content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def add_port_fwd( zone, src, dest, proto="tcp", dstaddr="", permanent=True, force_masquerade=False ): """ Add port forwarding. .. versionadded:: 2015.8.0 CLI Example: .. code-block:: bash salt '*' firewalld.add_port_fwd public 80 443 tcp force_masquerade when a zone is created ensure masquerade is also enabled on that zone. """ if force_masquerade and not get_masquerade(zone): add_masquerade(zone) cmd = "--zone={0} --add-forward-port=port={1}:proto={2}:toport={3}:toaddr={4}".format( zone, src, proto, dest, dstaddr ) if permanent: cmd += " --permanent" return __firewall_cmd(cmd)
15c3cc5cbfb3e2921232df0508ea18d727d7861c
25,288
def reduce_puzzle(values): """Reduce a Sudoku puzzle by repeatedly applying all constraint strategies Parameters ---------- values(dict) a dictionary of the form {'box_name': '123456789', ...} Returns ------- dict or False The values dictionary after continued application of the constraint strategies no longer produces any changes, or False if the puzzle is unsolvable """ stalled = False while not stalled: solved_values_before = len([box for box in values.keys() if len(values[box]) == 1]) values = eliminate(values) values = only_choice(values) values = naked_twins(values) solved_values_after = len([box for box in values.keys() if len(values[box]) == 1]) stalled = solved_values_before == solved_values_after if len([box for box in values.keys() if len(values[box]) == 0]): return False return values
0a952caf700216e67c7dd81958dd62d7734bb0fe
25,289
import struct def read_int(handle): """ Helper function to parse int from file handle Args: handle (file): File handle Returns: numpy.int32 """ return struct.unpack("<i", handle.read(4))[0]
cd175251fed79c8d79ea4a73d713457c06cbda6b
25,290
def prem_to_av(t): """Premium portion put in account value The amount of premiums net of loadings, which is put in the accoutn value. .. seealso:: * :func:`load_prem_rate` * :func:`premium_pp` * :func:`pols_if_at` """ return prem_to_av_pp(t) * pols_if_at(t, "BEF_DECR")
7d72e7e2e0b10ffb3958383817ddb7cc5f72a06a
25,291
from scipy.spatial import cKDTree def remove_close(points, radius): """ Given an nxd set of points where d=2or3 return a list of points where no point is closer than radius :param points: a nxd list of points :param radius: :return: author: revised by weiwei date: 20201202 """ tree = cKDTree(points) # get the index of every pair of points closer than our radius pairs = tree.query_pairs(radius, output_type='ndarray') # how often each vertex index appears in a pair # this is essentially a cheaply computed "vertex degree" # in the graph that we could construct for connected points count = np.bincount(pairs.ravel(), minlength=len(points)) # for every pair we know we have to remove one of them # which of the two options we pick can have a large impact # on how much over-culling we end up doing column = count[pairs].argmax(axis=1) # take the value in each row with the highest degree # there is probably better numpy slicing you could do here highest = pairs.ravel()[column + 2 * np.arange(len(column))] # mask the vertices by index mask = np.ones(len(points), dtype=np.bool) mask[highest] = False if tol.strict: # verify we actually did what we said we'd do test = cKDTree(points[mask]) assert len(test.query_pairs(radius)) == 0 return points[mask], mask
42f8727488018e7f27802e81dbecfd300b38f45a
25,292
import torch def pose_mof2mat_v1(mof, rotation_mode='euler'): """ ### Out-of-Memory Issue ### Convert 6DoF parameters to transformation matrix. Args: mof: 6DoF parameters in the order of tx, ty, tz, rx, ry, rz -- [B, 6, H, W] Returns: A transformation matrix -- [B, 3, 4, H, W] """ bs, _, hh, ww = mof.size() mof = mof.permute(0,2,3,1).reshape(-1,6) # [B*N, 6] translation = mof[:,:3].unsqueeze(-1) # [B*N, 3, 1] rot = mof[:,3:] # [B*N, 3] if rotation_mode == 'euler': rot_mat = euler2mat(rot) # [B*N, 3, 3] elif rotation_mode == 'quat': rot_mat = quat2mat(rot) # [B*N, 3, 3] transform_mat = torch.cat([rot_mat, translation], dim=2) # [B*N, 3, 4] transform_mat = transform_mat.reshape(bs, hh, ww, 3, 4).permute(0,3,4,1,2) # [B, 3, 4, H, W] # pdb.set_trace() return transform_mat
78d42b36e64c0b6ba0eab46b6c19a96d44ed29fb
25,293
def update(isamAppliance, local, remote_address, remote_port, remote_facility, check_mode=False, force=False): """ Updates logging configuration """ json_data = { "local": local, "remote_address": remote_address, "remote_port": remote_port, "remote_facility": remote_facility } change_required, warnings = _check(isamAppliance, json_data) if force is True or change_required is True: if check_mode is True: return isamAppliance.create_return_object(changed=True, warnings=warnings) else: return isamAppliance.invoke_put("Updating logging configuration attributes", module_uri, json_data, requires_modules=requires_modules, requires_version=requires_versions, requires_model=requires_model) else: return isamAppliance.create_return_object(warnings=warnings)
ed8af5d9d1b2f59726622ca6ebdfb4a20b88982f
25,295
from typing import Tuple def get_model_and_tokenizer( model_name_or_path: str, tokenizer_name_or_path: str, auto_model_type: _BaseAutoModelClass, max_length: int = constants.DEFAULT_MAX_LENGTH, auto_model_config: AutoConfig = None, ) -> Tuple[AutoModelForSequenceClassification, AutoTokenizer]: """Get transformer model and tokenizer Args: model_name_or_path (str): model name tokenizer_name_or_path (str): tokenizer name auto_model_type (_BaseAutoModelClass): auto model object such as AutoModelForSequenceClassification max_length (int): max length of text auto_model_config (AutoConfig): AutoConfig object Returns: Tuple[AutoModelForSequenceClassification, AutoTokenizer]: model and tokenizer """ logger.info(f"Loading model: {model_name_or_path}") if auto_model_config: model = auto_model_type.from_pretrained( model_name_or_path, config=auto_model_config ) else: model = auto_model_type.from_pretrained(model_name_or_path) tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, max_length=max_length ) return model, tokenizer
b65cc9cb6e32c65b4d91becb51358146651fddb8
25,296
def get_forecast_by_coordinates( x: float, y: float, language: str = "en" ) -> str: """ Get the weather forecast for the site closest to the coordinates (x, y). Uses the scipy kd-tree nearest-neighbor algorithm to find the closest site. Parameters ---------- x : float Longitude of the query point. y : float Latitude of the query point. language: str The language to retrieve the forecast in. Allowed values: "en", "fr". Returns ------- str The XML weather forecast. """ nearest_site = get_weather_site_by_coordinates(x, y) site_code = nearest_site['properties']['Codes'] province_code = nearest_site['properties']['Province Codes'] forecast = get_forecast_by_site_code( site_code=site_code, province_code=province_code, language=language ) return forecast
061007f152328929f2ed1c70f5a8b1401f3268f7
25,297
def get_calculated_energies(stem, data=None): """Return the energies from the calculation""" if data is None: data = {} stem = stem.find('calculation') for key, path in VASP_CALCULATED_ENERGIES.items(): text = get_text_from_section(stem, path, key) data[key] = float(text.split()[0]) return data
d2c0fcf9023874e6890b34e6950dc81e8d2073ce
25,298
def reshape(spectra): """Rearrange a compressed 1d array of spherical harmonics to 2d Args: spectra (np.ndarray): 1 dimensional storage of 2d spherical modes Returns: np.ndarray: 2-dimensional array of the reshaped input with zonal and meridional wavenumber coordinates """ # Account for complex inputs as two dimensions if spectra.ndim == 2: spectra = spectra[:, 0] + spectra[:, 1]*1j if spectra.ndim != 1: raise ValueError('Spectra must be a 1-dimensional array') # Deduce truncation from shape trunc = find_trunc(len(spectra)) # Zeros for output spectra_2d = np.zeros((trunc, trunc)) idx0 = 0 idx1 = trunc for i in range(trunc): spectra_2d[i, i:trunc] = spectra[idx0:idx1] idx0 += trunc - i idx1 += trunc - i - 1 return spectra_2d
af6bf177a860dd8f7d37a9d3586ab54f76e05a1f
25,300
def dict_factory(cursor, row): """ This method is used to convert tuple type to dict after execute SQL queries in python. :param cursor: :param row: :return: """ d = {} for idx, col in enumerate(cursor.description): d[col[0]] = row[idx] return d
4f44cb368cff38db313e476a9b3a3bcabcca3bb3
25,301
import torch def predict_batch(model, x_batch, dynamics, fast_init): """ Compute the softmax prediction probabilities for a given data batch. Args: model: EnergyBasedModel x_batch: Batch of input tensors dynamics: Dictionary containing the keyword arguments for the relaxation dynamics on u fast_init: Boolean to specify if fast feedforward initilization is used for the prediction Returns: Softmax classification probabilities for the given data batch """ # Initialize the neural state variables model.reset_state() # Clamp the input to the test sample, and remove nudging from ouput model.clamp_layer(0, x_batch.view(-1, model.dimensions[0])) model.set_C_target(None) # Generate the prediction if fast_init: model.fast_init() else: model.u_relax(**dynamics) return torch.nn.functional.softmax(model.u[-1].detach(), dim=1)
61102cfa3bcb3e7d52e9f3eca8c97db4d726c1a7
25,302
def render_openapi(api, request): """Prepare openapi specs.""" # Setup Specs options = dict(api.openapi_options) options.setdefault('servers', [{ 'url': str(request.url.with_query('').with_path(api.prefix)) }]) spec = APISpec( options['info'].pop('title', f"{ api.app.cfg.name.title() } API"), options['info'].pop('version', '1.0.0'), options.pop('openapi_version', '3.0.0'), **options, plugins=[MarshmallowPlugin()]) spec.tags = {} # Setup Authorization if api.authorize: _, _, schema = parse_docs(api.authorize) spec.options['security'] = [] for key, value in schema.items(): spec.components.security_scheme(key, value) spec.options['security'].append({key: []}) # Setup Paths routes = api.router.routes() for route in routes: if route.path in SKIP_PATH: continue spec.path(route.path, **route_to_spec(route, spec)) return spec.to_dict()
96e49080a6c66f05210676c71a6e169f4caeca95
25,303
def apply_transformations(initial_representation: list, events: list) -> float: """Apply the transformations in the events list to the initial representation""" scale = 1 rot_angle = 0 trans_vector = [0, 0] for item in events: for event in item["events"]: if event["type"] == "TRANSLATION": trans_vector[X_COORDINATE] += event["trigger"]["transformation"][X_COORDINATE] trans_vector[Y_COORDINATE] += event["trigger"]["transformation"][Y_COORDINATE] elif event["type"] == "ROTATION": rot_angle += event["trigger"]["transformation"] elif event["type"] == "UNIFORM_SCALE": scale *= event["trigger"]["transformation"] # Apply multiplication polygon = geometry.Polygon(initial_representation) s_polygon = affinity.scale(polygon, xfact=scale, yfact=scale, origin=(0, 0)) r_s_polygon = affinity.rotate(s_polygon, rot_angle, origin=(0, 0)) t_r_s_polygon = affinity.translate(r_s_polygon, xoff=trans_vector[0], yoff=trans_vector[1]) return polygon_to_vertices_list(t_r_s_polygon)
a96be8bafe3b3cde3411f9c8efbf95629319b3cb
25,304
def affine_transform(transform, points): """ Transforms a set of N x 2 points using the given Affine object. """ reshaped_points = np.vstack([points.T, np.ones((1, points.shape[0]))]) transformed = np.dot(affine_to_matrix(transform), reshaped_points) return transformed.T[:,:2]
b976466d688003c7822f363949168d4acb6addb0
25,305
from datetime import datetime def get_current_time_in_millisecs(): """Returns time in milliseconds since the Epoch.""" return get_time_in_millisecs(datetime.datetime.utcnow())
17348e6c4994b3da0669be0ab39a7e8b01fd0e1c
25,306
import math def get_test_paths(paths, snaps): """ Return $snaps paths to be tested on GLUE """ if snaps == -1: return paths interval = len(paths) * 1. / snaps test_paths = [] for i in range(1, snaps+1): idx = int(math.ceil(interval * i)) - 1 test_paths.append(paths[idx]) return test_paths
a2ac1f89740e85b6322e553559850c0e686a28c8
25,308
def is_success(code): """Return that the client's request was successfully received, understood, and accepted.""" return 200 <= code <= 299
8a6e64c0f218ca5a866a444c730e1ebf7628727e
25,309
def is_palindrome_v3(s): """ (str) -> bool Return True if and only if s is a palindrome. >>> is_palindrome_v3('noon') True >>> is_palindrome_v3('racecar') True >>> is_palindrome_v3('dented') False >>> is_palindrome_v3('') True >>> is_palindrome_v3(' ') True """ j = len(s) - 1 for i in range(len(s) // 2): if s[i] != s[j - i]: return False return True
70f3393e39b30198879dbc5856c0c73b4be9601d
25,310
from typing import BinaryIO def read(fd: BinaryIO) -> Entity: """Read mug scene from `fd` file object. Args: fd: File object to read from. Returns: Root entity. """ if fd.read(4) != b'MUGS': raise ValueError("not a valid mug file format") return read_recursive(fd)
2cb0b695ec1d75987940e862226166be22bad91d
25,311
def transform(x,y): """ This function takes an input vector of x values and y values, transforms them to return the y in a linearized format (assuming nlogn function was used to create y from x) """ final = [] for i in range(0, len(y)): new = y[i]#/x[i] final.append(2 ** new) return final
119db625f5ebf469794bf3bdacd20a1c70ccd133
25,312
def _GRIsAreEnabled(): """Returns True if GRIs are enabled.""" return (properties.VALUES.core.enable_gri.GetBool() or properties.VALUES.core.resource_completion_style.Get() == 'gri')
55713933090509944dc42333bb478c11db9a4176
25,313
def fatorial(n, show=False): """ -> Calcula o Fatorial de um número :param n: O número a ser calculado. :param show: (opcional) Mostrar ou não a conta. :return: O valor do Fatorial de um número n. """ contador = n resultado = guardado = 0 print('-' * 35) while contador >= 0: guardado = n * (n - 1) resultado += guardado contador -= 1 if show: for contando in range(n, 0, -1): print(contando, end='') if contando > 1: print(' x ', end='') print(' = ', end='') return resultado
ddb4d91b3813e270e746bb0d463a5da595366b86
25,314
def start_job(job, hal_id, refGenome, opts): """Set up the structure of the pipeline.""" hal = hal_id # Newick representation of the HAL species tree. newick_string = get_hal_tree(hal) job.fileStore.logToMaster("Newick string: %s" % (newick_string)) tree = newick.loads(newick_string)[0] rerooted = reroot_tree(tree, refGenome) job.fileStore.logToMaster("Rerooted newick string: %s" % (newick.dumps([rerooted]))) if opts.targetGenomes is not None: # We don't need the alignment to all genomes, just a subset. prune_tree(rerooted, opts.targetGenomes) job.fileStore.logToMaster("Pruned newick string: %s" % newick.dumps(rerooted)) def setup_jobs(node): """Recursively set up jobs for this node and its children.""" prev_data = [setup_jobs(child) for child in node.descendants] # At this point all of the jobs for the lower parts of the tree have been set up. lifted_data = [prev_lifted for _, prev_lifted in prev_data] merge_job = job.wrapJobFn(merge_blocks_job, node.name, [n.name for n in node.descendants], lifted_data, hal_id, opts) for prev_job, _ in prev_data: prev_job.addFollowOn(merge_job) if node.is_leaf: job.addChild(merge_job) if node.ancestor is None: return merge_job.rv() else: # Find out whether we have to lift up or down original_node = find_node_by_name(tree, node.name) if original_node.ancestor is None or node.ancestor.name != original_node.ancestor.name: lift_down_job = merge_job.addFollowOnJobFn(lift_job, 'down', node.name, node.ancestor.name, merge_job.rv(), hal_id, opts) return lift_down_job, lift_down_job.rv() else: lift_up_job = merge_job.addFollowOnJobFn(lift_job, 'up', node.name, node.ancestor.name, merge_job.rv(), hal_id, opts) return lift_up_job, lift_up_job.rv() blocks_on_ref = setup_jobs(rerooted) all_genomes = [node.name for node in tree.walk()] return job.addFollowOnJobFn(maf_export_job, hal, all_genomes, blocks_on_ref, opts).rv()
5ddade182d045d7a6384d7e6c8d133650dafebbd
25,315
def cleanup_databases(): """ Returns: bool: admin_client fixture should ignore any existing databases at start of test and clean them up. """ return False
63fa94389609b8e28779d1e9e55e9b1ecde502b6
25,318
def spot_centroid(regions): """Returns centroids for a list of regionprops. Args: regions (regionprops): List of region proposals (skimage.measure). Returns: list: Centroids of regionprops. """ return [r.centroid for r in regions]
f53f403dddf0af123afd207e33cc06254a0f2538
25,321
def one_election_set_reg(request, election): """ Set whether this is open registration or not """ # only allow this for public elections if not election.private_p: open_p = bool(int(request.GET['open_p'])) election.openreg = open_p election.save() return HttpResponseRedirect(settings.SECURE_URL_HOST + reverse(voters_list_pretty, args=[election.uuid]))
5486c8b277528204260189f1f248aadc20cd9354
25,323
def overrides(conf, var): """This api overrides the dictionary which contains same keys""" if isinstance(var, list): for item in var: if item in conf: for key, value in conf[item].items(): conf[key] = value elif var in conf: for key, value in conf[var].items(): conf[key] = value return conf
18375dc43a0d684feaf9089756ecb45eb5a366f3
25,324
def annual_to_daily_rate(rate, trading_days_in_year=TRADING_DAYS_IN_YEAR): """ Infer daily rate from annual rate :param rate: the annual rate of return :param trading_days_in_year: optional, trading days in year (default = 252) :return: the daily rate """ return subdivide_rate(rate, trading_days_in_year)
a93ce4e3b0ba247f37b5a867025670a7f064022e
25,325
def make_hashable(data): """Make the given object hashable. It makes it ready to use in a `hash()` call, making sure that it's always the same for lists and dictionaries if they have the same items. :param object data: the object to hash :return: a hashable object :rtype: object """ if isinstance(data, (list, tuple)): return tuple((make_hashable(item) for item in data)) elif isinstance(data, dict): return tuple( (key, make_hashable(value)) for key, value in sorted(data.items()) ) else: return data
e4b88978ddee6d4dfc354845184a0e80b1f434bf
25,326
from typing import Dict from typing import Tuple def prepare_model_parameters( parameters: Dict[str, FloatOrDistVar], data: DataFrame, beta_fun, splines, spline_power ) -> Tuple[Dict[str, FloatLike], Dict[str, NormalDistVar]]: """Prepares model input parameters and returns independent and dependent parameters Also shifts back simulation to start with only exposed people. """ # Set up fit parameters ## Dependent parameters which will be fitted pp = {key: val for key, val in parameters.items() if isinstance(val, GVar)} ## Independent model meta parameters xx = {key: val for key, val in parameters.items() if key not in pp} # This part ensures that the simulation starts with only exposed persons ## E.g., we shift the simulation backwards such that exposed people start to ## become infected xx["offset"] = int( expon.ppf(0.99, 1 / pp["incubation_days"].mean) ) # Enough time for 95% of exposed to become infected # pp["logistic_x0"] += xx["offset"] xx['beta_fun'] = beta_fun xx['knots'] = splines xx['spline_power'] = spline_power ## Store the actual first day and the actual last day xx["day0"] = data.index.min() xx["day-1"] = data.index.max() ## And start earlier in time xx["dates"] = date_range( xx["day0"] - timedelta(xx["offset"]), freq="D", periods=xx["offset"] ).union(data.index) # initialize the spline parameters on the flexible beta if xx['beta_fun'] == "flexible_beta": pp['beta_splines'] = gvar([pp['pen_beta'].mean for i in range(len(xx['knots']))], [pp['pen_beta'].sdev for i in range(len(xx['knots']))]) pp.pop("pen_beta") pp.pop('logistic_k') pp.pop('logistic_x0') pp.pop('logistic_L') ## Thus, all compartment but exposed and susceptible are 0 for key in ["infected", "recovered", "icu", "vent", "hospital"]: xx[f"initial_{key}"] = 0 pp["initial_exposed"] = ( xx["n_hosp"] / xx["market_share"] / pp["hospital_probability"] ) xx["initial_susceptible"] -= pp["initial_exposed"].mean return xx, pp
c68692148115aa8aa5b9a0b600d6b335cd7ed99f
25,327
import logging def paper_features_to_author_features( author_paper_index, paper_features): """Averages paper features to authors.""" assert paper_features.shape[0] == NUM_PAPERS assert author_paper_index.shape[0] == NUM_AUTHORS author_features = np.zeros( [NUM_AUTHORS, paper_features.shape[1]], dtype=paper_features.dtype) for author_i in range(NUM_AUTHORS): paper_indices = author_paper_index[author_i].indices author_features[author_i] = paper_features[paper_indices].mean( axis=0, dtype=np.float32) if author_i % 10000 == 0: logging.info("%d/%d", author_i, NUM_AUTHORS) return author_features
6394c57d2b48461287cc77cca021d25c377efaae
25,328
def set_chart_time_horizon(request) -> JsonResponse: """ Set the x-axis (time horizon) of a chart. API Call: /set_chart_time_horizon? monitor_name=<monitor name>& value=<time horizon to set> :param request: HTTP request that expects a 'monitor_name' and 'value' argument. 'value' represents the new time horizon to be set. Valid time horizons are: 'day', 'week', 'month', 'year', or an integer representing a number of most recent hours to display. :return: The new value after being set or the old value if it was not set. """ kwargs = _parse_args(request, 'monitor_name', 'value') rv = MonitorServiceManager().set_value(kwargs.get('monitor_name'), 'charting_time_horizon', kwargs.get('value')) return JsonResponse(rv, safe=False)
94eb982090da2e761032aa5fef4f210c2ff312ee
25,329
def get_single_io_arg(info): """ Get single input/output arg from io info :param info: :return:input/output arg """ if 'valid' not in info: raise ValueError("Json string Errors, key:valid not found.") if info['valid']: check_arg_info(info) del info['valid'] del info['name'] if 'range' in info: for i in range(len(info['range'])): if info['range'][i][1] == -1: info['range'][i][1] = None res = info else: res = None return res
6062f5e1ea61d6a999d106e40e72610b2373b26a
25,330
from typing import Dict from typing import Any def new_credentials( client_id: str, consumer_secret: str, data: Dict[str, Any] ) -> Credentials: """Create Credentials from config and json.""" return Credentials( access_token=str_or_raise(data.get("access_token")), token_expiry=arrow.utcnow().timestamp + data.get("expires_in"), token_type=str_or_raise(data.get("token_type")), refresh_token=str_or_raise(data.get("refresh_token")), userid=int_or_raise(data.get("userid")), client_id=str_or_raise(client_id), consumer_secret=str_or_raise(consumer_secret), )
2f582de9863ed15122678d8268c5f2a9c8a0484e
25,331
def get_chains(table, ipv6=False): """ Return the existing chains of a table """ iptc_table = _iptc_gettable(table, ipv6) return [iptc_chain.name for iptc_chain in iptc_table.chains]
659119d90befb241a205f2a70eeafc273098a91a
25,332
def unscale_fundamental_matrix(fundamental_matrix, M): """ Unscale fundamental matrix by coordinate scaling factor :param fundamental_matrix: :param M: Scaling factor :return: Unscaled fundamental matrix """ T = np.diag([1 / M, 1 / M, 1]) unscaled_F = T.T.dot(fundamental_matrix).dot(T) return unscaled_F
968c924870a93363cf78bfcc593b5c4367375692
25,334
def initialize_server_request(request): """Shortcut for initialization.""" # Django converts Authorization header in HTTP_AUTHORIZATION # Warning: it doesn't happen in tests but it's useful, do not remove! auth_header = {} if 'Authorization' in request.META: auth_header = {'Authorization': request.META['Authorization']} elif 'HTTP_AUTHORIZATION' in request.META: auth_header = {'Authorization': request.META['HTTP_AUTHORIZATION']} oauth_request = OAuthRequest.from_request(request.method, request.build_absolute_uri(), headers=auth_header, parameters=dict(request.REQUEST.items()), query_string=request.environ.get('QUERY_STRING', '')) if oauth_request: oauth_server = OAuthServer(DataStore(oauth_request)) oauth_server.add_signature_method(OAuthSignatureMethod_PLAINTEXT()) oauth_server.add_signature_method(OAuthSignatureMethod_HMAC_SHA1()) else: oauth_server = None return oauth_server, oauth_request
f844a677e48a933401dbd6028ce7faf8e58e77cd
25,335
from .sky_coordinate import SkyCoord from typing import Sequence def _parse_coordinate_arg(coords, frame, units, init_kwargs): """ Single unnamed arg supplied. This must be: - Coordinate frame with data - Representation - SkyCoord - List or tuple of: - String which splits into two values - Iterable with two values - SkyCoord, frame, or representation objects. Returns a dict mapping coordinate attribute names to values (or lists of values) """ is_scalar = False # Differentiate between scalar and list input # valid_kwargs = {} # Returned dict of lon, lat, and distance (optional) components = {} skycoord_kwargs = {} frame_attr_names = list(frame.representation_component_names.keys()) repr_attr_names = list(frame.representation_component_names.values()) repr_attr_classes = list(frame.representation.attr_classes.values()) n_attr_names = len(repr_attr_names) # Turn a single string into a list of strings for convenience if isinstance(coords, str): is_scalar = True coords = [coords] if isinstance(coords, (SkyCoord, BaseCoordinateFrame)): # Note that during parsing of `frame` it is checked that any coordinate # args have the same frame as explicitly supplied, so don't worry here. if not coords.has_data: raise ValueError('Cannot initialize from a frame without coordinate data') data = coords.data.represent_as(frame.representation_type) values = [] # List of values corresponding to representation attrs repr_attr_name_to_drop = [] for repr_attr_name in repr_attr_names: # If coords did not have an explicit distance then don't include in initializers. if (isinstance(coords.data, UnitSphericalRepresentation) and repr_attr_name == 'distance'): repr_attr_name_to_drop.append(repr_attr_name) continue # Get the value from `data` in the eventual representation values.append(getattr(data, repr_attr_name)) # drop the ones that were skipped because they were distances for nametodrop in repr_attr_name_to_drop: nameidx = repr_attr_names.index(nametodrop) del repr_attr_names[nameidx] del units[nameidx] del frame_attr_names[nameidx] del repr_attr_classes[nameidx] if coords.data.differentials and 's' in coords.data.differentials: orig_vel = coords.data.differentials['s'] vel = coords.data.represent_as(frame.representation, frame.get_representation_cls('s')).differentials['s'] for frname, reprname in frame.get_representation_component_names('s').items(): if (reprname == 'd_distance' and not hasattr(orig_vel, reprname) and 'unit' in orig_vel.get_name()): continue values.append(getattr(vel, reprname)) units.append(None) frame_attr_names.append(frname) repr_attr_names.append(reprname) repr_attr_classes.append(vel.attr_classes[reprname]) for attr in frame_transform_graph.frame_attributes: value = getattr(coords, attr, None) use_value = (isinstance(coords, SkyCoord) or attr not in coords._attr_names_with_defaults) if use_value and value is not None: skycoord_kwargs[attr] = value elif isinstance(coords, BaseRepresentation): if coords.differentials and 's' in coords.differentials: diffs = frame.get_representation_cls('s') data = coords.represent_as(frame.representation_type, diffs) values = [getattr(data, repr_attr_name) for repr_attr_name in repr_attr_names] for frname, reprname in frame.get_representation_component_names('s').items(): values.append(getattr(data.differentials['s'], reprname)) units.append(None) frame_attr_names.append(frname) repr_attr_names.append(reprname) repr_attr_classes.append(data.differentials['s'].attr_classes[reprname]) else: data = coords.represent_as(frame.representation) values = [getattr(data, repr_attr_name) for repr_attr_name in repr_attr_names] elif (isinstance(coords, np.ndarray) and coords.dtype.kind in 'if' and coords.ndim == 2 and coords.shape[1] <= 3): # 2-d array of coordinate values. Handle specially for efficiency. values = coords.transpose() # Iterates over repr attrs elif isinstance(coords, (Sequence, np.ndarray)): # Handles list-like input. vals = [] is_ra_dec_representation = ('ra' in frame.representation_component_names and 'dec' in frame.representation_component_names) coord_types = (SkyCoord, BaseCoordinateFrame, BaseRepresentation) if any(isinstance(coord, coord_types) for coord in coords): # this parsing path is used when there are coordinate-like objects # in the list - instead of creating lists of values, we create # SkyCoords from the list elements and then combine them. scs = [SkyCoord(coord, **init_kwargs) for coord in coords] # Check that all frames are equivalent for sc in scs[1:]: if not sc.is_equivalent_frame(scs[0]): raise ValueError("List of inputs don't have equivalent " "frames: {0} != {1}".format(sc, scs[0])) # Now use the first to determine if they are all UnitSpherical allunitsphrepr = isinstance(scs[0].data, UnitSphericalRepresentation) # get the frame attributes from the first coord in the list, because # from the above we know it matches all the others. First copy over # the attributes that are in the frame itself, then copy over any # extras in the SkyCoord for fattrnm in scs[0].frame.frame_attributes: skycoord_kwargs[fattrnm] = getattr(scs[0].frame, fattrnm) for fattrnm in scs[0]._extra_frameattr_names: skycoord_kwargs[fattrnm] = getattr(scs[0], fattrnm) # Now combine the values, to be used below values = [] for data_attr_name, repr_attr_name in zip(frame_attr_names, repr_attr_names): if allunitsphrepr and repr_attr_name == 'distance': # if they are *all* UnitSpherical, don't give a distance continue data_vals = [] for sc in scs: data_val = getattr(sc, data_attr_name) data_vals.append(data_val.reshape(1,) if sc.isscalar else data_val) concat_vals = np.concatenate(data_vals) # Hack because np.concatenate doesn't fully work with Quantity if isinstance(concat_vals, u.Quantity): concat_vals._unit = data_val.unit values.append(concat_vals) else: # none of the elements are "frame-like" # turn into a list of lists like [[v1_0, v2_0, v3_0], ... [v1_N, v2_N, v3_N]] for coord in coords: if isinstance(coord, str): coord1 = coord.split() if len(coord1) == 6: coord = (' '.join(coord1[:3]), ' '.join(coord1[3:])) elif is_ra_dec_representation: coord = _parse_ra_dec(coord) else: coord = coord1 vals.append(coord) # Assumes coord is a sequence at this point # Do some basic validation of the list elements: all have a length and all # lengths the same try: n_coords = sorted(set(len(x) for x in vals)) except Exception: raise ValueError('One or more elements of input sequence does not have a length') if len(n_coords) > 1: raise ValueError('Input coordinate values must have same number of elements, found {0}' .format(n_coords)) n_coords = n_coords[0] # Must have no more coord inputs than representation attributes if n_coords > n_attr_names: raise ValueError('Input coordinates have {0} values but ' 'representation {1} only accepts {2}' .format(n_coords, frame.representation_type.get_name(), n_attr_names)) # Now transpose vals to get [(v1_0 .. v1_N), (v2_0 .. v2_N), (v3_0 .. v3_N)] # (ok since we know it is exactly rectangular). (Note: can't just use zip(*values) # because Longitude et al distinguishes list from tuple so [a1, a2, ..] is needed # while (a1, a2, ..) doesn't work. values = [list(x) for x in zip(*vals)] if is_scalar: values = [x[0] for x in values] else: raise ValueError('Cannot parse coordinates from first argument') # Finally we have a list of values from which to create the keyword args # for the frame initialization. Validate by running through the appropriate # class initializer and supply units (which might be None). try: for frame_attr_name, repr_attr_class, value, unit in zip( frame_attr_names, repr_attr_classes, values, units): components[frame_attr_name] = repr_attr_class(value, unit=unit, copy=False) except Exception as err: raise ValueError('Cannot parse first argument data "{0}" for attribute ' '{1}'.format(value, frame_attr_name), err) return skycoord_kwargs, components
6ed456c07b407476a9c02d7d87c9351d27fb7513
25,336
from typing import Tuple def build_names(dependency: Dependency, version_in_url: bool = True) -> Tuple[RemoteResolver, str, str]: """ A function to build directory and file names based on the given dependency.. :param dependency: the dependency to create the file container for. :param version_in_url: a flag noting whether the dependency version should be included in the URL we build. :return: a tuple containing an appropriate remote resolver, a classified base file name and a base file name. """ resolver = create_remote_resolver( dependency.group, dependency.name, dependency.version if version_in_url else None ) name = dependency.name version = dependency.version classifier = dependency.classifier base_name = f'{name}-{version}' classified_name = f'{base_name}-{classifier}' if classifier else base_name return resolver, classified_name, base_name
83a3c063e69a6a8e16e0af6f2e6f43d9f423cd3e
25,337
def convert_apc_examples_to_features(examples, label_list, max_seq_len, tokenizer, opt=None): """Loads a data file into a list of `InputBatch`s.""" configure_spacy_model(opt) bos_token = tokenizer.bos_token eos_token = tokenizer.eos_token label_map = {label: i for i, label in enumerate(label_list, 1)} opt.IOB_label_to_index = label_map features = [] for (ex_index, example) in enumerate(examples): text_tokens = example.text_a[:] aspect_tokens = example.text_b[:] IOB_label = example.IOB_label # aspect_label = example.aspect_label aspect_label = ['B-ASP'] * len(aspect_tokens) polarity = [-999] + example.polarity + [-999] positions = np.where(np.array(polarity) > 0)[0].tolist() tokens = [] labels = [] valid = [] label_mask = [] enum_tokens = [bos_token] + text_tokens + [eos_token] + aspect_tokens + [eos_token] IOB_label = [bos_token] + IOB_label + [eos_token] + aspect_label + [eos_token] enum_tokens = enum_tokens[:max_seq_len] IOB_label = IOB_label[:max_seq_len] aspect = ' '.join(example.text_b) try: text_left, _, text_right = [s.strip() for s in ' '.join(example.text_a).partition(aspect)] except: text_left = ' '.join(example.text_a) text_right = '' aspect = '' text_raw = text_left + ' ' + aspect + ' ' + text_right validate_example(text_raw, aspect, '') prepared_inputs = prepare_input_for_atepc(opt, tokenizer, text_left, text_right, aspect) lcf_cdm_vec = prepared_inputs['lcf_cdm_vec'] lcf_cdw_vec = prepared_inputs['lcf_cdw_vec'] for i, word in enumerate(enum_tokens): token = tokenizer.tokenize(word) tokens.extend(token) cur_iob = IOB_label[i] for m in range(len(token)): if m == 0: label_mask.append(1) labels.append(cur_iob) valid.append(1) else: valid.append(0) tokens = tokens[0:min(len(tokens), max_seq_len - 2)] labels = labels[0:min(len(labels), max_seq_len - 2)] valid = valid[0:min(len(valid), max_seq_len - 2)] segment_ids = [0] * len(example.text_a[:]) + [1] * (max_seq_len - len([0] * len(example.text_a[:]))) segment_ids = segment_ids[:max_seq_len] label_ids = [] for i, token in enumerate(tokens): if len(labels) > i: label_ids.append(label_map[labels[i]]) input_ids_spc = tokenizer.convert_tokens_to_ids(tokens) input_mask = [1] * len(input_ids_spc) label_mask = [1] * len(label_ids) while len(input_ids_spc) < max_seq_len: input_ids_spc.append(0) input_mask.append(0) label_ids.append(0) label_mask.append(0) while len(valid) < max_seq_len: valid.append(1) while len(label_ids) < max_seq_len: label_ids.append(0) label_mask.append(0) assert len(input_ids_spc) == max_seq_len assert len(input_mask) == max_seq_len assert len(segment_ids) == max_seq_len assert len(label_ids) == max_seq_len assert len(valid) == max_seq_len assert len(label_mask) == max_seq_len features.append( InputFeatures(input_ids_spc=input_ids_spc, input_mask=input_mask, segment_ids=segment_ids, label_id=label_ids, polarity=polarity, valid_ids=valid, label_mask=label_mask, tokens=example.text_a, lcf_cdm_vec=lcf_cdm_vec, lcf_cdw_vec=lcf_cdw_vec, aspect=aspect, positions=positions ) ) return features
8eb8570e4d6f2f5fa22583ff216cbf216ac10145
25,338
from datetime import datetime from pathlib import Path def write_output(opts: AppOptions, out_lines): """ Writes the modified document lines to a new file with "MODIFIED" and a date_time tag added to the file name. Returns the file name. """ ds = datetime.now().strftime("%Y%m%d_%H%M%S") out_name = f"{opts.doc_path.stem}_MODIFIED_{ds}{opts.doc_path.suffix}" out_path = Path(opts.doc_path).parent.joinpath(out_name) assert not out_path.exists() print(f"\nSaving '{out_path}'") with open(out_path, "w") as out_file: for s in out_lines: out_file.write(f"{s}\n") return str(out_path)
613bb6a3290e8a86eb8c945248b6088db3e9dc91
25,339
def ssh_pub_key(key_file): """Creates a string of a public key from the private key file. """ key = paramiko.RSAKey(filename=key_file) pub = "{0} {1} autogenerated by polyphemus" pub = pub.format(key.get_name(), key.get_base64()) return pub
bf46c62031a7d761278612e5835b829a32f7fbe2
25,340
def _variable_with_weight_decay(name, shape, stddev, wd, use_xavier=True, use_zeros=False, init=None): """Helper to create an initialized Variable with weight decay. Note that the Variable is initialized with a truncated normal distribution. A weight decay is added only if one is specified. Args: name: name of the variable shape: list of ints stddev: standard deviation of a truncated Gaussian wd: add L2Loss weight decay multiplied by this float. If None, weight decay is not added for this Variable. use_xavier: bool, whether to use xavier initializer use_zeros: bool, whether to use zero initializer Returns: Variable Tensor """ if use_xavier: #initializer = tf.contrib.layers.xavier_initializer() initializer = tf.initializers.glorot_normal() elif use_zeros: initializer = tf.constant_initializer(0.0) else: initializer = tf.truncated_normal_initializer(stddev=stddev) var = _variable_on_cpu(name, shape, initializer) if wd is not None: weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss') tf.add_to_collection('losses', weight_decay) return var
a3d43147508bd10040521dc59cfc49de81bbb70b
25,341
def build_mobile_vit(config): """Build MobileViT by reading options in config object Args: config: config instance contains setting options Returns: model: MobileViT model """ model = MobileViT(in_channels=config.MODEL.IN_CHANNELS, dims=config.MODEL.DIMS, # XS: [16, 32, 48, 48, 48, 64, 80, 96, 384] hidden_dims=config.MODEL.HIDDEN_DIMS, # XS: [96, 120, 144], # d: hidden dims in mobilevit block num_classes=config.MODEL.NUM_CLASSES) return model
7c8eb92214240b922f4df242f937ba05985c3d2c
25,342
from functools import reduce from bs4 import BeautifulSoup def search_youtube(query, retries = 4, max_num_results = -1): """ Unlimited youtube search by web scrapping """ transformed_query = reduce(lambda s_ant, s_sig : s_ant + '+' + s_sig, query) if len(query) != 0 else '' scrapped_data = [] num_of_requests = 0 for i in range(retries): page = get_html(transformed_query) num_of_requests += 1 if "</ol>" in page.text: break logger.info(f" Number of requests : {num_of_requests}") soup = BeautifulSoup(page.content, 'html.parser') item_list = soup.find('ol', class_='item-section') if item_list is None: raise Exception(" Html without list of results ") items = item_list.find_all('li') scrapped_data = [x for x in map(extract_data, items) if x is not None] return scrapped_data if max_num_results <= 0 else scrapped_data[:max_num_results]
119305a5e6ad562fa9f537d42fd36617338b2472
25,344
from typing import List from typing import Tuple from typing import OrderedDict def define_empty_source_parallel_buckets(max_seq_len_target: int, bucket_width: int = 10) -> List[Tuple[int, int]]: """ Returns (source, target) buckets up to (None, max_seq_len_target). The source is empty since it is supposed to not contain data that can be bucketized. The target is used as reference to create the buckets. :param max_seq_len_target: Maximum target bucket size. :param bucket_width: Width of buckets on longer side. """ target_step_size = max(1, bucket_width) target_buckets = define_buckets(max_seq_len_target, step=target_step_size) # source buckets are always 0 since there is no text source_buckets = [0 for b in target_buckets] target_buckets = [max(2, b) for b in target_buckets] parallel_buckets = list(zip(source_buckets, target_buckets)) # deduplicate for return buckets = list(OrderedDict.fromkeys(parallel_buckets)) buckets.sort() return buckets
3e5261191c5a55f4d82ee84b9000e0996e06c9f9
25,346
def _hue_scaling(args): """return scaled hue values as described in http://dlmf.nist.gov/help/vrml/aboutcolor args : ndarray of args / angle of complex numbers between in the open interval [0, 2*pi) q : scaled values returned in the interval [0, 1) """ q = 4.0*_np.mod((args/(2*_np.pi) + 1), 1) mask1 = (q >= 0) * (q < 1) mask2 = (q >= 1) * (q < 2) mask3 = (q >= 2) * (q < 3) mask4 = (q >= 3) * (q < 4) q[mask1] = (60.0/360)*q[mask1] q[mask2] = (60.0/360)*(2.0*q[mask2] - 1) q[mask3] = (60.0/360)*(q[mask3] + 1) q[mask4] = (60.0/360)*2.0*(q[mask4] - 1) return q
42fa445d5e790eed13d692613771d02cc55fad94
25,347
from qharv.inspect import axes_pos def get_orbs(fp, orbs, truncate=False, tol=1e-8): """ return the list of requested Kohn-Sham orbitals Args: fp (h5py.File): wf h5 file orbs (list): a list of 3-tuples, each tuple species the KS state by (kpoint/twist, spin, band) i.e. (ik, ispin, ib) truncate (bool, optional): remove PWs with ``small'' coefficient tol (float, optional): define ``small'' as |ck|^2 < tol """ gvecs = get(fp, 'gvectors') qvecs = get_twists(fp) axes = get(fp, 'axes') raxes = axes_pos.raxes(axes) kvecsl = [] psigl = [] for orb in orbs: ik, ispin, ib = orb # PW basis kvecs = np.dot(gvecs+qvecs[ik], raxes) npw = len(kvecs) # PW coefficients psig = get_orb_in_pw(fp, ik, ispin, ib) sel = np.ones(npw, dtype=bool) if truncate: # cut down on the # of PWs pg2 = (psig.conj()*psig).real sel = pg2 > tol kvecsl.append(kvecs[sel]) psigl.append(psig[sel]) return kvecsl, psigl
d4b7bf639b81f1d776f29bb736a51b7b8684c42d
25,348
def geturlcgivars(baseurl, port): """ Extract CGI variables from baseurl >>> geturlcgivars("http://host.org/base", "80") ('host.org', '80', '/base') >>> geturlcgivars("http://host.org:8000/base", "80") ('host.org', '8000', '/base') >>> geturlcgivars('/base', 8000) ('', '8000', '/base') >>> geturlcgivars("base", '8000') ('', '8000', '/base') >>> geturlcgivars("http://host", '8000') ('host', '8000', '/') >>> geturlcgivars("http://host/", '8000') ('host', '8000', '/') """ u = util.url(baseurl) name = u.host or '' if u.port: port = u.port path = u.path or "" if not path.startswith('/'): path = '/' + path return name, str(port), path
116ace2bb8275de5faddb4c40e9de05d8a7aee95
25,349
def prepare_log_for_upload(symbolized_output, return_code): """Prepare log for upload.""" # Add revision information to the logs. app_revision = environment.get_value('APP_REVISION') job_name = environment.get_value('JOB_NAME') components = revisions.get_component_list(app_revision, job_name) component_revisions = ( revisions.format_revision_list(components, use_html=False) or 'Not available.\n') revisions_header = ( 'Component revisions (build r{app_revision}):\n{component_revisions}\n'. format( app_revision=app_revision, component_revisions=component_revisions)) return_code_header = 'Return code: %s\n\n' % return_code return revisions_header + return_code_header + symbolized_output
78e41f67be726f2fb0fb4fb59aa23d124a371055
25,351
import math def bucketize(point, bucket_size): """floor the point to the next lower multiple of bucket_size""" return bucket_size * math.floor(point / bucket_size)
ff152cb5b646df1fe883bd943033c05e83623f31
25,352
def find_unit(df): """find unit in the df, add column to df indicating which token contains unit and return the unit as string.""" doc_unit = "" # thousand = "(\$)(0){3}|thousand|€(\s*)thous|TEUR|T(\s*)€|Tsd|Tausend" # million = "millions|million|£(\s*)m|$(\s*)m|€(\s*)m|mn|mio(\s*)€|in(\s+)mio|MM|\d+(M){1}" # billion = "billion|Bn|Mrd|Md" units = {"thousand": THOUSAND, "million": MILLION, "billion": BILLION} for key, value in units.items(): if df.apply(lambda x: x.str.contains(value, case=True).any(), axis=1).any( axis=None ): # If doc_unit is set two times => set undefined if doc_unit: doc_unit = "1" break # Set doc currency else: doc_unit = key # Create column for unit in df marking the token which contains unit df.loc[:, "unit"] = False for key, value in units.items(): df.loc[df["text"].str.contains(value, case=True), "unit"] = True # Set default unit to 1 if not doc_unit: doc_unit = "1" return doc_unit
a46eede3e5dc928f90969ff89df15c5e0039991d
25,353
import torch def regular_channels(audio ,new_channels): """ torchaudio-file([tensor,sample_rate])+target_channel -> new_tensor """ sig ,sr =audio if sig.shape[0 ]==new_channels: return audio if new_channels==1: new_sig =sig[:1 ,:] # 直接取得第一个channel的frame进行操作即可 else: # 融合(赋值)第一个通道 new_sig =torch.cat([sig ,sig] ,dim=0) # c*f->2c*f # 顺带提一句—— return [new_sig ,sr]
5b055d965f35fc4cf0f434b34e8f579f321fee89
25,354
from typing import Union from typing import Callable def is_less_than(maximum: Union[int, float, Decimal]) -> Callable[[Union[int, float, Decimal]], bool]: """ :param maximum: A number :return: A predicate that checks if a value is less than the given number """ def predicate(i: Union[int, float, Decimal]): """ :param i: A number :return: Whether the number is less than the maximum """ return i < maximum predicate.__name__ = f'_{is_less_than.__name__}_{maximum}' return predicate
9f381ae1901581f24af1f3b51f9d64a3b976d6e9
25,355
def a_function(my_arg, another): """ This is the brief description of my function. This is a more complete example of my function. It can include doctest, code blocks or any other reST structure. >>> a_function(10, [MyClass('a'), MyClass('b')]) 20 :param int my_arg: The first argument of the function. Just a number. :param another: The other argument of the important function. :type another: A list of :class:`MyClass` :return: The length of the second argument times the first argument. :rtype: int """ return my_arg * len(another)
8624edfe3ec06b53e065a6672c3b21682cdefe06
25,356
from datetime import datetime def _safe_filename(filename): """ Generates a safe filename that is unlikely to collide with existing objects in Google Cloud Storage. ``filename.ext`` is transformed into ``filename-YYYY-MM-DD-HHMMSS.ext`` """ filename = secure_filename(filename) date = datetime.datetime.utcnow().strftime("%Y-%m-%d-%H%M%S") basename, extension = filename.rsplit('.', 1) return "{0}-{1}.{2}".format(basename, date, extension)
2ea94c9d18240cf1f1c4dadd19f2bd87b39e6538
25,358
import collections def _make_with_custom_variables(func, variables): """Calls func and replaces any trainable variables. This returns the output of func, but whenever `get_variable` is called it will replace any trainable variables with the tensors in `variables`, in the same order. Non-trainable variables will re-use any variables already created. Args: func: Function to be called. variables: A list of tensors replacing the trainable variables. Returns: The return value of func is returned. """ variables = collections.deque(variables) def custom_getter(getter, name, **kwargs): if kwargs["trainable"]: return variables.popleft() else: kwargs["reuse"] = True return getter(name, **kwargs) return _wrap_variable_creation(func, custom_getter)
a36923223d22b6b09d9697da3a072c3eef4e739a
25,360
def create_loss_and_learner( model, labels, learning_rate, momentum_coef=0.0, wdecay=0.0, nesterov=False, gradient_clip_norm=None, gradient_clip_value=None): """ Auxiliary function to create loss function (cross entropy and softmax) and trainer using stochastic gradient descent with momentum. Arguments: model - imported model labels - placeholder for one-hot labels array learning_rate - learning rate for trainer momentum_coef - coefficient of momentum (deafult 0.0) wdecay - amount of weight decay (default 0.0) nesterov - use nesterov accelerated gradient (dafault False) gradient_clip_norm - target gradient norm (default None) gradient_clip_value - value to element-wise clip gradients (default None) Returns: Loss function (mean for batch) """ if model.axes.lengths != labels.axes.lengths: labels = ng.Transpose(labels) assert model.axes.lengths == labels.axes.lengths model = ng.cast_axes(model, axes=labels.axes) loss = ng.cross_entropy_multi(ng.softmax(model), labels) optimizer = GradientDescentMomentum( learning_rate, momentum_coef, wdecay, gradient_clip_norm, gradient_clip_value, nesterov ) return ng.sequential([optimizer(loss), ng.mean(loss, out_axes=())])
49669aa109f748b13b3c52efea7cbadb94d492b7
25,361
def mesh_subdivide_tri(mesh, k=1): """Subdivide a mesh using simple insertion of vertices. Parameters ---------- mesh : Mesh The mesh object that will be subdivided. k : int Optional. The number of levels of subdivision. Default is ``1``. Returns ------- Mesh A new subdivided mesh. Examples -------- >>> box = Box.from_corner_corner_height([0.0, 0.0, 0.0], [1.0, 1.0, 0.0], 1.0) >>> mesh = Mesh.from_shape(box) >>> k = 2 >>> subd = mesh_subdivide_tri(mesh, k=k) >>> mesh is subd False >>> type(mesh) is type(subd) True >>> k1 = sum(len(mesh.face_vertices(fkey)) for fkey in mesh.faces()) >>> subd.number_of_faces() == (k1 if k == 1 else k1 * 3 ** (k - 1)) True """ cls = type(mesh) subd = mesh_fast_copy(mesh) for _ in range(k): for fkey in list(subd.faces()): subd.insert_vertex(fkey) return cls.from_data(subd.data)
54912f1777dc1d508a9ab55289e90bcb28b9586f
25,363
import cartopy.crs as ccrs def make_projection(proj_params): """ turn a set of proj4 parameters into a cartopy laea projection introduced in read_resample.ipynb Parameters ---------- proj_params: dict dictionary with parameters lat_0, lon_0 datum and ellps Returns ------- cartopy projection object """ globe_w = ccrs.Globe(datum=proj_params["datum"],ellipse=proj_params['ellps']) projection_w=ccrs.LambertAzimuthalEqualArea(central_latitude=float(proj_params['lat_0']), central_longitude= float(proj_params['lon_0']),globe=globe_w) return projection_w
1852115888107b5ae9353dd746d56fb3896c1992
25,364
import pandas import logging def _shape(df): """ Return DataFrame shape even if is not a Pandas dataframe.""" if type(df) == pandas.DataFrame or type(df) == pandas.Series: return df.shape try: shape = (len(df), len(df.columns)) except Exception as e: logging.error(e) raise e return shape
d5af0e3f92ee649091d9fc8b904e60931fb0f2f7
25,365
from typing import List from pathlib import Path def hvplot_line( df, title, x, y: List[str], output_dir: Path, vlines=None, save_figure=True, **kwargs ): """Draw line splot with optional vertical lines. Example: hvplot_line( df, title=col, x="time", # This is index name y=col_name, vlines=outliers, output_dir=args.output_dir / "single", save_figure=True, width=1500, height=500, # by="timestamp.month", # groupby=["timestamp.year", "timestamp.month"], ) Args: df ([type]): Input dataframe title ([type]): Graph title x ([type]): Column name for x-axis, can be index's name y (List[str]): Column name for y-axis output_dir (Path): Output dir for html files vlines ([type], optional): Vertiline of interest. Defaults to None. save_figure (bool, optional): True to save html file. Defaults to True. Returns: [type]: [description] """ output_dir.mkdir(parents=True, exist_ok=True) p = df.hvplot( x=x, y=y, title=title, kind="line", xlabel="Time", ylabel="Value", size=10, grid=True, legend=True, fontsize=15, rot=45, **kwargs, ) if vlines is not None: for x in vlines: p = p * hv.VLine(pd.to_datetime(x)).opts(color="red", alpha=0.3) if save_figure: hvplot.save(p, output_dir / f"{title}.html") return p
1f7400bc12b492648074b2cb2dc52835cb509a1e
25,366
def load_zstack(fn): """ Returns zstack, [zmin, zmax] """ with open(fn, "rb") as f: d = np.fromfile(f,dtype=header_dtype,count=1,sep="") version, shape, zrange = d[0] zstack = np.fromfile(f,dtype='<f4',sep="").reshape(shape) return zstack, zrange
19fd400b0b341569b448e45d482df264310c9cf7
25,367
def parseFile(path): """ Read sections headed by :SectionName into lists by section name in a dictionary blank lines, line preceeding and ending whitespace and #Comments are stripped """ d={} currentList=None f = open(pathPrefix()+path, 'r') for t in f.readlines(): # Remove comments i=t.find('#') if i!=-1: t=t[:i] # Strip excess whitespace t=t.strip() if len(t)>0: if t[0]==':': currentList=[] d[t[1:]]=currentList else: if currentList!=None: currentList.append(t) return d
db5a73b5a46fc1026df775de994da150d33e3aad
25,368
def setName(name): """ Sets the name of the robot. This is cleared with a power cycle and displayed on the robot screen during idle times Name will be shortened to 11 characters Args: name (any): Name to set for the robot. Will be cast to a string Returns: None """ name = str(name)[:11] return _rc.writeAttribute(OPTYPE.ROBOT_NAME, stringToBytes(name) + [0])
5f1e12635df0cf4c95b3ce90e97a51492a477914
25,369
def twoBodyCMmom(m_0, m_1, m_2): """relative momentum for 0 -> 1 + 2""" M12S = m_1 + m_2 M12D = m_1 - m_2 if hasattr(M12S, "dtype"): m_0 = tf.convert_to_tensor(m_0, dtype=M12S.dtype) # m_eff = tf.where(m_0 > M12S, m_0, M12S) # p = (m_eff - M12S) * (m_eff + M12S) * (m_eff - M12D) * (m_eff + M12D) # if p is negative, which results from bad data, the return value is 0.0 # print("p", tf.where(p==0), m_0, m_1, m_2) p = (m_0 - M12S) * (m_0 + M12S) * (m_0 - M12D) * (m_0 + M12D) zeros = tf.zeros_like(m_0) ret = tf.where(p > 0, tf.sqrt(p) / (2 * m_0), zeros) return ret
5b8576dc33a4570f976efc1bab67a432032b02ff
25,371
def svn_repos_post_commit_hook(*args): """svn_repos_post_commit_hook(svn_repos_t repos, apr_pool_t pool) -> char""" return _repos.svn_repos_post_commit_hook(*args)
bbb9eb6fe81e80ef4729791448e5abe1d7b6ab12
25,372
def slot_selection_is_free(effect): """ all slots ar selected when participant applies """ activity = effect.instance.activity return activity.slot_selection == 'free'
153efa36dda70de02613201540d97e8f22f2bdd9
25,374
def get_consumption_tax(amount, tax_rate, decimal_type): """消費税を取得する。 :param amount: :param tax_rate: :param decimal_type: :return: """ if not amount: return 0 return get_integer(decimal_type, float(amount) * float(tax_rate))
d982d2ebc65770477a9ec06e1305115ecf2eab9e
25,375
def homology(long_sequence, short_sequence): """ Cross-compare to find the strand of long sequence with the highest similarity with the short sequence. :param long_sequence: str :param short_sequence: str :return ans: str, the strand of long sequence with the highest similarity with the short sequence """ # number of characters in the long sequence i = len(long_sequence) # number of characters in the short sequence j = len(short_sequence) # number of the same element between long- and short- sequence in a certain part of the long sequence max_match = 0 # position where the max_match begins in long sequence max_match_point = 0 ans = '' # (i - j + 1) = times needed for cross-comparison for k in range(i - j + 1): match = 0 for n in range(j): # if find the same element in the same position of long- and short- sequence, count one if short_sequence[n] == long_sequence[n+k]: match += 1 # find the biggest match, and the start position(k) in long sequence if match > max_match: max_match = match max_match_point = k # the strand of long sequence with the highest similarity with the short sequence ans = long_sequence[max_match_point:(max_match_point + j)] return ans
1865e7b60cfce3b1ca4e7884377a5a218ecba96a
25,376
def oneliner_to_phylip(line): """Convert one-liner to phylip format.""" seqs = line.strip(";\n").split(',') label_seqs = zip(seqs[:-1:2], seqs[1::2]) taxa_count = len(label_seqs) seq_length = len(label_seqs[0][1]) # pad all names to length of longest name + 1 space max_name_length = max([len(val) for val in seqs[:-1:2]]) + 1 # add header header = "%s %s\n" % (taxa_count, seq_length) alignment = '\n'.join(['%s%s' % (i[0].ljust(max_name_length), i[1]) for i in label_seqs]) return header + alignment
783d9e68172d4d30de44564b88001d30af4d8e45
25,377
def get_final_histogram(n_states, logfile, temp): """ This function analyzes the log file and performs the following tasks: 1. Output the counts of each lambda state at the last time frame (for plotting histogram) 2. Estimate the uncertainty of free energy difference from the final histogram Paraneters ---------- n_states : int Number of lambda states logfile : str The filename of the log file Returns ------- counts : np.array The counts of each lambda state Example ------- >>> get_final_histogram(40, 'solvent_0.log') [8678. 8437. 8680. 9007. 8606. 7642. 8269. 7878. 7689. 7906. 7451. 7416. 7939. 7470. 7540. 7858. 7664. 7423. 7527. 7322. 7325. 7538. 7173. 7034. 6943. 6910. 6935. 6805. 6463. 6371. 6249. 6425. 6353. 6618. 6789. 6810. 6426. 6408. 6675. 6271.] """ f = open(logfile, 'r') lines = f.readlines() f.close() lines.reverse() # from this point, lines has been reverse line_n = 0 counts = np.zeros(n_states) for l in lines: line_n += 1 if 'MC-lambda information' in l: for i in range(n_states): # start from lines[line_n - 3] counts[i] = float(lines[line_n - 3 - i].split()[5]) break kb = 1.38064852E-23 # Boltzmann constant Na = 6.0221409E23 # Avogadro's number error = np.abs(np.log(counts[0] / counts[-1])) # dimensionless error if temp is None: print('The uncertainty of the free energy difference is %5.3f kT.' % error) temp = 298.15 # default error *= (kb * Na * temp / 1000) * 0.23900573613 print('Or at 298.15K, the uncertainty is %5.3f kcal/mol' % error) else: error *= (kb * Na * float(temp) / 1000) * \ 0.23900573613 # unit: kcal/mol print('The uncertainty of the free energy difference is %5.3f kcal/mol.' % error) return counts
a72ecd4aa6b47e2c8d1368a03ea5b5887abc27c2
25,378
import logging def create_sql_delete_stmt(del_list, name): """ :param del_list: list of records that need to be formatted in SQL delete statement. :param name: the name of the table :return: SQL statement for deleting the specific records """ sql_list = ", ".join(del_list) sql_stmt = f"DELETE FROM method_usage.pandas_{name} WHERE {name}_id IN ({sql_list})" logging.info(f"{len(del_list)} {name} in delete statement") return sql_stmt
aec744198f1b0dd30836f431ac51a4080911f8ae
25,379
def parse_track(trackelement): """Extract info from every track entry and output to list.""" print(trackelement) if trackelement.find('artist').getchildren(): #artist info is nested in loved/banned tracks xml artistname = trackelement.find('artist').find('name').text artistmbid = trackelement.find('artist').find('mbid').text else: artistname = trackelement.find('artist').text artistmbid = trackelement.find('artist').get('mbid') if trackelement.find('album') is None: #no album info for loved/banned tracks albumname = '' albummbid = '' else: albumname = trackelement.find('album').text albummbid = trackelement.find('album').get('mbid') trackname = trackelement.find('name').text trackmbid = trackelement.find('mbid').text date = trackelement.find('date').get('uts') output = [date, trackname, artistname, albumname, trackmbid, artistmbid, albummbid] for i, v in enumerate(output): if v is None: output[i] = '' return output
e5cd49d765885fd0e701864831f9a2958076ca93
25,380
from typing import Mapping def _coord_matrix(model, pos, noutp): """ Create an array representing inputs and outputs of a simple model. The array has a shape (noutp, model.n_inputs). Parameters ---------- model : `astropy.modeling.Model` model pos : str Position of this model in the expression tree. One of ['left', 'right']. noutp : int Number of outputs of the compound model of which the input model is a left or right child. """ if isinstance(model, Mapping): axes = [] for i in model.mapping: axis = np.zeros((model.n_inputs,)) axis[i] = 1 axes.append(axis) m = np.vstack(axes) mat = np.zeros((noutp, model.n_inputs)) if pos == 'left': mat[: model.n_outputs, :model.n_inputs] = m else: mat[-model.n_outputs:, -model.n_inputs:] = m return mat if not model.separable: # this does not work for more than 2 coordinates mat = np.zeros((noutp, model.n_inputs)) if pos == 'left': mat[:model.n_outputs, : model.n_inputs] = 1 else: mat[-model.n_outputs:, -model.n_inputs:] = 1 else: mat = np.zeros((noutp, model.n_inputs)) for i in range(model.n_inputs): mat[i, i] = 1 if pos == 'right': mat = np.roll(mat, (noutp - model.n_outputs)) return mat
841b2ba8df26e424f2fcafc0d3180c3409078896
25,381
def showp2rev(context, mapping): """Integer. The repository-local revision number of the changeset's second parent, or -1 if the changeset has no second parent.""" ctx = context.resource(mapping, 'ctx') return ctx.p2().rev()
854225fca900e5e46ecd18efeab9fc8d3e1f9168
25,382
from typing import Optional def puan_kam(text: str = 'สวัสดี', first: Optional[bool] = None, keep_tone: Optional[bool] = None, all: Optional[bool] = False, skip_tokenize: Optional[bool] = None): """Puan kum (ผวนคำ) is a Thai toung twister, This API convert string into kampuan Play around with the options to see different results. -Args: - **text** (str): Defaults to 'สวัสดี'. - input string 'ไปเที่ยว' -> auto tokenize will apply and split to ไป and เที่ยว - list of string which accepted 3 formats: ['ไป','กิน','ข้าว'] | 'ไป','กิน','ข้าว' | ไป,กิน,ข้าว, the list input will also neglect auto tokenization. - **first** (bool, optional): if True use the first word to puan together with the last word otherwise will select second word and last word (None will let us decide). Defaults to None. - **keep_tone** (bool, optional): force whether to keep the tone when doing the puan (None will let us decide). Defaults to None. - **all** (bool, optional): if True will provide all 4 puan results. Defaults to False. - **skip_tokenize** (bool, optional): if True will skip tokenzation and use user provided list of words (input pure string will force to False or dont skip tokenization). Defaults to None. -Returns: - **results**: List of คำผวน """ if not check_thai_ch(text): raise HTTPException(400, detail=f'Input contains non Thai') text = process_text_2_list(text) try: split_words = kp.puan_kam_preprocess(text, skip_tokenize=skip_tokenize) except ValueError: try: split_words = kp.puan_kam_preprocess( text, skip_tokenize=not(skip_tokenize)) except ValueError as e: raise HTTPException(422, detail=f'Input error: {e}') if all is not None and all: return {'input': text, 'results': kp.puan_kam_all(text=split_words)} else: if first is None and keep_tone is None: return {'input': text, 'results': kp.puan_kam(text=split_words)} else: return {'input': text, 'results': kp.puan_kam_base(text=split_words, keep_tone=keep_tone, use_first=first)}
5b49aab2437a906ea23122722a45bb472011bbbb
25,383
import wx def get_app_wx(*args, **kwargs): """Create a new wx app or return an exiting one.""" app = wx.GetApp() if app is None: if 'redirect' not in kwargs: kwargs['redirect'] = False app = wx.PySimpleApp(*args, **kwargs) return app
ad4f79e57562e199833d0d948934ec6e9211eea4
25,385
def do_part_1(): """ Solve the puzzle. """ data = input_lines(1) total = 0 for line in data: val, op = interpret_line(line) total = op(total, val) print(total) return total
af8c96a3963bf2732b0281a2b425da73a1ab26e5
25,386
def handle_rpc_errors(fnc): """Decorator to add more context to RPC errors""" @wraps(fnc) def wrapper(*args, **kwargs): try: return fnc(*args, **kwargs) except grpc.RpcError as exc: # lnd might be active, but not possible to contact # using RPC if the wallet is encrypted. If we get # an rpc error code Unimplemented, it means that lnd is # running, but the RPC server is not active yet (only # WalletUnlocker server active) and most likely this # is because of an encrypted wallet. exc.code().value exc.details() if exc.code() == grpc.StatusCode.UNIMPLEMENTED: # raise WalletEncryptedError from None print("unimplemented") raise exc elif exc.code() == grpc.StatusCode.UNAVAILABLE: print("UNAVAILABLE") print(f"ERROR MESSAGE: {exc.details()}") elif exc.code() == grpc.StatusCode.UNKNOWN and exc.details() == "wallet locked, unlock it to enable full RPC access": print("WALLET IS LOCKED!") raise exc elif exc.code() == grpc.StatusCode.UNKNOWN: print("unknown") print(f"ERROR MESSAGE: {exc.details()}") elif exc.code() == grpc.StatusCode.NOT_FOUND: print("NOT FOUND") print(f"ERROR MESSAGE: {exc.details()}") elif exc.code() == grpc.StatusCode.PERMISSION_DENIED: print("PERMISSION_DENIED") print(f"ERROR MESSAGE: {exc.details()}") else: raise exc return exc except Exception as exc: print("unknown exception") print(exc) return wrapper
4f1cb19918fa5410bef4f14540a35c9f75d113bd
25,387
import ast def _check_BoolOp_expr(boolop, t, env): """Boolean Operations.""" assert boolop.__class__ is ast.BoolOp op = boolop.op es = boolop.values assert op.__class__ in bool_ops, "%s not in bool ops" % cname(op) # (BoolOp) assignment rule. return all(check_expr(e, t, env) for e in es)
528f55894a60ec8f781e5600a82f32697382e4bb
25,388
def get_matproj(dbpath, cutoff, api_key, dataset_properties): """ Args: dbpath (str): path to the local database cutoff (float): cutoff radius api_key (str): personal api_key for materialsproject.org dataset_properties (list): properties of the dataset Returns: AtomsData object """ return MaterialsProject(dbpath, cutoff, api_key, properties=dataset_properties)
d40b3578a5ac315e1b4d5180113d517d88b5305b
25,389
def parse_change_values_from_opts(opts): """ Convert optparse style options into a dictionary for changing. :param opts: optparse style options :returns: a dictonary with change values to filter devices, supported parameters are ip, port, replication_ip, replication_port """ change_values = {} for key in ('change_ip', 'change_port', 'change_replication_ip', 'change_replication_port', 'change_device', 'change_meta'): value = getattr(opts, key, None) if value: if key == 'change_ip' or key == 'change_replication_ip': value = validate_and_normalize_address(value) change_values[key.replace('change_', '')] = value return change_values
d8168163c308b510f12a5cd2baf9dd800b80912a
25,390
def xr_linear_trends_2D(da, dim_names, with_nans=False): """ calculate linear trend of 2D field in time ! slow, use xr_2D_trends instead input: da .. 3D xr DataArray with (dim_names) dimensions dim_names .. tuple of 2 strings: e.g. lat, lon dimension names output: da_trend .. slope of linear regression """ if type(da.time.values[0]) in [np.datetime64, cftime._cftime.Datetime360Day]: x, time_ = datetime_to_float(da) # time_to_float = True def xr_linear_trend_with_nans(x): """ function to compute a linear trend coefficient of a timeseries """ if np.isnan(x).any(): x = x.dropna(dim='time') if x.size>1: pf = np.polynomial.polynomial.polyfit(x.time, x, 1) else: pf = np.array([np.nan, np.nan]) else: pf = np.polynomial.polynomial.polyfit(x.time, x, 1) return xr.DataArray(pf[1]) (dim1, dim2) = dim_names # stack lat and lon into a single dimension called allpoints stacked = da.stack(allpoints=[dim1, dim2]) # apply the function over allpoints to calculate the trend at each point if with_nans==False: trend = stacked.groupby('allpoints').apply(xr_linear_trend) # unstack back to lat lon coordinates da_trend = trend.unstack('allpoints') if with_nans==True: trend = stacked.groupby('allpoints').apply(xr_linear_trend_with_nans) # unstack back to lat lon coordinates da_trend = trend.unstack('allpoints') # if time_to_float: da_trend.time.values = time_ # print(da_trend) if 'allpoints_level_0' in da_trend.coords.keys(): da_trend = da_trend.rename({'allpoints_level_0':dim1, 'allpoints_level_1':dim2}) return da_trend
ba948729cd8e8bde037ad91bde788443cd7eb54c
25,392
def sanitize_email(email): """ Returns an e-mail address in lower-case and strip leading and trailing whitespaces. >>> sanitize_email(' [email protected] ') '[email protected]' """ return email.lower().strip()
b99e9c38db4fe889e1d0a9175d6535c4790f2f43
25,393
import numba def draw_perm_reps(data_1, data_2, func, size=1, args=()): """ Generate permutation replicates of `func` from `data_1` and `data_2` Parameters ---------- data_1 : array_like One-dimensional array of data. data_2 : array_like One-dimensional array of data. func : function Function, with call signature `func(x, y, *args)` to compute replicate statistic from permutation sample. It must return a single, scalar value. size : int, default 1 Number of pairs bootstrap replicates to draw. args : tuple, default () Arguments to be passed to `func`. Returns ------- output : ndarray Permutation replicates. """ # Convert to Numpy arrays data_1 = utils._convert_data(data_1) data_2 = utils._convert_data(data_2) if args == (): if func == diff_of_means: return _draw_perm_reps_diff_of_means(data_1, data_2, size=size) elif func == studentized_diff_of_means: if len(data_1) == 1 or len(data_2) == 1: raise RuntimeError("Data sets must have at least two entries") return _draw_perm_reps_studentized_diff_of_means(data_1, data_2, size=size) # Make a Numba'd function for drawing reps. f, numba_success = utils._make_two_arg_numba_func(func, args) if numba_success: jit = numba.jit else: jit = utils._dummy_jit @jit(nopython=True) def _draw_perm_reps(data_1, data_2): n1 = len(data_1) x = np.concatenate((data_1, data_2)) perm_reps = np.empty(size) for i in range(size): np.random.shuffle(x) perm_reps[i] = f(x[:n1], x[n1:], args) return perm_reps return _draw_perm_reps(data_1, data_2)
6a5e46e39ace1815297812fbe17acd7db7fb89db
25,394
def get_attachment_form(parser, token): """ Get a (new) form object to upload a new attachment Syntax:: {% get_attachment_form for [object] as [varname] %} {% get_attachment_for for [app].[model] [object_id] as [varname] %} """ return AttachmentFormNode.handle_token(parser, token)
5ae8c049eef6618f358755e5363520a3bc126780
25,396
def greet(name): """Greet message, formatted differently for johnny.""" if name == "Johnny": return "Hello, my love!" return "Hello, {name}!".format(name=name)
86efdaccd65a870fd80e402491e9468669cdcd40
25,397
import numpy def get_naca_points(naca_digits, number_of_points=100, sharp_trailing_edge=True, abscissa_map=lambda x: 0.03*x+0.97*x**2, verbose=False): """ Return a list of coordinates of NACA 4-digit and 5-digit series airfoils. """ if verbose: def explain(*s): print(" ".join(str(s_i) for s_i in s)) else: def explain(*s): pass explain("Airfoil: NACA-%s" % naca_digits) if sharp_trailing_edge: explain("Sharp trailing edge") edge_coeff = 0.1036 else: explain("Blunt trailing edge") edge_coeff = 0.1015 raw_abscissae = numpy.linspace(0, 1, number_of_points, endpoint=True) abscissae = numpy.empty_like(raw_abscissae) for i in range(number_of_points): abscissae[i] = abscissa_map(raw_abscissae[i]) digits_int = int(naca_digits) if len(naca_digits) == 4: thickness = (digits_int % 100) max_camber_pos = (digits_int % 1000) - thickness max_camber = (digits_int % 10000) - max_camber_pos - thickness thickness = thickness / 1e2 max_camber_pos = max_camber_pos / 1e3 max_camber = max_camber / 1e5 explain("Thickness:", thickness) explain("Position of maximum camber:", max_camber_pos) explain("Maximum camber:", max_camber) if max_camber == 0 and max_camber_pos == 0: explain("Symmetric 4-digit airfoil") points = FourDigitsSymmetric(thickness, edge_coeff) elif max_camber != 0 and max_camber_pos != 0: explain("Cambered 4-digit airfoil") points = FourDigitsCambered(thickness, max_camber, max_camber_pos, edge_coeff) else: raise NotImplementedError( "You must decide whether your airfoil shall be cambered or not!") elif len(naca_digits) == 5: thickness = (digits_int % 100) max_camber_pos = (digits_int % 10000) - thickness thickness = thickness / 1e2 max_camber_pos = max_camber_pos / 2e4 explain("Thickness:", thickness) explain("Position of maximum camber:", max_camber_pos) identifier = digits_int // 100 if identifier == 210: m = 0.058 k1 = 361.4 elif identifier == 220: m = 0.126 k1 = 51.64 elif identifier == 230: m = 0.2025 k1 = 15.957 elif identifier == 240: m = 0.29 k1 = 6.643 elif identifier == 250: m = 0.391 k1 = 3.23 else: raise NotImplementedError("5-digit series only implemented for " "the first three digits in 210, 220, 230, 240, 250!") explain("5-digit airfoil") points = FiveDigits(thickness, m, k1, edge_coeff) else: raise NotImplementedError( "Only the 4-digit and 5-digit series are implemented!") points_upper = numpy.zeros((len(abscissae), 2)) points_lower = numpy.zeros((len(abscissae), 2)) for i in range(len(abscissae)): points_upper[i] = points(abscissae[i], "upper") points_lower[i] = points(abscissae[i], "lower") if sharp_trailing_edge: return list(points_upper)[1:-1] + list(points_lower[::-1]) else: return list(points_upper)[1:] + list(points_lower[::-1])
ec7f4b2c0104639e727febc6ea1a0ab0f1575f9e
25,398
def get_request_now(): """ When constructing the SOAP request, the timestamps have to be naive but with localtime values. E.g. if the current offset is utc+1 and the utc now is 2016/03/30 0:00, the SOAP endpoint expects 2016/03/30 1:00 without tzinfo. That's pretty ugly but ¯\_(ツ)_/¯ In order to do that, this function gets the utc value, translates it into a local one and makes it naive by deleting the tzinfo. """ now = timezone.localtime(timezone.now()) return timezone.make_naive(now)
8563eeb9757a7d09b7a0c3253e64cb30443aaa55
25,399
def _make_decorator( obj: Wrappable, to_wrap: tp.Iterable[str] ) -> tp.Callable[[tp.Type[WrapperInjector]], tp.type[WrapperInjector]]: """Makes the decorator function to use for wrapping. Parameters ---------- obj : :obj:`ModuleType`, :obj:`type` or :obj:`object` The source object to wrap the `to_wrap` attributes of. to_wrap : Iterable[str] The names of the attributes of `obj` to wrap. Returns ------- Callable[[Type[WrapperInjector]], Type[WrapperInjector]] The decorator to use for wrapping a new :obj:`WrapperInjector` class. """ def _wrapper(cls: tp.Type[WrapperInjector]) -> tp.Type[WrapperInjector]: cls.__wrapped__ = tuple(to_wrap) to_wrap = {x: getattr(obj, x) for x in to_wrap} for k, v in to_wrap.items(): if isinstance(v, FunctionType): setattr(cls, k, cls.__wrap_function(v)) else: setattr(cls, k, cls.__wrap_method(v)) return cls return _wrapper
33ab2d7670f518f15c55ebafcde3667447c73c4d
25,400
import numbers import warnings def logistic_regression_path(X, y, pos_class=None, Cs=10, fit_intercept=True, max_iter=100, tol=1e-4, verbose=0, solver='lbfgs', coef=None, class_weight=None, dual=False, penalty='l2', intercept_scaling=1., multi_class='warn', random_state=None, check_input=True, max_squared_sum=None, sample_weight=None): """Compute a Logistic Regression model for a list of regularization parameters. This is an implementation that uses the result of the previous model to speed up computations along the set of solutions, making it faster than sequentially calling LogisticRegression for the different parameters. Note that there will be no speedup with liblinear solver, since it does not handle warm-starting. Read more in the :ref:`User Guide <logistic_regression>`. Parameters ---------- X : array-like or sparse matrix, shape (n_samples, n_features) Input data. y : array-like, shape (n_samples,) or (n_samples, n_targets) Input data, target values. pos_class : int, None The class with respect to which we perform a one-vs-all fit. If None, then it is assumed that the given problem is binary. Cs : int | array-like, shape (n_cs,) List of values for the regularization parameter or integer specifying the number of regularization parameters that should be used. In this case, the parameters will be chosen in a logarithmic scale between 1e-4 and 1e4. fit_intercept : bool Whether to fit an intercept for the model. In this case the shape of the returned array is (n_cs, n_features + 1). max_iter : int Maximum number of iterations for the solver. tol : float Stopping criterion. For the newton-cg and lbfgs solvers, the iteration will stop when ``max{|g_i | i = 1, ..., n} <= tol`` where ``g_i`` is the i-th component of the gradient. verbose : int For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. solver : {'lbfgs', 'newton-cg', 'liblinear', 'sag', 'saga'} Numerical solver to use. coef : array-like, shape (n_features,), default None Initialization value for coefficients of logistic regression. Useless for liblinear solver. class_weight : dict or 'balanced', optional Weights associated with classes in the form ``{class_label: weight}``. If not given, all classes are supposed to have weight one. The "balanced" mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``. Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. dual : bool Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. penalty : str, 'l1' or 'l2' Used to specify the norm used in the penalization. The 'newton-cg', 'sag' and 'lbfgs' solvers support only l2 penalties. intercept_scaling : float, default 1. Useful only when the solver 'liblinear' is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a "synthetic" feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes ``intercept_scaling * synthetic_feature_weight``. Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. multi_class : str, {'ovr', 'multinomial', 'auto'}, default: 'ovr' If the option chosen is 'ovr', then a binary problem is fit for each label. For 'multinomial' the loss minimised is the multinomial loss fit across the entire probability distribution, *even when the data is binary*. 'multinomial' is unavailable when solver='liblinear'. 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', and otherwise selects 'multinomial'. .. versionadded:: 0.18 Stochastic Average Gradient descent solver for 'multinomial' case. .. versionchanged:: 0.20 Default will change from 'ovr' to 'auto' in 0.22. random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'sag' or 'liblinear'. check_input : bool, default True If False, the input arrays X and y will not be checked. max_squared_sum : float, default None Maximum squared sum of X over samples. Used only in SAG solver. If None, it will be computed, going through all the samples. The value should be precomputed to speed up cross validation. sample_weight : array-like, shape(n_samples,) optional Array of weights that are assigned to individual samples. If not provided, then each sample is given unit weight. Returns ------- coefs : ndarray, shape (n_cs, n_features) or (n_cs, n_features + 1) List of coefficients for the Logistic Regression model. If fit_intercept is set to True then the second dimension will be n_features + 1, where the last item represents the intercept. For ``multiclass='multinomial'``, the shape is (n_classes, n_cs, n_features) or (n_classes, n_cs, n_features + 1). Cs : ndarray Grid of Cs used for cross-validation. n_iter : array, shape (n_cs,) Actual number of iteration for each Cs. Notes ----- You might get slightly different results with the solver liblinear than with the others since this uses LIBLINEAR which penalizes the intercept. .. versionchanged:: 0.19 The "copy" parameter was removed. """ if isinstance(Cs, numbers.Integral): Cs = np.logspace(-4, 4, Cs) solver = _check_solver(solver, penalty, dual) # Preprocessing. if check_input: X = check_array(X, accept_sparse='csr', dtype=np.float64, accept_large_sparse=solver != 'liblinear') y = check_array(y, ensure_2d=False, dtype=None) check_consistent_length(X, y) _, n_features = X.shape classes = np.unique(y) random_state = check_random_state(random_state) multi_class = _check_multi_class(multi_class, solver, len(classes)) if pos_class is None and multi_class != 'multinomial': if (classes.size > 2): raise ValueError('To fit OvR, use the pos_class argument') # np.unique(y) gives labels in sorted order. pos_class = classes[1] # If sample weights exist, convert them to array (support for lists) # and check length # Otherwise set them to 1 for all examples if sample_weight is not None: sample_weight = np.array(sample_weight, dtype=X.dtype, order='C') check_consistent_length(y, sample_weight) default_weights = False else: default_weights = (class_weight is None) sample_weight = np.ones(X.shape[0], dtype=X.dtype) daal_ready = use_daal and solver in ['lbfgs', 'newton-cg'] and not sparse.issparse(X) # If class_weights is a dict (provided by the user), the weights # are assigned to the original labels. If it is "balanced", then # the class_weights are assigned after masking the labels with a OvR. le = LabelEncoder() if isinstance(class_weight, dict) or multi_class == 'multinomial': class_weight_ = compute_class_weight(class_weight, classes, y) sample_weight *= class_weight_[le.fit_transform(y)] # For doing a ovr, we need to mask the labels first. for the # multinomial case this is not necessary. if multi_class == 'ovr': mask_classes = np.array([-1, 1]) mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=X.dtype) y_bin[~mask] = -1. # for compute_class_weight if class_weight == "balanced": class_weight_ = compute_class_weight(class_weight, mask_classes, y_bin) sample_weight *= class_weight_[le.fit_transform(y_bin)] daal_ready = daal_ready and (default_weights or np.allclose(sample_weight, np.ones_like(sample_weight))) if daal_ready: w0 = np.zeros(n_features + 1, dtype=X.dtype) y_bin[~mask] = 0. else: w0 = np.zeros(n_features + int(fit_intercept), dtype=X.dtype) else: daal_ready = daal_ready and (default_weights or np.allclose(sample_weight, np.ones_like(sample_weight))) if solver not in ['sag', 'saga']: if daal_ready: Y_multi = le.fit_transform(y).astype(X.dtype, copy=False) else: lbin = LabelBinarizer() Y_multi = lbin.fit_transform(y) if Y_multi.shape[1] == 1: Y_multi = np.hstack([1 - Y_multi, Y_multi]) else: # SAG multinomial solver needs LabelEncoder, not LabelBinarizer Y_multi = le.fit_transform(y).astype(X.dtype, copy=False) if daal_ready: w0 = np.zeros((classes.size, n_features + 1), order='C', dtype=X.dtype) else: w0 = np.zeros((classes.size, n_features + int(fit_intercept)), order='F', dtype=X.dtype) if coef is not None: # it must work both giving the bias term and not if multi_class == 'ovr': if coef.size not in (n_features, w0.size): raise ValueError( 'Initialization coef is of shape %d, expected shape ' '%d or %d' % (coef.size, n_features, w0.size)) if daal_ready: w0[-coef.size:] = np.roll(coef, 1, -1) if coef.size != n_features else coef else: w0[:coef.size] = coef else: # For binary problems coef.shape[0] should be 1, otherwise it # should be classes.size. n_classes = classes.size if n_classes == 2: n_classes = 1 if (coef.shape[0] != n_classes or coef.shape[1] not in (n_features, n_features + 1)): raise ValueError( 'Initialization coef is of shape (%d, %d), expected ' 'shape (%d, %d) or (%d, %d)' % ( coef.shape[0], coef.shape[1], classes.size, n_features, classes.size, n_features + 1)) if daal_ready: w0[:, -coef.shape[1]:] = np.roll(coef, 1, -1) if coef.shape[1] != n_features else coef else: if n_classes == 1: w0[0, :coef.shape[1]] = -coef w0[1, :coef.shape[1]] = coef else: w0[:, :coef.shape[1]] = coef C_daal_multiplier = 1 # commented out because this is Py3 feature #def _map_to_binary_logistic_regression(): # nonlocal C_daal_multiplier # nonlocal w0 # C_daal_multiplier = 2 # w0 *= 2 if multi_class == 'multinomial': # fmin_l_bfgs_b and newton-cg accepts only ravelled parameters. if solver in ['lbfgs', 'newton-cg']: if daal_ready and classes.size == 2: w0_saved = w0 w0 = w0[-1:, :] w0 = w0.ravel() target = Y_multi if solver == 'lbfgs': if daal_ready: if classes.size == 2: # _map_to_binary_logistic_regression() C_daal_multiplier = 2 w0 *= 2 daal_extra_args_func = _daal4py_logistic_loss_extra_args else: daal_extra_args_func = _daal4py_cross_entropy_loss_extra_args func = _daal4py_loss_and_grad else: func = lambda x, *args: _multinomial_loss_grad(x, *args)[0:2] elif solver == 'newton-cg': if daal_ready: if classes.size == 2: # _map_to_binary_logistic_regression() C_daal_multiplier = 2 w0 *= 2 daal_extra_args_func = _daal4py_logistic_loss_extra_args else: daal_extra_args_func = _daal4py_cross_entropy_loss_extra_args func = _daal4py_loss_ grad = _daal4py_grad_ hess = _daal4py_grad_hess_ else: func = lambda x, *args: _multinomial_loss(x, *args)[0] grad = lambda x, *args: _multinomial_loss_grad(x, *args)[1] hess = _multinomial_grad_hess warm_start_sag = {'coef': w0.T} else: target = y_bin if solver == 'lbfgs': if daal_ready: func = _daal4py_loss_and_grad daal_extra_args_func = _daal4py_logistic_loss_extra_args else: func = _logistic_loss_and_grad elif solver == 'newton-cg': if daal_ready: daal_extra_args_func = _daal4py_logistic_loss_extra_args func = _daal4py_loss_ grad = _daal4py_grad_ hess = _daal4py_grad_hess_ else: func = _logistic_loss grad = lambda x, *args: _logistic_loss_and_grad(x, *args)[1] hess = _logistic_grad_hess warm_start_sag = {'coef': np.expand_dims(w0, axis=1)} coefs = list() n_iter = np.zeros(len(Cs), dtype=np.int32) for i, C in enumerate(Cs): if solver == 'lbfgs': if daal_ready: extra_args = daal_extra_args_func(classes.size, w0, X, target, 0., 0.5 / C / C_daal_multiplier, fit_intercept, value=True, gradient=True, hessian=False) else: extra_args = (X, target, 1. / C, sample_weight) iprint = [-1, 50, 1, 100, 101][ np.searchsorted(np.array([0, 1, 2, 3]), verbose)] w0, loss, info = optimize.fmin_l_bfgs_b( func, w0, fprime=None, args=extra_args, iprint=iprint, pgtol=tol, maxiter=max_iter) if daal_ready and C_daal_multiplier == 2: w0 *= 0.5 if info["warnflag"] == 1: warnings.warn("lbfgs failed to converge. Increase the number " "of iterations.", ConvergenceWarning) # In scipy <= 1.0.0, nit may exceed maxiter. # See https://github.com/scipy/scipy/issues/7854. n_iter_i = min(info['nit'], max_iter) elif solver == 'newton-cg': if daal_ready: def make_ncg_funcs(f, value=False, gradient=False, hessian=False): daal_penaltyL2 = 0.5 / C / C_daal_multiplier _obj_, X_, y_, n_samples = daal_extra_args_func( classes.size, w0, X, target, 0., daal_penaltyL2, fit_intercept, value=value, gradient=gradient, hessian=hessian) _func_ = lambda x, *args: f(x, _obj_, *args) return _func_, (X_, y_, n_samples, daal_penaltyL2) loss_func, extra_args = make_ncg_funcs(func, value=True) grad_func, _ = make_ncg_funcs(grad, gradient=True) grad_hess_func, _ = make_ncg_funcs(hess, gradient=True) w0, n_iter_i = _newton_cg(grad_hess_func, loss_func, grad_func, w0, args=extra_args, maxiter=max_iter, tol=tol) else: args = (X, target, 1. / C, sample_weight) w0, n_iter_i = _newton_cg(hess, func, grad, w0, args=args, maxiter=max_iter, tol=tol) elif solver == 'liblinear': coef_, intercept_, n_iter_i, = _fit_liblinear( X, target, C, fit_intercept, intercept_scaling, None, penalty, dual, verbose, max_iter, tol, random_state, sample_weight=sample_weight) if fit_intercept: w0 = np.concatenate([coef_.ravel(), intercept_]) else: w0 = coef_.ravel() elif solver in ['sag', 'saga']: if multi_class == 'multinomial': target = target.astype(np.float64) loss = 'multinomial' else: loss = 'log' if penalty == 'l1': alpha = 0. beta = 1. / C else: alpha = 1. / C beta = 0. w0, n_iter_i, warm_start_sag = sag_solver( X, target, sample_weight, loss, alpha, beta, max_iter, tol, verbose, random_state, False, max_squared_sum, warm_start_sag, is_saga=(solver == 'saga')) else: raise ValueError("solver must be one of {'liblinear', 'lbfgs', " "'newton-cg', 'sag'}, got '%s' instead" % solver) if multi_class == 'multinomial': if daal_ready: if classes.size == 2: multi_w0 = w0[np.newaxis, :] else: multi_w0 = np.reshape(w0, (classes.size, -1)) else: n_classes = max(2, classes.size) multi_w0 = np.reshape(w0, (n_classes, -1)) if n_classes == 2: multi_w0 = multi_w0[1][np.newaxis, :] coefs.append(np.require(multi_w0, requirements='O')) else: coefs.append(np.require(w0, requirements='O')) n_iter[i] = n_iter_i if daal_ready: if fit_intercept: for i, ci in enumerate(coefs): coefs[i] = np.roll(ci, -1, -1) else: for i, ci in enumerate(coefs): coefs[i] = np.delete(ci, 0, axis=-1) return coefs, np.array(Cs), n_iter
8f42d708532d255f0d61f7e695eab778b5aad99c
25,401
def merge_labels_below_minsize(labels: np.array, min_size: int, connectivity: int = 8) -> np.array: """ Takes labels below min_size and merges a label with a connected neighbor (with respect to the connectivity description). Ignores label 0 as background. Parameters ---------- labels : np.array 2d label array. Assumes 0 is background and ignores. min_size : int Keeps only segments of at least this size. connectivity : int 4 or 8 connectivity accepted. Default 8. If `apply_mask_buffer` was used to compute distance, then connectivity must be 8. See: https://en.wikipedia.org/wiki/Pixel_connectivity Returns ------- np.array: Updated 2d label array Note ---- Does not recursively update size and simply assigns a label to its neighbor based on initialize size. """ size_features = get_superpixel_area_as_features(labels) unique_labels = np.arange(0, labels.max() + 1) labels_to_merge = list(unique_labels[size_features.ravel() < min_size]) neighbor_dict = get_RAG_neighbors(labels, label_subset=labels_to_merge, connectivity=connectivity) def merger(label_arr): label = label_arr[0] neighbors = neighbor_dict.get(label) # Do nothing if label is background or doesn't meet size criterion. if (label == 0) or (label not in labels_to_merge): return label if len(neighbors) > 0: return neighbors[0] # If neighbor is isolated then assign it to background else: return 0 label_features = apply_func_to_superpixels(merger, labels, labels, dtype=int) labels = get_array_from_features(labels, label_features) labels, _, _ = relabel_sequential(labels) return labels
9d9af5e1ddcc288149304d8138f8076dccab1ad8
25,402
def custom_cnn_model(config, labels, model_weights=None): """ Convolutional Neural network architecture based on 'Photonic Human Identification based on Deep Learning of Back Scattered Laser Speckle Patterns' paper. :param conf: Configuration list of models hyper & learning params :param labels: List of data labels :param model_weights: Weights of pre-trained model :return: CNN model """ model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(config[1], config[2], input_shape=(config[0], config[0], 1)), tf.keras.layers.MaxPooling2D(pool_size=(config[3], config[3])), tf.keras.layers.Dropout(config[4]), tf.keras.layers.Flatten(), tf.keras.layers.Dense(config[5]), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation(activation=tf.nn.relu), tf.keras.layers.Dropout(config[6]), tf.keras.layers.Dense(config[7]), tf.keras.layers.BatchNormalization(), tf.keras.layers.Activation(activation=tf.nn.relu), tf.keras.layers.Dropout(config[8]), tf.keras.layers.Dense(len(labels), activation=tf.nn.softmax) ]) if model_weights is not None: print('loading pre-trained model') model.load_weights(model_weights, by_name=True) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) return model
1440c1ac911c4fc4dce06e10ced5b94ae97f407b
25,403
def check_day_crossover(tRxSeconds, tTxSeconds): """ Checks time propagation time for day crossover :param tRxSeconds: received time in seconds of week :param tTxSeconds: transmitted time in seconds of week :return: corrected propagation time """ tau = tRxSeconds - tTxSeconds if tau > DAYSEC / 2: del_sec = round(tau/DAYSEC)*DAYSEC rho_sec = tau - del_sec if rho_sec > 10: tau = 0.0 else: tau = rho_sec return tau
f44b5ef90e130fbcbc741f79bea69ee79f55a574
25,404
def matrix2xyx_extrinsic(rotation_matrices: np.ndarray) -> np.ndarray: """ Rx(k3) @ Ry(k2) @ Rx(k1) = [[c2, s1s2, c1s2], [s2s3, -s1c2s3+c1c3, -c1c2s3-s1c3], [-s2c3, s1c2c3+c1s3, c1c2c3-s1s3]] """ rotation_matrices = rotation_matrices.reshape((-1, 3, 3)) angles_radians = np.zeros((rotation_matrices.shape[0], 3)) # Angle 2 can be taken directly from matrices angles_radians[:, 1] = np.arccos(rotation_matrices[:, 0, 0]) # Gimbal lock case (s2 = 0) tolerance = 1e-4 # Find indices where this is the case gimbal_idx = np.abs(rotation_matrices[:, 0, 2]) < tolerance # Calculate angle 1 and set angle 3 = 0 for those indices r23 = rotation_matrices[gimbal_idx, 1, 2] r22 = rotation_matrices[gimbal_idx, 1, 1] angles_radians[gimbal_idx, 0] = np.arctan2(-r23, r22) angles_radians[gimbal_idx, 2] = 0 # Normal case (s2 > 0) idx = np.invert(gimbal_idx) r12 = rotation_matrices[idx, 0, 1] r13 = rotation_matrices[idx, 0, 2] r21 = rotation_matrices[idx, 1, 0] r31 = rotation_matrices[idx, 2, 0] angles_radians[idx, 0] = np.arctan2(r12, r13) angles_radians[idx, 2] = np.arctan2(r21, -r31) # convert to degrees euler_angles = np.rad2deg(angles_radians) return euler_angles
74185b505e54239128e4b22eb709e1d08f50b206
25,405
def _merge_low_rank_eigendecomposition(S1, V1, S2, V2, rank=None): """Private helper function for merging SVD based low rank approximations. Given factors S1, V1 and S2, V2 of shapes [K1], [M, K1] and [K2], [M, K2] respectively of singular value decompositions A1 = U1 @ np.diag(S1) @ V1.T A2 = U2 @ np.diag(S2) @ V2.T merge them into factors S, V of shape [K], [M, K] of an approximate decomposition A = U @ np.diag(S) @ V.T, where A is the concatenation of A1 and A2 along the first axis. This is done without the need of calculating U1, U2, and U. This is useful for merging eigendecompositions V @ np.diag(S**2) @ V.T of autocorrelation (or similarly covariance) matrices A.T @ A that do not require U. Using truncated singular value decompositons can be used for merging low rank approximations. Parameters ---------- S1 : array Singular values of first matrix. V1 : array Factor of the singular value decomposition of first matrix. S2 : array Singular values of second matrix. V2 : array Factor of the singular value decomposition of second matrix. rank : int Number of singular values to keep after merging. If set to `None` no truncation will be done, thus rank will equal the sum of singular values given in S1 and S2. Returns ------- S : array (Truncated) singular values of the singular value decomposition of concatenated matrix. V : array Factor of the singular value decomposition of concatenated matrix. Notes ----- The algorithm for combining SVD based low rank approximations is described in more detail in [1]_. References ---------- .. [1] Radim, Rehurek, "Scalability of Semantic Analysis in Natural Language Processing", 2011. """ rank1, rank2 = S1.size, S2.size if not rank or rank > rank1 + rank2: rank = rank1 + rank2 if rank > min(V1.shape[0], V2.shape[0]): rank = min(V1.shape[0], V2.shape[0]) Z = np.matmul(V1.T, V2) Q, R = np.linalg.qr(V2 - np.matmul(V1, Z), mode="reduced") Zfill = np.zeros([rank2, rank1]) B = np.concatenate( [ np.concatenate([np.diag(S1), np.matmul(Z, np.diag(S2))], axis=1), np.concatenate([Zfill, np.matmul(R, np.diag(S2))], axis=1), ], axis=0, ) U, S, VT = _truncated_svd(B, rank=rank) V = np.matmul(V1, U[:rank1, :]) + np.matmul(Q, U[rank1:, :]) return S, V
9a04fb922e87b78ee217890c0094f3cdd8690f60
25,406
def usgs(path): """Reads USGS-formatted ASCII files. Reads the ascii format spectral data from USGS and returns an object with the mean and +/- standard deviation. Reference: https://www.sciencebase.gov/catalog/item/5807a2a2e4b0841e59e3a18d Args: path: file path the the USGS spectra text file. Returns: s: an earthlib spectralObject with the USGS reflectance data. """ # open the file and read header info with open(path, "r") as f: x_start = "gibberish" for line in f: if x_start in line: break if "Name:" in line: spectrum_name = line.strip().split("Name:")[-1].strip() if "X Units:" in line: band_unit = line.strip().split() band_unit = band_unit[-1].strip("()").capitalize() if "Y Units:" in line: refl_unit = line.strip().split() refl_unit = refl_unit[-1].strip("()").capitalize() if "First X Value:" in line: x_start = line.strip().split()[-1] if "Number of X Values:" in line: n_values = int(line.strip().split()[-1]) # now that we got our header info, create the arrays band_centers = _np.empty(n_values) reflectance = _np.empty(n_values) line = line.strip().split() band_centers[0] = float(line[0]) reflectance[0] = float(line[1]) # resume reading through file i = 1 for line in f: line = line.strip().split() band_centers[i] = float(line[0]) reflectance[i] = float(line[1]) i += 1 # some files read last -> first wavelength if band_centers[0] > band_centers[-1]: band_centers = band_centers[::-1] reflectance = reflectance[::1] # convert units to nanometers and scale 0-1 if band_unit.lower() == "micrometers": band_centers *= 1000.0 band_unit = "Nanometers" if refl_unit.lower() == "percent": reflectance /= 100.0 # create the spectral object s = spectralObject( 1, n_values, band_centers=band_centers, band_unit=band_unit, band_quantity="Wavelength", ) # assign relevant values s.spectra[0] = reflectance if spectrum_name: s.names[0] = spectrum_name return s
329df0fe919cf126ae363f384619c8fc5419b073
25,407