content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def parse_c45(file_base, rootdir='.'): """ Returns an ExampleSet from the C4.5 formatted data """ schema_name = file_base + NAMES_EXT data_name = file_base + DATA_EXT schema_file = find_file(schema_name, rootdir) if schema_file is None: raise ValueError('Schema file not found') data_file = find_file(data_name, rootdir) if data_file is None: raise ValueError('Data file not found') return _parse_c45(schema_file, data_file)
14d651a48c2fe65ad68c441722c4c39854efef2a
14,535
import torch def to_numpy(tensor: torch.Tensor): """ Convert a PyTorch Tensor to a Numpy Array. """ if tensor is None: return tensor if tensor.is_quantized: tensor = tensor.dequantize() return tensor.cpu().detach().contiguous().numpy()
ed6bd50ef5db30b3df1304a0152998f2f27750c6
14,536
from flask_sqlalchemy import _wrap_with_default_query_class, SQLAlchemy def initialize_flask_sqlathanor(db): """Initialize **SQLAthanor** contents on a `Flask-SQLAlchemy`_ instance. :param db: The :class:`flask_sqlalchemy.SQLAlchemy <flask_sqlalchemy:flask_sqlalchemy.SQLAlchemy>` instance. :type db: :class:`flask_sqlalchemy.SQLAlchemy <flask_sqlalchemy:flask_sqlalchemy.SQLAlchemy>` :returns: A mutated instance of ``db`` that replaces `SQLAlchemy`_ components and their `Flask-SQLAlchemy`_ flavors with **SQLAthanor** analogs while maintaining `Flask-SQLAlchemy`_ and `SQLAlchemy`_ functionality and interfaces. :rtype: :class:`flask_sqlalchemy.SQLAlchemy <flask_sqlalchemy:flask_sqlalchemy.SQLAlchemy>` :raises ImportError: if called when `Flask-SQLAlchemy`_ is not installed :raises ValueError: if ``db`` is not an instance of :class:`flask_sqlalchemy.SQLAlchemy <flask_sqlalchemy:flask_sqlalchemy.SQLAlchemy>` """ if not isinstance(db, SQLAlchemy): raise ValueError('db must be an instance of flask_sqlalchemy.SQLAlchemy') db.Column = Column db.relationship = _wrap_with_default_query_class(relationship, db.Query) return db
565c010a49e9d0ac2e82b40803b4f0871b526177
14,537
def add_vcf_header( vcf_reader ): """ Function to add a new field to the vcf header Input: A vcf reader object Return: The vcf reader object with new headers added """ # Metadata vcf_reader.metadata['SMuRFCmd'] = [get_command_line()] # Formats vcf_reader.formats['VAF'] = pyvcf.parser._Format('VAF',None,'Float','Variant Allele Frequency calculated from the BAM file') vcf_reader.formats['CAD'] = pyvcf.parser._Format('CAD',None,'Integer','Calculated Allelic Depth, used for VAF calculation') vcf_reader.formats['FT'] = pyvcf.parser._Format('FT',None,'String','Sample filter') # Filters vcf_reader.filters['KnownVariant'] = pyvcf.parser._Filter('KnownVariant','Variant has already an ID, excluding COSMIC_IDs') vcf_reader.filters['BadMQ'] = pyvcf.parser._Filter('BadMQ', 'Variant with MQ <'+str(cfg['SMuRF']['mq'])) vcf_reader.filters['BadQual'] = pyvcf.parser._Filter('BadQual','Variant with a QUAL <'+str(cfg['SMuRF']['qual'])) vcf_reader.filters['MultiAllelic'] = pyvcf.parser._Filter('MultiAllelic', 'Variant has multiple alternative alleles') vcf_reader.filters['BlackList'] = pyvcf.parser._Filter('BlackList', 'Variant exists in a blacklist') vcf_reader.filters['Indel'] = pyvcf.parser._Filter('Indel','Variant is an indel') vcf_reader.filters['ControlEvidence'] = pyvcf.parser._Filter('ControlEvidence','Variant is also found in a control based on the GT') vcf_reader.filters['NoSampleEvidence'] = pyvcf.parser._Filter('NoSampleEvidence','Variant is not found in any of the samples based on the GT') vcf_reader.filters['AllSamplesFailedQC'] = pyvcf.parser._Filter('AllSamplesFailedQC', 'All samples failed the quality control') vcf_reader.filters['AllControlsFailedQC'] = pyvcf.parser._Filter('AllControlsFailedQC', 'All controls failed the quality control') vcf_reader.filters['ControlSubclonal'] = pyvcf.parser._Filter('ControlSubclonal', 'Variant is found as subclonal in a control based on the recalculated VAF') vcf_reader.filters['ControlClonal'] = pyvcf.parser._Filter('ControlClonal', 'Variant is found as clonal in a control based on the recalculated VAF') vcf_reader.filters['NoClonalSample'] = pyvcf.parser._Filter('NoClonalSample', 'Variant is not found as clonal in any of the samples based on the recalculated VAF') # Sample filters vcf_reader.filters['LowCov'] = pyvcf.parser._Filter('LowCov', 'Variant has a coverage <'+str(cfg['SMuRF']['coverage'])+' in this sample/control') vcf_reader.filters['NoGenoType'] = pyvcf.parser._Filter('NoGenoType', 'Genotype is empty for this sample/control') vcf_reader.filters['isRef'] = pyvcf.parser._Filter('isRef', 'Genotype is a reference (i.e. reference 0/0)') vcf_reader.filters['isVariant'] = pyvcf.parser._Filter('isVariant', 'Genotype is a variant (i.e. not reference 0/0)') vcf_reader.filters['LowGQ'] = pyvcf.parser._Filter('LowGQ', 'Variant has a low genome quality for this sample/control') # Infos vcf_reader.infos['ABSENT_SAMPLES'] = pyvcf.parser._Info('ABSENT_SAMPLES',1,'Integer','Number of samples without the variant', None, None) vcf_reader.infos['SUBCLONAL_SAMPLES'] = pyvcf.parser._Info('SUBCLONAL_SAMPLES',1,'Integer','Number of samples with a subclonal variant', None, None) vcf_reader.infos['CLONAL_SAMPLES'] = pyvcf.parser._Info('CLONAL_SAMPLES',1,'Integer','Number of samples with a clonal variant', None, None) vcf_reader.infos['ABSENT_CONTROLS'] = pyvcf.parser._Info('ABSENT_CONTROLS',1,'Integer','Number of controls without the variant', None, None) vcf_reader.infos['SUBCLONAL_CONTROLS'] = pyvcf.parser._Info('SUBCLONAL_CONTROLS',1,'Integer','Number of controls with a subclonal variant', None, None) vcf_reader.infos['CLONAL_CONTROLS'] = pyvcf.parser._Info('CLONAL_CONTROLS',1,'Integer','Number of controls with a clonal variant', None, None) vcf_reader.infos['ABSENT_SAMPLE_NAMES'] = pyvcf.parser._Info('ABSENT_SAMPLE_NAMES',None,'String','Samples without the variant', None, None) vcf_reader.infos['SUBCLONAL_SAMPLE_NAMES'] = pyvcf.parser._Info('SUBCLONAL_SAMPLE_NAMES',None,'String','Samples with a subclonal variant', None, None) vcf_reader.infos['CLONAL_SAMPLE_NAMES'] = pyvcf.parser._Info('CLONAL_SAMPLE_NAMES',None,'String','Samples with a clonal variant', None, None) vcf_reader.infos['ABSENT_CONTROL_NAMES'] = pyvcf.parser._Info('ABSENT_CONTROL_NAMES',None,'String','Controls without the variant', None, None) vcf_reader.infos['SUBCLONAL_CONTROL_NAMES'] = pyvcf.parser._Info('SUBCLONAL_CONTROL_NAMES',None,'String','Controls with a subclonal variant', None, None) vcf_reader.infos['CLONAL_CONTROL_NAMES'] = pyvcf.parser._Info('CLONAL_CONTROL_NAMES',None,'String','Controls with a clonal variant', None, None) vcf_reader.infos['PASS_QC_SAMPLES'] = pyvcf.parser._Info('PASS_QC_SAMPLES',1,'Integer','Number of samples which pass all quality control filters', None, None) vcf_reader.infos['PASS_QC_CONTROLS'] = pyvcf.parser._Info('PASS_QC_CONTROLS',1,'Integer','Number of controls which pass all quality control filters', None, None) vcf_reader.infos['FAIL_QC_SAMPLES'] = pyvcf.parser._Info('FAIL_QC_SAMPLES',1,'Integer','Number of samples which failed one or multiple quality control filters', None, None) vcf_reader.infos['FAIL_QC_CONTROLS'] = pyvcf.parser._Info('FAIL_QC_CONTROLS',1,'Integer','Number of controls which failed one or multiple quality control filters', None, None) vcf_reader.infos['PASS_QC_SAMPLE_NAMES'] = pyvcf.parser._Info('PASS_QC_SAMPLE_NAMES',None,'String','Samples which pass all quality control filters', None, None) vcf_reader.infos['PASS_QC_CONTROL_NAMES'] = pyvcf.parser._Info('PASS_QC_CONTROL_NAMES',None,'String','Controls which pass all quality control filters', None, None) vcf_reader.infos['FAIL_QC_SAMPLE_NAMES'] = pyvcf.parser._Info('FAIL_QC_SAMPLE_NAMES',None,'String','Samples which failed one or multiple quality control filters', None, None) vcf_reader.infos['FAIL_QC_CONTROL_NAMES'] = pyvcf.parser._Info('FAIL_QC_CONTROL_NAMES',None,'String','Controls which failed one or multiple quality control filters', None, None) return( vcf_reader )
36e5819de6c09c7e60638b183bfe415fc19361db
14,538
def get_seats_percent(election_data): """ This function takes a lists of lists as and argument, with each list representing a party's election results, and returns a tuple with the percentage of Bundestag seats won by various political affiliations. Parameters: election_data (list): A list of lists, each representing a party's election results Returns: A tuple with percentage of Bundestag seats won by various political affiliations """ left_seats = 0 right_seats = 0 extreme_seats = 0 center_seats = 0 total_bundestag_seats = 0 for party in election_data[1:]: total_bundestag_seats += int(party[1]) if 'far' in party[2]: extreme_seats += party[1] else: center_seats += party[1] if 'left' in party[2]: left_seats += party[1] else: right_seats += party[1] left_percent = round((left_seats / total_bundestag_seats * 100), 2) right_percent = round((right_seats / total_bundestag_seats * 100), 2) extreme_percent = round((extreme_seats / total_bundestag_seats * 100), 2) center_percent = round((center_seats / total_bundestag_seats * 100), 2) return left_percent, right_percent, extreme_percent, center_percent
a131d64747c5c0dde8511e9ec4da07252f96a6ec
14,539
def get_player_gamelog(player_id, season, season_type='Regular Season', timeout=30): """ Coleta de histórico departidas de um determinado jogador em uma determinada temporada, considerando ainda um tipo específico de temporada (pré-season, temporada regular ou playoffs). Parâmetros ---------- :param player_id: Identificação do jogador alvo [type: int] :param season: Temporada alvo de análise [type: str, exemplo: "2020-21"] :param season_type: Tipo específico de temporada aceito pelo endpoint [type: str, default='Regular Season'] :param timeout: Tempo máximo de espera da requisição. [type: int, default=30] Retorno ------- :return df_gamelog: Base de dados com informações específicas e detalhadas sobre o histórico de partidas extraído do jogador. Informações sobre o conteúdo desta base de retorno podem ser encontradas na documentação oficial do endpoint playergamelog. [type: pd.DataFrame] """ # Retornando gamelog de jogador player_gamelog = playergamelog.PlayerGameLog( player_id=player_id, season=season, season_type_all_star=season_type, timeout=timeout ) # Transformando dados em DataFrame e adicionando informações de temporada df_gamelog = player_gamelog.player_game_log.get_data_frame() df_gamelog['SEASON'] = season df_gamelog['SEASON_TYPE'] = season_type # Transformando coluna de data na base df_gamelog['GAME_DATE'] = pd.to_datetime(df_gamelog['GAME_DATE']) df_gamelog.columns = [col.lower().strip() for col in df_gamelog.columns] return df_gamelog
d21132df8a4f72055f37ef7039427f42ce03610e
14,540
import re def unbound_text_to_html5(text, language=None): """ Converts the provided text to HTML5 custom data attributes. Usage: {{text|unbound_text_to_html5:"Greek"}} """ # If the language is English, then don't bother doing anything if language is not None and language.lower() == "english": return text # Make the document that will contain the verse converted_doc = minidom.Document() # Make the verse node to attach the content to verse_node = converted_doc.createElement( "span" ) verse_node.setAttribute("class", "verse") # Append the converted_doc.appendChild(verse_node) # Split up the text and place the text segments in nodes segments = re.findall("[\s]+|[\[\],.:.;]|[^\s\[\],.:.;]+", text) for s in segments: # Don't wrap punctuation in a word node if s in [";", ",", ".", "[", "]", ":"] or len(s.strip()) == 0: txt_node = converted_doc.createTextNode(s) verse_node.appendChild(txt_node) else: word_node = converted_doc.createElement( "span" ) word_node.setAttribute( "class", "word" ) # Create the text node and append it if language is None or language.lower() == "greek": txt_node = converted_doc.createTextNode(s) else: txt_node = converted_doc.createTextNode(transform_text(s, language)) word_node.appendChild(txt_node) # Append the node verse_node.appendChild(word_node) return converted_doc.toxml( encoding="utf-8" )
1fe50c4844e126395c1aa1e8d5ba464217003557
14,541
def sort_points(points): """Sorts points first by argument, then by modulus. Parameters ---------- points : array_like (n_points, 3) The points to be sorted: (x, y, intensity) Returns ------- points_sorted : :class:`numpy.ndarray` (n_points, 3) The sorted points. """ positions = points[:, :2].astype(float) with np.errstate(invalid='ignore', divide='ignore'): tangents = np.nan_to_num(positions[:, 1]/positions[:, 0]) arguments = np.arctan(tangents) moduli = np.sqrt(np.sum(np.square(positions), axis=1)) inds = np.lexsort((moduli, arguments)) points_sorted = points[inds] return points_sorted
3d5ae7cdfa33abba906cefaf3cd1ab0ab5899e32
14,542
def get_pairs(scores): """ Returns pairs of indexes where the first value in the pair has a higher score than the second value in the pair. Parameters ---------- scores : list of int Contain a list of numbers Returns ------- query_pair : list of pairs This contains a list of pairs of indexes in scores. """ query_pair = [] for query_scores in scores: temp = sorted(query_scores, reverse=True) pairs = [] for i in range(len(temp)): for j in range(len(temp)): if temp[i] > temp[j]: pairs.append((i,j)) query_pair.append(pairs) return query_pair
1d4bf17dffb7ec8b934701254448e5a7dfe41cf9
14,543
def make(): """Make a new migration. Returns: Response: json status message """ response = None try: with capture_print(escape=True) as content: current_app.config.get('container').make('migrator').make(request.form['name']) response = {'message': content.get_text(), 'status': 'success'} except SystemExit: response = {'message': content.get_text(), 'status': 'error'} return jsonify(response)
24524cc1906f621e9e927d3e0b7265b65ab8ebe5
14,544
def generate_hmac(str_to_sign, secret): """Signs the specified string using the specified secret. Args: str_to_sign : string, the string to sign secret : string, the secret used to sign Returns: signed_message : string, the signed str_to_sign """ message = str_to_sign.encode('utf-8') secret = secret.encode('utf-8') cmd = ['echo -n "' + str(message) + '" | openssl dgst -sha256 -binary -hmac "' + str(secret) + '"'] process, signed_message, error = linuxutil.popen_communicate(cmd, shell=True) if process.returncode != 0: raise Exception("Unable to generate signature. " + str(error)) return signed_message
c773cb1f470f0f52934758e7f66fe01047419cbd
14,548
def interpolate_scores(coords: np.array, scores: np.array, coord_range: tuple, step: float = 0.001) -> np.array: """ Given a coord_range and values for specific coords - interpolate to the rest of the grid Args: coords: array of lons and lats of points that their values are known scores: array of the coords values coord_range: range of the desired grid step: resolution of sample Returns: z: np.array - 2D array of the values in the entire grid of coord_range """ min_lon, min_lat, max_lon, max_lat = coord_range x = np.arange(min_lon, max_lon, step=step) y = np.arange(min_lat, max_lat, step=step) grid_x, grid_y = np.meshgrid(x, y) z = interpolate.griddata(coords, scores, (x[None, :], y[:, None]), method='linear') return z
2ed5660191f01018344e9b55af372f10133bc6a9
14,549
def remove_blank_from_dict(data): """Optimise data from default outputted dictionary""" if isinstance(data, dict): return dict( (key, remove_blank_from_dict(value)) for key, value in data.items() if is_not_blank(value) and is_not_blank(remove_blank_from_dict(value)) ) if isinstance(data, list): return [ remove_blank_from_dict(value) for value in data if is_not_blank(value) and is_not_blank(remove_blank_from_dict(value)) ] return data
ae77d0b5b9a1cffdd1832df3a5513cc79e600138
14,550
def merge_mosaic_images(mosaic_dict, mosaic_images, orig_images, Y_orig=None): """ Merge the list of mosaic images with all original images. Args: mosaic_dict: Dictionary specifying how mosaic images were created, returned from make_mosaic mosaic_images: List of all mosaic images returned from make_mosaic orig_images: List of all images, some (or all, or none) of which were used to generate the mosaic images Y_orig: If building mosaic images for training, the Y/expected images corresponding to orig_images Returns: 3 lists - merged_images, merged_sizes, merged_Y (empty list if Y_orig was not provided). This list of images can then be resized, windowed, etc., and provided as input images for training or predictions. To split the merged list back into the separate portions, use split_merged_mosaic. """ orig_index = list(range(0, len(orig_images))) merged_images = [] merged_sizes = [] merged_Y = [] # If Y/expected values are desired, construct the merged Y # images to correspond with the mosaic images. if Y_orig: for k, v in mosaic_dict.items(): merged_Y.append(combine_images(Y_orig, v)) # Mosaic images are output first for img in mosaic_images: merged_images.append(img) merged_sizes.append([img.shape[0], img.shape[1]]) mosaic_all_ix=[] [mosaic_all_ix.extend(v) for v in mosaic_dict.values()] leftovers = [x for x in orig_index if x not in mosaic_all_ix] # And then output all images that are not part of a larger mosaic image for ix in leftovers: leftover_img = orig_images[ix] merged_images.append(leftover_img) merged_sizes.append([leftover_img.shape[0], leftover_img.shape[1]]) if Y_orig: merged_Y.append(Y_orig[ix]) return (merged_images, merged_sizes, merged_Y)
d16875462c09b671db785ec101eb09028b1a7cbe
14,553
def show2D(dd, impixel=None, im=None, fig=101, verbose=1, dy=None, sigma=None, colorbar=False, title=None, midx=2, units=None): """ Show result of a 2D scan Args: dd (DataSet) impixel (array or None) im (array or None) """ if dd is None: return None extent, g0, g1, vstep, vsweep, arrayname = dataset2Dmetadata(dd) tr = image_transform(dd, mode='pixel') array = getattr(dd, arrayname) if impixel is None: if im is None: im = np.array(array) impixel = tr._transform(im) else: pass else: pass labels = [s.name for s in array.set_arrays] xx = extent xx = tr.matplotlib_image_extent() ny = vstep.size nx = vsweep.size im = qtt.utilities.tools.diffImageSmooth(impixel, dy=dy, sigma=sigma) if verbose: print('show2D: nx %d, ny %d' % (nx, ny,)) if verbose >= 2: print('extent: %s' % xx) if units is None: unitstr = '' else: unitstr = ' (%s)' % units if fig is not None: scanjob = dd.metadata.get('scanjob', dict()) pgeometry.cfigure(fig) plt.clf() if impixel is None: if verbose >= 2: print('show2D: show raw image') plt.pcolormesh(vstep, vsweep, im) else: if verbose >= 2: print('show2D: show image') plt.imshow(impixel, extent=xx, interpolation='nearest') labelx = labels[1] labely = labels[0] if scanjob.get('sweepdata', None) is not None: labelx = sweepgate(scanjob) plt.xlabel('%s' % labelx + unitstr) else: pass if scanjob.get('stepdata', None) is not None: if units is None: plt.ylabel('%s' % stepgate(scanjob)) else: plt.ylabel('%s (%s)' % (stepgate(scanjob), units)) if not title is None: plt.title(title) if colorbar: plt.colorbar() if verbose >= 2: print('show2D: at show') try: plt.show(block=False) except: # ipython backend does not know about block keyword... plt.show() return xx, vstep, vsweep
d9560e2dd54ed8daf8450e2db8e1f5d8357a601c
14,554
def get_job(api_key, jq_id): """ Fetch a job and its status :param api_key: user id of the client :param jq_id: job queue id :return: job queue id """ if Auth.verify_auth_key(api_key): if Auth.verify_job(api_key, jq_id): return trigger.get_job(jq_id) return abort(400)
f323386e530e354f52bcbcc6301c5fb1af4e4767
14,555
def contour_to_valid(cnt, image_shape): """Convert rect to xys, i.e., eight points The `image_shape` is used to to make sure all points return are valid, i.e., within image area """ # rect = cv2.minAreaRect(cnt) if len(cnt.shape) != 3: assert 1 < 0 rect = cnt.reshape([cnt.shape[0], cnt.shape[2]]) h, w = image_shape[0:2] def get_valid_x(x): if x < 0: return 0 if x >= w: return w - 1 return x def get_valid_y(y): if y < 0: return 0 if y >= h: return h - 1 return y for i_xy, (x, y) in enumerate(rect): x = get_valid_x(x) y = get_valid_y(y) rect[i_xy, :] = [x, y] points = np.reshape(rect, -1) return points
a4f85d77c0805903b220d3670edc5db05ea001ed
14,556
def search(datafile, query, bool_operator): """ Queries on a set of documents. :param datafile: The location of the datafile as a pathlib.Path :param query: the query text :param bool_operator: the operator. Must be one of [OR, AND] :return: the list of indexes matching the search criteria """ # we normalize to uinique lowercase words the query string and split by space query = _extract_words(query) # we read the datafile data = datafile.readlines() # calculating results results = [str(i) for i, text in enumerate(data) if (query.issubset(_extract_words(text)) if bool_operator == 'AND' else bool(query.intersection(_extract_words(text))))] return results
6f8ec35063178e49a557de1849363568561638ed
14,557
from typing import Optional from typing import List def recurse_structures( structure: Component, ignore_components_prefix: Optional[List[str]] = None, ignore_functions_prefix: Optional[List[str]] = None, ) -> DictConfig: """Recurse over structures""" ignore_functions_prefix = ignore_functions_prefix or [] ignore_components_prefix = ignore_components_prefix or [] if ( hasattr(structure, "function_name") and structure.function_name in ignore_functions_prefix ): return DictConfig({}) if hasattr(structure, "name") and any( [structure.name.startswith(i) for i in ignore_components_prefix] ): return DictConfig({}) output = {structure.name: structure.info} for element in structure.references: if ( isinstance(element, ComponentReference) and element.ref_cell.name not in output ): output.update(recurse_structures(element.ref_cell)) return output
696e04a0184ebb7b8d2e0789e711a676c12ed89c
14,558
from spinalcordtoolbox.image import Image import dipy.reconst.dti as dti import dipy.denoise.noise_estimate as ne def compute_dti(fname_in, fname_bvals, fname_bvecs, prefix, method, evecs, file_mask): """ Compute DTI. :param fname_in: input 4d file. :param bvals: bvals txt file :param bvecs: bvecs txt file :param prefix: output prefix. Example: "dti_" :param method: algo for computing dti :param evecs: bool: output diffusion tensor eigenvectors :return: True/False """ # Open file. nii = Image(fname_in) data = nii.data sct.printv('data.shape (%d, %d, %d, %d)' % data.shape) # open bvecs/bvals bvals, bvecs = read_bvals_bvecs(fname_bvals, fname_bvecs) gtab = gradient_table(bvals, bvecs) # mask and crop the data. This is a quick way to avoid calculating Tensors on the background of the image. if not file_mask == '': sct.printv('Open mask file...', param.verbose) # open mask file nii_mask = Image(file_mask) mask = nii_mask.data # fit tensor model sct.printv('Computing tensor using "' + method + '" method...', param.verbose) if method == 'standard': tenmodel = dti.TensorModel(gtab) if file_mask == '': tenfit = tenmodel.fit(data) else: tenfit = tenmodel.fit(data, mask) elif method == 'restore': sigma = ne.estimate_sigma(data) dti_restore = dti.TensorModel(gtab, fit_method='RESTORE', sigma=sigma) if file_mask == '': tenfit = dti_restore.fit(data) else: tenfit = dti_restore.fit(data, mask) # Compute metrics sct.printv('Computing metrics...', param.verbose) # FA nii.data = tenfit.fa nii.save(prefix + 'FA.nii.gz', dtype='float32') # MD nii.data = tenfit.md nii.save(prefix + 'MD.nii.gz', dtype='float32') # RD nii.data = tenfit.rd nii.save(prefix + 'RD.nii.gz', dtype='float32') # AD nii.data = tenfit.ad nii.save(prefix + 'AD.nii.gz', dtype='float32') if evecs: data_evecs = tenfit.evecs # output 1st (V1), 2nd (V2) and 3rd (V3) eigenvectors as 4d data for idim in range(3): nii.data = data_evecs[:, :, :, :, idim] nii.save(prefix + 'V' + str(idim+1) + '.nii.gz', dtype="float32") return True
149cfbc3f4fa2f3c1a33e4d4e6ee09983176e1b4
14,559
import tqdm def solve( netlist=None, parameter_values=None, experiment=None, I_init=1.0, htc=None, initial_soc=0.5, nproc=12, output_variables=None, ): """ Solves a pack simulation Parameters ---------- netlist : pandas.DataFrame A netlist of circuit elements with format. desc, node1, node2, value. Produced by liionpack.read_netlist or liionpack.setup_circuit parameter_values : pybamm.ParameterValues class A dictionary of all the model parameters experiment : pybamm.Experiment class The experiment to be simulated. experiment.period is used to determine the length of each timestep. I_init : float, optional Initial guess for single battery current [A]. The default is 1.0. htc : float array, optional Heat transfer coefficient array of length Nspm. The default is None. initial_soc : float The initial state of charge for every battery. The default is 0.5 nproc : int, optional Number of processes to start in parallel for mapping. The default is 12. output_variables : list, optional Variables to evaluate during solve. Must be a valid key in the model.variables Raises ------ Exception DESCRIPTION. Returns ------- output : ndarray shape [# variable, # steps, # batteries] simulation output array """ if netlist is None or parameter_values is None or experiment is None: raise Exception("Please supply a netlist, paramater_values, and experiment") # Get netlist indices for resistors, voltage sources, current sources Ri_map = netlist["desc"].str.find("Ri") > -1 V_map = netlist["desc"].str.find("V") > -1 I_map = netlist["desc"].str.find("I") > -1 Terminal_Node = np.array(netlist[I_map].node1) Nspm = np.sum(V_map) # Generate the protocol from the supplied experiment protocol = lp.generate_protocol_from_experiment(experiment) dt = experiment.period Nsteps = len(protocol) # Solve the circuit to initialise the electrochemical models V_node, I_batt = lp.solve_circuit(netlist) # Create battery simulation and update initial state of charge sim = lp.create_simulation(parameter_values, make_inputs=True) lp.update_init_conc(sim, SoC=initial_soc) # The simulation output variables calculated at each step for each battery # Must be a 0D variable i.e. battery wide volume average - or X-averaged for 1D model variable_names = [ "Terminal voltage [V]", "Measured battery open circuit voltage [V]", ] if output_variables is not None: for out in output_variables: if out not in variable_names: variable_names.append(out) # variable_names = variable_names + output_variables Nvar = len(variable_names) # Storage variables for simulation data shm_i_app = np.zeros([Nsteps, Nspm], dtype=float) shm_Ri = np.zeros([Nsteps, Nspm], dtype=float) output = np.zeros([Nvar, Nsteps, Nspm], dtype=float) # Initialize currents in battery models shm_i_app[0, :] = I_batt * -1 # Set up integrator integrator, variables_fn, t_eval = _create_casadi_objects( I_init, htc[0], sim, dt, Nspm, nproc, variable_names ) # Step forward in time time = 0 end_time = dt * Nsteps step_solutions = [None] * Nspm V_terminal = [] record_times = [] v_cut_lower = parameter_values["Lower voltage cut-off [V]"] v_cut_higher = parameter_values["Upper voltage cut-off [V]"] sim_start_time = ticker.time() for step in tqdm(range(Nsteps), desc='Solving Pack'): # Step the individual battery models step_solutions, var_eval = _mapped_step( sim.built_model, step_solutions, lp.build_inputs_dict(shm_i_app[step, :], htc), integrator, variables_fn, t_eval, ) output[:, step, :] = var_eval time += dt # Calculate internal resistance and update netlist temp_v = output[0, step, :] temp_ocv = output[1, step, :] # temp_Ri = output[2, step, :] # This could be used instead of Equivalent ECM resistance which has # been changing definition temp_Ri = (temp_ocv - temp_v) / shm_i_app[step, :] # Make Ri more stable current_cutoff = np.abs(shm_i_app[step, :]) < 1e-6 temp_Ri[current_cutoff] = 1e-12 # temp_Ri = 1e-12 shm_Ri[step, :] = temp_Ri netlist.loc[V_map, ("value")] = temp_ocv netlist.loc[Ri_map, ("value")] = temp_Ri netlist.loc[I_map, ("value")] = protocol[step] # Stop if voltage limits are reached if np.any(temp_v < v_cut_lower): print("Low voltage limit reached") break if np.any(temp_v > v_cut_higher): print("High voltage limit reached") break if time <= end_time: record_times.append(time) V_node, I_batt = lp.solve_circuit(netlist) V_terminal.append(V_node[Terminal_Node][0]) if time < end_time: shm_i_app[step + 1, :] = I_batt[:] * -1 # Collect outputs all_output = {} all_output["Time [s]"] = np.asarray(record_times) all_output["Pack current [A]"] = np.asarray(protocol[: step + 1]) all_output["Pack terminal voltage [V]"] = np.asarray(V_terminal) all_output["Cell current [A]"] = shm_i_app[: step + 1, :] for j in range(Nvar): all_output[variable_names[j]] = output[j, : step + 1, :] toc = ticker.time() lp.logger.notice( "Solve circuit time " + str(np.around(toc - sim_start_time, 3)) + "s" ) return all_output
fa51e4e69a434e3a3c728b4675844c0bfa29d3fd
14,560
def global_node_entropy(data, dx=3, dy=1, taux=1, tauy=1, overlapping=True, connections="all", tie_precision=None): """ Calculates global node entropy\\ [#pessa2019]_\\ :sup:`,`\\ [#McCullough]_ for an ordinal network obtained from data. (Assumes directed and weighted edges). Parameters ---------- data : array, return of :func:`ordpy.ordinal_network` Array object in the format :math:`[x_{1}, x_{2}, x_{3}, \\ldots ,x_{n}]` or :math:`[[x_{11}, x_{12}, x_{13}, \\ldots, x_{1m}], \\ldots, [x_{n1}, x_{n2}, x_{n3}, \\ldots, x_{nm}]]` or an ordinal network returned by :func:`ordpy.ordinal_network`\\ [*]_. dx : int Embedding dimension (horizontal axis) (default: 3). dy : int Embedding dimension (vertical axis); it must be 1 for time series (default: 1). taux : int Embedding delay (horizontal axis) (default: 1). tauy : int Embedding delay (vertical axis) (default: 1). overlapping : boolean If `True`, **data** is partitioned into overlapping sliding windows (default: `True`). If `False`, adjacent partitions are non-overlapping. connections : str The ordinal network is constructed using `'all'` permutation successions in a symbolic sequence or only `'horizontal'` or `'vertical'` successions. Parameter only valid for image data (default: `'all'`). tie_precision : int If not `None`, **data** is rounded with `tie_precision` number of decimals (default: `None`). Returns ------- : float Value of global node entropy. Notes ----- .. [*] In case **data** is an ordinal network returned by :func:`ordpy.ordinal_network`, the parameters of :func:`ordpy.global_node_entropy` are infered from the network. Examples -------- >>> global_node_entropy([1,2,3,4,5,6,7,8,9], dx=2) 0.0 >>> >>> global_node_entropy(ordinal_network([1,2,3,4,5,6,7,8,9], dx=2)) 0.0 >>> >>> global_node_entropy(np.random.uniform(size=100000), dx=3) 1.4988332319747597 >>> >>> global_node_entropy(random_ordinal_network(dx=3)) 1.5 >>> >>> global_node_entropy([[1,2,1,4],[8,3,4,5],[6,7,5,6]], dx=2, dy=2, connections='horizontal') 0.25 >>> >>> global_node_entropy([[1,2,1,4],[8,3,4,5],[6,7,5,6]], dx=2, dy=2, connections='vertical') 0.0 """ if len(data)==3 and type(data[0][0])==np.str_: nodes, links, weights = data else: #assumes 'normalized==True' and 'directed==True'. nodes, links, weights = ordinal_network(data, dx, dy, taux, tauy, True, overlapping, True, connections, tie_precision=tie_precision) links_source = links.transpose()[0] links_target = links.transpose()[1] h_gn = 0 for node in nodes: args = np.argwhere(links_source==node).flatten() renorm_weights = weights[args]/np.sum(weights[args]) args_in = np.argwhere(links_target==node).flatten() p_in = np.sum(weights[args_in]) h_i = -np.sum(renorm_weights*np.log2(renorm_weights)) h_gn += p_in*h_i return h_gn
a14e7419bcd58d41400b888443df726836e6d04a
14,561
def get_cert(certificate): """ Return the data of the certificate :returns: the certificate file contents """ cert_file = "{}/certs/{}".format(snapdata_path, certificate) with open(cert_file) as fp: cert = fp.read() return cert
da2ac96bf16a74de9ac75a46d14f3b95b5f64264
14,562
def model(data, ix_to_char, char_to_ix, num_iterations = 35000, n_a = 50, dino_names = 7, vocab_size = 27): """ Trains the model and generates dinosaur names. Arguments: data -- text corpus ix_to_char -- dictionary that maps the index to a character char_to_ix -- dictionary that maps a character to an index num_iterations -- number of iterations to train the model for n_a -- number of units of the RNN cell dino_names -- number of dinosaur names you want to sample at each iteration. vocab_size -- number of unique characters found in the text (size of the vocabulary) Returns: parameters -- learned parameters """ # Retrieve n_x and n_y from vocab_size n_x, n_y = vocab_size, vocab_size # Initialize parameters parameters = initialize_parameters(n_a, n_x, n_y) # Initialize loss (this is required because we want to smooth our loss) loss = get_initial_loss(vocab_size, dino_names) # Build list of all dinosaur names (training examples). with open("dinos.txt") as f: examples = f.readlines() examples = [x.lower().strip() for x in examples] # Shuffle list of all dinosaur names np.random.seed(0) np.random.shuffle(examples) # Initialize the hidden state of your LSTM a_prev = np.zeros((n_a, 1)) # Optimization loop for j in range(num_iterations): ### START CODE HERE ### # Set the index `idx` (see instructions above) idx = j%len(examples) # Set the input X (see instructions above) single_example = examples[idx] single_example_chars = [c for c in single_example] single_example_ix = [char_to_ix[c] for c in single_example_chars] X = [None]+single_example_ix # Set the labels Y (see instructions above) ix_newline = char_to_ix["\n"] Y = X[1:]+[ix_newline] # Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters # Choose a learning rate of 0.01 curr_loss, gradients, a_prev = optimize(X, Y, a_prev, parameters, learning_rate = 0.01) ### END CODE HERE ### # Use a latency trick to keep the loss smooth. It happens here to accelerate the training. loss = smooth(loss, curr_loss) # Every 2000 Iteration, generate "n" characters thanks to sample() to check if the model is learning properly if j % 2000 == 0: print('Iteration: %d, Loss: %f' % (j, loss) + '\n') # The number of dinosaur names to print seed = 0 for name in range(dino_names): # Sample indices and print them sampled_indices = sample(parameters, char_to_ix, seed) print_sample(sampled_indices, ix_to_char) seed += 1 # To get the same result (for grading purposes), increment the seed by one. print('\n') return parameters
b1fb202b2c697cae1473c91597b39914e6197dce
14,563
import random def random_choice(gene): """ Randomly select a object, such as strings, from a list. Gene must have defined `choices` list. Args: gene (Gene): A gene with a set `choices` list. Returns: object: Selected choice. """ if not 'choices' in gene.__dict__: raise KeyError("'choices' not defined in this gene, please include a list values!") return random.choice(gene.choices)
8a01a2039a04262aa4fc076bdd87dbf760f45253
14,564
def get_actor(payload: PayloadJSON, actor_id: int) -> ResourceJSON: """Return an actor by actor_id""" actor = ActorModel.find_by_id(actor_id) if actor is None: abort(404) return jsonify({"success": True, "actor": actor.json()},)
0808cba237e47a45dd095f86d44153f97a947e66
14,565
import string def check_if_punctuations(word: str) -> bool: """Returns ``True`` if ``word`` is just a sequence of punctuations.""" for c in word: if c not in string.punctuation: return False return True
64ba5f9dc69c59490a2ea69e7c2d938151d71b37
14,566
import re def normalize_text(string, remove_stopwords=False, stem_words=False): """ Remove punctuation, parentheses, question marks, etc. """ strip_special_chars = re.compile("[^A-Za-z0-9 ]+") string = string.lower() string = string.replace("<br />", " ") string = string.replace(r"(\().*(\))|([^a-zA-Z'])",' ') string = string.replace('&', 'and') string = string.replace('@', 'at') string = string.replace('0', 'zero') string = string.replace('1', 'one') string = string.replace('2', 'two') string = string.replace('3', 'three') string = string.replace('4', 'four') string = string.replace('5', 'five') string = string.replace('6', 'six') string = string.replace('7', 'seven') string = string.replace('8', 'eight') string = string.replace('9', 'nine') string = string.split() if remove_stopwords: stop_words = stopwords.words('english') string = [w for w in string if w not in stop_words] if stem_words: ps = PorterStemmer() string = [ps.stem(w) for w in string] string = ' '.join(string) return re.sub(strip_special_chars, "", string)
0aff8864f526ffe194c661acc69ccb2cf91a6f24
14,567
def get_new_codes(): """ Return New Codes and Refresh DB""" db = dataset.connect(database_url) new_codes = get_code() table = db['promo'] """ Get New Codes""" new = {} for key, value in new_codes.items(): if table.find_one(promo=key) is None: new[key] = [new_codes[key][0], new_codes[key][1]] else: pass """ Add to DB """ for key in new: table.insert(dict(promo=key, desc=new_codes[key][1], exp=new_codes[key][0])) return new
e3ece2e8b43fa43ac4c8d384dbf55957d8bc62c6
14,568
def process_bulk_add_ip(request, formdict): """ Performs the bulk add of ips by parsing the request data. Batches some data into a cache object for performance by reducing large amounts of single database queries. :param request: Django request. :type request: :class:`django.http.HttpRequest` :param formdict: The form representing the bulk uploaded data. :type formdict: dict :returns: :class:`django.http.HttpResponse` """ ip_names = [] cached_results = {} cleanedRowsData = convert_handsontable_to_rows(request) for rowData in cleanedRowsData: if rowData != None and rowData.get(form_consts.IP.IP_ADDRESS) != None: ip_names.append(rowData.get(form_consts.IP.IP_ADDRESS).lower()) ip_results = IP.objects(ip__in=ip_names) for ip_result in ip_results: cached_results[ip_result.ip] = ip_result cache = {form_consts.IP.CACHED_RESULTS: cached_results, 'cleaned_rows_data': cleanedRowsData} response = parse_bulk_upload(request, parse_row_to_bound_ip_form, add_new_ip_via_bulk, formdict, cache) return response
d38bc7766f232b972637da9c92567ebde91ddf52
14,569
def gen_public_e(lambda_: int) -> int: """ Generates decrecingly smaller sequence of bytes and converts them to integer until one satisfies > lambda Continues with half the ammount of necesary bytes decreasing by one integer until gcd(candidate, lambda) == 1. """ bytes_ = 1028 + 1 candidate = crand(bytes_) while candidate > lambda_: # Finds random amount of bytes candidate = crand(bytes_) bytes_ -= 1 candidate = crand(bytes_ // 2) # Generates new candidate in the middle e = 2**16 + 1 while candidate > e: # Finds candidate that satisfies gcd if gcd(candidate, lambda_) == 1: break candidate -= 1 return candidate
903df12b7af83be24d3ef377e2aa95a00a7df089
14,570
from typing import Union from re import T from typing import Callable def lazy(maybe_callable: Union[T, Callable[[], T]]) -> T: """ Call and return a value if callable else return it. >>> lazy(42) 42 >>> lazy(lambda: 42) 42 """ if callable(maybe_callable): return maybe_callable() return maybe_callable
83522ae39b8ec19e86d5e30b2b0a9131a7c56a35
14,571
from random import shuffle def shuffle_list(*ls): """ shuffle multiple list at the same time :param ls: :return: """ l = list(zip(*ls)) shuffle(l) return zip(*l)
ec46e4a8da2c04cf62da2866d2d685fc796887e5
14,573
def cancer_variants(institute_id, case_name): """Show cancer variants overview.""" data = controllers.cancer_variants(store, request.args, institute_id, case_name) return data
185282e9308f7a9f8a0d7faf4c5d3608dee556cc
14,574
def nodes(G): """Returns an iterator over the graph nodes.""" return G.nodes()
3a1a543f1af4d43c79fd0083eb77fedd696547ec
14,575
from typing import Union def cyclePosition(image: np.ndarray, startPosition: position) -> Union[position, bool]: """ :param image: numpy image array :param startPosition: from where to go to Tuple (x,y) :return: newPosition (x,y), or false if new coords would fall out of bounds """ if not imageWrapper.boundsChecker(image, startPosition): return False if startPosition.coords[0] == image.shape[1] - 1: if startPosition.coords[1] < image.shape[0] - 1: return position((0, startPosition.coords[1] + 1)) return False return position((startPosition.coords[0] + 1, startPosition.coords[1]))
a4d3eaf1ddecc884f7391614ae04ff4b10029af3
14,576
def context_to_ingestion_params(context): """extract the ingestion task params from job/serving context""" featureset_uri = context.get_param("featureset") featureset = context.get_store_resource(featureset_uri) infer_options = context.get_param("infer_options", InferOptions.Null) source = context.get_param("source") if source: source = get_source_from_dict(source) elif featureset.spec.source.to_dict(): source = get_source_from_dict(featureset.spec.source.to_dict()) overwrite = context.get_param("overwrite", None) targets = context.get_param("targets", None) if not targets: targets = featureset.spec.targets targets = [get_target_driver(target, featureset) for target in targets] return featureset, source, targets, infer_options, overwrite
41925ce484bbc273caf9a8f0f33eba0e7163a7c8
14,578
def bining_for_calibration(pSigma_cal_ordered_, minL_sigma, maxL_sigma, Er_vect_cal_orderedSigma_, bins, coverage_percentile): """ Bin the values of the standard deviations observed during inference and estimate a specified coverage percentile in the absolute error (observed during inference as well). Bins that have less than 50 samples are merged until they surpass this threshold. Parameters ---------- pSigma_cal_ordered_ : numpy array Array of standard deviations ordered in ascending way. minL_sigma : float Minimum value of standard deviations included in pSigma_cal_ordered_ array. maxL_sigma : numpy array Maximum value of standard deviations included in pSigma_cal_ordered_ array. Er_vect_cal_orderedSigma_ : numpy array Array ob absolute value of errors corresponding with the array of ordered standard deviations. bins : int Number of bins to split the range of standard deviations included in pSigma_cal_ordered_ array. coverage_percentile : float Value to use for estimating coverage when evaluating the percentiles of the observed absolute value of errors. Return ---------- mean_sigma : numpy array Array with the mean standard deviations computed per bin. min_sigma : numpy array Array with the minimum standard deviations computed per bin. max_sigma : numpy array Array with the maximum standard deviations computed per bin. error_thresholds : numpy array Thresholds of the errors computed to attain a certain error coverage per bin. err_err : numpy array Error bars in errors (one standard deviation for a binomial distribution estimated by bin vs. the other bins) for the calibration error. """ # thresholds = np.logspace(np.log10(minL_sigma), np.log10(maxL_sigma), num=bins) thresholds = np.linspace(minL_sigma, maxL_sigma, num=bins) classes = np.digitize(pSigma_cal_ordered_, thresholds) Nbin = np.zeros(bins + 1) for i in range(bins + 1): indices = (classes == i) Nbin[i] = indices.sum() # Repair bins new_thresholds_l = [] new_nbins_l = [] sumN = 0 for i in range(Nbin.shape[0]): sumN += Nbin[i] if sumN > 50: if i > (thresholds.shape[0] - 1): new_thresholds_l.append(thresholds[-1]) else: new_thresholds_l.append(thresholds[i]) new_nbins_l.append(sumN) sumN = 0 new_thresholds = np.array(new_thresholds_l) new_nbins = np.array(new_nbins_l) new_thresholds[-1] = thresholds[-1] new_nbins[-1] += sumN # classes = np.digitize(pSigma_cal_ordered_, new_thresholds[:-1]) error_thresholds = -1. * np.ones(new_nbins.shape[0]) mean_sigma = -1. * np.ones(new_nbins.shape[0]) min_sigma = -1. * np.ones(new_nbins.shape[0]) max_sigma = -1. * np.ones(new_nbins.shape[0]) err_err = -1. * np.ones(new_nbins.shape[0]) Ncal = pSigma_cal_ordered_.shape[0] for i in range(error_thresholds.shape[0]): indices = (classes == i) n_aux = indices.sum() assert n_aux == new_nbins[i] print('Points in bin %d: %d' % (i, n_aux)) mean_sigma[i] = np.mean(pSigma_cal_ordered_[indices]) min_sigma[i] = np.min(pSigma_cal_ordered_[indices]) max_sigma[i] = np.max(pSigma_cal_ordered_[indices]) error_thresholds[i] = np.percentile(Er_vect_cal_orderedSigma_[indices], coverage_percentile) err_err[i] = np.sqrt(new_nbins[i] * (Ncal - new_nbins[i])) / Ncal * error_thresholds[i] return mean_sigma, min_sigma, max_sigma, error_thresholds, err_err
cb241f6292726a86a7505e950f32fd1c1fefd19f
14,579
def add_user(request): """注册用户""" info = {} tpl_name = 'user/add_user.html' if request.method == 'POST': # 保存用户提交数据 nickname = request.POST.get('nickname') if User.objects.filter(nickname__exact=nickname).exists(): # "昵称" 存在 info = {'error':'"昵称"存在'} # 显示注册页面 return render(request,tpl_name,info) password = request.POST.get('password') password2 = request.POST.get('password2') if password != password2: # 2次密码不一样 info = {'error': '2次密码不一致'} # 显示注册页面 return render(request,tpl_name,info) age = request.POST.get('age') sex = request.POST.get('sex') f_in = request.FILES.get('icon') user = User(nickname=nickname,password=password,age=age,sex=sex) if f_in: user.icon.save(f_in.name,f_in,save=False) user.set_password(password) user.save() # 在session中,记录用户信息 request.session['uid'] = user.id request.session['nickname'] = user.nickname # 跳转到用户信息 url = '/user/read_user/?uid={}'.format(user.id) return redirect(url) else: # 显示注册页面 return render(request,tpl_name,info)
bbfd3bc8ed47f19f527352f39d5e5b2bdc80d450
14,580
def process_input(input_string, max_depth): """ Clean up the input, convert it to an array and compute the longest array, per feature type. """ # remove the quotes and extra spaces from the input string input_string = input_string.replace('"', '').replace(', ', ',').strip() # convert the string to an array and also track the longest array, so # we know how many levels for the feature type. tmp = [] if input_string: tmp = input_string.split(',') if max_depth < len(tmp): max_depth = len(tmp) # return the array and the depth return tmp, max_depth
ca0fddd0b3bf145c7fc0654212ae43f02799b466
14,581
import random def generate_new_shape() -> tuple[int, list[int], list[int]]: """Generate new shape #0: hot_cell_y = [0,1,2,3] hot_cell_x = [5,5,5,5] X X X X #1: hot_cell_y = [0,0,0,0] hot_cell_x = [3,4,5,6] XXXX #2: hot_cell_y = [0,1,0,1] hot_cell_x = [4,4,5,5] XX XX #3. hot_cell_y = [0,0,1,1] hot_cell_x = [4,5,5,6] XX XX #4. hot_cell_y = [0,1,1,2] hot_cell_x = [4,4,5,5] X XX X #5. hot_cell_y = [0,1,2,2] hot_cell_x = [4,4,4,5] X X XX #6. hot_cell_y = [1,0,1,1] hot_cell_x = [4,4,5,6] X XXX """ shape_id = random.randint(1, 7) logger.info("generating shape id => " + str(shape_id)) shape_color = shape_id if(shape_id == 2): shape_y_pos_list = [0, 0, 0, 0] shape_x_pos_list = [3, 4, 5, 6] elif(shape_id == 3): shape_y_pos_list = [0, 1, 0, 1] shape_x_pos_list = [4, 4, 5, 5] elif(shape_id == 4): shape_y_pos_list = [0, 0, 1, 1] shape_x_pos_list = [4, 5, 5, 6] elif(shape_id == 5): shape_y_pos_list = [0, 1, 1, 2] shape_x_pos_list = [4, 4, 5, 5] elif(shape_id == 6): shape_y_pos_list = [0, 1, 2, 2] shape_x_pos_list = [4, 4, 4, 5] elif(shape_id == 7): shape_y_pos_list = [0, 1, 1, 1] shape_x_pos_list = [4, 4, 5, 6] else: shape_y_pos_list = [0, 1, 2, 3] shape_x_pos_list = [5, 5, 5, 5] return (shape_color, shape_x_pos_list, shape_y_pos_list)
d7c2c710f72ed5d21b7e63779815ee7bfb8421f4
14,582
def get_process_list(process): """Analyse the process description and return the Actinia process chain and the name of the processing result :param process: The process description :return: (output_names, actinia_process_list) """ input_names, process_list = analyse_process_graph(process) output_names = [] # First analyse the data entrie if "data_id" not in process: raise Exception("Process %s requires parameter <data_id>" % PROCESS_NAME) output_names.append(process["data_id"]) pc = create_process_chain_entry(input_name=process["data_id"]) process_list.append(pc) # Then add the input to the output for input_name in input_names: # Create the output name based on the input name and method output_name = input_name output_names.append(output_name) return output_names, process_list
f1e6689c50e00117379107fc840a09f4638c3912
14,583
def createAES(key, IV, implList=None): """Create a new AES object. :type key: str :param key: A 16, 24, or 32 byte string. :type IV: str :param IV: A 16 byte string :rtype: tlslite.utils.AES :returns: An AES object. """ if implList is None: implList = ["openssl", "pycrypto", "python"] for impl in implList: if impl == "openssl" and cryptomath.m2cryptoLoaded: return openssl_aes.new(key, 2, IV) elif impl == "pycrypto" and cryptomath.pycryptoLoaded: return pycrypto_aes.new(key, 2, IV) elif impl == "python": return python_aes.new(key, 2, IV) raise NotImplementedError()
c41a5d028028383630b0977522a9617334c94d03
14,584
def update_status_issue(issue, status_id, notes): """Request to change the status of a problem in a redmine project. 'issue': A hash of the issue is bound to a redmine project. 'status_id': Id status used by redmine the project. 'notes': Comments about the update. Return value: 0 - on success non zero - HTTP protocol errors are valid responses. """ values = '''{ "issue": { "status_id": "%s", "notes": "%s" } }''' % (status_id, notes) req = Request( '%s/issues/%s.json' % (_service_host_project(), issue), data=values.encode(), method='PUT') req.add_header('Content-Type', 'application/json') req.add_header('X-Redmine-API-Key', _service_access_key()) try: with urlopen(req) as context: pass return 0 if context.code == 200 else context.code except HTTPError as err: print('The server couldn\'t fulfill the request.') print('Error code: ', err.code) except URLError as err: print('We failed to reach a server.') print('Reason: ', err.reason)
6c0118f514083d228ac1d27271d297b3e593be52
14,587
from typing import Optional def _get_avgiver_epost(root: ET.Element, ns: dict) -> Optional[str]: """ Sought: the email of the submitter Can be found in a child element (<mets:note>) of an <mets:agent> with ROLE="OTHER", OTHERROLE="SUBMITTER", TYPE="INDIVIDUAL" """ try: agent = [ agent for agent in _get_agent_elements(root, ns) if ( agent.get("ROLE") == "OTHER" and agent.get("OTHERROLE") == "SUBMITTER" and agent.get("TYPE") == "INDIVIDUAL" ) ].pop() notes = agent.findall("mets:note", namespaces=ns) email = [ note.text for note in notes if "@" in note.text ].pop() return email except IndexError: return None
9be1f53fcf9799f3a559cd12b3bfa056aaac11a7
14,588
def xavier_init(fan_in, fan_out, constant=1): """ Xavier initialization of network weights\ """ low = -constant * np.sqrt(6.0 / (fan_in + fan_out)) high = constant * np.sqrt(6.0 / (fan_in + fan_out)) return tf.random_uniform((fan_in, fan_out), minval=low, maxval=high, dtype=tf.float32, seed=np.random.randint(0, 1e9))
35b6f7b75eb44f1828d82c6743ec4751db4ff234
14,589
def strToMat3(dbstr): """ convert a string like e00, e01, e02, ... into Mat3 :param str: :return: panda Mat4 """ exx = dbstr.split(',') exxdecimal = map(float, exx) assert(len(exxdecimal) is 16) return Mat3(exxdecimal[0], exxdecimal[1], exxdecimal[2], exxdecimal[4], exxdecimal[5], exxdecimal[6], exxdecimal[8], exxdecimal[9], exxdecimal[10])
8db33dc5e2fab613cd6cba00021486fe722c8d32
14,590
def map2(func, *matrix): """ Maps a function onto the elements of a matrix Also accepts multiple matrices. Thus matrix addition is map2(add, matrix1, matrix2) """ matrix2 = [] for i in xrange(len(matrix[0])): row2 = [] matrix2.append(row2) for j in xrange(len(matrix[0][i])): args = [x[i][j] for x in matrix] row2.append(func(* args)) return matrix2
9af6f311c80e70789ba6d623776fc2f80edbd905
14,591
def register_libtype(cls): """Registry of library types we may come across when parsing XML. This allows us to define a few helper functions to dynamically convery the XML into objects. See buildItem() below for an example. """ LIBRARY_TYPES[cls.TYPE] = cls return cls
bb94e9f73ec04be834fa6be7de0cebf7c10a57ec
14,592
def construct_tablepath(fmdict, prefix=''): """ Construct a suitable pathname for a CASA table made from fmdict, starting with prefix. prefix can contain a /. If prefix is not given, it will be set to "ephem_JPL-Horizons_%s" % fmdict['NAME'] """ if not prefix: prefix = "ephem_JPL-Horizons_%s" % fmdict['NAME'] return prefix + "_%.0f-%.0f%s%s.tab" % (fmdict['earliest']['m0']['value'], fmdict['latest']['m0']['value'], fmdict['latest']['m0']['unit'], fmdict['latest']['refer'])
95041aab91ac9994ef2068d5e05f6cd63969d94e
14,593
def _grad_mulAux(kern,x,y,yerr,original_kernel): """ __grad_mulAux() its necesary when we are dealing with multiple terms of sums and multiplications, example: ES*ESS + ES*ESS*WN + RQ*ES*WN and not having everything breaking apart Parameters kern = kernel in use x = range of values of the independent variable (usually time) y = range of values of te dependent variable (the measurments) yerr = error in the measurments original_kernel = original kernel (original sum) being used Returns See _grad_mul(kernel,x,y,yerr) for more info """ original_kernel = original_kernel cov_matrix = build_matrix(original_kernel,x,yerr) listof__kernels = [kern.__dict__["k2"]] #to put each kernel separately kernel_k1 = kern.__dict__["k1"] while len(kernel_k1.__dict__) == 2: listof__kernels.insert(0,kernel_k1.__dict__["k2"]) kernel_k1=kernel_k1.__dict__["k1"] listof__kernels.insert(0,kernel_k1) #each kernel is now separated kernelaux1 = []; kernelaux2 = [] for i, e in enumerate(listof__kernels): kernelaux1.append(listof__kernels[i]) kernelaux2.append(_kernel_deriv(listof__kernels[i])) grad_result = [] kernelaux11 = kernelaux1; kernelaux22 = kernelaux2 ii = 0 while ii<len(listof__kernels): kernelaux11 = kernelaux1[:ii] + kernelaux1[ii+1 :] _kernels = _np.prod(_np.array(kernelaux11)) for ij, e in enumerate(kernelaux22[ii]): result = _grad_lp(kernelaux2[ii][ij]*_kernels,x,y,yerr,cov_matrix) grad_result.insert(0,result) kernelaux11 = kernelaux1;kernelaux22=kernelaux2 ii = ii+1 grad_result = grad_result[::-1] return grad_result
ce140d8a73a8304d0601077b5ed01f93cb17deab
14,594
def get_unbiased_p_hat(number_candidates, c1, c2, p): """Get the p_hat to unbias miracle. Args: number_candidates: The number of candidates to be sampled. c1: The factor that the conditional density of z given x is proportional to if the inner product between x and z is more than gamma. c2: The factor that the conditional density of z given x is proportional to if the inner product between x and z is less than gamma. p: The probability with which privunit samples an unit vector from the shaded spherical cap associated with input (see original privunit paper). Returns: p_hat: The probability with which unbiased miracle will sample an unit vector from the shaded spherical cap associated with input. """ # Compute the fraction of candidates that lie inside the cap. beta = np.array(range(number_candidates + 1)) / number_candidates pi_in = 1 / number_candidates * (c1 / (beta * c1 + (1 - beta) * c2)) p_hat = np.sum( stats.binom.pmf(range(number_candidates + 1), number_candidates, p / c1) * range(number_candidates + 1) * pi_in) return p_hat
5d45696557835f2bc655b601e015bb08356fe2dd
14,595
def prox_gradf(xy, step): """Gradient step""" return xy-step*grad_f(xy)
7700850b9bfb5c5be5f0a63a678df93991673d81
14,596
import numpy import math def CBND(x, y, rho): """ A function for computing bivariate normal probabilities. :: Alan Genz Department of Mathematics Washington State University Pullman, WA 99164-3113 Email : [email protected] This function is based on the method described by :: Drezner, Z and G.O. Wesolowsky, (1990), On the computation of the bivariate normal integral, Journal of Statist. Comput. Simul. 35, pp. 101-107, with major modifications for double precision, and for ``|R|`` close to 1. This code was originally transelated into VBA by Graeme West """ W = numpy.zeros((11,4)) XX = numpy.zeros((11,4)) W[1][1] = 0.17132449237917 XX[1][1] = -0.932469514203152 W[2][1] = 0.360761573048138 XX[2][1] = -0.661209386466265 W[3][1] = 0.46791393457269 XX[3][1] = -0.238619186083197 W[1][2] = 4.71753363865118E-02 XX[1][2] = -0.981560634246719 W[2][2] = 0.106939325995318 XX[2][2] = -0.904117256370475 W[3][2] = 0.160078328543346 XX[3][2] = -0.769902674194305 W[4][2] = 0.203167426723066 XX[4][2] = -0.587317954286617 W[5][2] = 0.233492536538355 XX[5][2] = -0.36783149899818 W[6][2] = 0.249147045813403 XX[6][2] = -0.125233408511469 W[1][3] = 1.76140071391521E-02 XX[1][3] = -0.993128599185095 W[2][3] = 4.06014298003869E-02 XX[2][3] = -0.963971927277914 W[3][3] = 6.26720483341091E-02 XX[3][3] = -0.912234428251326 W[4][3] = 8.32767415767048E-02 XX[4][3] = -0.839116971822219 W[5][3] = 0.10193011981724 XX[5][3] = -0.746331906460151 W[6][3] = 0.118194531961518 XX[6][3] = -0.636053680726515 W[7][3] = 0.131688638449177 XX[7][3] = -0.510867001950827 W[8][3] = 0.142096109318382 XX[8][3] = -0.37370608871542 W[9][3] = 0.149172986472604 XX[9][3] = -0.227785851141645 W[10][3] = 0.152753387130726 XX[10][3] = -7.65265211334973E-02 if numpy.abs(rho) < 0.3: NG = 1 LG = 3 elif numpy.abs(rho) < 0.75: NG = 2 LG = 6 else: NG = 3 LG = 10 h = -x k = -y hk = h * k BVN = 0 if numpy.abs(rho) < 0.925: if numpy.abs(rho) > 0: hs = (h * h + k * k) / 2. asr = math.asin(rho) for i in range(1,LG+1): for ISs in [-1,1]: sn = math.sin(asr * (ISs * XX[i][NG] + 1) / 2) BVN = BVN + W[i][NG] * numpy.exp((sn * hk - hs) / (1 - sn * sn)) BVN = BVN * asr / (4. * numpy.pi) BVN = BVN + CND(-h) * CND(-k) else: if rho < 0: k = -k hk = -hk if numpy.abs(rho) < 1.: Ass = (1. - rho) * (1. + rho) A = numpy.sqrt(Ass) bs = (h - k) ** 2 c = (4. - hk) / 8. d = (12. - hk) / 16. asr = -(bs / Ass + hk) / 2. if asr > -100: BVN = A * numpy.exp(asr) * (1 - c * (bs - Ass) * (1 - d * bs / 5.) / 3. + c * d * Ass * Ass / 5.) if -hk < 100: b = numpy.sqrt(bs) BVN = BVN - numpy.exp(-hk / 2.) * numpy.sqrt(2. * numpy.pi) * CND(-b / A) * b * (1. - c * bs * (1. - d * bs / 5.) / 3.) A = A / 2 for i in range(1,LG+1): for ISs in [-1,1]: xs = (A * (ISs * XX[i][NG] + 1)) ** 2 rs = numpy.sqrt(1 - xs) asr = -(bs / xs + hk) / 2 if asr > -100: BVN = BVN + A * W(i, NG) * numpy.exp(asr) * (numpy.exp(-hk * (1 - rs) / (2 * (1 + rs))) / rs - (1 + c * xs * (1 + d * xs))) BVN = -BVN / (2. * numpy.pi) if rho > 0.: BVN = BVN + CND(-max(h, k)) else: BVN = -BVN if k > h: BVN = BVN + CND(k) - CND(h) CBND = BVN return CBND
3b418e50acec31482df7137f484d396b1673d476
14,597
def prune(root: Node, copy: bool = True) -> Node: """ Prune (or simplify) the given SPN to a minimal and equivalent SPN. :param root: The root of the SPN. :param copy: Whether to copy the SPN before pruning it. :return: A minimal and equivalent SPN. :raises ValueError: If the SPN structure is not a directed acyclic graph (DAG). :raises ValueError: If an unknown node type is found. """ # Copy the SPN before proceeding, if specified if copy: root = deepcopy(root) # Check the SPN check_spn(root, labeled=True, smooth=True, decomposable=True) nodes = topological_order(root) if nodes is None: raise ValueError("SPN structure is not a directed acyclic graph (DAG)") # Build a dictionary that maps each id of a node to the corresponding node object nodes_map = dict(map(lambda n: (n.id, n), nodes)) # Proceed by reversed topological order for node in reversed(nodes): # Skip leaves if isinstance(node, Leaf): continue # Retrieve the children nodes from the mapping children_nodes = list(map(lambda n: nodes_map[n.id], node.children)) if len(children_nodes) == 1: nodes_map[node.id] = children_nodes[0] elif isinstance(node, Product): # Subsequent product nodes, concatenate the children of them children = list() for child in children_nodes: if not isinstance(child, Product): children.append(child) continue product_children = map(lambda n: nodes_map[n.id], child.children) children.extend(product_children) nodes_map[node.id].children = children elif isinstance(node, Sum): # Subsequent sum nodes, concatenate the children of them and adjust the weights accordingly # Important! This implementation take care also of directed acyclic graphs (DAGs) children_weights = defaultdict(float) for i, child in enumerate(children_nodes): if not isinstance(child, Sum): children_weights[child] += node.weights[i] continue sum_children = map(lambda n: nodes_map[n.id], child.children) for j, sum_child in enumerate(sum_children): children_weights[sum_child] += node.weights[i] * child.weights[j] children, weights = zip(*children_weights.items()) nodes_map[node.id].weights = np.array(weights, dtype=node.weights.dtype) nodes_map[node.id].children = children else: raise ValueError("Unknown node type called {}".format(node.__class__.__name__)) return assign_ids(nodes_map[root.id])
e242156bca1d8a3be8ca673a6629dadf967ccb5b
14,598
def GetRevisionAndLogs(slave_location, build_num): """Get a revision number and log locations. Args: slave_location: A URL or a path to the build slave data. build_num: A build number. Returns: A pair of the revision number and a list of strings that contain locations of logs. (False, []) in case of error. """ if slave_location.startswith('http://'): location = slave_location + '/builds/' + str(build_num) else: location = os.path.join(slave_location, str(build_num)) revision = False logs = [] fp = None try: if location.startswith('http://'): fp = urllib2.urlopen(location) contents = fp.read() revisions = re.findall(r'<td class="left">got_revision</td>\s+' '<td>(\d+)</td>\s+<td>Source</td>', contents) if revisions: revision = revisions[0] logs = [location + link + '/text' for link in re.findall(r'(/steps/endure[^/]+/logs/stdio)', contents)] else: fp = open(location, 'rb') build = cPickle.load(fp) properties = build.getProperties() if properties.has_key('got_revision'): revision = build.getProperty('got_revision') candidates = os.listdir(slave_location) logs = [os.path.join(slave_location, filename) for filename in candidates if re.match(r'%d-log-endure[^/]+-stdio' % build_num, filename)] except urllib2.URLError, e: logging.exception('Error reading build URL "%s": %s', location, str(e)) return False, [] except (IOError, OSError), e: logging.exception('Error reading build file "%s": %s', location, str(e)) return False, [] finally: if fp: fp.close() return revision, logs
fb8b25a0f33194af288d411b2218edf904ab9f14
14,599
import json def get_json(url, **kwargs): """Downloads json data and converts it to a dict""" raw = get(url, **kwargs) if raw == None: return None return json.loads(raw.decode('utf8'))
16504c03beaa1a5913f2256ad6a1871049694e14
14,600
def get_text(im): """ 得到图像中的文本部分 """ return im[3:24, 116:288]
86db2a16372aacb6cde29a2bf16c84f14f65d715
14,601
def homepage(): """Display tweets""" tweet_to_db() output = [a for a in Tweet.query.order_by(desc('time_created')).all()] # to display as hyper links for tweet in output: tweet.handle = linkyfy(tweet.handle, is_name=True) tweet.text = linkyfy(tweet.text) return render_template("home.html", output=output)
d37138ea2ed6bdf8a650e644943e330400417f57
14,602
def watch_list_main_get(): """ Render watch list page. Author: Jérémie Dierickx """ watchlist = env.get_template('watchlists.html') return header("Watch List") + watchlist.render(user_name=current_user.pseudo) + footer()
760c8f2acf4a3ea1791860568ae747b9bd35593c
14,603
def input_file(inp_str): """ Parse the input string """ # Parse the sections of the input into keyword-val dictionaries train_block = ioformat.ptt.symb_block(inp_str, '$', 'training_data') fform_block = ioformat.ptt.symb_block(inp_str, '$', 'functional_form') exec_block = ioformat.ptt.symb_block(inp_str, '$', 'fortran_execution') train_dct = ioformat.ptt.keyword_dct_from_block( train_block[1], formatvals=False) fform_dct = ioformat.ptt.keyword_dct_from_block( fform_block[1], formatvals=False) exec_dct = ioformat.ptt.keyword_dct_from_block( exec_block[1], formatvals=False) # Set defaults (maybe use fancy version later if more defaults can be set) if 'Units' not in train_dct: train_dct['Units'] = DEFAULT_DCT['Units'] # Check that the dictionaries are built correctly _check_dcts(train_dct, fform_dct, exec_dct) return train_dct, fform_dct, exec_dct
9ae7c55c59e6b89b43271836738fd4fffbf38455
14,604
def recursiveUpdate(target, source): """ Recursively update the target dictionary with the source dictionary, leaving unfound keys in place. This is different than dict.update, which removes target keys not in the source :param dict target: The dictionary to be updated :param dict source: The dictionary to be integrated :return: target dict is returned as a convenience. This function updates the target dict in place. :rtype: dict """ for k, v in source.items(): if isinstance(v, dict): target[k] = recursiveUpdate(target.get(k, {}), v) else: target[k] = v return target
e1c11d0801be9526e8e73145b1dfc7be204fc7d0
14,606
import time import requests import json def macro_bank_usa_interest_rate(): """ 美联储利率决议报告, 数据区间从19820927-至今 https://datacenter.jin10.com/reportType/dc_usa_interest_rate_decision https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v=1578581921 :return: 美联储利率决议报告-今值(%) :rtype: pandas.Series """ t = time.time() res = requests.get( f"https://cdn.jin10.com/dc/reports/dc_usa_interest_rate_decision_all.js?v={str(int(round(t * 1000))), str(int(round(t * 1000)) + 90)}" ) json_data = json.loads(res.text[res.text.find("{") : res.text.rfind("}") + 1]) date_list = [item["date"] for item in json_data["list"]] value_list = [item["datas"]["美国利率决议"] for item in json_data["list"]] value_df = pd.DataFrame(value_list) value_df.columns = json_data["kinds"] value_df.index = pd.to_datetime(date_list) temp_df = value_df["今值(%)"] url = "https://datacenter-api.jin10.com/reports/list_v2" params = { "max_date": "", "category": "ec", "attr_id": "24", "_": str(int(round(t * 1000))), } headers = { "accept": "*/*", "accept-encoding": "gzip, deflate, br", "accept-language": "zh-CN,zh;q=0.9,en;q=0.8", "cache-control": "no-cache", "origin": "https://datacenter.jin10.com", "pragma": "no-cache", "referer": "https://datacenter.jin10.com/reportType/dc_usa_michigan_consumer_sentiment", "sec-fetch-dest": "empty", "sec-fetch-mode": "cors", "sec-fetch-site": "same-site", "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36", "x-app-id": "rU6QIu7JHe2gOUeR", "x-csrf-token": "", "x-version": "1.0.0", } r = requests.get(url, params=params, headers=headers) temp_se = pd.DataFrame(r.json()["data"]["values"]).iloc[:, :2] temp_se.index = pd.to_datetime(temp_se.iloc[:, 0]) temp_se = temp_se.iloc[:, 1] temp_df = temp_df.append(temp_se) temp_df.dropna(inplace=True) temp_df.sort_index(inplace=True) temp_df = temp_df.reset_index() temp_df.drop_duplicates(subset="index", inplace=True) temp_df.set_index("index", inplace=True) temp_df = temp_df.squeeze() temp_df.index.name = None temp_df.name = "usa_interest_rate" temp_df = temp_df.astype("float") return temp_df
52885b4cfbb607d3ecbb0f89f19cac7e1f097ccd
14,607
def get_kwd_group(soup): """ Find the kwd-group sections for further analysis to find subject_area, research_organism, and keywords """ kwd_group = None kwd_group = extract_nodes(soup, 'kwd-group') return kwd_group
626a85b5274880d1e4520f4afe5a270e5f20832a
14,608
def read_transport_file(input_file_name): """ Reads File "input_file_name".dat, and returns lists containing the atom indices of the device atoms, as well as the atom indices of the contact atoms. Also, a dictionary "interaction_distances" is generated, which spcifies the maximum interaction distance between each type of atom. """ transport_file_path = "./" + INPUT_FOLDER_NAME + "/" + \ str(input_file_name) + "_" + "transport.dat" file = open(transport_file_path, 'r') max_file_lines = 1000 iterations = 0 # IMPORTANT: In file, first atom has index is one, but in my program, # first atom has index is zero region_list = [] # List of regions, starting with device region line = file.readline() entries = line.split() #A single list of device atom indices. device_region = [] # A list of lists, one list of atom indices for each contact. contact_regions = [] iterations = 0 while iterations < max_file_lines: new_indices = list(range(int(entries[1]) - 1, int(entries[2]))) if "Device" in entries[0]: # Don't append, because we want a single list of indices for the # device region. device_region = device_region + new_indices if "Contact" in entries[0]: contact_regions.append(new_indices) line = file.readline() entries = line.split() iterations += 1 if not("Device" in entries[0] or "Contact" in entries[0]): break region_list.append(device_region) region_list += contact_regions interaction_distances = {} #line = file.readline() #stripped_line = line.replace(" ", "").replace("\n", "") #entries = line.split() # loop terminates at first empty line, or at end of file # (since readline() returns empty string at end of file) iterations = 0 while iterations < max_file_lines: key = entries[0] + entries[1] interaction_distances[key] = float(entries[2]) line = file.readline() entries = line.split() iterations += 1 stripped_line = line.replace(" ", "").replace("\n", "") if stripped_line == '': break # print("In read_transport_file: " + str(region_list)) return (region_list, interaction_distances)
d62e3cc1dfbe2ac4865579dca86133bedb06182f
14,609
def handle_srv6_path(operation, grpc_address, grpc_port, destination, segments=None, device='', encapmode="encap", table=-1, metric=-1, bsid_addr='', fwd_engine='linux', key=None, update_db=True, db_conn=None, channel=None): """ Handle a SRv6 Path. """ # Dispatch depending on the operation if operation == 'add': return add_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'get': return get_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'change': return change_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) if operation == 'del': return del_srv6_path( grpc_address=grpc_address, grpc_port=grpc_port, destination=destination, segments=segments, device=device, encapmode=encapmode, table=table, metric=metric, bsid_addr=bsid_addr, fwd_engine=fwd_engine, key=key, update_db=update_db, db_conn=db_conn, channel=channel ) # Operation not supported, raise an exception logger.error('Operation not supported') raise utils.OperationNotSupportedException
3181f9b4e99a6414c92614caee7af0ff133ad01d
14,610
def mask_outside_polygon(poly_verts, ax, facecolor=None, edgecolor=None, alpha=0.25): """ Plots a mask on the specified axis ("ax", defaults to plt.gca()) such that all areas outside of the polygon specified by "poly_verts" are masked. "poly_verts" must be a list of tuples of the verticies in the polygon in counter-clockwise order. Returns the matplotlib.patches.PathPatch instance plotted on the figure. """ # Get current plot limits xlim = ax.get_xlim() ylim = ax.get_ylim() # Verticies of the plot boundaries in clockwise order bound_verts = [ (xlim[0], ylim[0]), (xlim[0], ylim[1]), (xlim[1], ylim[1]), (xlim[1], ylim[0]), (xlim[0], ylim[0]), ] # A series of codes (1 and 2) to tell matplotlib whether to draw a line or # move the "pen" (So that there's no connecting line) bound_codes = [mpath.Path.MOVETO] + (len(bound_verts) - 1) * [mpath.Path.LINETO] poly_codes = [mpath.Path.MOVETO] + (len(poly_verts) - 1) * [mpath.Path.LINETO] # Plot the masking patch path = mpath.Path(bound_verts + poly_verts, bound_codes + poly_codes) patch = mpatches.PathPatch( path, facecolor=facecolor, edgecolor=edgecolor, alpha=alpha ) patch = ax.add_patch(patch) # Reset the plot limits to their original extents ax.set_xlim(xlim) ax.set_ylim(ylim) return patch
1c46d12d7f3c92e3ff4522bb88713eae3c9138b1
14,611
def setup_data(cluster): """ Get decision boundaries by means of np.meshgrid :return: Tuple (vectors, centroids, X component of mesghgrid, Y component of meshgrid, ) """ feature_vectors, _, centroids, _, kmeans = cluster # Step size of the mesh. Decrease to increase the quality of the VQ. h = .2 # point in the mesh [x_min, x_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will assign a color to each x_min, x_max = feature_vectors[:, 0].min() - 1, feature_vectors[:, 0].max() + 1 y_min, y_max = feature_vectors[:, 1].min() - 1, feature_vectors[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) return feature_vectors, centroids, xx, yy, Z
edcfede8e8f7fc18fc9e7255127f0f14688df2f2
14,612
from datetime import datetime def list_errors( conx: Connection, ) -> t.List[t.Tuple[int, datetime.datetime, str, str, str, str]]: """Return list of all errors. The list returned contains each error as an element in the list. Each element is a tuple with the following layout: (seq nr, date, err msg, err detail, level, state mask) The 'err detail' and 'level' elements are not always present and thus may be empty. NOTE: this method is expensive and slow, as it retrieves a file from the controller over FTP and parses it. :returns: A list of all errors and their details :rtype: list(tuple(int, datetime.datetime, str, str, str, str)) """ errs = get_file_as_bytes(conx, remote_name='/md:/errall.ls') res = [] for line in errs.decode('ascii').splitlines(): # check for really empty lines if ('Robot Name' in line) or (line == ''): continue fields = list(map(str.strip, line.split('"'))) # check for empty rows (seen on just installed controllers) if not fields[2]: continue # probably OK, try to continue parsing level_state = fields[4].split() if len(level_state) > 1: ( err_level, err_state, ) = level_state else: err_level, err_state, = ( '', level_state[0], ) stamp = datetime.datetime.strptime(fields[1], '%d-%b-%y %H:%M:%S') res.append((int(fields[0]), stamp, fields[2], fields[3], err_level, err_state)) return res
2aea677d8e69a76c5a6922d9c7e6ce3078ad7488
14,614
async def get_incident(incident_id): """ Get incident --- get: summary: Get incident tags: - incidents parameters: - name: id in: path required: true description: Object ID responses: 200: description: The requested object content: application/json: schema: Incident """ incident = g.Incident.find_by_id(incident_id) if incident is None: raise exceptions.NotFound(description="Incident {} was not found".format(incident_id)) return jsonify(incident), HTTPStatus.OK
f70703b43944dfa2385a2a35249dd692fe18a1ba
14,615
from typing import List def partition_vector(vector, sets, fdtype: str='float64') -> List[NDArrayNfloat]: # pragma: no cover """partitions a vector""" vectors = [] for unused_aname, aset in sets: if len(aset) == 0: vectors.append(np.array([], dtype=fdtype)) continue vectori = vector[aset] vectors.append(vectori) return vectors
e73494d146ec56a8287c0e0e3ec3dec7f7d93c37
14,616
def calculate_G4( n_numbers, neighborsymbols, neighborpositions, G_elements, theta, zeta, eta, Rs, cutoff, cutofffxn, Ri, normalized=True, image_molecule=None, n_indices=None, weighted=False, ): """Calculate G4 symmetry function. These are 3 body or angular interactions. Parameters ---------- n_symbols : list of int List of neighbors' chemical numbers. neighborsymbols : list of str List of symbols of neighboring atoms. neighborpositions : list of list of floats List of Cartesian atomic positions of neighboring atoms. G_elements : list of str A list of two members, each member is the chemical species of one of the neighboring atoms forming the triangle with the center atom. theta : float Parameter of Gaussian symmetry functions. zeta : float Parameter of Gaussian symmetry functions. eta : float Parameter of Gaussian symmetry functions. Rs : float Parameter to shift the center of the peak. cutoff : float Cutoff radius. cutofffxn : object Cutoff function. Ri : list Position of the center atom. Should be fed as a list of three floats. normalized : bool Whether or not the symmetry function is normalized. image_molecule : ase object, list List of atoms in an image. n_indices : list List of indices of neighboring atoms from the image object. weighted : bool True if applying weighted feature of Gaussian function. See Ref. 2. Returns ------- feature : float G4 feature value. Notes ----- The difference between the calculate_G3 and the calculate_G4 function is that calculate_G4 accounts for bond angles of 180 degrees. """ feature = 0.0 counts = range(len(neighborpositions)) for j in counts: for k in counts[(j + 1) :]: els = sorted([neighborsymbols[j], neighborsymbols[k]]) if els != G_elements: continue Rij_vector = neighborpositions[j] - Ri Rij = np.linalg.norm(Rij_vector) Rik_vector = neighborpositions[k] - Ri Rik = np.linalg.norm(Rik_vector) cos_theta_ijk = np.dot(Rij_vector, Rik_vector) / Rij / Rik theta_ijk = np.arccos( np.clip(cos_theta_ijk, -1.0, 1.0) ) # Avoids rounding issues cos_theta = np.cos(theta_ijk - theta) term = (1.0 + cos_theta) ** zeta term *= np.exp(-eta * ((Rij + Rik) / 2.0 - Rs) ** 2.0) if weighted: term *= weighted_h(image_molecule, n_indices) term *= cutofffxn(Rij) term *= cutofffxn(Rik) feature += term feature *= 2.0 ** (1.0 - zeta) return feature
5a864c615d2b835da4bb3d99435b9e2e2a40e136
14,617
def paths_from_root(graph, start): """ Generates paths from `start` to every other node in `graph` and puts it in the returned dictionary `paths`. ie.: `paths_from_node(graph, start)[node]` is a list of the edge names used to get to `node` form `start`. """ paths = {start: []} q = [start] seen = set() while q: node = q.pop() seen.add(node) for relation, child in graph[node]: if isnode(child) and child not in seen: q.append(child) paths[child] = paths[node] + [relation] return paths
9b8399b67e14a6fbfe0d34c087317d06695bca65
14,619
from typing import Sequence from typing import Optional from typing import Callable from typing import Dict def list_to_dict(l:Sequence, f:Optional[Callable]=None) -> Dict: """ Convert the list to a dictionary in which keys and values are adjacent in the list. Optionally, a function `f` can be passed to apply to each value before adding it to the dictionary. Parameters ---------- l: typing.Sequence The list of items f: typing.Callable A function to apply to each value before inserting it into the list. For example, `float` could be passed to convert each value to a float. Returns ------- d: typing.Dict The dictionary, defined as described above Examples -------- .. code-block:: python l = ["key1", "value1", "key2", "value2"] list_to_dict(l, f) == {"key1": f("value1"), "key2": f("value2")} """ if len(l) % 2 != 0: msg = ("[collection_utils.list_to_dict]: the list must contain an even number" "of elements") raise ValueError(msg) if f is None: f = lambda x: x keys = l[::2] values = l[1::2] d = {k:f(v) for k, v in zip(keys, values)} return d
a1f47582a2de8fa47bbf4c79c90165f8cf703ca1
14,620
def inner(a, b): """Computes an inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation). Parameters ---------- a, b : array_like If *a* and *b* are nonscalar, their shape must match. Returns ------- out : ndarray out.shape = a.shape[:-1] + b.shape[:-1] Restriction ----------- If *a* or *b* is not 1-D array : *NotImplementedError* occurs. Note ---- For vectors (1-D arrays) it computes the ordinary inner-product:: import nlcpy as vp vp.inner(a, b) # equivalent to sum(a[:]*b[:]) if *a* or *b* is scalar, in which case:: vp.inner(a, b) # equivalent to a*b See Also -------- dot : Computes a dot product of two arrays. Examples -------- Ordinary inner product for vectors: >>> import nlcpy as vp >>> a = vp.array([1,2,3]) >>> b = vp.array([0,1,0]) >>> vp.inner(a, b) array(2) An example where b is a scalar: >>> vp.inner(vp.eye(2), 7) array([[7., 0.], [0., 7.]]) """ a = nlcpy.asanyarray(a) b = nlcpy.asanyarray(b) if a.ndim == 0 or b.ndim == 0: return ufunc_op.multiply(a, b) elif a.ndim == 1 and b.ndim == 1: return cblas_wrapper.cblas_dot(a, b) else: raise NotImplementedError("Only 1-D array is supported.")
248f1069251770073bc6bb4eedda0ef557aaeb9f
14,621
from typing import Sequence from re import T def remove_list_redundancies(lst: Sequence[T]) -> list[T]: """ Used instead of list(set(l)) to maintain order Keeps the last occurrence of each element """ return list(reversed(dict.fromkeys(reversed(lst))))
f17408e7c3e3f5b2994e943b668c81b71933a2c9
14,622
def bpformat(bp): """ Format the value like a 'human-readable' file size (i.e. 13 Kbp, 4.1 Mbp, 102 bp, etc.). """ try: bp = int(bp) except (TypeError, ValueError, UnicodeDecodeError): return avoid_wrapping("0 bp") def bp_number_format(value): return formats.number_format(round(value, 1), 1) kbp = 1 << 10 mbp = 1 << 20 gbp = 1 << 30 tbp = 1 << 40 pbp = 1 << 50 negative = bp < 0 if negative: bp = -bp # Allow formatting of negative numbers. if bp < kbp: value = "%(size)d byte" % {"size": bp} elif bp < mbp: value = "%s Kbp" % bp_number_format(bp / kbp) elif bp < gbp: value = "%s Mbp" % bp_number_format(bp / mbp) elif bp < tbp: value = "%s Gbp" % bp_number_format(bp / gbp) elif bp < pbp: value = "%s Tbp" % bp_number_format(bp / tbp) else: value = "%s Pbp" % bp_number_format(bp / bp) if negative: value = "-%s" % value return avoid_wrapping(value)
4c2b587b3aecd4dd287f7f04b3860f63440154a1
14,625
def get_module_id_from_event(event): """ Helper function to get the module_id from an EventHub message """ if "iothub-connection-module_id" in event.message.annotations: return event.message.annotations["iothub-connection-module-id".encode()].decode() else: return None
e183824fff183e3f95ef35c623b13245eb68a8b7
14,626
def pipe_literal_representer(dumper, data): """Create a representer for pipe literals, used internally for pyyaml.""" return dumper.represent_scalar('tag:yaml.org,2002:str', data, style='|')
b73e7d451ae50bc4638d3cb45546f2a197765717
14,627
def RecognitionNeuralNetworkModelSmall(ih, iw, ic, nl): """ A simple model used to test the machinery on TrainSmall2. ih, iw, ic - describe the dimensions of the input image mh, mw - describe the dimensions of the output mask """ dropout = 0.1 model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation="relu", input_shape=(ih, iw, ic))) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Conv2D(32, (3, 3), activation="relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Conv2D(32, (3, 3), activation="relu")) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(dropout)) model.add(Flatten()) model.add(Dense(32, activation="relu")) #model.add(Dropout(0.5)) model.add(Dense((nl), activation="softmax")) model.compile(loss="categorical_crossentropy", optimizer="adadelta", metrics=["accuracy"]) print("\n ---> Model summary <--- \n") model.summary() return model
e4ec0ccb958eb9b406c079aeb9526e5adc1f6978
14,628
def _quick_rec_str(rec): """try to print an identifiable description of a record""" if rec['tickets']: return "[tickets: %s]" % ", ".join(rec["tickets"]) else: return "%s..." % rec["raw_text"][0:25]
e666198de84fe9455ad2cee59f8ed85144589be0
14,629
from typing import Collection def A006577(start: int = 0, limit: int = 20) -> Collection[int]: """Number of halving and tripling steps to reach 1 in '3x+1' problem, or -1 if 1 is never reached. """ def steps(n: int) -> int: if n == 1: return 0 x = 0 while True: if n % 2 == 0: n //= 2 else: n = 3 * n + 1 x += 1 if n < 2: break return x return [steps(n) for n in range(start, start + limit)]
47829838af8e2fdb191fdefa755e728db9c09559
14,630
def split_to_sentences_per_pages(text): """ splitting pdfminer outputted text into list of pages and cleanup paragraphs""" def split_into_sentences(line): """cleanup paragraphs""" return ifilter(None, (i.strip() for i in line.split('\n\n'))) return ifilter(None, imap(split_into_sentences, text.split('\x0c')))
b40ac7d6b4f3e9482897934999858271aeaf9494
14,631
def lookup(_id=None, article_id=None, user_id=None, mult=False): """ Lookup a reaction in our g.db """ query = {} if article_id: query["article_id"] = ObjectId(article_id) if user_id: query["user_id"] = ObjectId(user_id) if _id: query["_id"] = ObjectId(_id) if mult: return g.db.reactions.find(query) else: return g.db.reactions.find_one(query)
5d3c064278da8419e6305508a3bf47bba60c818c
14,632
def connection(user='m001-student', password='m001-mongodb-basics'): """connection: This function connects mongoDB to get MongoClient Args: user (str, optional): It's user's value for URL ATLAS srv. Defaults to 'm001-student'. password (str, optional): It's password's value for URL ATLAS srv. Defaults to 'm001-mongodb-basics'. Returns: object: Returns a MongoClient object """ try: MONGO_URL_ATLAS = f'mongodb+srv://{user}:{password}@sandbox.dec55.mongodb.net/?retryWrites=true&w=majority' mongo = pymongo.MongoClient(MONGO_URL_ATLAS, tlsAllowInvalidCertificates=False) except pymongo.errors.ConnectionFailure as conn_error: print("ERROR - Cannot connect to DataBase", conn_error) else: print('Correct Connection!!') return mongo
0714ffa01aa21dd71d6eefcadb0ebc2379cd3e6f
14,633
import random import asyncio async def get_selection(ctx, choices, delete=True, pm=False, message=None, force_select=False): """Returns the selected choice, or None. Choices should be a list of two-tuples of (name, choice). If delete is True, will delete the selection message and the response. If length of choices is 1, will return the only choice unless force_select is True. :raises NoSelectionElements if len(choices) is 0. :raises SelectionCancelled if selection is cancelled.""" if len(choices) == 0: raise NoSelectionElements() elif len(choices) == 1 and not force_select: return choices[0][1] page = 0 pages = paginate(choices, 10) m = None selectMsg = None def chk(msg): valid = [str(v) for v in range(1, len(choices) + 1)] + ["c", "n", "p"] return msg.author == ctx.author and msg.channel == ctx.channel and msg.content.lower() in valid for n in range(200): _choices = pages[page] names = [o[0] for o in _choices if o] embed = discord.Embed() embed.title = "Multiple Matches Found" selectStr = "Which one were you looking for? (Type the number or \"c\" to cancel)\n" if len(pages) > 1: selectStr += "`n` to go to the next page, or `p` for previous\n" embed.set_footer(text=f"Page {page + 1}/{len(pages)}") for i, r in enumerate(names): selectStr += f"**[{i + 1 + page * 10}]** - {r}\n" embed.description = selectStr embed.colour = random.randint(0, 0xffffff) if message: embed.add_field(name="Note", value=message, inline=False) if selectMsg: try: await selectMsg.delete() except: pass if not pm: selectMsg = await ctx.channel.send(embed=embed) else: embed.add_field(name="Instructions", value="Type your response in the channel you called the command. This message was PMed to " "you to hide the monster name.", inline=False) selectMsg = await ctx.author.send(embed=embed) try: m = await ctx.bot.wait_for('message', timeout=30, check=chk) except asyncio.TimeoutError: m = None if m is None: break if m.content.lower() == 'n': if page + 1 < len(pages): page += 1 else: await ctx.channel.send("You are already on the last page.") elif m.content.lower() == 'p': if page - 1 >= 0: page -= 1 else: await ctx.channel.send("You are already on the first page.") else: break if delete and not pm: try: await selectMsg.delete() await m.delete() except: pass if m is None or m.content.lower() == "c": raise SelectionCancelled() return choices[int(m.content) - 1][1]
663f60c73bc6c1e3d7db5992b6dbb6d6953d0e24
14,634
def total_variation(images, name=None): """Calculate and return the total variation for one or more images. (A mirror to tf.image total_variation) The total variation is the sum of the absolute differences for neighboring pixel-values in the input images. This measures how much noise is in the images. This can be used as a loss-function during optimization so as to suppress noise in images. If you have a batch of images, then you should calculate the scalar loss-value as the sum: `loss = tf.reduce_sum(tf.image.total_variation(images))` This implements the anisotropic 2-D version of the formula described here: https://en.wikipedia.org/wiki/Total_variation_denoising Args: images: 4-D Tensor of shape `[batch, height, width, channels]` or 3-D Tensor of shape `[height, width, channels]`. name: A name for the operation (optional). Raises: ValueError: if images.shape is not a 3-D or 4-D vector. Returns: The total variation of `images`. If `images` was 4-D, return a 1-D float Tensor of shape `[batch]` with the total variation for each image in the batch. If `images` was 3-D, return a scalar float with the total variation for that image. """ return tf.image.total_variation(images=images, name=name)
c12e822cd09ff6ea5f9bbc45ffa71121de5ff3e7
14,636
def get_vivareal_data(driver_path: str, address: str, driver_options: Options = None) -> list: """ Scrapes vivareal site and build a array of maps in the following format: [ { "preço": int, "valor_de_condominio": int, "banheiros": int, "quartos": int, "área": int, "vagas": int, "endereço": str "texto": str }, ... ] :param address: Address to search for :param driver_options: driver options :return: json like string """ # Initialize browser chrome = init_driver(driver_path, driver_options) chrome.get(SITE) # Collect data try: accept_cookies(chrome) select_rent_option(chrome) send_address(chrome, address) real_state_elements = collect_real_state_raw_data(chrome) real_state_parsed_data = collect_elements_data(real_state_elements, chrome) except Exception as e: print(e) real_state_parsed_data = None finally: chrome.close() return real_state_parsed_data
e3495c05f39e7cb301fa90e62b5a398a69658e74
14,637
import logging def extract_image(data): """Tries and extracts the image inside data (which is a zipfile)""" with ZipFile(BytesIO(data)) as zip_file: for name in zip_file.namelist()[::-1]: try: return Image.open(BytesIO(zip_file.read(name))) except UnidentifiedImageError: logging.warning("%s does not seem to be an image", name)
2aa333d493a1a3ce637fb2d42bca85bbbb089728
14,638
import six def construct_getatt(node): """ Reconstruct !GetAtt into a list """ if isinstance(node.value, (six.text_type, six.string_types)): return node.value.split(".") elif isinstance(node.value, list): return [s.value for s in node.value] else: raise ValueError("Unexpected node type: {}".format(type(node.value)))
657b957a06c79905b557dd397efea2c598d8c6b3
14,639
def rss(x, y, w, b): """residual sum of squares for linear regression """ return sum((yi-(xi*wi+b))**2 for xi, yi, wi in zip(x,y, w))
955e0b5e3dcf8373fe5ef1b95244d06abe512084
14,641
def get_index(lang, index): """ Given an integer index this function will return the proper string version of the index based on the language and other considerations Parameters ---------- lang : str One of the supported languages index : int Returns ------- str The string corresponding to the correct index to be formatted into the code """ retval = None if lang in ['fortran', 'matlab']: return str(index + 1) if lang in ['c', 'cuda']: return str(index)
bcb3a88857b13eea95d5a1bb939c9c4e175ea677
14,642
def sampleFunction(x: int, y: float) -> float: """ Multiply int and float sample. :param x: x value :type x: int :param y: y value :type y: float :return: result :return type: float """ return x * y
f70708b3ece2574969834a62841da3e4506f704b
14,643
def n_elements_unique_intersection_np_axis_0(a: np.ndarray, b: np.ndarray) -> int: """ A lot faster than to calculate the real intersection: Example with small numbers: a = [1, 4, 2, 13] # len = 4 b = [1, 4, 9, 12, 25] # (len = 5) # a, b need to be unique!!! unique(concat(a, b)) = [1, 4, 2, 13, 9, 12, 25] # (len = 7) intersect(a, b) = [1, 4] # (len = 2) to expensive to call # Formular (fast to calculate) len(intersect(a, b)) = len(b) - n_elements_in_b_and_not_in_a len(intersect(a, b)) = len(b) - (len(unique(concat(a, b))) - len(a)) """ a = np.unique(a, axis=0) b = np.unique(b, axis=0) return len(b) - (len(np.unique(np.concatenate((a, b), axis=0), axis=0)) - len(a))
ce8e3cfd158205a0fa2c5f1d10622c6901bc3224
14,644
import logging def Setup(test_options): """Runs uiautomator tests on connected device(s). Args: test_options: A UIAutomatorOptions object. Returns: A tuple of (TestRunnerFactory, tests). """ test_pkg = test_package.TestPackage(test_options.uiautomator_jar, test_options.uiautomator_info_jar) tests = test_pkg.GetAllMatchingTests(test_options.annotations, test_options.exclude_annotations, test_options.test_filter) if not tests: logging.error('No uiautomator tests to run with current args.') def TestRunnerFactory(device, shard_index): return test_runner.TestRunner( test_options, device, shard_index, test_pkg) return (TestRunnerFactory, tests)
2d50c53d211bbddae495a89687cf0cf95b08b1ba
14,645
def barcode_junction_counts(inhandle): """Return count dict from vdjxml file with counts[barcode][junction]""" counts = dict() for chain in vdj.parse_VDJXML(inhandle): try: # chain may not have barcode counts_barcode = counts.setdefault(chain.barcode,dict()) except AttributeError: continue counts_barcode[chain.junction] = counts_barcode.get(chain.junction,0) + 1 return counts
5cc29e44e34989fbd2afb4a2d34f63c7e7adf160
14,646
def is_following(user, actor): """ retorna True si el usuario esta siguiendo al actor :: {% if request.user|is_following:another_user %} You are already following {{ another_user }} {% endif %} """ return Follow.objects.is_following(user, actor)
963ccc2f75f19609943aba6b61a7522573665033
14,647
from typing import Union def rf_make_ones_tile(num_cols: int, num_rows: int, cell_type: Union[str, CellType] = CellType.float64()) -> Column: """Create column of constant tiles of one""" jfcn = RFContext.active().lookup('rf_make_ones_tile') return Column(jfcn(num_cols, num_rows, _parse_cell_type(cell_type)))
8ed63c974613e0451a3d8c78eac964c93c6f8154
14,648
def get_block_hash_from_height(height): """ Request a block hash by specifying the height :param str height: a bitcoin block height :return: a bitcoin block address """ resource = f'block-height/{height}' return call_api(resource)
877f4c4268cb3c7c36bd530a38d4b32abbedcaf4
14,649
from typing import Tuple from typing import Set from typing import List def analyze_json( snippet_data_json: str, root_dir: str ) -> Tuple[Set[str], Set[str], Set[str], List[pdd.PolyglotDriftData]]: """Perform language-agnostic AST analysis on a directory This function processes a given directory's language-specific analysis (stored in a polyglot_snippet_data.json file) into a list of automatically detected snippets. It then augments the automatic detection results with useful manual data (specified in .drift-data.yml files). Finally, it repackages all this data into a tuple containing 4 useful lists of data as shown in the 'returns' section. Arguments: snippet_data_json: A path to a polyglot_snippet_data.json file generated for the specified root_dir root_dir: The root directory to perform AST analysis on Returns: A tuple containing the following: - A list of tags found (via grep/text search) within the given directory and its subdirectories - A list of tags detected (by the AST parser) within the given directory and its subdirectories - A list of tags that the AST parser detected, but chose to ignore (due to constants or user specification in .drift-data.yml files) - A list of snippet objects (as typed NamedTuples) detected by the AST parser in the given directory and its subdirectories """ tuple_methods, test_method_map = _get_data(snippet_data_json) source_filepaths = set(method.source_path for method in tuple_methods) grep_tags: Set[str] = set() ignored_tags: Set[str] = set() for source_file in source_filepaths: grep_tag_names, ignored_tag_names = ( _process_file_region_tags( source_file, snippet_data_json, tuple_methods)) grep_tags = grep_tags.union(grep_tag_names) ignored_tags = ignored_tags.union(ignored_tag_names) source_methods = [method for method in tuple_methods if method.region_tags or method.name in constants.SNIPPET_INVOCATION_METHODS] source_methods = _dedupe_source_methods(source_methods) _store_tests_on_methods(source_methods, test_method_map) polyglot_parser.add_children_drift_data(source_methods) yaml_utils.add_yaml_data_to_source_methods(source_methods, root_dir) source_tags: Set[str] = set() for method in source_methods: source_tags = source_tags.union(set(method.region_tags)) # Remove automatically ignored region tags from region tag lists grep_tags = set(tag for tag in grep_tags if tag not in ignored_tags) source_tags = set(tag for tag in source_tags if tag not in ignored_tags) # Add manually ignored (via yaml) tags to ignored tags list # These should *not* overlap w/ source_tags, but we # check that in validate_yaml_syntax - *not here!* ignored_tags = ignored_tags.union( yaml_utils.get_untested_region_tags(root_dir)) return grep_tags, source_tags, ignored_tags, source_methods
9129b1fad5172f9b7054ba9b4e64cc4ece5ab09c
14,650