_indexes[i+1]] flux_view = flux_compressed[gaps_indexes[i]:gaps_indexes[i+1]] mask_view = mask_compressed[gaps_indexes[i]:gaps_indexes[i+1]] methods = ["biweight", "andrewsinewave", "welsch", "hodges", "median", "mean", "trim_mean", "winsorize", "huber_psi", "hampelfilt", "tau"] if method in methods: trend_segment = running_segment( time_view, flux_view, mask_view, window_length, edge_cutoff, cval, method_code) elif method in ["huber", "hampel", "ramsay"]: trend_segment = running_segment_slow( time_view, flux_view, mask_view, window_length, edge_cutoff, cval, method ) elif method == 'lowess': trend_segment = lowess( time_view, flux_view, mask_view, window_length ) elif method == 'hspline': trend_segment = detrend_huber_spline( time_view, flux_view, mask_view, knot_distance=window_length) elif method == 'supersmoother': try: except: raise ImportError('Could not import supersmoother') win = window_length / (max(time)-min(time)) trend_segment = supersmoother( alpha=supersmoother_alpha, primary_spans=( constants.primary_span_lower * win, win, constants.primary_span_upper * win ), middle_span=constants.middle_span * win, final_span=constants.upper_span * win ).fit(time_view, flux_view,).predict(time_view) elif method == 'cofiam': trend_segment = detrend_cofiam( time_view, flux_view, window_length) elif method == 'cosine': trend_segment = detrend_cosine( time_view, flux_view, window_length, robust, mask_view) elif method == 'savgol': if window_length%2 == 0: window_length += 1 trend_segment = savgol_filter(flux_view, window_length, polyorder=int(cval)) elif method == 'medfilt': trend_segment = medfilt(flux_view, window_length) elif method == 'gp': trend_segment = make_gp( time_view, flux_view, mask_view, kernel, kernel_size, kernel_period, robust ) elif method == 'rspline': trend_segment = iter_spline(time_view, flux_view, mask_view, window_length) elif method == 'pspline': if verbose: print('Segment', i + 1, 'of', len(gaps_indexes) - 1) trend_segment, nsplines_segment = pspline( time_view, flux_view, edge_cutoff, max_splines, return_nsplines, verbose ) nsplines = append(nsplines, nsplines_segment) elif method in "ridge lasso elasticnet": trend_segment = regression(time_view, flux_view, method, window_length, cval) trend_flux = append(trend_flux, trend_segment) # Insert results of non-NaNs into original data stream trend_lc = full(len(time), nan) mask_nans = where(~mask_nans)[0] for idx in range(len(mask_nans)): trend_lc[mask_nans[idx]] = trend_flux[idx] trend_lc[trend_lc==0] = np.nan # avoid division by zero flatten_lc = flux / trend_lc if return_trend and return_nsplines: return flatten_lc, trend_lc, nsplines if return_trend and not return_nsplines: return flatten_lc, trend_lc if not return_trend and not return_nsplines: return flatten_lc
048ae9b148ee0e248e0078ade08c56a641b426e1
26,180
def frequency(seq, useall=False, calpc=False): """Count the frequencies of each bases in sequence including every letter""" length = len(seq) if calpc: # Make a dictionary "freqs" to contain the frequency(in % ) of each base. freqs = {} else: # Make a dictionary "base_counts" to contain the frequency(whole number) of each base. base_counts = {} if useall: # If we want to look at every letter that appears in the sequence. seqset = set(seq) else: # If we just want to look at the four bases A, T, C, G seqset = ("A", "T", "G", "C") for letter in seqset: num = seq.count(letter) if calpc: # The frequency is calculated out of the total sequence length, even though some bases are not A, T, C, G freq = round(num/length, 2) freqs[letter] = freq else: # Contain the actual number of bases. base_counts[letter] = num if calpc: return freqs else: return base_counts
84f17aef0e02fbc927b4da49dab2e31c6121730d
26,181
def packages(request): """ Return a list of all packages or add a list of packages """ if request.method == "GET": package_list = Package.objects.all() serializer = PackageSerializer(package_list, many=True) return Response(serializer.data) if request.method == "POST": package_license_used_differ = [] package_already_in_database = [] package_wants_to_use_unknown_license = [] package_added_to_database = [] packagereturn = {} # Iterate through all recieved Packages and sort them into one of the four above lists for package_dic in request.data: # changes the KEY's of the packageDic into Lowercases package_dic = dict((k.lower(), v) for k, v in package_dic.items()) # Case_1 Package is already in Database if Package.objects.filter(package_name=package_dic["package_name"]).filter( package_version=package_dic["package_version"] ): package_from_database = Package.objects.filter( package_name=package_dic["package_name"] ).filter(package_version=package_dic["package_version"])[0] # Case_1_1 Package already in Database but is using another used_license or has no used_license if package_dic["license_used"]: if not ( package_from_database.license_used.title == package_dic["license_used"] ) or not package_dic["license_used"] in package_dic["license_list"]: package_license_used_differ.append(package_dic) # Case_1_2 Package Is in Database and doesnt differ else: package_already_in_database.append(package_dic) # Case_2 Package is not in Database yet else: # Case_2_1 Package is using a license which is not in the Database if not are_all_licenses_in_database(package_dic): package_wants_to_use_unknown_license.append(package_dic) # Case_2_2 Package can be added to the Database else: package_added_to_database.append(package_dic) # Add all Packages which are added to the package_added_to_database to the Database serializer = PackageSerializer(data=package_added_to_database, many=True) if serializer.is_valid(): serializer.save() # Return all four lists of Packages in one dictionary and return it to the LBS packagereturn[ "Packages where added to the Database" ] = package_added_to_database packagereturn[ "Packages where the license used differ" ] = package_license_used_differ packagereturn[ "Packages where not added to the Database, they were already in the Database" ] = package_already_in_database packagereturn[ "Packages wants to use unknown License" ] = package_wants_to_use_unknown_license return Response(packagereturn, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) return Response(status=status.HTTP_400_BAD_REQUEST)
778607965b867578b9df363eee19382bc97078ca
26,182
def progressive_multiple_alignment( Gs, cost_params, similarity_tuples, method, max_iters, max_algorithm_iterations, max_entities, shuffle, self_discount, do_evaluate, update_edges=False): """ Merge input graphs one graph at a time using any 2-network alignment method. Input: (same as merge_multiple_networks()) """ assert len(Gs) > 1, "Must have at least 2 graphs to align." # Construct candidate matches data structure candidate_matches = {} if similarity_tuples is not None: for (g1, n1, g2, n2, sim) in similarity_tuples: if (g1, n1) not in candidate_matches: candidate_matches[(g1, n1)] = [] candidate_matches[(g1, n1)].append((g2, n2, sim)) else: # Collect candidate matches based on 'name' attributes of nodes for g1i, g1 in enumerate(Gs): for n1_label in g1.nodes(): gn1 = (g1i, n1_label) # Every node can be mapped to itself candidate_matches[gn1] = [(g1i, n1_label, 1)] for g2i, g2 in enumerate(Gs): if g2i == g1i: continue for n2_label in g2.nodes(): if g1.node[n1_label]['name'] == \ g2.node[n2_label]['name']: candidate_matches[gn1].append((g2i, n2_label, 1)) # Dict from (graph,node) -> master_graph_node node2idx = {} idx2node = {} # Set of nodes mapped to themselves (to which we might map future nodes) active_nodes = set() # The assignment / asg.matches alignment = {} # Add the first graph first_graph_idx = 0 master_G = Gs[first_graph_idx] for node_idx, node_label in enumerate(master_G.nodes()): node2idx[(first_graph_idx, node_label)] = node_idx idx2node[node_idx] = (first_graph_idx, node_label) active_nodes.add((first_graph_idx, node_label)) alignment[(first_graph_idx, node_label)] = (first_graph_idx, node_label) master_G = nx.relabel_nodes(master_G, {label: i for i, label in enumerate(master_G.nodes())}) # Start aligning other graphs one at a time for graph_idx in range(len(Gs)): if graph_idx == first_graph_idx: continue print "Progressively aligning graph {}.".format(graph_idx) current_G = Gs[graph_idx] current_Gs = [master_G, current_G] # Construct a problem with only a subset of similarity_tuples temp_sim_tuples = [] # Filter the similarity tuples between active_nodes and current graph for node_label in current_G: # Node can always be mapped to itself temp_sim_tuples.append((1, node_label, 1, node_label, 1)) for cand_graph, cand_node, sim in candidate_matches[(graph_idx, node_label)]: if (cand_graph, cand_node) in active_nodes: master_node_idx = node2idx[(cand_graph, cand_node)] temp_sim_tuples.append((1, node_label, 0, master_node_idx, sim)) x, other = amn.align_multiple_networks( current_Gs, cost_params, temp_sim_tuples, method, max_iters, max_algorithm_iterations, max_entities, shuffle, self_discount, do_evaluate) new_nodes = other['graph2nodes'][1] old_nodes = other['graph2nodes'][0] master_G = other['G'] for node_i, node_idx in enumerate(new_nodes): node_label = current_G.nodes()[node_i] node2idx[(graph_idx, node_label)] = node_idx idx2node[node_idx] = (graph_idx, node_label) if x[node_idx] != node_idx: # Map to master graph assert x[node_idx] in old_nodes, \ "Node should map to itself or to master graph" else: # Map to itself active_nodes.add((graph_idx, node_label)) alignment[(graph_idx, node_label)] = idx2node[x[node_idx]] if update_edges: # Update edge weights on master graph current_map = {label: i for i, label in enumerate(current_G.nodes()) } for u_label, v_label in current_G.edges(): u = current_map[u_label] v = current_map[v_label] u_idx = new_nodes[u] v_idx = new_nodes[v] if x[u_idx] != u_idx or x[v_idx] != v_idx: u_x = x[u_idx] v_x = x[v_idx] if v_x not in master_G.edge[u_x]: master_G.add_edge(u_x, v_x, weight=1) """ elif 'weight' in master_G.edge[u_x][v_x]: # Weighted edges similar to FLAN (hasn't been properly # tested yet) master_G.edge[u_x][v_x]['weight'] += 1 """ full_x = [] for idx in master_G: graph_idx, node_idx = idx2node[idx] full_x.append(node2idx[alignment[(graph_idx, node_idx)]]) results = {'best_x': full_x, 'feasible_scores': [-1], 'iterations': -1, 'lb': -1, 'ub': -1} return results, master_G
ed2353aa196b1666ac8b165f0b758d429e7a5a32
26,183
def meet_sigalg(dist, rvs, rv_mode=None): """ Returns the sigma-algebra of the meet of random variables defined by `rvs`. Parameters ---------- dist : Distribution The distribution which defines the base sigma-algebra. rvs : list A list of lists. Each list specifies a random variable to be met with the other lists. Each random variable can defined as a series of unique indexes. Multiple random variables can use the same index. For example, [[0,1],[1,2]]. rv_mode : str, None Specifies how to interpret the elements of `rvs`. Valid options are: {'indices', 'names'}. If equal to 'indices', then the elements of `rvs` are interpreted as random variable indices. If equal to 'names', the the elements are interpreted as random variable names. If `None`, then the value of `dist._rv_mode` is consulted. Returns ------- msa : frozenset of frozensets The induced sigma-algebra of the meet. """ # We require unique indexes within each random variable and want the # indexes in distribution order. We don't need the names. parse = lambda rv: parse_rvs(dist, rv, rv_mode=rv_mode, unique=False, sort=True)[1] indexes = [parse(rv) for rv in rvs] sigalgs = [induced_sigalg(dist, rv, rv_mode=RV_MODES.INDICES) for rv in indexes] # \sigma( X meet Y ) = \sigma(X) \cap \sigma(Y) ) # Intersect all the sigma algebras. first_sa = sigalgs[0] msa = first_sa.intersection(*sigalgs[1:]) return msa
c03bbceae5bcec561ffe38ad8df8a85443f84639
26,184
import json def ongoing_series(): """ Retrieve all series that are supposedly ongoing. This call is *very* slow and expensive when not cached; in practice, users should *never* get a non-cached response. :return: json list with subset representation of :class:`marvelous.Series` instances """ response = cache.get('ongoing') if response: return response try: fetched = get_ongoing() response_json = json.dumps(fetched, default=json_serial) cache.set('ongoing', response_json, series_cache_time()) return response_json except ApiError as a: app.logger.error(a.args) return abort(422)
05eaf4314eda6f4622c7624c6a742d23447a5e31
26,185
def check_inputs(Y, T, X, W=None, multi_output_T=True, multi_output_Y=True): """ Input validation for CATE estimators. Checks Y, T, X, W for consistent length, enforces X, W 2d. Standard input checks are only applied to all inputs, such as checking that an input does not have np.nan or np.inf targets. Converts regular Python lists to numpy arrays. Parameters ---------- Y : array_like, shape (n, ) or (n, d_y) Outcome for the treatment policy. T : array_like, shape (n, ) or (n, d_t) Treatment policy. X : array-like, shape (n, d_x) Feature vector that captures heterogeneity. W : array-like, shape (n, d_w) or None (default=None) High-dimensional controls. multi_output_T : bool Whether to allow more than one treatment. multi_output_Y: bool Whether to allow more than one outcome. Returns ------- Y : array_like, shape (n, ) or (n, d_y) Converted and validated Y. T : array_like, shape (n, ) or (n, d_t) Converted and validated T. X : array-like, shape (n, d_x) Converted and validated X. W : array-like, shape (n, d_w) or None (default=None) Converted and validated W. """ X, T = check_X_y(X, T, multi_output=multi_output_T, y_numeric=True) _, Y = check_X_y(X, Y, multi_output=multi_output_Y, y_numeric=True) if W is not None: W, _ = check_X_y(W, Y, multi_output=multi_output_Y, y_numeric=True) return Y, T, X, W
f9514eb4d8717dfbd2aae9ef89d50353324f14f8
26,186
def register(request): """ Register a new node """ if request.method != 'POST': return HttpResponse("Invalid GET") # # Registration requires only the exchange of a PSK. # # hash skey = request.POST.get('skey') node_id = None if 'node_id' in request.POST: node_id = request.POST.get('node_id') # compare if sha256(settings.SECRET_KEY).hexdigest() != skey: return HttpResponse("Invalid Key") try: node = Node.objects.get(id=node_id) except Node.DoesNotExist: # new node node = Node.objects.create( ip=request.META.get('REMOTE_ADDR'), active=True, start_time=utility.timestamp(), session_name=request.POST.get("session"), session_fuzzer=request.POST.get("fuzzer") ) node.save() return HttpResponse("Node %d Active" % node.id)
dd9ce231dfb6ff9c71ccb90595ab6c0cc3d7632d
26,187
def get_tag_messages(tags_range, log_info): """ Add tag messages, commit objects and update the max author length in `log_info`. Args: tags_range(list[:class:`~git.refs.tag.TagReference`]): Range of tags to get information from log_info(dict): Dictionary containing log information from commits Raises: :class:`exception.ValueError`: Can't find tag info Returns: dict: A dictionary containing log info for tags """ for tag in tags_range: # Find where info is stored (depends on whether annotated or # lightweight tag) if hasattr(tag.object, 'author'): tag_info = tag.object elif hasattr(tag.object.object, 'author'): tag_info = tag.object.object else: raise ValueError("Can't find tag info") sha = tag.object.hexsha[:7] author = tag_info.author.name time_stamp = tag_info.committed_date summary = tag_info.summary.replace('\n', ' ') # Summary is included in message, so just get extra part message = tag_info.message[len(summary):].replace('\n', ' ') summary += ' (RELEASE: ' + tag.name + ')' formatted_time = convert_time_stamp(time_stamp) log_info['logs'].append([time_stamp, sha, author, summary, formatted_time, message]) # Add to dictionary of commit objects for creating diff info later log_info['commit_objects'][sha] = tag.commit # Find longest author name to pad all lines to the same length if len(author) > log_info['max_author_length']: log_info['max_author_length'] = len(author) return log_info
743705cf191593fda37396e92905742fff3e4e06
26,188
def _profile_info(user, username=None, following=False, followers=False): """ Helper to give basic profile info for rendering the profile page or its child pages """ follows = False if not username or user.username == username: #viewing own profile username = user.username if following: msg_type = 'self_following' elif followers: msg_type = 'self_followers' else: msg_type = 'self_profile_stream' else: follows = user.profile.follows.filter(user__username=username).exists() if following: msg_type = 'following' elif followers: msg_type = 'followers' else: msg_type = 'profile_stream' empty_search_msg = EMPTY_SEARCH_MSG[msg_type] profile_user = get_object_or_404(User, username=username) return username, follows, profile_user, empty_search_msg
e4c7bf4397468799c7a3e176f385e6209155c2fa
26,189
def _ProcessMergedIntoSD(fmt): """Convert a 'mergedinto' sort directive into SQL.""" left_joins = [ (fmt('IssueRelation AS {alias} ON Issue.id = {alias}.issue_id ' 'AND {alias}.kind = %s'), ['mergedinto'])] order_by = [(fmt('ISNULL({alias}.dst_issue_id) {sort_dir}'), []), (fmt('{alias}.dst_issue_id {sort_dir}'), [])] return left_joins, order_by
290dd7e79f936f5d125a12a5bb920c65f1812296
26,190
def Plot3DImage(rgb_image,depth_image,sample=True,samplerate=.5,ignoreOutliers=True): """ Input: rgb_image[pixely,pixelx,rgb] - Standard rgb image [0,255] depth_image[pixely,pixelx,depth] - Image storing depth measurements as greyscale - 255=5m, 0=0m sample(Bool) - Plot full image or random sample of points samplerate(0,1) - Percentage of pixels to plot ignoreOutliers - Ignores values at the camera lens (0,0,0) Output: None (Creates a matplotlib plot) """ XYZ=depth2XYZ(depth_image) flatXYZ=XYZ.reshape((XYZ.shape[0]*XYZ.shape[1],XYZ.shape[2])) flatColors=rgb_image.reshape((rgb_image.shape[0]*rgb_image.shape[1],rgb_image.shape[2]))/255.0 plotIndices=(np.ones((rgb_image.shape[0]*rgb_image.shape[1]))==1) if(ignoreOutliers): zeroIndices=(flatXYZ[:,0]**2+flatXYZ[:,1]**2+flatXYZ[:,2]**2)>0 plotIndices=plotIndices & zeroIndices if(sample): plotIndices=plotIndices & (np.random.rand(plotIndices.shape[0])<=samplerate) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(flatXYZ[plotIndices==True,0],flatXYZ[plotIndices==True,1],flatXYZ[plotIndices==True,2],c=flatColors[plotIndices==True,:], s=8, edgecolors='none') ax.view_init(elev=-115, azim=-90) plt.show() return(None)
0b5ee3abde0255d6a853afbf31f12d72c9aef809
26,192
def smooth_curve(x, y, npts=50, deg=12): """Smooth curve using a polyfit Parameters ---------- x : numpy array X-axis data y : numpy array Y-axis data npts : int Optional, number of points to resample curve deg : int Optional, polyfit degree Returns ------- smoothed x array smoothed y array """ xx = np.linspace(1, np.max(x), npts) yhat = np.poly1d(np.polyfit(x, y, deg)) yh = yhat(xx) return xx, yh
998ffaa0dfd9fc2d2e0f04e7f0d8a5fa8fe00943
26,193
def gather_allele_freqs(record, samples, males_set, females_set, parbt, pop_dict, pops, sex_chroms, no_combos=False): """ Wrapper to compute allele frequencies for all sex & population pairings """ # Add PAR annotation to record (if optioned) if record.chrom in sex_chroms and len(parbt) > 0: if in_par(record, parbt): rec_in_par = True record.info['PAR'] = True else: rec_in_par = False else: rec_in_par = False # Get allele frequencies for all populations calc_allele_freq(record, samples) if len(males_set) > 0: if record.chrom in sex_chroms and not rec_in_par: calc_allele_freq(record, males_set, prefix='MALE', hemi=True) else: calc_allele_freq(record, males_set, prefix='MALE') if len(females_set) > 0: calc_allele_freq(record, females_set, prefix='FEMALE') # Adjust global allele frequencies on sex chromosomes, if famfile provided if record.chrom in sex_chroms and not rec_in_par \ and svu.is_biallelic(record) and len(males_set) + len(females_set) > 0: update_sex_freqs(record) # Get allele frequencies per population if len(pops) > 0: for pop in pops: pop_samps = [ s for s in samples if pop_dict.get(s, None) == pop] calc_allele_freq(record, pop_samps, prefix=pop) if len(males_set) > 0 and not no_combos: if record.chrom in sex_chroms and not rec_in_par: calc_allele_freq(record, list([s for s in pop_samps if s in males_set]), prefix=pop + '_MALE', hemi=True) else: calc_allele_freq(record, list([s for s in pop_samps if s in males_set]), prefix=pop + '_MALE') if len(females_set) > 0 and not no_combos: calc_allele_freq(record, list([s for s in pop_samps if s in females_set]), prefix=pop + '_FEMALE') # Adjust per-pop allele frequencies on sex chromosomes, if famfile provided if record.chrom in sex_chroms and not rec_in_par \ and svu.is_biallelic(record) and len(males_set) + len(females_set) > 0: update_sex_freqs(record, pop=pop) # Get POPMAX AF biallelic sites only if svu.is_biallelic(record): AFs = [record.info['{0}_AF'.format(pop)][0] for pop in pops] popmax = max(AFs) record.info['POPMAX_AF'] = popmax return record
8e7b1f605d6473e77128806e4e6c64e3a338fff5
26,194
from datetime import datetime import json def get_history_events_closest(): """ Получение полного списка страниц в json""" try: event_schema = HistoryEventsSchema(many=True) datef = datetime.today() further_date = datef + timedelta(days=14) if further_date.year > datetime.today().year: further_date = date(year=datetime.today().year, month=12, day=31) events = HistoryEvents.query.filter( extract('month', HistoryEvents.event_date) <= further_date.month, extract('month', HistoryEvents.event_date) >= datef.month, extract('day', HistoryEvents.event_date) <= further_date.day, extract('day', HistoryEvents.event_date) >= datef.day, ) edata = event_schema.dump(events) edata = edata.data response = Response( response=json.dumps(edata), status=200, mimetype='application/json' ) except Exception: response = server_error(request.args.get("dbg")) return response
a35cab21c9fbd18ff8c31fc08760995ce1d22158
26,195
def get_archive_url(url, timestamp): """ Returns the archive url for the given url and timestamp """ return WEB_ARCHIVE_TEMPLATE.format(timestamp=timestamp.strftime(WEB_ARCHIVE_TIMESTAMP_FORMAT), url=url)
a7b79868ccaf1244591b8b5ffec7ac8ff2310772
26,196
import requests import json import pprint def get_text(pathToImage): """ Accesses API to get json file containing recognized text """ print('Processing: ' + pathToImage) headers = { 'Ocp-Apim-Subscription-Key': API_KEY, 'Content-Type': 'application/octet-stream' } params = { 'language': 'en', 'detectOrientation ': 'true' } payload = open(pathToImage, 'rb').read() response = requests.post(ENDPOINT, headers=headers, params=params, data=payload) results = json.loads(response.content) # prints the json from the API pprint(results) return results
037f22c0fda02ddb7df59def274395c537b67369
26,197
def match_summary(df): """ summarize the race and ethnicity information in the dataframe Parameters ---------- df : pd.DataFrame including columns from race_eth_cols """ s = pd.Series(dtype=float) s['n_match'] = df.pweight.sum() for col in race_eth_cols: if col in df.columns: s[col] = np.sum(df.pweight * df[col]) / df.pweight.sum() return s
5886563d59426f952542bdf5ae579b612475b934
26,198
def parse_git_version(git) : """Parses the version number for git. Keyword arguments: git - The result of querying the version from git. """ return git.split()[2]
f4af03f0fad333ab87962160ed0ebf5dcbeea22a
26,199
def onRequestLogin(loginName, password, clientType, datas): """ KBEngine method. 账号请求登陆时回调 此处还可以对登陆进行排队,将排队信息存放于datas """ INFO_MSG('onRequestLogin() loginName=%s, clientType=%s' % (loginName, clientType)) errorno = KBEngine.SERVER_SUCCESS if len(loginName) > 64: errorno = KBEngine.SERVER_ERR_NAME if len(password) > 64: errorno = KBEngine.SERVER_ERR_PASSWORD return (errorno, loginName, password, clientType, datas)
08c428f5ac27e009b9d1ffe1af9daee1c5cca2f1
26,200
import logging from typing import Callable from typing import Any def log_calls( logger: logging.Logger, log_result: bool = True ) -> GenericDecorator: """ Log calls to the decorated function. Can also decorate classes to log calls to all its methods. :param logger: object to log to """ def log_function( target: Callable[..., TargetReturnT], # TargetFunctionT, *args: Any, **kwargs: Any ) -> TargetReturnT: logger.info(f"{target.__name__} args: {args!r} {kwargs!r}") result = target(*args, **kwargs) if log_result: logger.info(f"{target.__name__} result: {result!r}") return result decorator = GenericDecorator(log_function) return decorator
43e71d224ed45a4f92ddda5f4ac042922b254104
26,201
def bag(n, c, w, v): """ 测试数据: n = 6 物品的数量, c = 10 书包能承受的重量, w = [2, 2, 3, 1, 5, 2] 每个物品的重量, v = [2, 3, 1, 5, 4, 3] 每个物品的价值 """ # 置零,表示初始状态 value = [[0 for j in range(c + 1)] for i in range(n + 1)] for i in range(1, n + 1): for j in range(1, c + 1): value[i][j] = value[i - 1][j] # 背包总容量够放当前物体,遍历前一个状态考虑是否置换 if j >= w[i - 1]: value[i][j] = max(value[i-1][j],value[i - 1][j - w[i - 1]] + v[i - 1]) for x in value: print(x) return value
27dd9c5f9367afe865686c8f68853bc966bcdaa6
26,202
def _to_bytes(key: type_utils.Key) -> bytes: """Convert the key to bytes.""" if isinstance(key, int): return key.to_bytes(128, byteorder='big') # Use 128 as this match md5 elif isinstance(key, bytes): return key elif isinstance(key, str): return key.encode('utf-8') else: raise TypeError(f'Invalid key type: {type(key)}')
8df22eb02674cb61ef0e8a413f1eed7dc92f0aef
26,203
def _online(machine): """ Is machine reachable on the network? (ping) """ # Skip excluded hosts if env.host in env.exclude_hosts: print(red("Excluded")) return False with settings(hide('everything'), warn_only=True, skip_bad_hosts=True): if local("ping -c 2 -W 1 %s" % machine).failed: print(yellow('%s is Offline \n' % machine)) return False return True
114b9b708d81c6891a2f99c5c600d9d4aa59c138
26,204
def get_expectation_value( qubit_op: QubitOperator, wavefunction: Wavefunction, reverse_operator: bool = False ) -> complex: """Get the expectation value of a qubit operator with respect to a wavefunction. Args: qubit_op: the operator wavefunction: the wavefunction reverse_operator: whether to reverse order of qubit operator before computing expectation value. This should be True if the convention of the basis states used for the wavefunction is the opposite of the one in the qubit operator. This is the case when the wavefunction uses Rigetti convention (https://arxiv.org/abs/1711.02086) of ordering qubits. Returns: the expectation value """ n_qubits = wavefunction.amplitudes.shape[0].bit_length() - 1 # Convert the qubit operator to a sparse matrix. Note that the qubit indices # must be reversed because OpenFermion and our Wavefunction use # different conventions for how to order the computational basis states! if reverse_operator: qubit_op = reverse_qubit_order(qubit_op, n_qubits=n_qubits) sparse_op = get_sparse_operator(qubit_op, n_qubits=n_qubits) # Computer the expectation value exp_val = openfermion_expectation(sparse_op, wavefunction.amplitudes) return exp_val
e0e634bc6c0d5c9d5252e29963333fac3ccc3acd
26,207
def create_proxy_to(logger, ip, port): """ :see: ``HostNetwork.create_proxy_to`` """ action = CREATE_PROXY_TO( logger=logger, target_ip=ip, target_port=port) with action: encoded_ip = unicode(ip).encode("ascii") encoded_port = unicode(port).encode("ascii") # The first goal is to configure "Destination NAT" (DNAT). We're just # going to rewrite the destination address of traffic arriving on the # specified port so it looks like it is destined for the specified ip # instead of destined for "us". This gets the packets delivered to the # right destination. iptables(logger, [ # All NAT stuff happens in the netfilter NAT table. b"--table", b"nat", # Destination NAT has to happen "pre"-routing so that the normal # routing rules on the machine will use the re-written destination # address and get the packet to that new destination. Accomplish # this by appending the rule to the PREROUTING chain. b"--append", b"PREROUTING", # Only re-route traffic with a destination port matching the one we # were told to manipulate. It is also necessary to specify TCP (or # UDP) here since that is the layer of the network stack that # defines ports. b"--protocol", b"tcp", b"--destination-port", encoded_port, # And only re-route traffic directed at this host. Traffic # originating on this host directed at some random other host that # happens to be on the same port should be left alone. b"--match", b"addrtype", b"--dst-type", b"LOCAL", # Tag it as a flocker-created rule so we can recognize it later. b"--match", b"comment", b"--comment", FLOCKER_PROXY_COMMENT_MARKER, # If the filter matched, jump to the DNAT chain to handle doing the # actual packet mangling. DNAT is a built-in chain that already # knows how to do this. Pass an argument to the DNAT chain so it # knows how to mangle the packet - rewrite the destination IP of # the address to the target we were told to use. b"--jump", b"DNAT", b"--to-destination", encoded_ip, ]) # Bonus round! Having performed DNAT (changing the destination) during # prerouting we are now prepared to send the packet on somewhere else. # On its way out of this system it is also necessary to further # modify and then track that packet. We want it to look like it # comes from us (the downstream client will be *very* confused if # the node we're passing the packet on to replies *directly* to them; # and by confused I mean it will be totally broken, of course) so we # also need to "masquerade" in the postrouting chain. This changes # the source address (ip and port) of the packet to the address of # the external interface the packet is exiting upon. Doing SNAT here # would be a little bit more efficient because the kernel could avoid # looking up the external interface's address for every single packet. # But it requires this code to know that address and it requires that # if it ever changes the rule gets updated and it may require some # steps to do port allocation (not sure what they are yet). So we'll # just masquerade for now. iptables(logger, [ # All NAT stuff happens in the netfilter NAT table. b"--table", b"nat", # As described above, this transformation happens after routing # decisions have been made and the packet is on its way out of the # system. Therefore, append the rule to the POSTROUTING chain. b"--append", b"POSTROUTING", # We'll stick to matching the same kinds of packets we matched in # the earlier stage. We might want to change the factoring of this # code to avoid the duplication - particularly in case we want to # change the specifics of the filter. # # This omits the LOCAL addrtype check, though, because at this # point the packet is definitely leaving this host. b"--protocol", b"tcp", b"--destination-port", encoded_port, # Do the masquerading. b"--jump", b"MASQUERADE", ]) # Secret level!! Traffic that originates *on* the host bypasses the # PREROUTING chain. Instead, it passes through the OUTPUT chain. If # we want connections from localhost to the forwarded port to be # affected then we need a rule in the OUTPUT chain to do the same kind # of DNAT that we did in the PREROUTING chain. iptables(logger, [ # All NAT stuff happens in the netfilter NAT table. b"--table", b"nat", # As mentioned, this rule is for the OUTPUT chain. b"--append", b"OUTPUT", # Matching the exact same kinds of packets as the PREROUTING rule # matches. b"--protocol", b"tcp", b"--destination-port", encoded_port, b"--match", b"addrtype", b"--dst-type", b"LOCAL", # Do the same DNAT as we did in the rule for the PREROUTING chain. b"--jump", b"DNAT", b"--to-destination", encoded_ip, ]) iptables(logger, [ b"--table", b"filter", b"--insert", b"FORWARD", b"--destination", encoded_ip, b"--protocol", b"tcp", b"--destination-port", encoded_port, b"--jump", b"ACCEPT", ]) # The network stack only considers forwarding traffic when certain # system configuration is in place. # # https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt # will explain the meaning of these in (very slightly) more detail. conf = FilePath(b"/proc/sys/net/ipv4/conf") descendant = conf.descendant([b"default", b"forwarding"]) with descendant.open("wb") as forwarding: forwarding.write(b"1") # In order to have the OUTPUT chain DNAT rule affect routing decisions, # we also need to tell the system to make routing decisions about # traffic from or to localhost. for path in conf.children(): with path.child(b"route_localnet").open("wb") as route_localnet: route_localnet.write(b"1") return Proxy(ip=ip, port=port)
006ae25e069f3ac82887e9071170b334a0c6ea74
26,208
def get_output_shape(tensor_shape, channel_axis): """ Returns shape vector with the number of channels in the given channel_axis location and 1 at all other locations. Args: tensor_shape: A shape vector of a tensor. channel_axis: Output channel index. Returns: A shape vector of a tensor. """ return [-1 if i is channel_axis else 1 for i in range(len(tensor_shape))]
7c7058c2da9cb5a4cdb88377ece4c2509727894a
26,209
import numbers def process_padding(pad_to_length, lenTrials): """ Simplified padding interface, for all taper based methods padding has to be done **before** tapering! Parameters ---------- pad_to_length : int, None or 'nextpow2' Either an integer indicating the absolute length of the trials after padding or `'nextpow2'` to pad all trials to the nearest power of two. If `None`, no padding is to be performed lenTrials : sequence of int_like Sequence holding all individual trial lengths Returns ------- abs_pad : int Absolute length of all trials after padding """ # supported padding options not_valid = False if not isinstance(pad_to_length, (numbers.Number, str, type(None))): not_valid = True elif isinstance(pad_to_length, str) and pad_to_length not in availablePaddingOpt: not_valid = True # bool is an int subclass, have to check for it separately... if isinstance(pad_to_length, bool): not_valid = True if not_valid: lgl = "`None`, 'nextpow2' or an integer like number" actual = f"{pad_to_length}" raise SPYValueError(legal=lgl, varname="pad_to_length", actual=actual) # zero padding of ALL trials the same way if isinstance(pad_to_length, numbers.Number): scalar_parser(pad_to_length, varname='pad_to_length', ntype='int_like', lims=[lenTrials.max(), np.inf]) abs_pad = pad_to_length # or pad to optimal FFT lengths elif pad_to_length == 'nextpow2': abs_pad = _nextpow2(int(lenTrials.max())) # no padding in case of equal length trials elif pad_to_length is None: abs_pad = int(lenTrials.max()) if lenTrials.min() != lenTrials.max(): msg = f"Unequal trial lengths present, padding all trials to {abs_pad} samples" SPYWarning(msg) # `abs_pad` is now the (soon to be padded) signal length in samples return abs_pad
b018e32c2c12a67e05e5e324f4fcd8547a9d992b
26,210
from ..constants import asecperrad def angular_to_physical_size(angsize,zord,usez=False,**kwargs): """ Converts an observed angular size (in arcsec or as an AngularSeparation object) to a physical size. :param angsize: Angular size in arcsecond. :type angsize: float or an :class:`AngularSeparation` object :param zord: Redshift or distance :type zord: scalar number :param usez: If True, the input will be interpreted as a redshift, and kwargs will be passed into the distance calculation. The result will be in pc. Otherwise, `zord` will be interpreted as a distance. :type usez: boolean kwargs are passed into :func:`cosmo_z_to_dist` if `usez` is True. :returns: A scalar value for the physical size (in pc if redshift is used, otherwise in `zord` units) """ if usez: d = cosmo_z_to_dist(zord,disttype=2,**kwargs)*1e6 #pc else: if len(kwargs)>0: raise TypeError('if not using redshift, kwargs should not be provided') d = zord if hasattr(angsize,'arcsec'): angsize = angsize.arcsec sintheta = np.sin(angsize/asecperrad) return d*(1/sintheta/sintheta-1)**-0.5 #return angsize*d/asecperrad
80fbd5aa90807536e06157c338d86973d6050c7c
26,211
def is_tuple(x): """ Check that argument is a tuple. Parameters ---------- x : object Object to check. Returns ------- bool True if argument is a tuple, False otherwise. """ return isinstance(x, tuple)
ac129c4ab7c6a64401f61f1f03ac094b3a7dc6d4
26,213
def find_verbalizer(tagged_text: str) -> pynini.FstLike: """ Given tagged text, e.g. token {name: ""} token {money {fractional: ""}}, creates verbalization lattice This is context-independent. Args: tagged_text: input text Returns: verbalized lattice """ lattice = tagged_text @ verbalizer.fst return lattice
fef98d7a2038490f926dc89fc7aefbbda52ed611
26,214
def get_color_pattern(input_word: str, solution: str) -> str: """ Given an input word and a solution, generates the resulting color pattern. """ color_pattern = [0 for _ in range(5)] sub_solution = list(solution) for index, letter in enumerate(list(input_word)): if letter == solution[index]: color_pattern[index] = 2 sub_solution[index] = "_" for index, letter in enumerate(list(input_word)): if letter in sub_solution and color_pattern[index] != 2: color_pattern[index] = 1 sub_solution[sub_solution.index(letter)] = "_" color_pattern = "".join([str(c) for c in color_pattern]) return color_pattern
a8746a5854067e27e0aefe451c7b950dd9848f50
26,215
import inspect def getargspec(obj): """Get the names and default values of a function's arguments. A tuple of four things is returned: (args, varargs, varkw, defaults). 'args' is a list of the argument names (it may contain nested lists). 'varargs' and 'varkw' are the names of the * and ** arguments or None. 'defaults' is an n-tuple of the default values of the last n arguments. Modified version of inspect.getargspec from the Python Standard Library.""" if inspect.isfunction(obj): func_obj = obj elif inspect.ismethod(obj): func_obj = obj.__func__ else: raise TypeError('arg is not a Python function') args, varargs, varkw = inspect.getargs(func_obj.__code__) return args, varargs, varkw, func_obj.__defaults__
bcfe75de95ccf22bcefdba52c8556f0722dbbcb7
26,216
def nearest(x, xp, fp=None): """ Return the *fp* value corresponding to the *xp* that is nearest to *x*. If *fp* is missing, return the index of the nearest value. """ if len(xp) == 1: if np.isscalar(x): return fp[0] if fp is not None else 0 else: return np.array(len(x)*(fp if fp is not None else [0])) # if fp is not provided, want to return f as an index into the array xp # for the target values x, so set it to integer indices. if fp is # provided, make sure it is an array. fp = np.arange(len(xp)) if fp is None else np.asarray(fp) # make sure that the xp array is sorted xp = np.asarray(xp) if np.any(np.diff(xp) < 0.): index = np.argsort(xp) xp, fp = xp[index], fp[index] # find the midpoints of xp and use that as the index xp = 0.5*(xp[:-1] + xp[1:]) return fp[np.searchsorted(xp, x)]
77ebcb08adbc5b1a70d801c7fe1f4b31f1b14717
26,217