content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def extract_dominant_keypoints2D(keypoint_2D, dominant_hand): """ Extract keypoint 2D. # Look Later with Octavio # Arguments keypoint_2D: Numpy array of shape (num_keypoints, 1). dominant_hand: List of size (2) with booleans. # Returns keypoint_visibility_2D_21: Numpy array of shape (num_keypoints, 1). """ keypoint_visibility_left = keypoint_2D[:LEFT_PINKY_TIP, :] keypoint_visibility_right = keypoint_2D[RIGHT_WRIST:RIGHT_PINKY_TIP, :] keypoint_visibility_2D_21 = np.where( dominant_hand[:, :2], keypoint_visibility_left, keypoint_visibility_right) return keypoint_visibility_2D_21
2581b4cb68d6dad2da3933259582f9160224eef9
18,955
def translation_ev(h, t, tol=1e6): """Compute the eigenvalues of the translation operator of a lead. Adapted from kwant.physics.leads.modes. Parameters ---------- h : numpy array, real or complex, shape (N, N) The unit cell Hamiltonian of the lead unit cell. t : numpy array, real or complex, shape (N, M) The hopping matrix from a lead cell to the one on which self-energy has to be calculated (and any other hopping in the same direction). tol : float Numbers and differences are considered zero when they are smaller than `tol` times the machine precision. Returns ------- ev : numpy array Eigenvalues of the translation operator in the form lambda=r*exp(i*k), for |r|=1 they are propagating modes. """ a, b = kwant.physics.leads.setup_linsys(h, t, tol, None).eigenproblem ev = kwant.physics.leads.unified_eigenproblem(a, b, tol=tol)[0] return ev
b5534b782b487ca195ab9b78438e68e81a62e74a
18,956
def bsearch(n, pred): """ Given a boolean function pred that takes index arguments in [0, n). Assume the boolean function pred returns all False and then all True for values. Return the index of the first True, or n if that does not exist. """ # invariant: last False lies in [l, r) and pred(l) is False if pred(0): return 0 l = 0 r = n while r-l > 1: m = l + (r-l)//2 result = pred(m) if result: r = m else: l = m return l+1
9274732aa9e24a0d0f73399ff50c19a544ac06a7
18,957
def test_rotating_file_handler_interval(tmpdir, logger, monkeypatch): """Test the rotating file handler when the rollover return a time smaller than the current time. """ def rollover(obj, current_time): return current_time - 0.1 monkeypatch.setattr(DayRotatingTimeHandler, 'computeRollover', rollover) handler = DayRotatingTimeHandler(str(tmpdir.join('test.log'))) handler.interval = 0.2 logger.addHandler(handler) # Probably because we gives a negative time. assert len(tmpdir.listdir()) == 1 logger.info('test') sleep(1) logger.info('test') assert len(tmpdir.listdir()) == 3
f6394f215e452fd7875b1fc624db9cb50cc19ed8
18,958
def compute_zero_crossing_wavelength(period, water_depth, gravity=GRAVITY): """Computes zero-crossing wavelength from given period. This uses the dispersion relation for linear waves. """ return wavenumber_to_wavelength( frequency_to_wavenumber(1. / period, water_depth, gravity) )
575ff3d251575fa7a232c120bde15f8f57c1dac9
18,959
def launch_transport_listener(transport, bindaddr, role, remote_addrport, pt_config, ext_or_cookie_file=None): """ Launch a listener for 'transport' in role 'role' (socks/client/server/ext_server). If 'bindaddr' is set, then listen on bindaddr. Otherwise, listen on an ephemeral port on localhost. 'remote_addrport' is the TCP/IP address of the other end of the circuit. It's not used if we are in 'socks' role. 'pt_config' contains configuration options (such as the state location) which are of interest to the pluggable transport. 'ext_or_cookie_file' is the filesystem path where the Extended ORPort Authentication cookie is stored. It's only used in 'ext_server' mode. Return a tuple (addr, port) representing where we managed to bind. Throws obfsproxy.transports.transports.TransportNotFound if the transport could not be found. Throws twisted.internet.error.CannotListenError if the listener could not be set up. """ listen_host = bindaddr[0] if bindaddr else 'localhost' listen_port = int(bindaddr[1]) if bindaddr else 0 if role == 'socks': transport_class = FTETransportClient if hasattr(socks, "OBFSSOCKSv5Factory"): # obfsproxy >= 0.2.7 provides SOCKS5. factory = socks.OBFSSOCKSv5Factory(transport_class, pt_config) pt_config.fte_client_socks_version = 5 elif hasattr(socks, "SOCKSv4Factory"): # obfsproxy < 0.2.7 provides SOCKS4. factory = socks.SOCKSv4Factory(transport_class, pt_config) pt_config.fte_client_socks_version = 4 else: # This will only happen if the obfsproxy people change the socks # code again. This really is a dependency issue, so raise an # ImportError. raise ImportError("Failed to setup an obfsproxy SOCKS server factory") elif role == 'ext_server': assert(remote_addrport and ext_or_cookie_file) transport_class = FTETransportServer factory = extended_orport.ExtORPortServerFactory( remote_addrport, ext_or_cookie_file, transport, transport_class, pt_config) elif role == 'client': assert(remote_addrport) transport_class = FTETransportClient factory = network.StaticDestinationServerFactory( remote_addrport, role, transport_class, pt_config) elif role == 'server': assert(remote_addrport) transport_class = FTETransportServer factory = network.StaticDestinationServerFactory( remote_addrport, role, transport_class, pt_config) else: raise InvalidRoleException() addrport = twisted.internet.reactor.listenTCP( listen_port, factory, interface=listen_host) return (addrport.getHost().host, addrport.getHost().port)
98ba849b3adc58b14b8983d0e61a409bc5ce3af7
18,960
import socket import zmq def send_array(A, flags=0, copy=True, track=False): """send a numpy array with metadata Inputs ------ A: (subplots,dim) np array to transmit subplots - the amount of subplots that are defined in the current plot dim - the amount of data that you want to plot. This is not fixed """ #If you get a float value, convert it to a numpy array if(isinstance(A,float)): A = np.array(A).reshape(1,1) #If array is one dimensional, reshape to two dimensions if(len(A.shape) ==1): A = A.reshape(-1,1) #Create dict to reconstruct array md = dict( dtype = str(A.dtype), shape = A.shape, ) #Send category socket.send_string(SENDING_DATA) #Send json description socket.send_json(md, flags|zmq.SNDMORE) #Send array return socket.send(A, flags, copy=copy, track=track)
c53a17918c12e3ccec9046aad7fc7fc2f498a8ea
18,962
import json def api_file_upload(request): """ Upload a file to the storage system """ try: fobj = request.FILES["file"] checksum, ext = fobj._name.split(".") try: request.user.check_staged_space(fobj._size, checksum) except Exception as e: return HttpResponseForbidden(str(e)) write_file_to_storage(fobj, check_valid=True) StagedFile.objects.get_or_create( checksum=checksum, file_size=fobj._size, uploaded_by=request.user ) return HttpResponse(json.dumps({ "success": True, })) except KeyError: return HttpResponseBadRequest("Invalid file upload request") except Exception as e: handle_server_error(request) return HttpResponseServerError(content=str(e), reason=str(e))
80b15b4d92b5ba2f3a247f1baf7900e73b18781f
18,963
def set_vars(api, file:str, tess_profile:dict): """ Reads the user-specific variables from the tess_profile :param api: :param file: :param tess_profile: :return: """ # Set necessary information api.SetImageFile(file) # Set Variable api.SetVariable("save_blob_choices", "T") if 'variables' in tess_profile: for var in tess_profile['variables']: api.SetVariable(var, str(tess_profile['variables'][var]['value'])) api.Recognize() return 0
a7fbe0c5bc584928623e2eadc36240ea3b0f37de
18,966
def qtrfit(numpoints, defcoords, refcoords, nrot): """Find the quaternion, q, [and left rotation matrix, u] that minimizes | qTXq - Y | ^ 2 [|uX - Y| ^ 2] This is equivalent to maximizing Re (qTXTqY) The left rotation matrix, u, is obtained from q by u = qT1q Parameters numpoints: The number of points in each list (int) defcoords: List of definition coordinates, with each set a list of form [x,y,z] (list) refcoords: List of fitted coordinates, with each set a list of form [x,y,z] (list) nrot: The maximum number of jacobi sweeps Returns quat: The best-fit quaternion lrot: The best-fit left rotation matrix """ xxyx = 0.0 xxyy = 0.0 xxyz = 0.0 xyyx = 0.0 xyyy = 0.0 xyyz = 0.0 xzyx = 0.0 xzyy = 0.0 xzyz = 0.0 quat = [] cmat = [] for i in range(numpoints): xxyx = xxyx + defcoords[i][0] * refcoords[i][0] xxyy = xxyy + defcoords[i][0] * refcoords[i][1] xxyz = xxyz + defcoords[i][0] * refcoords[i][2] xyyx = xyyx + defcoords[i][1] * refcoords[i][0] xyyy = xyyy + defcoords[i][1] * refcoords[i][1] xyyz = xyyz + defcoords[i][1] * refcoords[i][2] xzyx = xzyx + defcoords[i][2] * refcoords[i][0] xzyy = xzyy + defcoords[i][2] * refcoords[i][1] xzyz = xzyz + defcoords[i][2] * refcoords[i][2] for i in range(4): cmat.append([]) for _ in range(4): cmat[i].append(0.0) cmat[0][0] = xxyx + xyyy + xzyz cmat[0][1] = xzyy - xyyz cmat[0][2] = xxyz - xzyx cmat[0][3] = xyyx - xxyy cmat[1][1] = xxyx - xyyy - xzyz cmat[1][2] = xxyy + xyyx cmat[1][3] = xzyx + xxyz cmat[2][2] = xyyy - xzyz - xxyx cmat[2][3] = xyyz + xzyy cmat[3][3] = xzyz - xxyx - xyyy _, vmat = jacobi(cmat, nrot) # diagonalize c for i in range(4): quat.append(vmat[i][3]) lrot = q2mat(quat) return quat, lrot
fdfde9deaf0b220bd468031264b029125c071fab
18,967
import struct def _embedded_bundles_partial_impl( ctx, bundle_embedded_bundles, embeddable_targets, frameworks, plugins, watch_bundles): """Implementation for the embedded bundles processing partial.""" _ignore = [ctx] embeddable_providers = [ x[_AppleEmbeddableInfo] for x in embeddable_targets if _AppleEmbeddableInfo in x ] transitive_frameworks = [] transitive_plugins = [] transitive_watch_bundles = [] for provider in embeddable_providers: transitive_frameworks.append(provider.frameworks) transitive_plugins.append(provider.plugins) transitive_watch_bundles.append(provider.watch_bundles) bundle_zips = [] if bundle_embedded_bundles: bundle_zips.extend([ (processor.location.framework, None, depset(transitive = transitive_frameworks)), (processor.location.plugin, None, depset(transitive = transitive_plugins)), (processor.location.watch, None, depset(transitive = transitive_watch_bundles)), ]) # Clear the transitive lists to avoid propagating them, since they will be packaged in the # bundle processing this partial and do not need to be propagated. transitive_frameworks = [] transitive_plugins = [] transitive_watch_bundles = [] return struct( bundle_zips = bundle_zips, providers = [ _AppleEmbeddableInfo( frameworks = depset(frameworks, transitive = transitive_frameworks), plugins = depset(plugins, transitive = transitive_plugins), watch_bundles = depset(watch_bundles, transitive = transitive_watch_bundles), ), ], )
fe057887528a922ae89fe4c6d8066590d006e415
18,968
import yaml def load_instrument(yml): """ Instantiate an instrument from YAML spec. Parameters ---------- yml : str filename for the instrument configuration in YAML format. Returns ------- hexrd.instrument.HEDMInstrument Instrument instance. """ with open(yml, 'r') as f: icfg = yaml.safe_load(f) return instrument.HEDMInstrument(instrument_config=icfg)
a882b3b36def975b40124078c907a0f050b67a6f
18,969
from typing import List def serialize_model(self: models.Model, excludes: List[str] = None) -> dict: """ 模型序列化,会根据 select_related 和 prefetch_related 关联查询的结果进行序列化,可以在查询时使用 only、defer 来筛选序列化的字段。 它不会自做主张的去查询数据库,只用你查询出来的结果,成功避免了 N+1 查询问题。 # See: https://aber.sh/articles/A-new-idea-of-serializing-Django-model/ """ excludes = excludes or [] serialized = set() if getattr(settings, "DSA_SERIALIZE_TO_CAMELCASE", False): to_camel_case_func = string_convert else: to_camel_case_func = do_nothing def _serialize_model(model) -> dict: # 当 model 存在一对一字段时,会陷入循环,使用闭包的自由变量存储已序列化的 model, # 在第二次循环到该 model 时直接返回 model.pk,不再循环。 nonlocal serialized if model in serialized: return model.pk else: serialized.add(model) # 当 model 存在一对一或一对多字段,且该字段的值为 None 时,直接返回空{},否则会报错。 if model is None: return {} result = { to_camel_case_func(name): _serialize_model(foreign_key) for name, foreign_key in model.__dict__["_state"] .__dict__.get("fields_cache", {}) .items() } buried_fields = getattr(model, "buried_fields", []) for name, value in model.__dict__.items(): # 敏感字段不需要序列化 if name in buried_fields: continue # 私有属性不需要序列化 if name.startswith("_"): continue result[to_camel_case_func(name)] = value for name, queryset in model.__dict__.get( "_prefetched_objects_cache", {} ).items(): result[to_camel_case_func(name)] = [_serialize_model(model) for model in queryset] # type: ignore return result results = _serialize_model(self) # 剔除排斥的字段 for field_name in excludes: del results[to_camel_case_func(field_name)] return results
2c9a95b4d0e671492eefc73800d43196b6daa604
18,970
def isint(x): """ For an ``mpf`` *x*, or any type that can be converted to ``mpf``, determines whether *x* is exactly integer-valued:: >>> from sympy.mpmath import * >>> isint(3), isint(mpf(3)), isint(3.2) (True, True, False) """ if isinstance(x, int_types): return True try: x = mpmathify(x) except: return False if isinstance(x, mpf): if isnan(x) or isinf(x): return False return x == int(x) return False
ec4516fa450cfc0e58c9a69d95f0f9b8aff2443c
18,971
def update_header(file): """ Create a standard WCS header from the HDF5 header. To do this we clean up the header data (which is initially stored in individual arrays). We then create a new header dictionary with the old cleaned header info. Finally, we use astropy.wcs.WCS to create an updated WCS header for the 2 spatial dimensions. This is then saved to self.header while the header dictionary is saved as self.hdr_dict. Args: file: hdf5 File object containing HDF5 file """ hdr_dict = {} header_cols = [str(val[0]).replace("'b", '').replace("'", "").replace("b", '') for val in list(file['header'][()])] header_vals = [str(val[1]).replace("'b", '').replace("'", "").replace("b", '') for val in list(file['header'][()])] header_types = [val[3] for val in list(file['header'][()])] for header_col, header_val, header_type in zip(header_cols, header_vals, header_types): if 'bool' in str(header_type): hdr_dict[header_col] = bool(header_val) if 'float' in str(header_type): hdr_dict[header_col] = float(header_val) if 'int' in str(header_type): hdr_dict[header_col] = int(header_val) else: try: hdr_dict[header_col] = float(header_val) except: hdr_dict[header_col] = str(header_val) hdr_dict['CTYPE3'] = 'WAVE-SIP' hdr_dict['CUNIT3'] = 'm' # hdr_dict['NAXIS1'] = 2064 # hdr_dict['NAXIS2'] = 2048 # Make WCS wcs_data = WCS(hdr_dict, naxis=2) header = wcs_data.to_header() header.insert('WCSAXES', ('SIMPLE', 'T')) header.insert('SIMPLE', ('NAXIS', 2), after=True) # self.header.insert('NAXIS', ('NAXIS1', 2064), after=True) # self.header.insert('NAXIS1', ('NAXIS2', 2048), after=True) hdr_dict = hdr_dict return header, hdr_dict
1c46139a747acdf69ea6602ea123d20f540de30b
18,972
def get_MD_psat(): """ MD data for saturation densities: Thermodynamic properties of the 3D Lennard-Jones/spline model Bjørn Hafskjold and Karl Patrick Travis and Amanda Bailey Hass and Morten Hammer and Ailo Aasen and Øivind Wilhelmsen doi: 10.1080/00268976.2019.1664780 """ T = np.array([0.5501, 0.5499, 0.5496, 0.5997, 0.6500, 0.7000, 0.7504, 0.8000, 0.8202, 0.8407, 0.8596, 0.8688, 0.8771, 0.8775, 0.6898, 0.7723, 0.8070, 0.8407, 0.8437, 0.8570, 0.8687, 0.8723, 0.8762, 0.8770]) p = np.array([0.002158, 0.002084, 0.002123, 0.004656, 0.008804, 0.015332, 0.025052, 0.038927, 0.045588, 0.054326, 0.063949, 0.069529, 0.075501, 0.075752, 0.014112, 0.031532, 0.042154, 0.055300, 0.056660, 0.062675, 0.070558, 0.070944, 0.072616, 0.073748]) data = {} data["T"] = T data["P"] = P return data
363107962628ca9796397977f4f41e5b30bcfbc0
18,973
import logging def get_reddit_client(): """Utility to get a Reddit Client""" reddit_username = redditUsername reddit_password = redditPassword reddit_user_agent = redditUserAgent reddit_client_secret = redditClientSecret reddit_client_id = redditClientID logging.info("Logged in as user (%s).." % reddit_username) reddit_client = praw.Reddit(client_id=reddit_client_id, client_secret=reddit_client_secret, password=reddit_password, user_agent=reddit_user_agent, username=reddit_username) return reddit_client
fe3a783a3ceb27954c658bf9dc036a067ab103a8
18,974
import six def get_member_id(): """ Retrieve member if for the current process. :rtype: ``bytes`` """ proc_info = system_info.get_process_info() member_id = six.b('%s_%d' % (proc_info['hostname'], proc_info['pid'])) return member_id
1d1cc24ffa62cc8982a23ea986bdf3cbecca53ac
18,975
def get_table_arn(): """A method to get the DynamoDB table ARN string. Returns ------- dict A dictionary with AWS ARN string for the table ARN. """ resp = dynamodb_client.describe_table( TableName=table_name ) return { "table_arn": resp['Table']['TableArn'] }
ee6648048b1cabdbc04e6c3507cc4e1992f059b2
18,976
def replace_characters(request): """Function to process execute replace_characters function.""" keys = ['text', 'characters', 'replacement'] values = get_data(request, keys) if not values[0]: abort(400, 'missing text parameter') if not values[2]: values[2] = '' return _call('replace_characters', keys, values)
4765d7c3ace0a0069cac34adb04381efc7043355
18,977
def serialize_to_jsonable(obj): """ Serialize any object to a JSONable form """ return repr(obj)
c8632b8b475d49b56d47b29afa8b44676b7882a5
18,978
def compare(optimizers, problems, runs=20, all_kwargs={}): """Compare a set of optimizers. Args: optimizers: list/Optimizer; Either a list of optimizers to compare, or a single optimizer to test on each problem. problems: list/Problem; Either a problem instance or a list of problem instances, one for each optimizer. all_kwargs: dict/list<dict>; Either the Optimizer.optimize keyword arguments for all optimizers, or a list of keyword arguments, one for each optimizer. runs: int; How many times to run each optimizer (smoothness) Returns: dict; mapping optimizer identifier to stats. """ if not (isinstance(optimizers, collections.Iterable) or isinstance(problems, collections.Iterable)): raise TypeError('optimizers or problems must be iterable') # If optimizers is not a list, repeat into list for each problem if not isinstance(optimizers, collections.Iterable): optimizers = [copy.deepcopy(optimizers) for _ in range(len(problems))] # If problems is not a list, repeat into list for each optimizer if not isinstance(problems, collections.Iterable): problems = [copy.deepcopy(problems) for _ in range(len(optimizers))] # If all_kwargs is not a list, repeat it into a list if isinstance(all_kwargs, dict): all_kwargs = [all_kwargs] * len(optimizers) elif not isinstance(all_kwargs, collections.Iterable): raise TypeError('all_kwargs must be dict or list of dict') stats = {} key_counts = {} for optimizer, problem, kwargs in zip(optimizers, problems, all_kwargs): # For nice human readable dictionaries, extract useful names from # optimizer class_name = optimizer.__class__.__name__ fitness_func_name = problem._fitness_function.__name__ key_name = '{} {}'.format(class_name, fitness_func_name) # Keep track of how many optimizers of each class / fitness func # for better keys in stats dict try: key_counts[key_name] += 1 except KeyError: key_counts[key_name] = 1 # Foo 1, Foo 2, Bar 1, etc. key = '{} {}'.format(key_name, key_counts[key_name]) print key + ': ', # Finally, get the actual stats stats[key] = benchmark(optimizer, problem, runs=runs, **kwargs) print return stats
c0f2ed52fe5de8b32e54ca6e3dc05be18145b1e8
18,979
def az_el2norm(az: float, el: float): """Return solar angle as normalized vector.""" theta = np.pi/2-el*np.pi/180 phi = az*np.pi/180 norm = np.asarray( [ np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta) ]) return norm
5d6e53b778846281a6d2944a52acc64c4386ade4
18,980
async def api_get_user(user_id: int, db: Session = Depends(get_db)): """ Gets user entity - **user_id**: the user id - **db**: current database session object """ try: user = await User.get_by_id(id=user_id, db=db) return user except UserNotFoundException as e: raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=e.detail)
2d89fed33e4fbc81e3461b4791f93772a4814ffe
18,981
import re def remove_comments(json_like): """ Removes C-style comments from *json_like* and returns the result. Example:: >>> test_json = '''\ { "foo": "bar", // This is a single-line comment "baz": "blah" /* Multi-line Comment */ }''' >>> remove_comments('{"foo":"bar","baz":"blah",}') '{\n "foo":"bar",\n "baz":"blah"\n}' From: https://gist.github.com/liftoff/ee7b81659673eca23cd9fc0d8b8e68b7 """ comments_re = re.compile( r'//.*?$|/\*.*?\*/|\'(?:\\.|[^\\\'])*\'|"(?:\\.|[^\\"])*"', re.DOTALL | re.MULTILINE, ) def replacer(match): s = match.group(0) if s[0] == "/": return "" return s return comments_re.sub(replacer, json_like)
32ddf8dd19a8d1029b0d5f221aed05c3883d8ee5
18,982
def install_editable(projectroot, **kwargs): """Install the given project as an "editable" install.""" return run_pip('install', '-e', projectroot, **kwargs)
70b4f5dc1da26beaae31bb1aeaed4457a0d055a3
18,983
import time def retry_get(tap_stream_id, url, config, params=None): """Wrap certain streams in a retry wrapper for frequent 500s""" retries = 20 delay = 120 backoff = 1.5 attempt = 1 while retries >= attempt: r = authed_get(tap_stream_id, url, config, params) if r.status_code != 200: logger.info(f'Got a status code of {r.status_code}, attempt ' f'{attempt} of {retries}. Backing off for {delay} ' f'seconds') time.sleep(delay) delay *= backoff attempt += 1 else: return r logger.error(f'Status code of latest attempt: {r.status_code}') logger.error(f'Latest attempt response {r.content}') raise ValueError(f'Failed {retries} times trying to hit endpoint {url}')
af9a0dd8d5c7022467562b7c339f8340b6d87d73
18,984
from typing import Mapping from datetime import datetime from typing import Tuple def build_trie_from_to(template_dictionary: Mapping, from_timestamp: datetime.datetime, to_timestamp: datetime.datetime) -> Tuple[ahocorasick.Automaton, Mapping]: """Function which builds the trie from the first timestamp tot the last one given""" trie = ahocorasick.Automaton() words_mapping = dict() # words mapping word_templates = dict() # words template # collect the words and the template associated (a list of them if multiple template is associated) for template in template_dictionary: # index first template to consider index_first_timestamp = find_previous_timestamp(template_dictionary[template], from_timestamp) or 0 # for all the revisions of that template starting from the first date possible for index in range(index_first_timestamp, len(template_dictionary[template])): words_list, t_stamp = template_dictionary[template][index] # stop the iteration because we overcome the to_timestamp limit if t_stamp > to_timestamp: break if not template in words_mapping: words_mapping[template] = list() words_mapping[template].append(template_dictionary[template][index]) # word lists for that template for word in words_list: if not word in word_templates: word_templates[word] = list() word_templates[word].append(template) for word in word_templates: trie.add_word(word, (word_templates[word], word)) # key is the word to search, value is the template trie.make_automaton() if not word_templates: return None, None return trie, words_mapping
ddd655235a78834260ce1a46c19d0e251f62aede
18,985
def check_monotonicity_at_split( tree_df, tree_no, trend, variable, node, child_nodes_left, child_nodes_right ): """Function to check monotonic trend is in place at a given split in a single tree.""" if not isinstance(tree_df, pd.DataFrame): raise TypeError("tree_df should be a pd.DataFrame") if not isinstance(tree_no, int): raise TypeError("tree_no should be an int") if not isinstance(trend, int): raise TypeError("trend should be an int") if not isinstance(node, int): raise TypeError("node should be an int") if not isinstance(child_nodes_left, list): raise TypeError("child_nodes_left should be an list") if not isinstance(child_nodes_right, list): raise TypeError("child_nodes_right should be an list") all_child_nodes = child_nodes_left + child_nodes_right tree_nodes = tree_df["nodeid"].tolist() child_nodes_not_in_tree = list(set(all_child_nodes) - set(tree_nodes)) if len(child_nodes_not_in_tree) > 0: raise ValueError( "the following child nodes do not appear in tree; " + str(child_nodes_not_in_tree) ) left_nodes_max_pred = tree_df.loc[ tree_df["nodeid"].isin(child_nodes_left), "weight" ].max() right_nodes_min_pred = tree_df.loc[ tree_df["nodeid"].isin(child_nodes_right), "weight" ].min() if trend == 1: if left_nodes_max_pred <= right_nodes_min_pred: monotonic = True else: monotonic = False elif trend == -1: if left_nodes_max_pred >= right_nodes_min_pred: monotonic = True else: monotonic = False else: raise ValueError( "unexpected value for trend; " + str(trend) + " variable; " + str(variable) + " node:" + str(node) ) results = { "variable": variable, "tree": tree_no, "nodeid": node, "monotonic_trend": trend, "monotonic": monotonic, "child_nodes_left_max_prediction": left_nodes_max_pred, "child_nodes_right_min_prediction": right_nodes_min_pred, "child_nodes_left": str(child_nodes_left), "child_nodes_right": str(child_nodes_right), } results_df = pd.DataFrame(results, index=[node]) return results_df
97ed2422c6f85112e364e9c63ff0a54d18b6377d
18,986
def allocate_usda_ers_mlu_land_in_urban_areas(df, attr, fbs_list): """ This function is used to allocate the USDA_ERS_MLU activity 'land in urban areas' to NAICS 2012 sectors. Allocation is dependent on assumptions defined in 'literature_values.py' as well as results from allocating 'EIA_CBECS_Land' and 'EIA_MECS_Land' to land based sectors. Methodology is based on the manuscript: Lin Zeng and Anu Ramaswami Impact of Locational Choices and Consumer Behaviors on Personal Land Footprints: An Exploration Across the Urban–Rural Continuum in the United States Environmental Science & Technology 2020 54 (6), 3091-3102 DOI: 10.1021/acs.est.9b06024 :param df: df, USDA ERA MLU Land :param attr: dictionary, attribute data from method yaml for activity set :param fbs_list: list, FBS dfs for activities created prior to the activity set that calls on this fxn :return: df, allocated USDS ERS MLU Land, FBS format """ # define sector column to base calculations sector_col = 'SectorConsumedBy' vLogDetailed.info('Assuming total land use from MECS and CBECS included ' 'in urban land area, so subtracting out calculated ' 'MECS and CBECS land from MLU urban land area') # read in the cbecs and mecs df from df_list for df_i in fbs_list: if (df_i['MetaSources'] == 'EIA_CBECS_Land').all(): cbecs = df_i elif (df_i['MetaSources'] == 'EIA_MECS_Land').all(): mecs = df_i # load the federal highway administration fees dictionary fha_dict = get_transportation_sectors_based_on_FHA_fees() df_fha = pd.DataFrame.from_dict( fha_dict, orient='index').rename( columns={'NAICS_2012_Code': sector_col}) # calculate total residential area from the American Housing Survey residential_land_area = get_area_of_urban_land_occupied_by_houses_2013() df_residential = df[df[sector_col] == 'F01000'] df_residential = df_residential.assign(FlowAmount=residential_land_area) # make an assumption about the percent of urban area that is open space openspace_multiplier = get_open_space_fraction_of_urban_area() df_openspace = df[df[sector_col] == '712190'] df_openspace = df_openspace.assign( FlowAmount=df_openspace['FlowAmount'] * openspace_multiplier) # sum all uses of urban area that are NOT transportation # first concat dfs for residential, openspace, commercial, # and manufacturing land use df_non_urban_transport_area = pd.concat( [df_residential, df_openspace, cbecs, mecs], sort=False, ignore_index=True) df_non_urban_transport_area = \ df_non_urban_transport_area[['Location', 'Unit', 'FlowAmount']] non_urban_transport_area_sum = df_non_urban_transport_area.groupby( ['Location', 'Unit'], as_index=False).agg( {'FlowAmount': sum}).rename(columns={'FlowAmount': 'NonTransport'}) # compare units compare_df_units(df, df_non_urban_transport_area) # calculate total urban transportation by subtracting # calculated areas from total urban land df_transport = df.merge(non_urban_transport_area_sum, how='left') df_transport = df_transport.assign( FlowAmount=df_transport['FlowAmount'] - df_transport['NonTransport']) df_transport.drop(columns=['NonTransport'], inplace=True) # make an assumption about the percent of urban transport # area used by airports airport_multiplier = get_urban_land_use_for_airports() df_airport = df_transport[df_transport[sector_col] == '488119'] df_airport = df_airport.assign( FlowAmount=df_airport['FlowAmount'] * airport_multiplier) # make an assumption about the percent of urban transport # area used by railroads railroad_multiplier = get_urban_land_use_for_railroads() df_railroad = df_transport[df_transport[sector_col] == '482112'] df_railroad = df_railroad.assign( FlowAmount=df_railroad['FlowAmount'] * railroad_multiplier) # further allocate the remaining urban transportation area using # Federal Highway Administration fees # first subtract area for airports and railroads air_rail_area = pd.concat([df_airport, df_railroad], sort=False) air_rail_area = air_rail_area[['Location', 'Unit', 'FlowAmount']] air_rail_area_sum = air_rail_area.groupby( ['Location', 'Unit'], as_index=False).agg( {'FlowAmount': sum}).rename(columns={'FlowAmount': 'AirRail'}) df_highway = df_transport.merge(air_rail_area_sum, how='left') df_highway = df_highway.assign( FlowAmount=df_highway['FlowAmount'] - df_highway['AirRail']) df_highway.drop(columns=['AirRail'], inplace=True) # add fed highway administration fees df_highway2 = df_highway.merge(df_fha, how='left') df_highway2 = df_highway2[df_highway2['ShareOfFees'].notna()] df_highway2 = df_highway2.assign( FlowAmount=df_highway2['FlowAmount'] * df_highway2['ShareOfFees']) df_highway2.drop(columns=['ShareOfFees'], inplace=True) # concat all df subsets allocated_urban_areas_df = pd.concat( [df_residential, df_openspace, df_airport, df_railroad, df_highway2], ignore_index=True, sort=False).reset_index(drop=True) # aggregate because multiple rows to household data due to residential # land area and highway fee shares groupcols = list(df.select_dtypes(include=['object', 'int']).columns) allocated_urban_areas_df_2 = aggregator(allocated_urban_areas_df, groupcols) return allocated_urban_areas_df_2
5fcb797b48b912595d722cde3ac0d499526ea899
18,987
def get_distances_between_points(ray_points3d, last_bin_width=1e10): """Estimates the distance between points in a ray. Args: ray_points3d: A tensor of shape `[A1, ..., An, M, 3]`, where M is the number of points in a ray. last_bin_width: A scalar indicating the witdth of the last bin. Returns: A tensor of shape `[A1, ..., An, M]` containing the distances between the M points, with the distance of the last element set to a high value. """ shape.check_static( tensor=ray_points3d, tensor_name="ray_points3d", has_dim_equals=(-1, 3)) shape.check_static( tensor=ray_points3d, tensor_name="ray_points3d", has_rank_greater_than=1) dists = tf.norm(ray_points3d[..., 1:, :] - ray_points3d[..., :-1, :], axis=-1) if last_bin_width > 0.0: dists = tf.concat([dists, tf.broadcast_to([last_bin_width], dists[..., :1].shape)], axis=-1) return dists
34752bd64bcf4582945006c4bd3489397aa7350d
18,988
def reclassification_heavy_duty_trucks_to_light_commercial_vehicles(register_df: pd.DataFrame) -> pd.DataFrame: """ Replace Category to Light Commercial Vehicles for Heavy Duty Trucks of weight below 3500kg Es Tracta de vehicles registrats TIPUS CAMIONS i per tant classificats en la categoria Heavy Duty Trucks quan no hi pertoquen degut a pes inferior a 3500kg. """ anti = register_df[(register_df['TIPUS'] == 'CAMIONS') & (register_df['PES_BUIT'] < 3500) & (register_df['Category'] == 'Heavy Duty Trucks')] info_logger.info(f'Total number of Heavy Duty Trucks converted to Light Commercial Vehicles loaded: {anti.shape[0]}') result = anti_join_all_cols(register_df, anti) recategorized_rows = anti.assign(Category='Light Commercial Vehicles') return result.append(recategorized_rows)
638e3281c323c1dac4ddcde5e58e2eeac4131c04
18,989
def SpComp(rho, U, mesh, fea, penal): """Alias SpCompFunction class with the apply method""" return SpCompFunction.apply(rho, U, mesh, fea, penal)
4c0997fa5213e291376feb415f74e48e273ea071
18,990
def get_landmark_position_from_state(x, ind): """ Extract landmark position from state vector """ lm = x[STATE_SIZE + LM_SIZE * ind: STATE_SIZE + LM_SIZE * (ind + 1), :] return lm
048d31bbd6810663d51e9db34b5c87ebec9b6f27
18,992
def get_rectangle(roi): """ Get the rectangle that has changing colors in the roi. Returns boolean success value and the four rectangle points in the image """ gaussian = cv2.GaussianBlur(roi, (9, 9), 10.0) roi = cv2.addWeighted(roi, 1.5, gaussian, -0.5, 0, roi) nh, nw, r = roi.shape # cluster Z = roi.reshape((-1, 3)) Z = np.float32(Z) criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) K = 7 ret, label, centers = cv2.kmeans(Z, K, criteria, 10, 0) centers = np.uint8(centers) image_as_centers = centers[label.flatten()] image_as_centers = image_as_centers.reshape((roi.shape)) labels = label.reshape((roi.shape[:2])) possible_clusters = list(np.arange(K)) whiteness = map(lambda x: npl.norm(x - np.array([255, 255, 255])), centers) whitest = np.argmin(whiteness) possible_clusters.remove(whitest) energys = [] correct_masks = [] for num, p in enumerate(possible_clusters): mask_clusters = ma.masked_equal(labels, p) draw_mask = mask_clusters.mask.astype(np.uint8) draw_mask *= 255 labeled_array, num_features = mes.label(draw_mask) count = np.bincount(labeled_array.flatten()) count = count[1:] val = np.argmax(count) mask_obj = ma.masked_equal(labeled_array, val + 1) draw_mask = mask_obj.mask.astype(np.uint8) draw_mask *= 255 # cv2.imshow(str(num), draw_mask) # cv2.waitKey(0) top = np.count_nonzero(draw_mask) valz = np.fliplr(np.transpose(draw_mask.nonzero())) rect = cv2.minAreaRect(valz) box = cv2.cv.BoxPoints(rect) box = np.int0(box) rect_mask = np.zeros((nh, nw)) cv2.drawContours(rect_mask, [box], 0, 255, -1) bottom = np.count_nonzero(rect_mask) l, w, vcost = _get_lw(box) if w < .001: print 'WIDTH TOO SMALL' continue valz = np.fliplr(np.transpose(draw_mask.nonzero())) area = cv2.contourArea(box) area /= (nh * nw) if vcost > .5: print "VCOST TOO HIGH" continue if area < .03: print area print "TOOOO SMALL" continue if top / bottom < .7: print "TOO SPARSE", top / bottom continue energy = area + 1.5 * top / bottom - abs(2.5 - l / w) - .2 * vcost if energy < 0: "LOW ENERGY!" continue print num, "area: ", area, "filled:", top, "total:", bottom, 'rat', top / bottom, "l/w", abs(2.5 - l / w), "vcost", vcost, "energy", energy energys.append(energy) correct_masks.append(mask_obj) if len(energys) == 0: print "EVERY ENERGY WRONG" return False, None correct_masks = [x for y, x in sorted(zip(energys, correct_masks), reverse=True)] energys = sorted(energys, reverse=True) if len(energys) > 1 and abs(energys[0] - energys[1]) < .2: print "TOO CLOSE TO CALLS" return False, None correct_mask = correct_masks[0] colors = roi[correct_mask.mask] draw_mask = correct_mask.mask.astype(np.uint8) draw_mask *= 255 return True, colors
da3e6311f6a598cf57cffd2c0bb06f0ca53fa108
18,993
async def challenge_process_fixture() -> Challenge: """ Populate challenge with: - Default user - Is open - Challenge in process """ return await populate_challenge()
cf553c0697c824df4273838c7d87ffe6e8ab6ae7
18,994
import pkgutil def _read_pdg_masswidth(filename): """Read the PDG mass and width table and return a dictionary. Parameters ---------- filname : string Path to the PDG data file, e.g. 'data/pdg/mass_width_2015.mcd' Returns ------- particles : dict A dictionary where the keys are the particle names with the charge appended in case of a multiplet with different masses, e.g. 't' for the top quark, 'K+' and 'K0' for kaons. The value of the dictionary is again a dictionary with the following keys: - 'id': PDG particle ID - 'mass': list with the mass, postitive and negative error in GeV - 'width': list with the width, postitive and negative error in GeV - 'name': same as the key """ data = pkgutil.get_data('flavio.physics', filename) lines = data.decode('utf-8').splitlines() particles_by_name = {} for line in lines: if line.strip()[0] == '*': continue mass = ((line[33:51]), (line[52:60]), (line[61:69])) if mass[0].replace(' ', '') == '': # if mass is empty, go to next line # (necessasry for 2019 neutrino entries) continue mass = [float(m) for m in mass] width = ((line[70:88]), (line[89:97]), (line[98:106])) if width[0].strip() == '': width = (0,0,0) else: width = [float(w) for w in width] ids = line[0:32].split() charges = line[107:128].split()[1].split(',') if len(ids) != len(charges): raise ValueError() for i, id_ in enumerate(ids): particle = {} particle_charge = charges[i].strip() particle[particle_charge] = {} particle[particle_charge]['id'] = id_.strip() particle[particle_charge]['mass'] = mass particle[particle_charge]['charge'] = particle_charge particle[particle_charge]['width'] = width particle_name = line[107:128].split()[0] particle[particle_charge]['name'] = particle_name if particle_name in particles_by_name.keys(): particles_by_name[particle_name].update(particle) else: particles_by_name[particle_name] = particle result = { k + kk: vv for k, v in particles_by_name.items() for kk, vv in v.items() if len(v) > 1} result.update({ k: list(v.values())[0] for k, v in particles_by_name.items() if len(v) == 1}) return result
c61202aeb4ad36e22786457306de1ac5773b56d2
18,995
import torch def fps_and_pred(model, batch, **kwargs): """ Get fingeprints and predictions from the model. Args: model (nff.nn.models): original NFF model loaded batch (dict): batch of data Returns: results (dict): model predictions and its predicted fingerprints, conformer weights, etc. """ model.eval() # make the fingerprints outputs, xyz = model.make_embeddings(batch, xyz=None, **kwargs) # pool to get the learned weights and pooled fingerprints pooled_fp, learned_weights = model.pool(outputs) # get the final results results = model.readout(pooled_fp) # add sigmoid if it's a classifier and not in training mode if model.classifier: keys = list(model.readout.readout.keys()) for key in keys: results[key] = torch.sigmoid(results[key]) # add any required gradients results = model.add_grad(batch=batch, results=results, xyz=xyz) # put into a dictionary conf_fps = [i.cpu().detach() for i in outputs["conf_fps_by_smiles"]] energy = batch.get("energy") boltz_weights = batch.get("weights") # with operations to de-batch n_confs = [(n // m).item() for n, m in zip(batch['num_atoms'], batch['mol_size'])] for key, val in results.items(): results[key] = [i for i in val] results.update({"fp": [i for i in pooled_fp], "conf_fps": conf_fps, "learned_weights": learned_weights, "boltz_weights": (list(torch.split (boltz_weights, n_confs)))}) if energy is not None: results.update({"energy": list(torch.split(energy, n_confs))}) return results
1a8cca3ffe0d386e506ab42f6e77e00b1a5975d1
18,996
import re def preprocess_text(text): """ Should return a list of words """ text = contract_words(text) text = text.lower() # text = text.replace('"', "").replace(",", "").replace("'", "") text = text.replace('"', "").replace(",", "").replace("'", "").replace(".", " .") ## added by PAVAN ## To capture multiple # feature -- added by PAVAN if re.search(r'[a-z]+\#', text): tmp_ls = text.split() text = ' '.join( [re.sub(pattern=r'\#', repl=' #', string=str(i)) if re.search(r'[a-z]+\#', str(i)) else i for i in tmp_ls]) ## To capture # feature -- added by PAVAN if re.search(r'\#[a-z]+', text): tmp_ls = text.split() text = ' '.join( [re.sub(pattern=r'\#', repl='hashtagfea ', string=str(i)) if re.search(r'\#[a-z]+', str(i)) else i for i in tmp_ls]) return text.split()
0b42b57629e68c2f0bf3831dc226a2ba823cfdb3
18,997
import unicodedata def unicodeToAscii(s): """unicodeToAscii Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427 For example, 'Ślusàrski' -> 'Slusarski' """ return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' and c in all_letters )
7791ae244499b2448ac4bc5de0fde35057d1f5d5
18,998
def update_ip_table(nclicks, value): """ Function that updates the IP table in the Elasticsearch Database that contains the frequency as well as the IP address of the machine querying that particular domain. Args: nclicks: Contains the number of clicks registered by the submit button. value: Contains the domain name corresponding to which the IP table has to be returned. Returns: The IP address data regarding the number of times a particular domain was queried by a particular machine. """ if value is None or value == '': return [] else: try: count = es.get(index=value, id=1)['_source']['count'] domain_names = [key for (key, value) in sorted(count.items(), key=lambda x: x[1], reverse=True)] data = [dict({'sl_no': j + 1, 'ip': i, 'count': count[i]}) for i, j in zip(domain_names, range(len(count)))] except: data = [] return data
ef0df6f1fb79d86a707990d0790dadabecbd22c1
18,999
def collect_subclasses(mod, cls, exclude=None): """Collecting all subclasses of `cls` in the module `mod` @param mod: `ModuleType` The module to collect from. @param cls: `type` or (`list` of `type`) The parent class(es). @keyword exclude: (`list` of `type`) Classes to not include. """ out = [] for name in dir(mod): attr = getattr(mod, name) if ( isinstance(attr, type) and (attr not in cls if isinstance(cls, (list, tuple)) else attr != cls) and issubclass(attr, cls) and (attr not in exclude if exclude else True)): out.append(attr) return out
30e64b93fca4d68c3621cae54bb256350875eb77
19,000
import typing from typing import Counter def check_collections_equivalent(a: typing.Collection, b: typing.Collection, allow_duplicates: bool = False, element_converter: typing.Callable = identity) -> typing.Tuple[str, list]: """ :param a: one collection to compare :param b: other collection to compare :param allow_duplicates: allow collections to contain multiple elements :param element_converter: optional function to convert elements of collections to a different value for comparison :return: (message, differences) """ a = Counter(map(element_converter, a)) b = Counter(map(element_converter, b)) if not allow_duplicates: duplicates = [] for name, counts in [['a', a], ['b', b]]: for key, count in counts.items(): if count > 1: duplicates.append([name, key, count]) if duplicates: return 'Duplicate elements ', ['|'.join(map(str, dup)) for dup in duplicates] diffs = [] for el in a | b: ac = a.get(el, 0) bc = b.get(el, 0) if ac != bc: 'Inconsistent element frequencies', diffs.append(f'{el} a={ac} b={bc}') if diffs: return "Inconsistent element frequencies: ", diffs return 'Collections equivalent', []
61d78f522a6e87927db6b32b46637f0bb6a10513
19,001
def voting_classifier(*args, **kwargs): """ same as in gradient_boosting_from_scratch() """ return VotingClassifier(*args, **kwargs)
ed92138c23b699672197d1b436773a5250685250
19,002
import re def replace_subject_with_object(sent, sub, obj): """Replace the subject with object and remove the original subject""" sent = re.sub(r'{}'.format(obj), r'', sent, re.IGNORECASE) sent = re.sub(r'{}'.format(sub), r'{} '.format(obj), sent, re.IGNORECASE) return re.sub(r'{\s{2,}', r' ', sent, re.IGNORECASE)
1c7f8115968c4e4ef10dcc3b83f0f259433f5082
19,003
def estimate_using_user_recent(list_type: str, username: str) -> int: """ Estimate the page number of a missing (entry which was just approved) entry and choose the max page number this requests a recent user's list, and uses checks if there are any ids in that list which arent in the approved cache """ assert list_type in {"anime", "manga"} logger.info(f"Estimating {list_type}list using {username}") appr = approved_ids() recently_updated_ids = user_recently_updated( list_type=list_type, username=username, offset=0 ) ids = appr.anime if list_type == "anime" else appr.manga sorted_approved = list(sorted(ids, reverse=True)) missing_approved = [] for aid in recently_updated_ids: if aid not in ids: missing_approved.append(aid) estimate_pages = [_estimate_page(aid, sorted_approved) for aid in missing_approved] max_page: int if len(estimate_pages) == 0: max_page = 0 else: max_page = max(estimate_pages) + 1 logger.info(f"Estimated {max_page} {list_type} pages for {username}") return max_page
b6a7a5bf6c0fa6e13021f10bf2fe613c4186f430
19,004
def codegen_reload_data(): """Parameters to codegen used to generate the fn_html2pdf package""" reload_params = {"package": u"fn_html2pdf", "incident_fields": [], "action_fields": [], "function_params": [u"html2pdf_data", u"html2pdf_data_type", u"html2pdf_stylesheet"], "datatables": [], "message_destinations": [u"fn_html2pdf"], "functions": [u"fn_html2pdf"], "phases": [], "automatic_tasks": [], "scripts": [], "workflows": [u"example_html2pdf"], "actions": [u"Example: HTML2PDF"] } return reload_params
45a5e974f3e02953a6d121e37c05022c448adae6
19,005
def instrument_keywords(instrument, caom=False): """Get the keywords for a given instrument service Parameters ---------- instrument: str The instrument name, i.e. one of ['niriss','nircam','nirspec', 'miri','fgs'] caom: bool Query CAOM service Returns ------- pd.DataFrame A DataFrame of the keywords """ # Retrieve one dataset to get header keywords sample = instrument_inventory(instrument, return_data=True, caom=caom, add_requests={'pagesize': 1, 'page': 1}) data = [[i['name'], i['type']] for i in sample['fields']] keywords = pd.DataFrame(data, columns=('keyword', 'dtype')) return keywords
271f58615dbdbcde4fda9a5248d8ae3b40b90f6d
19,006
from struct import unpack from time import mktime, strftime, gmtime def header_info(data_type, payload): """Report additional non-payload in network binary data. These can be status, time, grapic or control structures""" # Structures are defined in db_access.h. if payload == None: return "" data_type = type_name(data_type) if data_type.startswith("STS_"): status, severity = unpack(">HH", payload[0:4]) # Expecting status = 0 (normal), severity = 1 (success) return "{status:%d,severity:%d}" % (status, severity) elif data_type.startswith("TIME_"): status, severity = unpack(">HH", payload[0:4]) # The time stamp is represented as two uint32 values. The first is the # number of seconds passed since 1 Jan 1990 00:00 GMT. The second is the # number of nanoseconds within the second. seconds, nanoseconds = unpack(">II", payload[4:12]) offset = mktime((1990, 1, 1, 0, 0, 0, 0, 0, 0)) - mktime( (1970, 1, 1, 0, 0, 0, 0, 0, 0) ) t = seconds + nanoseconds * 1e-9 + offset timestamp = strftime("%Y-%m-%d %H:%M:%S GMT", gmtime(t)) return "{status:%d,severity:%d, timestamp:%s}" % (status, severity, timestamp) elif data_type.startswith("GR_"): status, severity = unpack(">HH", payload[0:4]) info = "status:%d,severity:%d, " % (status, severity) if data_type.endswith("STRING"): pass elif data_type.endswith("SHORT"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6h", payload[16 : 16 + 6 * 2]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("FLOAT"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">6f", payload[16 : 16 + 6 * 4]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) elif data_type.endswith("ENUM"): nstrings, = unpack(">h", payload[4:6]) strings = payload[6 : 6 + 16 * 26] info += "nstrings=%r" % nstrings elif data_type.endswith("CHAR"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6b", payload[16 : 16 + 6 * 1]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("LONG"): unit = payload[8:16].rstrip(b"\0") limits = unpack("6i", payload[16 : 16 + 6 * 4]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("DOUBLE"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">6d", payload[16 : 16 + 6 * 8]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) else: info += "?" info = info.restrip(", ") return "{" + info + "}" elif data_type.startswith("CTRL_"): status, severity = unpack(">HH", payload[0:4]) info = "status:%d,severity:%d, " % (status, severity) if data_type.endswith("STRING"): pass elif data_type.endswith("SHORT"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8h", payload[16 : 16 + 8 * 2]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("FLOAT"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">8f", payload[16 : 16 + 8 * 4]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) elif data_type.endswith("ENUM"): nstrings, = unpack(">h", payload[4:6]) strings = payload[6 : 6 + 16 * 26] info += "nstrings=%r" % nstrings elif data_type.endswith("CHAR"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8b", payload[16 : 16 + 8 * 1]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("LONG"): unit = payload[8:16].rstrip(b"\0") limits = unpack("8i", payload[16 : 16 + 8 * 4]) info += "unit=%r,limits=%r" % (unit, limits) elif data_type.endswith("DOUBLE"): precision, = unpack(">h", payload[4:6]) unit = payload[8:16].rstrip(b"\0") limits = unpack(">8d", payload[16 : 16 + 8 * 8]) info += "precision=%r,unit=%r,limits=%r" % (precision, unit, limits) else: info += "?" info = info.rstrip(", ") return "{" + info + "}" return ""
6e83be0dff2d7f81a99419baf505e82957518c64
19,007
def dsa_verify(message, public, signature, constants=None): """Checks if the signature (r, s) is correct""" r, s = signature p, q, g = get_dsa_constants(constants) if r <= 0 or r >= q or s <= 0 or s >= q: return False w = inverse_mod(s, q) u1 = (bytes_to_num(sha1_hash(message)) * w) % q u2 = (r * w) % q v = ((pow(g, u1, p) * pow(public, u2, p)) % p) % q return v == r
9d6eeb9b5b2d84edd054cba01bdd47cb9bab120e
19,008
def set_up_cgi(): """ Return a configured instance of the CGI simulator on RST. Sets up the Lyot stop and filter from the configfile, turns off science instrument (SI) internal WFE, and reads the FPM setting from the configfile. :return: CGI instrument instance """ webbpsf.setup_logging('ERROR') #Set actuators numbesr mode_in = CONFIG_PASTIS.get('RST', 'mode') nbactuator = int(CONFIG_PASTIS.get('RST', 'nb_subapertures')) nbactuator_in = int(np.sqrt(nbactuator)) if nbactuator_in**2 != nbactuator: error_msg = f"The number of subapertures from config_pastis.ini is {nbactuator}, which is not the square of the actuators per row (={nbactuator_in})!" log.error(error_msg) raise ValueError(error_msg) cgi = webbpsf.roman.CGI(mode=mode_in, nbactuator=int(nbactuator_in)) cgi.include_si_wfe = False cgi.apodizer = CONFIG_PASTIS.get('RST', 'apodizer') cgi.fpm = CONFIG_PASTIS.get('RST', 'fpm') cgi.lyotstop = CONFIG_PASTIS.get('RST', 'lyotstop') cgi.camera = CONFIG_PASTIS.get('RST', 'camera') cgi.filter = CONFIG_PASTIS.get('RST', 'filter_name') return cgi
68559e88b9cebb5e2edb049f63d80c9545112804
19,009
def plot_line( timstof_data, # alphatims.bruker.TimsTOF object selected_indices: np.ndarray, x_axis_label: str, colorscale_qualitative: str, title: str = "", y_axis_label: str = "intensity", remove_zeros: bool = False, trim: bool = True, height: int = 400 ) -> go.Figure: """Plot an XIC, mobilogram or spectrum as a lineplot. Parameters ---------- timstof_data : alphatims.bruker.TimsTOF object An alphatims.bruker.TimsTOF data object. selected_indices : np.ndarray The raw indices that are selected for this plot. These are typically obtained by slicing the TimsTOF data object with e.g. data[..., "raw"]. x_axis_label : str The label of the x-axis. Options are: - mz - rt - mobility y_axis_label : str Should not be set for a 1D line plot. Default is "intensity". title : str The title of the plot. Default is "". remove_zeros : bool If True, zeros are removed. Note that a line plot connects consecutive points, which can lead to misleading plots if non-zeros are removed. If False, use the full range of the appropriate dimension of the timstof_data. Default is False. trim : bool If True, zeros on the left and right are trimmed. Default is True. height : int Plot height. Default is 400. Returns ------- plotly.graph_objects.Figure object A lne plot showing an XIC, mobilogram or spectrum. """ axis_dict = { "mz": "m/z, Th", "rt": "RT, min", "mobility": "Inversed IM, V·s·cm\u207B\u00B2", "intensity": "Intensity", } x_axis_label = axis_dict[x_axis_label] y_axis_label = axis_dict[y_axis_label] labels = { 'm/z, Th': "mz_values", 'RT, min': "rt_values", 'Inversed IM, V·s·cm\u207B\u00B2': "mobility_values", } x_dimension = labels[x_axis_label] intensities = timstof_data.bin_intensities(selected_indices, [x_dimension]) if x_dimension == "mz_values": x_ticks = timstof_data.mz_values plot_title = "Spectrum" elif x_dimension == "mobility_values": x_ticks = timstof_data.mobility_values plot_title = "Mobilogram" elif x_dimension == "rt_values": x_ticks = timstof_data.rt_values / 60 plot_title = "XIC" non_zeros = np.flatnonzero(intensities) if len(non_zeros) == 0: x_ticks = np.empty(0, dtype=x_ticks.dtype) intensities = np.empty(0, dtype=intensities.dtype) else: if remove_zeros: x_ticks = x_ticks[non_zeros] intensities = intensities[non_zeros] elif trim: start = max(0, non_zeros[0] - 1) end = non_zeros[-1] + 2 x_ticks = x_ticks[start: end] intensities = intensities[start: end] fig = go.Figure() fig.add_trace( go.Scatter( x=x_ticks, y=intensities, mode='lines', text=[f'{x_axis_label}'.format(i + 1) for i in range(len(x_ticks))], hovertemplate='<b>%{text}:</b> %{x};<br><b>Intensity:</b> %{y}.', name=" ", marker=dict(color=getattr(px.colors.qualitative, colorscale_qualitative)[0]) ) ) fig.update_layout( title=dict( text=plot_title, font=dict( size=16, ), x=0.5, xanchor='center', yanchor='top' ), xaxis=dict( title=x_axis_label, titlefont_size=14, tickmode='auto', tickfont_size=14, ), yaxis=dict( title=y_axis_label, ), template="plotly_white", height=height, hovermode="x" ) return fig
5db0468710e49158c4b13fc56446a23949544e57
19,010
def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = get_world_size() if world_size == 1: return [data] data_list = [None] * world_size dist.all_gather_object(data_list, data) return data_list
46f34975d89766c842b6c20e312ad3dea4f3d7ff
19,011
from ..utils import check_adata def draw_graph( adata, layout=None, color=None, alpha=None, groups=None, components=None, legend_loc='right margin', legend_fontsize=None, legend_fontweight=None, color_map=None, palette=None, right_margin=None, size=None, title=None, show=None, save=None, ax=None): """Scatter plot in graph-drawing basis. Parameters ---------- adata : AnnData Annotated data matrix. layout : {'fr', 'drl', ...}, optional (default: last computed) One of the `draw_graph` layouts, see sc.tl.draw_graph. By default, the last computed layout is taken. color : string or list of strings, optional (default: None) Keys for sample/cell annotation either as list `["ann1", "ann2"]` or string `"ann1,ann2,..."`. groups : str, optional (default: all groups) Restrict to a few categories in categorical sample annotation. components : str or list of str, optional (default: '1,2') String of the form '1,2' or ['1,2', '2,3']. legend_loc : str, optional (default: 'right margin') Location of legend, either 'on data', 'right margin' or valid keywords for matplotlib.legend. legend_fontsize : int (default: None) Legend font size. color_map : str (default: `matplotlib.rcParams['image.cmap']`) String denoting matplotlib color map. palette : list of str (default: None) Colors to use for plotting groups (categorical annotation). right_margin : float or list of floats (default: None) Adjust the width of the space right of each plotting panel. size : float (default: None) Point size. title : str, optional (default: None) Provide title for panels either as `["title1", "title2", ...]` or `"title1,title2,..."`. show : bool, optional (default: None) Show the plot. save : bool or str, optional (default: None) If True or a str, save the figure. A string is appended to the default filename. ax : matplotlib.Axes A matplotlib axes object. Returns ------- matplotlib.Axes object """ adata = check_adata(adata) if layout is None: layout = adata.add['draw_graph_layout'][-1] if 'X_draw_graph_' + layout not in adata.smp_keys(): raise ValueError('Did not find {} in adata.smp. Did you compute layout {}?' .format('draw_graph_' + layout, layout)) axs = scatter( adata, basis='draw_graph_' + layout, color=color, alpha=alpha, groups=groups, components=components, projection='2d', legend_loc=legend_loc, legend_fontsize=legend_fontsize, legend_fontweight=legend_fontweight, color_map=color_map, palette=palette, right_margin=right_margin, size=size, title=title, show=show, save=save, ax=ax) return axs
006121b0162afcf6b91703dac8c1ea3e6d1351bc
19,013
def post_token(): """ Receives authentication credentials in order to generate an access token to be used to access protected models. Tokens generated by this endpoint are JWT Tokens. """ # First we verify the request is an actual json request. If not, then we # responded with a HTTP 400 Bad Request result code. if not request.is_json: app.logger.warning('Request without JSON payload received on token endpoint') return jsonify({"msg": "Only JSON request is supported"}), 400 # Read credentials from json request params = request.get_json() # Try to ready username and password properties. If one of them is not found, # then we generate an error and stop execution. username = params.get('username', None) password = params.get('password', None) if not username: app.logger.warning('Request without username parameter received on token endpoint') return jsonify({"msg": "A username parameter must be provided"}), 400 if not password: app.logger.warning('Request without password parameter received on token endpoint') return jsonify({"msg": "A password parameter must be provided"}), 400 # If we get here, is because a username and password credentials were # provided, so now we must verify them. user = get_user_by_username(username) if user is not None: if user.authenticate(password): # ACCESS TOKEN access_token_expires = app.config['JWT_ACCESS_TOKEN_VALIDITY_HOURS'] access_token = create_access_token(identity=user.user_id, expires_delta=access_token_expires) # REFRESH TOKEN refresh_token_expires = app.config['JWT_REFRESH_TOKEN_VALIDITY_DAYS'] refresh_token = create_refresh_token(identity=user.user_id, expires_delta=refresh_token_expires) app.logger.info('A new token has been generated for user [' + user.user_id + "]") return jsonify({ 'access_token': access_token, 'expiration': access_token_expires.total_seconds(), 'refresh_token': refresh_token }), 200 else: app.logger.warning('Request with invalid username was received') return jsonify({"msg": "Unable to find user with [" + username + "] username"}), 404
d51de9aa201fdb0d879190c5f08352b43f425be4
19,014
def judgement(seed_a, seed_b): """Return amount of times last 16 binary digits of generators match.""" sample = 0 count = 0 while sample <= 40000000: new_a = seed_a * 16807 % 2147483647 new_b = seed_b * 48271 % 2147483647 bin_a = bin(new_a) bin_b = bin(new_b) last16_a = bin_a[-16:] last16_b = bin_b[-16:] if last16_a == last16_b: count += 1 seed_a = new_a seed_b = new_b sample += 1 return count
9d778909ba6b04e4ca3adbb542fce9ef89d7b2b7
19,015
def GJK(shape1, shape2): """ Implementation of the GJK algorithm PARAMETERS ---------- shape{1, 2}: Shape RETURN ------ : bool Signifies if the given shapes intersect or not. """ # Initialize algorithm parameters direction = Vec(shape1.center, shape2.center).direction A = support(shape1, shape2, direction) simplex = [A] direction = Vec(simplex[0], Point()).direction while True: # while new valid support found. `direction` is updated each iteration. B = support(shape1, shape2, direction) AB = Vec(simplex[0], B) if dot_vec_dir(AB, direction) <= 0: # No support past the origin return False else: simplex.append(B) if handle_simplex(simplex, direction): return True
4e3b24ec9fab1d2625c3d99ae3ffc2325c1dcaf8
19,016
def _set_int_config_parameter(value: OZWValue, new_value: int) -> int: """Set a ValueType.INT config parameter.""" try: new_value = int(new_value) except ValueError as err: raise WrongTypeError( ( f"Configuration parameter type {value.type} does not match " f"the value type {type(new_value)}" ) ) from err if (value.max is not None and new_value > value.max) or ( value.min is not None and new_value < value.min ): raise InvalidValueError( f"Value {new_value} out of range of parameter (Range: {value.min}-{value.max})" ) value.send_value(new_value) # type: ignore return new_value
e9e168aa1959dfab141622a0d0f3751a1e042dfd
19,017
def split_dataset(dataset_file, trainpct): """ Split a file containing the full path to individual annotation files into train and test datasets, with a split defined by trainpct. Inputs: - dataset_file - a .txt or .csv file containing file paths pointing to annotation files. (Expects that these have no header) - trainpct = 0.8 produces an 80:20 train:test split """ if type(dataset_file) is list: full_dataset = pd.DataFrame(dataset_file, columns=["Filename"]) else: full_dataset = pd.read_csv(dataset_file, names=["Filename"]) print( "You've chosen a training percentage of: {} (this variable has type: {})".format( trainpct, type(trainpct) ) ) testsize = 1.0 - trainpct train, test = train_test_split( full_dataset, test_size=testsize, shuffle=True, random_state=42 ) # set the random seed so we get reproducible results! return train, test
0f24d29efdf3645a743bbb6d9e2e27b9087552be
19,018
def accession(data): """ Get the accession for the given data. """ return data["mgi_marker_accession_id"]
132dcbdd0712ae30ce7929e58c4bc8cdf73aacb2
19,019
def get_phase_dir(self): """Get the phase rotating direction of stator flux stored in LUT Parameters ---------- self : LUT a LUT object Returns ---------- phase_dir : int rotating direction of phases +/-1 """ if self.phase_dir not in [-1, 1]: # recalculate phase_dir from Phi_wind self.phase_dir = get_phase_dir_DataTime(self.Phi_wind[0]) return self.phase_dir
e335f78d6219f0db5a390cf47aaa7aa093f7c329
19,020
def atomic_number(request): """ An atomic number. """ return request.param
6f1a868c94d0a1ee4c84a76f04b4cabc3e0356e0
19,021
def plot_metric(title = 'Plot of registration metric vs iterations'): """Plots the mutual information over registration iterations Parameters ---------- title : str Returns ------- fig : matplotlib figure """ global metric_values, multires_iterations fig, ax = plt.subplots() ax.set_title(title) ax.set_xlabel('Iteration Number', fontsize=12) ax.set_ylabel('Mutual Information Cost', fontsize=12) ax.plot(metric_values, 'r') ax.plot(multires_iterations, [metric_values[index] for index in multires_iterations], 'b*', label = 'change in resolution') ax.legend() return fig
488d96876a469522263f6c7118b94b35a25e36de
19,022
from re import T def cross_entropy(model, _input, _target): """ Compute Cross Entropy between target and output diversity. Parameters ---------- model : Model Model for generating output for compare with target sample. _input : theano.tensor.matrix Input sample. _target : theano.tensor.matrix Target sample. Returns ------- theano.tensor.matrix Return Cross Entropy. """ return T.nnet.categorical_crossentropy(model.output(_input), _target).mean()
c65efe3185269d8f7132e23abbd517ca9273d481
19,023
def get_groups_links(groups, tenant_id, rel='self', limit=None, marker=None): """ Get the links to groups along with 'next' link """ url = get_autoscale_links(tenant_id, format=None) return get_collection_links(groups, url, rel, limit, marker)
35188c3c6d01026153a6e18365ae0b4b596a8883
19,025
def over(expr: ir.ValueExpr, window: win.Window) -> ir.ValueExpr: """Construct a window expression. Parameters ---------- expr A value expression window Window specification Returns ------- ValueExpr A window function expression See Also -------- ibis.window """ prior_op = expr.op() if isinstance(prior_op, ops.WindowOp): op = prior_op.over(window) else: op = ops.WindowOp(expr, window) result = op.to_expr() try: name = expr.get_name() except com.ExpressionError: pass else: result = result.name(name) return result
e9c8f656403520d5f3287de38c139b8fd8446d13
19,026
def node_value(node: Node) -> int: """ Computes the value of node """ if not node.children: return sum(node.entries) else: value = 0 for entry in node.entries: try: # Entries start at 1 so subtract all entries by 1 value += node_value(node.children[entry - 1]) except IndexError: pass return value
c22ac3f73995e138f7eb329499caba3fc67175a5
19,027
import re def load_mac_vendors() : """ parses wireshark mac address db and returns dict of mac : vendor """ entries = {} f = open('mac_vendors.db', 'r') for lines in f.readlines() : entry = lines.split() # match on first column being first six bytes r = re.compile(r'^([0-9A-F]{2}:[0-9A-F]{2}:[0-9A-F]{2})$') if len(entry) > 0 and r.match(entry[0]) : # lowercase as convention entries[entry[0].lower()] = entry[1] return entries
361e9c79de8b473c8757ae63384926d266b68bbf
19,028
def parse_time(s): """ Parse time spec with optional s/m/h/d/w suffix """ if s[-1].lower() in secs: return int(s[:-1]) * secs[s[-1].lower()] else: return int(s)
213c601143e57b5fe6cd123631c6cd562f2947e9
19,029
def resize_labels(labels, size): """Helper function to resize labels. Args: labels: A long tensor of shape `[batch_size, height, width]`. Returns: A long tensor of shape `[batch_size, new_height, new_width]`. """ n, h, w = labels.shape labels = F.interpolate(labels.view(n, 1, h, w).float(), size=size, mode='nearest') labels = labels.squeeze_(1).long() return labels
87c7127643e9e46878bc526ebed4068d40f25ece
19,030
import re def _extract_urls(html): """ Try to find all embedded links, whether external or internal """ # substitute real html symbols html = _replace_ampersands(html) urls = set() hrefrx = re.compile("""href\s*\=\s*['"](.*?)['"]""") for url in re.findall(hrefrx, html): urls.add(str(url)) srcrx = re.compile("""src\s*\=\s*['"](.*?)['"]""") for url in re.findall(srcrx, html): urls.add(str(url)) html = re.sub('%20', ' ', html, flags=re.DOTALL) # extract URLs that are not surrounded by quotes urlrx = re.compile("""[^'"](http[s]?://[\.a-zA-Z0-9/]+?)\s""") for url in re.findall(urlrx, html): urls.add(str(url)) # extract URLs that are surrounded by quotes # remove whitespace html = re.sub('\s+', '', html) urlrx = re.compile("'(http[s]?://[\.a-zA-Z0-9/]+?)'", flags=re.DOTALL) urlrx = re.compile('"(http[s]?://[\.a-zA-Z0-9/]+?)"', flags=re.DOTALL) for url in re.findall(urlrx, html): urls.add(url) # remove empty string if exists try: urls.remove('') except KeyError: pass return sorted(urls)
5303cf7b750926aa5919bbfa839bd227319aa9f7
19,031
def reorganize_data(texts): """ Reorganize data to contain tuples of a all signs combined and all trans combined :param texts: sentences in format of tuples of (sign, tran) :return: data reorganized """ data = [] for sentence in texts: signs = [] trans = [] for sign, tran in sentence: signs.append(sign) trans.append(tran) data.append((signs, trans)) return data
27b4efd99bbf470a9f8f46ab3e34c93c606d0234
19,032
def client_new(): """Create new client.""" form = ClientForm(request.form) if form.validate_on_submit(): c = Client(user_id=current_user.get_id()) c.gen_salt() form.populate_obj(c) db.session.add(c) db.session.commit() return redirect(url_for('.client_view', client_id=c.client_id)) return render_template( 'invenio_oauth2server/settings/client_new.html', form=form, )
b355f43cd80e0f7fef3027f5f1d1832c4e4ece5a
19,033
def query_schema_existence(conn, schema_name): """Function to verify whether the current database schema ownership is correct.""" with conn.cursor() as cur: cur.execute('SELECT EXISTS(SELECT 1 FROM information_schema.schemata WHERE SCHEMA_NAME = %s)', [schema_name]) return cur.fetchone().exists
9c556283d255f580fc69a9e41a4d452d15e1eb17
19,034
def get_number_of_params(model, trainable_only=False): """ Get the number of parameters in a PyTorch Model :param model(torch.nn.Model): :param trainable_only(bool): If True, only count the trainable parameters :return(int): The number of parameters in the model """ return int(np.sum([np.prod(param.size()) for param in model.parameters() if param.requires_grad or (not trainable_only)]))
4e02e977e9fc2949a62ce433c9ff6d732d74a746
19,035
import time import requests def chart1(request): """ This view tests the server speed for transferring JSON and XML objects. :param request: The AJAX request :return: JsonResponse of the dataset. """ full_url = HttpRequest.build_absolute_uri(request) relative = HttpRequest.get_full_path(request) base_url = full_url[:-len(relative)] request_amount = ['10', '100', '200', '500', '1000'] json_urls = list() xml_urls = list() for x in request_amount: json_urls.append(reverse('objects:leads_json', args=[x])) xml_urls.append(reverse('objects:leads_xml', args=[x])) json_data = list() xml_data = list() for x in json_urls: start = time.perf_counter() requests.get(base_url + x) end = time.perf_counter() json_data.append((end - start)) for x in xml_urls: start = time.perf_counter() requests.get(base_url + x) end = time.perf_counter() xml_data.append((end - start)) final_data = { 'labels': request_amount, 'datasets': [ { 'label': 'JSON', 'backgroundColor': 'rgba(255, 99, 132, 0.2)', 'borderColor': 'rgba(255,99,132,1)', 'data': json_data, 'borderWidth': 2, 'yAxisID': 'first-y-axis' }, { 'label': 'XML', 'backgroundColor': 'rgba(54, 162, 235, 0.2)', 'borderColor': 'rgba(54, 162, 235, 1)', 'data': xml_data, 'borderWidth': 2, 'yAxisID': 'first-y-axis' } ] } return JsonResponse(final_data)
6eb88d3ef1aed85799832d5751ec4e30c54aaa07
19,036
def conv3x3(in_planes, out_planes, stride=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, bias=False)
115dd9e8afdaa850293fa08c103ab2966eceedbf
19,037
import mimetypes def img_mime_type(img): """Returns image MIME type or ``None``. Parameters ---------- img: `PIL.Image` PIL Image object. Returns ------- mime_type : `str` MIME string like "image/jpg" or ``None``. """ if img.format: ext = "." + img.format return mimetypes.types_map.get(ext.lower()) return None
fe46af6e5c03a1ae80cb809c81ab358ac5c085fa
19,038
def check_satisfy_dataset(w, D, involved_predicates=[]): """ This function is to check whether all facts in ``D'' have been installed in each of ruler intervals of the given Window ``w'' if facts in ruler intervals holds in ``D''. Args: w (a Window instance): D (dictionary of dictionary object): contain all facts involved_predicates (a list of str): contain all predicates that are needed to be checked. Returns: boolean """ for ruler_interval in w.ruler_intervals: for predicate in involved_predicates: if type(D[predicate]) == list: interval_list = D[predicate] if interval_intesection_intervallist(ruler_interval, interval_list) and Atom(predicate) not \ in w.get_ruler_intervals_literals()[ruler_interval]: return False else: for entity, interval_list in D[predicate].items(): if interval_intesection_intervallist(ruler_interval, interval_list) and Atom(predicate) not \ in w.get_ruler_intervals_literals()[ruler_interval]: return False return True
b2715ca1eba03bbcf0581fdfeb97177cde8d12d7
19,040
def interp_at(d, g, varargs=None, dim=None, dask="parallelized"): """ Interpolates a variable to another. Example : varargs = [THETA, mld] : THETA(t, z, y, x) is interpolated with Z=mld(t, y, x) """ var, coordvar = varargs dim = ( dim if dim is not None else set(d[var].dims).difference(d[coordvar].dims).pop() ) X = d[dim].values data = xr.apply_ufunc( _interp1DAt, d[var], d[coordvar], input_core_dims=[[dim], []], dask=dask, output_dtypes=[float], kwargs={"X": X}, keep_attrs=True, ) data.attrs.update( long_name=d[var].attrs.get("long_name", var) + " interpolated to {} along {}".format(coordvar, dim), name="{}_{}_{}".format(var, dim, coordvar), ) return data
a31cccee447deb2fd2612460471598d74e347c53
19,041
def get_history(): """Get command usage history from History.sublime-project""" f = open('%s/%s/%s' % (sublime.packages_path(), "TextTransmute", "History.sublime-project"), 'r') content = f.readlines() f.close() return [x.strip() for x in content]
fab11f52c2b90d1fb29ace944c8f80f67fc9170e
19,042
from typing import Dict from typing import Callable from typing import Any import asyncio def inprogress(metric: Gauge, labels: Dict[str, str] = None) -> Callable[..., Any]: """ This decorator provides a convenient way to track in-progress requests (or other things) in a callable. This decorator function wraps a function with code to track how many of the measured items are in progress. The metric is incremented before calling the wrapped function and decremented when the wrapped function is complete. :param metric: a metric to increment and decrement. The metric object being updated is expected to be a Gauge metric object. :param labels: a dict of extra labels to associate with the metric. :return: a coroutine function that wraps the decortated function """ if not isinstance(metric, Gauge): raise Exception( "inprogess decorator expects a Gauge metric but got: {}".format(metric) ) def track(func): """ This function wraps a decorated callable with metric incremeting and decrementing logic. :param func: the callable to be tracked. :returns: the return value from the decorated callable. """ @wraps(func) async def func_wrapper(*args, **kwds): metric.inc(labels) rv = func(*args, **kwds) if isinstance(rv, asyncio.Future) or asyncio.iscoroutine(rv): rv = await rv metric.dec(labels) return rv return func_wrapper return track
c10adbb07796c26fd59d1038a786b25b6346fd97
19,043
from typing import Optional import base64 def b58_wrapper_to_b64_public_address(b58_string: str) -> Optional[str]: """Convert a b58-encoded PrintableWrapper address into a b64-encoded PublicAddress protobuf""" wrapper = b58_wrapper_to_protobuf(b58_string) if wrapper: public_address = wrapper.public_address public_address_bytes = public_address.SerializeToString() return base64.b64encode(public_address_bytes).decode("utf-8") return None
a4c46800c0d22ef96d3fa622b6a37bf55e1960da
19,044
def render_to_AJAX(status, messages): """return an HTTP response for an AJAX request""" xmlc = Context({'status': status, 'messages': messages}) xmlt = loader.get_template("AJAXresponse.xml") response = xmlt.render(xmlc) return HttpResponse(response)
cb5ad3ead4d5bee9a710767d1f49c81b2b137441
19,045
def parse_params(environ, *include): """Parse out the filter, sort, etc., parameters from a request""" if environ.get('QUERY_STRING'): params = parse_qs(environ['QUERY_STRING']) else: params = {} param_handlers = ( ('embedded', params_serializer.unserialize_string, None), ('filter', params_serializer.unserialize_string, None), ('sort', params_serializer.unserialize_string, None), ('offset', int, 0), ('limit', int, 0), ('show_hidden', bool_field, False) ) results = {} if len(include) > 0: include = set(include) else: include = None for name, fn, default in param_handlers: if include and name not in include: continue results[name] = parse_param(params, name, fn, default=default) if not include or 'context' in include: results['context'] = get_context(environ) return results
ff8d263e4495804e1bb30d0c4da352b2437fc8f8
19,046
def create_dict_facade_for_object_vars_and_mapping_with_filters(cls, # type: Type[Mapping] include, # type: Union[str, Tuple[str]] exclude, # type: Union[str, Tuple[str]] private_name_prefix=None # type: str ): # type: (...) -> DictMethods """ :param cls: :param include: :param exclude: :param private_name_prefix: if provided, only the fields not starting with this prefix will be exposed. Otherwise all will be exposed :return: """ public_fields_only = private_name_prefix is not None def __iter__(self): """ Generated by @autodict. Implements the __iter__ method from collections.Iterable by relying on a filtered vars(self) :param self: :return: """ myattrs = tuple(att_name for att_name in iterate_on_vars(self)) for att_name in chain(myattrs, (o for o in super(cls, self).__iter__() if o not in myattrs)): # filter based on the name (include/exclude + private/public) if is_attr_selected(att_name, include=include, exclude=exclude) and \ (not public_fields_only or not att_name.startswith(private_name_prefix)): # use that name yield att_name def __getitem__(self, key): """ Generated by @autodict. Implements the __getitem__ method from collections.Mapping by relying on a filtered getattr(self, key) """ if hasattr(self, key): key = possibly_replace_with_property_name(self.__class__, key) if is_attr_selected(key, include=include, exclude=exclude) and \ (not public_fields_only or not key.startswith(private_name_prefix)): return getattr(self, key) else: try: # noinspection PyUnresolvedReferences return super(cls, self).__getitem__(key) except Exception as e: raise KeyError('@autodict generated dict view - {key} is a ' 'hidden field and super[{key}] raises an exception: {etyp} {err}' ''.format(key=key, etyp=type(e).__name__, err=e)) else: try: # noinspection PyUnresolvedReferences return super(cls, self).__getitem__(key) except Exception as e: raise KeyError('@autodict generated dict view - {key} is an ' 'invalid field name (was the constructor called?). Delegating to ' 'super[{key}] raises an exception: {etyp} {err}' ''.format(key=key, etyp=type(e).__name__, err=e)) return DictMethods(iter=__iter__, getitem=__getitem__)
cccdc19b43ca269cfedb4f7d6ad1d7b8abba78e1
19,047
import time def now(): """ 此时的时间戳 :return: """ return int(time.time())
39c05a695bfe4239ebb3fab6f3a5d0967bea6820
19,048
def get_yourContactINFO(rows2): """ Function that returns your personal contact info details """ yourcontactINFO = rows2[0] return yourcontactINFO
beea815755a2e6817fb57a37ccc5aa479455bb81
19,049
def hafnian( A, loop=False, recursive=True, rtol=1e-05, atol=1e-08, quad=True, approx=False, num_samples=1000 ): # pylint: disable=too-many-arguments """Returns the hafnian of a matrix. For more direct control, you may wish to call :func:`haf_real`, :func:`haf_complex`, or :func:`haf_int` directly. Args: A (array): a square, symmetric array of even dimensions. loop (bool): If ``True``, the loop hafnian is returned. Default is ``False``. recursive (bool): If ``True``, the recursive algorithm is used. Note: the recursive algorithm does not currently support the loop hafnian. If ``loop=True``, then this keyword argument is ignored. rtol (float): the relative tolerance parameter used in ``np.allclose``. atol (float): the absolute tolerance parameter used in ``np.allclose``. quad (bool): If ``True``, the hafnian algorithm is performed with quadruple precision. approx (bool): If ``True``, an approximation algorithm is used to estimate the hafnian. Note that the approximation algorithm can only be applied to matrices ``A`` that only have non-negative entries. num_samples (int): If ``approx=True``, the approximation algorithm performs ``num_samples`` iterations for estimation of the hafnian of the non-negative matrix ``A``. Returns: np.int64 or np.float64 or np.complex128: the hafnian of matrix A. """ # pylint: disable=too-many-return-statements,too-many-branches input_validation(A, rtol=rtol, atol=atol) matshape = A.shape if matshape == (0, 0): return 1 if matshape[0] % 2 != 0 and not loop: return 0.0 if np.allclose(np.diag(np.diag(A)), A, rtol=rtol, atol=atol): if loop: return np.prod(np.diag(A)) return 0 if matshape[0] % 2 != 0 and loop: A = np.pad(A, pad_width=((0, 1), (0, 1)), mode="constant") A[-1, -1] = 1.0 matshape = A.shape if matshape[0] == 2: if loop: return A[0, 1] + A[0, 0] * A[1, 1] return A[0][1] if matshape[0] == 4: if loop: result = ( A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2] + A[0, 0] * A[1, 1] * A[2, 3] + A[0, 1] * A[2, 2] * A[3, 3] + A[0, 2] * A[1, 1] * A[3, 3] + A[0, 0] * A[2, 2] * A[1, 3] + A[0, 0] * A[3, 3] * A[1, 2] + A[0, 3] * A[1, 1] * A[2, 2] + A[0, 0] * A[1, 1] * A[2, 2] * A[3, 3] ) return result return A[0, 1] * A[2, 3] + A[0, 2] * A[1, 3] + A[0, 3] * A[1, 2] if approx: if np.any(np.iscomplex(A)): raise ValueError("Input matrix must be real") if np.any(A < 0): raise ValueError("Input matrix must not have negative entries") if A.dtype == np.complex: # array data is complex type if np.any(np.iscomplex(A)): # array values contain non-zero imaginary parts return haf_complex(A, loop=loop, recursive=recursive, quad=quad) # all array values have zero imaginary parts return haf_real(np.float64(A.real), loop=loop, recursive=recursive, quad=quad) if np.issubdtype(A.dtype, np.integer) and not loop: # array data is an integer type, and the user is not # requesting the loop hafnian return haf_int(np.int64(A)) if np.issubdtype(A.dtype, np.integer) and loop: # array data is an integer type, and the user is # requesting the loop hafnian. Currently no # integer function for loop hafnians, have to instead # convert to float and use haf_real A = np.float64(A) return haf_real( A, loop=loop, recursive=recursive, quad=quad, approx=approx, nsamples=num_samples )
0e90f1d372bf7be636ae8eb333d2c59a387b58f1
19,050
def filter_out_nones(data): """ Filter out any falsey values from data. """ return (l for l in data if l)
39eb0fb7aafe799246d231c5a7ad8a150ed4341e
19,051
def BytesToGb(size): """Converts a disk size in bytes to GB.""" if not size: return None if size % constants.BYTES_IN_ONE_GB != 0: raise calliope_exceptions.ToolException( 'Disk size must be a multiple of 1 GB. Did you mean [{0}GB]?' .format(size // constants.BYTES_IN_ONE_GB + 1)) return size // constants.BYTES_IN_ONE_GB
49bc846ce6887fd47ac7be70631bddd8353c72ed
19,053
def build_report(drivers: dict, desc=False) -> [[str, str, str], ...]: """ Creates a race report: [[Driver.name, Driver.team, Driver.time], ...] Default order of drivers from best time to worst. """ sorted_drivers = sort_drivers_dict(drivers, desc) return [driver.get_stats for driver in sorted_drivers.values()]
c8c84319c0a14867b21d09c8b66ea434d13786aa
19,054
def add_sites_sheet(ws, cols, lnth): """ """ for col in cols: cell = "{}1".format(col) ws[cell] = "='Capacity_km2_MNO'!{}".format(cell) for col in cols[:2]: for i in range(2, lnth): cell = "{}{}".format(col, i) ws[cell] = "='Capacity_km2_MNO'!{}".format(cell) for col in cols[2:]: for i in range(2, lnth): cell = "{}{}".format(col, i) part1 = "=MIN(IF('Lookups'!$H$3:$H$250>'Data_km2'!{}".format(cell) part2 = ",'Lookups'!$E$3:$E$250))*Area!{}".format(cell) ws[cell] = part1 + part2 ws.formula_attributes[cell] = {'t': 'array', 'ref': "{}:{}".format(cell, cell)} columns = ['C','D','E','F','G','H','I','J','K','L'] ws = format_numbers(ws, columns, (1, 200), 'Comma [0]', 0) set_border(ws, 'A1:L{}'.format(lnth-1), "thin", "000000") return ws
c1db2b585021e8eef445963f8c300d726600e12a
19,055
import itertools def testBinaryFile(filePath): """ Test if a file is in binary format :param fileWithPath(str): File Path :return: """ file = open(filePath, "rb") #Read only a couple of lines in the file binaryText = None for line in itertools.islice(file, 20): if b"\x00" in line: #Return to the beginning of the binary file file.seek(0) #Read the file in one step binaryText = file.read() break file.close() #Return the result return binaryText
809a962881335ce0a3a05e341a13b413c381fedf
19,056
def dup_max_norm(f, K): """ Returns maximum norm of a polynomial in ``K[x]``. Examples ======== >>> from sympy.polys import ring, ZZ >>> R, x = ring("x", ZZ) >>> R.dup_max_norm(-x**2 + 2*x - 3) 3 """ if not f: return K.zero else: return max(dup_abs(f, K))
1ba4744781a3f5cb8e71b59bc6588579f88a6d43
19,058
def greedy_algorithm(pieces, material_size): """Implementation of the First-Fit Greedy Algorithm Inputs: pieces - list[] of items to place optimally material_size - length of Boards to cut from, assumes unlimited supply Output: Optimally laid out BoardCollection.contents, which is a list[] of Boards""" bc = BoardCollection() bc.append(Board(material_size)) pieces.sort(reverse=True) # sort in ascending order # we must copy pieces, else our actual list will get modified for piece in pieces.copy(): piece_added = False # for recording state: did we add this piece to BoardCollection yet? # if piece fits, add it on that Board, remove it from the list, mark it as such and break out of for loop for board in bc.contents: if board.space_remaining >= piece: board.insert(piece) pieces.remove(piece) piece_added = True break # if it hasn't been added yet, make a new Board and put it there if piece_added is False: bc.append(Board(material_size)) bc.last.insert(piece) pieces.remove(piece) return bc.contents
f42b2372b50385c693765d65614d73a8b21f496b
19,059
def start_tv_session(hypes): """ Run one evaluation against the full epoch of data. Parameters ---------- hypes : dict Hyperparameters Returns ------- tuple (sess, saver, summary_op, summary_writer, threads) """ # Build the summary operation based on the TF collection of Summaries. summary_op = tf.merge_all_summaries() # Create a saver for writing training checkpoints. if 'keep_checkpoint_every_n_hours' in hypes['solver']: kc = hypes['solver']['keep_checkpoint_every_n_hours'] else: kc = 10000.0 saver = tf.train.Saver(max_to_keep=utils.cfg.max_to_keep, keep_checkpoint_every_n_hours=kc) # Create a session for running Ops on the Graph. sess = tf.Session() # Run the Op to initialize the variables. init = tf.initialize_all_variables() sess.run(init) # Start the queue runners. coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # Instantiate a SummaryWriter to output summaries and the Graph. summary_writer = tf.train.SummaryWriter(hypes['dirs']['output_dir'], graph=sess.graph) return sess, saver, summary_op, summary_writer, coord, threads
f54cfa17871badf2cbe92200144a758d0fc2dc41
19,060
def factor_size(value, factor): """ Factors the given thumbnail size. Understands both absolute dimensions and percentages. """ if type(value) is int: size = value * factor return str(size) if size else '' if value[-1] == '%': value = int(value[:-1]) return '{0}%'.format(value * factor) size = int(value) * factor return str(size) if size else ''
41b061fb368d56ba18b52cd7a6a3322292671d83
19,061
def categoryProfile(request, pk): """ Displays the profile of a :class:`gestion.models.Category`. pk The primary key of the :class:`gestion.models.Category` to display profile. """ category = get_object_or_404(Category, pk=pk) return render(request, "gestion/category_profile.html", {"category": category})
87318332c7e317a49843f5becda8196951743ce5
19,062
def eoms(_x, t, _params): """Rigidy body equations of motion. _x is an array/list in the following order: q1: Yaw q2: Lean |-(Euler 3-1-2 angles used to orient A q3: Pitch / q4: N[1] displacement of mass center. q5: N[2] displacement of mass center. q6: N[3] displacement of mass center. u1: A[1] measure number of angular velocity u2: A[2] measure number of angular velocity u3: A[3] measure number of angular velocity u4: N[1] velocity of mass center. u5: N[2] velocity of mass center. u6: N[3] velocity of mass center. _params is an array/list in the following order: m: Mass of first pendulum point mass. g: Gravitational constant. I11: Principal moment of inertia about A[1] I22: Principal moment of inertia about A[2] I33: Principal moment of inertia about A[3] """ # Unpack function arguments q1, q2, q3, q4, q5, q6, u1, u2, u3, u4, u5, u6 = _x # Unpack function parameters m, g, I11, I22, I33 = _params # Trigonometric functions c2 = cos(q2) c3 = cos(q3) s3 = sin(q3) t2 = tan(q2) # Calculate return values q1d = c3*u3/c2 - s3*u1/c2 q2d = c3*u1 + s3*u3 q3d = s3*t2*u1 - c3*t2*u3 + u2 q4d = u4 q5d = u5 q6d = u6 u1d = (I22 - I33)*u2*u3/I11 u2d = (I33 - I11)*u1*u3/I22 u3d = -(I22 - I11)*u1*u2/I33 u4d = 0 u5d = 0 u6d = g # Return calculated values return [q1d, q2d, q3d, q4d, q5d, q6d, u1d, u2d, u3d, u4d, u5d, u6d]
3868411e2c082617311f59f3b39deec9d3a370fa
19,063