content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def record(location): """Creates an empty record.""" draft = RDMDraft.create({}) record = RDMRecord.publish(draft) return record
77c8069e4fd894f2ed1d760fc983a9a2094c0f6d
18,717
def firfls(x, f_range, fs=1000, w=3, tw=.15): """ Filter signal with an FIR filter *Like firls in MATLAB x : array-like, 1d Time series to filter f_range : (low, high), Hz Cutoff frequencies of bandpass filter fs : float, Hz Sampling rate w : float Length of the filter in terms of the number of cycles of the oscillation whose frequency is the low cutoff of the bandpass filter tw : float Transition width of the filter in normalized frequency space Returns ------- x_filt : array-like, 1d Filtered time series """ if w <= 0: raise ValueError( 'Number of cycles in a filter must be a positive number.') if np.logical_or(tw < 0, tw > 1): raise ValueError('Transition width must be between 0 and 1.') nyq = fs / 2 if np.any(np.array(f_range) > nyq): raise ValueError('Filter frequencies must be below nyquist rate.') if np.any(np.array(f_range) < 0): raise ValueError('Filter frequencies must be positive.') Ntaps = np.floor(w * fs / f_range[0]) if len(x) < Ntaps: raise RuntimeError( 'Length of filter is loger than data. ' 'Provide more data or a shorter filter.') # Characterize desired filter f = [0, (1 - tw) * f_range[0] / nyq, f_range[0] / nyq, f_range[1] / nyq, (1 + tw) * f_range[1] / nyq, 1] m = [0, 0, 1, 1, 0, 0] if any(np.diff(f) < 0): raise RuntimeError( 'Invalid FIR filter parameters.' 'Please decrease the transition width parameter.') # Perform filtering taps = firwin2(Ntaps, f, m) x_filt = filtfilt(taps, [1], x) if any(np.isnan(x_filt)): raise RuntimeError( 'Filtered signal contains nans. Adjust filter parameters.') # Remove edge artifacts return _remove_edge(x_filt, Ntaps)
71c7c3fc229ce8745f5940593a6e5a2f9bf12490
18,718
def extract_and_coadd(ra, dec, pm_ra, pm_dec, match_radius=4./3600., search_radius=25./60, sigma_clip=None, query_timeout=60., upper_limits=True, return_exps=False): """ The top-level function of this module, extract_and_coadd finds sources in GALEX archive matching the target while accounting for its proper motion between observing visits, the coadds the fluxes from each visit. Parameters ---------- ra : float Right ascencion of target in decimal degrees. dec : float Declination of target in decimal degrees. pm_ra : float Right ascencion proper motion of target in mas/yr. pm_dec : float Declination proper motion of target in mas/yr. match_radius : float Radius within which to consider a GALEX source a match to the target in degrees. For reference, the 1-sigma astrometric uncertainty is 0.4 arcseconds for GALEX. search_radius : float Radius in which to query the MCAT in degrees. If upper limits are desired, this should be large enough for the MCAT to return results whenever exposures were taken near enough that the target could have been in the aperture. sigma_clip : float Exclude fluxes > this many sigma from median flux relative to their measurement error. Careful with this. Stars show real variability that is often well beyond measurement errors, so it is probably unwise to sigma clip in most cases. query_timeout : float Seconds to wait for server to respond before giving up. upper_limits : bool Estimate upper limits for exposures where there is no match for the source. return_exps : bool If True, return all the data provided by extract_source. Returns ------- nuv_coadd : tuple Coadded flux and error in counts s-1 and, optionally, exposure info returned by extract_source. Upper limits show up as -999 for the flux with a positive error. fuv_coadd : tuple As above, for fuv. """ data = extract_source(ra, dec, pm_ra, pm_dec, match_radius, search_radius, query_timeout, upper_limits) nuv_data, fuv_data = data nuv = list(coadd_fluxes(*nuv_data[:3], sigma_clip=sigma_clip)) fuv = list(coadd_fluxes(*fuv_data[:3], sigma_clip=sigma_clip)) if return_exps: nuv.append(nuv_data) fuv.append(fuv_data) nuv, fuv = map(tuple, (nuv, fuv)) return (nuv, fuv)
d28d62877ba0c8a99aba1596128dc764bc3e19b7
18,719
import aiohttp async def create_payout( session: ClientSession, data: CreatePayoutRequest ) -> CreatePayoutResponse: """ Create a payout. """ url = RAZORPAY_BASE_URL + "/payouts" async with session.post( url, json=data.__dict__, auth=aiohttp.BasicAuth(RAZORPAY_KEY_ID, RAZORPAY_KEY_SECRET), ) as resp: response = await resp.json() print(response, resp.status) return from_dict(data_class=CreatePayoutResponse, data=response)
c4b9dae09111c83efb1d5a9c5fd88050f11b5510
18,720
def eval_ocr_metric(pred_texts, gt_texts): """Evaluate the text recognition performance with metric: word accuracy and 1-N.E.D. See https://rrc.cvc.uab.es/?ch=14&com=tasks for details. Args: pred_texts (list[str]): Text strings of prediction. gt_texts (list[str]): Text strings of ground truth. Returns: eval_res (dict[str: float]): Metric dict for text recognition, include: - word_acc: Accuracy in word level. - word_acc_ignore_case: Accuracy in word level, ignore letter case. - word_acc_ignore_case_symbol: Accuracy in word level, ignore letter case and symbol. (default metric for academic evaluation) - char_recall: Recall in character level, ignore letter case and symbol. - char_precision: Precision in character level, ignore letter case and symbol. - 1-N.E.D: 1 - normalized_edit_distance. """ assert isinstance(pred_texts, list) assert isinstance(gt_texts, list) assert len(pred_texts) == len(gt_texts) match_res = count_matches(pred_texts, gt_texts) eps = 1e-8 char_recall = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['gt_char_num']) char_precision = 1.0 * match_res['true_positive_char_num'] / ( eps + match_res['pred_char_num']) word_acc = 1.0 * match_res['match_word_num'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case = 1.0 * match_res['match_word_ignore_case'] / ( eps + match_res['gt_word_num']) word_acc_ignore_case_symbol = 1.0 * match_res[ 'match_word_ignore_case_symbol'] / ( eps + match_res['gt_word_num']) eval_res = {} eval_res['word_acc'] = word_acc eval_res['word_acc_ignore_case'] = word_acc_ignore_case eval_res['word_acc_ignore_case_symbol'] = word_acc_ignore_case_symbol eval_res['char_recall'] = char_recall eval_res['char_precision'] = char_precision eval_res['1-N.E.D'] = 1.0 - match_res['ned'] eval_res['BLEU'] = match_res['bleu'] for key, value in eval_res.items(): eval_res[key] = float('{:.4f}'.format(value)) return eval_res
0ec92be231d93abf9db8247369ba5ea546bd1b17
18,721
def get_all_zones(): """Return a list of all available zones.""" cf = CloudFlare.CloudFlare(raw=True) page_number = 0 total_pages = 1 all_zones = [] while page_number < total_pages: page_number += 1 raw_results = cf.zones.get(params={'per_page':100, 'page':page_number}) zones = raw_results['result'] all_zones += zones total_pages = raw_results['result_info']['total_pages'] return all_zones
0b9f6bf9b7b8fe274f7c6f856abf1d9397384c3c
18,722
def entry_id(e): """entry identifier which is not the bibtex key """ authortitle = ''.join([author_id(e),title_id(e)]) return (e.get('doi','').lower(), authortitle)
7c663d6c2bbdfcef8168c11a78e176e634cf644b
18,723
def AskNumber(text="unknown task"): """ Asks the user to interactively input a number (float or int) at any point in the script, and returns the input number. | __option__ | __description__ | --- | --- | *text | an optional string to identify for what purpose the chosen number will be used. """ def ValidateNumber(text): try: innumber = input("\n\nwrite a comma or integer number to use for "+str(text)+" (example: 15 or 15.83)\nnumber = ") except NameError: print("""\n---> unknown error""") return ValidateNumber(text) if not isinstance(innumber,(float,int)): print("""\n---> error: the number must be either a floating point comma or integer number""") return ValidateNumber(text) return innumber return ValidateNumber(text)
41949d0a2e2d87b5cdb26d2db9bff9a64fbeeb1d
18,724
def TokenEmphasis(character="_"): """ Italic (`<i>`, `<em>`) text is rendered with one asterisk or underscore """ assert character in ("_", "*") return { "type": "Characters", "data": character, "_md_type": mdTokenTypes["TokenEmphasis"], }
2012fdeb9ca4d9483b4cc403010f9900dcc1230f
18,725
import random def generate_plan(suite, node): """Randomly generates a plan, completely ignoring norms. This is mainly for testing the norm driven algorithm""" plan = [node] next_actions = next_actions(suite,node) # print "Next actions ", next_actions while (next_actions != []): a = random.sample(next_actions,1)[0] node = a.path[1:] plan[len(plan):] = node node = node[-1] # if we have a sequence of actions next_actions = next_actions(suite,node) return plan
30d967986d1c4237b4b312470d47d1ecce06ecbc
18,727
def update_y(pred_coords, ypart_tracker, history=1500): """ Update y-tracker and store last 1500 detection :param pred_coords: y coordinates :param ypart_tracker: choose keypoints based on input conditions :return: y-tracker """ anks_val = (pred_coords[15] + pred_coords[16]) * 0.5 shdr_val = (pred_coords[5] + pred_coords[6]) * 0.5 ypart_tracker['anks'] = np.append(ypart_tracker['anks'], [anks_val], axis=0) ypart_tracker['shdr'] = np.append(ypart_tracker['shdr'], [shdr_val], axis=0) ypart_tracker['anks-shdr'] = np.append(ypart_tracker['anks-shdr'], [anks_val - shdr_val], axis=0) ypart_tracker = {k: v[-history:] for k, v in ypart_tracker.items()} return ypart_tracker
ee1880e27b121dae4661a93286bf07117bc7bb34
18,728
def augmentData(features, labels): """ For augmentation of the data :param features: :param labels: :return: """ features = np.append(features, features[:, :, ::-1], axis=0) labels = np.append(labels, -labels, axis=0) return features, labels
ef684ae2bf9eb4fca9a0636d3b0089020805f4be
18,729
def sigmoid(x): """ Implement 1 / ( 1 + exp( -x ) ) in terms of tanh.""" return 0.5 * (np.tanh(x / 2.) + 1)
95d6dd0cd62db2c43df419358ef368609ede42c8
18,731
def get_unique_output_values(signals): """ Based on segment length, determine how many of the possible four uniquely identifiable digits are in the set of signals. """ unique_digit_count = 0 for signal in signals: for digit in signal["output"]: if len(digit) in (2, 3, 4, 7): unique_digit_count += 1 return unique_digit_count
84098d4d294bfdd1b983ea70d51da1453b17245a
18,732
import itertools def split_and_pad(s, sep, nsplit, pad=None): """ Splits string s on sep, up to nsplit times. Returns the results of the split, pottentially padded with additional items, up to a total of nsplit items. """ l = s.split(sep, nsplit) return itertools.chain(l, itertools.repeat(None, nsplit+1-len(l)))
6c439301df7109d9b01a06a87bd7d6adafb8ee1e
18,733
def transpose_report(report): """Transposes the report. Columns into rows""" return list(map(list, zip(*report)))
bc59f9106496b0b830fdc9ac0266f3b774a8f759
18,734
def _shape_from_resolution(resolution): """ Calculate the shape of the global Earth relief grid given a resolution. Parameters ---------- resolution : str Same as the input for load_earth_relief Returns ------- shape : (nlat, nlon) The calculated shape. Examples -------- >>> _shape_from_resolution('60m') (181, 361) >>> _shape_from_resolution('30m') (361, 721) >>> _shape_from_resolution('10m') (1081, 2161) """ minutes = int(resolution[:2]) nlat = 180*60//minutes + 1 nlon = 360*60//minutes + 1 return (nlat, nlon)
c726d599696cee2259bc450606e63480b0991451
18,735
def __virtual__(): """ Load module only if cx_Oracle installed """ if HAS_CX_ORACLE: return __virtualname__ return ( False, "The oracle execution module not loaded: python oracle library not found.", )
a64eddc8b78e5d7b3c8e0588a72a0c238b4c12d0
18,736
def get_fuel_from(mass: int) -> int: """Gets fuel from mass. Args: mass (int): mass for the fuel Returns: int: fuel necessary for the mass """ return mass // 3 - 2
37390c8cb9ba7e84c7b5c14841528d6c38f1589e
18,739
def test_energy_density_function(): """ Compute the Zeeman energy density over the entire mesh, integrate it, and compare it to the expected result. """ mesh = df.RectangleMesh(df.Point(-50, -50), df.Point(50, 50), 10, 10) unit_length = 1e-9 H = 1e6 # Create simulation object. sim = finmag.Simulation(mesh, 1e5, unit_length=unit_length) # Set uniform magnetisation. def m_ferromagnetic(pos): return np.array([0., 0., 1.]) sim.set_m(m_ferromagnetic) # Assign zeeman object to simulation sim.add(Zeeman(H * np.array([0., 0., 1.]))) # Get energy density function edf = sim.get_interaction('Zeeman').energy_density_function() # Integrate it over the mesh and compare to expected result. total_energy = df.assemble(edf * df.dx) * unit_length expected_energy = -mu0 * H assert (total_energy + expected_energy) < 1e-6
10a4da043554a93c3d6c90f32c554741b2fe2c7b
18,740
def my_Bayes_model_mse(params): """ Function fits the Bayesian model from Tutorial 4 Args : params (list of positive floats): parameters used by the model (params[0] = posterior scaling) Returns : (scalar) negative log-likelihood :sum of log probabilities """ trial_ll = np.zeros_like(true_stim) ## Create the prior Matrix outside of trial loop alpha=params[0] prior_mean = 0 prior_sigma1 = 0.5 prior_sigma2 = 3 prior1 = my_gaussian(x, prior_mean, prior_sigma1) prior2 = my_gaussian(x, prior_mean, prior_sigma2) prior_combined = (1-alpha) * prior1 + (alpha * prior2) prior_combined = prior_combined / np.sum(prior_combined) prior_matrix = np.tile(prior_combined, hypothetical_stim.shape[0]).reshape((hypothetical_stim.shape[0],-1)) ## Create posterior matrix outside of trial loop posterior_matrix = np.zeros_like(likelihood_matrix) for i_posterior in np.arange(posterior_matrix.shape[0]): posterior_matrix[i_posterior,:] = np.multiply(prior_matrix[i_posterior,:], likelihood_matrix[i_posterior,:]) posterior_matrix[i_posterior,:] = posterior_matrix[i_posterior,:] / np.sum(posterior_matrix[i_posterior,:]) ## Create Binary decision matrix outside of trial loop binary_decision_matrix = np.zeros_like(posterior_matrix) for i_posterior in np.arange(posterior_matrix.shape[0]): mean, _, _ = moments_myfunc(x, posterior_matrix[i_posterior,:]) idx = np.argmin(np.abs(x - mean)) binary_decision_matrix[i_posterior,idx] = 1 # Loop over stimuli for i_stim in np.arange(true_stim.shape[0]): input_matrix = np.zeros_like(posterior_matrix) for i in np.arange(x.shape[0]): input_matrix[:, i] = my_gaussian(hypothetical_stim, true_stim[i_stim], 1) input_matrix[:, i] = input_matrix[:, i] / np.sum(input_matrix[:, i]) marginalization_matrix = input_matrix * binary_decision_matrix marginal = np.sum(marginalization_matrix, axis=0) marginal = marginal / np.sum(marginal) action = behaviour[i_stim] idx = np.argmin(np.abs(x - action)) trial_ll[i_stim] = np.log(marginal[idx] + np.finfo(float).eps) neg_ll = -np.sum(trial_ll) return neg_ll
b4a03e3edd0c9894b518ecd2589949aed8337479
18,741
def validate_request_tween_factory(handler, registry): """ Updates request.environ's REQUEST_METHOD to be X_REQUEST_METHOD if present. Asserts that if a POST (or similar) request is in application/json format, with exception for /metadata/* endpoints. Apache config: SetEnvIf Request_Method HEAD X_REQUEST_METHOD=HEAD """ def validate_request_tween(request): # Fix Request method changed by mod_wsgi. # See: https://github.com/GrahamDumpleton/mod_wsgi/issues/2 environ = request.environ if 'X_REQUEST_METHOD' in environ: environ['REQUEST_METHOD'] = environ['X_REQUEST_METHOD'] if request.method in ('GET', 'HEAD'): # If GET request, don't need to check `request.content_type` # Includes page text/html requests. return handler(request) elif request.content_type != 'application/json': if request.content_type == 'application/x-www-form-urlencoded' and request.path[0:10] == '/metadata/': # Special case to allow us to POST to metadata TSV requests via form submission return handler(request) detail = "Request content type %s is not 'application/json'" % request.content_type raise HTTPUnsupportedMediaType(detail) return handler(request) return validate_request_tween
909e7d67044e31c1b3c0a97774d398f7d64d40bb
18,742
async def get_rank(display_number: int, minimal_msg_number: int, display_total_number: int, group_id: int) -> str: """ 获取排行榜 """ repeat_list = recorder_obj.repeat_list(group_id) msg_number_list = recorder_obj.msg_number_list(group_id) ranking = Ranking(group_id, display_number, minimal_msg_number, display_total_number, repeat_list, msg_number_list) str_data = await ranking.ranking() if not str_data: str_data = '暂时还没有满足条件的数据~>_<~' return str_data
f1ca183890e33b15b77d7693771b37c33af9535e
18,743
def feedback(request): """FeedbackForm""" if (request.method == 'POST'): form = forms.FeedbackForm(request.POST) # pdb.set_trace() if form.is_valid(): form.save() type = form.cleaned_data['type'] type = dict(form.fields['type'].choices)[type] settings.EMAIL_HOST_USER += '[email protected]' send_mail( '[' + type + '] ' + form.cleaned_data['title'], 'A new feedback was posted on JobPort' + '\n\n' + form.cleaned_data['body'], ['[email protected]'] ) settings.EMAIL_HOST_USER += '' messages.success( request, 'Thanks for filling your precious feedback! :) ') return HttpResponseRedirect('/') else: context = {'form': form} return render(request, 'jobport/feedback.html', context) else: form = forms.FeedbackForm() context = {'form': form} return render(request, 'jobport/feedback.html', context)
188dfa77d7e72555062e25acc15518f90c252b33
18,744
def get_convolutional_args(call, include_buffers=False, remove_constants=False): """A method to extract the arguments from conv2d or depthwise_conv2d extern call.""" args = call.args conv_args = [] remove_indices = [0] if remove_constants: remove_indices += [41, 42, 44, 45] for i, arg in enumerate(args): if i in remove_indices: continue elif isinstance(arg, tvm.tir.expr.IntImm) or isinstance(arg, tvm.tir.expr.FloatImm): conv_args.append(arg.value) elif isinstance(arg, tvm.tir.expr.Load) and not include_buffers: conv_args.append(arg.index) else: conv_args.append(arg) return conv_args
01db4d4e025bb9212bcb20a8852a7d4f1250e4b2
18,745
def view_party(party_id): """View dashboard for that party.""" party = party_service.find_party(party_id) if party is None: abort(404) days = party_service.get_party_days(party) days_until_party = (party.starts_at.date() - date.today()).days orga_count = orga_team_service.count_memberships_for_party(party.id) orga_team_count = orga_team_service.count_teams_for_party(party.id) seating_area_count = seating_area_service.count_areas_for_party(party.id) seat_count = seat_service.count_seats_for_party(party.id) ticket_sale_stats = ticket_service.get_ticket_sale_stats(party.id) tickets_checked_in = ticket_service.count_tickets_checked_in_for_party( party.id ) seat_utilization = seat_service.get_seat_utilization(party.id) guest_servers = guest_server_service.get_all_servers_for_party(party.id) return { 'party': party, 'days': days, 'days_until_party': days_until_party, 'orga_count': orga_count, 'orga_team_count': orga_team_count, 'seating_area_count': seating_area_count, 'seat_count': seat_count, 'ticket_sale_stats': ticket_sale_stats, 'tickets_checked_in': tickets_checked_in, 'seat_utilization': seat_utilization, 'guest_servers': guest_servers, }
de02cf21c9afe35a1dc5ef7a896d99d40a9bd43f
18,746
def subcat_add(): """ 添加小分类 """ if request.method == 'POST': cat_name = request.form['cat_name'] super_cat_id = request.form['super_cat_id'] # 检测名称是否存在 subcat = SubCat.query.filter_by(cat_name=cat_name).count() if subcat : return "<script>alert('该小分类已经存在');history.go(-1);</script>" # 组织数据 data = SubCat( super_cat_id = super_cat_id, cat_name = cat_name, ) db.session.add(data) db.session.commit() return redirect(url_for("admin.subcat_list")) supercat = SuperCat.query.all() # 获取大分类信息 return render_template("admin/subcat_add.html",supercat=supercat)
046011d15be00557b28f9300d813ffc6e23d43e0
18,748
async def async_setup_entry(hass, config_entry, async_add_devices): """Set up the Alexa sensor platform by config_entry.""" return await async_setup_platform( hass, config_entry.data, async_add_devices, discovery_info=None)
b7a4a8a4573ecc008f43a4a9c3e9dcfa21fb0d78
18,749
def parse_duration(dur: str) -> int: """Generates seconds from a human readable duration.""" if not DURATION_REGEX.match(dur): raise ValueError('Time passed does not match required format: `XX:XX` or `XX:XX:XX`') parts = dur.split(':') seconds = 0 if len(parts) == 3: seconds += int(parts[0]) * 60 * 60 seconds += int(parts[1]) * 60 seconds += int(parts[2]) else: seconds += int(parts[0]) * 60 seconds += int(parts[1]) return seconds
ec60b2362d8dc2e898e278b4e1dbf0aca764bc87
18,750
import random def shorter_uuid(length=7, starter=None, with_original=False): """ Generate an even shorter short UUID generated by the shortuuid library. :param length: Length of trimmed ID. :param starter: Whether to begin with an already-created ShortUUID. Useful when using recursively. :param with_original: Also return initially-generated ShortUUID :return: """ original_id = str(shortuuid.uuid()) if starter is None else starter n = len(original_id) dx = min(length, len(original_id)) # ID length if starter is not None and len(starter) < dx * 2: original_id = str(shortuuid.uuid()) start_point = random.randint(0, n - dx) shorter_id = original_id[start_point:(start_point + dx)] return shorter_id if not with_original else [shorter_id, original_id]
80eca9d14ff3ebeccd77a4b989dde52e4786a042
18,751
from typing import Iterable from typing import Callable from typing import Optional from typing import List from typing import Dict def group_by(s: Iterable[_ElementType], key: Callable[[_ElementType], _GroupType], gfunc: Optional[Callable[[List[_ElementType]], _ResultType]] = None) -> Dict[_GroupType, _ResultType]: """ Overview: Divide the elements into groups. :param s: Elements. :param key: Group key, should be a callable object. :param gfunc: Post-process function for groups, should be a callable object. Default is ``None`` which means \ no post-processing will be performed. :return: Grouping result. Examples:: >>> from hbutils.collection import group_by >>> >>> foods = [ ... 'apple', 'orange', 'pear', ... 'banana', 'fish', 'pork', 'milk', ... ] >>> group_by(foods, len) # group by length {5: ['apple'], 6: ['orange', 'banana'], 4: ['pear', 'fish', 'pork', 'milk']} >>> group_by(foods, len, len) # group and get length {5: 1, 6: 2, 4: 4} >>> group_by(foods, lambda x: x[0]) # group by first letter {'a': ['apple'], 'o': ['orange'], 'p': ['pear', 'pork'], 'b': ['banana'], 'f': ['fish'], 'm': ['milk']} >>> group_by(foods, lambda x: x[0], len) # group and get length {'a': 1, 'o': 1, 'p': 2, 'b': 1, 'f': 1, 'm': 1} """ gfunc = gfunc or (lambda x: x) _result_dict: Dict[_GroupType, List[_ElementType]] = {} for item in s: _item_key = key(item) if _item_key not in _result_dict: _result_dict[_item_key] = [] _result_dict[_item_key].append(item) return { key: gfunc(grps) for key, grps in _result_dict.items() }
b515e0b3a3467b47ad29552bed39b14eca2d2978
18,752
def init_templateflow_wf( bids_dir, output_dir, participant_label, mov_template, ref_template='MNI152NLin2009cAsym', use_float=True, omp_nthreads=None, mem_gb=3.0, modality='T1w', normalization_quality='precise', name='templateflow_wf', fs_subjects_dir=None, ): """ A Nipype workflow to perform image registration between two templates *R* and *M*. *R* is the *reference template*, selected by a templateflow identifier such as ``MNI152NLin2009cAsym``, and *M* is the *moving template* (e.g., ``MNI152Lin``). This workflows maps data defined on template-*M* space onto template-*R* space. 1. Run the subrogate images through ``antsBrainExtraction``. 2. Recompute :abbr:`INU (intensity non-uniformity)` correction using the mask obtained in 1). 3. Independently, run spatial normalization of every :abbr:`INU (intensity non-uniformity)` corrected image (supplied via ``in_files``) to both templates. 4. Calculate an initialization between both templates, using them directly. 5. Run multi-channel image registration of the images resulting from 3). Both sets of images (one registered to *R* and another to *M*) are then used as reference and moving images in the registration framework. **Parameters** in_files: list of files a list of paths pointing to the images that will be used as surrogates mov_template: str a templateflow identifier for template-*M* ref_template: str a templateflow identifier for template-*R* (default: ``MNI152NLin2009cAsym``). """ # number of participants ninputs = len(participant_label) ants_env = { 'NSLOTS': '%d' % omp_nthreads, 'ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS': '%d' % omp_nthreads, 'OMP_NUM_THREADS': '%d' % omp_nthreads, } # Get path to templates tpl_ref = str(get_template(ref_template, suffix=modality, desc=None, resolution=1)) tpl_ref_mask = str(get_template(ref_template, suffix='mask', desc='brain', resolution=1)) tpl_mov = str(get_template(mov_template, suffix=modality, desc=None, resolution=1)) tpl_mov_mask = str(get_template(mov_template, suffix='mask', desc='brain', resolution=1)) wf = pe.Workflow(name) inputnode = pe.Node(niu.IdentityInterface(fields=['participant_label']), name='inputnode') inputnode.iterables = ('participant_label', sorted(list(participant_label))) pick_file = pe.Node(niu.Function(function=_bids_pick), name='pick_file', run_without_submitting=True) pick_file.inputs.bids_root = bids_dir ref_bex = init_brain_extraction_wf( in_template=ref_template, omp_nthreads=omp_nthreads, mem_gb=mem_gb, bids_suffix=modality, name='reference_bex', ) mov_bex = init_brain_extraction_wf( in_template=mov_template, omp_nthreads=omp_nthreads, mem_gb=mem_gb, bids_suffix=modality, name='moving_bex', ) ref_norm = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='ref_norm', n_procs=omp_nthreads) ref_norm.inputs.fixed_image = tpl_ref ref_norm.inputs.fixed_image_masks = tpl_ref_mask ref_norm.inputs.environ = ants_env # Register the INU-corrected image to the other template mov_norm = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='mov_norm', n_procs=omp_nthreads) mov_norm.inputs.fixed_image = tpl_mov mov_norm.inputs.fixed_image_masks = tpl_mov_mask mov_norm.inputs.environ = ants_env # Initialize between-templates transform with antsAI init_aff = pe.Node(AI( metric=('Mattes', 32, 'Regular', 0.2), transform=('Affine', 0.1), search_factor=(20, 0.12), principal_axes=False, convergence=(10, 1e-6, 10), verbose=True, fixed_image=tpl_ref, fixed_image_mask=tpl_ref_mask, moving_image=tpl_mov, moving_image_mask=tpl_mov_mask, environ=ants_env, ), name='init_aff', n_procs=omp_nthreads) ref_buffer = pe.JoinNode(niu.IdentityInterface( fields=['fixed_image']), joinsource='inputnode', joinfield='fixed_image', name='ref_buffer') mov_buffer = pe.JoinNode(niu.IdentityInterface( fields=['moving_image']), joinsource='inputnode', joinfield='moving_image', name='mov_buffer') flow = pe.Node( Registration( from_file=pkgr.resource_filename( 'niworkflows.data', 't1w-mni_registration_%s_000.json' % normalization_quality)), name='flow_norm', n_procs=omp_nthreads, ) flow.inputs.fixed_image_masks = tpl_ref_mask flow.inputs.moving_image_masks = tpl_mov_mask flow.inputs.metric = [[v] * ninputs for v in flow.inputs.metric] flow.inputs.metric_weight = [[1 / ninputs] * ninputs for _ in flow.inputs.metric_weight] flow.inputs.radius_or_number_of_bins = [ [v] * ninputs for v in flow.inputs.radius_or_number_of_bins] flow.inputs.sampling_percentage = [ [v] * ninputs for v in flow.inputs.sampling_percentage] flow.inputs.sampling_strategy = [ [v] * ninputs for v in flow.inputs.sampling_strategy] flow.inputs.environ = ants_env # Datasinking ref_norm_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, desc='preproc', keep_dtype=True), name='ref_norm_ds', run_without_submitting=True ) mov_norm_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, desc='preproc', keep_dtype=True), name='mov_norm_ds', run_without_submitting=True ) xfm_ds = pe.Node(DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, allowed_entities=['from', 'mode'], mode='image', suffix='xfm', source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template), **{'from': mov_template}), name='xfm_ds', run_without_submitting=True) wf.connect([ (inputnode, pick_file, [('participant_label', 'participant_label')]), (pick_file, ref_bex, [('out', 'inputnode.in_files')]), (pick_file, mov_bex, [('out', 'inputnode.in_files')]), (ref_bex, ref_norm, [('outputnode.bias_corrected', 'moving_image'), ('outputnode.out_mask', 'moving_image_masks'), ('norm.forward_transforms', 'initial_moving_transform')]), (ref_bex, mov_norm, [('outputnode.bias_corrected', 'moving_image')]), (mov_bex, mov_norm, [('outputnode.out_mask', 'moving_image_masks'), ('norm.forward_transforms', 'initial_moving_transform')]), (init_aff, flow, [('output_transform', 'initial_moving_transform')]), (ref_norm, ref_buffer, [('warped_image', 'fixed_image')]), (mov_norm, mov_buffer, [('warped_image', 'moving_image')]), (ref_buffer, flow, [('fixed_image', 'fixed_image')]), (mov_buffer, flow, [('moving_image', 'moving_image')]), (pick_file, ref_norm_ds, [('out', 'source_file')]), (ref_norm, ref_norm_ds, [('warped_image', 'in_file')]), (pick_file, mov_norm_ds, [('out', 'source_file')]), (mov_norm, mov_norm_ds, [('warped_image', 'in_file')]), (flow, xfm_ds, [('composite_transform', 'in_file')]), ]) if fs_subjects_dir: fssource = pe.Node( FreeSurferSource(subjects_dir=str(fs_subjects_dir)), name='fssource', run_without_submitting=True) tonative = pe.Node(fs.Label2Vol(subjects_dir=str(fs_subjects_dir)), name='tonative') tonii = pe.Node( fs.MRIConvert(out_type='niigz', resample_type='nearest'), name='tonii') ref_aparc = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True, reference_image=tpl_ref, environ=ants_env), name='ref_aparc', mem_gb=1, n_procs=omp_nthreads ) mov_aparc = pe.Node( ApplyTransforms(interpolation='MultiLabel', float=True, reference_image=tpl_mov, environ=ants_env), name='mov_aparc', mem_gb=1, n_procs=omp_nthreads ) ref_aparc_buffer = pe.JoinNode( niu.IdentityInterface(fields=['aparc']), joinsource='inputnode', joinfield='aparc', name='ref_aparc_buffer') ref_join_labels = pe.Node( AntsJointFusion( target_image=[tpl_ref], out_label_fusion='merged_aparc.nii.gz', out_intensity_fusion_name_format='merged_aparc_intensity_%d.nii.gz', out_label_post_prob_name_format='merged_aparc_posterior_%d.nii.gz', out_atlas_voting_weight_name_format='merged_aparc_weight_%d.nii.gz', environ=ants_env, ), name='ref_join_labels', n_procs=omp_nthreads) ref_join_labels_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='dtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_join_labels_ds', run_without_submitting=True) ref_join_probs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='probtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_join_probs_ds', run_without_submitting=True) # ref_join_voting_ds = pe.Node( # DerivativesDataSink( # base_directory=str(output_dir.parent), # out_path_base=output_dir.name, space=ref_template, # suffix='probtissue', desc='aparcvoting', keep_dtype=False, # source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), # name='ref_join_voting_ds', run_without_submitting=True) mov_aparc_buffer = pe.JoinNode( niu.IdentityInterface(fields=['aparc']), joinsource='inputnode', joinfield='aparc', name='mov_aparc_buffer') mov_join_labels = pe.Node( AntsJointFusion( target_image=[tpl_mov], out_label_fusion='merged_aparc.nii.gz', out_intensity_fusion_name_format='merged_aparc_intensity_%d.nii.gz', out_label_post_prob_name_format='merged_aparc_posterior_%d.nii.gz', out_atlas_voting_weight_name_format='merged_aparc_weight_%d.nii.gz', environ=ants_env, ), name='mov_join_labels', n_procs=omp_nthreads) mov_join_labels_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='dtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_join_labels_ds', run_without_submitting=True) mov_join_probs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, suffix='probtissue', desc='aparc', keep_dtype=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_join_probs_ds', run_without_submitting=True) ref_aparc_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, suffix='dtissue', desc='aparc', keep_dtype=False), name='ref_aparc_ds', run_without_submitting=True ) mov_aparc_ds = pe.Node( DerivativesDataSink(base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, suffix='dtissue', desc='aparc', keep_dtype=False), name='mov_aparc_ds', run_without_submitting=True ) # Extract surfaces cifti_wf = init_gifti_surface_wf( name='cifti_surfaces', subjects_dir=str(fs_subjects_dir)) # Move surfaces to template spaces gii2csv = pe.MapNode(GiftiToCSV(itk_lps=True), iterfield=['in_file'], name='gii2csv') ref_map_surf = pe.MapNode( ApplyTransformsToPoints(dimension=3, environ=ants_env), n_procs=omp_nthreads, name='ref_map_surf', iterfield=['input_file']) ref_csv2gii = pe.MapNode( CSVToGifti(itk_lps=True), name='ref_csv2gii', iterfield=['in_file', 'gii_file']) ref_surfs_buffer = pe.JoinNode( niu.IdentityInterface(fields=['surfaces']), joinsource='inputnode', joinfield='surfaces', name='ref_surfs_buffer') ref_surfs_unzip = pe.Node(UnzipJoinedSurfaces(), name='ref_surfs_unzip', run_without_submitting=True) ref_ply = pe.MapNode(SurfacesToPointCloud(), name='ref_ply', iterfield=['in_files']) ref_recon = pe.MapNode(PoissonRecon(), name='ref_recon', iterfield=['in_file']) ref_avggii = pe.MapNode(PLYtoGifti(), name='ref_avggii', iterfield=['in_file', 'surf_key']) ref_smooth = pe.MapNode(fs.SmoothTessellation(), name='ref_smooth', iterfield=['in_file']) ref_surfs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, keep_dtype=False, compress=False), name='ref_surfs_ds', run_without_submitting=True) ref_avg_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=ref_template, keep_dtype=False, compress=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(ref_template)), name='ref_avg_ds', run_without_submitting=True) mov_map_surf = pe.MapNode( ApplyTransformsToPoints(dimension=3, environ=ants_env), n_procs=omp_nthreads, name='mov_map_surf', iterfield=['input_file']) mov_csv2gii = pe.MapNode( CSVToGifti(itk_lps=True), name='mov_csv2gii', iterfield=['in_file', 'gii_file']) mov_surfs_buffer = pe.JoinNode( niu.IdentityInterface(fields=['surfaces']), joinsource='inputnode', joinfield='surfaces', name='mov_surfs_buffer') mov_surfs_unzip = pe.Node(UnzipJoinedSurfaces(), name='mov_surfs_unzip', run_without_submitting=True) mov_ply = pe.MapNode(SurfacesToPointCloud(), name='mov_ply', iterfield=['in_files']) mov_recon = pe.MapNode(PoissonRecon(), name='mov_recon', iterfield=['in_file']) mov_avggii = pe.MapNode(PLYtoGifti(), name='mov_avggii', iterfield=['in_file', 'surf_key']) mov_smooth = pe.MapNode(fs.SmoothTessellation(), name='mov_smooth', iterfield=['in_file']) mov_surfs_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, keep_dtype=False, compress=False), name='mov_surfs_ds', run_without_submitting=True) mov_avg_ds = pe.Node( DerivativesDataSink( base_directory=str(output_dir.parent), out_path_base=output_dir.name, space=mov_template, keep_dtype=False, compress=False, source_file='group/tpl-{0}_T1w.nii.gz'.format(mov_template)), name='mov_avg_ds', run_without_submitting=True) wf.connect([ (inputnode, fssource, [(('participant_label', _sub_decorate), 'subject_id')]), (inputnode, cifti_wf, [ (('participant_label', _sub_decorate), 'inputnode.subject_id')]), (pick_file, cifti_wf, [('out', 'inputnode.in_t1w')]), (pick_file, tonii, [('out', 'reslice_like')]), # Select DKT aparc (fssource, tonative, [(('aparc_aseg', _last), 'seg_file'), ('rawavg', 'template_file'), ('aseg', 'reg_header')]), (tonative, tonii, [('vol_label_file', 'in_file')]), (tonii, ref_aparc, [('out_file', 'input_image')]), (tonii, mov_aparc, [('out_file', 'input_image')]), (ref_norm, ref_aparc, [('composite_transform', 'transforms')]), (mov_norm, mov_aparc, [('composite_transform', 'transforms')]), (ref_buffer, ref_join_labels, [ ('fixed_image', 'atlas_image')]), (ref_aparc, ref_aparc_buffer, [('output_image', 'aparc')]), (ref_aparc_buffer, ref_join_labels, [ ('aparc', 'atlas_segmentation_image')]), (mov_buffer, mov_join_labels, [ ('moving_image', 'atlas_image')]), (mov_aparc, mov_aparc_buffer, [('output_image', 'aparc')]), (mov_aparc_buffer, mov_join_labels, [ ('aparc', 'atlas_segmentation_image')]), # Datasinks (ref_join_labels, ref_join_labels_ds, [('out_label_fusion', 'in_file')]), (ref_join_labels, ref_join_probs_ds, [ ('out_label_post_prob', 'in_file'), (('out_label_post_prob', _get_extra), 'extra_values')]), # (ref_join_labels, ref_join_voting_ds, [ # ('out_atlas_voting_weight_name_format', 'in_file')]), (mov_join_labels, mov_join_labels_ds, [('out_label_fusion', 'in_file')]), (mov_join_labels, mov_join_probs_ds, [ ('out_label_post_prob', 'in_file'), (('out_label_post_prob', _get_extra), 'extra_values')]), (pick_file, ref_aparc_ds, [('out', 'source_file')]), (ref_aparc, ref_aparc_ds, [('output_image', 'in_file')]), (pick_file, mov_aparc_ds, [('out', 'source_file')]), (mov_aparc, mov_aparc_ds, [('output_image', 'in_file')]), # Mapping ref surfaces (cifti_wf, gii2csv, [ (('outputnode.surf_norm', _discard_inflated), 'in_file')]), (gii2csv, ref_map_surf, [('out_file', 'input_file')]), (ref_norm, ref_map_surf, [ (('inverse_composite_transform', _ensure_list), 'transforms')]), (ref_map_surf, ref_csv2gii, [('output_file', 'in_file')]), (cifti_wf, ref_csv2gii, [ (('outputnode.surf_norm', _discard_inflated), 'gii_file')]), (pick_file, ref_surfs_ds, [('out', 'source_file')]), (ref_csv2gii, ref_surfs_ds, [ ('out_file', 'in_file'), (('out_file', _get_surf_extra), 'extra_values')]), (ref_csv2gii, ref_surfs_buffer, [('out_file', 'surfaces')]), (ref_surfs_buffer, ref_surfs_unzip, [('surfaces', 'in_files')]), (ref_surfs_unzip, ref_ply, [('out_files', 'in_files')]), (ref_ply, ref_recon, [('out_file', 'in_file')]), (ref_recon, ref_avggii, [('out_file', 'in_file')]), (ref_surfs_unzip, ref_avggii, [('surf_keys', 'surf_key')]), (ref_avggii, ref_smooth, [('out_file', 'in_file')]), (ref_smooth, ref_avg_ds, [ ('surface', 'in_file'), (('surface', _get_surf_extra), 'extra_values')]), # Mapping mov surfaces (gii2csv, mov_map_surf, [('out_file', 'input_file')]), (mov_norm, mov_map_surf, [ (('inverse_composite_transform', _ensure_list), 'transforms')]), (mov_map_surf, mov_csv2gii, [('output_file', 'in_file')]), (cifti_wf, mov_csv2gii, [ (('outputnode.surf_norm', _discard_inflated), 'gii_file')]), (pick_file, mov_surfs_ds, [('out', 'source_file')]), (mov_csv2gii, mov_surfs_ds, [ ('out_file', 'in_file'), (('out_file', _get_surf_extra), 'extra_values')]), (mov_csv2gii, mov_surfs_buffer, [('out_file', 'surfaces')]), (mov_surfs_buffer, mov_surfs_unzip, [('surfaces', 'in_files')]), (mov_surfs_unzip, mov_ply, [('out_files', 'in_files')]), (mov_ply, mov_recon, [('out_file', 'in_file')]), (mov_recon, mov_avggii, [('out_file', 'in_file')]), (mov_surfs_unzip, mov_avggii, [('surf_keys', 'surf_key')]), (mov_avggii, mov_smooth, [('out_file', 'in_file')]), (mov_smooth, mov_avg_ds, [ ('surface', 'in_file'), (('surface', _get_surf_extra), 'extra_values')]), ]) return wf
677218b13cbfc48881440523d87667eaed7ea2e8
18,753
def Qest(ICobj, r=None): """ Estimate Toomre Q at r (optional) for ICs, assuming omega=epicyclic frequency. Ignores disk self-gravity """ if not hasattr(ICobj, 'sigma'): raise ValueError, 'Could not find surface density profile (sigma)' G = SimArray(1.0, 'G') kB = SimArray(1.0, 'k') if r is None: r = ICobj.sigma.r_bins sigma = ICobj.sigma(r) T = ICobj.T(r) M = ICobj.settings.physical.M m = ICobj.settings.physical.m M = match_units(M, 'Msol')[0] m = match_units(m, 'm_p')[0] gamma = ICobj.settings.physical.gamma_cs() Q = np.sqrt(M*kB*T*gamma/(G*m*r**3))/(np.pi*sigma) Q.convert_units('1') return Q
f262c0f68683dc069dd983981b2cbd1d9a9e608a
18,754
def get_projector_csr_file(config_name: str) -> str: """Returns full path to projector server crt file""" return join(get_run_configs_dir(), config_name, f'{PROJECTOR_JKS_NAME}.csr')
159bc798d28bf23ce06d356591d8c41bcea40356
18,755
def make_epsilon_greedy_policy(Q: defaultdict, epsilon: float, nA: int) -> callable: """ Creates an epsilon-greedy policy based on a given Q-function and epsilon. I.e. create weight vector from which actions get sampled. :param Q: tabular state-action lookup function :param epsilon: exploration factor :param nA: size of action space to consider for this policy """ def policy_fn(observation): policy = np.ones(nA) * epsilon / nA best_action = np.random.choice(np.flatnonzero( # random choice for tie-breaking only Q[observation] == Q[observation].max() )) policy[best_action] += (1 - epsilon) return policy return policy_fn
f0fe733b18b416939db44acd830ee605bc41e18f
18,758
def write_init(proxy_parameters=None, exception=None): """Encodes and returns an MPI ('Metadata Init') response.""" return _write_init(Method.MPI, MetadataProviderError, proxy_parameters, exception)
0a73c4949796a93549e208da523e805894170193
18,759
def pfam_to_pubmed(family): """get a list of associated pubmed ids for given pfam access key. :param family: pfam accession key of family :type family: str :return: List of associated Pubmed ids :rettype:list""" url='https://pfam.xfam.org/family/'+family pattern='http://www.ncbi.nlm.nih.gov/pubmed/' return _xfam_to(url,pattern)
e3d63050d7e2e782ccd9d376fb4cd2d33c177be6
18,760
def cvConvexHull2(input, hull_storage=None, orientation=CV_CLOCKWISE, return_points=0): """CvSeq_or_CvMat cvConvexHull2(list_or_tuple_of_CvPointXYZ input, void* hull_storage=NULL, int orientation=CV_CLOCKWISE, int return_points=0) Finds convex hull of point set [ctypes-opencv] OpenCV's note: a vertex of the detected convex hull can be represented by: a point of the same type with every point in 'input', if return_points==1 an index to a point in 'input', if return_points==0 and hull_storage is a CvMat a pointer to a point in 'input', if return_points==0 and hull_storage is a CvStorage [ctypes-opencv] If input is a (subclass of) CvSeq, 'hull_storage' can be: None: detected vertices are stored in input's storage an instance of CvStorage or CvMat: detected vertices are stored here [ctypes-opencv] If input is 1d CvMat of 2D 32-bit points, 'hull_storage' can be: None: 'hull_storage' is internally created as a 1d CvMat of 2D 32-bit points. an instance of CvStorage or CvMat: detected vertices are stored here [ctypes-opencv] In any case, the function returns a sequence (CvSeq) of detected vertices if 'hull_storage' is an instance CvStorage, or 'hull_storage' itself if otherwise. """ if isinstance(input, _CvSeqStructure): # a sequence return pointee(_cvConvexHull2(input, hull_storage, orientation, return_points), input if hull_storage is None else hull_storage) if hull_storage is None: hull_storage = cvCreateMat(1, input.rows*input.cols, CV_MAT_TYPE(input) if return_points else CV_32SC1) _cvConvexHull2(input, hull_storage, orientation, return_points) return hull_storage
3def10577e29e6b9bcf2611ad194dca2f6e2feb7
18,761
from typing import Union from typing import Optional from typing import Dict def init_classifier(config: Union[str, mmcv.Config], checkpoint: Optional[str] = None, device: str = 'cuda:0', options: Optional[Dict] = None) -> nn.Module: """Prepare a few shot classifier from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str | None): Checkpoint path. If left as None, the model will not load any weights. Default: None. device (str): Runtime device. Default: 'cuda:0'. options (dict | None): Options to override some settings in the used config. Default: None. Returns: nn.Module: The constructed classifier. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') if options is not None: config.merge_from_dict(options) model = build_classifier(config.model) if checkpoint is not None: map_loc = 'cpu' if device == 'cpu' else None load_checkpoint(model, checkpoint, map_location=map_loc) # save the config in the model for convenience in later use model.cfg = config model.to(device) model.eval() return model
20f819892295f6bfeb9c01f4e6d558731a2f8e68
18,762
def Newton_method(f, df, start:float=0.0, max_step:int=32, sign_dig:int=6)->float: """ Newton method. --------------------------- Args: None. Returns: None. Raises: None. """ fun = lambda x: x - f(x)/df(x) return fixed_point(fun, start, max_step, sign_dig)
d3a803a1a10b6c6d34831efeccd6fb7bae43689a
18,764
def get_all(isamAppliance, count=None, start=None, filter=None, check_mode=False, force=False): """ Retrieve a list of federations """ return isamAppliance.invoke_get("Retrieve a list of federations", "{0}/{1}".format(uri, tools.create_query_string(count=count, start=start, filter=filter)), requires_modules=requires_modules, requires_version=requires_version)
d65529bfc953976247fd44cb50051d5efddf10ea
18,765
def roty(theta): """ Rotation about Y-axis @type theta: number @param theta: the rotation angle @rtype: 3x3 orthonormal matrix @return: rotation about Y-axis @see: L{rotx}, L{rotz}, L{rotvec} """ ct = cos(theta) st = sin(theta) return mat([[ct, 0, st], [0, 1, 0], [-st, 0, ct]])
702051efbd9f0999e04d5d7faca207c53520d712
18,766
def flush(name, family="ipv4", ignore_absence=False, **kwargs): """ .. versionadded:: 2014.7.0 .. versionchanged:: Magnesium Flush current nftables state family Networking family, either ipv4 or ipv6 ignore_absence If set to True, attempts to flush a non-existent table will not result in a failed state. .. versionadded:: Magnesium """ ret = {"name": name, "changes": {}, "result": None, "comment": ""} if __opts__["test"]: ret["comment"] = "nftables flush not performed in test mode." return ret for ignore in _STATE_INTERNAL_KEYWORDS: if ignore in kwargs: del kwargs[ignore] if "table" not in kwargs: kwargs["table"] = "filter" check_table = __salt__["nftables.check_table"](kwargs["table"], family=family) if not ignore_absence and not check_table["result"]: ret["result"] = False ret[ "comment" ] = "Failed to flush table {} in family {}, table does not exist.".format( kwargs["table"], family ) return ret if "chain" not in kwargs: kwargs["chain"] = "" else: check_chain = __salt__["nftables.check_chain"]( kwargs["table"], kwargs["chain"], family=family ) if not ignore_absence and not check_chain["result"]: ret["result"] = False ret[ "comment" ] = "Failed to flush chain {} in table {} in family {}, chain does not exist.".format( kwargs["chain"], kwargs["table"], family ) return ret res = __salt__["nftables.flush"](kwargs["table"], kwargs["chain"], family) if res["result"] or ( ignore_absence and (not check_table["result"] or not check_chain["result"]) ): ret["changes"] = {"locale": name} ret["result"] = True ret["comment"] = "Flush nftables rules in {} table {} chain {} family".format( kwargs["table"], kwargs["chain"], family ) return ret else: ret["result"] = False ret["comment"] = "Failed to flush nftables rules" return ret
67ab6d2f7e337ff5a68704be14d605298a1447aa
18,767
def solution(s): """ Check if a string has properly matching brackets :param s: String to verify if it is well-formed :return: 1 if the brackets are properly matching, 0 otherwise """ return check_matching_brackets(s, opening="(", closing=")")
4ba1bb92e0a1db05557980420f2fac3a88b93086
18,768
def process_to_annotation_data(df, class_names, video_fps, min_len): """ This function cleans the output data, so that there are no jumping frames. """ j = 1 # Helper # Minimum qty of frames of the same task in order to # consider it a whole task min_frames = int(float(min_len) * float(video_fps) * float(0.6)) # Initialize variables df["subgroup"] = (df.iloc[:, -1] != df.iloc[:, -1].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) # Modify jumping frames by considering the sourrounding frames # check for frames that jump (the total group of those frames are of a max of 7) for jj in range(min_frames): j = jj + 1 df["subgroup"] = (df.iloc[:, -2] != df.iloc[:, -2].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) cnt = 0 i_prev = 0 i_prev_cnt = 0 while len(added) > 0: added.sort() i = added[0] k = 1 # Helper prev = [] after = [] prev_yes = 0 after_yes = 0 if (i - k) > 0: prev = [df[df["subgroup"] == (i - k)].iloc[0, -2]] * len( df[df["subgroup"] == (i - k)] ) prev_yes = 1 if (i + k) < max(df["subgroup"]) + 1: after = [df[df["subgroup"] == (i + k)].iloc[0, -2]] * len( df[df["subgroup"] == (i + k)] ) after_yes = 1 check_loop = True if (prev_yes + after_yes) == 2: if mode(prev).mode[0] == mode(after).mode[0]: check_loop = False if check_loop: k = 1 # Helper while len(prev) < j + 2 - i_prev_cnt: k += 1 if (i - k) > 0: prev_i = [df[df["subgroup"] == (i - k)].iloc[0, -2]] * len( df[df["subgroup"] == (i - k)] ) prev.extend(prev_i) else: break k = 1 # Helper while len(after) < j + 2 - i_prev_cnt: k += 1 if (i + k) < max(df["subgroup"]) + 1: prev_i = [df[df["subgroup"] == (i + k)].iloc[0, -2]] * len( df[df["subgroup"] == (i + k)] ) after.extend(prev_i) else: break changeTo = prev changeTo.extend(after) changeTo = mode(changeTo).mode[0] else: changeTo = mode(prev).mode[0] change_idx = df.index[df["subgroup"] == i].tolist() df.iloc[change_idx, -2] = changeTo df["subgroup"] = (df.iloc[:, -2] != df.iloc[:, -2].shift(1)).cumsum() added = ( df["subgroup"] .value_counts()[df["subgroup"].value_counts() < (j + 1)] .index.tolist() ) added.sort() if i == i_prev: i_prev_cnt += 1 else: i_prev_cnt = 0 i_prev = i cnt += 1 if cnt > max(df["subgroup"]) * (j + 2): break # Modify the output shape so that for each task we have start frame and end frame output_df = pd.DataFrame(columns=["task", "startTime", "endTime"]) for i in range(max(df["subgroup"])): df_i = df[df["subgroup"] == (i + 1)] task_str = str(class_names[int(df_i.iloc[0]["task_label"])]) start_frame = int(min(df_i["frame"])) start_frame = frame_to_time(start_frame, video_fps) end_frame = int(max(df_i["frame"])) end_frame = frame_to_time(end_frame, video_fps) output_df = output_df.append( pd.DataFrame( [[task_str] + [start_frame] + [end_frame]], columns=["task", "startTime", "endTime"], ) ) return output_df
eaa0537b217030664562489a2ceeec63cf7b32c0
18,769
def reduce_memmap(a): """Pickle the descriptors of a memmap instance to reopen on same file.""" m = _get_backing_memmap(a) if m is not None: # m is a real mmap backed memmap instance, reduce a preserving striding # information return _reduce_memmap_backed(a, m) else: # This memmap instance is actually backed by a regular in-memory # buffer: this can happen when using binary operators on numpy.memmap # instances return (loads, (dumps(np.asarray(a), protocol=HIGHEST_PROTOCOL),))
4e4caf6bb5f1be1f62537c45671010232665ec0c
18,770
def load_sparse_csr(filename): """Load a saved sparse matrix in csr format. Stolen from above source.""" loader = np.load(filename) return sparse.csr_matrix((loader['data'], loader['indices'], loader['indptr']), shape=loader['shape'])
9654e8baedf5ada8b626d86860aef2335a04b565
18,771
from typing import Optional def blank(name: Optional[str]) -> Output: """Generate a blank `Output` instance.""" return Output(file_suffix=name or _DEFAULT_SUFFIX, variables=dict())
0811dd8875983b89a8ae82a204243419effddcb4
18,772
def estatistica_regras(regras_pt, regras_lgp): """ Contagem das regras morfossintáticas no corpus. :param regras_pt: Lado português das regras (lista) :param regras_lgp: Lado LGP das regras (lista) :return: Dicionário com a frequência de cada regra. Ex: {"(0, 'INT')": 1, "(1, 'CAN')": 1, "(2, 'INT')": 1} """ estatistica = {} repetido = set() for i in range(len(regras_pt)): tipo = regras_pt[i][1] if i in repetido: continue if tipo == "": tipo = "CAN" if str((i,tipo)) not in estatistica.keys(): estatistica[str((i, tipo))]= 1 for j in range(len(regras_pt)): a = regras_pt[i] b = regras_lgp[i] c = regras_pt[j] d = regras_lgp[j] if i >= j: continue if j in repetido: continue if compara_regra(a,b,c,d): repetido.add(j) tipo = regras_pt[j][1] if tipo == "": tipo = "CAN" estatistica[str((i,tipo))] +=1 if str((j, tipo)) in estatistica.keys(): del estatistica[str((j,tipo))] else: tipo = regras_pt[j][1] if tipo == "": tipo = "CAN" if str((j, tipo)) not in estatistica.keys(): estatistica.setdefault(str((j,tipo)),0) estatistica[str((j, tipo))] += 1 return estatistica
67e1edae2d0418e1a36eefbb16ea4795b04728d6
18,773
def bq_create_dataset(bq_client): """Creates the BigQuery dataset. If the dataset already exists, the existing dataset will be returned. Dataset will be create in the location specified by DATASET_LOCATION. Args: bq_client: BigQuery client Returns: BigQuery dataset that will be used to store data. """ dataset_id = "{}.{}".format(bq_client.project, DATASET_NAME) dataset = bigquery.Dataset(dataset_id) dataset.location = DATASET_LOCATION dataset = bq_client.create_dataset(dataset, exists_ok=True) return dataset
ff2c0072210541261aff58ef8c590e94260e046d
18,775
def root_node(): """ Returns DCC scene root node :return: str """ return scene.get_root_node()
3a632bc0887a5c3a5696ec10f4387c917d12bfe5
18,776
def firsts(things): """ FIRSTS list outputs a list containing the FIRST of each member of the input list. It is an error if any member of the input list is empty. (The input itself may be empty, in which case the output is also empty.) This could be written as:: to firsts :list output map \"first :list end but is provided as a primitive in order to speed up the iteration tools MAP, MAP.SE, and FOREACH:: to transpose :matrix if emptyp first :matrix [op []] op fput firsts :matrix transpose bfs :matrix end """ return [first(thing) for thing in things]
72141a7409cb17ac6785eabde91b45d5e9e0869f
18,777
def inf_set_mark_code(*args): """ inf_set_mark_code(_v=True) -> bool """ return _ida_ida.inf_set_mark_code(*args)
0395ab40bac5f036210802fdf548534c83c78951
18,778
def get_letter(xml): """ :param xml: :return: everything between <bank> tag """ try: left, right = xml.index('<bank '), xml.index('</bank>') + _BANK_OFFSET return xml[left:right] except ValueError: return None
3c7a601b2a25969902d530e3e17a48ddcf0819c1
18,779
def PowercycleNode(opts, args): """Remove a node from the cluster. @param opts: the command line options selected by the user @type args: list @param args: should contain only one element, the name of the node to be removed @rtype: int @return: the desired exit code """ node = args[0] if (not opts.confirm and not AskUser("Are you sure you want to hard powercycle node %s?" % node)): return 2 op = opcodes.OpNodePowercycle(node_name=node, force=opts.force) result = SubmitOrSend(op, opts) if result: ToStderr(result) return 0
557b48309bb897da29cc1c1f6f724cd6d3959e23
18,781
def collect_data(bids_dir, participant_label, queries, filters=None, bids_validate=True): """ Uses pybids to retrieve the input data for a given participant """ if isinstance(bids_dir, BIDSLayout): layout = bids_dir else: layout = BIDSLayout(str(bids_dir), validate=bids_validate) bids_filters = filters or {} for acq, entities in bids_filters.items(): queries[acq].update(entities) subj_data = { dtype: sorted( layout.get( return_type="file", subject=participant_label, extension=["nii", "nii.gz"], **query ) ) for dtype, query in queries.items() } return subj_data, layout
eaa15a3b3dacbae7c16b03f0c6347d71d939b57d
18,782
def minimaldescriptives(inlist): """this function takes a clean list of data and returns the N, sum, mean and sum of squares. """ N = 0 sum = 0.0 SS = 0.0 for i in range(len(inlist)): N = N + 1 sum = sum + inlist[i] SS = SS + (inlist[i] ** 2) mean = sum / float(N) return N, sum, mean, SS
ca1d821ef64b93218bdb22268bfdde737f2d731c
18,783
def gen_filelist(infiles, tmpd) : """Write all audio files to a temporary text document for ffmpeg Returns the path of that text document.""" filename = tmpd/"files.txt" with open(filename, "w") as f: for file in infiles: # This part ensures that any apostrophes are escaped file = str(file).split("'") if len(file) > 1: file = "'\\''".join(file) else: file = file[0] # Write the file line f.write("file '"+file+"'\n") return filename
c7d21c62de34fea98725a39fec735836e0cfd3d9
18,784
def VMMemoryLower() -> tvm.ir.transform.Pass: """Perform memory lowering. Lowers the relax.builtin.alloc_tensor intrinsic to VM intrinsics. Returns ------- ret: tvm.ir.transform.Pass """ return _ffi_api.VMMemoryLower()
f636ea5f854e42413395669d1a0da3c2e439fb1e
18,786
def _is_disk_larger_than_max_size(device, node_uuid): """Check if total disk size exceeds 2TB msdos limit :param device: device path. :param node_uuid: node's uuid. Used for logging. :raises: InstanceDeployFailure, if any disk partitioning related commands fail. :returns: True if total disk size exceeds 2TB. Returns False otherwise. """ try: disksize_bytes, err = utils.execute('blockdev', '--getsize64', device, use_standard_locale=True, run_as_root=True) except (processutils.UnknownArgumentError, processutils.ProcessExecutionError, OSError) as e: msg = (_('Failed to get size of disk %(disk)s for node %(node)s. ' 'Error: %(error)s') % {'disk': device, 'node': node_uuid, 'error': e}) LOG.error(msg) raise exception.InstanceDeployFailure(msg) disksize_mb = int(disksize_bytes.strip()) // 1024 // 1024 return disksize_mb > MAX_DISK_SIZE_MB_SUPPORTED_BY_MBR
ed39e885825cec7c2fba895121741b43e3661a58
18,787
def getLines(filename): """Return list of lines from file""" with open(filename, 'r', errors='ignore') as ff: return ff.readlines()
36e515decaa3876eed3b5db8363fb81a5db89c84
18,788
import torch def bbox_next_frame_v3(F_first, F_pre, seg_pre, seg_first, F_tar, bbox_first, bbox_pre, temp, name): """ METHOD: combining tracking & direct recognition, calculate bbox in target frame using both first frame and previous frame. """ F_first, F_pre, seg_pre, seg_first, F_tar = squeeze_all(F_first, F_pre, seg_pre, seg_first, F_tar) c, h, w = F_first.size() coords_pre_tar = match_ref_tar(F_pre, F_tar, seg_pre, temp) coords_first_tar = match_ref_tar(F_first, F_tar, seg_first, temp) coords_tar = {} for cnt, coord_first in coords_first_tar.items(): coord_pre = coords_pre_tar[cnt] # fall-back schema if(coord_pre is None): coord_tar_ = coord_first else: coord_tar_ = coord_pre coords_tar[cnt] = coord_tar_ _, seg_pre_idx = torch.max(seg_pre, dim = 0) coords_tar = clean_coords(coords_tar, bbox_pre, threshold=4) bbox_tar = bbox_in_tar(coords_tar, bbox_first, h, w) # recoginition seg_pred = recoginition(F_first, F_tar, bbox_first, bbox_tar, seg_first, temp) seg_cleaned = clean_seg(seg_pred, bbox_tar, threshold=1) # move bbox w.r.t cleaned seg bbox_tar = shift_bbox(seg_cleaned, bbox_tar) seg_post = post_process_seg(seg_pred.unsqueeze(0)) return seg_pred, seg_post, bbox_tar
62d782a04b5d7c114fe0096fec50d6cd2d9db7bf
18,789
def hough_lines(img, rho=2, theta=np.pi / 180, threshold=20, min_line_len=5, max_line_gap=25, thickness=3): """Perform a Hough transform on img Args: img (numpy.ndarray): input image rho (float, optional): distance resolution in pixels of the Hough grid theta (float, optional): angular resolution in radians of the Hough grid threshold (float, optional): minimum number of votes (intersections in Hough grid cell) min_line_len (int, optional): minimum number of pixels making up a line max_line_gap (int, optional): maximum gap in pixels between connectable line segments thickness (int, optional): thickness of lines drawn on resulting image Returns: numpy.ndarray: result image """ # Hough transform lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8) # Line extrapolation extrapolated_lines = extrapolate_lines(lines, line_img.shape) # Image display draw_lines(line_img, extrapolated_lines, thickness=thickness) return line_img
f797e8b24255225d4c2beb41677da3fa6c6e42d6
18,790
import packaging def verify_package_version(ctx, config, remote): """ Ensures that the version of package installed is what was asked for in the config. For most cases this is for ceph, but we also install samba for example. """ # Do not verify the version if the ceph-deploy task is being used to # install ceph. Verifying the ceph installed by ceph-deploy should work, # but the qa suites will need reorganized first to run ceph-deploy # before the install task. # see: http://tracker.ceph.com/issues/11248 if config.get("extras"): log.info("Skipping version verification...") return True if 'repos' in config and config.get('repos'): log.info("Skipping version verification because we have custom repos...") return True builder = _get_builder_project(ctx, remote, config) version = builder.version pkg_to_check = builder.project installed_ver = packaging.get_package_version(remote, pkg_to_check) if installed_ver and version in installed_ver: msg = "The correct {pkg} version {ver} is installed.".format( ver=version, pkg=pkg_to_check ) log.info(msg) else: raise RuntimeError( "{pkg} version {ver} was not installed, found {installed}.".format( ver=version, installed=installed_ver, pkg=pkg_to_check ) )
5ab0177738ccec3879c0383a13038515b2d6b6e9
18,791
def decrypt(v1: int, v2: int): """funcao desencriptadora""" palavra_encriptada = int(v1) ^ int(v2) desencriptada = palavra_encriptada.to_bytes((palavra_encriptada.bit_length() + 7) // 8, 'big') return desencriptada.decode()
19887e070f0c6ae7e68f677d69c2c5eb24761bdb
18,793
def enforce_mixture_consistency_time_domain(mixture_waveforms, separated_waveforms, mix_weights=None, mix_weights_type=''): """Projection implementing mixture consistency in time domain. This projection makes the sum across sources of separated_waveforms equal mixture_waveforms and minimizes the unweighted mean-squared error between the sum across sources of separated_waveforms and mixture_waveforms. See https://arxiv.org/abs/1811.08521 for the derivation. Args: mixture_waveforms: Tensor of mixture waveforms in waveform format. separated_waveforms: Tensor of separated waveforms in source image format. mix_weights: None or Tensor of weights used for mixture consistency, shape should broadcast with denoised_waveforms. Overrides mix_weights_type. mix_weights_type: Type of weights used for mixture consistency. Options are: `` - No weighting. `magsq` - Mix weights are magnitude-squared of the separated signal. Returns: Projected separated_waveforms as a Tensor in source image format. """ # Modify the source estimates such that they sum up to the mixture, where # the mixture is defined as the sum across sources of the true source # targets. Uses the least-squares solution under the constraint that the # resulting source estimates add up to the mixture. num_sources = tf.shape(separated_waveforms)[1] # Add a sources axis to mixture_spectrograms. mix = tf.expand_dims(mixture_waveforms, axis=1) # mix is now of shape: # (batch_size, 1, num_mics, samples). mix_estimate = tf.reduce_sum(separated_waveforms, axis=1, keepdims=True) # mix_estimate is of shape: # (batch_size, 1, num_mics, samples). if mix_weights is None: if mix_weights_type == 'magsq': mix_weights = tf.reduce_mean(tf.square(separated_waveforms), axis=[2, 3], keepdims=True) mix_weights /= tf.reduce_sum(mix_weights, axis=1, keepdims=True) else: mix_weights = (1.0 / num_sources) mix_weights = tf.cast(mix_weights, mix.dtype) correction = mix_weights * (mix - mix_estimate) separated_waveforms = separated_waveforms + correction return separated_waveforms
294b1d927394ef388967de529ac5f24382ceec2c
18,794
def MatchNormsLoss(anchor_tensors, paired_tensors): """A norm on the difference between the norms of paired tensors. Gradients are only applied to the paired_tensor. Args: anchor_tensors: batch of embeddings deemed to have a "correct" norm. paired_tensors: batch of embeddings that will be pushed to the norm of anchor_tensors. Returns: A scalar loss """ anchor_norms = tf.stop_gradient(tf.norm(anchor_tensors, axis=1)) paired_norms = tf.norm(paired_tensors, axis=1) tf.summary.histogram('norms_difference', tf.nn.l2_loss(anchor_norms -paired_norms)) loss = tf.reduce_mean(tf.nn.l2_loss(anchor_norms-paired_norms)) return loss
02f62a90cf51547b4af6063ad13be1bb712dfe5a
18,795
def authenticate_begin(username, **_): """ Begin authentication procedure Variables: username user name of the user you want to login with Arguments: None Data Block: None Result example: <WEBAUTHN_AUTHENTICATION_DATA> """ user = STORAGE.user.get(username, as_obj=False) if not user: return make_api_response({'success': False}, err="Bad Request", status_code=400) session.pop('state', None) security_tokens = user.get('security_tokens', {}) or {} credentials = [AttestedCredentialData(websafe_decode(x)) for x in security_tokens.values()] auth_data, state = server.authenticate_begin(credentials) session['state'] = state return make_api_response(list(cbor.encode(auth_data)))
6a42bfd2aba2f17f7ee7ec892bf23ef2f0221ee0
18,797
def tempSHT31(): """Read temp and humidity from SHT31""" return sht31sensor.get_temp_humi()
1e934ad3a467d48019ec91e18ffab4e8d4c473ae
18,798
import requests def dog(argv, params): """Returns a slack attachment with a picture of a dog from thedogapi""" # Print prints logs to cloudwatch # Send response to response url dogurl = 'https://api.thedogapi.com/v1/images/search?mime_types=jpg,png' dogr = requests.get(dogurl) url = dogr.json()[0].get('url') payload = { 'statusCode': '200', "attachments": [ { "author_name": '@{} /catops dog'.format( params.get('user_name', ['CatOps'])[0]), "fallback": "Woof woof.", "title": "Woof!", "text": "Evil doggo.", "image_url": url, "color": "#764FA5" } ], 'response_type': 'in_channel', 'headers': {'Content-Type': 'application/json'} } return payload
cb80426e6cab0aa2fc58b78baa0ff225d654f04a
18,799
def get_public_suffix (domain): """ get_public_suffix("www.example.com") -> "example.com" Calling this function with a DNS name will return the public suffix for that name. Note that if the input does not contain a valid TLD, e.g. "xxx.residential.fw" in which "fw" is not a valid TLD, the returned public suffix will be "fw", and TLD will be empty Note that for internationalized domains the list at http://publicsuffix.org uses decoded names, so it is up to the caller to decode any Punycode-encoded names. """ global Root, Domain_to_t2ld_cache try: return Domain_to_t2ld_cache [domain] except KeyError: parts = domain.lower().lstrip('.').split('.') hits = [None] * len(parts) _lookup_node (hits, 1, Root, parts) for i, what in enumerate(hits): if what is not None and what == 0: t2ld = '.'.join(parts[i:]) Domain_to_t2ld_cache [domain] = t2ld return t2ld
8982df4677f1a1853fa328973cfc00c17796e3d8
18,800
from scipy.interpolate import interp1d def interpol(data,x): """ Resamples data by given factor with interpolation """ # Resamples data by given factor by interpolation x0 = np.linspace(0, len(data)-1, len(data)) x1 = np.linspace(0, len(data)-1, len(data)*x-(x-1)) f = interp1d(x0, data) return f(x1)
85cb9c9d776abc8317edbf1df5935e78ac774c02
18,801
import torch def convert_to_torch_tensors(X_train, y_train, X_test, y_test): """ Function to quickly convert datasets to pytorch tensors """ # convert training data _X_train = torch.LongTensor(X_train) _y_train = torch.FloatTensor(y_train) # convert test data _X_test = torch.LongTensor(X_test) _y_test = torch.FloatTensor(y_test) # return the tensors return _X_train, _y_train, _X_test, _y_test
0d40fe19c977b25e3a2571adc98790d7058a77d9
18,802
def api_auth(func): """ If the user is not logged in, this decorator looks for basic HTTP auth data in the request header. """ @wraps(func) def _decorator(request, *args, **kwargs): authentication = APIAuthentication(request) if authentication.authenticate(): return func(request, *args, **kwargs) raise Http404 return _decorator
624c997dae9da9b698b1dccbd5293027d54d0fc8
18,803
def object_miou(y_true, y_pred, num_classes=cfg.num_classes): """ 衡量图中目标的iou :param y_true: 标签 :param y_pred: 预测 :param num_classes: 分类数量 :return: miou """ confusion_matrix = get_confusion_matrix(y_true, y_pred, num_classes) # Intersection = TP Union = TP + FP + FN # IoU = TP / (TP + FP + FN) # 取对角元素的值,对角线上的值可认为是TP或是交集 intersection = tf.linalg.diag_part(confusion_matrix) # axis = 1表示混淆矩阵行的值;axis = 0表示取混淆矩阵列的值,都是返回一个一维列表,需要求和 union = tf.reduce_sum(confusion_matrix, axis=1) + tf.reduce_sum(confusion_matrix, axis=0) - intersection intersection = intersection union = union iou = intersection / union # 其值为各个类别的IoU # 避免nan iou = tf.where(tf.math.is_nan(iou), tf.zeros_like(iou), iou) # 不求包含背景部分的iou miou = tf.reduce_mean(iou[1:]) return miou
1051fe488fb4b16760bb256265d11b33aa613743
18,804
import datetime def post_discussion(title: str, content: str, path: str, top: bool, private: bool = False): """ 发送讨论 参数: title:str 讨论题目 content:str 内容 path:str 路径 top:bool 是否置顶 返回 { "code":-1,//是否成功执行 "discussion_id":"成功执行时的讨论ID", "message":"错误信息" } """ if not session.get("uid"): return make_response(-1, message="请登录") user: User = User.by_id(int(session.get("uid"))) if not permission_manager.has_permission(user.id, "discussion.manage") and top: return make_response(-1, message="只有管理员才能发置顶讨论") if not can_post_at(user, path): return make_response(-1, message="你无权在这里发帖") if not title: return make_response(-1, message="标题不得为空") discussion = Discussion() discussion.content = content discussion.title = title discussion.path = path discussion.time = datetime.datetime.now() discussion.top = top discussion.uid = user.id discussion.private = private db.session.add(discussion) db.session.commit() return make_response(0, discussion_id=discussion.id)
b633da456a8ca05d592efb3e1dd16c8a7a465e23
18,805
from operator import and_ def _get_fields_usage_data(session): """ Obtaining metrics of field usage in lingvodoc, the metrics are quantity of all/deleted dictionary perspectives using this field (also with URLs) and quantity of lexical entries in such dictionary perspectives Result: dict { (client_id, object_id): dict { 'URLs': list['url_string', ...], 'metrics': dict { 'dp': dict { 'sum': quantity of all parent dictionary perspectives, 'deleted': quantity of deleted parent dictionary perspectives }, 'le': dict { 'sum': quantity of lexical entries of all parent dictionary perspectives, 'deleted': quantity of lexical entries of deleted parent dictionary perspectives } } } } """ f_client_id = Field.client_id.label('field_client_id') f_object_id = Field.object_id.label('field_object_id') dp_client_id = DictionaryPerspective.client_id.label('dictionary_perspective_client_id') dp_object_id = DictionaryPerspective.object_id.label('dictionary_perspective_object_id') dp_marked_for_deletion = \ DictionaryPerspective.marked_for_deletion.label('dictionary_perspective_marked_for_deletion') subquery = session.query(f_client_id, f_object_id, dp_client_id, dp_object_id, dp_marked_for_deletion) subquery = subquery.select_from(Field).join(DictionaryPerspectiveToField, and_(DictionaryPerspectiveToField.field_client_id == Field.client_id, DictionaryPerspectiveToField.field_object_id == Field.object_id)) subquery = subquery.filter(DictionaryPerspective.marked_for_deletion == False, Field.marked_for_deletion == False) subquery = subquery.join(DictionaryPerspective, and_(DictionaryPerspectiveToField.parent_client_id == DictionaryPerspective.client_id, DictionaryPerspectiveToField.parent_object_id == DictionaryPerspective.object_id)) subquery = subquery.distinct(Field.client_id, Field.object_id, DictionaryPerspective.client_id, DictionaryPerspective.object_id) subquery = subquery.order_by(Field.client_id, Field.object_id, DictionaryPerspective.client_id, DictionaryPerspective.object_id) log.info(subquery) fields_usage = dict() try: for data in subquery.all(): field_id = (data.field_client_id, data.field_object_id) if not fields_usage.get(field_id, None): fields_usage[field_id] = { 'URLs': list(), 'metrics': { 'dp': { 'sum': 0, 'deleted': 0 }, 'le': { 'sum': 0, 'deleted': 0 } } } fields_usage[field_id]['URLs'].append( _dictionary_perspective_url( data.dictionary_perspective_client_id, data.dictionary_perspective_object_id ) ) except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields usage URLs at ' + __name__) log.warning(ex) raise subquery = subquery.subquery('subquery') query = session.query('subquery.field_client_id', 'subquery.field_object_id', func.count('*'), 'subquery.dictionary_perspective_marked_for_deletion') query = query.select_from(subquery).group_by('subquery.field_client_id', 'subquery.field_object_id', 'subquery.dictionary_perspective_marked_for_deletion') query = query.order_by('subquery.field_client_id', 'subquery.field_object_id') log.info(query) try: for data in query.all(): usage = fields_usage.get((data[0], data[1]), None) if usage: if data[3]: usage['metrics']['dp']['deleted'] += data[2] usage['metrics']['dp']['sum'] += data[2] except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields dictionary perspective metrics at ' + __name__) log.warning(ex) raise query = session.query('subquery.field_client_id', 'subquery.field_object_id', func.count('*'), 'subquery.dictionary_perspective_marked_for_deletion') query = query.select_from(LexicalEntry) query = query.join(subquery, and_('subquery.dictionary_perspective_client_id = lexicalentry.parent_client_id', 'subquery.dictionary_perspective_object_id = lexicalentry.parent_object_id')) query = query.filter('lexicalentry.marked_for_deletion = false') query = query.group_by('subquery.field_client_id', 'subquery.field_object_id', 'subquery.dictionary_perspective_marked_for_deletion') log.info(query) try: for data in query.all(): usage = fields_usage.get((data[0], data[1]), None) if usage: if data[3]: usage['metrics']['le']['deleted'] += data[2] usage['metrics']['le']['sum'] += data[2] except exc.SQLAlchemyError as ex: log.warning('Failed to obtain fields lexical entry metrics at ' + __name__) log.warning(ex) raise return fields_usage
d57fb6fd0c07e22ac62ba63e5ba5b72189481aed
18,807
def test_merge_batch_grad_transforms_same_key_same_trafo(): """Test merging multiple ``BatchGradTransforms`` with same key and same trafo.""" def func(t): return t bgt1 = BatchGradTransformsHook({"x": func}) bgt2 = BatchGradTransformsHook({"x": func}) merged = Cockpit._merge_batch_grad_transform_hooks([bgt1, bgt2]) assert len(merged._transforms.keys()) == 1 assert id(merged._transforms["x"]) == id(func)
10aade423092d39e6a7d754c0ceecfdb53226b53
18,809
import atexit import time def main(selected_ssids, sample_interval, no_header, args=None): """ Repeatedly check internet connection status (connected or disconnected) for given WiFi SSIDs. Output is writen as .csv to stdout. """ wireless_connections = [ c for c in NetworkManager.Settings.Connections if '802-11-wireless' in c.GetSettings().keys() ] known_ssids = [ c.GetSettings()['802-11-wireless']['ssid'] for c in wireless_connections ] # confirm selected ssids are available as network manager connections for ssid in selected_ssids: assert ssid in known_ssids, f"SSID '{ssid}' not found in network manager connections. Available SSIDs: {sorted(known_ssids)}" # get the network manager connection objects for the selected ssids connections = { ssid: connection for connection in wireless_connections for ssid in selected_ssids if connection.GetSettings()['802-11-wireless']['ssid'] == ssid } # get the wireless device wireless_devs = [ d for d in NetworkManager.NetworkManager.GetDevices() if d.DeviceType == NetworkManager.NM_DEVICE_TYPE_WIFI ] assert len(wireless_devs) > 0, "No wifi device found. Aborting" wireless_dev = wireless_devs[0] # save the current active connection, to restore once this script exits initial_connection = wireless_dev.ActiveConnection.Connection if wireless_dev.ActiveConnection else None def restore_initial_connection(): if initial_connection: NetworkManager.NetworkManager.ActivateConnection( initial_connection, wireless_dev, "/") atexit.register(restore_initial_connection) # write the csv header if not no_header: print("timestamp,ssid,device_connected,ping_successful", flush=True) # begin logging loop. next_log_time = time.time() while True: # wait for the next logging iteration restore_initial_connection( ) # leave initial connection active while waiting time.sleep(max(next_log_time - time.time(), 0)) next_log_time += sample_interval * 60 for ssid in selected_ssids: # activate the connection if wireless_dev.State == NetworkManager.NM_DEVICE_STATE_ACTIVATED: wireless_dev.Disconnect() NetworkManager.NetworkManager.ActivateConnection( connections[ssid], wireless_dev, "/") connected = wait_for_connection(wireless_dev) if connected: # now test internet (by pinging google) ping_successful = ping("www.google.com") else: ping_successful = False # write out result print( f"{time.time()},{ssid},{int(connected)},{int(ping_successful)}", flush=True) return 0
f47e13bdb994e450b8bb77e26e0da3d25014032f
18,810
def getNarrowBandULAMIMOChannel(azimuths_tx, azimuths_rx, p_gainsdB, number_Tx_antennas, number_Rx_antennas, normalizedAntDistance=0.5, angleWithArrayNormal=0, pathPhases=None): """This .m file uses ULAs at both TX and RX. - assumes one beam per antenna element the first column will be the elevation angle, and the second column is the azimuth angle correspondingly. p_gain will be a matrix size of (L, 1) departure angle/arrival angle will be a matrix as size of (L, 2), where L is the number of paths t1 will be a matrix of size (nt, nr), each element of index (i,j) will be the received power with the i-th precoder and the j-th combiner in the departing and arrival codebooks respectively :param departure_angles: ((elevation angle, azimuth angle),) (L, 2) where L is the number of paths :param arrival_angles: ((elevation angle, azimuth angle),) (L, 2) where L is the number of paths :param p_gaindB: path gain (L, 1) in dB where L is the number of paths :param number_Rx_antennas, number_Tx_antennas: number of antennas at Rx and Tx, respectively :param pathPhases: in degrees, same dimension as p_gaindB :return: """ azimuths_tx = np.deg2rad(azimuths_tx) azimuths_rx = np.deg2rad(azimuths_rx) # nt = number_Rx_antennas * number_Tx_antennas #np.power(antenna_number, 2) m = np.shape(azimuths_tx)[0] # number of rays H = np.matrix(np.zeros((number_Rx_antennas, number_Tx_antennas))) gain_dB = p_gainsdB path_gain = np.power(10, gain_dB / 10) path_gain = np.sqrt(path_gain) #generate uniformly distributed random phase in radians if pathPhases is None: pathPhases = 2*np.pi * np.random.rand(len(path_gain)) else: #convert from degrees to radians pathPhases = np.deg2rad(pathPhases) #include phase information, converting gains in complex-values path_complexGains = path_gain * np.exp(-1j * pathPhases) # recall that in the narrowband case, the time-domain H is the same as the # frequency-domain H for i in range(m): # at and ar are row vectors (using Python's matrix) at = np.matrix(arrayFactorGivenAngleForULA(number_Tx_antennas, azimuths_tx[i], normalizedAntDistance, angleWithArrayNormal)) ar = np.matrix(arrayFactorGivenAngleForULA(number_Rx_antennas, azimuths_rx[i], normalizedAntDistance, angleWithArrayNormal)) H = H + path_complexGains[i] * ar.conj().T * at # outer product of ar Hermitian and at #factor = (np.linalg.norm(path_complexGains) / np.sum(path_complexGains)) * np.sqrt( # number_Rx_antennas * number_Tx_antennas) # scale channel matrix #H *= factor # normalize for compatibility with Anum's Matlab code return H
bb201abaca60e2855e86a41d9c581599b9ab0c22
18,811
def get_pybricks_reset_vector(): """Gets the boot vector of the pybricks firmware.""" # Extract reset vector from dual boot firmware. with open("_pybricks/firmware-dual-boot-base.bin", "rb") as pybricks_bin_file: pybricks_bin_file.seek(4) return pybricks_bin_file.read(4)
7d504e7e6e6ca444932fd61abb701a010a259254
18,812
def nSideCurve(sides=6, radius=1.0): """ nSideCurve( sides=6, radius=1.0 ) Create n-sided curve Parameters: sides - number of sides (type=int) radius - radius (type=float) Returns: a list with lists of x,y,z coordinates for curve points, [[x,y,z],[x,y,z],...n] (type=list) """ newpoints = [] step = 2.0 / sides i = 0 while i < sides: t = i * step x = sin(t * pi) * radius y = cos(t * pi) * radius newpoints.append([x, y, 0]) i += 1 return newpoints
d64668ae2fdbd2dc06b36fb2523e09a8cc380d6f
18,813
def _get_corr_mat(corr_transform, n_dim): """ Input check for the arguments passed to DirectionalSimulator""" if corr_transform is None: return np.eye(n_dim) if not isinstance(corr_transform, np.ndarray) or corr_transform.ndim < 2: err_msg = "corr_transform must be a 2-D numpy array" raise ValueError(err_msg) if corr_transform.shape[0] != n_dim: err_msg = "Inconsistent number of marginal distributions and " err_msg += "corr_transform shape" raise ValueError(err_msg) if corr_transform.shape[0] != corr_transform.shape[1]: err_msg = "corr_transform must be square" raise ValueError(err_msg) if not (corr_transform == corr_transform.T).all(): err_msg = "corr_transform must be symmetrical" raise ValueError(err_msg) return corr_transform
94909cc43322e8eebf14942cd39817d10bd744fa
18,814
def get_flowline_routing(NHDPlus_paths=None, PlusFlow=None, mask=None, mask_crs=None, nhdplus_crs=4269): """Read a collection of NHDPlus version 2 PlusFlow (routing) tables from one or more drainage basins and consolidate into a single pandas DataFrame, returning the `FROMCOMID` and `TOCOMID` columns. Parameters ---------- NHDPlus_paths : sequence Sequence of paths to the top level folder for each drainage basin. For example: .. code-block:: python ['NHDPlus/NHDPlusGL/NHDPlus04', 'NHDPlus/NHDPlusMS/NHDPlus07'] by default None PlusFlow : string or sequence Single path to a PlusFlow table or sequence of PlusFlow table filepaths, by default None Returns ------- flowline_routing : DataFrame [description] Raises ------ ValueError [description] """ if NHDPlus_paths is not None: flowlines_files, pfvaa_files, pf_files, elevslope_files = \ get_nhdplus_v2_filepaths(NHDPlus_paths, raise_not_exist_error=False) pf = shp2df(pf_files) if mask is not None: if isinstance(mask, tuple): extent_poly_nhd_crs = box(*mask) filter = mask elif mask is not None: extent_poly_nhd_crs = read_polygon_feature(mask, feature_crs=mask_crs, dest_crs=nhdplus_crs) # ensure that filter bbox is in same crs as flowlines # get filters from shapefiles, shapley Polygons or GeoJSON polygons filter = get_bbox(extent_poly_nhd_crs, dest_crs=nhdplus_crs) else: filter = None flowlines = shp2df(flowlines_files, filter=filter) keep_comids = pf['FROMCOMID'].isin(flowlines['COMID']) | \ pf['TOCOMID'].isin(flowlines['COMID']) pf = pf.loc[keep_comids] elif PlusFlow is not None: pf = shp2df(PlusFlow) else: raise ValueError(("get_flowline_routing: Must provide one of more" " NHDPlus_path or PlusFlow table.")) pf = pf.loc[pf['FROMCOMID'] != 0] return pf[['FROMCOMID', 'TOCOMID']]
c79d943b35f236f9d2bddbc6c9e2f470ac6ba0fc
18,815
from typing import Callable from typing import Optional from datetime import datetime import pytz def df_wxyz( time_slot_sensor: Sensor, test_source_a: BeliefSource, test_source_b: BeliefSource ) -> Callable[[int, int, int, int, Optional[datetime]], BeliefsDataFrame]: """Convenient BeliefsDataFrame to run tests on. For a single sensor, it contains w events, for each of which x beliefs by y sources each (max 2), described by z probabilistic values (max 3). Note that the event resolution of the sensor is 15 minutes. """ sources = [test_source_a, test_source_b] # expand to increase max y cps = [0.1587, 0.5, 0.8413] # expand to increase max z def f(w: int, x: int, y: int, z: int, start: Optional[datetime] = None): if start is None: start = datetime(2000, 1, 3, 9, tzinfo=pytz.utc) # Build up a BeliefsDataFrame with various events, beliefs, sources and probabilistic accuracy (for a single sensor) beliefs = [ TimedBelief( source=sources[s], sensor=time_slot_sensor, value=1000 * e + 100 * b + 10 * s + p, belief_time=datetime(2000, 1, 1, tzinfo=pytz.utc) + timedelta(hours=b), event_start=start + timedelta(hours=e), cumulative_probability=cps[p], ) for e in range(w) # w events for b in range(x) # x beliefs for s in range(y) # y sources for p in range(z) # z cumulative probabilities ] return BeliefsDataFrame(sensor=time_slot_sensor, beliefs=beliefs) return f
64928090a7fa58cc1f6a6e4928025c426c17e799
18,816
def not_posted(child, conn) -> bool: """Check if a post has been already tooted.""" child_data = child["data"] child_id = child_data["id"] last_posts = fetch_last_posts(conn) return child_id not in last_posts
5be321bf838a22cfcd742c0ddf48eb00ec1e35bf
18,817
def parse_img_name(path): """parse image by frame name :param name [str] :output img_lists """ code = path.split('\\')[-1].split('.')[0] vid_id = path.split('\\')[-2] rcp_id = path.split('\\')[-3] seg_id = int(code[:4]) frm_id = int(code[4:]) return rcp_id, vid_id, seg_id, frm_id
6e0a140934c584400365f12feb8a86cfea3bbb2b
18,818
def get_bspline_kernel(x, channels, transpose=False, dtype=tf.float32, order=4): """Creates a 5x5x5 b-spline kernel. Args: num_channels: The number of channels of the image to filter. dtype: The type of an element in the kernel. Returns: A tensor of shape `[5, 5, 5, num_channels, num_channels]`. """ mesh = x.mesh in_dim = x.shape[-1] num_channels = channels.size if order == 8: kernel = np.array(( 1., 8., 28., 56., 70., 56., 28., 8., 1.), dtype=dtype.as_numpy_dtype()) elif order == 6: kernel = np.array(( 1., 6., 15., 20., 15., 6., 1.), dtype=dtype.as_numpy_dtype()) elif order==2: kernel = np.array(( 1., 2., 1.), dtype=dtype.as_numpy_dtype()) else: kernel = np.array(( 1., 4., 6., 4., 1.), dtype=dtype.as_numpy_dtype()) size = len(kernel) kernel = np.einsum('ij,k->ijk', np.outer(kernel, kernel), kernel) kernel /= np.sum(kernel) kernel = kernel[:, :, :, np.newaxis, np.newaxis] kernel = tf.constant(kernel, dtype=dtype) * tf.eye(num_channels, dtype=dtype) fd_dim = mtf.Dimension("fd", size) fh_dim = mtf.Dimension("fh", size) fw_dim = mtf.Dimension("fw", size) if transpose: return mtf.import_tf_tensor(mesh, kernel, shape=[fd_dim, fh_dim, fw_dim, channels, in_dim]) else: return mtf.import_tf_tensor(mesh, kernel, shape=[fd_dim, fh_dim, fw_dim, in_dim, channels])
1696e3a9077c672becda474de98750f45d1fe3d4
18,819
from .protocols import Stock_solution,MonoDispensing_type1,MonoDispensing_type2,MultiBase,SMTransfer,ReactionQC,QCSolubilise,DMATransfer,\ def gen_prot_dict(): """ :param input_list: :return: """ PostWorkupTransfer,Workup,PostWorkupQCAndTransfer,PostWorkupDMSOAddition,BaseT3PMulti, PoisedReactor input_list = [Stock_solution,MonoDispensing_type1,MonoDispensing_type2,MultiBase,SMTransfer,ReactionQC,QCSolubilise,DMATransfer,PostWorkupTransfer, Workup,PostWorkupQCAndTransfer,PostWorkupDMSOAddition,BaseT3PMulti, PoisedReactor] out_dict = {} for protocol in input_list: out_dict[str(protocol())] = protocol return out_dict
64c4c88f684297ea7e658015d225481005315527
18,820
def f(x): """ 예측해야 하는 함수입니다. """ return np.matmul(x * np.absolute(np.sin(x)), np.array([[2], [1]]))
228e8f431f7c071ad1587b76c73495296e1331f3
18,821
def create_frame_coords_list(coords_path): """ :param coords_path: [int] :type coords_path: list :return: int, [int] :rtype: tuple """ id_number = coords_path[0] fr_coordinates = [None]*int((len(coords_path) - 1) / 3) # excluding the index 0 (which is the id) the number of triples is the length of this array index = 0 for i in range(1, len(coords_path), 3): x = coords_path[i] y = coords_path[i + 1] frame_number = coords_path[i + 2] fr_coordinates[index] = FrameCoord(x, y, frame_number) index += 1 return id_number, fr_coordinates
ca835c04b67789903a74e6882434c570f33647ab
18,822
def arcToolReport(function=None, arcToolMessageBool=False, arcProgressorBool=False): """This decorator function is designed to be used as a wrapper with other GIS functions to enable basic try and except reporting (if function fails it will report the name of the function that failed and its arguments. If a report boolean is true the function will report inputs and outputs of a function.-David Wasserman""" def arcToolReport_Decorator(function): def funcWrapper(*args, **kwargs): try: funcResult = function(*args, **kwargs) if arcToolMessageBool: arcpy.AddMessage("Function:{0}".format(str(function.__name__))) arcpy.AddMessage(" Input(s):{0}".format(str(args))) arcpy.AddMessage(" Ouput(s):{0}".format(str(funcResult))) if arcProgressorBool: arcpy.SetProgressorLabel("Function:{0}".format(str(function.__name__))) arcpy.SetProgressorLabel(" Input(s):{0}".format(str(args))) arcpy.SetProgressorLabel(" Ouput(s):{0}".format(str(funcResult))) return funcResult except Exception as e: arcpy.AddMessage( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print( "{0} - function failed -|- Function arguments were:{1}.".format(str(function.__name__), str(args))) print(e.args[0]) return funcWrapper if not function: # User passed in a bool argument def waiting_for_function(function): return arcToolReport_Decorator(function) return waiting_for_function else: return arcToolReport_Decorator(function)
673dd42bd96a0f5aede5ca0593efaa02d630e2e5
18,824
def check_for_pattern(input_string): """ Check a string for a recurring pattern. If no pattern, return False. If pattern present, return smallest integer length of pattern. Warning: equal_divisions discards the remainder, so if it doesn't fit the pattern, you will get a false postive. The specific use is to check recurring decimal patterns, so it doesn't matter for that use. """ if len(input_string) < 2: return False length_of_division = 1 limit = len(input_string)//2 while length_of_division < limit + 1: divisions = equal_division(input_string, length_of_division) divisions = set(divisions) if len(divisions) == 1: return length_of_division else: length_of_division += 1 return False
6d6e32c7228ef3cec4107a3354fe53b90ef69e04
18,825
import logging def get_xml_namespace(file_name,pkg_type): """Get xml's namespace. Args: file_name: The path of xml file. Returns: xml_namespace: The namespace of xml. for example: xml file content: ... <config xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces" xmlns:ni="urn:ietf:params:xml:ns:yang:ietf-network-instance"> ... </interfaces> </config> xml_namespace: 'urn:ietf:params:xml:ns:yang:ietf-interfaces' Raises: Exception: Capture execution exception. """ feature_namespaces = [] try: doc = parse(file_name) root = doc.documentElement if pkg_type in ['get','get-config']: if root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "filter"): child_nodes = root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "filter")[ 0].childNodes elif pkg_type == 'config': if root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "config"): child_nodes = root.getElementsByTagNameNS("urn:ietf:params:xml:ns:netconf:base:1.0", "config")[ 0].childNodes else: child_nodes = root.childNodes logging.info("This is rpc-xml:" + file_name) for child_node in child_nodes: if child_node.nodeType == 1 and hasattr(child_node, 'namespaceURI'): feature_namespaces.append(child_node.namespaceURI) except ExpatError as expat_exception: xml_structure_except(expat_exception, file_name) except Exception as error_str: error_write(error_str) return feature_namespaces
401bf5c321b5626d7b7171e2270df04863a01d61
18,826
def build_successors_table(tokens): """Return a dictionary: keys are words; values are lists of successors. >>> text = ['We', 'came', 'to', 'investigate', ',', 'catch', 'bad', 'guys', 'and', 'to', 'eat', 'pie', '.'] >>> table = build_successors_table(text) >>> sorted(table) [',', '.', 'We', 'and', 'bad', 'came', 'catch', 'eat', 'guys', 'investigate', 'pie', 'to'] >>> table['to'] ['investigate', 'eat'] >>> table['pie'] ['.'] >>> table['.'] ['We'] """ table = {} prev = '.' for word in tokens: if prev not in table: table[str(prev)] = [str(word)] else: # if already in table then add this word to the list of successors table[str(prev)] += [str(word)] prev = word return table
92206bf3dd40518c23c6fb98e22dc818912c5bcc
18,827
import math def _rolling_nanmin_1d(a, w=None): """ Compute the rolling min for 1-D while ignoring NaNs. This essentially replaces: `np.nanmin(rolling_window(T[..., start:stop], m), axis=T.ndim)` Parameters ---------- a : numpy.ndarray The input array w : numpy.ndarray, default None The rolling window size Returns ------- output : numpy.ndarray Rolling window nanmin. """ if w is None: w = a.shape[0] half_window_size = int(math.ceil((w - 1) / 2)) return minimum_filter1d(a, size=w)[ half_window_size : half_window_size + a.shape[0] - w + 1 ]
37229440ba632d1ddadc55a811f9abca1c8e3132
18,828
def get_model_init_fn(train_logdir, tf_initial_checkpoint, initialize_last_layer, last_layers, ignore_missing_vars=False): """Gets the function initializing model variables from a checkpoint. Args: train_logdir: Log directory for training. tf_initial_checkpoint: TensorFlow checkpoint for initialization. initialize_last_layer: Initialize last layer or not. last_layers: Last layers of the model. ignore_missing_vars: Ignore missing variables in the checkpoint. Returns: Initialization function. """ if tf_initial_checkpoint is None: tf.logging.info('Not initializing the model from a checkpoint.') return None if tf.train.latest_checkpoint(train_logdir): tf.logging.info('Ignoring initialization; other checkpoint exists') return None tf.logging.info('Initializing model from path: %s', tf_initial_checkpoint) # Variables that will not be restored. exclude_list = ['global_step'] if not initialize_last_layer: exclude_list.extend(last_layers) variables_to_restore = contrib_framework.get_variables_to_restore(exclude=exclude_list) if variables_to_restore: init_op, init_feed_dict = contrib_framework.assign_from_checkpoint( tf_initial_checkpoint, variables_to_restore, ignore_missing_vars=ignore_missing_vars) global_step = tf.train.get_or_create_global_step() def restore_fn(sess): sess.run(init_op, init_feed_dict) sess.run([global_step]) return restore_fn return None
7fdd1bcff59fc01dff2f1ef49eda4bd29b162ea2
18,829
import time def tokenize_protein(text): """ Tokenizes from a proteins string into a list of strings """ aa = ['A','C','D','E','F','G','H','I','K','L', 'M','N','P','Q','R','S','T','V','W','Y'] N = len(text) n = len(aa) i=0 seq = list() timeout = time.time()+5 for i in range(N): symbol = text[i] if (symbol in aa): seq.append(symbol) else: seq.append('X') if time.time() > timeout: break return seq
7dba531023aef97dcbfb37af75a9a1459a1e94d2
18,830
from typing import Callable def read_xml_string() -> Callable[[int, int, str], str]: """Read an XML file to a string. Subsection string needs to include a prepending '-'.""" def _read_xml_string(number: int, year: int, subsection: str) -> str: xmlfile = f"tests/data/xmls/session-{number:03}-{year}{subsection}.xml" with open(xmlfile, "r", encoding="utf-8") as infile: lines = infile.readlines() return " ".join([line.strip() for line in lines]) return _read_xml_string
2b4e4c3585e26138e5fecf820699e97e1011a842
18,831
def compute_mean_std_data(filelist): """ Compute mean and standard deviation of a dataset. :param filelist: list of str :return: tuple of floats """ tensor_list = [] for file in filelist: img = Image.open(file) img_np = np.array(img).ravel() tensor_list.append(img_np.ravel()) pixels = np.concatenate(tensor_list, axis=0) return np.mean(pixels), np.std(pixels)
57c8d5e9294e291e9897ac0e865a661319123965
18,832