content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def calculate_Hubble_flow_velocity_from_cMpc(cMpc, cosmology="Planck15"):
"""
Calculates the Hubble flow recession velocity from comoving distance
Parameters
----------
cMpc : array-like, shape (N, )
The distance in units of comoving megaparsecs. Must be 1D or scalar.
cosmology : string or astropy.cosmology.core.FLRW
The cosmology to assume whilst calculating distance. Default: Planck15.
Returns
-------
a : array-like, shape (N, )
The scale factor.
"""
cosmo = utils.get_cosmology_from_name(cosmology)
H0 = cosmo.H0
scale_factor = utils.calculate_scale_factor_from_cMpc(cMpc, cosmology=cosmology)
proper_dist = cMpc * apu.Mpc / scale_factor
velocity = proper_dist * H0
return velocity
|
823d94faa682f3b5fb123ad00fe2a7d02eedd355
| 25,167 |
import itertools
def CollapseDictionary(mapping):
"""
Takes a dictionary mapping prefixes to URIs
and removes prefix mappings that begin with _ and
there is already a map to their value
>>> from rdflib import URIRef
>>> a = {'ex': URIRef('http://example.com/')}
>>> a['_1'] = a['ex']
>>> len(a)
2
>>> a.values()
[rdflib.term.URIRef(%(u)s'http://example.com/'), rdflib.term.URIRef(%(u)s'http://example.com/')]
>>> CollapseDictionary(a)
{'ex': rdflib.term.URIRef(%(u)s'http://example.com/')}
>>> a
{'ex': rdflib.term.URIRef(%(u)s'http://example.com/'), '_1': rdflib.term.URIRef(%(u)s'http://example.com/')}
"""
def originalPrefixes(item):
return item.find('_') + 1 == 1
revDict = {}
for k, v in list(mapping.items()):
revDict.setdefault(v, set()).add(k)
prefixes2Collapse = []
for k, v in list(revDict.items()):
origPrefixes = []
dupePrefixes = []
# group prefixes for a single URI by whether or not
# they have a _ prefix
for rt, items in itertools.groupby(v, originalPrefixes):
if rt:
dupePrefixes.extend(items)
else:
origPrefixes.extend(items)
if origPrefixes and len(v) > 1 and len(dupePrefixes):
# There are allocated prefixes for URIs that were originally
# given a prefix
assert len(origPrefixes) == 1
prefixes2Collapse.extend(dupePrefixes)
return dict([(k, v) for k, v in list(mapping.items()) if k not in prefixes2Collapse])
|
9f2befbd52b75b75aa15cadf9e68d5f9eebcae71
| 25,168 |
def do_pre_context(PreContextSmToBeReversedList, PreContextSmIdList, dial_db):
"""Pre-context detecting state machine (backward).
---------------------------------------------------------------------------
Micro actions are: pre-context fullfilled_f
DropOut --> Begin of 'main' state machine.
BLC --> ReloadStateBackward
EndOfStream --> 'error'
Variables (potentially) required:
pre_context_fulfilled_f[N] --> Array of flags for pre-context
indication.
RETURNS: [0] generated code text
[1] reload state BACKWARD, to be generated later.
"""
if not PreContextSmToBeReversedList: return [], None
analyzer_txt, \
analyzer = __do_state_machine(PreContextSmToBeReversedList, engine.BACKWARD_PRE_CONTEXT,
dial_db, ReverseF=True)
epilog_txt = _get_pre_context_epilog_definition(dial_db)
txt = analyzer_txt
txt.extend(epilog_txt)
for sm_id in PreContextSmIdList:
variable_db.require("pre_context_%i_fulfilled_f", Index = sm_id)
return txt, analyzer
|
d211cf1aac7e103b6d1efe25bfde964578b81950
| 25,169 |
from datetime import datetime
async def check_user_cooldown(ctx: Context, config: Config, cooldown: dict):
"""Check if command is on cooldown."""
command = ctx.command.qualified_name
last = cooldown[command]["last"]
rate = cooldown[command]["rate"]
per = cooldown[command]["per"]
uses = cooldown[command]["uses"]
now = utc_timestamp(datetime.utcnow())
if now >= last + per:
cooldown[command] = {
"last": utc_timestamp(datetime.utcnow()),
"rate": rate,
"per": per,
"uses": 1
}
return True
else:
if uses < rate:
cooldown[command] = {
"last": last,
"rate": rate,
"per": per,
"uses": uses + 1
}
return True
return False
|
649b108def51c9029b17fa6e14eada141d7c5239
| 25,170 |
def round_robin(units, sets=None):
""" Generates a schedule of "fair" pairings from a list of units """
if len(units) % 2:
units.append(None)
count = len(units)
sets = sets or (count - 1)
half = count / 2
schedule = []
for turn in range(sets):
pairings = []
for i in range(half):
if units[i] is None or units[count-i-1] is None:
continue
pairings.append((units[i], units[count-i-1]))
units.insert(1, units.pop())
schedule.append(pairings)
return schedule
|
f736fe4ce1f0b407f55d4627a7ecc8396943cdd0
| 25,171 |
def filter_df(p_df:pd.DataFrame, col_name:str, value, keep:bool=True, period=None):
"""
Filter a dataframe based on a specific date
Parameters :
p_df : pandas.DataFrame
The original dataframe
col_name : str
The dataframe column name where the filter will be applyed
value : item or list
The value used to filter the specified column
keep : bool
If it must keep or not the selected value
Return : pandas.DataFrame
The filtered initial dataframe
"""
if type(value) == list:
operator = 'not in' if keep == False else 'in'
else:
operator = "==" if keep == True else "!="
df = p_df.query(f"{col_name} {operator} @value")
return df
|
f866ac1df9c436dc65e6a3d1b7eeb02487bba100
| 25,172 |
import logging
def _VerifyOptions(options):
"""Verify the passed-in options.
Args:
options: The parsed options to verify.
Returns:
Boolean, True if verification passes, False otherwise.
"""
if options.endpoints_service and not options.openapi_template:
logging.error('Please specify openAPI template with --openapi_template '
'in deploying endpoints.')
return False
if options.openapi_template and not options.endpoints_service:
logging.error('Please specify endpoints service with --endpoints_service '
'in deploying endpoints.')
return False
if (options.endpoints_service and
options.project_id not in options.endpoints_service):
logging.error('The project "%s" is not matched to the endpoints service '
'"%s".', options.project_id, options.endpoints_service)
return False
return True
|
872feb5ac314ed2ef28ddbfaeff1b5dafc5e9ed8
| 25,173 |
def force_delegate(func: _F) -> _F:
"""
A decorator to allow delegation for the specified method even if cls.delegate = False
"""
func._force_delegate = True # type: ignore[attr-defined]
return func
|
771159f2baafce044f480ce138596e4a07e89a97
| 25,174 |
import binascii
def create_signature(key_dict, data):
"""
<Purpose>
Return a signature dictionary of the form:
{'keyid': 'f30a0870d026980100c0573bd557394f8c1bbd6...',
'sig': '...'}.
The signing process will use the private key in
key_dict['keyval']['private'] and 'data' to generate the signature.
The following signature schemes are supported:
'RSASSA-PSS'
RFC3447 - RSASSA-PSS
http://www.ietf.org/rfc/rfc3447.
'ed25519'
ed25519 - high-speed high security signatures
http://ed25519.cr.yp.to/
Which signature to generate is determined by the key type of 'key_dict'
and the available cryptography library specified in 'settings'.
>>> ed25519_key = generate_ed25519_key()
>>> data = 'The quick brown fox jumps over the lazy dog'
>>> signature = create_signature(ed25519_key, data)
>>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature)
True
>>> len(signature['sig'])
128
>>> rsa_key = generate_rsa_key(2048)
>>> signature = create_signature(rsa_key, data)
>>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature)
True
>>> ecdsa_key = generate_ecdsa_key()
>>> signature = create_signature(ecdsa_key, data)
>>> securesystemslib.formats.SIGNATURE_SCHEMA.matches(signature)
True
<Arguments>
key_dict:
A dictionary containing the keys. An example RSA key dict has the
form:
{'keytype': 'rsa',
'scheme': 'rsassa-pss-sha256',
'keyid': 'f30a0870d026980100c0573bd557394f8c1bbd6...',
'keyval': {'public': '-----BEGIN RSA PUBLIC KEY----- ...',
'private': '-----BEGIN RSA PRIVATE KEY----- ...'}}
The public and private keys are strings in PEM format.
data:
Data to be signed. This should be a bytes object; data should be
encoded/serialized before it is passed here. The same value can be be
passed into securesystemslib.verify_signature() (along with the public
key) to later verify the signature.
<Exceptions>
securesystemslib.exceptions.FormatError, if 'key_dict' is improperly
formatted.
securesystemslib.exceptions.UnsupportedAlgorithmError, if 'key_dict'
specifies an unsupported key type or signing scheme.
TypeError, if 'key_dict' contains an invalid keytype.
<Side Effects>
The cryptography library specified in 'settings' is called to perform the
actual signing routine.
<Returns>
A signature dictionary conformant to
'securesystemslib_format.SIGNATURE_SCHEMA'.
"""
# Does 'key_dict' have the correct format?
# This check will ensure 'key_dict' has the appropriate number of objects
# and object types, and that all dict keys are properly named.
# Raise 'securesystemslib.exceptions.FormatError' if the check fails.
# The key type of 'key_dict' must be either 'rsa' or 'ed25519'.
securesystemslib.formats.ANYKEY_SCHEMA.check_match(key_dict)
# Signing the 'data' object requires a private key. Signing schemes that are
# currently supported are: 'ed25519', 'ecdsa-sha2-nistp256',
# 'ecdsa-sha2-nistp384' and rsa schemes defined in
# `securesystemslib.keys.RSA_SIGNATURE_SCHEMES`.
# RSASSA-PSS and RSA-PKCS1v15 keys and signatures can be generated and
# verified by rsa_keys.py, and Ed25519 keys by PyNaCl and PyCA's
# optimized, pure python implementation of Ed25519.
signature = {}
keytype = key_dict['keytype']
scheme = key_dict['scheme']
public = key_dict['keyval']['public']
private = key_dict['keyval']['private']
keyid = key_dict['keyid']
sig = None
if keytype == 'rsa':
if scheme in RSA_SIGNATURE_SCHEMES:
private = private.replace('\r\n', '\n')
sig, scheme = securesystemslib.rsa_keys.create_rsa_signature(
private, data, scheme)
else:
raise securesystemslib.exceptions.UnsupportedAlgorithmError('Unsupported'
' RSA signature scheme specified: ' + repr(scheme))
elif keytype == 'ed25519':
public = binascii.unhexlify(public.encode('utf-8'))
private = binascii.unhexlify(private.encode('utf-8'))
sig, scheme = securesystemslib.ed25519_keys.create_signature(
public, private, data, scheme)
# Continue to support keytypes of ecdsa-sha2-nistp256 and ecdsa-sha2-nistp384
# for backwards compatibility with older securesystemslib releases
elif keytype in ['ecdsa', 'ecdsa-sha2-nistp256', 'ecdsa-sha2-nistp384']:
sig, scheme = securesystemslib.ecdsa_keys.create_signature(
public, private, data, scheme)
# 'securesystemslib.formats.ANYKEY_SCHEMA' should have detected invalid key
# types. This is a defensive check against an invalid key type.
else: # pragma: no cover
raise TypeError('Invalid key type.')
# Build the signature dictionary to be returned.
# The hexadecimal representation of 'sig' is stored in the signature.
signature['keyid'] = keyid
signature['sig'] = binascii.hexlify(sig).decode()
return signature
|
1a1e37838679a6912c8dc3d482a8092b1e75056c
| 25,175 |
def parse_line(line):
""" Parse a queue trace line into a dict
"""
line = line.split()
result = {}
if len(line) < 12:
return result
result["event"] = line[0]
result["time"] = float(line[1])
result["from"] = int(line[2])
result["to"] = int(line[3])
result["type"] = line[4]
result["size"] = int(line[5])
result["flags"] = line[6]
result["fid"] = int(line[7])
result["src"] = line[8]
result["dst"] = line[9]
result["seqnum"] = int(line[10])
result["pktid"] = int(line[11])
return result
|
432e6a624626e89d27fe6d3d9ed7c4230d97c0a6
| 25,176 |
from typing import Dict
def gaussian_linear_combination(distributions_and_weights: Dict):
""" Computes the PDF of the weighted average of two Gaussian variables. """
assert isinstance(distributions_and_weights, dict)
assert all(
isinstance(dist, MultivariateNormal)
for dist in distributions_and_weights.keys()
)
return MultivariateNormal(
loc=sum(
[
dist.loc * weight
for dist, weight in distributions_and_weights.items()
]
),
covariance_matrix=sum(
[
dist.covariance_matrix * (weight ** 2)
for dist, weight in distributions_and_weights.items()
]
),
)
|
704a1f22392819075e3d9ba0c243c7364baab827
| 25,177 |
def check_pattern_startswith_slash(pattern):
"""
Check that the pattern does not begin with a forward slash.
"""
regex_pattern = pattern.regex.pattern
if regex_pattern.startswith('/') or regex_pattern.startswith('^/'):
warning = Warning(
"Your URL pattern {} has a regex beginning with a '/'. "
"Remove this slash as it is unnecessary.".format(describe_pattern(pattern)),
id="urls.W002",
)
return [warning]
else:
return []
|
9015f1f8d17297ace5fcef2e2cf0fe2c6dd6e76c
| 25,178 |
def ht(x):
"""ht(x)
Evaluates the heaviside function
Args:
x: Domain points
Returns:
ht(x): Heaviside function evaluated over the domain x
"""
g = np.ones_like(x)
for i in range(np.size(x)-1):
if x[i] < 0:
g[i] = 0
elif x[i] > 0:
g[i] = 1
elif x[i] == 0:
g[i] = .5
return g
|
b109a72a6fd57e088327cc1fa1d9d70950b1860a
| 25,180 |
def xoGkuXokhXpZ():
"""Package link to class."""
pkg = Package("pkg")
return pkg.circles.simple_class.Foo
|
500832ece1987a726812350faf72130de65f37a0
| 25,181 |
def create_all_pts_within_observation_window(observation_window_hours) -> str:
"""
create a view of all patients within observation window
return the view name
"""
view_name = f"default.all_pts_{observation_window_hours}_hours"
query = f"""
CREATE OR REPLACE VIEW {view_name} AS
WITH admits AS (
SELECT
admits.subject_id,
admits.hadm_id,
admits.admittime,
admits.admittime + interval %(time_window_hours)s hour index_date,
CASE WHEN admits.deathtime <= (admits.admittime + interval %(time_window_hours)s hour) THEN 1 ELSE 0 END AS death_during_obs_win,
CASE WHEN admits.dischtime <= (admits.admittime + interval %(time_window_hours)s hour) THEN 1 ELSE 0 END AS disch_during_obs_win
FROM mimiciii.admissions admits
)
SELECT
admits.subject_id,
admits.hadm_id,
admits.index_date,
admits.admittime
FROM admits
WHERE
admits.death_during_obs_win != 1
and admits.disch_during_obs_win != 1
order by random()
--limit 1000
"""
params = {
'time_window_hours': str(observation_window_hours)
}
cursor.execute(query, params)
return view_name
|
f711ac343815b9adc3b07e833ae8ee31cd07a125
| 25,182 |
def get_signature(data, raw_labels):
"""
Should return a 4 x z* matrix, where z* is the number of classes in the
labels matrix.
"""
labels = raw_labels.reset_index()
pca = decomposition.PCA(n_components=2)
lle = manifold.LocallyLinearEmbedding(n_components=2)
X_pca = pd.DataFrame(pca.fit_transform(data))
X_lle = pd.DataFrame(lle.fit_transform(data))
class_no = np.shape(labels[0].unique())[0]
S = np.zeros([4,class_no])
for a in labels[0].unique():
this_pca = X_pca.loc[labels.loc[labels[0]==a].index]
this_lle = X_lle.loc[labels.loc[labels[0]==a].index]
S[0,a] = this_pca[0].mean()
S[1,a] = this_pca[1].mean()
S[2,a] = this_lle[0].mean()
S[3,a] = this_lle[1].mean()
return S
|
eefd7f5e682ad25bb31989d118747691f4cc64f0
| 25,183 |
def get_xyz_where(Z, Cond):
"""
Z and Cond are MxN matrices. Z are data and Cond is a boolean
matrix where some condition is satisfied. Return value is x,y,z
where x and y are the indices into Z and z are the values of Z at
those indices. x,y,z are 1D arrays
"""
X,Y = np.indices(Z.shape)
return X[Cond], Y[Cond], Z[Cond]
|
b1e1b2144e44f292dc6e2c5e917cb7511bdbf288
| 25,184 |
def retrieve_seq_length(data):
"""compute the length of a sequence. 0 are masked.
Args:
data: input sequence
Returns:
a `int`, length of the sequence
"""
with tf.name_scope('GetLength'):
used = tf.sign(tf.reduce_max(tf.abs(data), axis=2))
length = tf.reduce_sum(used, axis=1)
length = tf.cast(length, tf.int32)
return length
|
ba6cb7ac9e9cc63311a6194e55b30ffa02fb3bc7
| 25,185 |
def get_census_params(variable_ids, county_level=False):
"""Gets census url params to make an API call.
variable_ids: The ids of the variables to request. Automatically includes
NAME.
county_level: Whether to request at the county level, or the state level."""
keys = variable_ids.copy()
keys.append("NAME")
params = {"get": ",".join(keys)}
params["for"] = "county:*" if county_level else "state:*"
return params
|
b24204c8e9ef82575b54151bdc0ac98de0fb7fc0
| 25,186 |
def lookupName(n, names):
"""Check if name is in list of names
Parameters
----------
n : str
Name to check
names : list
List of names to check in
Returns
-------
bool
Flag denoting if name has been found in list (True) or not (False)
"""
if n in names:
return True
else:
return False
|
0fbb97e252f5daf9de52a946c206fa74395b01c6
| 25,187 |
def calculate_appointments(new_set, old_set):
"""
Calculate different appointment types.
Used for making useful distinctions in the email message.
new_set will be the fresh set of all available appointments at a given interval
old_set will the previous appointments variable getting passed in.
Ex1: Addition of HONEOYE
new_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
old_set = {'LIVERPOOL', 'BROOKLYN', 'KINGSTON'}
returns ->->
new_appointments = {'HONEOYE'}
all_appointments = {'LIVERPOOL', 'BROOKLYN', 'KINGSTON', HONEOYE}
Ex2: No Changes
new_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
old_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
returns ->->
new_appointments = set() (empty set)
all_appointments = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
"""
new_appointments = new_set.difference(old_set) # set of All appointments minus set of Old appointments yields the set of New appointments
old_appointments = new_set.intersection(old_set) # New intersect Old. yields those appointments that (intersect is equivalent the overlap in a venn diagram)
return new_appointments, old_appointments # Return new sets
|
b54735293ba910e2b310e55e263e2611863d088a
| 25,188 |
def transaksi_hari_ini():
"""
used in: app_kasir/statistik.html
"""
return Transaksi.objects.filter(
tanggal_transaksi__year=timezone.now().year,
tanggal_transaksi__month=timezone.now().month,
tanggal_transaksi__day=timezone.now().day
).count()
|
a04e835be4cc495b09e1d7ae93ed141315168a81
| 25,190 |
def extractWindows(signal, window_size=10, return_window_indices=False):
""" Reshape a signal into a series of non-overlapping windows.
Parameters
----------
signal : numpy array, shape (num_samples,)
window_size : int, optional
return_window_indices : bool, optional
Returns
-------
windows : numpy array, shape (num_windows, window_size)
window_indices : numpy array of int, shape (num_windows, window_size)
"""
tail_len = signal.shape[0] % window_size
pad_arr = m.np.full(window_size - tail_len, m.np.nan)
signal_padded = m.np.concatenate((signal, pad_arr))
windows = signal_padded.reshape((-1, window_size))
if not return_window_indices:
return windows
indices = m.np.arange(signal_padded.shape[0])
window_indices = indices.reshape((-1, window_size))
return windows, window_indices
|
2d9b319325dc1be9a92766c093db12c2e1f24123
| 25,191 |
def add(left: int, right: int):
"""
add up two numbers.
"""
print(left + right)
return 0
|
75d7bd10cfdfb38211f6faf838b5e200e8593693
| 25,192 |
import random
def rand_x_digit_num(x):
"""Return an X digit number, leading_zeroes returns a string, otherwise int."""
return '{0:0{x}d}'.format(random.randint(0, 10**x-1), x=x)
|
b46864143ca6186ebeede6c687a85d1b585e70db
| 25,194 |
def gen_workflow_steps(step_list):
"""Generates a table of steps for a workflow
Assumes step_list is a list of dictionaries with 'task_id' and 'state'
"""
steps = format_utils.table_factory(field_names=['Steps', 'State'])
if step_list:
for step in step_list:
steps.add_row([step.get('task_id'), step.get('state')])
else:
steps.add_row(['None', ''])
return format_utils.table_get_string(steps)
|
d01dc1937dc17e3d8b30390ccd1ea460391a7492
| 25,195 |
from typing import Union
from typing import Any
def sround(x: Union[np.ndarray, float, list, tuple], digits: int=1) -> Any:
""" 'smart' round to largest `digits` + 1
Args
x (float, list, tuple, ndarray)
digits (int [1]) number of digits beyond highest
Examples
>>> sround(0.0212343, 2) # result 0.0212
"""
if isinstance(x, (float, np.float64, np.float32)):
safelog10 = lambda x: 0.0 if not x else np.log10(np.abs(x))
_sround = lambda x, d=1: np.round(x, max((-np.floor(safelog10(x)).astype(int) + digits), 0))
return _sround(x, digits)
_as_tuple = False
if isinstance(x, tuple):
x = list(x)
_as_tuple = True
elif isinstance(x, (list, np.ndarray)):
safelog10 = np.log10(np.abs(x))
safelog10[np.abs(safelog10) == np.inf] = 0
digits = np.maximum(-np.floor(safelog10).astype(int) + digits, 0)
for i in range(len(x)):
x[i] = np.round(x[i], digits[i])
if _as_tuple:
x = tuple(x)
return x
|
a695546c46d4bbd41b481d7b58d879bcd4d53247
| 25,197 |
def element_png_display(element, max_frames):
"""
Used to render elements to PNG if requested in the display formats.
"""
if 'png' not in Store.display_formats:
return None
info = process_object(element)
if info:
IPython.display.display(IPython.display.HTML(info))
return
backend = Store.current_backend
if type(element) not in Store.registry[backend]:
return None
renderer = Store.renderers[backend]
# Current renderer does not support PNG
if 'png' not in renderer.params('fig').objects:
return None
data, info = renderer(element, fmt='png')
return data
|
273d19194c467d5596f99626bbe01e53005bee17
| 25,198 |
def rsa_obj(key_n, key_e, key_d=None, key_p=None, key_q=None):
""" Wrapper for the RSAObj constructor
The main reason for its existance is to compute the
prime factors if the private exponent d is being set.
In testing, the construct method threw exceptions because
it wasn't able to compute the prime factors. The
recover_prime_factors function seems work better.
"""
if key_n != None and key_e != None and key_d == None \
and key_p == None and key_q == None:
key = RSA.construct((key_n, key_e))
elif key_n != None and key_e != None and key_d != None \
and key_p == None and key_q == None:
key_p, key_q = recover_prime_factors(key_n, key_e, key_d)
key = RSA.construct((key_n, key_e, key_d, long(key_p), long(key_q)))
elif key_n != None and key_e != None and key_d != None \
and key_p != None and key_q == None:
key = RSA.construct((key_n, key_e, key_d, key_p, key_n/key_p))
elif key_n != None and key_e != None and key_d != None \
and key_p != None and key_q != None:
key = RSA.construct((key_n, key_e, key_d, key_p, key_q))
return key
|
1ad6d0b4c6f96170b2452b87ea049f63df350b8f
| 25,200 |
from operator import ge
import logging
def create_surface_and_gap(surf_data, radius_mode=False, prev_medium=None,
wvl=550.0, **kwargs):
""" create a surface and gap where surf_data is a list that contains:
[curvature, thickness, refractive_index, v-number] """
s = surface.Surface()
if radius_mode:
if surf_data[0] != 0.0:
s.profile.cv = 1.0/surf_data[0]
else:
s.profile.cv = 0.0
else:
s.profile.cv = surf_data[0]
if len(surf_data) > 2:
if isanumber(surf_data[2]): # assume all args are numeric
if len(surf_data) < 3:
if surf_data[2] == 1.0:
mat = m.Air()
else:
mat = m.Medium(surf_data[2])
else:
mat = m.Glass(surf_data[2], surf_data[3], '')
else: # string args
if surf_data[2].upper() == 'REFL':
s.interact_mode = 'reflect'
mat = prev_medium
else:
num_args = len(surf_data[2:])
if num_args == 2:
name, cat = surf_data[2], surf_data[3]
else:
name, cat = surf_data[2].split(',')
try:
mat = gfact.create_glass(name, cat)
except ge.GlassNotFoundError as gerr:
logging.info('%s glass data type %s not found',
gerr.catalog,
gerr.name)
logging.info('Replacing material with air.')
mat = m.Air()
else: # only curvature and thickness entered, set material to air
mat = m.Air()
thi = surf_data[1]
g = gap.Gap(thi, mat)
rndx = mat.rindex(wvl)
tfrm = np.identity(3), np.array([0., 0., thi])
return s, g, rndx, tfrm
|
187cad25433db2f64aeb482bc5313c97b31a834e
| 25,201 |
def deprecate_build(id):
"""Mark a build as deprecated.
**Authorization**
User must be authenticated and have ``deprecate_build`` permissions.
**Example request**
.. code-block:: http
DELETE /builds/1 HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Authorization: Basic ZXlKcFlYUWlPakUwTlRZM056SXpORGdzSW1WNGNDSTZNVFEx...
Connection: keep-alive
Content-Length: 0
Host: localhost:5000
User-Agent: HTTPie/0.9.3
**Example response**
.. code-block:: http
HTTP/1.0 200 OK
Content-Length: 2
Content-Type: application/json
Date: Tue, 01 Mar 2016 17:21:29 GMT
Server: Werkzeug/0.11.3 Python/3.5.0
{}
:reqheader Authorization: Include the token in a username field with a
blank password; ``<token>:``.
:param id: ID of the build.
:statuscode 200: No error.
:statuscode 404: Build not found.
"""
build = Build.query.get_or_404(id)
build.deprecate_build()
db.session.commit()
return jsonify({}), 200
|
3002a8c46e4aa27a03d8b4fdb16fa94d4a7a8698
| 25,202 |
def subtractNums(x, y):
"""
subtract two numbers and return result
"""
return y - x
|
2b16636e74a2d1a15e79e4669699c96adcd3833b
| 25,204 |
def getTraceback(error=None):
"""Get formatted exception"""
try:
return traceback.format_exc( 10 )
except Exception, err:
return str(error)
|
62da3e5b13860c2ecefa1da202aa63531c4fbc19
| 25,205 |
from datetime import datetime
def confirm_email(token):
""" Verify email confirmation token and activate the user account."""
# Verify token
user_manager = current_app.user_manager
db_adapter = user_manager.db_adapter
is_valid, has_expired, object_id = user_manager.verify_token(
token,
user_manager.confirm_email_expiration)
if has_expired:
flash(_('Seu token de confirmacao expirou.'), 'error')
return redirect(url_for('user.login'))
if not is_valid:
flash(_('Token de confirmacao invalido.'), 'error')
return redirect(url_for('user.login'))
""" Confirm email by setting User.confirmed_at=utcnow() or
UserEmail.confirmed_at=utcnow()"""
user = None
if db_adapter.UserEmailClass:
user_email = user_manager.get_user_email_by_id(object_id)
if user_email:
user_email.confirmed_at = datetime.utcnow()
user = user_email.user
else:
user_email = None
user = user_manager.get_user_by_id(object_id)
if user:
user.confirmed_at = datetime.utcnow()
if user:
user.set_active(True)
db_adapter.commit()
else: # pragma: no cover
flash(_('Token de confirmacao invalido.'), 'error')
return redirect(url_for('user.login'))
# Send email_confirmed signal
signals.user_confirmed_email.send(
current_app._get_current_object(), user=user)
# Prepare one-time system message
flash(_('Seu email foi confirmado.'), 'success')
# Auto-login after confirm or redirect to login page
safe_next = _get_safe_next_param(
'next', user_manager.after_confirm_endpoint)
if user_manager.auto_login_after_confirm:
return _do_login_user(user, safe_next) # auto-login
else:
return redirect(
url_for('user.login')+'?next='+quote(safe_next)
) # redirect to login page
|
83015e9fc74b88eeb57b1ef39decd37b7adf662d
| 25,207 |
def _GetInstanceField(instance, field):
"""Get the value of a field of an instance.
@type instance: string
@param instance: Instance name
@type field: string
@param field: Name of the field
@rtype: string
"""
return _GetInstanceFields(instance, [field])[0]
|
fdf8eebf1dbd9cb443da21530058c6c7b30d8204
| 25,209 |
def infectious_rate_tweets(t,
p0=0.001,
r0=0.424,
phi0=0.125,
taum=2.,
t0=0,
tm=24,
bounds=None):
"""
Alternative form of infectious rate from paper. Supports bounds for r0 and taum. Bounds should be passed as an array
in the form of [(lower r0, lower taum), (upper r0, upper taum)].
Converted to hours.
:param t: point to evaluate function at (in hours)
:param p0: base rate
:param r0: amplitude
:param phi0: shift (in days)
:param taum: decay/freshness (in days)
:param t0: start time of observation (in hours)
:param tm: cyclic property (after what time a full circle passed, in hours)
:param bounds: bounds for r0 and taum
:return: intensity for point t
"""
if bounds is not None:
if not (bounds[0][0] < r0 < bounds[1][0]):
r0 = max(bounds[0][0], bounds[1][0] * sigmoid(taum / bounds[1][0]))
if not (bounds[0][1] < taum < bounds[1][1]):
taum = max(bounds[0][1],
bounds[1][1] * sigmoid(taum / bounds[1][1]))
return p0 * (1. - r0 * sin(
(48 / tm) * pi * ((t + t0) / 24 + phi0))) * exp(-t / (24 * taum))
|
939ddde24301badaf1c43731027d40167b5ab414
| 25,210 |
def fetch_user(username):
"""
This method 'fetch_user'
fetches an instances of an user
if any
"""
return User.objects.get(username=username)
|
9861fc648c40312dea62450bd152d511867fcfe5
| 25,211 |
def get_script_name(key_combo, key):
""" (e.g. ctrl-shift, a -> CtrlShiftA, a -> A """
if key_combo != 'key':
return get_capitalized_key_combo_pattern(key_combo) + key.capitalize()
return key.capitalize()
|
a550c4b3852bf7ee3c30c4cecd497ae48a4d4a9d
| 25,212 |
def layer(name, features):
"""Make a vector_tile.Tile.Layer from GeoJSON features."""
pbl = vector_tile_pb2.tile.layer()
pbl.name = name
pbl.version = 1
pb_keys = []
pb_vals = []
pb_features = []
for j, f in enumerate(
chain.from_iterable(singles(ob) for ob in features)):
pbf = vector_tile_pb2.tile.feature()
pbf.id = j
# Pack up the feature geometry.
g = f.get('geometry')
if g:
gtype = g['type']
coords = g['coordinates']
if gtype == 'Point':
geometry = [(1<<3)+1] + [
(n << 1) ^ (n >> 31) for n in imap(int, coords)]
elif gtype == 'LineString':
num = len(coords)
geometry = [0]*(4 + 2*(num-1))
geometry[0] = (1<<3)+1
geometry[1:3] = (
(n << 1) ^ (n >> 31) for n in imap(int, coords[0]))
geometry[3] = ((num-1)<<3)+2
for i, (prev, pair) in enumerate(pairwise(coords), 1):
prev = map(int, prev)
pair = map(int, pair)
geometry[2*i+2:2*i+4] = (
(n << 1) ^ (n >> 31) for n in (
pair[0]-prev[0], pair[1]-prev[1]))
pbf.geometry.extend(geometry)
elif gtype == 'Polygon':
rings = []
for ring in coords:
num = len(ring)
geometry = [0]*(5 + 2*(num-1))
geometry[0] = (1<<3)+1
geometry[1:3] = (
(n << 1) ^ (n >> 31) for n in imap(int, ring[0]))
geometry[3] = ((num-1)<<3)+2
for i, (prev, pair) in enumerate(pairwise(ring), 1):
prev = map(int, prev)
pair = map(int, pair)
geometry[2*i+2:2*i+4] = (
(n << 1) ^ (n >> 31) for n in (
pair[0]-prev[0], pair[1]-prev[1]))
geometry[-1] = (1<<3)+7
pbf.geometry.extend(geometry)
pbf.type = geom_type_map[gtype]
# Pack up feature properties.
props = f.get('properties', {})
tags = [0]*(2*len(props))
for i, (k, v) in enumerate(props.items()):
if k not in pb_keys:
pb_keys.append(k)
if v not in pb_vals:
pb_vals.append(v)
tags[i*2:i*2+2] = pb_keys.index(k), pb_vals.index(v)
pbf.tags.extend(tags)
pb_features.append(pbf)
# Finish up the layer.
pbl.keys.extend(map(str, pb_keys))
pbl.values.extend(map(value, ifilter(None, pb_vals)))
return pbl
|
a08e4dea809a938e1a451d34673f2845dd353a21
| 25,213 |
def serialize(formula, threshold=None):
"""Provides a string representing the formula.
:param formula: The target formula
:type formula: FNode
:param threshold: Specify the threshold
:type formula: Integer
:returns: A string representing the formula
:rtype: string
"""
return get_env().serializer.serialize(formula,
threshold=threshold)
|
872b4d5e135a6b1b9c5964ca353edccd0a6d8a40
| 25,214 |
import collections
def find_single_network_cost(region, option, costs, global_parameters,
country_parameters, core_lut):
"""
Calculates the annual total cost using capex and opex.
Parameters
----------
region : dict
The region being assessed and all associated parameters.
option : dict
Contains the scenario and strategy. The strategy string controls
the strategy variants being tested in the model and is defined based
on the type of technology generation, core and backhaul, and the
strategy for infrastructure sharing, the number of networks in each
geotype, spectrum and taxation.
costs : dict
All equipment costs.
global_parameters : dict
All global model parameters.
country_parameters : dict
All country specific parameters.
core_lut : dict
Contains the number of existing and required, core and regional assets.
Returns
-------
region : dict
Contains all regional data.
"""
strategy = option['strategy']
generation = strategy.split('_')[0]
core = strategy.split('_')[1]
backhaul = strategy.split('_')[2]
new_mno_sites = region['new_mno_sites']
upgraded_mno_sites = region['upgraded_mno_sites']
all_sites = new_mno_sites + upgraded_mno_sites
new_backhaul = region['backhaul_new']
regional_cost = []
regional_asset_cost = []
for i in range(1, int(all_sites) + 1):
if i <= upgraded_mno_sites and generation == '4G':
cost_structure = upgrade_to_4g(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
if i <= upgraded_mno_sites and generation == '5G' and core == 'nsa':
cost_structure = upgrade_to_5g_nsa(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
if i <= upgraded_mno_sites and generation == '5G' and core == 'sa':
cost_structure = upgrade_to_5g_sa(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
if i > upgraded_mno_sites and generation == '4G':
cost_structure = greenfield_4g(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
if i > upgraded_mno_sites and generation == '5G' and core == 'nsa':
cost_structure = greenfield_5g_nsa(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
if i > upgraded_mno_sites and generation == '5G' and core == 'sa':
cost_structure = greenfield_5g_sa(region, strategy, costs,
global_parameters, core_lut, country_parameters)
backhaul_quant = backhaul_quantity(i, new_backhaul)
total_cost, cost_by_asset = calc_costs(region, cost_structure, backhaul,
backhaul_quant, global_parameters, country_parameters)
regional_cost.append(total_cost)
regional_asset_cost.append(cost_by_asset)
counter = collections.Counter()
for d in regional_asset_cost:
counter.update(d)
counter_dict = dict(counter)
network_cost = 0
for k, v in counter_dict.items():
region[k] = v
network_cost += v
region['network_cost'] = network_cost
return region
|
9602d13a85ee5d4273d6bb82d28a525f42714890
| 25,215 |
def get_headings(bulletin):
""""function to get the headings from text file
takes a single argument
1.takes single argument list of bulletin files"""
with open("../input/cityofla/CityofLA/Job Bulletins/"+bulletins[bulletin]) as f: ##reading text files
data=f.read().replace('\t','').split('\n')
data=[head for head in data if head.isupper()]
return data
|
4b84928f8f4f13692c1236277aba6c6d4eb6c5ba
| 25,216 |
def phi_text_page_parse(pageAnalyse_str, phi_main_url):
"""
params: pageAnalyse_str, str.
return: phi_page_dict, dict.
It takes the precedent functions and maps their
information to a dictionary.
"""
#
phi_page_dict = {}
phi_page_dict["phi_text_id_no"] = phi_text_id(pageAnalyse_str, domain_url=phi_main_url)[0]
phi_page_dict["phi_text_region"] = phi_lemma_region(pageAnalyse_str)
phi_page_dict["phi_text_url"] = phi_text_id(pageAnalyse_str, domain_url=phi_main_url)[1]
phi_page_dict["phi_text_info"] = phi_lemma_text_info(pageAnalyse_str)
phi_page_dict["phi_text"] = phi_lemma_text(pageAnalyse_str)
#
return phi_page_dict
|
e11a8b14726c2a65fb721f7a1f8c2f4148d18fea
| 25,217 |
def fdfilt_lagr(tau, Lf, fs):
"""
Parameters
----------
tau : delay / s
Lf : length of the filter / sample
fs : sampling rate / Hz
Returns
-------
h : (Lf)
nonzero filter coefficients
ni : time index of the first element of h
n0 : time index of the center of h
"""
d = tau * fs
if Lf % 2 == 0:
n0 = np.ceil(d)
Lh = int(Lf/2)
idx = np.arange(n0-Lh, n0+Lh).astype(int)
elif Lf % 2 == 1:
n0 = np.round(d)
Lh = int(np.floor(Lf/2))
idx = np.arange(n0-Lh, n0+Lh+1).astype(int)
else:
print('Invalid value of Lf. Must be an integer')
return lagr_poly_barycentric2(idx, d), idx[0], n0
|
3a80d3682eb255b7190cc5cd6ddf44a9abbd58bc
| 25,218 |
import tqdm
def hit_n_run(A_mat, b_vec, n_samples=200, hr_timeout=ALG_TIMEOUT_MULT):
""" Hit and Run Sampler:
1. Sample current point x
2. Generate a random direction r
3. Define gamma_i = ( b - a_i'x ) / ( r'a_i )
4. Calculate max(gamma < 0) gamma_i and min(gamma > 0) gamma_i
5. Sample uniformly from [min_gamma, max_gamma]
"""
m, n = A_mat.shape
curr_pt = hit_n_run_init(A_mat, b_vec)
pts = [curr_pt]
pts_len = 1
bar = tqdm(total=n_samples)
for _ in range(n_samples * hr_timeout):
direction = np.random.randn(n)
direction = direction / np.linalg.norm(direction)
# calculate gamma
numer = b_vec - np.dot(A_mat, curr_pt)
denom = np.dot(A_mat, direction)
gamma = [ n / d for n, d in zip(numer, denom) ]
gamma.append(0)
gamma = np.array(gamma)
if (gamma > 0).all():
gamma_min = 0
else:
gamma_min = max(gamma[gamma < 0])
if (gamma < 0).all():
gamma_max = 0
else:
gamma_max = min(gamma[gamma > 0])
magnitude = np.random.uniform(low=gamma_min, high=gamma_max)
curr_pt = curr_pt + magnitude * direction
if is_feasible(A_mat, b_vec, curr_pt):
pts.append(curr_pt)
bar.update(1)
pts_len += 1
if pts_len >= n_samples:
break
else:
pass
bar.close()
if len(pts) < min(0.4 * n_samples, 500):
raise Exception(
'Sampled {} points instead of {}'.format(len(pts), 0.4 * n_samples)
)
return pts
|
e867c66ec97b9bbb91ad373b93fb9772e2d519cb
| 25,219 |
def construct_simulation_hydra_paths(base_config_path: str) -> HydraConfigPaths:
"""
Specifies relative paths to simulation configs to pass to hydra to declutter tutorial.
:param base_config_path: Base config path.
:return Hydra config path.
"""
common_dir = "file://" + join(base_config_path, 'config', 'common')
config_name = 'default_simulation'
config_path = join(base_config_path, 'config', 'simulation')
experiment_dir = "file://" + join(base_config_path, 'experiments')
return HydraConfigPaths(common_dir, config_name, config_path, experiment_dir)
|
3353f910f9de708bbf0e5d46dc64b1d833230043
| 25,220 |
def delete_from_limits_by_id(id, connection, cursor):
"""
Delete row with a certain ID from limits table
:param id: ID to delete
:param connection: connection instance
:param cursor: cursor instance
:return:
"""
check_for_existence = get_limit_by_id(id, cursor)
if check_for_existence.get('failure') is None:
delete_query = '''Delete from limits where id = {}'''
cursor.execute(delete_query.format(id))
connection.commit()
print(f'Record with id={id} deleted')
return {'status': 'success', 'message': f'Record with id={id} deleted'}
else:
print(f'Failed to delete, ID={id} does not exist')
return {'failure': f'Failed to delete, ID={id} does not exist'}
|
7e035550c2d9d22be1af48434d0e36cd6424ecb7
| 25,221 |
def article_search(request):
"""Пошук статті і використанням вектору пошуку (за полями заголовку і тексту з
ваговими коефіцієнтами 1 та 0.4 відповідно. Пошуковий набір проходить стемінг.
При пошуку враховується близькість шуканих слів одне до одного"""
query = ''
results = []
if 'query' in request.GET:
results, query = search_results(request)
return render(request, 'articles/post/search.html', {'query': query,
'results': results})
|
423fd3cc4be6cdcef8fd4ab47bc7aa70f52e32bf
| 25,222 |
def get_campaign_data(api, campaign_id):
"""Return campaign metadata for the given campaign ID."""
campaign = dict()
# Pulls the campaign data as dict from GoPhish.
rawCampaign: dict = api.campaigns.get(campaign_id).as_dict()
campaign["id"] = rawCampaign["name"]
campaign["start_time"] = rawCampaign["launch_date"]
campaign["end_time"] = rawCampaign["completed_date"]
campaign["url"] = rawCampaign["url"]
campaign["subject"] = rawCampaign["template"]["subject"]
# Get the template ID from the GoPhish template name.
campaign["template"] = (
api.templates.get(rawCampaign["template"]["id"]).as_dict()["name"].split("-")[2]
)
campaign["clicks"] = get_click_data(api, campaign_id)
# Get the e-mail send status from GoPhish.
campaign["status"] = get_email_status(api, campaign_id)
return campaign
|
6dc344079e73245ef280d770df3b07f62543d856
| 25,223 |
def create_small_map(sharing_model):
"""
Create small map and 2 BS
:returns: tuple (map, bs_list)
"""
map = Map(width=150, height=100)
bs1 = Basestation('A', Point(50, 50), get_sharing_for_bs(sharing_model, 0))
bs2 = Basestation('B', Point(100, 50), get_sharing_for_bs(sharing_model, 1))
bs_list = [bs1, bs2]
return map, bs_list
|
ecc56eb95f7d2d8188d7caa7353f5bc95793f46e
| 25,224 |
def save_dataz(file_name, obj, **kwargs):
"""Save compressed structured data to files. The arguments will be passed to ``numpy.save()``."""
return np.savez(file_name, obj, **kwargs)
|
2ea4ecff522409d79fbecd779710a27a9026dbe4
| 25,225 |
def step(x):
"""Heaviside step function."""
step = np.ones_like(x, dtype='float')
step[x<0] = 0
step[x==0] = 0.5
return step
|
2e11c87668b04acef33b7c7499ad10373b33ed76
| 25,226 |
def createRaviartThomas0VectorSpace(context, grid, segment=None,
putDofsOnBoundaries=False,
requireEdgeOnSegment=True,
requireElementOnSegment=False):
"""
Create and return a space of lowest order Raviart-Thomas vector functions
with normal components continuous on boundaries between elements.
*Parameters:*
- context (Context)
A Context object that will determine the type used to represent the
values of the basis functions of the newly constructed space.
- grid (Grid)
Grid on which the functions from the newly constructed space will be
defined.
- segment (GridSegment)
(Optional) Segment of the grid on which the space should be defined.
If set to None (default), the whole grid will be used.
- putDofsOnBoundaries (bool)
(Optional) If set to False (default), degrees of freedom will not be
placed on edges lying on boundaries of the grid. This is usually the
desired behaviour for simulations of open perfectly conducting
surfaces (sheets). If set to True, degrees of freedom will be placed
on all edges belonging to the chosen segment of the grid.
*Returns* a newly constructed Space_BasisFunctionType object, with
BasisFunctionType determined automatically from the context argument and
equal to either float32, float64, complex64 or complex128.
"""
name = 'raviartThomas0VectorSpace'
dofMode = 0
if requireEdgeOnSegment:
dofMode |= 1
if requireElementOnSegment:
dofMode |= 2
return _constructObjectTemplatedOnBasis(
core, name, context.basisFunctionType(), grid, segment,
putDofsOnBoundaries, dofMode)
|
100242b50f9aac6e55e6e02bb02c07f3b85c4195
| 25,227 |
def edus_toks2ids(edu_toks_list, word2ids):
""" 将训练cbos的论元句子们转换成ids序列, 将训练cdtb论元关系的论元对转成对应的论元对的tuple ids 列表并返回
"""
tok_list_ids = []
for line in edu_toks_list:
line_ids = get_line_ids(toks=line, word2ids=word2ids)
tok_list_ids.append(line_ids)
# 数据存储
return tok_list_ids
|
b3b87bfb0ae90c78cff3b02e04f316d917834e2b
| 25,228 |
def pd_log_with_neg(ser: pd.Series) -> pd.Series:
"""log transform series with negative values by adding constant"""
return np.log(ser + ser.min() + 1)
|
cf67df4173df27c7b97d320f04cd607c0ee8b866
| 25,229 |
def filter_X_dilutions(df, concentration):
"""Select only one dilution ('high', 'low', or some number)."""
assert concentration in ['high','low'] or type(concentration) is int
df = df.sort_index(level=['CID','Dilution'])
df = df.fillna(999) # Pandas doesn't select correctly on NaNs
if concentration == 'low':
df = df.groupby(level=['CID']).first()
elif concentration == 'high':
df = df.groupby(level=['CID']).last()
else:
df = df.loc[[x for x in df.index if x[1]==concentration]]
df = df.groupby(level=['CID']).last()
df = df.replace(999,float('NaN')) # Undo the fillna line above.
return df
|
b886c87c1c5b96e6efc951ef197d3a0fb13707c1
| 25,230 |
def update_params(base_param: dict, additional: dict):
"""overwrite base parameter dictionary
Parameters
----------
base_param : dict
base param dictionary
additional : dict
additional param dictionary
Returns
-------
dict
updated parameter dictionary
"""
for key in additional:
base_param[key] = additional[key]
return base_param
|
e73581cb0b8d264343ead56da52c6dc12fe49dd7
| 25,231 |
import torch
def lanczos_generalized(
operator,
metric_operator=None,
metric_inv_operator=None,
num_eigenthings=10,
which="LM",
max_steps=20,
tol=1e-6,
num_lanczos_vectors=None,
init_vec=None,
use_gpu=False,
):
"""
Use the scipy.sparse.linalg.eigsh hook to the ARPACK lanczos algorithm
to find the top k eigenvalues/eigenvectors.
Parameters
-------------
operator: power_iter.Operator
linear operator to solve.
num_eigenthings : int
number of eigenvalue/eigenvector pairs to compute
which : str ['LM', SM', 'LA', SA']
L,S = largest, smallest. M, A = in magnitude, algebriac
SM = smallest in magnitude. LA = largest algebraic.
max_steps : int
maximum number of arnoldi updates
tol : float
relative accuracy of eigenvalues / stopping criterion
num_lanczos_vectors : int
number of lanczos vectors to compute. if None, > 2*num_eigenthings
init_vec: [torch.Tensor, torch.cuda.Tensor]
if None, use random tensor. this is the init vec for arnoldi updates.
use_gpu: bool
if true, use cuda tensors.
Returns
----------------
eigenvalues : np.ndarray
array containing `num_eigenthings` eigenvalues of the operator
eigenvectors : np.ndarray
array containing `num_eigenthings` eigenvectors of the operator
"""
if isinstance(operator.size, int):
size = operator.size
else:
size = operator.size[0]
shape = (size, size)
if num_lanczos_vectors is None:
num_lanczos_vectors = min(2 * num_eigenthings, size - 1)
if num_lanczos_vectors < 2 * num_eigenthings:
warn(
"[lanczos] number of lanczos vectors should usually be > 2*num_eigenthings"
)
def _scipy_apply(x):
x = torch.from_numpy(x)
if use_gpu:
x = x.cuda()
return operator.apply(x.float()).cpu().numpy()
scipy_op = ScipyLinearOperator(shape, _scipy_apply)
if isinstance(metric_operator, np.ndarray) or \
isinstance(metric_operator, ScipyLinearOperator):
metric_op = metric_operator
else:
def _scipy_apply_metric(x):
x = torch.from_numpy(x)
if use_gpu:
x = x.cuda()
return metric_operator.apply(x.float()).cpu().numpy()
metric_op = ScipyLinearOperator(shape, _scipy_apply_metric)
if isinstance(metric_inv_operator, np.ndarray) or \
isinstance(metric_inv_operator, ScipyLinearOperator):
metric_inv_op = metric_inv_operator
else:
def _scipy_apply_metric_inv(x):
x = torch.from_numpy(x)
if use_gpu:
x = x.cuda()
return metric_inv_operator.apply(x.float()).cpu().numpy()
metric_inv_op = ScipyLinearOperator(shape, _scipy_apply_metric_inv)
if init_vec is None:
init_vec = np.random.rand(size)
elif isinstance(init_vec, torch.Tensor):
init_vec = init_vec.cpu().numpy()
eigenvals, eigenvecs = eigsh(
A=scipy_op,
k=num_eigenthings,
M=metric_op,
Minv=metric_inv_op,
which=which,
maxiter=max_steps,
tol=tol,
ncv=num_lanczos_vectors,
return_eigenvectors=True,
)
return eigenvals, eigenvecs.T
|
2a3c236817524f2656f9b1631801293b1acf5278
| 25,232 |
import urllib
import json
def get_articles_news(name):
"""
Function that gets the json response to our url request
"""
get_news_url = 'https://newsapi.org/v2/top-headlines?sources={}&apiKey=988fb23113204cfcb2cf79eb7ad99b76'.format(name)
with urllib.request.urlopen(get_news_url) as url:
get_news_data = url.read()
get_news_response = json.loads(get_news_data)
news_results = None
if get_news_response['articles']:
news_results_list = get_news_response['articles']
news_results = process_articles(news_results_list)
return news_results
|
3394112b15903671ec5522c128e9035a404f2650
| 25,233 |
def coordConv(fromP, fromV, fromSys, fromDate, toSys, toDate, obsData=None, refCo=None):
"""Converts a position from one coordinate system to another.
Inputs:
- fromP(3) cartesian position (au)
- fromV(3) cartesian velocity (au/year); ignored if fromSys
is Geocentric, Topocentric or Observed
- fromSys coordinate system from which to convert;
any of the entries in the table below; use opscore.RO.CoordSys constants.
- fromDate date*
- toSys coordinate system to which to convert (see fromSys)
- toDate date*
- obsData an opscore.RO.Astro.Cnv.ObserverData object; required if fromSys or toSys
is Topocentric or Observed; ignored otherwise.
- refCo(2) refraction coefficients; required if fromSys or toSys is Observed;
ignored otherwise.
Returns:
- toP(3) converted cartesian position (au)
- toV(3) converted cartesian velocity (au/year)
*the units of date depend on the associated coordinate system:
coord sys def date date
ICRS 2000.0 Julian epoch of observation
FK5 2000.0 Julian epoch of equinox and observation
FK4 1950.0 Besselian epoch of equinox and observation
Galactic now Julian epoch of observation
Geocentric now UT1 (MJD)
Topocentric now UT1 (MJD)
Observed now UT1 (MJD)
**Setting fromV all zero means the object is fixed. This slighly affects
conversion to or from FK4, which has fictitious proper motion.
Error Conditions:
- If obsData or refCo are absent and are required, raises ValueError.
Details:
The conversion is performed in two stages:
- fromP/fromSys/fromDate -> ICRS
- ICRS -> toP/toSys/toDate
Each of these two stages is performed using the following graph:
FK5 ------\
FK4 ------ ICRS --- Geocentric -*- Topocentric -**- Observed
Galactic--/
* obsData required
** refCo required
"""
return _TheCnvObj.coordConv(fromP, fromV, fromSys, fromDate, toSys, toDate, obsData, refCo)
|
29ef79ff896806171a9819fc5ad8bf071bd48969
| 25,235 |
def sample_recipe(user, **params):
"""create recipe"""
defaults = {
'title': 'paneer tikka',
'time_minute': 10,
'price': 5.00
}
defaults.update(**params)
return Recipe.objects.create(user=user, **defaults)
|
50b53622c68e6385c20296206759bc54f24afa3c
| 25,236 |
def briconToScaleOffset(brightness, contrast, drange):
"""Used by the :func:`briconToDisplayRange` and the :func:`applyBricon`
functions.
Calculates a scale and offset which can be used to transform a display
range of the given size so that the given brightness/contrast settings
are applied.
:arg brightness: Brightness, between 0.0 and 1.0.
:arg contrast: Contrast, between 0.0 and 1.0.
:arg drange: Data range.
"""
# The brightness is applied as a linear offset,
# with 0.5 equivalent to an offset of 0.0.
offset = (brightness * 2 - 1) * drange
# If the contrast lies between 0.0 and 0.5, it is
# applied to the colour as a linear scaling factor.
if contrast <= 0.5:
scale = contrast * 2
# If the contrast lies between 0.5 and 1, it
# is applied as an exponential scaling factor,
# so lower values (closer to 0.5) have less of
# an effect than higher values (closer to 1.0).
else:
scale = 20 * contrast ** 4 - 0.25
return scale, offset
|
b75ce49f4e79f7fef34a855f2897cfa6b4bd7cc7
| 25,237 |
def HostNameRequestHeader(payload_size):
"""
Construct a ``MessageHeader`` for a HostNameRequest command.
Sends local host name to virtual circuit peer. This name will affect
access rights. Sent over TCP.
Parameters
----------
payload_size : integer
Length of host name string.
"""
struct_args = (21, payload_size, 0, 0, 0, 0)
# If payload_size or data_count cannot fit into a 16-bit integer, use the
# extended header.
return (ExtendedMessageHeader(*struct_args)
if any((payload_size > 0xffff, ))
else MessageHeader(*struct_args))
|
2371dba58d974408be28390462b5e7eb943edd88
| 25,238 |
def cinema_trip(persons, day, premium_seating, treat):
"""
The total cost of going to the cinema
Parameters:
----------
persons: int
number of people who need a ticket
day: int
day of the week to book (1 = Monday, 7 = Sunday)
preimum_seating: bool
boolean True/False if premium seats are required
treat: str
string value representing a choice of refreshment
Returns:
-------
float
"""
#fill in your code here
return tickets(persons, day, premium_seating) + refreshment(treat)
|
8a2c4418124251ae16dddee6c1a134e3b883b1b8
| 25,240 |
import pathlib
def check_path(path: pathlib.Path) -> bool:
"""Check path."""
return path.exists() and path.is_file()
|
2279dde6912ae6f6eb51d90ed5e71e0b3892fea9
| 25,241 |
def omega2kwave(omega, depth, grav=9.81):
"""
Solve the linear dispersion relation close to machine precision::
omega**2 = kwave * grav * tanh(kwave*depth)
Parameters
----------
omega : float
Wave oscillation frequency [rad/s]
depth : float
Constant water depth. [m] (<0 indicates infinite depth)
grav : float, optional
Acceleration of gravity [m/s^2]
Returns
-------
float
Wave number (kwave) [1/m]
Raises
------
None
"""
if depth < 0.0:
return omega**2 / grav
# Solve equivalent equation system: c == y * tanh(y), kwave = y / depth
c = depth * omega**2 / grav
# High accuracy fix point schemes
if c > 2.5:
def f(y0):
# y == c/tanh(y)
# tanh(y) = 1 - eps, Near y=y0 the RHS is almost c.
# Solve y== c / tanh(y0)
return c / np.tanh(y0)
else:
def f(y0):
# y*(k0 + k1*(y-y0)) == c*(k0 + k1*(y-y0))/tanh(y0)
# tanh(y0) = k0 + k1*(y-y0) + ...
# Near y=y0 the RHS is almost c.
# Solve y*(k0 + k1*(y-y0)) == c for y
k0 = np.tanh(y0)
k1 = 1.0 - k0**2
b = k0 - k1 * y0
return 0.5 * (-b + np.sqrt(b**2 + 4.0 * c * k1)) / k1
# Fist initial guess (MIT lecture notes... 4 digits accuracy)
if c > 2.4:
# Deeper water...
y = c * (1.0 + 3.0 * np.exp(-2 * c) - 12.0 * np.exp(-4 * c))
# using fixed point iteration: y <= c + y - y * tanh(y)
else:
# Shallower water...
y = np.sqrt(c) * (1.0 + 0.169 * c + 0.031 * c ** 2)
# using fixed point iteration: y <= sqrt(c * y / tanh(y))
y_prev = -1.0
while abs(y - y_prev) > 100 * np.finfo(y).eps:
y_prev = y
y = f(y)
kwave = y / depth
return kwave
|
c448780d0edc3eb59ea79b4025182501875bb82f
| 25,242 |
def is_true(a: Bool) -> bool:
"""Returns whether the provided bool can be simplified to true.
:param a:
:return:
"""
return z3.is_true(a.raw)
|
e579a9793700132f38526d5cb737f3540d550821
| 25,243 |
from typing import Counter
def traverse_caves_recursive(cave: str, cave_system: dict, current_path: list[str]):
"""Recursively traverse through all paths in the cave."""
if cave != "START":
# build the current path traversed
current_path = current_path[:]
current_path.append(cave)
if cave == "END":
return current_path
previous_cave_counts = Counter(current_path)
small_caves_previously_visited = [
cave
for cave in previous_cave_counts.keys()
if cave.islower() and previous_cave_counts[cave] > 0
]
potential_next_caves = [
cave_
for cave_ in cave_system[cave]
if cave_ not in small_caves_previously_visited
]
if len(potential_next_caves) > 0:
return [
traverse_caves_recursive(next_cave, cave_system, current_path)
for next_cave in potential_next_caves
]
|
e78680ce8e1c3e7675d8fed980c4c706c87c1758
| 25,244 |
def count(A,target):
"""invoke recursive function to return number of times target appears in A."""
def rcount(lo, hi, target):
"""Use recursion to find maximum value in A[lo:hi+1]."""
if lo == hi:
return 1 if A[lo] == target else 0
mid = (lo+hi)//2
left = rcount(lo, mid, target)
right = rcount(mid+1, hi, target)
return left + right
return rcount(0, len(A)-1, target)
|
79d9be64d332a11993f65f3c0deba8b4de39ebda
| 25,246 |
def asset_get_current_log(asset_id):
"""
"""
db = current.db
s3db = current.s3db
table = s3db.asset_log
query = ( table.asset_id == asset_id ) & \
( table.cancel == False ) & \
( table.deleted == False )
# Get the log with the maximum time
asset_log = db(query).select(table.id,
table.status,
table.datetime,
table.cond,
table.person_id,
table.site_id,
#table.location_id,
orderby = ~table.datetime,
limitby=(0, 1)).first()
if asset_log:
return Storage(datetime = asset_log.datetime,
person_id = asset_log.person_id,
cond = int(asset_log.cond or 0),
status = int(asset_log.status or 0),
site_id = asset_log.site_id,
#location_id = asset_log.location_id
)
else:
return Storage()
|
38bbdaade290e0f60a2dd7faa628b2c72dd48a8c
| 25,247 |
def _filter_to_k_shot(dataset, num_classes, k):
"""Filters k-shot subset from a dataset."""
# !!! IMPORTANT: the dataset should *not* be shuffled. !!!
# Make sure that `shuffle_buffer_size=1` in the call to
# `dloader.get_tf_data`.
# Indices of included examples in the k-shot balanced dataset.
keep_example = []
# Keep track of the number of examples per class included in
# `keep_example`.
class_counts = np.zeros([num_classes], dtype=np.int32)
for _, label in dataset.as_numpy_iterator():
# If there are less than `k` examples of class `label` in `example_indices`,
# keep this example and update the class counts.
keep = class_counts[label] < k
keep_example.append(keep)
if keep:
class_counts[label] += 1
# When there are `k` examples for each class included in `keep_example`,
# stop searching.
if (class_counts == k).all():
break
dataset = tf.data.Dataset.zip((
tf.data.Dataset.from_tensor_slices(keep_example),
dataset
)).filter(lambda keep, _: keep).map(lambda _, example: example).cache()
return dataset
|
d61f064dbbdc00b68fffc580baf7e658610e44eb
| 25,248 |
def _create_tf_example(entry):
""" Creates a tf.train.Example to be saved in the TFRecord file.
Args:
entry: string containing the path to a image and its label.
Return:
tf_example: tf.train.Example containing the info stored in feature
"""
image_path, label = _get_image_and_label_from_entry(entry)
# Convert the jpeg image to raw image.
image = Image.open(image_path)
image_np = np.array(image)
image_raw = image_np.tostring()
# Data which is going to be stored in the TFRecord file
feature = {
'image': tfrecord_utils.bytes_feature(image_raw),
'image/height': tfrecord_utils.int64_feature(image_np.shape[0]),
'image/width': tfrecord_utils.int64_feature(image_np.shape[1]),
'label': tfrecord_utils.int64_feature(label),
}
tf_example = tf.train.Example(features=tf.train.Features(feature=feature))
return tf_example
|
c50c2ff02eccc286319db6263841472d7c2b9fe3
| 25,249 |
def _gen_parameters_section(names, parameters, allowed_periods=None):
"""Generate the "parameters" section of the indicator docstring.
Parameters
----------
names : Sequence[str]
Names of the input parameters, in order. Usually `Ind._parameters`.
parameters : Mapping[str, Any]
Parameters dictionary. Usually `Ind.parameters`, As this is missing `ds`, it is added explicitly.
"""
section = "Parameters\n----------\n"
for name in names:
if name == "ds":
descstr = "Input dataset."
defstr = "Default: None."
unitstr = ""
annotstr = "Dataset, optional"
else:
param = parameters[name]
descstr = param["description"]
if param["kind"] == InputKind.FREQ_STR and allowed_periods is not None:
descstr += (
f" Restricted to frequencies equivalent to one of {allowed_periods}"
)
if param["kind"] == InputKind.VARIABLE:
defstr = f"Default : `ds.{param['default']}`. "
elif param["kind"] == InputKind.OPTIONAL_VARIABLE:
defstr = ""
else:
defstr = f"Default : {param['default']}. "
if "choices" in param:
annotstr = str(param["choices"])
else:
annotstr = KIND_ANNOTATION[param["kind"]]
if param.get("units", False):
unitstr = f"[Required units : {param['units']}]"
else:
unitstr = ""
section += f"{name} : {annotstr}\n {descstr}\n {defstr}{unitstr}\n"
return section
|
9bc249ca67dcc1c0f7ff8538b8078bfcd5c231a1
| 25,250 |
def bins(df):
"""Segrega os dados de notas de 10 em 10 pontos para construção de gráficos.
Parameters
----------
df : type Pandas DataFrame
DataFrame de início.
Returns
-------
type Pandas DataFrame
DataFrame final.
"""
df_bins = pd.DataFrame(df['ALUNO'].rename('Contagem').groupby(pd.cut(
df['Pontuação final'].rename('Intervalos'), np.arange(0, 101, 10), right=False)).count())
df_bins['Contagem /%'] = round(100 * df_bins['Contagem'] /
df_bins['Contagem'].sum(), 2)
df_bins['Contagem cumulativa'] = df_bins['Contagem'].cumsum()
df_bins['Contagem /% cumulativa'] = df_bins['Contagem /%'].cumsum()
return df_bins
|
7c4570866fcb5795dc9052222479e23574fbf64b
| 25,252 |
from datetime import datetime
def insert_video(ID):
"""
The function gets a valid YouTube ID,
checks for its existence in database,
if not found calls YouTube API and
inserts into the MongoDB database.
"""
client = MongoClient('localhost:27017')
db = client['PreCog']
collection = db['YoutubeRaw']
check_collection = db['YoutubeProcessed']
check = check_collection.find_one({"ID" : ID})
if check == None:
video = youtube_search(ID)
if video is not None:
result = collection.insert_one(video)
print(result.inserted_id, datetime.datetime.now())
return True
else:
print("Already in DataBase")
return False
|
9c4f453db72739973384ea1890614463855fcca2
| 25,254 |
def get_neighbor_v6_by_search(search=None):
"""Return a list of NeighborV6's by dict."""
try:
objects = NeighborV6.objects.filter()
search_dict = search if search else dict()
object_map = build_query_to_datatable_v3(objects, search_dict)
except FieldError as e:
raise api_rest_exceptions.ValidationAPIException(str(e))
except Exception as e:
raise api_rest_exceptions.NetworkAPIException(str(e))
else:
return object_map
|
3ed22479c140b7f71cd02d03be6c0fc82b0e81ca
| 25,255 |
import functools
def validate_customer(fn):
"""
Validates that credit cards are between 1 and 5 and that each is 16 chars long
"""
@functools.wraps(fn)
def wrapped(*args, **kwargs):
# Validate credit card length
cc_list = kwargs.get("credit_cards")
trimmed_cc = [remove_non_numeric(cc.replace(' ', '')) for cc in cc_list]
num_credit_cards = len(trimmed_cc)
if num_credit_cards < 1 or num_credit_cards > 5:
return "Number of credit cards must be between 1 and 5, inclusive", 400
# Validate credit card composition
for cc in trimmed_cc:
if len(cc) != 16 or not cc.isdigit():
return f"Credit card {cc} must be 16 digits long", 400
# If passed, continue with registration
kwargs["credit_cards"] = trimmed_cc
return fn(*args, **kwargs)
return wrapped
|
ecd5b63ed5f1ae8ecf94a27ba3f353f371dabe39
| 25,256 |
from typing import Any
from typing import Sequence
from typing import Mapping
def format_field(value: Any) -> str:
"""
Function that formats a single field for output on a table or CSV output, in order to deal with nested arrays or
objects in the JSON outputs of the API.
:param value: the value to format
:return: a string that is fit for console output
"""
if isinstance(value, Sequence) and not isinstance(value, (str, bytes)):
if all(isinstance(x, (str, bytes, int, float)) for x in value):
return ", ".join([str(x) for x in value])
return dumps(value)
if isinstance(value, Mapping):
return dumps(value)
return value
|
5eef5c433924807b195c574c568d0e0a0a433eb7
| 25,257 |
def count_honeypot_events():
"""
Get total number of honeypot events
Returns:
JSON/Dict number of honeypot events
"""
date = fix_date(
get_value_from_request("date")
)
if date:
try:
return jsonify(
{
"count_honeypot_events_by_date": connector.honeypot_events.count_documents(
{
"date": {
"$gte": date[0],
"$lte": date[1]
}
}
),
"date": date
}
), 200
except Exception as _:
return flask_null_array_response()
else:
try:
return jsonify(
{
"count_honeypot_events": connector.honeypot_events.estimated_document_count()
}
), 200
except Exception as _:
return flask_null_array_response()
|
22a0fd932098ec9e846daaa097c01a9f62763cc6
| 25,258 |
def k_i_grid(gridsize, boxsize):
"""k_i_grid(gridsize, boxlen)"""
halfgrid = gridsize // 2
boxsize = egp.utils.boxsize_tuple(boxsize)
dk = 2 * np.pi / boxsize
kmax = gridsize * dk
_ = np.newaxis
k1, k2, k3 = dk[:, _, _, _] * np.mgrid[0:gridsize, 0:gridsize, 0:halfgrid + 1]
k1 -= kmax[0] * (k1 > dk[0] * (halfgrid - 1)) # shift the second half to negative k values
k2 -= kmax[1] * (k2 > dk[1] * (halfgrid - 1))
return np.array((k1, k2, k3))
|
29ffb72367672b8dd3f2e0a37923af565fb26306
| 25,259 |
def is_bool_type(typ):
"""
Check if the given type is a bool.
"""
if hasattr(typ, '__supertype__'):
typ = typ.__supertype__
return isinstance(typ, type) and issubclass(typ, bool)
|
3d8dfae184be330c8cbd7c0e7382311fef31ede5
| 25,260 |
def gaussians_entropy(covars, ns=nt.NumpyLinalg):
"""
Calculates entropy of an array Gaussian distributions
:param covar: [N*D*D] covariance matrices
:return: total entropy
"""
N = covar.shape[0]
D = covar.shape[-1]
return 0.5 * N * D * (1 + log(2*ns.pi)) + 0.5 * ns.sum(ns.det(covar))
|
fe858d891cb4243b0aaf8b73fc7f38e542c5130d
| 25,261 |
def genBetaModel(matshape, cen, betaparam):
"""
Generate beta model with given parameters
inputs
======
matshape: tuple or list
Shape of the matrix
cen: tuple or list
Location of the center pixel
betaparam: dict
Parameters of the beta function
{ "A": float,
"r0": float,
"theta": float,
"beta": float,
"majaxis": float,
"minaxis": float,
}
output
======
matbeta: np.ndarray
The matrix with modelled beta values
"""
if len(betaparam) != 6:
print("There might be short of parameter.")
return None
# Init matbeta
matbeta = np.zeros(matshape)
# load paramters
A = betaparam['A']
r0 = betaparam['r0']
theta = betaparam['theta']
beta = betaparam['beta']
majaxis = betaparam['majaxis']
minaxis = betaparam['minaxis']
ecc = majaxis / minaxis # eccentricity
# Generate meshgrids
X = np.linspace(1, matshape[0], matshape[0])
Y = np.linspace(1, matshape[1], matshape[1])
# anti-clock
rot = np.array([[np.cos(theta), -np.sin(theta)],
[np.sin(theta),np.cos(theta)]])
# Calc
for j, x in enumerate(X):
for i,y in enumerate(Y):
x_r = x - cen[0]
y_r = y - cen[1]
r = np.matmul(rot, np.array([x_r, y_r]))
r = r[0]**2 + r[1]**2 * ecc**2
matbeta[i, j] = A * (1 + r/r0**2)**(-np.abs(beta))
return matbeta
|
cabe4ff2d217bf918af291ad1fe875a66de2ca2a
| 25,262 |
def folders_to_create(search_path, dirs, base_path=""):
"""
Recursively traverse through folder paths looking for the longest existing subpath.
Return the dir info of the longest subpath and the directories that
need to be created.
"""
# Allow user to pass in a string, but use a list in the recursion
if isinstance(search_path, list):
parts = search_path
else:
parts = search_path.strip("/").split("/")
# shared drives don't start with a /
if base_path == "" and not search_path.startswith("/"):
base_path = parts.pop(0)
parent = [dr for dr in dirs if dr.get("path", "") == base_path]
if len(parent) == 0:
parent = {"id": "root"}
else:
parent = parent.pop()
# Stop if we ran out of parts to create
if len(parts) == 0:
return parent, []
base_path += "/" + parts[0]
dirs = [dr for dr in dirs if dr.get("path", "").startswith(base_path)]
# If there's base_path matches, then keep looking for a longer path
if len(dirs) > 0:
return folders_to_create(parts[1:], dirs, base_path)
else:
return parent, parts
|
91750afa8a4756a09b71cc397a5991b106fd8909
| 25,263 |
def profile_line(image, src, dst, linewidth=1,
order=1, mode='constant', cval=0.0):
"""Return the intensity profile of an image measured along a scan line.
Parameters
----------
image : numeric array, shape (M, N[, C])
The image, either grayscale (2D array) or multichannel
(3D array, where the final axis contains the channel
information).
src : 2-tuple of numeric scalar (float or int)
The start point of the scan line.
dst : 2-tuple of numeric scalar (float or int)
The end point of the scan line. The destination point is *included*
in the profile, in contrast to standard numpy indexing.
linewidth : int, optional
Width of the scan, perpendicular to the line
order : int in {0, 1, 2, 3, 4, 5}, optional
The order of the spline interpolation to compute image values at
non-integer coordinates. 0 means nearest-neighbor interpolation.
mode : {'constant', 'nearest', 'reflect', 'mirror', 'wrap'}, optional
How to compute any values falling outside of the image.
cval : float, optional
If `mode` is 'constant', what constant value to use outside the image.
Returns
-------
return_value : array
The intensity profile along the scan line. The length of the profile
is the ceil of the computed length of the scan line.
Examples
--------
>>> x = np.array([[1, 1, 1, 2, 2, 2]])
>>> img = np.vstack([np.zeros_like(x), x, x, x, np.zeros_like(x)])
>>> img
array([[0, 0, 0, 0, 0, 0],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[1, 1, 1, 2, 2, 2],
[0, 0, 0, 0, 0, 0]])
>>> profile_line(img, (2, 1), (2, 4))
array([ 1., 1., 2., 2.])
>>> profile_line(img, (1, 0), (1, 6), cval=4)
array([ 1., 1., 1., 2., 2., 2., 4.])
The destination point is included in the profile, in contrast to
standard numpy indexing.
For example:
>>> profile_line(img, (1, 0), (1, 6)) # The final point is out of bounds
array([ 1., 1., 1., 2., 2., 2., 0.])
>>> profile_line(img, (1, 0), (1, 5)) # This accesses the full first row
array([ 1., 1., 1., 2., 2., 2.])
"""
perp_lines = _line_profile_coordinates(src, dst, linewidth=linewidth)
if image.ndim == 3:
pixels = [ndi.map_coordinates(image[..., i], perp_lines,
order=order, mode=mode, cval=cval)
for i in range(image.shape[2])]
pixels = np.transpose(np.asarray(pixels), (1, 2, 0))
else:
pixels = ndi.map_coordinates(image, perp_lines,
order=order, mode=mode, cval=cval)
intensities = pixels.mean(axis=1)
return intensities
|
29a020f77448c394d96be3fbd0b382b4657d401e
| 25,264 |
def set_out(pin, state):
"""
Set simple digital (high/low) output
:param pin: pun number or logical name
:param state: state: 1/0 = True/False
:return: verdict
"""
__digital_out_init(pin).value(state)
return {'pin': pin, 'state': state}
|
c76fb07d52fce9e0c66a6b63b5518b6575589807
| 25,265 |
import requests
def get_session():
"""Define a re-usable Session object"""
session = requests.Session()
session.auth = auth
session.verify = False
return session
|
3539e4a7433ffb58aa726c7fef87af080b011f64
| 25,266 |
def create_test_action(context, **kw):
"""Create and return a test action object.
Create a action in the DB and return a Action object with appropriate
attributes.
"""
action = get_test_action(context, **kw)
action.create()
return action
|
8093d8f9b73ad0871ee422e2ba977f34907a3ae1
| 25,268 |
def parse(header_array, is_paper=False):
""" Decides which version of the headers to use."""
if not is_paper:
version = clean_entry(header_array[2])
if old_eheaders_re.match(version):
headers_list = old_eheaders
elif new_eheaders_re.match(version):
headers_list = new_eheaders
else:
raise UnknownHeaderError ("Couldn't find parser for electronic version %s" % (version))
else:
version = clean_entry(header_array[1])
if paper_headers_v1_re.match(version):
headers_list = paper_headers_v1
elif paper_headers_v2_2_re.match(version):
headers_list = paper_headers_v2_2
elif paper_headers_v2_6_re.match(version):
headers_list = paper_headers_v2_6
else:
raise UnknownHeaderError ("Couldn't find parser for paper version %s" % (version))
headers = {}
for i in range(0, len(headers_list)):
this_arg = "" # It's acceptable for header rows to leave off delimiters, so enter missing trailing args as blanks.
try:
this_arg = clean_entry(header_array[i])
except IndexError:
# [JACOB WHAT DOES THIS INDICATE?]
pass
headers[headers_list[i]] = this_arg
return headers
|
91f692b20300f96fac5d67e40950f7af17552ecb
| 25,269 |
import json
def lookup_plex_media(hass, content_type, content_id):
"""Look up Plex media for other integrations using media_player.play_media service payloads."""
content = json.loads(content_id)
if isinstance(content, int):
content = {"plex_key": content}
content_type = DOMAIN
plex_server_name = content.pop("plex_server", None)
plex_server = get_plex_server(hass, plex_server_name)
if playqueue_id := content.pop("playqueue_id", None):
try:
playqueue = plex_server.get_playqueue(playqueue_id)
except NotFound as err:
raise HomeAssistantError(
f"PlayQueue '{playqueue_id}' could not be found"
) from err
else:
shuffle = content.pop("shuffle", 0)
media = plex_server.lookup_media(content_type, **content)
if media is None:
raise HomeAssistantError(
f"Plex media not found using payload: '{content_id}'"
)
playqueue = plex_server.create_playqueue(media, shuffle=shuffle)
return (playqueue, plex_server)
|
060b5cded7bbb8d149a7bf2b94d5a5352114d671
| 25,271 |
def dsym_test(func):
"""Decorate the item as a dsym test."""
if isinstance(func, type) and issubclass(func, unittest2.TestCase):
raise Exception("@dsym_test can only be used to decorate a test method")
@wraps(func)
def wrapper(self, *args, **kwargs):
try:
if lldb.dont_do_dsym_test:
self.skipTest("dsym tests")
except AttributeError:
pass
return func(self, *args, **kwargs)
# Mark this function as such to separate them from the regular tests.
wrapper.__dsym_test__ = True
return wrapper
|
d31c5bd87311b2582b9668fb25c1d4648663d1b8
| 25,273 |
from datetime import datetime
def count_meetings(signups=None, left: datetime=None, right: datetime=None) -> int:
""" Returns the number of meetings the user has been to, between two
date ranges. Left bound is chosen as an arbitrary date guaranteed to
be after any 8th periods from the past year, but before any from the
current year. Right bound is chosen to be today. """
# can't use default arguments initialized at function definition
# in a long-running app right would be the date of last reset not "today"
if signups is None:
signups = get_signups()
if left is None:
left = summer(get_year() - 1)
if right is None:
right = datetime.today()
return len(list(
filter(lambda signup: left < ion_date(signup["block"]["date"]) < right,
signups)))
|
8cb5290111db947b3daa01248452cfd36c80ec46
| 25,274 |
def fake_surroundings(len_poem, size_surroundings=5):
"""
Retourne une liste d'indices tirée au sort
:param len_poem: nombre de vers dans le poème
:param size_surroundings: distance du vers de référence du vers (default 5)
:return: liste
"""
# bornes inférieures
lower_bounds_w_neg = np.array([row - size_surroundings for row in range(len_poem)])
lower_bounds_2d = np.stack([np.zeros(len_poem), lower_bounds_w_neg])
# calcul max entre 0 et le rang - surroundings
lower_bounds = np.max(lower_bounds_2d, axis=0)
# bornes supérieures
higher_bounds_w_neg = np.array([row + size_surroundings for row in range(len_poem)])
higher_bounds_2d = np.stack([np.repeat(len_poem, len_poem), higher_bounds_w_neg])
# calcul min entre longueur du poeme et le rang + surroundings
higher_bounds = np.min(higher_bounds_2d, axis=0)
# tirage
fake_within_poem = np.random.randint(low=lower_bounds, high=higher_bounds).tolist()
return fake_within_poem
|
91bbdefedd3ed2aa4d63db1ef7281129adb20036
| 25,275 |
import numpy
def interpolate_missing(sparse_list):
"""Use linear interpolation to estimate values for missing samples."""
dense_list = list(sparse_list)
x_vals, y_vals, x_blanks = [], [], []
for x, y in enumerate(sparse_list):
if y is not None:
x_vals.append(x)
y_vals.append(y)
else:
x_blanks.append(x)
if x_blanks:
interpolants = numpy.interp(x_blanks, x_vals, y_vals)
for x, y in zip(x_blanks, interpolants):
dense_list[x] = y
return dense_list
|
a2983a08f00b4de2921c93cc14d3518bc8bd393d
| 25,276 |
def classifier_uncertainty(classifier: BaseEstimator, X: modALinput, **predict_proba_kwargs) -> np.ndarray:
"""
Classification uncertainty of the classifier for the provided samples.
Args:
classifier: The classifier for which the uncertainty is to be measured.
X: The samples for which the uncertainty of classification is to be measured.
**predict_proba_kwargs: Keyword arguments to be passed for the :meth:`predict_proba` of the classifier.
Returns:
Classifier uncertainty, which is 1 - P(prediction is correct).
"""
# calculate uncertainty for each point provided
try:
classwise_uncertainty = classifier.predict_proba(X, **predict_proba_kwargs)
except NotFittedError:
return np.ones(shape=(X.shape[0], ))
# for each point, select the maximum uncertainty
uncertainty = 1 - np.max(classwise_uncertainty, axis=1)
return uncertainty
|
419da65825fff7de53ab30f4be31f2be0cf4bbbd
| 25,278 |
def test_preserve_scalars():
""" test the preserve_scalars decorator """
class Test():
@misc.preserve_scalars
def meth(self, arr):
return arr + 1
t = Test()
assert t.meth(1) == 2
np.testing.assert_equal(t.meth(np.ones(2)), np.full(2, 2))
|
ae48d49e5dd6781a304f75abd9b43e67faa09ee1
| 25,280 |
def from_string(zma_str, one_indexed=True, angstrom=True, degree=True):
""" read a z-matrix from a string
"""
syms, key_mat, name_mat, val_dct = ar.zmatrix.read(zma_str)
val_mat = tuple(tuple(val_dct[name] if name is not None else None
for name in name_mat_row)
for name_mat_row in name_mat)
zma = automol.create.zmat.from_data(
syms, key_mat, val_mat, name_mat, one_indexed=one_indexed,
angstrom=angstrom, degree=degree)
return zma
|
cf3817268cab7e79bf924f9d52cb70d01188ea48
| 25,281 |
def get_jmp_addr(bb):
"""
@param bb List of PseudoInstructions of one basic block
@return Address of jump instruction in this basic block
"""
for inst in bb:
if inst.inst_type == 'jmp_T':
return inst.addr
return None
|
13e69032bc7d6ed5413b5efbb42729e11661eab1
| 25,283 |
import sqlite3
def open_db_conn(db_file=r'/home/openwpm/Desktop/crawl-data.sqlite'):
""""
open connection to sqlite database
"""
try:
conn = sqlite3.connect(db_file)
return conn
except Exception as e:
print(e)
return None
|
28338f3ff3679c83a1e9040aa9b6e4f5026e4606
| 25,285 |
def totals_per_time_frame(data_points, time_frame):
"""For a set of data points from a single CSV file,
calculate the average percent restransmissions per time frame
Args:
data_points (List[List[int,int,float]]): A list of data points.
Each data points consist of
0: 1 if is a transmission,
1: 1 if is a retransmission,
2: time in seconds
time_frame (float): increment of time in seconds in which new data points are calculated
Returns:
List[List[float,float]]: A list of data points containing the percent retransmissions, and the time in seconds
"""
time_frame_min = 0
time_frame_max = time_frame
percent_retransmissions_list = []
transmissions_in_frame = 0
retransmissions_in_frame = 0
index = 0
while time_frame_max < data_points[-1][2] and index < len(data_points):
if data_points[index][2] >= time_frame_min and data_points[index][2] < time_frame_max:
transmissions_in_frame += data_points[index][0] + data_points[index][1]
retransmissions_in_frame += data_points[index][1]
index += 1
else:
if transmissions_in_frame > 0:
percent_retransmissions = 100*retransmissions_in_frame/transmissions_in_frame
else:
percent_retransmissions = 0
percent_retransmissions_list.append([percent_retransmissions,time_frame_min])
time_frame_min = time_frame_max
time_frame_max += time_frame
transmissions_in_frame = 0
retransmissions_in_frame = 0
return percent_retransmissions_list
|
9e71ac2fe7deabd36d7df8ae099575b191260c5d
| 25,286 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.