content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def _add_experimental_function_notice_to_docstring(doc): """Adds an experimental notice to a docstring for experimental functions.""" return decorator_utils.add_notice_to_docstring( doc, '', 'EXPERIMENTAL FUNCTION', '(experimental)', ['THIS FUNCTION IS EXPERIMENTAL. It may change or ' 'be removed at any time, and without warning.'])
449ab32b4ddae2d383776d0c90dbc56dc6041da6
25,993
def format_args(args): """Formats the command line arguments so that they can be logged. Args: The args returned from the `config` file. Returns: A formatted human readable string representation of the arguments. """ formatted_args = "Training Arguments: \n" args = args.__dict__ for key in args.keys(): formatted_args += "\t > {} : {} \n".format(key, args[key]) return formatted_args
22d4334daba7cdfd77329f5a6de93a2411f0594d
25,994
import uuid def generate_id() -> str: """Generates random string with length of `ID_LENGTH`""" return int_to_base36(uuid.uuid4().int)[:LENGTH_OF_ID]
8cf317741edf02ca79ef72bf51c7958877a98d98
25,995
def getHG37PositionsInRange(chromosome, startPos, endPos): """Return a DataFrame containing hg37 positions for all rsids in a range. args: chromosome (int or str): the chromosome number startPos (int or str): the start position on the chromosome endPos (int or str): the end position on the chromosome returns: df (DataFrame): all the rsids found in the genomic range between startPos and endPos, indexed by rsid chromosome (int or str): the chromosome number """ queryString = f'chr{chromosome}:{startPos}-{endPos}' mv = myvariant.MyVariantInfo() gen = mv.query(queryString, scopes='dbsnp.rsid', fields='dbsnp.rsid, dbsnp.hg19.start', fetch_all=True, assembly='hg37') rsids = {} for row in gen: try: rsid = (row['dbsnp']['rsid']) start = (row['dbsnp']['hg19']['start']) rsids[rsid] = start except KeyError: continue df = pd.DataFrame.from_dict(rsids, orient='index') return df, chromosome
64107a375588737e6fedcd336fe5d1a648a93efc
25,996
def spherical_from_cart_np(xyz_vector): """ Convert a vector from cart to spherical. cart_vector is [idx][x, y, z] """ if len(xyz_vector.shape) != 2: xyz_vector = np.expand_dims(xyz_vector, axis=0) expanded = True else: expanded = False sph_vector = np.zeros(xyz_vector.shape) xy = xyz_vector[:, 0]**2 + xyz_vector[:, 1]**2 sph_vector[:, 0] = np.sqrt(xy + xyz_vector[:, 2]**2) # for elevation angle defined from Z-axis down sph_vector[:, 1] = np.arctan2(np.sqrt(xy), xyz_vector[:, 2]) # for elevation angle defined from XY-plane up # sph_vector[:,1] = np.arctan2(xyz_vector[:,2], np.sqrt(xy)) sph_vector[:, 2] = np.arctan2(xyz_vector[:, 1], xyz_vector[:, 0]) if expanded: return sph_vector[0] return sph_vector
86da4d3426b6327c5fd00f431e36655b9213a027
25,997
def _execute_query(connection, query): """Executes the query and returns the result.""" with connection.cursor() as cursor: cursor.execute(query) return cursor.fetchall()
9f71eb650d323f7a5ead3451810a7b9f9d77b4b0
25,998
def mediaValues(x): """ return the media of a list """ return sum(x)/len(x)
ab4a436d3383e5df7d8d891c9661eabb0af81ef8
25,999
def _plot_NWOE_bins(NWOE_dict, feats): """ Plots the NWOE by bin for the subset of features interested in (form of list) Parameters ---------- - NWOE_dict = dictionary output of `NWOE` function - feats = list of features to plot NWOE for Returns ------- - plots of NWOE for each feature by bin """ for feat in feats: fig, ax = _plot_defaults() feat_df = NWOE_dict[feat].reset_index() plt.bar(range(len(feat_df)), feat_df['NWOE'], tick_label=feat_df[str(feat)+'_bin'], color='k', alpha=0.5) plt.xticks(rotation='vertical') ax.set_title('NWOE by bin for '+str(feat)) ax.set_xlabel('Bin Interval'); return ax
2c034c311ae406f1267256c3de975e021e9ba283
26,000
def net_model_fn(features, labels, mode, model, resnet_size, weight_decay, learning_rate_fn, momentum, data_format, resnet_version, loss_scale, loss_filter_fn=None, dtype=resnet_model.DEFAULT_DTYPE, conv_type=resnet_model.DEFAULT_CONV_TYPE, optimizer_type=DEFAULT_OPTIMIZER, run_type=DEFAULT_RUN_TYPE): """Shared functionality for different nets model_fns. Uses that model to build the necessary EstimatorSpecs for the `mode` in question. For training, this means building losses, the optimizer, and the train op that get passed into the EstimatorSpec. For evaluation and prediction, the EstimatorSpec is returned without a train op, but with the necessary parameters for the given mode. Args: features: tensor representing input images labels: tensor representing class labels for all input images mode: current estimator mode; should be one of `tf.estimator.ModeKeys.TRAIN`, `EVALUATE`, `PREDICT` model: a TensorFlow model that has a __call__ function. resnet_size: A single integer for the size of the ResNet model. weight_decay: weight decay loss rate used to regularize learned variables. learning_rate_fn: function that returns the current learning rate given the current global_step momentum: momentum term used for optimization data_format: Input format ('channels_last', 'channels_first', or None). If set to None, the format is dependent on whether a GPU is available. resnet_version: Integer representing which version of the ResNet network to use. See README for details. Valid values: [1, 2] loss_scale: The factor to scale the loss for numerical stability. A detailed summary is present in the arg parser help text. loss_filter_fn: function that takes a string variable name and returns True if the var should be included in loss calculation, and False otherwise. If None, batch_normalization variables will be excluded from the loss. dtype: the TensorFlow dtype to use for calculations. Returns: EstimatorSpec parameterized according to the input params and the current mode. """ # Generate a summary node for the images # `tensor` features which must be 4-D with shape `[batch_size, height, # width, channels]` tf.summary.image('images', features, max_outputs=6) features = tf.cast(features, dtype) logits = model(features, mode == tf.estimator.ModeKeys.TRAIN) # This acts as a no-op if the logits are already in fp32 (provided logits are # not a SparseTensor). If dtype is is low precision, logits must be cast to # fp32 for numerical stability. logits = tf.cast(logits, tf.float32) predictions = { 'classes': tf.argmax(logits, axis=1), 'probabilities': tf.nn.softmax(logits, name='softmax_tensor') } if mode == tf.estimator.ModeKeys.PREDICT: # Return the predictions and the specification for serving a SavedModel return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, export_outputs={ 'predict': tf.estimator.export.PredictOutput(predictions) }) # Calculate loss, which includes softmax cross entropy and L2 regularization. cross_entropy = tf.losses.sparse_softmax_cross_entropy( logits=logits, labels=labels) # Create a tensor named cross_entropy for logging purposes. tf.identity(cross_entropy, name='cross_entropy') tf.summary.scalar('cross_entropy', cross_entropy) # If no loss_filter_fn is passed, assume we want the default behavior, # which is that batch_normalization variables are excluded from loss. def exclude_batch_norm(name): return 'batch_normalization' not in name loss_filter_fn = loss_filter_fn or exclude_batch_norm # Add weight decay to the loss. l2_loss = weight_decay * tf.add_n( # loss is computed using fp32 for numerical stability. [tf.nn.l2_loss(tf.cast(v, tf.float32)) for v in tf.trainable_variables() if loss_filter_fn(v.name)]) tf.summary.scalar('l2_loss', l2_loss) loss = cross_entropy + l2_loss if mode == tf.estimator.ModeKeys.TRAIN: global_step = tf.train.get_or_create_global_step() learning_rate = learning_rate_fn(global_step) # Create a tensor named learning_rate for logging purposes tf.identity(learning_rate, name='learning_rate') tf.summary.scalar('learning_rate', learning_rate) tf.logging.info("optimizer_type: " + optimizer_type.name) if optimizer_type is OptimizerType.MOMENTUM: optimizer = tf.train.MomentumOptimizer( learning_rate=learning_rate, momentum=momentum ) elif optimizer_type is OptimizerType.ADAM: optimizer = tf.train.AdamOptimizer( learning_rate=learning_rate, epsilon=1e-8 ) else: raise ValueError( "Unsupported optimizer type: " + str(optimizer_type) + ". Please choose from: " + ",".join( [optimizer_type.name for optimizer_type in OptimizerType])) if loss_scale != 1: # When computing fp16 gradients, often intermediate tensor values are # so small, they underflow to 0. To avoid this, we multiply the loss by # loss_scale to make these tensor values loss_scale times bigger. scaled_grad_vars = optimizer.compute_gradients(loss * loss_scale) # Once the gradient computation is complete we can scale the gradients # back to the correct scale before passing them to the optimizer. unscaled_grad_vars = [(grad / loss_scale, var) for grad, var in scaled_grad_vars] minimize_op = optimizer.apply_gradients(unscaled_grad_vars, global_step) else: minimize_op = optimizer.minimize(loss, global_step) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) train_op = tf.group(minimize_op, update_ops) else: train_op = None if not tf.contrib.distribute.has_distribution_strategy(): accuracy = tf.metrics.accuracy(labels, predictions['classes']) else: # Metrics are currently not compatible with distribution strategies during # training. This does not affect the overall performance of the model. accuracy = (tf.no_op(), tf.constant(0)) metrics = {'accuracy': accuracy} # Create a tensor named train_accuracy for logging purposes tf.identity(accuracy[1], name='train_accuracy') tf.summary.scalar('train_accuracy', accuracy[1]) return tf.estimator.EstimatorSpec( mode=mode, predictions=predictions, loss=loss, train_op=train_op, eval_metric_ops=metrics)
a9758bbbf5220091ee8faffde82bc271ea676c44
26,002
def vectorvalued(f): """ Decorates a distribution function to disable automatic vectorization. Parameters ---------- f: The function to decorate Returns ------- Decorated function """ f.already_vectorized = True return f
cc498fe0731acdbde0c4d9b820a1accb5dc94fea
26,003
import unicodedata def remove_diacritics(input_str: str) -> str: """Remove diacritics and typographical ligatures from the string. - All diacritics (i.e. accents) will be removed. - Typographical ligatures (e.g. ffi) are broken into separated characters. - True linguistic ligatures (e.g. œ) will remain. - Non-latin scripts will remain. Args: input_str (str): The original string with diacritics and ligatures. Returns: str: The string without diacritics and typographical ligatures. """ nfkd_form = unicodedata.normalize('NFKD', input_str) return u"".join([c for c in nfkd_form if not unicodedata.combining(c)])
23c3e9ce0029704f0012a825460f10f370e3c681
26,004
def extract_model_field_meta_data(form, attributes_to_extract): """ Extract meta-data from the data model fields the form is handling. """ if not hasattr(form, 'base_fields'): raise AttributeError('Form does not have base_fields. Is it a ModelForm?') meta_data = dict() for field_name, field_data in form.base_fields.items(): meta_data[field_name] = dict() for attrib in attributes_to_extract: meta_data[field_name][attrib] = getattr(field_data, attrib, '') return meta_data
e41a63935379c5d3310646c79c25a43ad7f6d5fe
26,005
import json def beam_search(image, encoder, embedder, attention, decoder, beam_width=30, max_length=18, redundancy=0.4, ideal_length=7, candidates=0, as_words=True): """ beam_search is a breadth limited sorted-search: from root <start> take next best beam-width children out of vocab_size sorted by probability, then calculate children for each child and take next best beam-width children out of vocab_size * beamwidth possible children, repeating this process until you hit beam-width leaves <end> or a maximum path-size of max_length. Each candidate path from root to leaf (or forced end node) is rescored based on ideal_length -- different from traditional method of normalizing based on caption length and some small value alpha. Parameters ---------- image : preprocessed image tensor image to be captioned encoder : encoder model embedder : embedder model attention : attention model decoder : decoder model beam_width : int, greater than 1 size of scope to find best candidate max_length : int max tolerated length of caption with <start> and <end> tokens redundancy : float from 0 to 1 percentage of repeated words in caption, high redundancy is nonsensical ideal_length : int from 0 to max_length represents ideal length of a caption and is used to rescore captions to bias those whose length are closest candidates : int from 0 to beam_width represents number of additional captions to predict as_words : bool whether output should be a words or encoded as number sequences based on word_list.json """ assert beam_width > candidates with open(dl.WORDS_PATH, 'r') as fp: word_list = json.load(fp) bad_endings = ['a', 'with', 'of', 'in', 'on', 'for', 'by'] bad_endings = [word_list.index(word) for word in bad_endings] features = embedder(encoder(tf.expand_dims(image, 0))) # to use after root <start> features_dup = tf.repeat(features, beam_width, 0) decoder_state = tf.zeros((1, decoder.output[1].shape[1])) end = word_list.index('<end>') word = tf.expand_dims([word_list.index('<start>')], 1) # initialize context_vector, _ = attention([decoder_state, features]) word_logits, decoder_state = decoder([word, context_vector]) scores = tf.nn.log_softmax(word_logits) topk = tf.math.top_k(scores, beam_width) # minheaps to store scores with tuples (score, sequence tuple, decoder_state) # throws ValueError when value of first elem equal another value on heap # to resolve make second value guaranteed unique, which the sequence tuple is, # also, it will preference more common (smaller indexed) words, a good behavior # need to invert values to use minheap as maxheap min_heap = [] candidate_nodes = [] for i in range(beam_width): node = tuple( [float(-1 * topk.values[0][i].numpy()), # word score tuple([topk.indices[0][i].numpy()]), # word decoder_state] ) heappush(min_heap, node) while len(candidate_nodes) < beam_width: nodes = [heappop(min_heap) for i in range(beam_width)] min_heap.clear() word = tf.reshape([[node[1][-1] for node in nodes]], [beam_width, 1]) _decoder_state = tf.squeeze( tf.concat([[node[2] for node in nodes]], axis=0)) # get next states and words context_vector, _ = attention([_decoder_state, features_dup]) word_logits, decoder_state = decoder([word, context_vector]) # get top beamwidth possibilities from each node in nodes scores = tf.nn.log_softmax(word_logits) topk = tf.math.top_k(scores, beam_width) for n, node in enumerate(nodes): if len(candidate_nodes) == beam_width: break # add best nodes to candidates # only the nodes that come off the heap should be added if node[1][-1] == end: if node[1][-2] in bad_endings: continue candidate_nodes.append(node) continue elif len(node[1]) == max_length - 1: lst = list(node) lst[1] += tuple([end]) node = tuple(lst) candidate_nodes.append(node) continue # create next nodes to add to heap for i in range(beam_width): new_word = topk.indices[n][i].numpy() new_node = tuple( [(-1 * topk.values[n][i].numpy()) + node[0], node[1] + tuple([new_word]), decoder_state[n]] ) # don't follow nodes that lead to high redundancy counts = {} for word in new_node[1]: if word not in counts: counts[word] = 0 counts[word] += 1 score = sum(map(lambda x: x if x > 1 else 0, list(counts.values()))) / len(node[1]) if score >= redundancy: continue heappush(min_heap, new_node) # collect answer here sentences = [] min_heap.clear() # calculate length normalize with alpha and find sentence with best score for node in candidate_nodes: # alternate ways to rescore captions #normalizer = 1 / ((len(node[1]) ** alpha)) #normalizer = 1 / (abs(ideal_length - len(node[1])) ** alpha + 1) score = len(node[1]) score = (2.5 * ideal_length - score) / 2 score += node[0] new_node = (-score, node[1][:-1]) heappush(min_heap, new_node) if not candidates: sentences = heappop(min_heap)[1] if as_words: sentences = [word_list[i] for i in sentences] else: sentences = [heappop(min_heap)[1] for n in range(candidates + 1)] if as_words: sentences = [[word_list[i] for i in n] for n in sentences] return sentences
c55bcbbff739db7cb25513bdb62b4d165359ab1c
26,006
def strip_leading_and_trailing_lines(lines, comment): """ Removes and leading and trailing blank lines and comments. :param lines: An array of strings containing the lines to be stripped. :param comment: The block comment character string. :return: An updated array of lines. """ comment = comment.strip() return strip_lines(strip_lines(lines, 0, comment), -1, comment)
19fe932532f12c5602c4c319c761fc5229efe37b
26,007
def bold(msg: str) -> str: """Bold version of the message """ return bcolors.BOLD + msg + bcolors.ENDC
25cca7e505b0d0155ff46b86f2f899830cce4216
26,008
def escape(value): """ extends the classic escaping also to the apostrophe @Reviewer: Do you please have a better way? """ value = bleach.clean(value) value = value.replace("'", "&#39;") return value
7c048a915b1d11ededd45042040215c0089e019b
26,009
def login(request): """ :param request: :return: """ if request.user.is_authenticated: return redirect('/') if request.method == "POST": username = request.POST['username'] password = request.POST['password'] user = authenticate(username=username, password=password) if user is not None: auth_login(request, user) return redirect("/") else: return render(request, "login.html") return render(request, "login.html")
13482776aabe90eaeec6cbc730945df816897471
26,010
def plot_date_randomisation( ax: plt.axes, replicates: np.array or list, rate: float, log10: bool = True ) -> plt.axes: """ Plot distribution of substitution rates for date randomisation test :param ax: axes object to plot the date randomisation :param replicates: list of replicate substitution rate estimates :param rate: true rate estimate vertical line for evaluation :param log10: plot log10 of substitution rates on horizontal axis :returns axes object """ if log10: replicates = np.log10(replicates) with plt.style.context('seaborn-colorblind'): ax.hist(x=replicates, color='gray') ax.axvline(x=rate, color='r') return ax
35b99e0f464149e9b948203209ea4ad0fb9c52ef
26,011
def dict(filename, cols=None, dtype=float, include=None, exclude='#', delimiter='', removechar='#', hmode='1', header_start=1, data_start=0, hsep='', lower=False): """ Creates a dictionary in which each chosen column in the file is an element of the dictionary, where keys correspond to column names. Uses the functions header and table to create a dictionary with the columns of the file (see each function's help). The file must have a header in which all column names are given. """ if isinstance(cols, string_types) or isinstance(cols, int): cols = (cols,) full_output = False if cols is not None: if isinstance(cols[0], string_types): full_output = True head = header(filename, cols=cols, removechar=removechar, hmode=hmode, header_start=header_start, hsep=hsep, lower=lower, full_output=full_output) if full_output: head, cols = head data = table(filename, cols=cols, dtype=dtype, include=include, exclude=exclude, data_start=data_start, delimiter=delimiter) if isinstance(data, np.ndarray): if len(data.shape) == 1: dic = {head[0]: data} else: dic = {head[0]: data[0]} for i in range(1, len(head)): dic[head[i]] = data[i] else: dic = {head[0]: data[0]} for i in range(1, len(head)): dic[head[i]] = data[i] return dic
ffa00f53a52e84143cb3a612730db1a57c130d87
26,013
def solution(p, flux, error, line, cont, sens, model_wave, coeffs, fjac=None): """ Fitting function for mpfit, which will minimize the returned deviates. This compares the model stellar spectra*sensitivity to observed spectrum to get wavelength of each pixel.""" # Convert pixels to wavelengths xref = coeffs[0] + coeffs[1]*(0-p[0]) pixel = list(range(len(flux))) x = p[1]*(pixel+p[2]) + xref model = (p[3]*line + p[4]*cont) / model_wave / model_wave * sens # model = (p[3]*line + p[4]*cont) / model_wave * sens model = model / np.max(model) # Interpolate model to match data wavelength theory = np.interp(x, model_wave, model) status = 0 return [status, (flux-theory)/error]
0568751e1e564ae01ee72af28446d8cfdac50324
26,014
import torch def filter_image(image, model, scalings): """ Filter an image with the first layer of a VGG16 model. Apply filter to each scale in scalings. Parameters ---------- image: 2d array image to filter model: pytorch model first layer of VGG16 scalings: list of ints downsampling factors Returns ------- all_scales: list of 2d array list of filtered images. For each downsampling factor, there are N images, N being the number of filters of the model. """ n_filters = 64 # convert to np if dasks array image = np.asarray(image) all_scales=[] for s in scalings: im_tot = image[::s,::s].astype(np.float32) #im_tot = np.ones((3,im_tot.shape[0],im_tot.shape[1]), dtype=np.float32) * im_tot im_torch = torch.from_numpy(im_tot[np.newaxis, np.newaxis, ::]) out = model.forward(im_torch) out_np = out.detach().numpy() if s > 1: out_np = skimage.transform.resize( out_np, (1, n_filters, image.shape[0],image.shape[1]), preserve_range=True) all_scales.append(out_np) return all_scales
031bdf98d0220437afedd489068abb195866ed13
26,015
def gen_init_params(m_states: int, data: np.ndarray) -> tuple: """ Generate initila parameters for HMM training. """ init_lambda = gen_sdm(data, m_states) init_gamma = gen_prob_mat(m_states, m_states) init_delta = gen_prob_mat(1, m_states) return init_lambda, init_gamma, init_delta
7d57ccb5ba9144ba78be9486795638f6409a6730
26,016
import tempfile def generate_temp_csvfile(headers: list, data: list) -> object: """ Generates in-memory csv files :param headers: list A list of file headers where each item is a string data: list A list containing another list representing the rows for the CSV :returns: IO csvfile : In-memory temporary csv file """ with tempfile.NamedTemporaryFile(mode="w", delete=False) as csvfile: _write_data_to_csv(csvfile, headers, data) return csvfile
6d527794fbfee8c045e2bee31c0d85997beb371b
26,017
def read_raw_antcnt(input_fname, montage=None, eog=(), event_id=None, event_id_func='strip_to_integer', preload=False, verbose=None): """Read an ANT .cnt file Parameters ---------- input_fname : str Path to the .cnt file. montage : str | None | instance of montage Path or instance of montage containing electrode positions. If None, sensor locations are (0,0,0). See the documentation of :func:`mne.channels.read_montage` for more information. eog : list | tuple | 'auto' Names or indices of channels that should be designated EOG channels. If 'auto', the channel names containing ``EOG`` or ``EYE`` are used. Defaults to empty tuple. event_id : dict | None The ids of the events to consider. If None (default), an empty dict is used and ``event_id_func`` (see below) is called on every event value. If dict, the keys will be mapped to trigger values on the stimulus channel and only keys not in ``event_id`` will be handled by ``event_id_func``. Keys are case-sensitive. Example:: {'SyncStatus': 1; 'Pulse Artifact': 3} event_id_func : None | str | callable What to do for events not found in ``event_id``. Must take one ``str`` argument and return an ``int``. If string, must be 'strip-to-integer', in which case it defaults to stripping event codes such as "D128" or "S 1" of their non-integer parts and returns the integer. If the event is not in the ``event_id`` and calling ``event_id_func`` on it results in a ``TypeError`` (e.g. if ``event_id_func`` is ``None``) or a ``ValueError``, the event is dropped. preload : bool or str (default False) Preload data into memory for data manipulation and faster indexing. If True, the data will be preloaded into memory (fast, requires large amount of memory). If preload is a string, preload is the file name of a memory-mapped file which is used to store the data on the hard drive (slower, requires less memory). Note that preload=False will be effective only if the data is stored in a separate binary file. verbose : bool | str | int | None If not None, override default verbose level (see mne.verbose). Returns ------- raw : Instance of RawANTCNT A Raw object containing ANT .cnt data. Notes ----- .. versionadded:: 0.11.0 See Also -------- mne.io.Raw : Documentation of attribute and methods. """ return RawANTCNT(input_fname=input_fname, montage=montage, preload=preload, eog=eog, event_id=event_id, event_id_func=event_id_func, verbose=verbose)
db1ff04097b1ea8125aec90dfd308023cc5b3dba
26,018
def addrstr(ip: netaddr.IPNetwork) -> str: """ helper for mapping IP addresses to config statements """ address = str(ip.ip) if netaddr.valid_ipv4(address): return "ip address %s" % ip elif netaddr.valid_ipv6(address): return "ipv6 address %s" % ip else: raise ValueError("invalid address: %s", ip)
2faf35da4f6739db5b3e5eece92366e44595c11b
26,019
def upload_fixture_file(domain, filename, replace, task=None, skip_orm=False): """ should only ever be called after the same file has been validated using validate_fixture_file_format """ workbook = get_workbook(filename) if skip_orm is True: return _run_fast_fixture_upload(domain, workbook, task=task) return _run_fixture_upload(domain, workbook, replace=replace, task=task)
ac61bbd25a4605a11a9133ef7d4340444be46d8a
26,020
def lambda_plus_mu_elimination( offspring: list, population: list, lambda_: int): """ Performs the (λ+μ)-elimination step of the evolutionary algorithm Args: offspring (list): List of the offspring population (list): List of the individuals in a population lambda_ (int): Number of top lambda_ candidates that will be retained Returns: new_combined: Top lambda_ candidates that are retained """ # combine population and offspring combined = population + offspring # sort new population combined = sorted(combined, key=lambda k: k.fitness, reverse=False) # pick top lambda candidates combined = combined[:lambda_] return combined
d4f55fa621e3f33e2773da81a6cf0b2fc0439ba9
26,021
def dVdtau(z): """ cosmological time-volume element [Mpc^3 /redshift /sr] it is weighted by an extra (1+z) factor to reflect the rate in the rest frame vs the observer frame """ DH=c_light_kms/cosmo.H0 return DH*(1+z)*DA(z)**2/E(z)
80384549a5ab30bcccbd45076f0b25044402abc0
26,022
def receive(message): """ Function to read whatever is presented to the serial port and print it to the console. Note: For future use: Currently not used in this code. """ messageLength = len(message) last_message = [] try: while arduinoData.in_waiting > 0: for i in range(0, messageLength): last_message.append(int.from_bytes(arduinoData.read(), "little")) #print("GOT: ", last_message) return last_message except: print("Failed to receive serial message") pass
b526d1888d089f77dc0953488bbafeaa74e5ba45
26,023
from typing import List from typing import Optional from typing import Callable def fit(model_types: List[str], state_cb_arg_name: Optional[str] = None, instance_arg_name: Optional[str] = None) -> Callable: """Decorator used to indicate that the wrapped function is a fitting function. The decorated function should take at least one argument - model instance (passed as the first positional argument by default). It may also take any number of additional positional and keyword arguments and should return the updated model instance. Args: model_types: types of models supported by the decorated function state_cb_arg_name: if set, indicates that the caller should pass a state callback function as a keyword argument and use the passed value as the argument name. The function is of type Callable[Any] instance_arg_name: if set, indicates under which argument name to pass the concrete model instance. If not set, it is passed in the first positional argument Returns: Decorated function""" def decorator(function): for model_type in model_types: if model_type in _declarations['fit']: raise ValueError(f'duplicate fitting function under model ' f'type {model_type}') _declare('fit', model_type, common.FitPlugin( function=function, state_cb_arg_name=state_cb_arg_name, instance_arg_name=instance_arg_name)) return function return decorator
0b8217184118269dab7095e424550736e495ba04
26,024
def infer_filetype(filepath, filetype): """ The function which infer file type Parameters ---------- filepath : str command line argument of filepath filetype : str command line argument of filetype Returns ------- filepath : str filepath filetype : str filetype """ if filetype == DIC_DEFAULT_VALUES['filetype']: # Extract filename from filepath filename = extract_filename(filepath) filetype = extract_extension(filepath) # Convert extension to alias if filename in DIC_LEXER_CONST.keys(): return filepath, DIC_LEXER_CONST[filename] elif filetype in DIC_LEXER_WC.keys(): return filepath, DIC_LEXER_WC[filetype] else: return filepath, filetype else: return filepath, filetype
6e47f60dd8cabe8ba14d26736c3d2508952c1334
26,025
def suite_for_devices(devices): """Create a TyphonSuite to display multiple devices""" suite = TyphonSuite() for device in devices: suite.add_device(device) return suite
08911e85b775e98cdb09b96daaa74f27076c51f6
26,026
def get_3d_points(preds_3d): """ Scales the 3D points. Parameters ---------- preds_3d : numpy.ndarray The raw 3D points. Returns ------- preds_3d : numpy.ndarray The scaled points. """ for i,p in enumerate(preds_3d): preds_3d[i] = preds_3d[i] - preds_3d[i].mean(0)*np.ones((16,1)); return preds_3d;
e0c93af3f1d803a9276deb86fb3a3bcb2d90859f
26,027
from datetime import datetime import logging def mms_load_data(trange=['2015-10-16', '2015-10-17'], probe='1', data_rate='srvy', level='l2', instrument='fgm', datatype='', anc_product=None, descriptor=None, varformat=None, prefix='', suffix='', get_support_data=False, time_clip=False, no_update=False, center_measurement=False, notplot=False, data_root=None): """ This function loads MMS data into a dictionary by variable name. Parameters: trange : list of str time range of interest [starttime, endtime] with the format 'YYYY-MM-DD','YYYY-MM-DD'] or to specify more or less than a day ['YYYY-MM-DD/hh:mm:ss','YYYY-MM-DD/hh:mm:ss'] probe : str or list of str list of probes, valid values for MMS probes are ['1','2','3','4']. data_rate : str or list of str instrument data rates for FGM include 'brst' 'fast' 'slow' 'srvy'. The default is 'srvy'. level : str indicates level of data processing. the default if no level is specified is 'l2' instrument : str or list of str Name(s) of instrument(s) for which to load data. datatype : str or list of str One or more types of data to load. Must be selected from this list: ['ancillary', 'hk', 'science'] If given as an empty string or not provided, will default to 'science' data. anc_product : str or list of str One or more ancillary products to load. descriptor : str or list of str Optional name(s) of data subset(s) to load. varformat: str The file variable formats to load. Wildcard character "*" is accepted. By default, all variables are loaded in. prefix: str The variable names will be given this prefix. By default, no prefix is added. suffix: str The variable names will be given this suffix. By default, no suffix is added. get_support_data: bool If True, data with an attribute "VAR_TYPE" with a value of "support_data" will be loaded into data tables. If False, only loads in data with a "VAR_TYPE" attribute of "data". Defaults to False. time_clip: bool Data will be clipped to the exact trange specified by the trange keyword. no_update: bool If true, do not poll the upstream MMS data repository for new/updated data. This will limit loading to only files already available from the local system. center_measurement: bool If True, the CDF epoch variables are time-shifted to the middle of the accumulation interval by their DELTA_PLUS_VAR and DELTA_MINUS_VAR variable attributes notplot: bool [Deprecated] No effect. Parameter is preserved for partial compatibility with original pyspedas implementation. data_root: str Full path to the root directory where MMS directory structure begins. If not provided, will default to '<user_home>/data/mms' Returns: Tuple of dictionaries with the loaded data and metadata. ie. (data, metadata) """ if not (isinstance(probe, list) or probe is None): probe = [probe] if not (isinstance(data_rate, list) or data_rate is None): data_rate = [data_rate] if not isinstance(datatype, list): datatype = [datatype] if not isinstance(level, list): level = [level] if not isinstance(descriptor, list): descriptor = [descriptor] if probe: probe = [('mms'+(str(p))) for p in probe] # We're going to handle everything as datetime objects fo consistancy and easy conversion at-need. local_trange = [None,None] if type(trange[0]) == datetime: # Already a datetime. local_trange[0] = trange[0] elif type(trange[0]) in (int,float,np.float32,np.float64): # Convert from posix timestamp if provided. local_trange[0] = datetime.fromtimestamp(trange[0], timezone.utc) elif type(trange[0]) == str: # Parse the string and generate a datetime. local_trange[0] = parse(trange[0]) else: raise TypeError("Unsupported input format for start date/time.") if type(trange[1]) == datetime: # Already a datetime. local_trange[1] = trange[1] elif type(trange[1]) == int: # Convert from posix timestamp if provided. local_trange[1] = datetime.fromtimestamp(trange[1], timezone.utc) elif type(trange[1]) == str: # Parse the string and generate a datetime. local_trange[1] = parse(trange[1]) else: raise TypeError("Unsupported input format for end date/time.") # Replicating behavior of pyspedas: start_date = local_trange[0].isoformat() end_date = local_trange[1].isoformat() out_files = [] for dtype in datatype: # Default to 'science' data, as the old SPEDAS implementation assumed that and used "datatype" for something else entirely. if len(dtype) == 0: dtype = 'science' for lvl in level: for desc in descriptor: mms_api_client = mms_sdc_api_client.MMS_SDC_API_CLIENT( sc=probe, instr=instrument, mode=data_rate, level=lvl, data_type=dtype, anc_product=anc_product, data_root=data_root, end_date=end_date, offline=no_update, optdesc=desc, site='public', start_date=start_date) logging.info('download URI: '+mms_api_client.url()) out_files.extend(mms_api_client.Download()) out_files = sorted(out_files) #Because we're not using pytplot, new_variables is a simple dictionary containing the data. # eg. # pytplot: get_data(Varname) # current: new_variables[Varname].values() #new_variables,new_metadata = load_cdf(out_files, varformat=varformat, get_support_data=get_support_data, prefix=prefix, suffix=suffix, center_measurement=center_measurement) new_variables = {} new_metadata = {} logging.info('Beginning parallel load of '+str(len(out_files))+' data files...') # This attempts to load all requested cdf files into memory concurrently, using as many threads as the system permits. # The load_cdf function returns a tuple of (data, metadata), so pile_o_data will be a list of these tuples. # pile_o_data = p_map(load_cdf, out_files, varformat, get_support_data, prefix, suffix, center_measurement) #pile_o_data = p_map(partial(load_datafile, varformat=varformat, get_support_data=get_support_data, prefix=prefix, suffix=suffix, center_measurement=center_measurement), out_files) ##pile_o_data = p_map(partial(load_cdf, varformat=varformat, get_support_data=get_support_data, prefix=prefix, suffix=suffix, center_measurement=center_measurement), out_files) with ThreadPoolExecutor() as p: pile_o_data = p.map(partial(load_datafile, varformat=varformat, get_support_data=get_support_data, prefix=prefix, suffix=suffix, center_measurement=center_measurement), out_files) # Merge matching variable names across loaded files. logging.info('Stitching together the data...') for data,metadata in pile_o_data: # merge data dictionary if isinstance(data, pd.DataFrame): # Ancillary data loaded via Pandas magic. dataset = metadata['Set_Name'] # Metadata if dataset not in new_metadata.keys(): # No previous entries for this dataset. Add the whole thing as-is. new_metadata[dataset] = metadata else: # Compare the new set's metadata with the existing metadata. for meta in [key for key in metadata.keys() if key in set(new_metadata[dataset].keys())]: # Print a notice for any unexpected differences, but don't raise exceptions. if metadata[meta] != new_metadata[dataset][meta]: #Ancillary data is wierd. Just append any new metadata to the existing metadata field. metadata[meta] = str(metadata[meta]) + ', ' +str(new_metadata[dataset][meta]) #logging.warning("Dataset '"+dataset+"' has non-matching metadata between input files. Old: {'"+meta+"': '"+new_metadata[dataset][meta]+"'} -- Now using: {'"+meta+"': '"+metadata[dataset][meta]+"'}") # Update the metadata, overwriting old values if appliciable. new_metadata[dataset].update(metadata) # Data values if dataset not in new_variables.keys(): # No previous entries for this dataset. Add the whole thing as-is. new_variables[dataset] = data else: # Panic and error out if the datasets with identical names don't have the same axes/variables being tracked. if len(new_variables[dataset].keys()) != len(data.columns): logging.error('Failure to merge new data with axes ('+(','.join(data.columns))+') with existing data with axes ('+(','.join((new_variables[dataset].keys())))+')'+'.') raise TypeError('Failure to merge new data with axes ('+(','.join(data.columns))+') with existing data with axes ('+(','.join((new_variables[dataset].keys())))+')'+'.') # Update existing dataset entry with the additional data. new_variables[dataset] = new_variables[dataset].append(data) else: # Direct loaded from CDF. for dataset in data.keys(): if dataset not in new_variables.keys(): # No previous entries for this dataset. Add the whole thing as-is. new_variables[dataset] = data[dataset] else: # Panic and error out if the datasets with identical names don't have the same axes/variables being tracked. if len(new_variables[dataset].keys()) != len(data[dataset].keys()): logging.error('Failure to merge new data with axes ('+(','.join((data[dataset].keys())))+') with existing data with axes ('+(','.join((new_variables[dataset].keys())))+')'+'.') raise TypeError('Failure to merge new data with axes ('+(','.join((data[dataset].keys())))+') with existing data with axes ('+(','.join((new_variables[dataset].keys())))+')'+'.') # Update existing dataset entry with the additional data. for axis in data[dataset].keys(): new_variables[dataset][axis] = np.concatenate((new_variables[dataset][axis],data[dataset][axis])) # write/revise metadata for dataset in metadata.keys(): if dataset not in new_metadata.keys(): # No previous entries for this dataset. Add the whole thing as-is. new_metadata[dataset] = metadata[dataset] else: # Compare the new set's metadata with the existing metadata. for meta in [key for key in metadata[dataset].keys() if key in set(new_metadata[dataset].keys())]: # Print a notice for any unexpected differences, but don't raise exceptions. if metadata[dataset][meta] != new_metadata[dataset][meta]: logging.warning("Dataset '"+dataset+"' has non-matching metadata between input files. Old: {'"+meta+"': '"+new_metadata[dataset][meta]+"'} -- Now using: {'"+meta+"': '"+metadata[dataset][meta]+"'}") # Update the metadata, overwriting old values if appliciable. new_metadata[dataset].update(metadata[dataset]) if len(new_variables) == 0: logging.warning('No data loaded.') return if len(new_metadata) == 0: logging.warning('No metadata loaded.') return # Drop any duplicate entries in the pandas dataframes. for dataset in new_variables.values(): if isinstance(dataset, pd.DataFrame): dataset = dataset.drop_duplicates() logging.info('Loaded variables:') for new_var in new_variables.keys(): print(new_var) if time_clip: logging.info('Clipping variables to time range...') mms_data_time_clip(new_variables, local_trange[0], local_trange[1]) return new_variables, new_metadata #else: # return out_files
85d4e6b2b28bbcbe9dd7854f306f8b11131cb274
26,028
def get_random_card_id_in_value_range(min, max, offset): """ Randomly picks a card ranged between `min` and `max` from a given offset. The offset determines the type of card. """ card_id = roll( min + offset, max + offset) return card_id
dd888f1ace9638d68e611763bd7d844b43309594
26,029
def task_configuration(config_path): """ NLP-Task configuration/mapping """ df = pd.read_json(config_path) names = df.name.values.tolist() mapping = { df['name'].iloc[i]: ( df['text'].iloc[i], df['labels'].iloc[i], df['description'].iloc[i], df['model_name'].iloc[i], df['direction'].iloc[i], df['mapper'].iloc[i], ) for i in range(len(names))} return names, mapping
be794664800189ac42e39cc8639598f488a91e4d
26,030
def train(model, optimizer, criterion, data_loader, imshape=(-1, 1, 299, 299), device='cpu'): """ Train a model given a labeled dataset Args: model (nn.Module): Model criterion (torch.nn.optim): Criterion for loss function calculation data_loader (DataLoader): DataLoader for input validation data imshape (tuple, optional): Shape of input image. Defaults to (-1, 1, 299, 299) device (str, optional): Device to run on. Defaults to 'cpu'. Returns: float: validation loss (normalized to dataset length) float: validation accuracy (normalized to dataset length) """ model.train() train_loss, train_accuracy = 0, 0 i = 0 for X, y in data_loader: if i % 100 == 0: print(i) i += 1 X, y = X.to(device), y.to(device) optimizer.zero_grad() out = model(X.view(*imshape)) loss = criterion(out, y) loss.backward() optimizer.step() train_loss += loss*X.size(0) y_pred = F.log_softmax(out, dim=1).max(1)[1] train_accuracy += accuracy_score(y.cpu().numpy(), y_pred.detach() .cpu().numpy())*X.size(0) return train_loss/len(data_loader.dataset), train_accuracy/len(data_loader. dataset)
4b1d769adbef1c9b3d97d1e38bc9828a0fc48178
26,031
def get_random_rep(embedding_dim=50, scale=0.62): """The `scale=0.62` is derived from study of the external GloVE vectors. We're hoping to create vectors with similar general statistics to those. """ return np.random.normal(size=embedding_dim, scale=0.62)
eed26688657121c7651a611bf49fd7549f3f639f
26,032
def calculate_pretrain_epoches(stage_ds:DatasetStage, train_batch_size:int, train_steps_per_epoch:int=DEF_STEPS_PER_EPOCH)->int: """ Calculate the number of epoches required to match the reference model in the number of parameter updates. Ref. https://arxiv.org/pdf/1810.04805.pdf, section A.2. "Pre-training procedure" """ upstream_train_steps=10**6 upstream_batch_size=256 upstream_seq_length=512 upstream_total_tokens=upstream_train_steps * upstream_batch_size * upstream_seq_length # Calculate number of training epoches for our model to match the upstream our_batch_size=train_batch_size our_seq_length=mklens(instantiate(stage_ds).dref).max_seq_length.val our_train_steps=upstream_total_tokens / (our_batch_size * our_seq_length) out_epoches=our_train_steps // train_steps_per_epoch return out_epoches
72a51eb842d79fe575e97a8059705220d145e0de
26,033
def get_container_info(node, repositories): """Check the node name for errors (underscores) Returns: toscaparser.nodetemplate.NodeTemplate: a deepcopy of a NodeTemplate """ if not repositories: repositories = [] NodeInfo = namedtuple( "NodeInfo", [ "name", "type", "properties", "inputs", "artifacts", "parent", "sidecars", "mounts", "hosts", "requirements", "repositories", ], ) return NodeInfo( name=node.name, type=node.type, properties={x: y.value for x, y in node.get_properties().items()}, inputs=utils.get_lifecycle(node, Interface.KUBERNETES).get( "create", {} ), artifacts=node.entity_tpl.get("artifacts", {}), parent=node.type_definition.defs, sidecars=_get_related_nodes(node, NodeType.CONTAINER, repositories), mounts=_get_related_mounts(node), hosts=_get_related_hosts(node), requirements=node.requirements, repositories={repo.name: repo.reposit for repo in repositories}, )
f2fbdcee89f869f9ec4b5347ad1667e2ea23c427
26,034
def query_db_to_build_2by2_table( db, drug1_id, drug2_id, drug1_efficacy_definition_query_sql, drug2_efficacy_definition_query_sql, environment, ): """ Query the given DB to build a 2-by-2 table comparing the given drugs. Return a 2-by-2 table where the exposure is drug 1 (non-exposure is drug 2) and the outcome is efficacy according to the given definitions. db: SQLite DB connection. drug1_id, drug2_id: IDs of drug 1 and 2. Python data type must match drug IDs in DB. drug{1,2}_efficacy_definition_query_sql: SQL query to identify subjects for whom drug 1 (2) is effective. Must return a collection of subject IDs ("select <subject-id> from ..."). Must have a single parameter, the drug ID ("... where ... and <drug-id> is ? ..."). environment: Dictionary containing definitions describing the table of prescriptions: `drug_table_name`, `drug_id_column_name`, `subject_id_column_name`. """ # Build query for subjects with a drug query = _select_subjects_with_drug_id_sql.format( environment['subject_id_column_name'], environment['drug_table_name'], environment['drug_id_column_name'], ) # Get subjects with drug 1 cursor = db.execute(query, (drug1_id,)) subjects1 = set(record[0] for record in cursor) # Get subjects with drug 2 cursor = db.execute(query, (drug2_id,)) subjects2 = set(record[0] for record in cursor) # Get subjects for whom drug 1 is effective cursor = db.execute( drug1_efficacy_definition_query_sql, (drug1_id,)) effective1 = set(record[0] for record in cursor) # Get subjects for whom drug 2 is effective cursor = db.execute( drug2_efficacy_definition_query_sql, (drug2_id,)) effective2 = set(record[0] for record in cursor) # Classify the subjects by efficacy. Trust the sets of subjects # rather than the sets of effectives; this allows the efficacy # queries to overcount. drug1_non = subjects1 - effective1 drug1_eff = subjects1 - drug1_non drug2_non = subjects2 - effective2 drug2_eff = subjects2 - drug2_non # Make the 2-by-2 table. Exposure is drug1, non-exposure is drug2, # outcome is efficacy. table = contab.TwoByTwoTable( len(drug1_eff), len(drug1_non), # +exp +out | +exp -out len(drug2_eff), len(drug2_non), # -exp +out | -exp -out ) return table
bb10095c692cb81182bb79140af30a9e742d3106
26,035
def rmedian(image, r_inner, r_outer, **kwargs): """ Median filter image with a ring footprint. This function produces results similar to the IRAF task of the same name (except this is much faster). Parameters ---------- image : ndarray, MaskedImageF, or ExposureF Original image data. r_inner : int The inner radius of the ring in pixels. r_outer : int The outer radius of the ring in pixels. Returns ------- filtered_data : ndarray Ring filtered image. """ data = get_image_ndarray(image) fp = _ring(r_inner, r_outer, **kwargs) filtered_data = ndi.median_filter(data, footprint=fp) return filtered_data
9614b6f964e8f6031ad08743c0f614e2bcb25753
26,036
def docstring(): """ Decorator: Insert docstring header to a pre-existing docstring """ sep="\n" def _decorator(func): docstr = func.__doc__ title = docstr.split("Notes",1)[0] docstr = docstr.replace(title,"") func.__doc__ = sep.join([docstr_header(title,func.__name__),docstr]) func.__doc__ = sep.join([func.__doc__,docstr_example(func.__name__)]) return func return _decorator
5157cdfe25bc346bbf10c6a2368a6a78539d5160
26,037
def load_class_names(): """ Load the names for the classes in the CIFAR-10 data-set. Returns a list with the names. Example: names[3] is the name associated with class-number 3. """ # Load the class-names from the pickled file. raw = _unpickle(filename="batches.meta")[b'label_names'] # Convert from binary strings. names = [x.decode('utf-8') for x in raw] return names
668f01e943b2dcd99dd7b98266a8553fb8395251
26,039
def categories(): """Router for categories page.""" categories = get_categories_list() return render_template('categories.html', categories=categories)
2bcc78a7bb1fceeb0aeff1c8edd49d804a4f5c5c
26,040
def load_images(imgpaths, h, w, imf='color'): """Read in images and pre-processing 'em Args: imgpaths: a list contains all the paths and names of the images we want to load h: height image is going to resized to width: width image is going to resized to imf: image format when loaded as color or grayscale Returns: image_data: 2-d array with shape [len(imgpaths, h*w*num_channels)] """ if imf == 'gray': num_chnls = 1 elif imf =='color': num_chnls = 3 image_data = np.empty([len(imgpaths), h*w*num_chnls], dtype=np.float32) for i in range(len(imgpaths)): # read in image according to imf if imf == 'gray': img_raw = cv2.imread(imgpaths[i], 0) elif imf == 'color': img_raw = cv2.imread(imgpaths[i], 1) # crop image to (360, 144, num_channels) img_crp = img_raw[:, int(img_raw.shape[1]/2)-72:int(img_raw.shape[1]/2)+72] # resize image according to h and w img_rsz = cv2.resize(img_crp, (h, w)) # flatten image tensor to 1-d and save into the image_data array image_data[i] = np.resize(img_rsz, (h*w*num_chnls)) print("{} of {} images loaded...".format(i+1, len(imgpaths))) return image_data
008c265354da9c545edcfeb72484786923dcf1f6
26,041
def nextpow2(value): """ Find exponent such that 2^exponent is equal to or greater than abs(value). Parameters ---------- value : int Returns ------- exponent : int """ exponent = 0 avalue = np.abs(value) while avalue > np.power(2, exponent): exponent += 1 return exponent
1c856a64c578e88aacd931c0e15ba4756c7d9d4f
26,042
def clarkezones(reference, test, units, numeric=False): """Provides the error zones as depicted by the Clarke error grid analysis for each point in the reference and test datasets. Parameters ---------- reference, test : array, or list Glucose values obtained from the reference and predicted methods, preferably provided in a np.array. units : str The SI units which the glucose values are provided in. Options: 'mmol', 'mgdl' or 'mg/dl'. numeric : bool, optional If this is set to true, returns integers (0 to 4) instead of characters for each of the zones. Returns ------- clarkezones : list Returns a list depecting the zones for each of the reference and test values. """ # obtain zones from a Clarke reference object _zones = _Clarke(reference, test, units, None, None, None, None, None, '#000000', 'auto', 'auto', True, False, None, None)._calc_error_zone() if numeric: return _zones else: labels = ['A', 'B', 'C', 'D', 'E'] return [labels[i] for i in _zones]
4fe3544649e28ccf06cb1c74f282f1963da0854d
26,043
def normalize_graph(graph): """ Take an instance of a ``Graph`` and return the instance's identifier and ``type``. Types are ``U`` for a :class:`~rdflib.graph.Graph`, ``F`` for a :class:`~rdflib.graph.QuotedGraph` and ``B`` for a :class:`~rdflib.graph.ConjunctiveGraph` >>> from rdflib import plugin >>> from rdflib.graph import Graph, ConjunctiveGraph, QuotedGraph >>> from rdflib.store import Store >>> from rdflib import URIRef, Namespace >>> from rdflib_sqlalchemy.termutils import normalize_graph >>> memstore = plugin.get('IOMemory', Store)() >>> g = Graph(memstore, URIRef("http://purl.org/net/bel-epa/gjh")) >>> normalize_graph(g) (rdflib.term.URIRef(u'http://purl.org/net/bel-epa/gjh'), 'U') >>> g = ConjunctiveGraph(memstore, Namespace("http://rdflib.net/ns")) >>> normalize_graph(g) #doctest: +ELLIPSIS (rdflib.term.URIRef(u'http://rdflib.net/ns'), 'U') >>> g = QuotedGraph(memstore, Namespace("http://rdflib.net/ns")) >>> normalize_graph(g) (rdflib.term.URIRef(u'http://rdflib.net/ns'), 'F') """ if isinstance(graph, QuotedGraph): return graph.identifier, "F" else: return graph.identifier, term_to_letter(graph.identifier)
478987e943e27077e1f2ecce454b33dfd347812b
26,044
def findTargetNode(root, nodeName, l): """ Recursive parsing of the BVH skeletal tree using breath-first search to locate the node that has the name of the targeted body part. Args: root (object): root node of the BVH skeletal tree nodeName (string): name of the targeted body part l (list): empty list Returns: list: list containing the node representing the targeted body part """ if root.name == nodeName: l.append(root) else: for child in root.children: findTargetNode(child, nodeName, l) return l
81d63c032260b496b29dd2890e32753554b93e1a
26,045
def ddtodms(decLat: float, decLon: float): """ Converts coord point from decimal degrees to Hddd.mm.ss.sss """ try: lat = float(decLat) lon = float(decLon) except ValueError as e: raise e # Get declination ns = "N" if lat >= 0 else "S" ew = "E" if lon >= 0 else "W" lat = abs(lat) lon = abs(lon) # Floor to get degrees latD = int(lat) lonD = int(lon) # Get minutes latM = 60*(lat - latD) lonM = 60*(lon - lonD) # Get seconds latS = 60*(latM - int(latM)) lonS = 60*(lonM - int(lonM)) # Assemble output latOut = f"{ns}{int(latD):03}.{int(latM):02}.{latS:06.3f}" lonOut = f"{ew}{int(lonD):03}.{int(lonM):02}.{lonS:06.3f}" return latOut, lonOut
e1d05d5edf274427b42cb88496fe41ddaf58f7fd
26,046
def gen_colors(img): """ Ask backend to generate 16 colors. """ raw_colors = fast_colorthief.get_palette(img, 16) return [util.rgb_to_hex(color) for color in raw_colors]
6a780cdff2e4aebbe90667da584ad4f1e2692347
26,048
import html import time import http import json def request(match, msg): """Make an ESI GET request, if the path is known. Options: --headers nest the response and add the headers """ match_group = match.groupdict() if "evepc.163.com" in (match_group["esi"] or ""): base_url = ESI_CHINA else: base_url = esi_base_url(msg) version, *req_sections = match_group["esi_path"].split("/") if version not in ESI_SPECS[base_url]: req_sections.insert(0, version) version = "latest" params = "" if "?" in req_sections[-1]: if req_sections[-1].startswith("?"): params = req_sections.pop() params = params[1:] else: # qsparams passed w/out trailing slash final_path, params = req_sections.pop().split("?") req_sections.append(final_path) params = html.unescape(params) path = "/{}/".format("/".join(x for x in req_sections if x)) if _valid_path(base_url, path, version): url = "{}/{}{}{}{}".format( base_url, version, path, "?" * int(params != ""), params, ) start = time.time() res = do_request(url, return_response=True) try: content = res.json() except ValueError: content = res.text try: status = http.HTTPStatus(res.status_code) # pylint: disable=E1120 except ValueError: status = str(res.status_code) else: status = "{} {}".format(status.value, status.name) # pylint: disable=E1101 if "--headers" in msg.args: res = {"response": content, "headers": dict(res.headers)} else: res = content return SNIPPET( content=json.dumps(res, sort_keys=True, indent=4), filename="response.json", filetype="json", comment="{} ({:,.0f}ms)".format( status, (time.time() - start) * 1000, ), title=url, ) return "failed to find GET {} in the {} ESI{} spec".format( path, version, " China" * int(base_url == ESI_CHINA), )
963482efa0bdb02fbfcf1f6ce0b107718c69563a
26,049
def __getattr__(attr): """ This dynamically creates the module level variables, so if we don't call them, they are never created, saving time - mostly in the CLI. """ if attr == "config": return get_config() elif attr == "leader_hostname": return get_leader_hostname() else: raise AttributeError
f080f3b82afa6050dbaf870e11d1651faded6361
26,050
import numpy def _diff_st(p,dl,salt,temp,useext=False): """Calculate sea-ice disequilibrium at ST. Calculate both sides of the equations given pressure = pressure of liquid water chemical potential of ice = potential of liquid water and their Jacobians with respect to pressure and liquid water density. Solving these equations gives equilibrium values at the given salinity and temperature. :arg float p: Pressure in Pa. :arg float dl: Liquid water density in kg/m3. :arg float salt: Salinity in kg/kg. :arg float temp: Temperature in K. :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :returns: Left-hand side of the equation, right-hand side, Jacobian of LHS, and Jacobian of RHS. :rtype: tuple(array(float)) """ pl = _eq_pressure(0,0,temp,dl) gi = _ice_g(0,0,temp,p) gl = _eq_chempot(0,0,temp,dl) gl += _eq_liqpot(0,0,0,salt,temp,p,useext=useext) lhs = numpy.array([p, gi]) rhs = numpy.array([pl, gl]) pl_d = _eq_pressure(0,1,temp,dl) gi_p = _ice_g(0,1,temp,p) gl_d = _eq_chempot(0,1,temp,dl) gl_p = _eq_liqpot(0,0,1,salt,temp,p,useext=useext) dlhs = numpy.array([[1.,0.], [gi_p,0.]]) drhs = numpy.array([[0.,pl_d], [gl_p,gl_d]]) return lhs, rhs, dlhs, drhs
11c3c09deeea9e36d1a9dc25bfae4609c982c082
26,051
def getNormalizedISBN10(inputISBN): """This function normalizes an ISBN number. >>> getNormalizedISBN10('978-90-8558-138-3') '90-8558-138-9' >>> getNormalizedISBN10('978-90-8558-138-3 test') '90-8558-138-9' >>> getNormalizedISBN10('9789085581383') '90-8558-138-9' >>> getNormalizedISBN10('9031411515') '90-314-1151-5' >>> getNormalizedISBN10('9791032305690') '' >>> getNormalizedISBN10('') '' >>> getNormalizedISBN10('979-10-235-1393-613') '' >>> getNormalizedISBN10('978-10-235-1393-613') Traceback (most recent call last): ... stdnum.exceptions.InvalidFormat: Not a valid ISBN13. """ inputISBNNorm = preprocessISBNString(inputISBN) if inputISBNNorm: isbn10 = None try: isbn10 = isbn.format(isbn.to_isbn10(inputISBNNorm)) return isbn10 except exceptions.InvalidComponent: # Probably an ISBN number with 979 prefix for which no ISBN10 can be created if inputISBNNorm.startswith('979'): return '' else: raise else: return ''
986dcd09470cc3bf0badb59f8c0ba069382f0c7c
26,052
import json import logging def hashtag_is_valid(tag, browser, delay=5): """ Check if a given hashtag is banned by Instagram :param delay: Maximum time to search for information on a page :param browser: A Selenium Driver :param tag: The hashtag to check :return: True if the hashtag is valid, else False """ try: url = f"https://www.instagram.com/explore/tags/{tag}/?__a=1" browser.get(url) WebDriverWait(browser, delay).until(expected_conditions.presence_of_element_located((By.ID, 'json'))) content = browser.find_element_by_id('json').text parsed_json = json.loads(content) return parsed_json['graphql']['hashtag']['allow_following'] except TimeoutException: logging.warning( f'Error while checking the tag #{tag}. Loading took too much time, Please check your internet connexion.') return True except KeyError: return False
15e88713670454a713d27650b61672ecc06a9d53
26,053
import json def get_price_data(startdate, enddate): """ returns a dataframe containing btc price data on every day between startdate and enddate :param startdate: :param enddate: :return: """ url = 'https://api.coindesk.com/v1/bpi/historical/close.json?start=' + startdate + '&end=' + enddate driver.get(url) body = driver.find_element_by_tag_name("body") text = json.loads(body.text) timeindex = pd.DatetimeIndex(freq='d', start=startdate, end=enddate) data = pd.DataFrame() for date in timeindex: fdate = format_date(date) data.at[date, 'price'] = text['bpi'][fdate] return data
b506069c7246c64530906ff86a743b0d717ec173
26,055
import csv def read_keywords(fname): """Read id file""" with open(fname, 'r') as f: reader = csv.reader(f) header = next(reader) assert header == ['keyword'] return list(row[0] for row in reader)
566c1924ae8d4ae7316a2c5e3947170fe23af45d
26,058
def inscribe(mask): """Guess the largest axis-aligned rectangle inside mask. Rectangle must exclude zero values. Assumes zeros are at the edges, there are no holes, etc. Shrinks the rectangle's most egregious edge at each iteration. """ h, w = mask.shape i_0, i_1 = 0, h - 1 j_0, j_1 = 0, w - 1 def edge_costs(i_0, i_1, j_0, j_1): a = mask[i_0, j_0:j_1 + 1].sum() b = mask[i_1, j_0:j_1 + 1].sum() c = mask[i_0:i_1 + 1, j_0].sum() d = mask[i_0:i_1 + 1, j_1].sum() return a,b,c,d def area(i_0, i_1, j_0, j_1): return (i_1 - i_0) * (j_1 - j_0) coords = [i_0, i_1, j_0, j_1] while area(*coords) > 0: costs = edge_costs(*coords) if sum(costs) == 0: return coords worst = costs.index(max(costs)) coords[worst] += 1 if worst in (0, 2) else -1 return
06042faebedb82dc0044cf2108fae7a3570895e0
26,059
def vaf_above_or_equal(vaf): """ """ return lambda columns, mapper: float(columns[mapper['Variant_allele_ratio']]) >= vaf
4b2134d63193699f8ca490a8d7537ba8aaf4c8cf
26,060
from typing import Dict def user_token_headers(client_target: TestClient, sql_session: Session) -> Dict[str, str]: """fake user data auth""" return auth_token( client=client_target, username="johndoe", sql=sql_session)
e230762c82e6c81e493430f2ffe59f97f7e33721
26,061
def conv_1_0_string_to_packed_binary_string(s): """ '10101111' -> ('\xAF', False) Basically the inverse of conv_packed_binary_string_to_1_0_string, but also returns a flag indicating if we had to pad with leading zeros to get to a multiple of 8. """ if not is_1_0_string(s): raise ValueError, "Input must be a string containing only 0's and 1's" # pad to multiple of 8 padded = False rem = len(s) % 8 if rem != 0: npad = 8 - rem s = '0' * npad + s padded = True assert len(s) % 8 == 0 r = [] i = 0 while i < len(s): t = 0 for j in range(8): t = (t << 1) | (ord(s[i + j]) - ord('0')) r.append(chr(t)) i += 8 return (''.join(r), padded)
65555abe9eae515c41ddf422bec28394b7612e37
26,063
def accuracy_win_avg(y_true, y_proba): """ Parameters ---------- y_true: n x n_windows y_proba: n x n_windows x n_classes """ y_pred = win_avg(y_proba) return accuracy(y_true[:,0], y_pred)
ca2629127dd0fca3591f8e6ae30f337cd3b92b69
26,064
def ortho_projection(left=-1, right=1, bottom=-1, top=1, near=.1, far=1000): """Orthographic projection matrix.""" return np.array(( (2 / (right-left), 0, 0, -(right+left) / (right-left)), (0, 2 / (top-bottom), 0, -(top+bottom) / (top-bottom)), (0, 0, 2 / (near-far), (far+near) / (far-near)), (0, 0, 0, 1) ), dtype='f4')
cdd00f1fcb706a1a19476f8fa387fe45a11deebd
26,065
def ais_InitLengthBetweenCurvilinearFaces(*args): """ * Finds attachment points on two curvilinear faces for length dimension. @param thePlaneDir [in] the direction on the dimension plane to compute the plane automatically. It will not be taken into account if plane is defined by user. :param theFirstFace: :type theFirstFace: TopoDS_Face & :param theSecondFace: :type theSecondFace: TopoDS_Face & :param theFirstSurf: :type theFirstSurf: Handle_Geom_Surface & :param theSecondSurf: :type theSecondSurf: Handle_Geom_Surface & :param theFirstAttach: :type theFirstAttach: gp_Pnt :param theSecondAttach: :type theSecondAttach: gp_Pnt :param theDirOnPlane: :type theDirOnPlane: gp_Dir :rtype: void """ return _AIS.ais_InitLengthBetweenCurvilinearFaces(*args)
992f2c26c87f07a0460ef56cff784b00185cf3b0
26,066
def get_methylation_dataset(methylation_array, outcome_col, convolutional=False, cpg_per_row=1200, predict=False, categorical=False, categorical_encoder=False, generate=False): """Turn methylation array into pytorch dataset. Parameters ---------- methylation_array : MethylationArray Input MethylationArray. outcome_col : str Pheno column to train on. convolutional : bool Whether running CNN on methylation data cpg_per_row : int If convolutional, number of cpgs per image row. predict : bool Running prediction algorithm vs VAE. categorical : bool Whether training on categorical vs continuous variables. categorical_encoder : Scikit learn encoder. Returns ------- Pytorch Dataset """ if generate: return MethylationGenerationDataSet(methylation_array, Transformer(convolutional, cpg_per_row, methylation_array.beta.shape), outcome_col, categorical=categorical, categorical_encoder=categorical_encoder) elif predict: return MethylationPredictionDataSet(methylation_array, Transformer(convolutional, cpg_per_row, methylation_array.beta.shape), outcome_col, categorical=categorical, categorical_encoder=categorical_encoder) else: return MethylationDataSet(methylation_array, Transformer(convolutional, cpg_per_row, methylation_array.beta.shape), outcome_col)
709d1eb5f5887b9f0ff0724e8a4aa18d86020fb5
26,068
def es_config_fixture() -> ElastalkConf: """ This fixture returns an `ElasticsearchConf` (configuration) object. :return: the configuration object """ return ElastalkConf()
2479bf01f454ea409e36647a417b3dcee82fafd0
26,069
def axis_angle_to_quaternion(rotation: ArrayOrList3) -> np.ndarray: """Converts a Rodrigues axis-angle rotation to a quaternion. Args: rotation: axis-angle rotation in [x,y,z] Returns: equivalent quaternion in [x,y,z,w] """ r = Rotation.from_rotvec(rotation) return r.as_quat()
002970755835395bc349c418de94455ac0ce52c3
26,071
def encode(encoding, data): """ Encodes the given data using the encoding that is specified :param str encoding: encoding to use, should be one of the supported encoding :param data: data to encode :type data: str or bytes :return: multibase encoded data :rtype: bytes :raises ValueError: if the encoding is not supported """ data = ensure_bytes(data, 'utf8') try: return ENCODINGS_LOOKUP[encoding].code + ENCODINGS_LOOKUP[encoding].converter.encode(data) except KeyError: raise ValueError('Encoding {} not supported.'.format(encoding))
08ffd6540ed6da7728b6725e035afb652bf8893e
26,072
import json def tiny_video_net(model_string, num_classes, num_frames, data_format='channels_last', dropout_keep_prob=0.5, get_representation=False, max_pool_predictions=False): """Builds TinyVideoNet based on model string. Args: model_string: string defining the tiny video model (see top for example model string) num_classes: int number of classes to classify num_frames: int, number of frames in clip data_format: string, either channels_last or channels_first dropout_keep_prob: float, dropout keep probability get_representation: bool, True to return the representation. max_pool_predictions: bool, if True, will max pool the predictions over the temporal dimension. If False, will average pool. Max pooling is useful for long videos where the action only happens over a short sub-sequence of the whole video, such as in the Charades dataset. Returns: model function (inputs, is_training) """ if dropout_keep_prob is None: dropout_keep_prob = 1.0 model = json.loads(model_string) def model_fn(inputs, is_training): """Creation of the model graph.""" input_shape = inputs.shape if 'input_streams' in model: batch_size = input_shape[0] inputs, blocks = multistream_tvn(model, inputs, is_training, num_frames) else: batch_size = input_shape[0] // num_frames inputs, blocks = tvn(model, inputs, is_training) feature_shape = inputs.shape current_frames = feature_shape[0] // batch_size if get_representation: representation = inputs if max_pool_predictions: batch_size = int(feature_shape[0].value // current_frames) inputs = tf.reshape(inputs, [batch_size, current_frames, -1, inputs.shape[3]]) # Spatial average pooling. inputs = tf.reduce_mean(inputs, axis=2) if is_training: inputs = tf.nn.dropout(inputs, dropout_keep_prob) # Per-frame predictions. inputs = tf.layers.dense( inputs=inputs, units=num_classes, kernel_initializer=tf.random_normal_initializer(stddev=.01)) # Per-frame max-pooling. The max pooling is done in a softmax manner for # more stable training. pre_logits = inputs / tf.sqrt(tf.cast(current_frames, inputs.dtype)) acts = tf.nn.softmax(pre_logits, axis=1) inputs = tf.math.multiply(inputs, acts) inputs = tf.reduce_sum(inputs, axis=1) else: # Global-average-pool. inputs = tf.reshape(inputs, [ int(feature_shape[0].value // current_frames), current_frames * feature_shape[1], feature_shape[2], -1 ]) inputs = tf.reduce_mean(inputs, axis=[1, 2]) if is_training: inputs = tf.nn.dropout(inputs, dropout_keep_prob) inputs = tf.layers.dense( inputs=inputs, units=num_classes, kernel_initializer=tf.random_normal_initializer(stddev=.01)) if get_representation: return { 'feats-emb': representation, 'blocks': blocks, 'frames': current_frames, 'predictions': inputs, 'logits': inputs } return {'logits': inputs} def tvn(model, inputs, is_training): """Standard single-stream TVN.""" current_frames = num_frames b = 0 blocks = {} for block in model['blocks']: with tf.variable_scope('Block-%d-0' % b): inputs, new_frames = tiny_block(block, inputs, current_frames, is_training, data_format) current_frames = new_frames # Repeat block with no stride and alternating use of temporal conv1. use_temporal = False for i in range(block['repeats'] - 1): with tf.variable_scope('Block-%d-%d' % (b, i + 1)): inputs, _ = tiny_block( block, inputs, current_frames, is_training, data_format, strides=1, use_temporal=use_temporal) use_temporal = not use_temporal blocks['block-' + str(b)] = inputs b += 1 return inputs, blocks def multistream_tvn(model, inputs, is_training, input_num_frames): """Multi-stream (assemblenet-like) TVN.""" input_shape = inputs.shape is_4d = False if len(input_shape) == 4: # Handle 4D input tensor [batch*time, height, width, channels]. batch_size = input_shape[0] // input_num_frames is_4d = True else: # Handle 5D input tensor. batch_size = input_shape[0] b = 0 blocks = {} # Get input streams. input_streams = [] dtype = inputs.dtype for stream in model['input_streams']: img_size = stream['image_size'] num_frames = stream['num_frames'] height = inputs.shape[2] if is_4d: # Maintain 4D tensor always strm = tf.reshape(inputs, [batch_size, input_num_frames, height*height, 3]) else: strm = inputs strm = strm[:, :num_frames] strm = tf.reshape(strm, [batch_size * strm.shape[1], height, height, 3]) if height != img_size: strm = tf.image.resize(strm, (img_size, img_size)) if strm.dtype != dtype: strm = tf.cast(strm, dtype) input_streams.append(tf.stop_gradient(strm)) for block in model['blocks']: with tf.variable_scope('Block-%d-0' % b): # Get block input. inputs = input_streams[block['inputs'][0]] inputs, current_frames = tiny_block(block, inputs, current_frames, is_training, data_format) # Repeat block with no stride and alternating use of temporal conv1. use_temporal = False for i in range(block['repeats'] - 1): with tf.variable_scope('Block-%d-%d' % (b, i + 1)): inputs, _ = tiny_block( block, inputs, current_frames, is_training, data_format, strides=1, use_temporal=use_temporal) use_temporal = not use_temporal blocks['block-' + str(b)] = inputs b += 1 input_streams.append(inputs) return input_streams[-1], blocks return model_fn
854f8bd2315c3d529c4691b66d1ee6bc00465fac
26,073
def get_tensor_from_cntk_convolutional_weight_value_shape(tensorValue, tensorShape): """Returns an ell.math.DoubleTensor from a trainable parameter Note that ELL's ordering is row, column, channel. 4D parameters (e.g. those that represent convolutional weights) are stacked vertically in the row dimension. CNTK has them in filter, channel, row, column order. """ if (len(tensorShape) == 4): orderedWeights = np.moveaxis(tensorValue, 1, -1) orderedWeights = orderedWeights.ravel().astype(np.float).reshape( tensorShape[0] * tensorShape[2], tensorShape[3], tensorShape[1]) elif (len(tensorShape) == 3): orderedWeights = np.moveaxis(tensorValue, 0, -1) orderedWeights = orderedWeights.ravel().astype(np.float).reshape( tensorShape[1], tensorShape[2], tensorShape[0]) elif (len(tensorShape) == 2): orderedWeights = np.moveaxis(tensorValue, 0, -1) orderedWeights = orderedWeights.ravel().astype( np.float).reshape(tensorShape[1], tensorShape[0], 1) else: orderedWeights = tensorValue.ravel().astype( np.float).reshape(1, 1, tensorValue.size) return ell.math.DoubleTensor(orderedWeights)
69191e295abfd818d380e626db1276687c1e7a8b
26,074
from typing import TextIO from typing import List from typing import Optional import csv def load_f0(fhandle: TextIO) -> annotations.F0Data: """Load a Dagstuhl ChoirSet F0-trajectory. Args: fhandle (str or file-like): File-like object or path to F0 file Returns: F0Data Object - the F0-trajectory """ times = [] freqs = [] voicings = [] confs: List[Optional[float]] conf_array: Optional[np.ndarray] confs = [] reader = csv.reader(fhandle, delimiter=",") for line in reader: times.append(float(line[0])) freq_val = float(line[1]) voicings.append(float(freq_val > 0)) freqs.append(np.abs(freq_val)) if len(line) == 3: confs.append(float(line[2])) else: confs.append(None) if all([not c for c in confs]): conf_array = None conf_unit = None else: conf_array = np.array(confs) conf_unit = "likelihood" return annotations.F0Data( np.array(times), "s", np.array(freqs), "hz", np.array(voicings), "binary", conf_array, conf_unit, )
84bea706b1d985f91c872764e8e388ec8fe7f576
26,075
def to_str_constant(s: str, quote="'") -> str: """ Convert a given string into another string that is a valid Python representation of a string constant. :param s: the string :param quote: the quote character, either a single or double quote :return: """ if s is None: raise ValueError() if quote not in _PYTHON_QUOTE_CHARS: raise ValueError() return quote + s.replace('\\', '\\\\').replace(quote, "\\%s" % quote) + quote
bfd1fd2989a96cd5fdadc01e7a0e1e0f2846db97
26,076
def signum(x): """ Return -1 if x < 0, 1 if 0 < x, or 0 if x == 0 """ return (x > 0) - (x < 0)
59568d4fbf1f5a226528b7f12f8c5011b641bc4e
26,077
def _construct_dataloader(dataset, batch_size, shuffle, seed=0, num_workers=0, class_balance=False): """Construct a data loader for the provided data. Args: data_set (): batch_size (int): The batch size. shuffle (bool): If True the data will be loaded in a random order. Defaults to True. Returns: A DataLoader object that yields batches of padded molecule features. """ if dataset is not None: loader = MoleculeDataLoader( dataset=dataset, batch_size=batch_size, num_workers=num_workers, class_balance=class_balance, shuffle=shuffle ) else: loader = None return loader
7fd7a7b3eaa4c82473978735167067c64533adcb
26,078
import platform def _get_cpu_type(): """ Return the CPU type as used in the brink.sh script. """ base = platform.processor() if not base: base = platform.machine() if base == 'aarch64': # noqa:cover return 'arm64' if base == 'x86_64': return 'x64' if base == 'i686': return 'x86' return base
b8a81367d1a4a7ac34e2965cfedcb947f6a66165
26,079
def DatesRangeFieldWidget(field, request): # pylint: disable=invalid-name """Dates range widget factory""" return FieldWidget(field, DatesRangeWidget(request))
0e692d025b458340e2c0d588cd73b7ea206beca6
26,080
def get_aux_dset_slicing(dim_names, last_ind=None, is_spectroscopic=False): """ Returns a dictionary of slice objects to help in creating region references in the position or spectroscopic indices and values datasets Parameters ------------ dim_names : iterable List of strings denoting the names of the position axes or spectroscopic dimensions arranged in the same order that matches the dimensions in the indices / values dataset last_ind : (Optional) unsigned int, default = None Last pixel in the positon or spectroscopic matrix. Useful in experiments where the parameters have changed (eg. BEPS new data format) during the experiment. is_spectroscopic : bool, optional. default = True set to True for position datasets and False for spectroscopic datasets Returns ------------ slice_dict : dictionary Dictionary of tuples containing slice objects corresponding to each position axis. """ dim_names = validate_list_of_strings(dim_names, 'dim_names') if len(dim_names) == 0: raise ValueError('No valid dim_names provided') slice_dict = dict() for spat_ind, curr_dim_name in enumerate(dim_names): val = (slice(last_ind), slice(spat_ind, spat_ind + 1)) if is_spectroscopic: val = val[::-1] slice_dict[str(curr_dim_name)] = val return slice_dict
3a254dea086227354030fd6b13ef33182fe505f0
26,081
def make_etag(value, is_weak=False): """Creates and returns a ETag object. Args: value (str): Unquated entity tag value is_weak (bool): The weakness indicator Returns: A ``str``-like Etag instance with weakness indicator. """ etag = ETag(value) etag.is_weak = is_weak return etag
2d2d2f7f7d0fc59f89b20cfb79932c16ade90e35
26,082
def is_closer_to_goal_than(a, b, team_index): """ Returns true if a is closer than b to goal owned by the given team """ return (a.y < b.y, a.y > b.y)[team_index]
016cb7f19b2d0046d4f349dbf52da93ca0e9a2cc
26,084
def is_url(url): """ Check if given URL is a valid URL. :param str url: The url to validate :returns: if the url is valid or not :rtype: bool """ return urlparse(url).scheme != ""
10b7b37e4d6075877388b6564e004b1775a4ea71
26,086
def star(locid, tmass_id): """Return data on an individual star. """ apstar_id = 'apogee.apo25m.s.stars.{0:d}.{1}'.format(locid, tmass_id) data = stars[apstar_id] flagtxt = ", ".join(starflag.flagname(stars[apstar_id].ORstarflag)) return render_template('star.html', title="RV - {0:d}.{1}".format(locid, tmass_id), locids=locids, locid=locid, stars=sorted(tmass_ids[locid]), tmass_id=tmass_id, data=stars[apstar_id], flags=flagtxt)
9762fd912b6dbbf4088333c4cf9d0689c04b99c7
26,087
def dot_product_attention(q, k, v, bias, dropout_rate=0.0, image_shapes=None, name=None, save_weigths_to=None, dropout_broadcast_dims=None): """dot-product attention. Args: q: a Tensor with shape [batch, heads, length_q, depth_k] k: a Tensor with shape [batch, heads, length_kv, depth_k] v: a Tensor with shape [batch, heads, length_kv, depth_v] bias: bias Tensor (see attention_bias()) dropout_rate: a floating point number image_shapes: optional tuple of integer scalars. see comments for attention_image_summary() name: an optional string save_weights_to: an optional dictionary to capture attention weights for visualization; the weights tensor will be appended there under a string key created from the variable scope (including name). dropout_broadcast_dims: an optional list of integers less than 4 specifying in which dimensions to broadcast the dropout decisions. saves memory. Returns: A Tensor. """ with tf.variable_scope( name, default_name="dot_product_attention", values=[q, k, v]) as scope: # [batch, num_heads, query_length, memory_length] logits = tf.matmul(q, k, transpose_b=True) if bias is not None: bias = cast_like(bias, logits) logits += bias weights = tf.nn.softmax(logits, name="attention_weigths") if save_weigths_to is not None: save_weigths_to[scope.name] = weights save_weigths_to[scope.name + "/logits"] = logits # dropping out the attention links for each of the heads weights = dropout_with_broadcast_dims( weights, 1.0 - dropout_rate, broadcast_dims=dropout_broadcast_dims) return tf.matmul(weights, v)
3efc760516b37656f1d6e2e71c30ed37c3d6e298
26,088
def extract_words(text): """Return the words in a tweet, not including punctuation. >>> extract_words('anything else.....not my job') ['anything', 'else', 'not', 'my', 'job'] >>> extract_words('i love my job. #winning') ['i', 'love', 'my', 'job', 'winning'] >>> extract_words('make justin # 1 by tweeting #vma #justinbieber :)') ['make', 'justin', 'by', 'tweeting', 'vma', 'justinbieber'] >>> extract_words("paperclips! they're so awesome, cool, & useful!") ['paperclips', 'they', 're', 'so', 'awesome', 'cool', 'useful'] """ "*** YOUR CODE HERE ***" return text.split()
720095b29c8bdd5427796afd34385dcaae5fa8d8
26,090
async def async_setup_platform( # pylint: disable=too-many-locals hass: HomeAssistant, config: ConfigType, # pylint: disable=unused-argument async_add_entities: AddEntitiesCallback, discovery_info: DiscoveryInfoType | None = None, ) -> None: """Set up the Calibration sensor.""" if discovery_info is None: return calibration = discovery_info[CONF_CALIBRATION] conf = hass.data[DATA_CALIBRATION][calibration] unique_id = f"{DOMAIN}.{calibration}" name = conf.get(CONF_NAME) or calibration.replace("_", " ").title() source = conf[CONF_SOURCE] unit_of_measurement = conf.get(CONF_UNIT_OF_MEASUREMENT) device_class = conf.get(CONF_DEVICE_CLASS) ent_reg = entity_registry.async_get(hass) source_entity: RegistryEntry | None = ent_reg.async_get(source) source_state: State | None = hass.states.get(source) if not (attribute := conf.get(CONF_ATTRIBUTE)): def get_value(attr: str): if source_state and (unit := source_state.attributes.get(attr)): return unit if source_entity and (unit := getattr(source_entity, attr)): return unit return None unit_of_measurement = unit_of_measurement or get_value(ATTR_UNIT_OF_MEASUREMENT) device_class = device_class or get_value(ATTR_DEVICE_CLASS) if conf.get(CONF_HIDE_SOURCE) and source_entity and not source_entity.hidden: ent_reg.async_update_entity(source, hidden_by=RegistryEntryHider.INTEGRATION) async_add_entities( [ CalibrationSensor( unique_id, name, source, attribute, conf[CONF_PRECISION], conf[CONF_POLYNOMIAL], unit_of_measurement, device_class, ) ] )
4af7dcfa49bebccc991b4e91550fbac570301192
26,091
from typing import Tuple from typing import Mapping from typing import Dict from typing import Set def calculate_subgraph_edge_overlap( graph: BELGraph, annotation: str = 'Subgraph', ) -> Tuple[ Mapping[str, EdgeSet], Mapping[str, Mapping[str, EdgeSet]], Mapping[str, Mapping[str, EdgeSet]], Mapping[str, Mapping[str, float]], ]: """Build a Dataframe to show the overlap between different sub-graphs. Options: 1. Total number of edges overlap (intersection) 2. Percentage overlap (tanimoto similarity) :param graph: A BEL graph :param annotation: The annotation to group by and compare. Defaults to 'Subgraph' :return: {subgraph: set of edges}, {(subgraph 1, subgraph2): set of intersecting edges}, {(subgraph 1, subgraph2): set of unioned edges}, {(subgraph 1, subgraph2): tanimoto similarity}, """ sg2edge = defaultdict(set) for u, v, d in graph.edges(data=True): if edge_has_annotation(d, annotation): sg2edge[d[ANNOTATIONS][annotation]].add((u, v)) subgraph_intersection: Dict[str, Dict[str, Set[EdgeSet]]] = defaultdict(dict) subgraph_union: Dict[str, Dict[str, Set[EdgeSet]]] = defaultdict(dict) result: Dict[str, Dict[str, float]] = defaultdict(dict) for sg1, sg2 in itt.product(sg2edge, repeat=2): subgraph_intersection[sg1][sg2] = sg2edge[sg1] & sg2edge[sg2] subgraph_union[sg1][sg2] = sg2edge[sg1] | sg2edge[sg2] result[sg1][sg2] = len(subgraph_intersection[sg1][sg2]) / len(subgraph_union[sg1][sg2]) return sg2edge, subgraph_intersection, subgraph_union, result
9ac07522d16976f52fa38690bdcd77f9f19b61e0
26,092
def d2logistic_offset_p(x, p): """ Wrapper function for :func:`d2logistic_offset`: `d2logistic_offset(x, *p)` """ return d2logistic_offset(x, *p)
1aa6a291af76d92273b71bd3a0d738aac4fb366c
26,093
def extract_coeffs_knots_from_splines(attitude_splines, k): """ Extract spline characteristics (coeffs, knots, splines). The spline being defined as .. math:: S(t) = \sum_{n=0}^{N-1} a_n B_n(t) where :math:`c_n` are the spline coefficients and :math:`B_n(t)` is the spline basis evaluated at time t. **N** is the number of coefficients. The knots are the time discritization used for the spline. :param attitude_splines: list or array of splines of scipy.interpolate.InterpolatedUnivariateSpline :param k: [int] Spline degree :returns: * [array] coeff * [array] knots * [array] splines (Bspline interpolating with degree k ) """ att_coeffs, att_splines = ([], []) internal_knots = attitude_splines[0].get_knots() # chose [0] since all the same att_knots = extend_knots(internal_knots, k) # extend the knots to have all the needed ones for i, spline in enumerate(attitude_splines): coeffs = spline.get_coeffs() att_coeffs.append(coeffs) att_splines.append(BSpline(att_knots, coeffs, k)) return np.array(att_coeffs), np.array(att_knots), np.array(att_splines)
306702c3abf49b2b9f93a3c261fbfbfae0a47297
26,094
import requests def get_token(username: str = AUTH[0], password: str = AUTH[1]): """ Gets an access token from Cisco DNA Center always-on sandbox. Returns the token string if successful; False (None) otherwise """ # Declare Useful local variabales to simplify request process api_path = "https://sandboxdnac.cisco.com/dna" auth = (username, password) # headers = {"Content-type": "application/json"} # Issue http POST request to the proper URL to request a token # If successful, print token. Else, raise HTTPError with details try: auth_resp = requests.post( f"{api_path}/system/api/v1/auth/token", auth=auth, headers=headers ) auth_resp.raise_for_status() logger.info(msg=f"Successful POST - {auth_resp.status_code}") token = auth_resp.json()["Token"] return token except HTTPError as err: logger.error(msg=err) raise err
ab40a1de758dccc4e8f65021b4122c3b866b2671
26,095
def disk_info(hard_disk): """Return a dictionary with information regarding a virtul hard disk. The dictionary with information regarding hard disk image contains: :VHD_UUID: :VHD_PARENT_UUID: :VHD_STATE: :VHD_TYPE: :VHD_PATH: the path for virtual hard drive :VHD_IMAGE_TYPE: value from ALL_DISK_FORMATS :VHD_VARIANT: value from ALL_VARIANTS :VHD_CAPACITY: (int) virtual disk capacity :VHD_SIZE_ON_DISK: (int) size on disk for virtual disk :VHD_USED_BY: (list) """ current_vhd = {} child_uuids = [] output = manage.VBoxManage.show_hd_info(hard_disk) for line in output.splitlines(): if not _process_vhd_field(line, current_vhd): child_uuids.append(line.strip()) if constants.VHD_CHILD_UUIDS in current_vhd: child_uuids.append(current_vhd[constants.VHD_CHILD_UUIDS]) current_vhd[constants.VHD_CHILD_UUIDS] = child_uuids return current_vhd
b12befa8ef3082b755b18fe17d62f3221648c050
26,096
def get_corporation(corporation_id): """ Get corporation details for a corporation id from ESI :param corporation_id: ID for the required corporation :return: Dictionary containing corporation details """ op = esiapp.op['get_corporations_corporation_id'](corporation_id=corporation_id) return _get_esi(op)
42b6ec8b4ed0d5e278d56a359ce8a8bc668007e3
26,097
def _is_list(v): """ Returns True if the given value is a @list. :param v: the value to check. :return: True if the value is a @list, False if not. """ # Note: A value is a @list if all of these hold True: # 1. It is an Object. # 2. It has the @list property. return _is_object(v) and '@list' in v
2568e7dc5035f8a3006dd39be0a04538e29c27b1
26,098
def _find_onehot_actual(x): """Map one-hot value to one-hot name""" try: value = list(x).index(1) except: value = np.nan return value
6bafb852e89479803ab824b3f621863724b12146
26,099
def lower_text(text: str) -> str: """Transform all the text to lowercase. Args: text : Input text Returns: Output text """ return text.lower()
2a657464a014703464ca47eeb77ed6a630535819
26,101
def pca(X,keep=2): """Perfrom PCA on data X. Assumes that data points correspond to columns. """ # Z = (X.T - mean(X,1)).T # subtract mean C = dot(X,X.T) V,D = eig(C) B = D[:,0:keep] return dot(B.T,X)
01cd4414ac881b986d74247aeaa7dc96dd456721
26,102
import array def stock_span(prices: array) -> list: """ Time Complexity: O(n*n) """ span_values: list = [] for i, price in enumerate(prices): count: int = 1 for j in range(i - 1, -1, -1): if prices[j] > price: break count += 1 span_values.append(count) return span_values
5a619bb1ce31c0e65dd5fc3d52af2e8b881a87b7
26,103
def get_replication_tasks(replication_instance_arn): """Returns the ist of replication tasks""" existing_tasks = [] dms_client = boto3.client('dms') replication_tasks = dms_client.describe_replication_tasks() for task in replication_tasks['ReplicationTasks']: if task['ReplicationInstanceArn'] == replication_instance_arn: existing_tasks.append(task) return existing_tasks
2ee3f7ca108f502fa1e512319e6f630a1b0f54ff
26,104
def getProgramFields(): """ Get the data element names and return them as a list. """ _, progFields = callAPI("GET", "program-fields", quiet='True') return progFields
92799c4147ad86d2d52ade676953d2a1e60dbece
26,105
import base64 def base64url_decode(msg): """ Decode a base64 message based on JWT spec, Appendix B. "Notes on implementing base64url encoding without padding" """ rem = len(msg) % 4 if rem: msg += b'=' * (4 - rem) return base64.urlsafe_b64decode(msg)
f0f46749ae21ed8166648c52c673eab25f837881
26,106