content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def ConstVal(val): """ Creates a LinComb representing a constant without creating a witness or instance variable Should be used carefully. Using LinCombs instead of integers where not needed will hurt performance """ if not isinstance(val, int): raise RuntimeError("Wrong type for ConstVal") return LinComb(val, backend.one() * val)
d715564ea09224590be827d3e32043c4b66c5cfd
18,833
def filter_required_flat_tensor_spec(flat_tensor_spec): """Process a flat tensor spec structure and return only the required subset. Args: flat_tensor_spec: A flattened sequence (result of flatten_spec_structure) with the joined string paths as OrderedDict. Since we use OrderedDicts we can safely call flatten_spec_structure multiple times. Raises: ValueError: If the passed flat_tensor_spec is not a valid flat tensor_spec structure. Returns: filtered_flat_required_tensor_spec: The same flattened sequence but only the {key: tensor_spec} pairs for the non optional tensor_spec. """ if not is_flat_spec_or_tensors_structure(flat_tensor_spec): raise ValueError('Only flat tensor_spec structures are allowed.') filtered_flat_required_tensor_spec = TensorSpecStruct() for key, value in flat_tensor_spec.items(): if hasattr(value, 'is_optional') and value.is_optional: continue filtered_flat_required_tensor_spec[key] = value return filtered_flat_required_tensor_spec
aa55e790cd335030cf2c821dd006213db022b78a
18,834
def callback(photolog_id): """ twitter로부터 callback url이 요청되었을때 최종인증을 한 후 트위터로 해당 사진과 커멘트를 전송한다. """ Log.info("callback oauth_token:" + request.args['oauth_token']); Log.info("callback oauth_verifier:" + request.args['oauth_verifier']); # oauth에서 twiter로 부터 넘겨받은 인증토큰을 세션으로 부터 가져온다. OAUTH_TOKEN = session['OAUTH_TOKEN'] OAUTH_TOKEN_SECRET = session['OAUTH_TOKEN_SECRET'] oauth_verifier = request.args['oauth_verifier'] try: # 임시로 받은 인증토큰을 이용하여 twitter 객체를 만들고 인증토큰을 검증한다. twitter = Twython(current_app.config['TWIT_APP_KEY'], current_app.config['TWIT_APP_SECRET'], OAUTH_TOKEN, OAUTH_TOKEN_SECRET) final_step = twitter.get_authorized_tokens(oauth_verifier) # oauth_verifier를 통해 얻은 최종 인증토큰을 이용하여 twitter 객체를 새로 생성한다. twitter = Twython(current_app.config['TWIT_APP_KEY'], current_app.config['TWIT_APP_SECRET'], final_step['oauth_token'], final_step['oauth_token_secret']) session['TWITTER'] = twitter # 파라미터로 받은 photolog_id를 이용하여 해당 사진과 커멘트를 트위터로 전송한다. __send_twit(twitter, photolog_id) except TwythonError as e: Log.error("callback(): TwythonError , "+ str(e)) session['TWITTER_RESULT'] = str(e) return redirect(url_for('.show_all'))
3dcca97278cf20f819fa357b85e971dae9a6dac8
18,835
def calc_adjusted_pvalues(adata, method='fdr_by'): """Calculates pvalues adjusted per sample with the given method. :param data: AnnData object annotated with model fit results. :param method: Name of pvalue adjustment method (from statsmodels.stats.multitest.multipletests). :return: AnnData object with adjusted pvalues. """ assert "X_pvalue" in adata.layers.keys(), ( 'No X_pvalue found in AnnData object, calculate pvalues first.') adata.layers["X_padj"] = (np.array([multiple_testing_nan(row, method=method) for row in adata.layers["X_pvalue"]])) return adata
0097ceca4918ef4a4c4376c092b040752f408036
18,836
def create_model(model_type='mobilenet'): """ Create a model. :param model_type: Must be one of 'alexnet', 'vgg16', 'resnet50' or 'mobilenet'. :return: Model. """ if model_type is 'alexnet': net = mdl.alexnet(input_shape, num_breeds, lr=0.001) elif model_type is 'vgg16': net = mdl.vgg16(input_shape, num_breeds, lr=0.0001) elif model_type is 'resnet50': net = mdl.resnet50(input_shape, num_breeds, lr=0.0002) # 0.01 elif model_type is 'mobilenet': net = mdl.mobilenet(input_shape, num_breeds, lr=0.0001) # 0.01 else: print("Model type is not supported.") return net
44ab632eff28e40b5255094e2009b479e042b00b
18,837
def generate_voter_groups(): """Generate all possible voter groups.""" party_permutations = list(permutations(PARTIES, len(PARTIES))) voter_groups = [VoterGroup(sequence) for sequence in party_permutations] return voter_groups
16c55002600bf76178c529f1140fb28831d5065e
18,838
import random def generator(fields, instance): """ Calculates the value needed for a unique ordered representation of the fields we are paginating. """ values = [] for field in fields: neg = field.startswith("-") # If the field we have to paginate by is the pk, get the pk field name. if field == 'pk': field = instance._meta.pk.name value = instance._meta.get_field(field.lstrip("-")).value_from_object(instance) if hasattr(value, "isoformat"): value = value.isoformat() value = unicode(value) if neg: # this creates the alphabetical mirror of a string, e.g. ab => zy, but for the full # range of unicode characters, e.g. first unicode char => last unicode char, etc value = u"".join([ unichr(0xffff - ord(x)) for x in value ]) values.append(value) values.append(unicode(instance.pk) if instance.pk else unicode(random.randint(0, 1000000000))) return NULL_CHARACTER.join(values)
3d6f3837e109720ec78460dcd56b6cf1b3ddc947
18,840
from typing import Any from typing import Union def token_hash(token: Any, as_int: bool = True) -> Union[str, int]: """Hash of Token type Args: token (Token): Token to hash as_int (bool, optional): Encode hash as int Returns: Union[str, int]: Token hash """ return _hash((token.text, token.start, token.end, token.id), as_int=as_int)
3adfc8dce2b37b86376d47f8299cb6813faab839
18,841
import six import base64 from datetime import datetime def generate_totp_passcode(secret): """Generate TOTP passcode. :param bytes secret: A base32 encoded secret for TOTP authentication :returns: totp passcode as bytes """ if isinstance(secret, six.text_type): secret = secret.encode('utf-8') while len(secret) % 8 != 0: secret = secret + b'=' decoded = base64.b32decode(secret) totp = TOTP( decoded, 6, SHA1(), 30, backend=default_backend()) return totp.generate(timegm(datetime.utcnow().utctimetuple())).decode()
2f0392e86b5d84970ec43bbd4d647ca29345a373
18,842
def all_ndcubes(request): """ All the above ndcube fixtures in order. """ return request.getfixturevalue(request.param)
906412ebe9a26de5cfddcb1d1431ab014c8084c6
18,843
from pathlib import Path import warnings def read_xmu(fpath: Path, scan: str='mu', ref: bool=True, tol: float=1e-4) -> Group: """Reads a generic XAFS file in plain format. Parameters ---------- fpath Path to file. scan Requested mu(E). Accepted values are transmission ('mu'), fluorescence ('fluo'), or None. The default is 'mu'. ref Indicates if the transmission reference ('mu_ref') should also be returned. The default is True. tol Tolerance in energy units to remove duplicate values. Returns ------- : Group containing the requested arrays. Notes ----- :func:`read_xmu` assumes the following column order in the file: 1. energy. 2. transmission/fluorescence mu(E). 3. transmission reference. See also -------- read_file : Reads a XAFS file based on specified columns. Examples -------- >>> from araucaria import Group >>> from araucaria.io import read_xmu >>> from araucaria.testdata import get_testpath >>> from araucaria.utils import check_objattrs >>> fpath = get_testpath('xmu_testfile.xmu') >>> # extracting mu and mu_ref scans >>> group_mu = read_xmu(fpath, scan='mu') >>> check_objattrs(group_mu, Group, attrlist=['mu', 'mu_ref']) [True, True] >>> # extracting only fluo scan >>> group_fluo = read_xmu(fpath, scan='fluo', ref=False) >>> check_objattrs(group_fluo, Group, attrlist=['fluo']) [True] >>> # extracting only mu_ref scan >>> group_ref = read_xmu(fpath, scan=None, ref=True) >>> check_objattrs(group_ref, Group, attrlist=['mu_ref']) [True] """ # default modes and channels scandict = ['mu', 'fluo', None] coldict = {'fluo':1, 'mu':1, 'mu_ref':2} # testing that scan exists in the current dictionary if scan not in scandict: warnings.warn("scan mode %s not recognized. Retrieving transmission measurement ('mu')." %scan) scan = 'mu' if scan is None: usecols = (0, coldict['mu_ref']) else: usecols = (0, coldict[scan], coldict['mu_ref']) group = read_file(fpath, usecols, scan, ref, tol) return (group)
e5889fa309b7fb836cc5b7ea50f8987a647f00a2
18,844
def filter_order_by_oid(order, oid): """ :param order: :type order: :class:`tests.testapp.testapp.trading.models.Order` :param oid: Order ID :type oid: int """ return order.tid == oid
bf84e2e9f2fa19dc19e1d42ceef92dd3050d1e89
18,845
from skaldship.passwords.utils import process_password_file, insert_or_update_acct import logging def process_pwdump_loot(loot_list=[], msf=None): """ Takes an array of loot records in loot_list, downloads the pwdump file and adds the users. """ db = current.globalenv['db'] #cache = current.globalenv['cache'] data = [] for loot_id in loot_list: loot = msf.loot_download(loot_id) if loot['ltype'] not in ['host.windows.pwdump', 'windows.hashes']: log("Loot is not a pwdump, it is a %s" % loot['ltype'], logging.ERROR) continue else: # process the pwdump file pw_data = loot['data'].split('\n') accounts = process_password_file( pw_data=pw_data, file_type='PWDUMP', source='Metasploit', ) # find the info/0 service id for the host host = get_host_record(loot['host']) query = (db.t_services.f_number == '0') & (db.t_services.f_proto == 'info') & (db.t_services.f_hosts_id == host.id) svc_id = db(query).select().first() if svc_id is None: # info/0 not found.. add it! svc_id = db.t_services.insert(f_proto="info", f_number="0", f_status="info", f_hosts_id=host.id) db.commit() # insert or update the account records resp_text = insert_or_update_acct(svc_id.id, accounts) log("Added pwdump records for host: %s" % host.f_ipaddr) data.append({loot['host']: resp_text}) return data
57448b24350dd66271906ba5fcdc0e4453d898e9
18,846
def has_poor_grammar(token_strings): """ Returns whether the output has an odd number of double quotes or if it does not have balanced parentheses. """ has_open_left_parens = False quote_count = 0 for token in token_strings: if token == '(': if has_open_left_parens: return True else: has_open_left_parens = True elif token == ')': if has_open_left_parens: has_open_left_parens = False else: return True elif token == '"': quote_count += 1 return quote_count % 2 == 1 or has_open_left_parens
b35c6af0ec771ac22ff66d9ca875f5d916cb9489
18,847
import pandas as pd def csv_dataset_reader(path): """ This function reads a csv from a specified path and returns a Pandas dataframe representation of it, and renames columns. :param path: Path to and name of the csv file to read. :return: A Pandas dataframe. """ data = pd.read_csv(path, sep=",", header=None) data.columns = ['age', 'weight', 'height'] return data
59a298c50bf060809ebbebc5d0ff3d9670e84244
18,849
def get_daily_blurb_info(): """Get daily blurb info.""" html, ss_image_1day_file, ss_image_1year_file = _scrape() return _parse(html, ss_image_1day_file, ss_image_1year_file)
ffe84accebda5780e55d34e58137288d02bc072d
18,850
def otsu_binarization(img): """ Method to perform Otsu Binarization :param img: input image :return: thresholded image """ ret2, th2 = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) return th2
99953288b893d56e17a9e9654393aa284eaae4b7
18,852
def rosstack_depends_1(s): """ @param s: stack name @type s: str @return: A list of the names of the stacks which s depends on directly @rtype: list """ return rosstackexec(['depends1', s]).split()
e917c62c628498e1f100c045bf8e966ea3bfd355
18,853
def _config_file_is_to_update(): """ Ask the user if the configuration file should be updated or not. :return: Returns True if the user wants to update the configuration file and False otherwise. :rtype: bool """ if yes_or_no_input("Do you want to save the account on the configuration file?") == USER_INPUT_YES: return True return False
e14be78e150e28b87a0e8f179cc86f4a240a60d3
18,854
def funcScrapeTableWunderground(html_tree, forecast_date_str): """ """ # This will get you the Wunderground table headers for future hour conditions columns = html_tree.xpath("//table[@id='hourly-forecast-table']/thead//button[@class='tablesaw-sortable-btn']") rows = html_tree.xpath("//table[@id='hourly-forecast-table']/tbody/tr") fill_cols = np.asarray([]) for column in columns: # print etree.tostring(column) col = column.xpath("text()")[0] fill_cols = np.append(fill_cols, col) # print(col) # Make a DataFrame to fill dayDf = DataFrame(columns = fill_cols)#.set_index(fill_cols[0]) # This will go through the rows of the table and grab actual values for row in rows: values = row.xpath("td") for i, value in enumerate(values): col = columns[i].xpath("text()")[0] val = value.xpath("ng-saw-cell-parser/div//span/text()") # print(val) if col == 'Time': timeVal = val # Initializing a single row. The goal is to make it look just like what dayDf looks like hourRow = pd.DataFrame([forecast_date_str + ' ' + (''.join(timeVal))], columns = [col])#.set_index elif col == 'Conditions': hourRow[col] = val[1] else: if col == 'Pressure': val = value.xpath("ng-saw-cell-parser//span/span/text()") val = [val[0] + ' ' + val[2][0:2]] if col in ['Precip', 'Amount']: # These are hiding behind hyperlinks. Need to be smart val = value.xpath("ng-saw-cell-parser/div//span/a/text()") try: hourRow[col] = val[0] except: hourRow[col] = np.nan dayDf = dayDf.append(hourRow) dayDf['Time'] = pd.to_datetime(dayDf['Time']) # print(columns[i].xpath("text()")[0]) # print value.xpath("ng-saw-cell-parser/div//span/text()") return dayDf
aa6745565e8fa01df8b8f52f1314ee7bf1a434a8
18,856
from re import S def as_finite_diff(derivative, points=1, x0=None, wrt=None): """ Returns an approximation of a derivative of a function in the form of a finite difference formula. The expression is a weighted sum of the function at a number of discrete values of (one of) the independent variable(s). Parameters ========== derivative: a Derivative instance (needs to have an variables and expr attribute). points: sequence or coefficient, optional If sequence: discrete values (length >= order+1) of the independent variable used for generating the finite difference weights. If it is a coefficient, it will be used as the step-size for generating an equidistant sequence of length order+1 centered around x0. defult: 1 (step-size 1) x0: number or Symbol, optional the value of the independent variable (wrt) at which the derivative is to be approximated. default: same as wrt wrt: Symbol, optional "with respect to" the variable for which the (partial) derivative is to be approximated for. If not provided it is required that the Derivative is ordinary. default: None Examples ======== >>> from sympy import symbols, Function, exp, sqrt, Symbol, as_finite_diff >>> x, h = symbols('x h') >>> f = Function('f') >>> as_finite_diff(f(x).diff(x)) -f(x - 1/2) + f(x + 1/2) The default step size and number of points are 1 and ``order + 1`` respectively. We can change the step size by passing a symbol as a parameter: >>> as_finite_diff(f(x).diff(x), h) -f(-h/2 + x)/h + f(h/2 + x)/h We can also specify the discretized values to be used in a sequence: >>> as_finite_diff(f(x).diff(x), [x, x+h, x+2*h]) -3*f(x)/(2*h) + 2*f(h + x)/h - f(2*h + x)/(2*h) The algorithm is not restricted to use equidistant spacing, nor do we need to make the approximation around x0, but we can get an expression estimating the derivative at an offset: >>> e, sq2 = exp(1), sqrt(2) >>> xl = [x-h, x+h, x+e*h] >>> as_finite_diff(f(x).diff(x, 1), xl, x+h*sq2) 2*h*((h + sqrt(2)*h)/(2*h) - (-sqrt(2)*h + h)/(2*h))*f(E*h + x)/\ ((-h + E*h)*(h + E*h)) + (-(-sqrt(2)*h + h)/(2*h) - \ (-sqrt(2)*h + E*h)/(2*h))*f(-h + x)/(h + E*h) + \ (-(h + sqrt(2)*h)/(2*h) + (-sqrt(2)*h + E*h)/(2*h))*f(h + x)/(-h + E*h) Partial derivatives are also supported: >>> y = Symbol('y') >>> d2fdxdy=f(x,y).diff(x,y) >>> as_finite_diff(d2fdxdy, wrt=x) -f(x - 1/2, y) + f(x + 1/2, y) See also ======== sympy.calculus.finite_diff.apply_finite_diff sympy.calculus.finite_diff.finite_diff_weights """ if wrt is None: wrt = derivative.variables[0] # we need Derivative to be univariate to guess wrt if any(v != wrt for v in derivative.variables): raise ValueError('if the function is not univariate' + ' then `wrt` must be given') order = derivative.variables.count(wrt) if x0 is None: x0 = wrt if not iterable(points): # points is simply the step-size, let's make it a # equidistant sequence centered around x0 if order % 2 == 0: # even order => odd number of points, grid point included points = [x0 + points*i for i in range(-order//2, order//2 + 1)] else: # odd order => even number of points, half-way wrt grid point points = [x0 + points*i/S(2) for i in range(-order, order + 1, 2)] if len(points) < order+1: raise ValueError("Too few points for order %d" % order) return apply_finite_diff(order, points, [ derivative.expr.subs({wrt: x}) for x in points], x0)
4b76eae0578434a9a087b08f01eefbcd3018bc01
18,857
def is_prime(pp: int) -> bool: """ Returns True if pp is prime otherwise, returns False Note: not a very sophisticated check """ if pp == 2 or pp == 3: return True elif pp < 2 or not pp % 2: return False odd_n = range(3, int(sqrt(pp) + 1), 2) return not any(not pp % i for i in odd_n)
f8661a7f625c198dd1d0b5b477aea22f50596a39
18,858
def createChromosome( totQty, menuData ): """ Creates the chromosome with Qty assigned to Each Dish such that sum of all Qty equals to the number of dishes to be ordered totQty = Number of Dishes to be Ordered returns chromosome of dish id and corresponding quantity """ chromosome = [] qtySeq = randSeq2(len(menuData),totQty) i=0 for key in menuData: chromosome.append(Dish(key,qtySeq[i])) i+=1 return chromosome
6dae9c5a610a50df67e18f2034513a090088e524
18,859
def add_residual(transformed_inputs, original_inputs, zero_pad=True): """Adds a skip branch to residual block to the output.""" original_shape = original_inputs.shape.as_list() transformed_shape = transformed_inputs.shape.as_list() delta = transformed_shape[3] - original_shape[3] stride = int(np.ceil(original_shape[1] / transformed_shape[1])) if stride > 1: original_inputs = tf.layers.average_pooling2d( original_inputs, pool_size=[stride] * 2, strides=stride, padding="same") if delta != 0: if zero_pad: # Pad channels with zeros at the beginning and end. if delta > 0: original_inputs = tf.pad( original_inputs, [[0, 0], [0, 0], [0, 0], [delta // 2, delta // 2]], mode="CONSTANT", constant_values=0) else: transformed_inputs = tf.pad( transformed_inputs, [ [0, 0], [0, 0], [0, 0], [-delta // 2, -delta // 2]], mode="CONSTANT", constant_values=0) else: # Convolution original_inputs = tf.layers.conv2d( original_inputs, filters=transformed_shape[3], kernel_size=(1, 1), strides=(1, 1), padding="same", activation=None, use_bias=False) net = original_inputs + transformed_inputs return net, original_inputs
e32897c6e80873b863fbc3358eaec8b6191086f0
18,860
def _find_bad_channels_in_epochs(epochs, picks, use_metrics, thresh, max_iter): """Implements the fourth step of the FASTER algorithm. This function attempts to automatically mark bad channels in each epochs by performing outlier detection. Additional Parameters --------------------- use_metrics : list of str List of metrics to use. Can be any combination of: 'amplitude', 'variance', 'deviation', 'median_gradient' Defaults to all of them. thresh : float The threshold value, in standard deviations, to apply. A channel crossing this threshold value is marked as bad. Defaults to 3. max_iter : int The maximum number of iterations performed during outlier detection (defaults to 1, as in the original FASTER paper). """ metrics = { 'amplitude': lambda x: np.ptp(x, axis=2), 'deviation': lambda x: _deviation(x), 'variance': lambda x: np.var(x, axis=2), 'median_gradient': lambda x: np.median(np.abs(np.diff(x)), axis=2), 'line_noise': lambda x: _freqs_power(x, epochs.info['sfreq'], [50, 60]), } if use_metrics is None: use_metrics = metrics.keys() info = pick_info(epochs.info, picks, copy=True) data = epochs.get_data()[:, picks] bads = dict((m, np.zeros((len(data), len(picks)), dtype=bool)) for m in metrics) for ch_type, chs in _picks_by_type(info): ch_names = [info['ch_names'][k] for k in chs] chs = np.array(chs) for metric in use_metrics: logger.info('Bad channel-in-epoch detection on %s channels:' % ch_type.upper()) s_epochs = metrics[metric](data[:, chs]) for i_epochs, epoch in enumerate(s_epochs): outliers = find_outliers(epoch, thresh, max_iter) if len(outliers) > 0: bad_segment = [ch_names[k] for k in outliers] logger.info('Epoch %d, Bad by %s:\n\t%s' % ( i_epochs, metric, bad_segment)) bads[metric][i_epochs, chs[outliers]] = True return bads
6b4a0acc1eb4e1fc4f229cc237e071bf87047b5e
18,861
def solution(A): # O(N^2) """ For a given value A, compute the number with the fewest number of squared values and return them within an array. eg. 26 can be computed with squared values [25, 1] or [16, 9, 1], but the answer is only [25, 1] as we are looking for the fewest number of squared values >>> solution(26) [25, 1] >>> solution(128) [64, 64] >>> solution(33) [25, 4, 4] >>> solution(256) [256] """ queue = deque() # O(1) ready_queue(A, queue, []) # O(N) return process_queue(queue) # O(N^2)
56f899d94cfc07a412a357a305553ad0ed8af092
18,862
def get_device_path(): """Return device path.""" if is_gce(): return None devices = get_devices() device_serial = environment.get_value('ANDROID_SERIAL') for device in devices: if device_serial == device.serial: return device.path return None
5bd8bf47859c3721e47cfc45b49aaa06bed4159e
18,864
def pattern_maker(size, dynamic): """ Generate a pattern with pixel values drawn from the [0, 1] uniform distribution """ def pattern(): return np.random.rand(size) def static(): a_pattern = pattern() def fn(): return a_pattern return fn return pattern if dynamic else static()
3fd256fe3f8c7669faec8a7d1757a334a51145ba
18,865
def RMSE(a, b): """ Return Root mean squared error """ return np.sqrt(np.square(np.subtract(a, b)).mean())
7d853535fb9e4072f983f05ad192cc38f2bbea8e
18,866
def alpha_a_b(coord, N, silent=True): """Calculate alpha, a, b for a rectangle with coordinates coord and truncation at N.""" [x0, x1, y0, y1] = coord a = 0 for zero in zeros[:N]: a += exp(-zero*y0)/abs(complex(0.5, zero)) b = 0 for zero in zeros[N:]: b += exp(-zero*y0)/abs(complex(0.5, zero)) def F_north(x): return abs(F_N(complex(x, y1), N)) def F_south(x): return abs(F_N(complex(x, y0), N)) def F_east(y): return abs(F_N(complex(x1, y), N)) def F_west(y): return abs(F_N(complex(x0, y), N)) # def x_bounds(f_new, x_new, f_old, x_old): # return x0 <= x_new[0] <= x1 # def y_bounds(f_new, x_new, f_old, x_old): # return y0 <= x_new[0] <= y1 ns_kwargs = {"bounds":[(x0, x1)]} ew_kwargs = {"bounds":[(y0, y1)]} min_north = basinhopping(F_north, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), minimizer_kwargs=ns_kwargs) min_south = basinhopping(F_south, 0.5*(x0 + x1), stepsize=0.5*(x1-x0), minimizer_kwargs=ns_kwargs) min_east = basinhopping(F_east, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), minimizer_kwargs=ew_kwargs) min_west = basinhopping(F_west, 0.5*(y0 + y1), stepsize=0.5*(y1-y0), minimizer_kwargs=ew_kwargs) # if not silent: # print('min_north') # print(min_north) # print('min_south') # print(min_south) # print('min_east') # print(min_east) # print('min_west') # print(min_west) min_north = min_north.fun min_south = min_south.fun min_east = min_east.fun min_west = min_west.fun if not silent: print((min_north, min_south, min_east, min_west)) alpha = min(min_north, min_south, min_east, min_west) return alpha, a, b
41cc57c16a7526bf7a88503ea9315872062b8ac5
18,867
from typing import Any from typing import Optional def asdataset( dataclass: Any, reference: Optional[DataType] = None, dataoptions: Any = None, ) -> Any: """Create a Dataset object from a dataclass object. Args: dataclass: Dataclass object that defines typed Dataset. reference: DataArray or Dataset object as a reference of shape. dataoptions: Options for Dataset creation. Returns: Dataset object created from the dataclass object. """ if dataoptions is None: try: dataoptions = dataclass.__dataoptions__ except AttributeError: dataoptions = DataOptions(xr.Dataset) model = DataModel.from_dataclass(dataclass) dataset = dataoptions.factory() for entry in model.data_vars: dataset[entry.name] = entry(reference) for entry in model.coords: if entry.name in dataset.dims: dataset.coords[entry.name] = entry(dataset) for entry in model.coords: if entry.name not in dataset.dims: dataset.coords[entry.name] = entry(dataset) for entry in model.attrs: dataset.attrs[entry.name] = entry() return dataset
4baf2df39f906f2b1981cb597cb6430e95bb1ca1
18,868
def get_edge_size(reader: ChkDirReader, chunks: list[ChunkRange], tilesize: int) -> int: """Gets the size of an edge tile from an unknown chunk""" for chunk in chunks: data: bytes = deflate_range(reader, chunk.start, chunk.end, True) if data is None: continue try: decompressed: bytes = lzo.decompress(data, False, MAX_BUFFER_LEN) pixel_count: float = len(decompressed) / 4 # RGBA per-pixel edge_length = pixel_count / tilesize # rect edge length return int(edge_length) except: # pylint: disable=bare-except continue return -1
54da5c4adafbcccae4cee9112e35470a97172b00
18,869
import time import torch def multi_gpu_test(model, data_loader, tmpdir=None, gpu_collect=False): """Test model with multiple gpus. This method tests model with multiple gpus and collects the results under two different modes: gpu and cpu modes. By setting 'gpu_collect=True' it encodes results to gpu tensors and use gpu communication for results collection. On cpu mode it saves the results on different gpus to 'tmpdir' and collects them by the rank 0 worker. Args: model (nn.Module): Model to be tested. data_loader (nn.Dataloader): Pytorch data loader. tmpdir (str): Path of directory to save the temporary results from different gpus under cpu mode. gpu_collect (bool): Option to use either gpu or cpu to collect results. Returns: list: The prediction results. """ model.eval() results = [] dataset = data_loader.dataset rank, world_size = get_dist_info() if rank == 0: prog_bar = mmcv.ProgressBar(len(dataset)) time.sleep(2) # This line can prevent deadlock problem in some cases. for i, data in enumerate(data_loader): with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) # encode mask results if isinstance(result[0], tuple): result = [(bbox_results, encode_mask_results(mask_results)) for bbox_results, mask_results in result] results.extend(result) if rank == 0: batch_size = len(result) for _ in range(batch_size * world_size): prog_bar.update() # collect results from all ranks gpu_collect = True if gpu_collect: results = collect_results_gpu(results, len(dataset)) else: results = collect_results_cpu(results, len(dataset), tmpdir) return results
8ec9bf7efcd126485a8066c7d5932b0c84c44b63
18,870
def toRegexp(exp,terminate=False,lower=False): """ Case sensitive version of the previous one, for backwards compatibility """ return toCl(exp,terminate,wildcards=('*',),lower=lower)
d550164d7d2a628a0b0bcf37f5ee95de958fc2e5
18,871
def marker_used_in_game(marker_id: int) -> bool: """ Determine whether the marker ID is used in the game. :param marker_id: An official marker number, mapped to the competitor range. :returns: True if the market is used in the game. """ return any([marker_id in marker_range for marker_range in MARKER_SIZES])
437d5b8c3ff80683e3f19d5cb3786243c6e430b3
18,872
def iround(x): """ Round an array to the nearest integer. Parameters ---------- x : array_like Input data. Returns ------- y : {numpy.ndarray, scalar} The rounded elements in `x`, with `int` dtype. """ return np.round(x).astype(int)
64837773f12eb096ede5d8963360ab28427b015d
18,873
def get_ec2_conn(): """ Requried: env.aws_region, env.aws_access_key, env.aws_secret_access_key return conneciton to aws ec2 """ conn = boto.ec2.connect_to_region( env.aws_region, aws_access_key_id=env.aws_access_key, aws_secret_access_key=env.aws_secret_access_key ) if conn is None: print(red("Can't connect to ec2 region")) return conn
5c2014f7d1a3ba465ec7f205ac34a5c1feeb2aac
18,875
def create_final_comment_objects(): """Goes through the final comments and returns an array of objects.""" arr = [] # Stores objects for line in final_file: row = line.split(",") # Set object variables for each object before adding it to the array comment_number, comment_author, account_karma, comment_score, \ comment_num_replies, comment_permalink, comment_id, \ comment_length = [i.strip('\n') for i in row] # Add the comment object to the array arr.append(Final_Comment(comment_number, comment_author, account_karma, \ comment_score, comment_num_replies, \ comment_permalink, comment_id, comment_length)) return arr
02107ba5ebc23e5a8db1c30fa8709793e1fcbe7e
18,877
import re def normalise_target_name(name, used=[], max_length=None): """ Check that name[:max_length] is not in used and append a integer suffix if it is. """ def generate_name(name, i, ml): # Create suffix string i_name = '' if i == 0 else '_' + str(i) # Return concatenated string if ml is not set if ml is None: ml = len(name) + len(i_name) t_name = name else: # Work out amount of name to drop length = len(name) + len(i_name) - ml t_name = name if length <= 0 else name[:-length] # If the length of i_name is greater than ml # just warn and revert to straight append if len(i_name) >= ml: log.warn('Too many repetitions of name %s.', name) t_name = name o_name = ''.join(filter(None, [t_name, i_name])) return '{:{ml}.{ml}}'.format(o_name, ml=ml) name = re.sub(r'[^-A-Za-z0-9_]', '_', name) i = 0 test_name = generate_name(name, i, max_length) while test_name in used: i += 1 test_name = generate_name(name, i, max_length) return test_name
bffc78525d766cbb941382b6f7dd9371cffee492
18,878
def construct_pairwise_df(sr: pd.Series, np_fun): """Constructs an upper diagonal df from all pairwise comparisons of a sr""" sr = sr.sort_index() _mat = np.triu(np_fun(sr.to_numpy() - sr.to_numpy()[:, None]), k=1) _mat[np.tril_indices(_mat.shape[0])] = None return pd.DataFrame(_mat, index=sr.index.get_level_values('qid'), columns=sr.index.get_level_values('qid')).rename_axis(index='qid_1', columns='qid_2')
bfef4a9c64e619e2d70efb3dea1fde9da5894634
18,879
def privacy(request): """This returns the privacy policy page""" return render(request=request, template_name="registration/privacy.html")
c3467b0f670facb152c1f2cd793e6dd46301bc25
18,880
def seq_search(items, key): """顺序查找""" for index, item in enumerate(items): if item == key: return index return -1
1271555aea5f7291ebb3679a219d4b3eb81d87a7
18,881
def parse_prediction_key(key): """The "name" or "key" of a predictor is assumed to be like: `ProHotspotCtsProvider(Weight=Classic(sb=400, tb=8), DistanceUnit=150)` Parse this into a :class:`PredictionKey` instance, where - `name` == "ProHotspotCtsProvider" - `details` will be the dict: {"Weight" : "Classic(sb=400, tb=8)", "DistanceUnit" : 150} (Attempts to parse to ints or floats if possible). """ if "(" not in key: return PredictionKey(key, {}) i = key.index("(") name = key[:i].strip() dets = key[i+1:-1] dets = [x.strip() for x in _split_by_comma_not_in_brackets(dets)] details = {} for x in dets: if "=" not in x: key, value = x, None else: i = x.index("=") key = x[:i].strip() value = x[i+1:].strip() try: value = int(value) except ValueError: pass if isinstance(value, str): try: value = float(value) except ValueError: pass details[key] = value return PredictionKey(name, details)
4d971da8097a237f6df8d96bb407c9706c6ed8f6
18,883
def tick2dayfrac(tick, nbTicks): """Conversion tick -> day fraction.""" return tick / nbTicks
50d01778f62203d37e733a6b328455d3ea10e239
18,884
from datetime import datetime def get_business_day_of_month(year, month, count): """ For a given month get the Nth business day by count. Count can also be negative, e.g. pass in -1 for "last" """ r = rrule(MONTHLY, byweekday=(MO, TU, WE, TH, FR), dtstart=datetime.datetime(year, month, 1), bysetpos=count) res = r[0] if (res == None or res.month != month or res.year != year): raise ValueError("No dates found in range. is there a flaw in your logic?") return res.date()
f0322df24f63ee836cf4f98099ccc0e4eff20c67
18,886
def inpolygon(wkt, longitude, latitude): """ To determine whether the longitude and latitude coordinate is within the orbit :param wkt(str): the orbit wkt info :param longitude: to determine whether the longitude within the orbit :param latitude: to determine whether the latitude within the orbit :return: logical value whether the coordinate within the orbit and multipolygon """ multipolygon = shapely.wkt.loads(wkt) point = shapely.geometry.Point(longitude, latitude) return multipolygon.contains(point), multipolygon
b844361f2fb3002a1d6df2a0301d19cc5b75470d
18,887
def matrixMultVec(matrix, vector): """ Multiplies a matrix with a vector and returns the result as a new vector. :param matrix: Matrix :param vector: vector :return: vector """ new_vector = [] x = 0 for row in matrix: for index, number in enumerate(row): x += number * vector[index] new_vector.append(x) x = 0 return new_vector
8a03b3acfec0d91fcf0d2c85b4e2bdd4f3053dd2
18,888
def get_dev_value(weight, error): """ :param weight: shape [N, 1], the importance weight for N source samples in the validation set :param error: shape [N, 1], the error value for each source sample in the validation set (typically 0 for correct classification and 1 for wrong classification) """ N, d = weight.shape _N, _d = error.shape assert N == _N and d == _d, 'dimension mismatch!' weighted_error = weight * error cov = np.cov(np.concatenate((weighted_error, weight), axis=1), rowvar=False)[0][1] var_w = np.var(weight, ddof=1) eta = - cov / var_w return np.mean(weighted_error) + eta * np.mean(weight) - eta
740dbd755cf540b0133ddf321207ea0bbd74fc83
18,889
def biLSTM(f_lstm, b_lstm, inputs, dropout_x=0.): """Feature extraction through BiLSTM Parameters ---------- f_lstm : VariationalDropoutCell Forward cell b_lstm : VariationalDropoutCell Backward cell inputs : NDArray seq_len x batch_size dropout_x : float Variational dropout on inputs Returns ------- outputs : NDArray Outputs of BiLSTM layers, seq_len x 2 hidden_dims x batch_size """ for f, b in zip(f_lstm, b_lstm): inputs = nd.Dropout(inputs, dropout_x, axes=[0]) # important for variational dropout fo, _ = f.unroll(length=inputs.shape[0], inputs=inputs, layout='TNC', merge_outputs=True) bo, _ = b.unroll(length=inputs.shape[0], inputs=inputs.flip(axis=0), layout='TNC', merge_outputs=True) f.reset() b.reset() inputs = nd.concat(fo, bo.flip(axis=0), dim=2) return inputs
dc3cdc07a20e4ae5fbe257a81d92f15fb51333d9
18,890
import torch def refer_expression(captions, n_ground=1, prefix="refer expressions:", sort=True): """ n_ground > 1 ground_indices [1, 0, 2] source_text refer expressions: <extra_id_0> red crayon <extra_id_1> Yellow banana <extra_id_2> black cow target_text <vis_extra_id_1> <vis_extra_id_0> <vis_extra_id_2> n_ground == 1 source_text refer expressions: red crayon target_text <vis_extra_id_1> """ n_boxes = len(captions) if sort: ground_indices = torch.randperm(n_boxes)[:n_ground].sort().values else: ground_indices = torch.randperm(n_boxes)[:n_ground] ground_indices = ground_indices.tolist() source_text = [prefix] target_text = [] if n_ground == 1: idx = ground_indices[0] source_text.append(f'{captions[idx]}') target_text.append(f'<vis_extra_id_{idx}>') else: for j, idx in enumerate(ground_indices): source_text.append(f'<extra_id_{j}>') source_text.append(f'{captions[idx]}') target_text.append(f'<vis_extra_id_{idx}>') # target_text.append('</s>') source_text = " ".join(source_text) target_text = " ".join(target_text) # return ground_indices, source_text, target_text return source_text, target_text
57919ee416dbb981dbb7f03163beec779785cc2f
18,891
def url_to_filename(base, url): """Return the filename to which the page is frozen. base -- path to the file url -- web app endpoint of the page """ if url.endswith('/'): url = url + 'index.html' return base / url.lstrip('/')
35084e8b5978869bf317073c76bafc356a7d9046
18,892
def _msd_anom_3d(time, D_alpha, alpha): """3d anomalous diffusion function.""" return 6.0*D_alpha*time**alpha
e5204c52368202665e4dd4acd7d86096349c0d29
18,893
import json def make_json_response(status_code, json_object, extra_headers=None): """ Helper function to serialize a JSON object and add the JSON content type header. """ headers = { "Content-Type": 'application/json' } if extra_headers is not None: headers.update(extra_headers) return status_code, json.dumps(json_object), headers
4857b806819e44b7a77e0a9a51df7b4fe6678656
18,894
from datetime import datetime def calc_dst_temerin_li(time, btot, bx, by, bz, speed, speedx, density, version='2002n', linear_t_correction=False): """Calculates Dst from solar wind input according to Temerin and Li 2002 method. Credits to Xinlin Li LASP Colorado and Mike Temerin. Calls _jit_calc_dst_temerin_li. All constants are defined in there. Note: vx has to be used with a positive sign throughout the calculation. Parameters ========== time : np.array Array containing time variables. btot : np.array Array containing Btot. bx : np.array Array containing Bx in coordinate system ?. by : np.array Array containing By in coordinate system ?. bz : np.array Array containing Bz in coordinate system ?. speed : np.array Array containing solar wind speed. speedx : np.array Array containing solar wind speed in x-direction. density : np.array Array containing solar wind density. version : str (default='2002') String determining which model version should be used. Returns ======= dst_burton : np.array Array with calculated Dst values over timesteps time. """ # Arrays dst1=np.zeros(len(bz)) dst2=np.zeros(len(bz)) dst3=np.zeros(len(bz)) dst_tl=np.zeros(len(bz)) # Define initial values (needed for convergence, see Temerin and Li 2002 note) dst1[0:10]=-15 dst2[0:10]=-13 dst3[0:10]=-2 if version == '2002': newparams = False else: newparams = True if version in ['2002', '2002n']: # julian_days = [sunpy.time.julian_day(num2date(x)) for x in time] julian_days = [astropy.time.Time(num2date(x), format='datetime', scale='utc').jd for x in time] return _jit_calc_dst_temerin_li_2002(time, btot, bx, by, bz, speed, speedx, density, dst1, dst2, dst3, dst_tl, julian_days, newparams=newparams) elif version == '2006': dst1[0:10], dst2[0:10], dst3[0:10] = -10, -5, -10 ds1995 = time - date2num(datetime(1995,1,1)) ds2000 = time - date2num(datetime(2000,1,1)) # YEARLY DRIFT CORRECTION TERM (NOT IN PAPER) if linear_t_correction: drift_corr = -0.014435865642103548 * ds2000 + 9.57670996872173 else: drift_corr = 0. return _jit_calc_dst_temerin_li_2006(ds1995, ds2000, btot, bx, by, bz, speed, speedx, density, dst1, dst2, dst3) + drift_corr
f333217e34656c4566a254c1c383191f11e8c3d0
18,896
def reconstruct(vars_to_reconstruct, scheme, order_used): """ Reconstructs all variables using the requested scheme. :param vars_to_reconstruct: The variables at the cell centers. :type vars_to_reconstruct: list of list of double :param Reconstruction.Scheme scheme: The reconstruction scheme to use. :param order_used: Filled by the function and is used to return the order of the reconstruction used. :type order_used: list of int :return: (`list of list of double`) The face reconstructed variables. Each variable is of length `2 * number_of_cells` """ reconstructed_vars = [None] * len(vars_to_reconstruct) for i in range(len(vars_to_reconstruct)): extents = np.asarray([len(vars_to_reconstruct[i])]) reconstructed_vars[i] = _recons_dispatch[scheme]( vars_to_reconstruct[i], np.asarray(extents), 1, scheme, order_used) return np.asarray(reconstructed_vars)
b1e3cd8b8ed91b6c7ccdd5d6903fbce3109a3871
18,899
import json import re from datetime import datetime import random def dev_view(request, slug=""): """View for homepage or individual developer.""" if slug == "": dev_name = list(Dev.objects.all().values_list('dev_name', flat=True)) dev_img_address = list(Dev.objects.values_list('dev_image_address', flat=True)) dev_slug = list(Dev.objects.values_list('dev_slug', flat=True)) dev_order = list(Dev.objects.values_list('dev_order_pop', flat=True)) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_query').values())) == 1: g_query_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values_list()[0]) else: task_id_query = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values())[1]['task_id'] g_query_datetime_init = list(TaskResult.objects.filter( task_id=task_id_query ).values_list()[0]) g_query_datetime = g_query_datetime_init[11] if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values_list()[0]) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev_datetime_init = list(TaskResult.objects.filter( task_id=task_id_dev ).values_list()[0]) g_dev_datetime = g_dev_datetime_init[11] if g_dev_datetime > g_query_datetime: g_datetime = g_dev_datetime elif g_dev_datetime < g_query_datetime: g_datetime = g_query_datetime if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_query').values())) == 1: g_query = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values()[0]['result']) else: task_id_query = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_query' ).values())[1]['task_id'] g_query = json.loads(TaskResult.objects.filter( task_id=task_id_query ).values()[0]['result']) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values()[0]['result']) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev = json.loads(TaskResult.objects.filter( task_id=task_id_dev ).values()[0]['result']) # 2-day date filter for homepage 'Latest News' def date_criteria(g_inp): dates = [re.search('[0-9]{4}-[0-9]{2}-[0-9]{2}', g_inp[i][8]).group(0) for i in range(len(g_inp))] dates_datetime = [datetime.strptime(i, '%Y-%m-%d') for i in dates] today = datetime.today() time_criteria = datetime(year=today.year, month=today.month, day=today.day - 2) return [g_inp[i] for i in range(len(g_inp)) if dates_datetime[i] >= time_criteria] entries_for_carousel_init = [date_criteria(g_dev) + date_criteria(g_query)][0] entries_for_carousel = [i for i in entries_for_carousel_init if i[9] != 'none'] entries_for_latest_news_init = entries_for_carousel entries_for_latest_news_init = sorted(entries_for_latest_news_init, key=lambda sort: sort[8], reverse=True) link_latest_news = [i[1] for i in entries_for_latest_news_init] link_count = [link_latest_news.count(link_latest_news[i]) for i in range(len(link_latest_news))] link_zip = list(zip(link_latest_news, link_count)) link_unique = [link_zip[i][0] if link_zip[i][1] == 1 else 'none' for i in range(len(link_zip))] nonunique_indices_link = [i for i, x in enumerate(link_unique) if x == "none"] nonunique_check_link = [] nonunique_entries_nonrepeat_link = [] for i in nonunique_indices_link: nonunique_check_link.append(link_latest_news[i]) count_inst = nonunique_check_link.count(link_latest_news[i]) if count_inst == 1: nonunique_entries_nonrepeat_link.append(entries_for_latest_news_init[i]) google_search_results_unique = [] for i in range(len(link_unique)): try: if link_unique[i] != 'none': google_search_results_unique.append(entries_for_latest_news_init[i]) except IndexError: pass google_search_results_combined = google_search_results_unique + nonunique_entries_nonrepeat_link page = request.GET.get('page', 1) paginator2 = Paginator(google_search_results_combined, 2000) try: entries_for_latest_news = paginator2.page(page) except PageNotAnInteger: entries_for_latest_news = paginator2.page(1) except EmptyPage: entries_for_latest_news = paginator2.page(paginator2.num_pages) random.shuffle(entries_for_carousel) if request.user.is_authenticated: if request.method == "POST": p_form = FavoriteGamesUpdateForm(data=request.POST) user_fav = list(FavoriteGames.objects.all().values_list()) user_slug_list = [user_fav[i][2] for i in range(len(user_fav)) if user_fav[i][1] == request.user.profile.id] if request.POST["dev_user_str"] not in user_slug_list: if p_form.is_valid(): form_instance = p_form.save(commit=False) form_instance.profile = Profile.objects.get(user=request.user) form_instance.dev_user_str = p_form.cleaned_data["dev_user_str"] form_instance.save() else: FavoriteGames.objects.filter( profile_id=request.user.profile.id ).filter( dev_user_str=request.POST.get('dev_user_str') ).delete() fav_game_check = list(FavoriteGames.objects.filter(profile_id=request.user.profile.id).values()) devs_in_favs = [fav_game_check[i]['dev_user_str'] for i in range(len(fav_game_check))] dev_game_check_list = [] for j, i in enumerate(dev_slug): if i in devs_in_favs: dev_game_check_list.append('yes') else: dev_game_check_list.append('no') else: dev_game_check_list = "" dev_list_name = sorted(list(zip_longest(dev_name, dev_img_address, dev_slug, dev_game_check_list, dev_order)), key=lambda lowercase: lowercase[0].lower()) dev_list_pop = sorted(list(zip_longest(dev_name, dev_img_address, dev_slug, dev_game_check_list, dev_order)), key=lambda dev_order_list: dev_order_list[4]) cache_key = "test_cache_key" if cache.get(cache_key) is not None: paginator_for_class_1 = Paginator(cache.get(cache_key), 48) else: cache.set( cache_key, dev_list_pop, 60 * 60 * 4, ) context = { 'numbers': dev_list_pop, 'entries': entries_for_carousel, 'latest_news': entries_for_latest_news, 'g_query_datetime': g_query_datetime, 'g_dev_datetime': g_dev_datetime, 'g_datetime': g_datetime, } if request.method == "POST": return redirect("/") else: return render(request, "homepage/dev_base.html", context) else: dev_query_results_init = TaskResult.objects.filter(task_name='homepage.tasks.rawg_fetch_dev') dev_query_results = json.loads(dev_query_results_init.values()[0]['result']) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: g_dev_datetime_init = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values_list()[0]) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] g_dev_datetime_init = list(TaskResult.objects.filter( task_id=task_id_dev ).values_list()[0]) g_dev_datetime = g_dev_datetime_init[11] slug_index1 = [dev_query_results][0][0].index(slug) dev_list = [dev_query_results[0][slug_index1]] slugs_per_dev_list = dev_query_results[1][slug_index1] names_per_dev_list = dev_query_results[2][slug_index1] ratings_per_dev_list = dev_query_results[3][slug_index1] background_img_per_dev_list = dev_query_results[4][slug_index1] released_per_dev_list = dev_query_results[5][slug_index1] full_clip_per_dev_list = dev_query_results[6][slug_index1] ratings_count_per_dev_list = dev_query_results[7][slug_index1] dev_game_data = sorted(list(zip_longest(dev_list, slugs_per_dev_list, names_per_dev_list, ratings_per_dev_list, background_img_per_dev_list, released_per_dev_list, full_clip_per_dev_list, ratings_count_per_dev_list)), key=lambda sort: sort[7], reverse=True) dev_game_data2 = [] for i in range(len(dev_game_data)): try: if dev_game_data[i][4] is not None: dev_game_data2.append(dev_game_data[i]) except IndexError: pass page = request.GET.get('page', 1) paginator2 = Paginator(dev_game_data2, 2000) try: numbers = paginator2.page(page) except PageNotAnInteger: numbers = paginator2.page(1) except EmptyPage: numbers = paginator2.page(paginator2.num_pages) if len(list(TaskResult.objects.filter(task_name='homepage.tasks.google_fetch_dev').values())) == 1: google_query_results = json.loads(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values()[0]['result']) else: task_id_dev = list(TaskResult.objects.filter( task_name='homepage.tasks.google_fetch_dev' ).values())[1]['task_id'] google_query_results = json.loads(TaskResult.objects.filter( task_id=task_id_dev ).values()[0]['result']) dev_name_list = list(Dev.objects.all().values_list('dev_name', flat=True)) dev_slug_list = list(Dev.objects.all().values_list('dev_slug', flat=True)) dev_img_list = list(Dev.objects.values_list('dev_image_address', flat=True)) dev_slug_index = dev_slug_list.index(slug) dev_name_for_site = dev_name_list[dev_slug_index] dev_img_for_site = dev_img_list[dev_slug_index] google_search_results = [google_query_results[i] if google_query_results[i][6] == slug else 'none' for i in range(len(google_query_results))] google_search_results2 = [] for i in range(len(google_search_results)): try: if google_search_results[i] != 'none': google_search_results2.append(google_search_results[i]) except IndexError: pass context = { 'numbers': numbers, 'google_search_results': google_search_results2, 'dev_name_for_site': dev_name_for_site, 'dev_img_for_site': dev_img_for_site, 'g_dev_datetime': g_dev_datetime, } return render(request, "homepage/dev_iter.html", context)
363819f854e26b8c62f8fe41fbfbf2e64296246f
18,901
def dpuEnableTaskProfile(task): """ Enable profiling facility of DPU Task while running to get its performance metrics task: DPU Task. This parameter should be gotten from the result of dpuCreatTask() Returns: 0 on success, or report error in case of any failure """ return pyc_libn2cube.pyc_dpuEnableTaskProfile(task)
5bb1435ca194b214695891d451f2f56a4cdf6857
18,902
def get_isotopic_distribution(z): """ For an element with number ``z``, returns two ``np.ndarray`` objects containing that element's weights and relative abundances. Args: z (int): atomic number Returns: masses (np.ndarray): list of isotope masses weights (np.ndarray): list of weights (relative to 1.00 for largest) """ z = str(z) masses = list(ISOTOPE_DICTIONARY[z].keys()) weights = list(ISOTOPE_DICTIONARY[z].values()) return np.array(masses), np.array(weights)
4b038319c37dfd13f0ef085c2b3286f6fc2749c3
18,903
def url_root(): """根路径""" return """ <p>Hello ! Welcome to Rabbit's WebServer Platform !</p> <a href="http://www.miibeian.gov.cn/" target="_blank" style="">京ICP备 18018365 号</a>&#8195;@2018Rabbit """
2e6d1d5301ac67bdec30cdeeaeed3c8638568de9
18,904
import uuid def CreateMatrix(args, context, history_id, gcs_results_root, release_track): """Creates a new iOS matrix test in Firebase Test Lab from the user's params. Args: args: an argparse namespace. All the arguments that were provided to this gcloud command invocation (i.e. group and command arguments combined). context: {str:obj} dict containing the gcloud command context, which includes the Testing API client+messages libs generated by Apitools. history_id: {str} A history ID to publish Tool Results to. gcs_results_root: the root dir for a matrix within the GCS results bucket. release_track: the release track that the command is invoked from. Returns: A TestMatrix object created from the supplied matrix configuration values. """ creator = MatrixCreator(args, context, history_id, gcs_results_root, release_track) return creator.CreateTestMatrix(uuid.uuid4().hex)
e536001e768f2574d6c5d773b70e6b4e58c6c3da
18,905
def map_keys(func, d): """ Returns a new dict with func applied to keys from d, while values remain unchanged. >>> D = {'a': 1, 'b': 2} >>> map_keys(lambda k: k.upper(), D) {'A': 1, 'B': 2} >>> assert map_keys(identity, D) == D >>> map_keys(identity, {}) {} """ return dict((func(k), v) for k, v in d.iteritems())
5e9798d208db5e43dad497d64a4b8e469c67eb3b
18,907
from qiniu import Auth def generate_qiniu_token(object_name, use_type, expire_time=600): """ 用于生成七牛云上传所需要的Token :param object_name: 上传到七牛后保存的文件名 :param use_type: 操作类型 :param expire_time: token过期时间,默认为600秒,即十分钟 :return: """ bucket_name = PRIVATE_QINIU_BUCKET_NAME # 需要填写你的 Access Key 和 Secret Key access_key = PRIVATE_QINIU_ACCESS_KEY secret_key = PRIVATE_QINIU_SECRET_KEY # 构建鉴权对象 q = Auth(access_key, secret_key) # 上传策略示例 # https://developer.qiniu.com/kodo/manual/1206/put-policy policy = { # 'callbackUrl':'https://requestb.in/1c7q2d31', # 'callbackBody':'filename=$(fname)&filesize=$(fsize)' # 'persistentOps':'imageView2/1/w/200/h/200' } token = q.upload_token(bucket_name, object_name, expire_time, policy) base_url = PRIVATE_MEDIA_URL_PREFIX return (object_name, token, base_url, expire_time)
9d0b65fb08032ad557f50cb73c00b4ed0f8eae5a
18,908
def get_s3_object(bucket, key_name, local_file): """Download a S3 object to a local file in the execution environment Parameters ---------- bucket: string, required S3 bucket that holds the message key: string, required S3 key is the email object Returns ------- email_msg: email.message.Message object """ tracer.put_metadata('object', f's3://{bucket}/{key_name}') try: s3_resource.Bucket(bucket).download_file(key_name, local_file) result = 'ok' tracer.put_annotation('OBJECT_DOWNLOAD', 'SUCCESS') except Exception as e: tracer.put_annotation('OBJECT_DOWNLOAD', 'FAILURE') result = f'Error: {str(e)}' return(result)
02b10623e30eff1ee5093d4e0f1ee51b3b97d0ac
18,909
def jaxpr_eqns_input_sizes(jaxpr) -> np.ndarray: """Return a list of input sizes for each equation in the jaxpr. Args: jaxpr: Jaxpr to get input sizes for. Returns: A #eqns * #eqns numpy array of input sizes. cost[l, r] represents the input size of the l-th to (r - 1)-th equation in the jaxpr. """ length = len(jaxpr.eqns) input_sizes = np.full((length + 1, length + 1), 0, dtype=np.float32) outvars = OrderedSet() for k in range(0, length + 1): if k > 0: outvars = outvars.union(jaxpr.eqns[k - 1].outvars) invars = OrderedSet() total_size = 0 for r in range(k + 1, length + 1): for invar in jaxpr.eqns[r - 1].invars: if (isinstance(invar, Var) and invar in outvars and invar not in invars): invars.add(invar) total_size += invar.aval.size * invar.aval.dtype.itemsize input_sizes[k, r] = total_size return input_sizes
0209c0342725ae83ea8051ef47852134e6ad4502
18,910
def extract_message(raw_html): """Returns the content of the message element. This element appears typically on pages with errors. :param raw_html: Dump from any page. """ results = re_message.findall(raw_html) if results: return results[0] return None
498ee1c38c08db365b1bf91ecd32a79c2d2f5f68
18,911
from typing import Callable from typing import Tuple def _weighted_essentially_non_oscillatory_vectorized( eno_order: int, values: Array, spacing: float, boundary_condition: Callable[[Array, int], Array]) -> Tuple[Array, Array]: """Implements a more "vectorized" but ultimately slower version of `weighted_essentially_non_oscillatory`.""" if eno_order < 1: raise ValueError(f"`eno_order` must be at least 1; got {eno_order}.") values = boundary_condition(values, eno_order) diffs = (values[1:] - values[:-1]) / spacing if eno_order == 1: return (diffs[:-1], diffs[1:]) substencil_approximations = _align_substencil_values( jax.vmap(jnp.correlate, (None, 0), 0)(diffs, _diff_coefficients(eno_order)), jnp) diffs2 = diffs[1:] - diffs[:-1] chol_T = jnp.asarray(np.linalg.cholesky(_smoothness_indicator_quad_form(eno_order)).swapaxes(-1, -2)) smoothness_indicators = _align_substencil_values( jnp.sum(jnp.square(jax.vmap(jax.vmap(jnp.correlate, (None, 0), 1), (None, 0), 0)(diffs2, chol_T)), -1), jnp) unscaled_weights = 1 / jnp.square(smoothness_indicators + WENO_EPS) unnormalized_weights = (jnp.asarray(_substencil_coefficients(eno_order)[..., np.newaxis]) * jnp.stack([unscaled_weights[:, :-1], unscaled_weights[:, 1:]])) weights = unnormalized_weights / jnp.sum(unnormalized_weights, 1, keepdims=True) return tuple(jnp.sum(jnp.stack([substencil_approximations[:-1], substencil_approximations[1:]]) * weights, 1))
debd652ddf02419e191d9d0c5d21640760d3f227
18,912
def defaults(dictionary, overwriteNone=False, **kwargs): """ Set default values of a given dictionary, option to overwrite None values. Returns given dictionary with values updated by kwargs unless they already existed. :param dict dictionary: :param overwriteNone: Whether to overwrite None values. :param kwargs: """ for key, value in dictionary.items(): dictValueIsNone = value is None kwargsHasValue = key in kwargs if overwriteNone and dictValueIsNone and kwargsHasValue: continue # Overwrite kwargs with dictionary kwargs[key] = value return kwargs
6def5bb71839b3b627a5597ea6fa7fa1b48e463b
18,913
from typing import Union from typing import Optional from typing import Dict import tqdm def expected_average_shortest_distance_to_miner( crawl_graph: Union[ ProbabilisticWeightedCrawlGraph[CrawledNode], CrawlGraph[CrawledNode] ], distances: Optional[np.ndarray] = None, miner_probability: Optional[Dict[CrawledNode, float]] = None, ) -> Dict[CrawledNode, float]: """Estimates the average shortest distance to a miner for each node in the graph""" if not isinstance(crawl_graph, ProbabilisticWeightedCrawlGraph): crawl_graph = ProbabilisticWeightedCrawlGraph(crawl_graph) if miner_probability is None: miner_probability = estimate_miner_probability(crawl_graph) if distances is None: distances = crawl_graph.probabilistic_shortest_distances() elif ( distances.ndim != 2 or distances.shape[0] != len(crawl_graph) or distances.shape[1] != len(crawl_graph) ): raise ValueError( f"distances is expected to be an {len(crawl_graph)}x{len(crawl_graph)} matrix" ) return { node: sum( distances[index][i] * miner_probability[crawl_graph.nodes[i]] for i in range(len(crawl_graph)) ) for node, index in tqdm( ((n, crawl_graph.node_indexes[n]) for n in crawl_graph), desc="calculating expected distance to miners", leave=False, unit=" nodes", total=len(crawl_graph), ) }
6ea56881dce6d589eebec6422a0a5ffae41fe153
18,914
from typing import Callable def dummy_state_sb(dummy_state: State, dummy_train_dataloader: DataLoader, conv_model: MosaicClassifier, loss_fun_tuple: Callable, epoch: int, batch: int) -> State: """Dummy state with required values set for Selective Backprop """ dummy_state.train_dataloader = dummy_train_dataloader dummy_state.epoch = epoch dummy_state.step = epoch * dummy_state.steps_per_epoch + batch dummy_state.model = conv_model dummy_state.model.module.loss = loss_fun_tuple return dummy_state
4f4af7193ccf0a4fb883a7d4b42ef58da49333b3
18,915
def create_model(species={}, parameters={}, reactions={}, events={}): """Returns an SBML Level 3 model. Example: species = { 'E': 1, \ 'EM': 0, \ 'EM2': 0, \ 'F': 100, \ } parameters = {'k': (1e-06,'per_min'), \ } reactions = { 'Production_E': \ { 're': [(1,'E'),(1,'F')], \ 'pr': [(2,'E')], \ 'kin' : 'k * E * F' \ }, \ } events = {'e': \ { 'trigger': 'true', \ 'delay': '10', \ 'assignments': [('M','1'),], \ }, \ } """ # Create an empty SBMLDocument object. It's a good idea to check for # possible errors. Even when the parameter values are hardwired like # this, it is still possible for a failure to occur (e.g., if the # operating system runs out of memory). try: document = sbml.SBMLDocument(3, 1) except ValueError: raise RuntimeError("Could not create SBMLDocumention object") # Create the basic Model object inside the SBMLDocument object. model = document.createModel() check(model, "create model") check(model.setTimeUnits("second"), "set model-wide time units") check(model.setExtentUnits("item"), "set model units of extent") check( model.setSubstanceUnits("item"), "set model substance units" ) # mole, item, gram, kilogram, dimensionless # Create a unit definition we will need later. per_second = model.createUnitDefinition() check(per_second, "create unit definition") check(per_second.setId("per_min"), "set unit definition id") unit = per_second.createUnit() check(unit, "create unit") check(unit.setKind(sbml.UNIT_KIND_SECOND), "set unit kind") check(unit.setExponent(-1), "set unit exponent") check(unit.setScale(0), "set unit scale") check( unit.setMultiplier(1), "set unit multiplier" ) # Create a compartment inside this model c1 = model.createCompartment() check(c1, "create compartment") check(c1.setId("c1"), "set compartment id") check(c1.setConstant(True), 'set compartment "constant"') check(c1.setSize(1), 'set compartment "size"') check(c1.setSpatialDimensions(3), "set compartment dimensions") check( c1.setUnits("dimensionless"), "set compartment size units" ) # Create species inside this model, set the required attributes # for each species in SBML Level 3 (which are the 'id', 'compartment', # 'constant', 'hasOnlySubstanceUnits', and 'boundaryCondition' # attributes), and initialize the amount of the species along with the # units of the amount. for s_str, s_val in species.items(): s = model.createSpecies() check(s, "create species") check(s.setId(s_str), "set species id") check(s.setCompartment("c1"), "set species compartment") check(s.setConstant(False), 'set "constant" attribute') check(s.setInitialAmount(float(s_val)), "set initial amount") check(s.setSubstanceUnits("item"), "set substance units") check(s.setBoundaryCondition(False), 'set "boundaryCondition"') check(s.setHasOnlySubstanceUnits(False), 'set "hasOnlySubstanceUnits"') # Create a parameter object inside this model, set the required # attributes 'id' and 'constant' for a parameter in SBML Level 3, and # initialize the parameter with a value along with its units. for k_str in parameters: k = model.createParameter() check(k, "create parameter k") check(k.setId(k_str), "set parameter id") check(k.setConstant(True), 'set parameter "constant"') check(k.setValue(parameters[k_str][0]), "set parameter value") check(k.setUnits(parameters[k_str][1]), "set parameter units") # Create a reaction inside this model, set the reactants and products, # and set the reaction rate expression (the SBML "kinetic law"). We # set the minimum required attributes for all of these objects. The # units of the reaction rate are determined from the 'timeUnits' and # 'extentUnits' attributes on the Model object. for r_str in reactions: r = model.createReaction() check(r, "create reaction") check(r.setId(r_str), "set reaction id") check(r.setReversible(False), "set reaction reversibility flag") check(r.setFast(False), 'set reaction "fast" attribute') reactants = reactions[r_str]["re"] for re_val, re_str in reactants: species_ref = r.createReactant() check(species_ref, "create reactant") check(species_ref.setSpecies(re_str), "assign reactant species") check(species_ref.setStoichiometry(re_val), "set set stoichiometry") check(species_ref.setConstant(True), 'set "constant" on species') products = reactions[r_str]["pr"] for pr_val, pr_str in products: species_ref = r.createProduct() check(species_ref, "create product") check(species_ref.setSpecies(pr_str), "assign product species") check(species_ref.setStoichiometry(pr_val), "set set stoichiometry") check(species_ref.setConstant(True), 'set "constant" on species') math_ast = sbml.parseL3Formula(reactions[r_str]["kin"]) kinetic_law = r.createKineticLaw() check(math_ast, f"create AST for rate expression") check(kinetic_law, "create kinetic law") check(kinetic_law.setMath(math_ast), "set math on kinetic law") # create events for e_str in events: e = model.createEvent() check(e, "create event") check(e.setId(e_str), "set id") check(e.setUseValuesFromTriggerTime(False), "?") t = model.createTrigger() check(t, "create trigger") check( t.setMath(sbml.parseL3Formula(events[e_str]["trigger"])), "set trigger condition", ) check(t.setPersistent(False), "default not persistent") check(t.setInitialValue(False), "default not initially true") check(e.getTrigger().getMath(), 'Problem when creating the trigger condition. The trigger will not work.') # print( '> ' + sbml.formulaToString(e.getTrigger().getMath()) ) d = model.createDelay() check(d, "create delay") check(d.setMath(sbml.parseFormula(events[e_str]["delay"])), "set math") check(e.setDelay(d), "set delay") for ass in events[e_str]["assignments"]: ea = model.createEventAssignment() check(ea, "check event assignment") check(ea.setVariable(ass[0]), "set variable") check(ea.setMath(sbml.parseL3Formula(ass[1])), "set math") return document
1950509f83b858ef7829aa6f30caaa3734ff2946
18,916
def get_network_connection_query(endpoint_ids: str, args: dict) -> str: """Create the network connection query. Args: endpoint_ids (str): The endpoint IDs to use. args (dict): The arguments to pass to the query. Returns: str: The created query. """ remote_ip_list = args.get('remote_ip', '') if not remote_ip_list: raise DemistoException('Please provide a remote_ip argument.') remote_ip_list = wrap_list_items_in_double_quotes(remote_ip_list) local_ip_filter = '' if args.get('local_ip'): local_ip_list = wrap_list_items_in_double_quotes(args.get('local_ip', '')) local_ip_filter = f'and action_local_ip in({local_ip_list})' port_list = args.get('port') port_list_filter = f'and action_remote_port in({port_list})' if port_list else '' return f'''dataset = xdr_data | filter agent_id in ({endpoint_ids}) and event_type = STORY {local_ip_filter} and action_remote_ip in({remote_ip_list}) {port_list_filter}| fields agent_hostname, agent_ip_addresses, agent_id, actor_effective_username, action_local_ip, action_remote_ip, action_remote_port, dst_action_external_hostname, action_country, actor_process_image_name, actor_process_image_path, actor_process_command_line, actor_process_image_sha256, actor_process_instance_id, actor_process_causality_id'''
6390c6ae4436632055fb90687e51cfac2ca09a05
18,917
import json def dump_into_json(filename, metrics): """Dump the metrics dictionary into a JSON file It will automatically dump the dictionary: metrics = {'duration': duration, 'voltage_extremes': voltage_extremes, 'num_beats': num_beats, 'mean_hr_bpm': mean_hr_bpm, 'beats': beats}. in to a JSON file with the file name as the data file name. :param filename: name of the file being read :param metrics: a dictionary containing duration, voltage extremes, number of beats, beats per minute, and the time where beats occur :returns: - successful_JSON - test if it has successfully create JSON """ successful_JSON = False try: output_file = open(filename + '.json', 'w') json.dump(metrics, output_file) output_file.close() successful_JSON = True except TypeError: print("Unsuccessfully output JSON file") return successful_JSON
2e6effbcefe7cb3033c4c472cbee3850c00ae06b
18,918
def _costfun(params, pose0, fixed_pt3d, n_cams, n_pts, cam_idxs, pt3d_idxs, pts2d, K, px_err_sd): """ Compute residuals. `params` contains camera parameters and 3-D coordinates. """ if isinstance(params, (tuple, list)): params = np.array(params) params = np.hstack((pose0, params)) poses, pts3d = _unpack(params, n_cams, n_pts if len(fixed_pt3d) == 0 else 0) points_3d = fixed_pt3d if len(pts3d) == 0 else pts3d points_proj = _project(points_3d[pt3d_idxs], poses[cam_idxs], K) px_err = ((pts2d - points_proj) / px_err_sd[:, None]).ravel() return px_err
3e97e7d14712fe8b89b60de958fd743c728e8cba
18,919
import base64 import requests def get_headers(base_url: str, client_id: str, client_secret: str, grant_type: str, verify: bool): """ Create header with OAuth 2.0 authentication information. :type base_url: ``str`` :param base_url: Base URL of the IdentityIQ tenant. :type client_id: ``str`` :param client_id: Client Id for OAuth 2.0. :type client_secret: ``str`` :param client_secret: Client Secret for OAuth 2.0. :type grant_type: ``str`` :param grant_type: Grant Type for OAuth 2.0. Defaulted to 'client_credentials' if not provided. :return: Header with OAuth 2.0 information if client_id & client_secret are provided, else None. This will return None if the client_id & client_secret were not valid (authorized). """ if base_url is None or client_id is None or client_secret is None: return None if grant_type is None: grant_type = 'client_credentials' auth_cred = client_id + ':' + client_secret iiq_oauth_body = f'grant_type={grant_type}' iiq_oauth_headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Authorization': 'Basic %s' % base64.b64encode(auth_cred.encode()).decode() } oauth_response = requests.request("POST", url=f'{base_url}{IIQ_OAUTH_EXT}', data=iiq_oauth_body, headers=iiq_oauth_headers, verify=verify) if oauth_response is not None and 200 <= oauth_response.status_code < 300: return { 'Authorization': 'Bearer %s' % oauth_response.json().get('access_token', None), 'Content-Type': 'application/json' } else: err_msg = 'Failed to get response' if oauth_response is not None: err_msg += f' {oauth_response.status_code}' raise DemistoException(err_msg)
06ced982595d4abe99e193ec7ab43e366d575f7b
18,921
import logging from datetime import datetime def draw_pie(fracs, labels): """ This method is to plot the pie chart of labels, then save it into '/tmp/' folder """ logging.info("Drawing the pie chart..") fig = plt.figure() plt.pie(fracs, labels=labels, autopct=make_autopct(fracs), shadow=True) plt.title("Top 10 labels for newly opened issues") figname = "piechart_{}_{}.png".format(str(datetime.datetime.today().date()), str(datetime.datetime.today().time())) fig.savefig("/tmp/{}".format(figname)) pic_path = "/tmp/{}".format(figname) return pic_path
18ee8d0b6054467b9612e282c0d12fa9a10c549b
18,922
import re def eval_function_old(param, param_type): """ Eval Function (Deprecated) isOwner 0xe982E462b094850F12AF94d21D470e21bE9D0E9C :param param: :param param_type: :return: """ try: splitted_input = param.split(' ') except TypeError: pass else: try: print(splitted_input) if len(splitted_input[1][2:]) != 40: print('launch error, address must be 40 alfanumeric hash') else: re.search('0x[0-9,aA-zZ]{40}', splitted_input[1]).group(0) except IndexError: print('there is not enough data to verify current input') pass return splitted_input[1]
6c28fdad6803330bcea8b086cc2e15209125a8d6
18,923
def _multi_convert(value): """ Function try and convert numerical values to numerical types. """ try: value = int(value, 10) except ValueError: try: value = float(value) except ValueError: pass return value
abcd3656fdf5ce7ab1427ee6884a18853bdfaf59
18,924
def dbinom(n, p): """Binomial Distribution n = number of repetitions p = success probability Used when a certain experiment is repeated n times with a 0 ≤ P ≤ 1 probability to succeed once. This doesn't return a value, but rather the specified binomial function """ def b(k): """Returns the probability of k successes""" if 0 <= k <= n: q = 1 - p return rperm(n, k) * p**k * q**(n-k) else: return 0 # Allow accessing the used 'n' and 'p' values from the function b.__dict__['n'] = n b.__dict__['p'] = p b.__dict__['expected'] = n * p b.__dict__['variance'] = (n * p) * (1-p) return b
8917b3eb5ce189094f2b129c596a99d20dfcdcc5
18,925
def array_to_image(x, data_format='channels_last'): """Converts a 3D Numpy array to a PIL Image instance. Args: x: Input Numpy array. data_format: Image data format, either "channels_first" or "channels_last". Returns: A PIL Image instance. Raises: ValueError: if invalid `x` or `data_format` is passed. """ if x.ndim != 3: raise ValueError('Expected image array to have rank 3 (single image). ' 'Got array with shape: %s' % (x.shape,)) if data_format not in {'channels_first', 'channels_last'}: raise ValueError('Invalid data_format: %s' % data_format) if data_format == 'channels_first': x = x.transpose(1, 2, 0) if x.shape[2] == 4: return Image.fromarray(x.astype('uint8'), 'RGBA') elif x.shape[2] == 3: return Image.fromarray(x.astype('uint8'), 'RGB') elif x.shape[2] == 1: if np.max(x) > 255: return Image.fromarray(x[:, :, 0].astype('int32'), 'I') return Image.fromarray(x[:, :, 0].astype('uint8'), 'L') else: raise ValueError('Unsupported channel number: %s' % (x.shape[2],))
2278a317e6d820b9d1aee2d7d796261b14d719f2
18,926
import time import logging import re def worker_process_download_tvtorrent( tvTorUnit, client = None, maxtime_in_secs = 14400, num_iters = 1, kill_if_fail = False ): """ Used by, e.g., :ref:`get_tv_batch`, to download missing episodes on the Plex_ TV library. Attempts to use the Deluge_ server, specified in :numref:`Seedhost Services Setup`, to download an episode. If successful then uploads the finished episode from the remote SSH server to the Plex_ server and local directory, specified in :numref:`Local and Remote (Seedhost) SSH Setup`. :param dict tvTorUnit: a :py:class:`dict` representing a summarized magnet link searching operation on an episode. The format and meaning of this data structure is described in :py:meth:`create_tvTorUnits <howdy.tv.tv.create_tvTorUnits>`. :param DelugeRPC client: optional argument, the `DelugeRPCClient <Deluge RPC client_>`_ object that at a low level uses the Deluge_ server to download the Magnet link at the remote SSH server. If ``None``, then this client is created using :py:meth:`get_deluge_client <howdy.core.core_deluge.get_deluge_client>`. :param int maxtime_in_secs: optional argument, the maximum time to wait for a Magnet link found by the Jackett_ server to fully download through the Deluge_ server. Must be :math:`\ge 60` seconds. Default is 14400 seconds. :param int num_iters: optional argument, the maximum number of Magnet links to try and fully download before giving up. The list of Magnet links to try for each missing episode is ordered from *most* seeders + leechers to *least*. Must be :math:`\ge 1`. Default is 1. :param bool kill_if_fail: optional argument. If ``True``, then on failing operation kill the torrent download on the Deluge_ server and delete any files associated with it. If ``False``, then keep the torrent download on failure. :returns: If successful, creates a two element :py:class:`tuple`: the first element is the base name of the episode that is uploaded to the Plex_ server, and the second element is a status :py:class:`dictionary <dict>` with three keys. * the ``status`` is ``"SUCCESS"``. * the ``message`` describes the final status of the operation. * the ``time`` tells how long, in seconds, the successful operation took. If unsuccessful, returns a failing tuple: the first element is ``None``, and the the second element is a status :py:class:`dictionary <dict>` with three keys. * the ``status`` is ``"FAILURE"``. * the ``message`` describes the illuminating reason as to how this operation failed. * the ``time`` tells how long, in seconds, the failing operation took. :rtype: tuple .. seealso:: * :ref:`get_tv_batch`. * :py:meth:`get_remaining_episodes <howdy.tv.tv.get_remaining_episodes>`. * :py:meth:`create_tvTorUnits <howdy.tv.tv.create_tvTorUnits>`. * :py:meth:`download_batched_tvtorrent_shows <howdy.tv.tv.download_batched_tvtorrent_shows>`. .. _`Deluge RPC client`: https://github.com/JohnDoee/deluge-client .. _Deluge: https://en.wikipedia.org/wiki/Deluge_(software) """ time0 = time.time( ) assert( maxtime_in_secs > 0 ) # if client is None: client, status = core_deluge.get_deluge_client( ) if client is None: return None, _create_status_dict( 'FAILURE', 'cannot create or run a valid deluge RPC client.', time0 ) # ## now get list of torrents, choose "top" one def _process_jackett_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] do_raw = tvTorUnit[ 'do_raw' ] logging.info( 'jackett start: %s, %s, %s' % ( torFileName, mustHaveString, series_name ) ) # ## try this twice if it can torFileNameAlt = re.sub('\(([0-9]+)\)', '', torFileName ).strip( ) torFileNames = [ torFileName, ] if torFileNameAlt != torFileName: torFileNames.append( torFileNameAlt ) for tfn in torFileNames: logging.info( 'processing jackett from "%s", using "%s" now, at %0.3f seconds after start.' % ( torFileName, tfn, time.time( ) - time0 ) ) data, status = get_tv_torrent_jackett( tfn, maxnum = 100, keywords = [ 'x264', 'x265', '720p' ], minsizes = [ minSize, minSize_x265 ], maxsizes = [ maxSize, maxSize_x265 ], keywords_exc = [ 'xvid' ], raw = do_raw, must_have = [ mustHaveString ] ) if status == 'SUCCESS': break if status != 'SUCCESS': shared_list.append( ( 'jackett', _create_status_dict( 'FAILURE', status, t0 ), 'FAILURE' ) ) return logging.info( 'successfully processed jackett on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'jackett', data, 'SUCCESS' ) ) # def _process_eztv_io_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] logging.info( 'eztv.io start: %s' % torFileName ) # data, status = get_tv_torrent_eztv_io( torFileName, maxnum = 100, series_name = series_name, minsizes = [ minSize, minSize_x265], maxsizes = [ maxSize, maxSize_x265] ) if status != 'SUCCESS': shared_list.append( ( 'eztv.io', _create_status_dict( 'FAILURE', status, time0 ), 'FAILURE' ) ) return data_filt = list(filter( lambda elem: any(map(lambda tok: tok in elem['title'].lower( ), ( 'x264', 'x265', '720p' ) ) ) and 'xvid' not in elem['title'].lower( ), data ) ) if len( data_filt ) == 0: shared_list.append( ( 'eztv.io', _create_status_dict( 'FAILURE', 'ERROR, COULD NOT FIND %s IN EZTV.IO.' % torFileName, t0 ), 'FAILURE' ) ) return logging.info( 'successfully processed eztv.io on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'eztv.io', data_filt, 'SUCCESS' ) ) # def _process_zooqle_items( tvTorUnit, shared_list ): t0 = time.time( ) torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] minSize = tvTorUnit[ 'minSize' ] maxSize = tvTorUnit[ 'maxSize' ] minSize_x265 = tvTorUnit[ 'minSize_x265' ] maxSize_x265 = tvTorUnit[ 'maxSize_x265' ] series_name = tvTorUnit[ 'tvshow' ] mustHaveString = torFileName.split( )[ -1 ] logging.info( 'zooqle start: %s' % torFileName ) # data, status = get_tv_torrent_zooqle( torFileName, maxnum = 100 ) if status != 'SUCCESS': shared_list.append( ( 'zooqle', _create_status_dict( 'FAILURE', status, t0 ), 'FAILURE' ) ) return data_filt = list(filter( lambda elem: any(map(lambda tok: tok in elem['title'].lower( ), ( 'x264', 'x265', '720p' ) ) ) and 'xvid' not in elem['title'].lower( ) and elem['torrent_size'] >= minSize*1e6 and elem['torrent_size'] <= maxSize*1e6, data ) ) if len( data_filt ) == 0: shared_list.append( ( 'zooqle', _create_status_dict( 'FAILURE', 'ERROR, COULD NOT FIND %s IN ZOOQLE.' % torFileName, t0 ), 'FAILURE' ) ) logging.info( 'successfully processed zooqle on %s in %0.3f seconds.' % ( torFileName, time.time( ) - t0 ) ) shared_list.append( ( 'zooqle', data_filt, 'SUCCESS' ) ) m = Manager( ) shared_list = m.list( ) jobs = [ ] for targ in ( _process_jackett_items, _process_eztv_io_items, _process_zooqle_items ): job = Process( target = targ, args = ( tvTorUnit, shared_list ) ) job.daemon = False jobs.append( job ) job.start( ) for job in jobs: job.join( ) for job in jobs: job.close( ) #shared_list = list(map( # lambda proc: proc( tvTorUnit ), # ( _process_jackett_items, _process_eztv_io_items, _process_zooqle_items ) ) ) error_tup = list(map( lambda dat: ( dat[0], dat[1] ), filter(lambda dat: dat[-1] == 'FAILURE', shared_list ) ) ) data = list( chain.from_iterable( map(lambda dat: dat[1], filter(lambda dat: dat[-1] == 'SUCCESS', shared_list ) ) ) ) # ## status of downloaded elements torFileName = tvTorUnit[ 'torFname' ] totFname = tvTorUnit[ 'totFname' ] if len( data ) == 0: return None, dict( error_tup ) print( 'got %d candidates for %s in %0.3f seconds.' % ( len(data), torFileName, time.time( ) - time0 ) ) # ## wrapped away in another method return _worker_process_tvtorrents( client, data, torFileName, totFname, maxtime_in_secs, num_iters, kill_if_fail )
899b13f70d1673168eab4b533ce7e5219d25d365
18,927
from operator import or_ def find_fixture( gameweek, team, was_home=None, other_team=None, kickoff_time=None, season=CURRENT_SEASON, dbsession=session, ): """Get a fixture given a gameweek, team and optionally whether the team was at home or away, the kickoff time and the other team in the fixture. """ fixture = None if not isinstance(team, str): team_name = get_team_name(team, season=season, dbsession=dbsession) else: team_name = team if not team_name: raise ValueError("No team with id {} in {} season".format(team, season)) if other_team and not isinstance(other_team, str): other_team_name = get_team_name(other_team, season=season, dbsession=dbsession) else: other_team_name = other_team query = ( dbsession.query(Fixture).filter_by(gameweek=gameweek).filter_by(season=season) ) if was_home is True: query = query.filter_by(home_team=team_name) elif was_home is False: query = query.filter_by(away_team=team_name) elif was_home is None: query = query.filter( or_(Fixture.away_team == team_name, Fixture.home_team == team_name) ) else: raise ValueError("was_home must be True, False or None") if other_team_name: if was_home is True: query = query.filter_by(away_team=other_team_name) elif was_home is False: query = query.filter_by(home_team=other_team_name) elif was_home is None: query = query.filter( or_( Fixture.away_team == other_team_name, Fixture.home_team == other_team_name, ) ) fixtures = query.all() if not fixtures or len(fixtures) == 0: raise ValueError( "No fixture with season={}, gw={}, team_name={}, was_home={}, other_team_name={}".format( season, gameweek, team_name, was_home, other_team_name ) ) if len(fixtures) == 1: fixture = fixtures[0] elif kickoff_time: # team played multiple games in the gameweek, determine the # fixture of interest using the kickoff time, kickoff_date = dateparser.parse(kickoff_time) kickoff_date = kickoff_date.replace(tzinfo=timezone.utc) kickoff_date = kickoff_date.date() for f in fixtures: f_date = dateparser.parse(f.date) f_date = f_date.replace(tzinfo=timezone.utc) f_date = f_date.date() if f_date == kickoff_date: fixture = f break if not fixture: raise ValueError( "No unique fixture with season={}, gw={}, team_name={}, was_home={}, kickoff_time={}".format( season, gameweek, team_name, was_home, kickoff_time ) ) return fixture
fcf90acd4fd8dd663c5cdf2ec99bd428c8cf7a45
18,928
import errno def plat_specific_errors(*errnames): """Return error numbers for all errors in errnames on this platform. The 'errno' module contains different global constants depending on the specific platform (OS). This function will return the list of numeric values for a given list of potential names. """ errno_names = dir(errno) nums = [getattr(errno, k) for k in errnames if k in errno_names] # de-dupe the list return list(dict.fromkeys(nums).keys())
acb70b2b7d6b16fbe2cfc9f559606efd504b8e3f
18,929
from pymatgen.util.num import make_symmetric_matrix_from_upper_tri from typing import Union def make_symmetric_matrix(d: Union[list, float]) -> list: """ d (list or float): len(d) == 1: Suppose cubic system len(d) == 3: Suppose tetragonal or orthorhombic system len(d) == 6: Suppose the other system """ if isinstance(d, float): tensor = [[d, 0, 0], [0, d, 0], [0, 0, d]] elif len(d) == 9: tensor = [[d[0], d[1], d[2]], [d[3], d[4], d[5]], [d[6], d[7], d[8]]] elif len(d) == 1: tensor = [[d[0], 0, 0], [0, d[0], 0], [0, 0, d[0]]] elif len(d) == 3: tensor = [[d[0], 0, 0], [0, d[1], 0], [0, 0, d[2]]] elif len(d) == 6: """ Given a symmetric matrix in upper triangular matrix form as flat array indexes as: [A_xx, A_yy, A_zz, A_xy, A_xz, A_yz] This will generate the full matrix: [[A_xx, A_xy, A_xz], [A_xy, A_yy, A_yz], [A_xz, A_yz, A_zz] """ tensor = make_symmetric_matrix_from_upper_tri(d).tolist() else: raise ValueError("{} is not valid to make symmetric matrix".format(d)) return tensor
318caf380a8f0a0878eac54bae49c86722e532bb
18,931
def convert_lds_to_block_tridiag(As, bs, Qi_sqrts, ms, Ri_sqrts): """ Parameterize the LDS in terms of pairwise linear Gaussian dynamics and per-timestep Gaussian observations. p(x_{1:T}; theta) = [prod_{t=1}^{T-1} N(x_{t+1} | A_t x_t + b_t, Q_t)] * [prod_{t=1}^T N(x_t | m_t, R_t)] We can rewrite this as a Gaussian with a block tridiagonal precision matrix J. The blocks of this matrix are: J_{t,t} = A_t.T Q_t^{-1} A_t + Q_{t-1}^{-1} + R_t^{-1} J_{t,t+1} = -Q_t^{-1} A_t The linear term is h_t h_t = -A_t.T Q_t^{-1} b_t + Q_{t-1}^{-1} b_{t-1} + R_t^{-1} m_t We parameterize the model in terms of theta = {A_t, b_t, Q_t^{-1/2}}_{t=1}^{T-1}, {m_t, R_t^{-1/2}}_{t=1}^T """ T, D = ms.shape assert As.shape == (T-1, D, D) assert bs.shape == (T-1, D) assert Qi_sqrts.shape == (T-1, D, D) assert Ri_sqrts.shape == (T, D, D) # Construnct the inverse covariance matrices Qis = np.matmul(Qi_sqrts, np.swapaxes(Qi_sqrts, -1, -2)) Ris = np.matmul(Ri_sqrts, np.swapaxes(Ri_sqrts, -1, -2)) # Construct the joint, block-tridiagonal precision matrix J_lower_diag = -np.matmul(Qis, As) J_diag = np.concatenate([-np.matmul(np.swapaxes(As, -1, -2), J_lower_diag), np.zeros((1, D, D))]) \ + np.concatenate([np.zeros((1, D, D)), Qis]) \ + Ris # Construct the linear term h = np.concatenate([np.matmul(J_lower_diag, bs[:, :, None])[:, :, 0], np.zeros((1, D))]) \ + np.concatenate([np.zeros((1, D)), np.matmul(Qis, bs[:, :, None])[:, :, 0]]) \ + np.matmul(Ris, ms[:, :, None])[:, :, 0] return J_diag, J_lower_diag, h
d16721ffb77f06cd55ca3c70238ca56fad76970d
18,932
def extract_string_from_tensor(input_ids, mode="single", config=None, tokenizer=None): """ Args: input_ids (Tensor): input sentences with shape [batch_size, seq_len]. mode (str): ["pair", "single"] "pair" for tasks with paired inputs `<bos> A <eos> B <eos>`, such as summarization task, the dataset format `<bos> Article <eos> Summary <eos>`, reading comprehension task, the dataset format `<bos> Passage Question <eos> Answer <eos>`. "single" for tasks with single input `<bos> A <eos>`, such as Language Modeling, Lambada task. config: the configuration of GPT-2 model. tokenizer: the tokenizer of GPT-2 model. Return: prompt_list (list): list of prompt_text reference_list (list): list of reference_text, or second part of text rest_list (list): list of rest_text, or rest part of text """ batch_size = config.batch_size seq_length = config.seq_length prompt_list = [""] * batch_size reference_list = [""] * batch_size eos_text = tokenizer.eos_token len_eos_text = len(eos_text) input_ids_np = input_ids.asnumpy() input_ids_np = input_ids_np.reshape((batch_size, seq_length)) # input_ids = P.Reshape()(input_ids, (batch_size, seq_length)) if mode == "pair": for batch_idx in range(batch_size): sentence_tensor = input_ids_np[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) reference_start = prompt_end + len_eos_text reference_end = sentence[reference_start:].find( eos_text, 0) + reference_start prompt_list[batch_idx] = sentence[prompt_start:prompt_end] reference_list[batch_idx] = sentence[reference_start:reference_end] return prompt_list, reference_list # For single output datasets such as WikiText, etc. if mode == "single": for batch_idx in range(batch_size): sentence_tensor = input_ids_np[batch_idx] sentence_list = sentence_tensor.asnumpy().tolist()[1:] sentence = tokenizer.decode(sentence_list) prompt_start = 0 prompt_end = sentence.find(eos_text, 0) prompt_list[batch_idx] = sentence[prompt_start:prompt_end] else: raise NotImplementedError('mode:{} not supported.'.format(mode)) return prompt_list
27cf8905350db53ec908f3b8ef8674a7ac3a17eb
18,933
def schema_validation_matching(source_fields, target_fields): """Compare schemas between two dictionary objects""" results = [] # Go through each source and check if target exists and matches for source_field_name, source_field_type in source_fields.items(): # target field exists if source_field_name in target_fields: # target data type matches if source_field_type == target_fields[source_field_name]: results.append( [ source_field_name, source_field_name, "1", "1", consts.VALIDATION_STATUS_SUCCESS, "Source_type:{} Target_type:{}".format( source_field_type, target_fields[source_field_name] ), ] ) # target data type mismatch else: results.append( [ source_field_name, source_field_name, "1", "1", consts.VALIDATION_STATUS_FAIL, "Data type mismatch between source and target. Source_type:{} Target_type:{}".format( source_field_type, target_fields[source_field_name] ), ] ) # target field doesn't exist else: results.append( [ source_field_name, "N/A", "1", "0", consts.VALIDATION_STATUS_FAIL, "Target doesn't have a matching field name", ] ) # source field doesn't exist for target_field_name, target_field_type in target_fields.items(): if target_field_name not in source_fields: results.append( [ "N/A", target_field_name, "0", "1", consts.VALIDATION_STATUS_FAIL, "Source doesn't have a matching field name", ] ) return results
7af82c39462de09e326c6f4413a2d6be7fd6c977
18,934
import pkg_resources def find_thirdparty_marshaller_plugins(): """ Find, but don't load, all third party marshaller plugins. Third party marshaller plugins declare the entry point ``'hdf5storage.marshallers.plugins'`` with the name being the Marshaller API version and the target being a function that returns a ``tuple`` or ``list`` of all the marshallers provided by that plugin when given the hdf5storage version (``str``) as its only argument. .. versionadded:: 0.2 Returns ------- plugins : dict The marshaller obtaining entry points from third party plugins. The keys are the Marshaller API versions (``str``) and the values are ``dict`` of the entry points, with the module names as the keys (``str``) and the values being the entry points (``pkg_resources.EntryPoint``). See Also -------- supported_marshaller_api_versions """ all_plugins = tuple(pkg_resources.iter_entry_points( 'hdf5storage.marshallers.plugins')) return {ver: {p.module_name: p for p in all_plugins if p.name == ver} for ver in supported_marshaller_api_versions()}
7aad132f520b67d5b39e857175e4bc006fd3ad72
18,935
def justTransportResponse(transport): """ Helper function for creating a Response which uses the given transport. All of the other parameters to L{Response.__init__} are filled with arbitrary values. Only use this method if you don't care about any of them. """ return Response((b'HTTP', 1, 1), 200, b'OK', _boringHeaders, transport)
02a18a500cb9a623c287d4e2f3777237e3574ef6
18,936
def object_comparator_lookup(src_obj, dst_obj): """ Compare an object with another entry by entry """ dont_match = [] no_upstream = [] for i in dst_obj: count_name = 0 count_value = 0 for j in src_obj: if list(j.keys())[0] == list(i.keys())[0]: count_name = 1 if j[list(j.keys())[0]] == i[list(i.keys())[0]]: count_value = 1 if count_name == 0: if list(i.keys())[0] != "last-modified": print(i.keys(), list(i.keys())[0]) no_upstream.append(i) else: if count_value == 0: dont_match.append(i) if no_upstream or dont_match: return 1 else: return 0
ba5767624255da915d9c07d25b62880c387f6f00
18,938
def line( data_frame=None, x=None, y=None, line_group=None, color=None, line_dash=None, hover_name=None, hover_data=None, custom_data=None, text=None, facet_row=None, facet_row_weights=None, facet_col=None, facet_col_weights=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, error_x=None, error_x_minus=None, error_y=None, error_y_minus=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, orientation=None, color_discrete_sequence=None, color_discrete_map=None, line_dash_sequence=None, line_dash_map=None, log_x=False, log_y=False, range_x=None, range_y=None, line_shape=None, render_mode="auto", title=None, template=None, width=None, height=None, ): """ In a 2D line plot, each row of `data_frame` is represented as vertex of a polyline mark in 2D space. """ return make_figure(args=locals(), constructor=go.Scatter)
bcedfe2c9297f4d3c049e500265f9ffbc0dde85a
18,939
def is_primitive(v): """ Checks if v is of primitive type. """ return isinstance(v, (int, float, bool, str))
d22607c0e2b93b82b1da6beb50de68668624dd71
18,940
def linkify_only_full_urls(attrs, new=False): """Linkify only full links, containing the scheme.""" if not new: # This is an existing <a> tag, leave it be. return attrs # If the original text doesn't contain the scheme, don't linkify. if not attrs['_text'].startswith(('http:', 'https:')): return None return attrs
89fcc7f3fc53353686260779ae8ddb4c0523c57b
18,941
def Precedence(op): """The numeric precedence of a binary operator.""" # Particularly convenient during layout of binary operators. return float(sum(i * (op in grp[1:]) for i, grp in enumerate(precedence))) / len(precedence)
0071d2972474c57376c334401c43673f1c4bde49
18,945
from typing import Dict from typing import Any def _FeastToExampleTransform( pipeline: beam.Pipeline, exec_properties: Dict[str, Any], split_pattern: str ) -> beam.pvalue.PCollection: """Read from BigQuery and transform to TF examples. Args: pipeline: beam pipeline. exec_properties: A dict of execution properties. split_pattern: Split.pattern in Input config, a BigQuery sql string. Returns: PCollection of TF examples. """ # Load custom config dictionary custom_config = _load_custom_config(exec_properties["custom_config"]) # Get Feast retrieval job retrieval_job = _get_retrieval_job( entity_query=split_pattern, custom_config=custom_config ) # Setup datasource and converter. if isinstance(retrieval_job, BigQueryRetrievalJob): query = retrieval_job.to_sql() # Internally Beam creates a temporary table and exports from the query. datasource = utils.ReadFromBigQuery(query=query) converter = converters._BigQueryConverter( query, _get_gcp_project(exec_properties) ) else: raise NotImplementedError( f"Support for {type(retrieval_job)} is not available yet. For now we only support BigQuery source." ) # Setup converter from dictionary of str -> value to bytes map_function = None out_format = exec_properties.get( "output_data_format", example_gen_pb2.FORMAT_TF_EXAMPLE ) if out_format == example_gen_pb2.FORMAT_TF_EXAMPLE: map_function = converter.RowToExampleBytes elif out_format == example_gen_pb2.FORMAT_TF_SEQUENCE_EXAMPLE: map_function = converter.RowToSequenceExampleBytes else: raise NotImplementedError( f"Format {out_format} is not currently supported. Currently we only support tfexample" ) # Setup pipeline return ( pipeline | "DataRetrieval" >> datasource | f"To{out_format.capitalize()}Bytes" >> beam.Map(map_function) )
76451a98b9e11188eda42b5141e73647b87df94b
18,946
import re import logging def parse_host_info(qhost_tree, queues_tree, queues_to_ignore=[]): """ :return: dictionary key: host, value HostInfo """ dctRet = {} for host_node in qhost_tree.findall('host'): host_name = host_node.get('name') dct_hostvalues = dict([(hostvalue_node.get('name'), hostvalue_node.text) for hostvalue_node in host_node.findall('hostvalue')]) if dct_hostvalues['num_proc'] != '-': slots = int(dct_hostvalues['num_proc']) slots_used = sum([int(slots_used_node.text) for slots_used_node in host_node.findall(".//queuevalue[@name='slots_used']")]) memory = dehumanize_memory(dct_hostvalues['mem_total']) mem_used = 0 if dct_hostvalues['mem_used'] == '-' else dehumanize_memory(dct_hostvalues['mem_used']) dctRet[host_name] = HostInfo(host=host_name, slots=slots, memory=memory, state=None, slots_used=slots_used, mem_used=mem_used, queues=set()) else: dctRet[host_name] = HostInfo(host=host_name, slots=None, memory=None, state=None, slots_used=None, mem_used=None, queues=set()) for queue_info in queues_tree.findall('*/Queue-List'): state = queue_info.findtext('state') if state is None: state = '' # Ignore suspended state state = re.sub('s', '', state) # Ignore configuration ambiguous state state = re.sub('c', '', state) # If disabled, ignore other state flags, because they can vary between queues on a host if 'd' in state: state = 'd' queue = queue_info.findtext('name') queue_split = queue.split('@', 1) host = queue_split[1] queue_name = queue_split[0] if queue_name in queues_to_ignore: continue host_info = dctRet.get(host) host_info.queues.add(queue_name) if len(state) > 0: if host_info is None: logging.log_message(host + " found in qstat but not qhost") elif host_info.state is None: dctRet[host] = host_info._replace(state=state) elif not is_host_state_compatible(host_info.state, state): raise Exception("Conflicting states for %s: %s != %s" % (host, host_info.state, state)) return dctRet
a5f5154ac50d358b4a523872ffcaba3030d2f722
18,948
import click def _get_param_type_from_str( type_name: str = None, param_doc: docstring_parser.DocstringParam = None, ) -> t.Tuple[_ParamArgs, t.Union[click.ParamType, None]]: """Guess parameter type from parameter type name.""" type_name = type_name or "" desc = param_doc.description if param_doc else "" if type_name == "int": return _ParamArgs.single, int elif type_name == "float": return _ParamArgs.single, float elif type_name == "bytes": return _ParamArgs.single, bytes elif type_name == "bool": return _ParamArgs.flag, None elif type_name[:4] == "list": args, element = _get_param_type_from_str(type_name[5:-1], param_doc) assert args is _ParamArgs.single return _ParamArgs.multiple, element elif type_name[:5] == "tuple": els = (_get_param_type_from_str(n)[1] for n in type_name[6:-1].split(", ")) return _ParamArgs.single, click.Tuple(els) elif type_name == "io.FileIO": return _ParamArgs.single, _build_file_param_type(desc) elif type_name == "pathlib.Path": return _ParamArgs.single, _build_path_param_type(desc) elif type_name == "datetime.datetime": return _ParamArgs.single, click.DateTime() elif type_name == "uuid.UUID": return _ParamArgs.single, click.UUID else: logger.warning("Cannot guess parameter type from name: %s", type_name) return _ParamArgs.single, None
a13621ffbed428fbc32f6285e2fc0a2b53097cad
18,949
def solve(task: str) -> int: """How many differently colored bags can contain shiny gold?""" parents = process_data(task) seen = set() candidates = parents["shiny gold"] while candidates: candidate = candidates.pop() if candidate not in seen: seen.add(candidate) candidates.extend(parents[candidate]) return len(seen)
ea505c346a4482b9516ad22baa71d251b7e1dc41
18,950
import urllib import base64 import hashlib import requests def cityDesc(codePostal): """ code de retour : 100 : tout est normal 200 : la requete n'a pas abouti 300 : pas de cine dans la ville 400 : la ville n'existe pas """ headersUA = init_connect() YMDstr = getDate() searchField = codePostal filterField = '' countField = '500' pageField = '1' url = 'q=' + searchField + '&filter=' + filterField + '&count=' + countField + '&page=' + pageField + '&format=json&partner=' + allocine_partner + '&sed=' + YMDstr toEncrypt = allocine_secret_key + url sig = urllib.parse.quote_plus(base64.b64encode(hashlib.sha1(toEncrypt.encode('utf-8')).digest())) urlComplete = 'http://api.allocine.fr/rest/v3/search?' + url + "&sig=" + sig codeRetour = 200 listeCine = [] try: req = requests.get(urlComplete, headers=headersUA) except: return listeCine, codeRetour # print(req.json()) if req.status_code == 200: codeRetour = 100 if 'location' in req.json()['feed']: if 'theater' in req.json()['feed']: for theaterCity in req.json()['feed']['theater']: listeCine.append(theaterCity) else: codeRetour = 300 else: codeRetour = 400 return listeCine, codeRetour
06da49d9afe5420869204a423a2db31df11cc58e
18,951
async def get_reposet(request: AthenianWebRequest, id: int) -> web.Response: """List a repository set. :param id: Numeric identifier of the repository set to list. :type id: repository set ID. """ rs_cols = [ RepositorySet.name, RepositorySet.items, RepositorySet.precomputed, RepositorySet.tracking_re, ] rs, _ = await fetch_reposet(id, rs_cols, request.uid, request.sdb, request.cache) return model_response(RepositorySetWithName( name=rs.name, items=rs.items, precomputed=rs.precomputed))
a3a2cf6cb1152aadb81798cfa3e1be214635edad
18,952
def is_called_at_module_level() -> bool: """ Check if the current function is being called at the module level. Raise `RuntimeError` if `is_called_at_module_level()` is not called in a function. """ if not (frame := getcallerframe().f_back): raise RuntimeError( "is_called_at_module_level() expects to be called in a function" ) # There is currently no reliable and officially-provided way to determine whether a # function is called from the module level or not. # # Therefore we use a try-best-effort heuristic approach here. # # This check could emit false positive in the case of some advanced dynamic-reflection # inspection tricks, like `func.__code__ = func.__code__.replace(co_name="<module>")`. # # However such case is so unlikely and rare that we should not be concerned. # # We are good with the current approach as it works for most cases. return frame.f_code.co_name == "<module>"
0c807205472021b20c7b7bad27c8b5f7a634dd85
18,954