content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import typing
import random
import itertools
def get_word(count: typing.Union[int, typing.Tuple[int]] = 1, # pylint: disable=dangerous-default-value
sep: str = ' ',
func: typing.Optional[typing.Union[str, typing.Callable[[str], str]]] = None,
args: typing.Tuple[str] = (), kwargs: typing.Dict[str, str] = {}) -> str:
"""Return random words.
.. code:: python
>>> get_word(count=3)
'anim voluptate non'
>>> get_word(count=3, func='capitalize')
'Non Labore Ut'
>>> get_word(count=3, func=lambda s: s.upper())
'NISI TEMPOR CILLUM'
Args:
count (:obj:`Union[int, Tuple[int]]`): Number of random words. To generate random
number of words, supply a 2-element tuple of :obj:`int`, the function will use
:func:`random.randint` to choose a random integer as the number of random words.
sep (str): Seperator between each word.
func (:obj:`Optional[Union[str, Callable[[str], str]]]`): Filter function. It can be
a function name of :obj:`str`, or a customised function that takes the original
:obj:`str` and returns the modified :obj:`str`.
args (:obj:`Tuple[str]`): Additional positional arguments for ``func``.
kwargs (:obj:`Dict[str, Any]`): Additional keyword arguments for ``func``.
Returns:
:obj:`str`: Random words.
"""
if isinstance(count, tuple):
count = random.randint(*count)
return sep.join(itertools.islice(word(count, func, args, kwargs), count))
|
3d5e1f82a4f32eae88016c0a89e9295b80d382e5
| 24,933 |
def chrom_exp_cusp(toas, freqs, log10_Amp=-7, sign_param=-1.0,
t0=54000, log10_tau=1.7, idx=2):
"""
Chromatic exponential-cusp delay term in TOAs.
:param t0: time of exponential minimum [MJD]
:param tau: 1/e time of exponential [s]
:param log10_Amp: amplitude of cusp
:param sign_param: sign of waveform
:param idx: index of chromatic dependence
:return wf: delay time-series [s]
"""
t0 *= const.day
tau = 10**log10_tau * const.day
wf = (10**log10_Amp * np.heaviside(toas - t0, 1) * \
np.exp(- (toas - t0) / tau)) + (10**log10_Amp * \
(1 - np.heaviside(toas - t0, 1)) * np.exp(- (t0 - toas) / tau))
return np.sign(sign_param) * wf * (1400 / freqs) ** idx
|
4075901c5dcbe10ad8554835c20a0a22d29f1af7
| 24,936 |
def powerspectrum_t(flist, mMax=30, rbins=50, paramname=None, parallel=True,
spacing='linear'):
"""
Calculates the power spectrum along the angular direction for a whole
simulation (see powerspectrum).
Loops through snapshots in a simulation, in parallel. Uses the same radial
and angular bins for every timestep
Parameters
----------
flist : list
A list of filenames OR of SimSnaps for a simulation
mMax : int
Maximum fourier mode to calculate
rbins : int or array
Number of radial bins or the binedges to use
paramname : str
Filename of .param file. Used for loading if flist is a list of
filenames
parallel : bool
Flag to perform this in parallel or not
spacing : str
If rbins is an int, this defines whether to use 'log' or 'linear'
binspacing
Returns
-------
m : array
Number of the fourier modes
power : SimArray
Power spectrum vs time along the angular direction
"""
# Set-up radial bins (use the same ones at all time steps)
f = flist[0]
if isinstance(f, str):
f = pynbody.load(f, paramname=paramname)
r = f.g['rxy']
rbins = setupbins(r, rbins, spacing)
# Prepare arguments
nFiles = len(flist)
mMax = [mMax] * nFiles
rbins = [rbins] * nFiles
paramname = [paramname] * nFiles
args = zip(flist, mMax, rbins, paramname)
# Calculate power
if parallel:
pool = Pool(cpu_count())
try:
results = pool.map(_powerspectrum, args, chunksize=1)
finally:
pool.close()
pool.join()
else:
results = []
for f in flist:
results.append(powerspectrum(f, mMax, rbins, paramname))
# Format returns
m = results[0][0]
power_units = results[0][1].units
nr = len(results[0][1])
power = SimArray(np.zeros([nFiles, nr]), power_units)
for i, result in enumerate(results):
power[i] = result[1]
return m, power
|
e2dd0ab1fa06a111530350e2ab2da119607dc9eb
| 24,937 |
def score(scores, main_channel, whiten_filter):
"""
Whiten scores using whitening filter
Parameters
----------
scores: np.array (n_data, n_features, n_neigh)
n_data is the number of spikes
n_feature is the number features
n_neigh is the number of neighboring channels considered
main_channel: np.array (n_data,)
The main channel information for each spike
whilten_filter: np.array (n_channels, n_neigh, n_neigh)
whitening filter as described above
Returns
-------
whiten_scores: np.array (n_data, n_features, n_neigh)
scores whitened after applying whitening filter
"""
# get necessary parameters
n_data, n_features, n_neigh = scores.shape
n_channels = whiten_filter.shape[0]
# apply whitening filter
whitened_scores = np.zeros(scores.shape)
for c in range(n_channels):
# index of spikes with main channel as c
idx = main_channel == c
whitened_scores_c = np.matmul(
np.reshape(scores[idx], [-1, n_neigh]), whiten_filter[c])
whitened_scores[idx] = np.reshape(whitened_scores_c,
[-1, n_features, n_neigh])
return whitened_scores
|
b416bd38a874f6c8ee3b26b8fec35a19b0604de0
| 24,938 |
def make_title(raw_input):
"""Capitalize and strip"""
return raw_input.title().strip()
|
517977638d72a8e5c8026147246739231be6258f
| 24,939 |
def perform(target, write_function=None):
"""
Perform an HTTP request against a given target gathering some basic
timing and content size values.
"""
fnc = write_function or (lambda x: None)
assert target
connection = pycurl.Curl()
connection.setopt(pycurl.URL, target)
connection.setopt(pycurl.FOLLOWLOCATION, True)
connection.setopt(pycurl.WRITEFUNCTION, fnc)
connection.perform()
result = {
'response': connection.getinfo(pycurl.RESPONSE_CODE),
'rtt': round(connection.getinfo(pycurl.CONNECT_TIME), 5),
'response_time': round(connection.getinfo(pycurl.TOTAL_TIME), 5),
'content_size': (
int(connection.getinfo(pycurl.SIZE_DOWNLOAD)) + int(connection.getinfo(pycurl.HEADER_SIZE))
) * 8
}
try:
result['bps'] = round(
result['content_size'] / result['response_time'],
5
)
except ZeroDivisionError:
result['bps'] = 0
return result
|
0cecdb6bc43acd80ebca701b4607b2013b612d93
| 24,940 |
import typing
def merge_property_into_method(
l: Signature, r: typing.Tuple[Metadata, OutputType]
) -> Signature:
"""
Merges a property into a method by just using method
"""
return l
|
ae626fece9dbd36567f0b8c79cddfbe58c0a2cb4
| 24,942 |
def _serve_archive(content_hash, file_name, mime_type):
"""Serve a file from the archive or by generating an external URL."""
url = archive.generate_url(content_hash,
file_name=file_name,
mime_type=mime_type)
if url is not None:
return redirect(url)
try:
local_path = archive.load_file(content_hash, file_name=file_name)
if local_path is None:
return Response(status=404)
return send_file(local_path,
as_attachment=True,
conditional=True,
attachment_filename=file_name,
mimetype=mime_type)
finally:
archive.cleanup_file(content_hash)
|
be30f5585efd229518671b99c1560d44510db2c6
| 24,944 |
def preprocess(path ,scale = 3):
"""
This method prepares labels and downscaled image given path
of image and scale. Modcrop is used on the image label to ensure
length and width of image is divisible by scale.
Inputs:
path: the image directory path
scale: scale to downscale
Outputs:
input_: downscaled version of image
label_: label after applying moderop
"""
img = imread(path)
# Crops image to ensure length and width of img is divisble by
# scale for resizing by scale
label_ = modcrop(img, scale)
# Resize by scaling factor
input_ = cv2.resize(label_,None,fx = 1.0/scale ,fy = 1.0/scale,
interpolation = cv2.INTER_CUBIC)
#kernel_size = (7, 7);
#sigma = 3.0;
#input_ = cv2.GaussianBlur(input_, kernel_size, sigma);
#checkimage(input_)
return input_, label_
|
6b02b81dca775ad9e614b8d285d3784aec433ca2
| 24,945 |
import math
def get_goal_sample_rate(start, goal):
"""Modifie la probabilité d'obtenir directement le but comme point selon la distance entre le départ et le but.
Utile pour la précision et les performances."""
try :
dx = goal[0]-start[0]
dy = goal[1]-start[1]
d = math.sqrt(dx * dx + dy * dy)
except TypeError:
goal_sample_rate = 5
return goal_sample_rate
if d < 600 :
goal_sample_rate = (10-d/140)**2
else :
goal_sample_rate = 30
return goal_sample_rate
|
a48ad7adba534455a149142cfeae9c47e3a25677
| 24,946 |
import warnings
def sample_cov(prices, returns_data=False, frequency=252, log_returns=False, **kwargs):
"""
Calculate the annualised sample covariance matrix of (daily) asset returns.
:param prices: adjusted closing prices of the asset, each row is a date
and each column is a ticker/id.
:type prices: pd.DataFrame
:param returns_data: if true, the first argument is returns instead of prices.
:type returns_data: bool, defaults to False.
:param frequency: number of time periods in a year, defaults to 252 (the number
of trading days in a year)
:type frequency: int, optional
:param log_returns: whether to compute using log returns
:type log_returns: bool, defaults to False
:return: annualised sample covariance matrix
:rtype: pd.DataFrame
"""
if not isinstance(prices, pd.DataFrame):
warnings.warn("data is not in a dataframe", RuntimeWarning)
prices = pd.DataFrame(prices)
if returns_data:
returns = prices
else:
returns = returns_from_prices(prices, log_returns)
return fix_nonpositive_semidefinite(
returns.cov() * frequency, kwargs.get("fix_method", "spectral")
)
|
3e60ef20b976bf35d9ee818c27dfb7b877fe1f3f
| 24,947 |
from typing import Dict
def read_prev_timings(junit_report_path: str) -> Dict[str, float]:
"""Read the JUnit XML report in `junit_report_path` and
returns its timings grouped by class name.
"""
tree = ET.parse(junit_report_path)
if tree is None:
pytest.exit(f"Could not find timings in JUnit XML {junit_report_path}")
assert isinstance(tree, ET.ElementTree)
return group_prev_timings(tree.getroot())
|
8c796845289fc08ffb815d649c732fdd1ae626b3
| 24,949 |
def update_model():
""" Updates a model """
data = request.get_json()
params = data.get('params', {'model_id': 1})
entry = Model.objects(model_id=params.model_id).first()
if not entry:
return {'error': ModelNotFoundError()}
entry.update(**params)
return entry.to_json()
|
8ba13df354c21e72045d319b3c47d8ef4e291182
| 24,950 |
def SmartConnect(protocol='https',
host='localhost',
port=443,
user='root',
pwd='',
service="hostd",
path="/sdk",
preferredApiVersions=None,
keyFile=None,
certFile=None,
thumbprint=None,
sslContext=None,
httpConnectionTimeout=None,
connectionPoolTimeout=CONNECTION_POOL_IDLE_TIMEOUT_SEC,
token=None,
disableSslCertValidation=False,
customHeaders=None):
"""
Determine the most preferred API version supported by the specified server,
then connect to the specified server using that API version, login and return
the service instance object.
Throws any exception back to caller. The service instance object is
also saved in the library for easy access.
Clients should modify the service parameter only when connecting to
a VMOMI server other than hostd/vpxd. For both of the latter, the
default value is fine.
@param protocol: What protocol to use for the connection (e.g. https or http).
@type protocol: string
@param host: Which host to connect to.
@type host: string
@param port: Port
@type port: int
@param user: User
@type user: string
@param pwd: Password
@type pwd: string
@param service: Service
@type service: string
@param path: Path
@type path: string
@param preferredApiVersions: Acceptable API version(s) (e.g. vim.version.version9)
If a list of versions is specified the versions should
be ordered from most to least preferred. If None is
specified, the list of versions support by pyVmomi will
be used.
@type preferredApiVersions: string or string list
@param keyFile: ssl key file path
@type keyFile: string
@param certFile: ssl cert file path
@type certFile: string
@param thumbprint: host cert thumbprint
@type thumbprint: string
@param sslContext: SSL Context describing the various SSL options. It is only
supported in Python 2.7.9 or higher.
@type sslContext: SSL.Context
@param httpConnectionTimeout: Timeout in secs for http requests.
@type httpConnectionTimeout: int
@param connectionPoolTimeout: Timeout in secs for idle connections to close, specify
negative numbers for never closing the connections
@type connectionPoolTimeout: int
@type token: string
@param token: Authentication and Authorization token to use for the connection.
The presence of this token overrides the user and pwd parameters.
@type disableSslCertValidation: bool
@param disableSslCertValidation: Creates an unverified SSL context when True.
"""
if preferredApiVersions is None:
preferredApiVersions = GetServiceVersions('vim25')
sslContext = getSslContext(host, sslContext, disableSslCertValidation)
supportedVersion = __FindSupportedVersion(protocol, host, port, path,
preferredApiVersions, sslContext)
if supportedVersion is None:
raise Exception("%s:%s is not a VIM server" % (host, port))
portNumber = protocol == "http" and -int(port) or int(port)
return Connect(host=host,
port=portNumber,
user=user,
pwd=pwd,
service=service,
adapter='SOAP',
version=supportedVersion,
path=path,
keyFile=keyFile,
certFile=certFile,
thumbprint=thumbprint,
sslContext=sslContext,
httpConnectionTimeout=httpConnectionTimeout,
connectionPoolTimeout=connectionPoolTimeout,
token=token,
disableSslCertValidation=disableSslCertValidation,
customHeaders=customHeaders)
|
19fafca3767b221d0b35c8377c0b367c097a2c8c
| 24,951 |
def _pseudoArrayFromScalars(scalarvalues, type):
"""Wrap a scalar in a buffer so it can be used as an array"""
arr = _bufferPool.getBuffer()
arr._check_overflow = 1
newtype = type # _numtypedict[type]
arr._strides = (newtype.bytes,)
arr._type = newtype
arr._itemsize = newtype.bytes
arr._strides = None
if isinstance(scalarvalues, (list, tuple)):
arr._shape = (len(scalarvalues),)
for i in xrange(len(scalarvalues)):
arr[i] = scalarvalues[i]
else:
arr._shape = ()
arr[()] = scalarvalues
# Modify block buffer attributes to look like vector/vector setup.
return arr
|
ac2953eeff6b6549ef633de2728d72220e61bd76
| 24,952 |
def triangulate_ellipse(corners, num_segments=100):
"""Determines the triangulation of a path. The resulting `offsets` can
multiplied by a `width` scalar and be added to the resulting `centers`
to generate the vertices of the triangles for the triangulation, i.e.
`vertices = centers + width*offsets`. Using the `centers` and `offsets`
representation thus allows for the computed triangulation to be
independent of the line width.
Parameters
----------
corners : np.ndarray
4xD array of four bounding corners of the ellipse. The ellipse will
still be computed properly even if the rectangle determined by the
corners is not axis aligned. D in {2,3}
num_segments : int
Integer determining the number of segments to use when triangulating
the ellipse
Returns
-------
vertices : np.ndarray
Mx2/Mx3 array coordinates of vertices for triangulating an ellipse.
Includes the center vertex of the ellipse, followed by `num_segments`
vertices around the boundary of the ellipse (M = `num_segments`+1)
triangles : np.ndarray
Px3 array of the indices of the vertices for the triangles of the
triangulation. Has length (P) given by `num_segments`,
(P = M-1 = num_segments)
Notes
-----
Despite it's name the ellipse will have num_segments-1 segments on their outline.
That is to say num_segments=7 will lead to ellipses looking like hexagons.
The behavior of this function is not well defined if the ellipse is degenerate
in the current plane/volume you are currently observing.
"""
if not corners.shape[0] == 4:
raise ValueError(
trans._(
"Data shape does not match expected `[4, D]` shape specifying corners for the ellipse",
deferred=True,
)
)
assert corners.shape in {(4, 2), (4, 3)}
center = corners.mean(axis=0)
adjusted = corners - center
# Take to consecutive corners difference
# that give us the 1/2 minor and major axes.
ax1 = (adjusted[1] - adjusted[0]) / 2
ax2 = (adjusted[2] - adjusted[1]) / 2
# Compute the transformation matrix from the unit circle
# to our current ellipse.
# ... it's easy just the 1/2 minor/major axes for the two column
# note that our transform shape will depends on wether we are 2D-> 2D (matrix, 2 by 2),
# or 2D -> 3D (matrix 2 by 3).
transform = np.stack((ax1, ax2))
if corners.shape == (4, 2):
assert transform.shape == (2, 2)
else:
assert transform.shape == (2, 3)
# we discretize the unit circle always in 2D.
v2d = np.zeros((num_segments + 1, 2), dtype=np.float32)
theta = np.linspace(0, np.deg2rad(360), num_segments)
v2d[1:, 0] = np.cos(theta)
v2d[1:, 1] = np.sin(theta)
# ! vertices shape can be 2,M or 3,M depending on the transform.
vertices = np.matmul(v2d, transform)
# Shift back to center
vertices = vertices + center
triangles = (
np.arange(num_segments) + np.array([[0], [1], [2]])
).T * np.array([0, 1, 1])
triangles[-1, 2] = 1
return vertices, triangles
|
feae8b79020c612185dcdcbd9f3d3b9bd897b11b
| 24,953 |
def is_dbenv_loaded():
"""
Return True of the dbenv was already loaded (with a call to load_dbenv),
False otherwise.
"""
return settings.LOAD_DBENV_CALLED
|
a4dc5c6b69e457aedf31f7729dd6bab0a75aaa07
| 24,954 |
def parse_python_settings_for_dmlab2d(
lab2d_settings: config_dict.ConfigDict) -> Settings:
"""Flatten lab2d_settings into Lua-friendly properties."""
# Since config_dicts disallow "." in keys, we must use a different character,
# "$", in our config and then convert it to "." here. This is particularly
# important for levels with config keys like 'player.%default' in DMLab2D.
lab2d_settings = _config_dict_to_dict(lab2d_settings)
lab2d_settings = settings_helper.flatten_args(lab2d_settings)
lab2d_settings_dict = {}
for key, value in lab2d_settings.items():
converted_key = key.replace("$", ".")
lab2d_settings_dict[converted_key] = str(value)
return lab2d_settings_dict
|
5cdf1d1a9a6b82e23f0dffc022bbc0a352f65766
| 24,955 |
import IPython
import re
def get_new_name(x: str) -> str:
"""
Obtains a new name for the given site.
Args:
x: The original name.
Returns:
The new name.
"""
y = x.lower()
if y == "cervical":
return "cervical_spine"
m = re.match(r"^([lr])\s+(.+)$", y)
if not m:
raise ValueError("cannot parse site name: {!r}".format(x))
side = "left" if m.group(1) == "l" else "right"
site = m.group(2)
if site == "ip":
site = "pip1"
elif site == "si":
site = "sacroiliac"
elif re.match(r"tm[jl]", site):
site = "tmj"
m_toe = re.match(r"^toe(\d)$", site)
if m_toe:
site = "toe_ip{}".format(m_toe.group(1))
return "{}_{}".format(site, side)
IPython.embed()
raise Exception()
|
0481c54c43ddb58758513bd654b7d5b1a7539761
| 24,956 |
from typing import Dict
from typing import Any
def u2f_from_dict(data: Dict[str, Any]) -> U2F:
"""
Create an U2F instance from a dict.
:param data: Credential parameters from database
"""
return U2F.from_dict(data)
|
53d90b86fc0a7fd44938b7eb2f9d9f178161642f
| 24,957 |
def filterForDoxygen (contents):
"""
filterForDoxygen(contents) -> contents
Massage the content of a python file to better suit Doxygen's expectations.
"""
contents = filterContents(contents)
contents = filterDocStrings(contents)
return contents
|
c216328bed4d9af656dfd61477add1a15ee34bd6
| 24,959 |
from typing import List
from typing import Callable
def calculate_quantum_volume(
*,
num_qubits: int,
depth: int,
num_circuits: int,
seed: int,
device: cirq.google.xmon_device.XmonDevice,
samplers: List[cirq.Sampler],
compiler: Callable[[cirq.Circuit], cirq.Circuit] = None,
repetitions=10_000,
) -> List[QuantumVolumeResult]:
"""Run the quantum volume algorithm.
This algorithm should compute the same values as Algorithm 1 in
https://arxiv.org/abs/1811.12926. To summarize, we generate a random model
circuit, compute its heavy set, then transpile an implementation onto our
architecture. This implementation is run a series of times and if the
percentage of outputs that are in the heavy set is greater than 2/3, we
consider the quantum volume test passed for that size.
Args:
num_qubits: The number of qubits for the circuit.
depth: The number of gate layers to generate.
num_circuits: The number of random circuits to run.
seed: A seed to pass into the RandomState.
device: The device to run the compiled circuit on.
samplers: The samplers to run the algorithm on.
compiler: An optional function to compiler the model circuit's
gates down to the target devices gate set and the optimize it.
repetitions: The number of bitstrings to sample per circuit.
Returns: A list of QuantumVolumeResults that contains all of the information
for running the algorithm and its results.
"""
random_state = np.random.RandomState(seed)
circuits = prepare_circuits(num_qubits=num_qubits,
depth=depth,
num_circuits=num_circuits,
random_state=random_state)
return execute_circuits(
circuits=circuits,
device=device,
compiler=compiler,
samplers=samplers,
repetitions=repetitions,
)
|
da1f2eb072f5d91ec99be8fa6a447c2661aabb6d
| 24,960 |
def get_key(item, key_length):
"""
key + value = item
number of words of key = key_length
function returns key
"""
word = item.strip().split()
if key_length == 0: # fix
return item
elif len(word) == key_length:
return item
else:
return ' '.join(word[0:key_length])
|
6407d98d62a4d83bf577e82be696b6aee1f6d2e8
| 24,962 |
from typing import Tuple
def identity(shape: Tuple[int, ...], gain: float = 1) -> JaxArray:
"""Returns the identity matrix. This initializer was proposed in
`A Simple Way to Initialize Recurrent Networks of Rectified Linear Units
<https://arxiv.org/abs/1504.00941>`_.
Args:
shape: Shape of the tensor. It should have exactly rank 2.
gain: optional scaling factor.
Returns:
Tensor initialized to the identity matrix.
"""
assert len(shape) == 2
return gain * jn.eye(*shape)
|
59fb436485a04b5861bfdcfbe9bf36f4084aeb3d
| 24,963 |
from typing import Optional
from typing import Dict
def pyreq_nlu_trytrain(httpreq_handler: HTTPRequestHandler, project_id: int, locale: str) -> Optional[Dict]:
"""
Get try-annotation on utterance with latest run-time NLU model for a Mix project and locale, by sending requests
to Mix API endpoint with Python 'requests' package.
API endpoint: POST /nlu/api/v1/nlu/<PROJ_ID>/annotations/train?sources=nuance_custom_data&locale=<LOCALE>
Request payload: None
:param httpreq_handler: HTTPRequestHandler to process requests and responses
:param project_id: Mix project ID
:param locale: Mix project NLU locale
:return: JSON reponse payload from API endpoint
"""
api_endpoint = f'/nlu/api/v1/nlu/{project_id}/annotations/train?sources=nuance_custom_data&locale={locale}'
resp = httpreq_handler.request(url=api_endpoint, method=POST_METHOD, data='{}',
default_headers=True, json_resp=True)
return resp
|
7103fae177535f5c7d37ce183e9d828ebdca7b7a
| 24,964 |
from typing import Tuple
def month_boundaries(month: int, year: int) -> Tuple[datetime_.datetime, datetime_.datetime]:
"""
Return the boundary datetimes of a given month.
"""
start_date = datetime_.date(year, month, 1)
end_date = start_date + relativedelta(months=1)
return (midnight(start_date), midnight(end_date))
|
f727ae0d8f28bd75f0a326305d172ea45ec29982
| 24,965 |
def calculate_Hubble_flow_velocity_from_cMpc(cMpc, cosmology="Planck15"):
"""
Calculates the Hubble flow recession velocity from comoving distance
Parameters
----------
cMpc : array-like, shape (N, )
The distance in units of comoving megaparsecs. Must be 1D or scalar.
cosmology : string or astropy.cosmology.core.FLRW
The cosmology to assume whilst calculating distance. Default: Planck15.
Returns
-------
a : array-like, shape (N, )
The scale factor.
"""
cosmo = get_cosmology_from_name(cosmology)
H0 = cosmo.H0
scale_factor = calculate_scale_factor_from_cMpc(cMpc, cosmology=cosmology)
proper_dist = cMpc * apu.Mpc / scale_factor
velocity = proper_dist * H0
return velocity
|
994722494de5ae918c3f1855b1b58fec21849f7e
| 24,966 |
def join_items(
*items, separator="\n", description_mode=None,
start="", end="", newlines=1
):
"""
joins items using separator, ending with end and newlines
Args:
*items - the things to join
separator - what seperates items
description_mode - what mode to use for description
start - what to start the string with
end - what to end the string with
newlines - how many newlines to add after end
Returns a string
"""
output_list = []
if description_mode:
for item in items:
output_list.append(description(
*(item if item else ""), mode=description_mode,
newlines=0
))
else:
output_list = convert_items(list(items), type_=str)
output_list = [item.strip() for item in output_list]
output_text = separator.join(output_list).strip()
output_text += "" if output_text.endswith(end) else end
output_text = start + newline(output_text, newlines)
return output_text
|
0df5b55f10d73600ea2f55b0e9df86c17622e779
| 24,967 |
def JacobianSpace(Slist, thetalist):
"""Computes the space Jacobian for an open chain robot
:param Slist: The joint screw axes in the space frame when the
manipulator is at the home position, in the format of a
matrix with axes as the columns
:param thetalist: A list of joint coordinates
:return: The space Jacobian corresponding to the inputs (6xn real
numbers)
Example Input:
Slist = np.array([[0, 0, 1, 0, 0.2, 0.2],
[1, 0, 0, 2, 0, 3],
[0, 1, 0, 0, 2, 1],
[1, 0, 0, 0.2, 0.3, 0.4]]).T
thetalist = np.array([0.2, 1.1, 0.1, 1.2])
Output:
np.array([[ 0, 0.98006658, -0.09011564, 0.95749426]
[ 0, 0.19866933, 0.4445544, 0.28487557]
[ 1, 0, 0.89120736, -0.04528405]
[ 0, 1.95218638, -2.21635216, -0.51161537]
[0.2, 0.43654132, -2.43712573, 2.77535713]
[0.2, 2.96026613, 3.23573065, 2.22512443]])
"""
Js = Slist.copy()
T = eye(4)
for i in range(1, len(thetalist)):
T = T * MatrixExp6(VecTose3(Slist[:, i - 1] \
* thetalist[i - 1]))
Js[:, i] = Adjoint(T) * Slist[:, i]
return Js
|
e0f3fba57b2d1595a59b708a452fd2b57c6011e7
| 24,968 |
async def delete_bank(org_id: str, bank_id:str,
user: users_schemas.User = Depends(is_authenticated),
db:Session = Depends(get_db)):
"""delete a given bank of id bank_id.
Args:
bank_id: a unique identifier of the bank object.
user: authenticates that the user is a logged in user.
db (Session): The database for storing the article object.
Returns:
HTTP_200_OK (sucess response))
Raises
HTTP_424_FAILED_DEPENDENCY: failed to delete bank details
HTTP_4O4_NOT_FOUND: Bank does not exist.
"""
bank = await fetch_bank(user=user, id=bank_id, db=db)
db.delete(bank)
db.commit()
return JSONResponse({"detail": f"bank details with {bank_id} successfully deleted"},
status_code=status.HTTP_200_OK)
|
537159c6c19c6bb1dde02eec13f5c55932f9d6ee
| 24,969 |
from typing import Union
from typing import Iterable
from typing import Any
def label_encode(
df: pd.DataFrame, column_names: Union[str, Iterable[str], Any]
) -> pd.DataFrame:
"""
Convert labels into numerical data.
This method will create a new column with the string "_enc" appended
after the original column's name. Consider this to be syntactic sugar.
This method behaves differently from `encode_categorical`. This method
creates a new column of numeric data. `encode_categorical` replaces the
dtype of the original column with a "categorical" dtype.
This method mutates the original DataFrame.
Functional usage example:
.. code-block:: python
label_encode(df, column_names="my_categorical_column") # one way
Method chaining example:
.. code-block:: python
import pandas as pd
import janitor
categorical_cols = ['col1', 'col2', 'col4']
df = pd.DataFrame(...).label_encode(column_names=categorical_cols)
:param df: The pandas DataFrame object.
:param str/iterable column_names: A column name or an iterable (list or
tuple) of column names.
:returns: A pandas DataFrame.
"""
le = LabelEncoder()
if isinstance(column_names, list) or isinstance(column_names, tuple):
for col in column_names:
if col not in df.columns:
raise JanitorError(f"{col} missing from column_names")
df[f"{col}_enc"] = le.fit_transform(df[col])
elif isinstance(column_names, str):
if column_names not in df.columns:
raise JanitorError(f"{column_names} missing from column_names")
df[f"{column_names}_enc"] = le.fit_transform(df[column_names])
else:
raise JanitorError(
"kwarg `column_names` must be a string or iterable!"
)
return df
|
62d937dc8bb02db8a099a5647bf0673005489605
| 24,970 |
def get_server_now_with_delta_str(timedelta):
"""Get the server now date string with delta"""
server_now_with_delta = get_server_now_with_delta(timedelta)
result = server_now_with_delta.strftime(DATE_FORMAT_NAMEX_SEARCH)
return result
|
f555ed28ec98f9edfa62d7f52627ea06cad9513b
| 24,972 |
def GetPrimaryKeyFromURI(uri):
"""
example:
GetPrimaryKeyFromURI(u'mujin:/\u691c\u8a3c\u52d5\u4f5c1_121122.mujin.dae')
returns u'%E6%A4%9C%E8%A8%BC%E5%8B%95%E4%BD%9C1_121122'
"""
return uriutils.GetPrimaryKeyFromURI(uri, fragmentSeparator=uriutils.FRAGMENT_SEPARATOR_AT, primaryKeySeparator=uriutils.PRIMARY_KEY_SEPARATOR_AT)
|
49a489d02af3195ea7ed0a7f41b9fbb19bb16407
| 24,973 |
import math
def normalize(score, alpha=15):
"""
Normalize the score to be between -1 and 1 using an alpha that
approximates the max expected value
"""
norm_score = score/math.sqrt((score*score) + alpha)
if norm_score < -1.0:
return -1.0
elif norm_score > 1.0:
return 1.0
else:
return norm_score
|
ec158416a4199d17948986dfb3f8d659d82e07b7
| 24,974 |
from datetime import datetime
import pytz
def get_timestamp(request):
""" hhs_oauth_server.request_logging.RequestTimeLoggingMiddleware
adds request._logging_start_dt
we grab it or set a timestamp and return it.
"""
if not hasattr(request, '_logging_start_dt'):
return datetime.now(pytz.utc).isoformat()
else:
return request._logging_start_dt
|
f3117a66ebfde0b1dc48591e0665c3d7120826fd
| 24,975 |
from typing import Optional
from typing import List
def human_size(bytes: int | float, units: Optional[List[str]] = None) -> str:
"""
Convert bytes into a more human-friendly format
:param bytes: int
Number of bytes
:param units: Optional[List[str]]
units used
:return: str
Return size in human friendly format: <number> <size_unit>
"""
if units is None:
units = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB']
return f"{round(bytes, 2)} " + units[0] if bytes < 1024 else human_size(bytes / 1024, units[1:])
|
9b652f0a09024c22dcefa5909c17f7b14d0183f4
| 24,976 |
def ray_casting_2d(p: Point, poly: Poly) -> bool:
"""Implements ray-casting algorithm to check if a point p is inside a (closed) polygon poly"""
intersections = [int(rayintersectseg(p, edge)) for edge in poly.edges]
return _odd(sum(intersections))
|
149f797bdcecce483cf87ed012fe7a21370c2ab6
| 24,977 |
def average_price(offers):
"""Returns the average price of a set of items.
The first item is ignored as this is hopefully underpriced.
The last item is ignored as it is often greatly overpriced.
IMPORTANT: It is important to only trade items with are represented on the market in great numbers.
This is due to the fact that with lower competition between sellers, the prices are often non-competitive.
Keyword arguments:
offers -- A list of offers from which to find the average price."""
if len(offers) > 1:
remove_last_item = (True if (len(offers) > 3) else False)
cheapest_item = offers[0]['price']
if remove_last_item:
sum_ = sum(x['price'] for x in offers[1:-1])
else:
sum_ = sum(x['price'] for x in offers[1:])
return sum_ / (len(offers) - (2 if remove_last_item else 1))
|
4849996d13e4c00d845f5fb6a5a150397c9b84f0
| 24,978 |
def get_train_data():
"""get all the train data from some paths
Returns:
X: Input data
Y_: Compare data
"""
TrainExamples = [8, 9, 10, 11, 12, 14]
# from path set_22 to set_35
path = PATH_SIMPLE + str(5) + '/'
X, Y_ = generate(path, isNormalize=True)
maxvalue = (get_image(path, isInput=True)[0].max() / 10000)
for train in TrainExamples:
path = PATH + str(train) + '/'
temp_X, temp_Y = generate(path, isNormalize=True)
X = np.append(X, temp_X, axis=0)
Y_ = np.append(Y_, temp_Y, axis=0)
print("Finish generating all the train data!")
return X, Y_, maxvalue
|
01517db3cb4b5987b895c2b435771c745837bf65
| 24,980 |
def effective_dimension_vector(emb, normalize=False, is_cov=False):
"""Effective dimensionality of a set of points in space.
Effection dimensionality is the number of orthogonal dimensions needed to capture the overall correlational structure of data.
See Del Giudice, M. (2020). Effective Dimensionality: A Tutorial. _Multivariate Behavioral Research, 0(0), 1–16. https://doi.org/10.1080/00273171.2020.1743631.
:param emb: embedding vectors
:type emb: numpy.ndarray (num_entities, dim)
:param q: Parameter for the Renyi entropy function, defaults to 1
:type q: int, optional
:param normalize: Set True to center data. For spherical or quasi-spherical data (such as the embedding by word2vec), normalize=False is recommended, defaults to False
:type normalize: bool, optional
:param is_cov: Set True if `emb` is the covariance matrix, defaults to False
:type is_cov: bool, optional
:return: effective dimensionality
:rtype: float
.. highlight:: python
.. code-block:: python
>>> import emlens
>>> import numpy as np
>>> emb = np.random.randn(100, 20)
>>> ed = emlens.effective_dimension(emb)
"""
if is_cov:
Cov = emb
else:
if normalize:
emb = StandardScaler().fit_transform(emb)
Cov = (emb.T @ emb) / emb.shape[0]
lam, v = linalg.eig(Cov)
order = np.argsort(lam)[::-1]
lam = lam[order]
v = v[:, order]
lam = np.real(lam)
lam = np.maximum(lam, 1e-10)
p = lam / np.sum(lam)
p = p[p > 0]
return v, p
|
5d4247b92216bc9e77eabbd35746c06fec22161c
| 24,981 |
def getProductMinInventory(db, productID):
"""
Gives back the minimum inventory for a given product
:param db: database pointer
:param productID: int
:return: int
"""
# make the query and receive a single tuple (first() allows us to do this)
result = db.session.query(Product).filter(Product.id == productID).first()
# grab the name in the keyed tuple received
return result.min_inventory
|
032c95685e1c578f9251d269899f4ee04d93e326
| 24,982 |
import re
def read_config6(section, option, filename='', verbosity=None): #format result: {aaa:[bbb, ccc], ddd:[eee, fff], ggg:[hhh, qqq], xxx:[yyy:zzz]}
"""
option: section, option, filename=''
format result: {aaa:bbb, ccc:ddd, eee:fff, ggg:hhh, qqq:xxx, yyy:zzz}
"""
filename = get_config_file(filename, verbosity)
data = {}
cfg = ConfigParser.RawConfigParser(allow_no_value=True, dict_type=MultiOrderedDict)
cfg.read(filename)
cfg = cfg.get(section, option)
for i in cfg:
if ":" in i:
d1 = str(i).split(":")
d2 = int(str(d1[0]).strip())
for j in d1[1]:
d3 = re.split("['|','|']", d1[1])
d4 = str(d3[1]).strip()
d5 = str(d3[-2]).strip()
data.update({d2:[d4, d5]})
else:
pass
return data
|
e80c80b2033b10c03c7ee0b2a5e25c5739777f3f
| 24,983 |
def bboxes_iou(boxes1, boxes2):
"""
boxes: [xmin, ymin, xmax, ymax] format coordinates.
"""
boxes1 = np.array(boxes1)
boxes2 = np.array(boxes2)
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])
left_up = np.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = np.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
ious = np.maximum(1.0 * inter_area / union_area, 0.0)
return ious
|
ca2083dd0138a6bd1ee741fc58739340dc1bac61
| 24,984 |
import torch
import collections
def predict_all_task(trained_model_path, config, subject_specific):
"""Predict.
Parameters
----------
model_path : str
Description of parameter `model_path`.
config : dict
A dictionary of hyper-parameters used in the network.
Returns
-------
float
Predicted labels from the model.
"""
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
trained_model = torch.load(trained_model_path, map_location=device)
labels = collections.defaultdict(dict)
for subject in config['subjects']:
for trial in config['trials']:
if subject_specific:
data_iterator = subject_specific_data_iterator(
subject, trial, config)
labels[subject][trial] = calculate_predictions(
trained_model, data_iterator, config)
else:
data_iterator = collective_data_iterator(config)
labels[subject][trial] = calculate_predictions(
trained_model, data_iterator, config)
return labels
|
ae179d41cff63b52c9836f7bbb25675618e1aa86
| 24,986 |
def hjorth(X):
""" Compute Hjorth mobility and complexity of a time series.
Notes
-----
To speed up, it is recommended to compute D before calling this function
because D may also be used by other functions whereas computing it here
again will slow down.
Parameters
----------
X : array_like, shape(N,)
a 1-D real time series.
Returns
-------
HM : float
Hjorth mobility
Comp : float
Hjorth complexity
References
----------
.. [1] B. Hjorth, "EEG analysis based on time domain properties,"
Electroencephalography and Clinical Neurophysiology , vol. 29,
pp. 306-310, 1970.
"""
# Compute the first order difference
D = np.diff(X)
# pad the first difference
D = np.hstack([X[0], D])
#
n = X.shape[0]
M2 = np.float(np.sum(D ** 2))/n
TP = np.sum(X ** 2)
M4 = np.sum((D[1:] - D[:D.shape[0]-1])**2)/n
# Hjorth Mobility and Complexity
HM = np.sqrt(M2 / TP)
Comp = np.sqrt(np.float(M4) * TP / M2 / M2)
return HM, Comp
|
8ca56b45e2c5af0d28d34c181cc1b6bc915e507d
| 24,987 |
def check_and_set_owner(func):
"""
Decorator that applies to functions expecting the "owner" name as a
second argument.
It will check if a user exists with this name and if so add to the
request instance a member variable called owner_user pointing to the
User instance corresponding to the owner.
If the owner doesn't exists, the visitor is redirected to 404.
"""
def _check_and_set_owner(request, owner_name, *args, **kwargs):
try:
owner_user = User.objects.get(username=owner_name)
except User.DoesNotExist:
return HttpResponseNotFound()
else:
request.owner_user = owner_user
return func(request, owner_name, *args, **kwargs)
return _check_and_set_owner
|
9c5ba9d0b0bb1058ddf830da5fc59df3724b2c0e
| 24,988 |
def schedule(self: Client) -> ScheduleProxy:
"""Delegates to a
:py:class:`mcipc.rcon.je.commands.schedule.ScheduleProxy`
"""
return ScheduleProxy(self, 'schedule')
|
a8402088fa9fa697e988b2bdb8f185b14f012873
| 24,989 |
def check_permission(permission):
"""Returns true if the user has the given permission."""
if 'permissions' not in flask.session:
return False
# Admins always have access to everything.
if Permissions.ADMIN in flask.session['permissions']:
return True
# Otherwise check if the permission is present in their permission list.
return permission in flask.session['permissions']
|
b4c45b15a68a07140c70b3f46001f0ca6a737ea5
| 24,990 |
def Energy_value (x):
"""
Energy of an input signal
"""
y = np.sum(x**2)
return y
|
cf2c650c20f2a7dac8bf35db21f25b8af428404e
| 24,993 |
import re
def get_int():
"""Read a line of text from standard input and return the equivalent int."""
while True:
s = get_string();
if s is None:
return None
if re.search(r"^[+-]?\d+$", s):
try:
i = int(s, 10)
if type(i) is int: # could become long in Python 2
return i
except ValueError:
pass
print("Retry: ", end="")
|
e6f4e1c49f4b4bc0306af50283728f016db524d7
| 24,994 |
def create_save_featvec_homogenous_time(yourpath, times, intensities, filelabel, version=0, save=True):
"""Produces the feature vectors for each light curve and saves them all
into a single fits file. requires all light curves on the same time axis
parameters:
* yourpath = folder you want the file saved into
* times = a single time axis for all
* intensities = array of all light curves (NOT normalized)
* sector, camera, ccd = integers
* version = what version of feature vector to calculate for all.
default is 0
* save = whether or not to save into a fits file
returns: list of feature vectors + fits file containing all feature vectors
requires: featvec()
modified: [lcg 08212020]"""
fname_features = yourpath + "/"+ filelabel + "_features_v"+str(version)+".fits"
feature_list = []
if version == 0:
#median normalize for the v0 features
intensities = normalize(intensities)
elif version == 1:
#mean normalize the intensity so goes to 1
intensities = mean_norm(intensities)
print("Begining Feature Vector Creation Now")
for n in range(len(intensities)):
feature_vector = featvec(times, intensities[n], v=version)
feature_list.append(feature_vector)
if n % 25 == 0: print(str(n) + " completed")
feature_list = np.asarray(feature_list)
if save == True:
hdr = fits.Header()
hdr["VERSION"] = version
hdu = fits.PrimaryHDU(feature_list, header=hdr)
hdu.writeto(fname_features)
else:
print("Not saving feature vectors to fits")
return feature_list
|
29250aad4cfa1aa5bbd89b880f93a7a70a775dfb
| 24,995 |
import asyncio
async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry):
"""Set up Eaton xComfort Bridge from a config entry."""
ip_address = entry.data.get(CONF_IP_ADDRESS)
auth_key = entry.data.get("authkey")
bridge = Bridge(ip_address, auth_key)
# bridge.logger = lambda x: _LOGGER.warning(x)
# hass.async_create_task(bridge.run())
asyncio.create_task(bridge.run())
if DOMAIN not in hass.data:
hass.data[DOMAIN] = {}
hass.data[DOMAIN][entry.entry_id] = bridge
for component in PLATFORMS:
hass.async_create_task(
hass.config_entries.async_forward_entry_setup(entry, component)
)
return True
|
b24b78054c1e8236b5a29fed7287db4150f9deb0
| 24,996 |
def _cpu_string(platform_type, settings):
"""Generates a <platform>_<arch> string for the current target based on the given parameters."""
if platform_type == "ios":
ios_cpus = settings["//command_line_option:ios_multi_cpus"]
if ios_cpus:
return "ios_{}".format(ios_cpus[0])
cpu_value = settings["//command_line_option:cpu"]
if cpu_value.startswith("ios_"):
return cpu_value
return "ios_x86_64"
if platform_type == "macos":
macos_cpus = settings["//command_line_option:macos_cpus"]
if macos_cpus:
return "darwin_{}".format(macos_cpus[0])
return "darwin_x86_64"
if platform_type == "tvos":
tvos_cpus = settings["//command_line_option:tvos_cpus"]
if tvos_cpus:
return "tvos_{}".format(tvos_cpus[0])
return "tvos_x86_64"
if platform_type == "watchos":
watchos_cpus = settings["//command_line_option:watchos_cpus"]
if watchos_cpus:
return "watchos_{}".format(watchos_cpus[0])
return "watchos_i386"
fail("ERROR: Unknown platform type: {}".format(platform_type))
|
7cf483c45bb209a9e3e0775538934945324281a7
| 24,997 |
def Check2DBounds(atomMatch,mol,pcophore):
""" checks to see if a particular mapping of features onto
a molecule satisfies a pharmacophore's 2D restrictions
>>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)),
... ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))]
>>> pcophore= Pharmacophore.Pharmacophore(activeFeats)
>>> pcophore.setUpperBound2D(0,1,3)
>>> m = Chem.MolFromSmiles('FCC(N)CN')
>>> Check2DBounds(((0,),(3,)),m,pcophore)
True
>>> Check2DBounds(((0,),(5,)),m,pcophore)
False
"""
dm = Chem.GetDistanceMatrix(mol,False,False,False)
nFeats = len(atomMatch)
for i in range(nFeats):
for j in range(i+1,nFeats):
lowerB = pcophore._boundsMat2D[j,i] #lowerB = pcophore.getLowerBound2D(i,j)
upperB = pcophore._boundsMat2D[i,j] #upperB = pcophore.getUpperBound2D(i,j)
dij=10000
for atomI in atomMatch[i]:
for atomJ in atomMatch[j]:
try:
dij = min(dij,dm[atomI,atomJ])
except IndexError:
print('bad indices:',atomI,atomJ)
print(' shape:',dm.shape)
print(' match:',atomMatch)
print(' mol:')
print(Chem.MolToMolBlock(mol))
raise IndexError
if dij<lowerB or dij>upperB:
return False
return True
|
d119645de037eeaf536e290766d4dacf9c2e2f08
| 24,998 |
def get_sdk_dir(fips_dir) :
"""return the platform-specific SDK dir"""
return util.get_workspace_dir(fips_dir) + '/fips-sdks/' + util.get_host_platform()
|
f3fcf05a8dd1ae0f14431a84ae570c56dd900c69
| 24,999 |
from typing import Any
def suggested_params(**kwargs: Any) -> transaction.SuggestedParams:
"""Return the suggested params from the algod client.
Set the provided attributes in ``kwargs`` in the suggested parameters.
"""
params = _algod_client().suggested_params()
for key, value in kwargs.items():
setattr(params, key, value)
return params
|
678f207bdd1152f6a8cb98e9c4964dd43b9dd761
| 25,000 |
def norm_rl(df):
"""
Normalizes read length dependent features
"""
rl_feat = ["US_r", "US_a", "DS_a", "DS_r", "UXO_r", "UXO_a", "DXO_r", "DXO_a", "UMO_r", "UMO_a", "DMO_r", "DMO_a", "MO_r", "MO_a", "XO_r", "XO_a"]
rl = df['MO_r'].max()
df[rl_feat] = df[rl_feat]/rl
return df
|
0f7c36a447f04bc647773e99a83f59f3789849d4
| 25,001 |
import json
def sendRequest(self, channel, params=None):
"""发送请求"""
# 生成请求
d = {}
d['event'] = 'addChannel'
d['channel'] = channel
# 如果有参数,在参数字典中加上api_key和签名字段
if params is not None:
params['api_key'] = apiKey
params['sign'] = buildMySign(params, secreteKey)
d['parameters'] = params
# 使用json打包并发送
j = json.dumps(d)
# 若触发异常则重连
try:
self.ws.send(j)
return True
except websocket.WebSocketConnectionClosedException:
self.reconnect()
return False
|
ddaae8800e0fbcf69ce1e15abba4725ef70eadfa
| 25,002 |
def altCase(text: str):
"""
Returns an Alternate Casing of the Text
"""
return "".join(
[
words.upper() if index % 2 else words.lower()
for index, words in enumerate(text)
]
)
|
1d8c25f9b81e360c254ac10ce105f99ca890a87c
| 25,003 |
def makeObjectArray(elem, graph, num, tag=sobject_array):
"""
Create an object array of num objects based upon elem, which becomes the
first child of the new object array
This function also can create a delay when passed a different tag
"""
p = elem.getparent()
objarray = etree.Element(etree.QName(p, tag))
ref = getNewRef()
objarray.set(sreference, ref)
Xref.update(ref, objarray, p.get(sreference), makeNewName(tag, objarray), graph, tag=tag)
objarray.set(scount, str(num))
p.append(objarray)
p.remove(elem)
objarray.append(elem)
Xref.update(elem.get(sreference), tagref=ref)
return changeDelayOrArrayCount(objarray, graph)
|
5ef896b6514dc0d5ce00bbf0322c9e775fb4a152
| 25,004 |
def convert_mg_l_to_mymol_kg(o2, rho_0=1025):
"""Convert oxygen concentrations in ml/l to mymol/kg."""
converted = o2 * 1/32000 * rho_0/1000 * 1e6
converted.attrs["units"] = "$\mu mol/kg$"
return converted
|
5925cf1f5629a0875bdc777bc3f142b9a664a144
| 25,006 |
import xml
from typing import List
def parse_defines(root: xml.etree.ElementTree.Element,
component_id: str) -> List[str]:
"""Parse pre-processor definitions for a component.
Schema:
<defines>
<define name="EXAMPLE" value="1"/>
<define name="OTHER"/>
</defines>
Args:
root: root of element tree.
component_id: id of component to return.
Returns:
list of str NAME=VALUE or NAME for the component.
"""
xpath = f'./components/component[@id="{component_id}"]/defines/define'
return list(_parse_define(define) for define in root.findall(xpath))
|
0f2b06581d89f9be3ff4d733e1db9b56e951cc89
| 25,007 |
def make_f_beta(beta):
"""Create a f beta function
Parameters
----------
beta : float
The beta to use where a beta of 1 is the f1-score or F-measure
Returns
-------
function
A function to compute the f_beta score
"""
beta_2 = beta**2
coeff = (1 + beta_2)
def f(global_, local_, node):
"""Compute the f-measure
Parameters
----------
global_ : np.array
All of the scores for a given query
local_ : np.array
The scores for the query at the current node
node : skbio.TreeNode
The current node being evaluated
"""
p = len(global_) / len(local_)
r = len(local_) / node.ntips
return coeff * (p * r) / ((beta_2 * p) + r)
return f
|
f0e6993ac956171c58415e1605706c453d3e6d61
| 25,008 |
def _autohint_code(f, script):
"""Return 'not-hinted' if we don't hint this, else return the ttfautohint
code, which might be None if ttfautohint doesn't support the script.
Note that LGC and MONO return None."""
if script == 'no-script':
return script
if not script:
script = noto_fonts.script_key_to_primary_script(_get_font_info(f).script)
return noto_data.HINTED_SCRIPTS.get(script, 'not-hinted')
|
4341098cbd9581ef989a65d352493fe28c7ddbd7
| 25,009 |
def infostring(message=""):
"""Info log-string.
I normally use this at the end of tasks.
Args:
message(str): A custom message to add.
Returns:
(str)
"""
message.rstrip().replace("\n", " ")
return tstamp() + "\t## INFO ## " + message + "\n"
|
14e3012ad9c6e4c7cd10ea885098e31a3eef3ead
| 25,010 |
def geo_point_n(arg, n):
"""Return the Nth point in a single linestring in the geometry.
Negative values are counted backwards from the end of the LineString,
so that -1 is the last point. Returns NULL if there is no linestring in
the geometry
Parameters
----------
arg : geometry
n : integer
Returns
-------
PointN : geometry scalar
"""
op = ops.GeoPointN(arg, n)
return op.to_expr()
|
6da6e0f362fac5e63093e0b93b5cf75b4f05bb5f
| 25,012 |
def replace_pasture_scrubland_with_shrubland(df, start_col, end_col):
"""Merge pasture and scrubland state transitions into 'shrubland'.
1. Remove transitions /between/ scrubland and pasture and vice versa.
2. Check there are no duplicate transitions which would be caused by an
identical set of conditions leading from or to both pasture and
scrubland being merged.
3. Rename all instances of either 'scrubland' or 'pasture' to 'shrubland'
4. Check for duplicates again.
"""
df = remove_transitions_bw_pasture_and_scrubland(df, start_col, end_col)
duplicates_start = duplicates_start_with_pasture_or_scrubland(df,
start_col, end_col)
assert len(duplicates_start.index) == 0, "No duplicates expected."
duplicates_end = duplicates_end_with_pasture_or_scrubland(df,
start_col, end_col)
assert len(duplicates_end.index) == 0, "No duplicates expected."
for col in [start_col, end_col]:
for lct in [MLct.SCRUBLAND.alias, MLct.PASTURE.alias]:
df.loc[:,col] = df[col].replace(lct, AsLct.SHRUBLAND.alias)
cond_cols = ["succession", "aspect", "pine", "oak", "deciduous", "water"]
cond_cols += [start_col, end_col]
assert len(df[df.duplicated(cond_cols)].index) == 0, "There should be "\
+ "no duplicated rows."
return df
|
9f3102a157e8fbaad1cca3631a117ab45470bae3
| 25,013 |
from typing import List
def get_storage_backend_descriptions() -> List[dict]:
"""
Returns:
"""
result = list()
for backend in SUPPORTED_STORAGE_BACKENDS:
result.append(get_storage_backend(backend).metadata)
return result
|
2ec097a7c70788da270849332f845316435ac746
| 25,014 |
from typing import Tuple
def get_business_with_most_location() -> Tuple:
"""
Fetches LA API and returns the business with most locations
from first page
:return Tuple: business name and number of locations
"""
response = _fetch_businesses_from_la_api()
business_to_number_of_location = dict()
if response.status_code == 200:
businesses_list = response.json()
for active_business in businesses_list:
business_name = active_business["business_name"]
if business_name not in business_to_number_of_location:
business_to_number_of_location[business_name] = 1
else:
business_to_number_of_location[business_name] += 1
(
business_name_from_max,
number_of_locations,
) = _get_max_business_occurrence(business_to_number_of_location)
else:
raise ServiceUnavailable()
return business_name_from_max, number_of_locations
|
ee0d7f432387e4587f615bd294cc8c8276d5baf1
| 25,015 |
from typing import AbstractSet
def degrees_to_polynomial(degrees: AbstractSet[int]) -> Poly:
"""
For each degree in a set, create the polynomial with those
terms having coefficient 1 (and all other terms zero), e.g.:
{0, 2, 5} -> x**5 + x**2 + 1
"""
degrees_dict = dict.fromkeys(degrees, 1)
return Poly.from_dict(degrees_dict, x)
|
6c6a27b499f766fae20c2a9cf97b7ae0352e7dc5
| 25,016 |
def validate_set_member_filter(filter_vals, vals_type, valid_vals=None):
"""
Validate filter values that must be of a certain type or
found among a set of known values.
Args:
filter_vals (obj or Set[obj]): Value or values to filter records by.
vals_type (type or Tuple[type]): Type(s) of which all ``filter_vals``
must be instances.
valid_vals (Set[obj]): Set of valid values in which all ``filter_vals``
must be found.
Return:
Set[obj]: Validated and standardized filter values.
Raises:
TypeError
ValueError
"""
filter_vals = to_collection(filter_vals, vals_type, set)
if valid_vals is not None:
if not all(filter_val in valid_vals for filter_val in filter_vals):
raise ValueError(
"not all values in filter are valid: {}".format(
filter_vals.difference(valid_vals)
)
)
return filter_vals
|
a48639473ed0ac303776d50fb4fb09fa45a74d8e
| 25,017 |
def update_many(token, checkids, fields, customerid=None):
""" Updates a field(s) in multiple existing NodePing checks
Accepts a token, a list of checkids, and fields to be updated in a
NodePing check. Updates the specified fields for the one check.
To update many checks with the same value, use update_many
:type token: string
:param token: Your NodePing API token
:type checkids: dict
:param checkids: CheckIDs with their check type to update
:type fields: dict
:param fields: Fields in check that will be updated
:type customerid: string
:param customerid: subaccount ID
:rtype: dict
:return: Return information from NodePing query
"""
updated_checks = []
for checkid, checktype in checkids.items():
url = "{0}/{1}".format(API_URL, checkid)
url = _utils.create_url(token, url, customerid)
send_fields = fields.copy()
send_fields.update({"type": checktype.upper()})
updated_checks.append(_query_nodeping_api.put(url, send_fields))
return updated_checks
|
b96d3e29c6335b6bbec357e42a008faa654c72ab
| 25,018 |
def main(start, end, csv_name, verbose):
"""Run script conditioned on user-input."""
print("Collecting Pomological Watercolors {s} throught {e}".format(s=start, e=end))
return get_pomological_data(start=start, end=end, csv_name=csv_name, verbose=verbose)
|
fd0c619f8e24929e705285bc9330ef1d21825d8b
| 25,019 |
import hashlib
def _sub_fetch_file(url, md5sum=None):
"""
Sub-routine of _fetch_file
:raises: :exc:`DownloadFailed`
"""
contents = ''
try:
fh = urlopen(url)
contents = fh.read()
if md5sum is not None:
filehash = hashlib.md5(contents).hexdigest()
if md5sum and filehash != md5sum:
raise DownloadFailed("md5sum didn't match for %s. Expected %s got %s" % (url, md5sum, filehash))
except URLError as ex:
raise DownloadFailed(str(ex))
return contents
|
0a92aaa55661469686338631913020a99aab0d8c
| 25,020 |
def get_path_to_config(config_name: str) -> str:
"""Returns path to config dir"""
return join(get_run_configs_dir(), config_name)
|
3a4092c66ea18929d001e7bb4e8b5b90b8a38439
| 25,021 |
def scan_db_and_save_table_info(data_source_id, db_connection, schema, table):
"""Scan the database for table info."""
table_info = get_table_info(
{}, schema, table, from_db_conn=True, db_conn=db_connection
)
old_table_info = fetch_table_info(data_source_id, schema, table, as_obj=True)
data_source_metadata = DataSourceMetadata(
data_source_id=data_source_id,
metadata_type="table_info",
metadata_param=get_metadata_param_str([schema, table]),
metadata_info=table_info,
)
data_source_metadata.save(commit=True)
if old_table_info:
old_table_info.delete(commit=True)
return table_info
|
050183b68891ff0ab0f45435d29206a5800b704c
| 25,023 |
def _get_non_heavy_neighbor_residues(df0, df1, cutoff):
"""Get neighboring residues for non-heavy atom-based distance."""
non_heavy0 = df0[df0['element'] != 'H']
non_heavy1 = df1[df1['element'] != 'H']
dist = spa.distance.cdist(non_heavy0[['x', 'y', 'z']], non_heavy1[['x', 'y', 'z']])
pairs = np.array(np.where(dist < cutoff)).T
if len(pairs) == 0:
return [], []
# Use the found pairs to find unique pairings of residues.
res0 = non_heavy0.iloc[pairs[:, 0]][['pdb_name', 'model', 'chain', 'residue']]
res1 = non_heavy1.iloc[pairs[:, 1]][['pdb_name', 'model', 'chain', 'residue']]
res0 = res0.reset_index(drop=True)
res1 = res1.reset_index(drop=True)
# We concatenate so that we can find unique _pairs_.
res = pd.concat((res0, res1), axis=1)
res = res.drop_duplicates()
# # Split back out now that we have found duplicates.
res0 = res.iloc[:, range(4)]
res1 = res.iloc[:, range(4, 8)]
res0 = res0.reset_index(drop=True)
res1 = res1.reset_index(drop=True)
return res0, res1
|
b27a341cb1e5e5dd74c881036d7002a107270cd5
| 25,024 |
def j0(ctx, x):
"""Computes the Bessel function `J_0(x)`. See :func:`besselj`."""
return ctx.besselj(0, x)
|
c2defd50be3feb3791f5be5709e5312d1e232590
| 25,025 |
def mysql2df(host, user, password, db_name, tb_name):
"""
Return mysql table data as pandas DataFrame.
:param host: host name
:param user: user name
:param password: password
:param db_name: name of the pydb from where data will be exported
:param tb_name: name of the table from where data will be exported
"""
# Create a connection object
# dialect+driver://username:password@host:port/pydb
connect_string = "mysql+pymysql://{}:{}@{}/{}".format(user, password, host, db_name)
engine = db.create_engine(connect_string, encoding='latin1', echo=True, pool_pre_ping=True)
connection = engine.connect()
session = sessionmaker(bind=engine)()
metadata = db.MetaData()
try:
# print the table column names
tb = db.Table(tb_name, metadata, autoload=True, autoload_with=engine)
print(tb.columns.keys())
# Retrieve table data: 'SELECT * FROM table'
sql_query = 'SELECT * FROM {}'.format(tb_name)
df = pd.read_sql(sql_query, connection)
return df
except Exception as e:
print('Error: {}'.format(str(e)))
finally:
engine.dispose()
session.close()
|
a4ea75b9fa13e6cb48650e69f5d8216f24fdaf07
| 25,026 |
def is_int(number):
""" Check if a variable can be cast as an int.
@param number: The number to check
"""
try:
x = int(number)
return True
except:
return False
|
e8e8956942d96956cb34b424b34fb028620f8be1
| 25,027 |
import pathlib
def get_versions(api_type=DEFAULT_TYPE):
"""Search for API object module files of api_type.
Args:
api_type (:obj:`str`, optional):
Type of object module to load, must be one of :data:`API_TYPES`.
Defaults to: :data:`DEFAULT_TYPE`.
Raises:
:exc:`exceptions.NoVersionFoundError`:
If no API module files matching :data:`PATTERN` are found.
Returns:
:obj:`list` of :obj:`dict`
"""
path = pathlib.Path(__file__).absolute().parent
pattern = PATTERN.format(api_type=api_type)
matches = [p for p in path.glob(pattern)]
if not matches:
error = "Unable to find any object modules matching pattern {r!r} in {p!r}"
error = error.format(p=format(path), r=pattern)
raise exceptions.NoVersionFoundError(error)
versions = []
for match in matches:
name = match.stem
vparts = name.split("_")
vtype = vparts.pop(0)
vparts = utils.versions.split_ver(vparts)
vstr = utils.versions.join_ver(vparts)
versions.append(
{
"ver_str": vstr,
"ver_parts": vparts,
"api_type": vtype,
"module_file": name,
"module_path": match,
}
)
versions = sorted(versions, key=lambda x: x["ver_parts"], reverse=True)
return versions
|
58b2df442901b080db12951ab48991371689e955
| 25,028 |
def model_flux(parameters_dict, xfibre, yfibre, wavelength, model_name):
"""Return n_fibre X n_wavelength array of model flux values."""
parameters_array = parameters_dict_to_array(parameters_dict, wavelength,
model_name)
return moffat_flux(parameters_array, xfibre, yfibre)
|
c3cf75fab6b8b4965aefeebf82d40378bcd1de19
| 25,029 |
def new_rnn_layer(cfg, num_layer):
"""Creates new RNN layer for each parameter depending on whether it is bidirectional LSTM or not.
Uses the fast LSTM implementation backed by CuDNN if a GPU is available.
Note: The normal LSTMs utilize sigmoid recurrent activations so as to retain compatibility CuDNNLSTM:
see the following github issue for more details: https://github.com/keras-team/keras/issues/8860
:param cfg: configuration of CharGen instance
:param num_layer: ordinal number of the rnn layer being built
:return: 3D tensor if return sequence is True
"""
gpu_no = len(K.tensorflow_backend._get_available_gpus())
if gpu_no > 0:
print('GPU is available...')
if cfg['bidirectional']:
return Bidirectional(CuDNNLSTM(cfg['rnn_size'],
return_sequences=True),
name='rnn_{}'.format(num_layer))
return CuDNNLSTM(cfg['rnn_size'],
return_sequences=True,
name='rnn_{}'.format(num_layer))
else:
print('No GPU available...')
if cfg['bidirectional']:
return Bidirectional(LSTM(cfg['rnn_size'],
return_sequences=True,
recurrent_activation='sigmoid'),
name='rnn_{}'.format(num_layer))
return LSTM(cfg['rnn_size'],
return_sequences=True,
recurrent_activation='sigmoid',
name='rnn_{}'.format(num_layer))
|
341ca96549f40c8607e44b9ef353313107a8fb0a
| 25,030 |
def firfreqz(h, omegas):
"""Evaluate frequency response of an FIR filter at discrete frequencies.
Parameters
h: array_like
FIR filter coefficient array for numerator polynomial.
e.g. H(z) = 1 + a*z^-1 + b*z^-2
h = [1, a, b]
"""
hh = np.zeros(omegas.shape, dtype='complex128')
for ii, aa in enumerate(h):
hh[:] = hh[:] + aa * np.exp(-1j * omegas*ii)
return hh
|
4463b1dcd73090d2dedbdd0e78066e4d26d19655
| 25,031 |
import pickle
def write_np2pickle(output_fp: str, array, timestamps: list) -> bool:
"""
Convert and save Heimann HTPA NumPy array shaped [frames, height, width] to a pickle file.
Parameters
----------
output_fp : str
Filepath to destination file, including the file name.
array : np.array
Temperatue distribution sequence, shaped [frames, height, width].
timestamps : list
List of timestamps of corresponding array frames.
"""
ensure_parent_exists(output_fp)
with open(output_fp, "wb") as f:
pickle.dump((array, timestamps), f)
return True
|
96956829a41f3955440693f0d754b013a218e941
| 25,032 |
from re import S
import logging
import webbrowser
def run(
client_id_: str, client_secret_: str, server_class=HTTPServer, handler_class=S, port=8080
) -> str:
"""
Generates a Mapillary OAuth url and prints to screen as well as opens it automatically in a browser. Declares some
global variables to pull data from the HTTP server through the GET endpoint.
"""
# These global variables are defined so that we can pass data to / get data from the GET endpoint
global client_id
global client_secret
global access_token
client_id = client_id_
client_secret = client_secret_
server_address = ("localhost", port)
httpd = server_class(server_address, handler_class)
logging.info("Starting httpd and opening Mapillary to authenticate...")
try:
# Print the OAuth link to console and also tries to open it directly in the browser
auth_url = AUTH_URL.format(client_id)
logging.info(
"Please authenticate (if browser didn't automatically open): {}".format(auth_url)
)
webbrowser.open_new_tab(auth_url)
httpd.serve_forever()
except KeyboardInterrupt:
pass
httpd.server_close()
logging.info("Stopping httpd...")
return access_token
|
152e4c0ae5c20b8e39693478ff5d06c1cc5fa8a5
| 25,033 |
def sort_by_rank_change(val):
"""
Sorter by rank change
:param val: node
:return: nodes' rank value
"""
return abs(float(val["rank_change"]))
|
ff5730e7cc765949dcfcfd4a3da32947ce3a411a
| 25,034 |
def ping():
"""always 200"""
status = 200
return flask.Response(response='\n', status=status, mimetype='application/json')
|
8407d4ef4188badbeff5ba34868d530b06dd5158
| 25,035 |
def add_gtid_ranges_to_executed_set(existing_set, *new_ranges):
"""Takes in a dict like {"uuid1": [[1, 4], [7, 12]], "uuid2": [[1, 100]]} (as returned by e.g. parse_gtid_range_string)
and any number of lists of type [{"server_uuid": "uuid", "start": 1, "end": 3}, ...]. Adds all the ranges in the lists to
the ranges in the dict and returns a new dict that contains minimal representation with both the old and new ranges."""
all_ranges = []
for server_uuid, ranges in existing_set.items():
for rng in ranges:
all_ranges.append({
"end": rng[1],
"server_uuid": server_uuid,
"start": rng[0],
})
for rng in new_ranges:
all_ranges.extend(rng)
return partition_sort_and_combine_gtid_ranges(all_ranges)
|
47a71f2a55054d83092ffbb2119bcab7760f28a8
| 25,037 |
def fetch_rgb(img):
"""for outputing rgb values from click event to the terminal.
:param img: input image
:type img: cv2 image
:return: the rgb list
:rtype: list
"""
rgb_list = []
def click_event(event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
red = img[y, x, 2]
blue = img[y, x, 0]
green = img[y, x, 1]
print(red, green, blue) # prints to command line
strRGB = str(red) + "," + str(green) + "," + str(blue)
rgb_list.append([red, green, blue])
cv2.imshow('original', img)
cv2.imshow('original', img)
cv2.setMouseCallback("original", click_event)
cv2.waitKey(0)
cv2.destroyAllWindows
return rgb_list
|
16ff0359d47eb31a4f9c529740a9813680937e22
| 25,038 |
import functools
def _get_date_filter_consumer(field):
"""date.{lt, lte, gt, gte}=<ISO DATE>"""
date_filter = make_date_filter(functools.partial(django_date_filter, field_name=field))
def _date_consumer(key, value):
if '.' in key and key.split(".")[0] == field:
prefix, qualifier = key.split(".", maxsplit=1)
try:
return date_filter(qualifier, value)
except ValueError as e:
raise InvalidFilterError(str(e))
return {}
return _date_consumer
|
37b7938ef5cebd29d487ec1e53cfc86d13a726d3
| 25,039 |
def data_path(fname):
"""
Gets a path for a given filename. This ensures that relative filenames to
data files can be used from all modules.
model.json -> .../src/data/model.json
"""
return join(dirname(realpath(__file__)), fname)
|
294c91a041227fd9da6d1c9c8063de283281e85e
| 25,040 |
def _parse_special_functions(sym: sp.Expr, toplevel: bool = True) -> sp.Expr:
"""
Recursively checks the symbolic expression for functions which have be
to parsed in a special way, such as piecewise functions
:param sym:
symbolic expressions
:param toplevel:
as this is called recursively, are we in the top level expression?
"""
args = tuple(arg if arg.__class__.__name__ == 'piecewise'
and sym.__class__.__name__ == 'piecewise'
else _parse_special_functions(arg, False)
for arg in sym.args)
fun_mappings = {
'times': sp.Mul,
'xor': sp.Xor,
'abs': sp.Abs,
'min': sp.Min,
'max': sp.Max,
'ceil': sp.functions.ceiling,
'floor': sp.functions.floor,
'factorial': sp.functions.factorial,
'arcsin': sp.functions.asin,
'arccos': sp.functions.acos,
'arctan': sp.functions.atan,
'arccot': sp.functions.acot,
'arcsec': sp.functions.asec,
'arccsc': sp.functions.acsc,
'arcsinh': sp.functions.asinh,
'arccosh': sp.functions.acosh,
'arctanh': sp.functions.atanh,
'arccoth': sp.functions.acoth,
'arcsech': sp.functions.asech,
'arccsch': sp.functions.acsch,
}
if sym.__class__.__name__ in fun_mappings:
return fun_mappings[sym.__class__.__name__](*args)
elif sym.__class__.__name__ == 'piecewise' \
or isinstance(sym, sp.Piecewise):
if isinstance(sym, sp.Piecewise):
# this is sympy piecewise, can't be nested
denested_args = args
else:
# this is sbml piecewise, can be nested
denested_args = _denest_piecewise(args)
return _parse_piecewise_to_heaviside(denested_args)
if sym.__class__.__name__ == 'plus' and not sym.args:
return sp.Float(0.0)
if isinstance(sym, (sp.Function, sp.Mul, sp.Add, sp.Pow)):
sym._args = args
elif toplevel and isinstance(sym, BooleanAtom):
# Replace boolean constants by numbers so they can be differentiated
# must not replace in Piecewise function. Therefore, we only replace
# it the complete expression consists only of a Boolean value.
sym = sp.Float(int(bool(sym)))
return sym
|
b560521ceee7cb4db16b808e44b1e538e236c00e
| 25,041 |
def get_airflow_config(version, timestamp, major, minor, patch, date, rc):
"""Return a dict of the configuration for the Pipeline."""
config = dict(AIRFLOW_CONFIG)
if version is not None:
config['VERSION'] = version
else:
config['VERSION'] = config['VERSION'].format(
major=major, minor=minor, patch=patch, date=date, rc=rc)
config['MFEST_COMMIT'] = config['MFEST_COMMIT'].format(timestamp=timestamp)
# This works becuse python format ignores keywork args that arn't pressent.
for k, v in config.items():
if k not in ['VERSION', 'MFEST_COMMIT']:
config[k] = v.format(VERSION=config['VERSION'])
return config
|
87c76949dba717b801a8d526306d0274eb193cc5
| 25,044 |
def find_duplicates(treeroot, tbl=None):
"""
Find duplicate files in a directory.
"""
dup = {}
if tbl is None: tbl = {}
os.path.walk(treeroot, file_walker, tbl)
for k,v in tbl.items():
if len(v) > 1:
dup[k] = v
return dup
|
0a959e443b7a4f5c67e57b8fc7bf597fee96065a
| 25,045 |
def attach_capping(mol1, mol2):
"""it is connecting all Nterminals with the desired capping
Arguments:
mol1 {rdKit mol object} -- first molecule to be connected
mol2 {rdKit mol object} -- second molecule to be connected - chosen N-capping
Returns:
rdKit mol object -- mol1 updated (connected with mol2, one or more)
"""
count = 0
# detects all the N terminals in mol1
for atom in mol1.GetAtoms():
atom.SetProp('Cterm', 'False')
if atom.GetSmarts() == '[N:2]' or atom.GetSmarts() == '[NH2:2]' or atom.GetSmarts() == '[NH:2]':
count += 1
atom.SetProp('Nterm', 'True')
else:
atom.SetProp('Nterm', 'False')
# detects all the C terminals in mol2 (it should be one)
for atom in mol2.GetAtoms():
atom.SetProp('Nterm', 'False')
if atom.GetSmarts() == '[C:1]' or atom.GetSmarts() == '[CH:1]':
atom.SetProp('Cterm', 'True')
else:
atom.SetProp('Cterm', 'False')
# mol2 is addes to all the N terminal of mol1
for i in range(count):
combo = rdmolops.CombineMols(mol1, mol2)
Nterm = []
Cterm = []
# saves in two different lists the index of the atoms which has to be connected
for atom in combo.GetAtoms():
if atom.GetProp('Nterm') == 'True':
Nterm.append(atom.GetIdx())
if atom.GetProp('Cterm') == 'True':
Cterm.append(atom.GetIdx())
# creates the amide bond
edcombo = rdchem.EditableMol(combo)
edcombo.AddBond(Nterm[0], Cterm[0], order=Chem.rdchem.BondType.SINGLE)
clippedMol = edcombo.GetMol()
# removes tags and lables form the atoms which reacted
clippedMol.GetAtomWithIdx(Nterm[0]).SetProp('Nterm', 'False')
clippedMol.GetAtomWithIdx(Cterm[0]).SetProp('Cterm', 'False')
clippedMol.GetAtomWithIdx(Nterm[0]).SetAtomMapNum(0)
clippedMol.GetAtomWithIdx(Cterm[0]).SetAtomMapNum(0)
# uptades the 'core' molecule
mol1 = clippedMol
return mol1
|
24a80efd94c4a5d4e0ddba478240d7c1b82ad52b
| 25,046 |
def gather_point(input, index):
"""
**Gather Point Layer**
Output is obtained by gathering entries of X indexed by `index`
and concatenate them together.
.. math::
Out = X[Index]
.. code-block:: text
Given:
X = [[1, 2, 3],
[3, 4, 5],
[5, 6, 7]]
Index = [[1, 2]
Then:
Out = [[3, 4, 5],
[5, 6, 7]]
Args:
input (Variable): The source input with rank>=1, This
is a 3-D tensor with shape of [B, N, 3].
index (Variable): The index input with shape of [B, M].
Returns:
output (Variable): The output is a tensor with shape of [B,M].
Examples:
.. code-block:: python
import paddle.fluid as fluid
x = fluid.data(name='x', shape=[None, 5, 3], dtype='float32')
index = fluid.data(name='index', shape=[None, 1], dtype='int32')
output = fluid.layers.gather_point(x, index)
"""
helper = LayerHelper('gather_point', **locals())
dtype = helper.input_dtype()
out = helper.create_variable_for_type_inference(dtype)
helper.append_op(
type="gather_point",
inputs={"X": input,
"Index": index},
outputs={"Output": out})
return out
|
dc4298ccf7df084abfc7d63f88ae7edb03af4010
| 25,047 |
def _apply_size_dependent_ordering(input_feature, feature_level, block_level,
expansion_size, use_explicit_padding,
use_native_resize_op):
"""Applies Size-Dependent-Ordering when resizing feature maps.
See https://arxiv.org/abs/1912.01106
Args:
input_feature: input feature map to be resized.
feature_level: the level of the input feature.
block_level: the desired output level for the block.
expansion_size: the expansion size for the block.
use_explicit_padding: Whether to use explicit padding.
use_native_resize_op: Whether to use native resize op.
Returns:
A transformed feature at the desired resolution and expansion size.
"""
padding = 'VALID' if use_explicit_padding else 'SAME'
if feature_level >= block_level: # Perform 1x1 then upsampling.
node = slim.conv2d(
input_feature,
expansion_size, [1, 1],
activation_fn=None,
normalizer_fn=slim.batch_norm,
padding=padding,
scope='Conv1x1')
if feature_level == block_level:
return node
scale = 2**(feature_level - block_level)
if use_native_resize_op:
input_shape = shape_utils.combined_static_and_dynamic_shape(node)
node = tf.image.resize_nearest_neighbor(
node, [input_shape[1] * scale, input_shape[2] * scale])
else:
node = ops.nearest_neighbor_upsampling(node, scale=scale)
else: # Perform downsampling then 1x1.
stride = 2**(block_level - feature_level)
node = slim.max_pool2d(
_maybe_pad(input_feature, use_explicit_padding), [3, 3],
stride=[stride, stride],
padding=padding,
scope='Downsample')
node = slim.conv2d(
node,
expansion_size, [1, 1],
activation_fn=None,
normalizer_fn=slim.batch_norm,
padding=padding,
scope='Conv1x1')
return node
|
c44206246102bbddc706be2cb0644676650c4675
| 25,048 |
def distance(s1, s2):
"""Return the Levenshtein distance between strings a and b."""
if len(s1) < len(s2):
return distance(s2, s1)
# len(s1) >= len(s2)
if len(s2) == 0:
return len(s1)
previous_row = xrange(len(s2) + 1)
for i, c1 in enumerate(s1):
current_row = [i + 1]
for j, c2 in enumerate(s2):
insertions = previous_row[j + 1] + 1 # j+1 instead of j since previous_row and current_row are one character longer
deletions = current_row[j] + 1 # than s2
substitutions = previous_row[j] + (c1 != c2)
current_row.append(min(insertions, deletions, substitutions))
previous_row = current_row
return previous_row[-1]
|
d7bb6e7a374349fd65bde621a29ee110402d18aa
| 25,049 |
def check_diversity(group, L):
"""check if group satisfy l-diversity
"""
SA_values = set()
for index in group:
str_value = list_to_str(gl_data[index][-1], cmp)
SA_values.add(str_value)
if len(SA_values) >= L:
return True
return False
|
7e87f96a80651608688d86c9c9e921d793fb6a9e
| 25,050 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.