content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Union from typing import List from typing import Dict from typing import Set import tqdm def scaffold_to_smiles(mols: Union[List[str], List[Chem.Mol]], use_indices: bool = False) -> Dict[str, Union[Set[str], Set[int]]]: """ Computes the scaffold for each SMILES and returns a mapping from scaffolds to sets of smiles (or indices). Parameters ---------- mols: A list of SMILES strings or RDKit molecules. use_indices: Whether to map to the SMILES's index in :code:`mols` rather than mapping to the smiles string itself. This is necessary if there are duplicate smiles. Returns ------- A dictionary mapping each unique scaffold to all SMILES (or indices) which have that scaffold. """ scaffolds = defaultdict(set) for i, mol in tqdm(enumerate(mols), total=len(mols)): scaffold = generate_scaffold(mol) if use_indices: scaffolds[scaffold].add(i) else: scaffolds[scaffold].add(mol) return scaffolds
2a45731a5574bb37e81042fa19ac7c2f015c21ef
14,421
import crypt def encontrar_passwords(): """ Probar todas las combinaciones de 6 letras, hasheando cada una para ver si coinciden con los hashes guardados en los /etc/shadow Para el tema de equipos, basicamente fui probando con copiar y pegar contenido en texto de distintas paginas de wikipedia en el archivo equipos.txt, hasta que con la NBA funciono. """ hashes = [ ('ox', 'ox45K6RsEUfmQ', generar_palabras()), # fido ('$1$42dJ1xYh', '$1$42dJ1xYh$MfrRke8/Ej3h5.vMtNEhC.', leer_palabras('./colores.txt')), # white ('$6$SZGpKoPi', '$6$SZGpKoPi$GGGqHYKy6PO/H5nvV0AmaGB/5krnxVuz2k2uX81O.CF5nYctE5RlR/rzJQCL3ZsF8yratCRbSR2ZuwKzvve.D0', leer_palabras('./equipos.txt')), # knicks ] encontradas = [] for algo_y_salt, hash_resultado, origen_passwords in hashes: for password in origen_passwords: if crypt(password, algo_y_salt) == hash_resultado: encontradas.append(password) break return encontradas
5762fed1f5e493c2399d40dbbc1e19ad24c6718e
14,422
def queue_merlin_study(study, adapter): """ Launch a chain of tasks based off of a MerlinStudy. """ samples = study.samples sample_labels = study.sample_labels egraph = study.dag LOG.info("Calculating task groupings from DAG.") groups_of_chains = egraph.group_tasks("_source") # magic to turn graph into celery tasks LOG.info("Converting graph to tasks.") celery_dag = chain( chord( group( [ expand_tasks_with_samples.s( egraph, gchain, samples, sample_labels, merlin_step, adapter, study.level_max_dirs, ).set(queue=egraph.step(chain_group[0][0]).get_task_queue()) for gchain in chain_group ] ), chordfinisher.s().set( queue=egraph.step(chain_group[0][0]).get_task_queue() ), ) for chain_group in groups_of_chains[1:] ) LOG.info("Launching tasks.") return celery_dag.delay(None)
448365e799001d09281707cab69c71c3be05408e
14,423
import math def sphere_mass(density,radius): """Usage: Find the mass of a sphere using density and radius""" return density*((4/3)*(math.pi)*radius**3)
8c1a2dc949980ca96a4f56f3918bacd19568965e
14,424
def generate_stats_table(buildings_clust_df): """ Generate statistical analysis table of building types in the area Args: buildings_clust_df: building footprints dataframe after performed building blocks assignment (HDBSCAN) Return: stat_table: statistical analysis results which contains means and standard deviations values for every building type in the area """ # Count count_table = buildings_clust_df.groupby('building_types')[['building_types']].size().to_frame('count').reset_index() # Mean mean_table = buildings_clust_df.groupby('building_types')[['building_types','surface_area','rectangularity']].mean().reset_index() mean_table.columns = ['building_types','mean_surface_area','mean_rectangularity'] # Standard deviation sd_table=buildings_clust_df.groupby('building_types')[['surface_area','rectangularity']].agg(np.std, ddof=0).reset_index() # Rename columns sd_table.columns = ['building_types','sd_surface_area','sd_rectangularity'] stat_table = count_table.merge(mean_table).merge(sd_table) # Reorder columns stat_table = stat_table[stat_table.columns[[0,1,3,2,4,5]]] return stat_table
732f035e591dc9f0b03673584f3a6e21dad03cad
14,425
def make_multisat(nucsat_tuples): """Creates a rst.sty Latex string representation of a multi-satellite RST subtree (i.e. merge a set of nucleus-satellite relations that share the same nucleus into one subtree). """ nucsat_tuples = [tup for tup in nucsat_tuples] # unpack the iterable, so we can check its length assert len(nucsat_tuples) > 1, \ "A multisat relation bundle must contain more than one relation" result = "\dirrel\n\t" first_relation, remaining_relations = nucsat_tuples[0], nucsat_tuples[1:] relname, nuc_types, elements = first_relation first_nucleus_pos = current_nucleus_pos = nuc_types.index('N') result_segments = [] # add elements (nucleus and satellite) from first relation to resulting (sub)tree for i, nuc_type in enumerate(nuc_types): element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) if nuc_type == 'N': result_segments.append(NUC_TEMPLATE.substitute(nucleus=element)) else: result_segments.append(SAT_TEMPLATE.substitute(satellite=element, relation=relname)) # reorder elements of the remaining relation and add them to the resulting (sub)tree for (relname, nuc_types, elements) in remaining_relations: for i, nuc_type in enumerate(nuc_types): if nuc_type == 'N': # all relations share the same nucleus, so we don't need to reprocess it. continue else: element = elements[i] if is_edu_segment(element): element = wrap_edu_segment(element) result_segment = SAT_TEMPLATE.substitute(satellite=element, relation=relname) if i < first_nucleus_pos: # satellite comes before the nucleus result_segments.insert(current_nucleus_pos, result_segment) current_nucleus_pos += 1 else: result_segments.append(result_segment) return result + '\n\t'.join(result_segments)
16c1808267087beea6cea21811cd3c1f7d70932e
14,426
import io def plot_to_image(figure): """Converts the matplotlib figure to a PNG image.""" # The function is adapted from # github.com/tensorflow/tensorboard/blob/master/docs/image_summaries.ipynb # Save the plot to a PNG in memory. buf = io.BytesIO() plt.savefig(buf, format="png") # Closing the figure prevents it from being displayed directly. plt.close(figure) buf.seek(0) # Convert PNG buffer to TF image image = tf.image.decode_png(buf.getvalue(), channels=4) # tf.summary.image requires 4-D inputs. [num_samples, height, weight, color]. image = tf.expand_dims(image, 0) return image
24a63f7b27d47421baf2c7913bf989903e4d9545
14,427
async def getDiscordTwitchAlerts(cls:"PhaazebotDiscord", guild_id:str, alert_id:int=None, limit:int=0, offset:int=0) -> list: """ Get server discord alerts, if alert_id = None, get all else only get one associated with the alert_id Returns a list of DiscordTwitchAlert(). """ sql:str = """ SELECT `discord_twitch_alert`.*, `twitch_user_name`.`user_name` AS `twitch_channel_name` FROM `discord_twitch_alert` LEFT JOIN `twitch_user_name` ON `discord_twitch_alert`.`twitch_channel_id` = `twitch_user_name`.`user_id` WHERE `discord_twitch_alert`.`discord_guild_id` = %s""" values:tuple = ( str(guild_id), ) if alert_id: sql += " AND `discord_twitch_alert`.`id` = %s" values += (alert_id,) if limit: sql += f" LIMIT {limit}" if offset: sql += f" OFFSET {offset}" res:list = cls.BASE.PhaazeDB.selectQuery(sql, values) if res: return [DiscordTwitchAlert(x) for x in res] else: return []
00c1bad85f4f7891d36e5fab5c651f10c79abf02
14,428
def is_visible_dir(file_info): """Checks to see if the file is a visible directory. @param file_info: The file to check @type file_info: a gnomevfs.FileInfo """ return is_dir(file_info) and not is_hidden(file_info)
776361d4cbe16a5b3c45dc3073a37192e31e87a9
14,429
def read_file(item): """Read file in key path into key image """ item['image'] = tf.read_file(item['path']) return item
06b87851717bd486b13f964ad5b45cbdc7a97142
14,431
def make_joint(withdraw, old_password, new_password): """Return a password-protected withdraw function that has joint access to the balance of withdraw. >>> w = make_withdraw(100, 'hax0r') >>> w(25, 'hax0r') 75 >>> make_joint(w, 'my', 'secret') 'Incorrect password' >>> j = make_joint(w, 'hax0r', 'secret') >>> w(25, 'secret') 'Incorrect password' >>> j(25, 'secret') 50 >>> j(25, 'hax0r') 25 >>> j(100, 'secret') 'Insufficient funds' >>> j2 = make_joint(j, 'secret', 'code') >>> j2(5, 'code') 20 >>> j2(5, 'secret') 15 >>> j2(5, 'hax0r') 10 >>> j2(25, 'password') 'Incorrect password' >>> j2(5, 'secret') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> j(5, 'secret') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> w(5, 'hax0r') "Your account is locked. Attempts: ['my', 'secret', 'password']" >>> make_joint(w, 'hax0r', 'hello') "Your account is locked. Attempts: ['my', 'secret', 'password']" """ "*** YOUR CODE HERE ***" x = withdraw(0, old_password) if type(x) == str: return x else: def withdraw_r(amount, code): if code == new_password: # print('password is new') return withdraw(amount, old_password) elif code != new_password: return withdraw(amount, code) return withdraw_r
f40073429aea946486263a7d6e0fc8b24cd60a84
14,432
def should_parse(config, file): """Check if file extension is in list of supported file types (can be configured from cli)""" return file.suffix and file.suffix.lower() in config.filetypes
1c2258d405ef715574b557d99cdf87e461627ffd
14,433
def _get_pipeline_per_subband(subband_name: str): """ Constructs a pipeline to extract the specified subband related features. Output: sklearn.pipeline.Pipeline object containing all steps to calculate time-domain feature on the specified subband. """ freq_range = FREQ_BANDS_RANGE[subband_name] order = FREQ_BANDS_ORDERS[subband_name] assert len( freq_range) == 2, "Frequency range must only have 2 elements: [lower bound frequency, upper bound frequency]" bounds = [freq / NYQUIST_FREQ for freq in freq_range] b, a = butter(order, bounds, btype='bandpass') def filter_epochs_in_specified_subband(epochs): return epochs.copy().filter( l_freq=bounds[0], h_freq=bounds[1], method='iir', n_jobs=1, iir_params={ 'a': a, 'b': b }, verbose=False) return Pipeline([ ('filter', FunctionTransformer(filter_epochs_in_specified_subband, validate=False)), ('get-values', FunctionTransformer(get_data_from_epochs, validate=False)), ('mean-energy', FunctionTransformer( get_transformer(_get_signal_mean_energy), validate=True )), ])
2b1d8bd2543ae07b861df6f979297a82e3f5e827
14,434
def get_credentials_interactively() -> Credentials: """ Gets credentials for the bl interactively """ return ("placeholder-user", "placeholder-pass")
b5e4d55015155589632b958252a3c078b5920e59
14,435
def reynolds(find="Re", printEqs=True, **kwargs): """ Reynolds Number = Inertia / Viscosity """ eq = list() eq.append("Eq(Re, rho * U * L / mu)") return solveEqs(eq, find=find, printEq=printEqs, **kwargs)
df5ad0c0279894e8f671942ceddb64e08e35fa0d
14,436
def data_app(): """ Data Processer and Visualizer """ st.title("Data Cake") st.subheader("A to Z Data Analysis") file = ['./dataset/Ac1',[0,1]] def file_selector(): filename = st.file_uploader("Upload Excel File", type=['xls','xlsx']) if filename is not None: sheetnames = pd.ExcelFile(filename).sheet_names sheet = st.selectbox("Sheet Sheet", sheetnames) return [filename, sheet] file = file_selector() # Read Data try : df = pd.read_excel(file[0], sheet_name = file[1]) except Exception as e: st.info("Please upload Excel file") # Show Datas try: if st.checkbox("Show Dataset"): number = st.number_input("Number of Rows to View",5,10) st.dataframe(df.head(number)) except Exception as e: st.info("Please upload Excel file") # Show Columns try: if st.button("Column Names"): st.write(df.columns) except Exception as e: st.info("Please upload Excel file") # Show Shape try: if st.checkbox("Shape of Dataset"): st.write(df.shape) except Exception as e: st.info("Please upload Excel file") # Select Columns try: if st.checkbox("Select Columns To Show"): all_columns = df.columns.tolist() selected_columns = st.multiselect("Select",all_columns) new_df = df[selected_columns] st.dataframe(new_df) except Exception as e: st.info("Please upload Excel file") # Show Datatypes try: if st.button("Data Types"): st.write(df.dtypes) except Exception as e: st.info("Please upload Excel file") # Show Summary try: if st.checkbox("Summary"): st.write(df.describe().T) except Exception as e: st.info("Please upload Excel file") ## Plot and Visualization st.subheader("Data Visualization") # Correlation # Seaborn Plot if st.checkbox("Correlation Plot[Seaborn]"): st.write(sns.heatmap(df.corr(),annot=True)) st.pyplot() # Pie Chart if st.checkbox("Pie Plot"): all_columns_names = df.columns.tolist() if st.button("Generate Pie Plot"): st.success("Generating A Pie Plot") st.write(df.iloc[:,-1].value_counts().plot.pie(autopct="%1.1f%%")) st.pyplot() # Count Plot if st.checkbox("Plot of Value Counts"): st.text("Value Counts By Target") all_columns_names = df.columns.tolist() primary_col = st.selectbox("Primary Columm to GroupBy",all_columns_names) selected_columns_names = st.multiselect("Select Columns",all_columns_names) if st.button("Plot"): st.text("Generate Plot") if selected_columns_names: vc_plot = df.groupby(primary_col)[selected_columns_names].count() else: vc_plot = df.iloc[:,-1].value_counts() st.write(vc_plot.plot(kind="bar")) st.pyplot() #Contour Plot if st.checkbox("Contour Plot "): st.text("3D Contour Plot") all_columns_names = df.columns.tolist() X = st.selectbox("Select X axis",all_columns_names) Y = st.selectbox("Select Y axis",all_columns_names,index = 1) VS = st.selectbox("Select Z axis",all_columns_names,index =2) Z_F = df.pivot_table(index=X, columns=Y, values=VS).T.values X_unique = np.sort(df[X].unique()) Y_unique = np.sort(df[Y].unique()) X_F, Y_F = np.meshgrid(X_unique, Y_unique) pd.DataFrame(Z_F).round(3) pd.DataFrame(X_F).round(3) pd.DataFrame(Y_F).round(3) fig,ax=plt.subplots(1,1) cp = ax.contourf(X_F, Y_F, Z_F) fig.colorbar(cp) # Add a colorbar to a plot st.pyplot(fig=fig) # Customizable Plot try: st.subheader("Customizable Plot") all_columns_names = df.columns.tolist() type_of_plot = st.selectbox("Select Type of Plot",["area","bar","line","hist","box","kde"]) selected_columns_names = st.multiselect("Select Columns To Plot",all_columns_names) if st.button("Generate Plot"): st.success("Generating Customizable Plot of {} for {}".format(type_of_plot,selected_columns_names)) # Plot By Streamlit if type_of_plot == 'area': cust_data = df[selected_columns_names] st.area_chart(cust_data) elif type_of_plot == 'bar': cust_data = df[selected_columns_names] st.bar_chart(cust_data) elif type_of_plot == 'line': cust_data = df[selected_columns_names] st.line_chart(cust_data) # Custom Plot elif type_of_plot: cust_plot= df[selected_columns_names].plot(kind=type_of_plot) st.write(cust_plot) st.pyplot() if st.button("Ready to ML !"): st.balloons() except: st.info("Please upload Excel file") st.sidebar.header("Data Cake") st.sidebar.info("Built by Veera Ragavan")
b6286064757d276a5319ef0b3cffe1515c4a7fb1
14,437
def derivative(x, y, order=1): """Returns the derivative of y-coordinates as a function of x-coodinates. Args: x (list or array): 1D array x-coordinates. y (list or array): 1D array y-coordinates. order (number, optional): derivative order. Returns: x and y arrays. """ if order<0: raise ValueError('order must be a positive integer.') x = np.array(x) y = np.array(y) x_diff = np.diff(x) y_diff = np.diff(y)/x_diff for i in range(order-1): y_diff = np.diff(y_diff)/x_diff[:len(x_diff)-(i+1)] for i in range(order): x = moving_average(x, n=2) return x, y_diff
23a1213721e553e5b72a0bd92877675b499f9848
14,438
from typing import Dict def get_ff_parameters(wc_params, molecule=None, components=None): """Get the parameters for ff_builder.""" ff_params = { 'ff_framework': wc_params['ff_framework'], 'ff_molecules': {}, 'shifted': wc_params['ff_shifted'], 'tail_corrections': wc_params['ff_tail_corrections'], 'mixing_rule': wc_params['ff_mixing_rule'], 'separate_interactions': wc_params['ff_separate_interactions'] } if molecule is not None: ff_params['ff_molecules'] = {molecule['name']: molecule['forcefield']} if components is not None: for value in components.get_dict().values(): ff = value['forcefield'] #pylint: disable=invalid-name ff_params['ff_molecules'][value['name']] = ff return Dict(dict=ff_params)
d87008dba0b9d835f71366eb64486b1d18fe2381
14,439
def healpix_header_odict(nside,nest=False,ordering='RING',coord=None, partial=True): """Mimic the healpy header keywords.""" hdr = odict([]) hdr['PIXTYPE']=odict([('name','PIXTYPE'), ('value','HEALPIX'), ('comment','HEALPIX pixelisation')]) ordering = 'NEST' if nest else 'RING' hdr['ORDERING']=odict([('name','ORDERING'), ('value',ordering), ('comment','Pixel ordering scheme, either RING or NESTED')]) hdr['NSIDE']=odict([('name','NSIDE'), ('value',nside), ('comment','Resolution parameter of HEALPIX')]) if coord: hdr['COORDSYS']=odict([('name','COORDSYS'), ('value',coord), ('comment','Ecliptic, Galactic or Celestial (equatorial)')]) if not partial: hdr['FIRSTPIX']=odict([('name','FIRSTPIX'), ('value',0), ('comment','First pixel # (0 based)')]) hdr['LASTPIX']=odict([('name','LASTPIX'), ('value',hp.nside2npix(nside)-1), ('comment','Last pixel # (0 based)')]) hdr['INDXSCHM']=odict([('name','INDXSCHM'), ('value','EXPLICIT' if partial else 'IMPLICIT'), ('comment','Indexing: IMPLICIT or EXPLICIT')]) hdr['OBJECT']=odict([('name','OBJECT'), ('value','PARTIAL' if partial else 'FULLSKY'), ('comment','Sky coverage, either FULLSKY or PARTIAL')]) return hdr
1202d7564b94a3c2288a513f42e4b781a583e41c
14,440
def hello(): """Test endpoint""" return {'hello': 'world'}
91ad620815a6371a4723e21bc79aad8c1d49e73e
14,441
def permute_channels(n_channels, keep_nbr_order=True): """Permute the order of neighbor channels Args: n_channels: the total number of channels keep_nbr_order: whether to keep the relative order of neighbors if true, only do random rotation and flip if false, random permutation """ ch_idx = np.arange(1, n_channels) if keep_nbr_order: # rotate and flip ch_idx = np.roll(ch_idx, np.random.randint(n_channels-1)) if np.random.randint(2) == 1: ch_idx = ch_idx[::-1] else: # random permute np.random.shuffle(ch_idx) ch_idx = np.concatenate([[0], ch_idx]) return ch_idx
5491f181d32a5ff77ef1d9f6ac3327e6b0a746e0
14,443
def from_file(file,typcls): """Parse an instance of the given typeclass from the given file.""" s = Stream(file) return s.read_value(typcls._ep_typedesc)
90507278f33fe30a73c31f94ab046c07962250cc
14,444
def read_test_ids(): """ Read sample submission file, list and return all test image ids. """ df_test = pd.read_csv(SAMPLE_SUBMISSION_PATH) ids_test = df_test['img'].map(lambda s: s.split('.')[0]) return ids_test
cc4d53d28631fe0e22cabe30704a1844ff3e3a5b
14,445
def chuseok(year=None): """ :parm year: int :return: Thanksgiving Day of Korea """ year = year if year else _year return LunarDate(year, 8, 15).toSolarDate()
28a3170153862bda2ae52176d4931ee10050c3e1
14,446
def DELETE(request): """Delete a user's authorization level over a simulation.""" # Make sure required parameters are there try: request.check_required_parameters( path={ 'simulationId': 'int', 'userId': 'int' } ) except exceptions.ParameterError as e: return Response(400, e.message) # Instantiate an Authorization authorization = Authorization.from_primary_key(( request.params_path['userId'], request.params_path['simulationId'] )) # Make sure this Authorization exists in the database if not authorization.exists(): return Response(404, '{} not found.'.format(authorization)) # Make sure this User is allowed to delete this Authorization if not authorization.google_id_has_at_least(request.google_id, 'OWN'): return Response(403, 'Forbidden from deleting {}.'.format(authorization)) # Delete this Authorization authorization.delete() return Response( 200, 'Successfully deleted {}.'.format(authorization), authorization.to_JSON() )
7ac7c6277126a827790e786cbfdf9f84ccaace7b
14,447
def process_query(data): """ Concat query, question, and narrative then 'preprocess' :data: a dataframe with queries in rows; query, question, and narrative in columns :return: 2d list of tokens (rows: queries, columns: tokens) """ lst_index = [] lst_words = [] for index, row in data.iterrows(): tmp = preprocess(row["query"] +" "+ row["question"]+ " "+row["narrative"]) lst_words.append(tmp) lst_index.append(row["number"]) return lst_words
8a8067f1766abdc08aa7b8995508d6cdc9057bd2
14,448
def nb_view_patches(Yr, A, C, S, b, f, d1, d2, YrA=None, image_neurons=None, thr=0.99, denoised_color=None, cmap='jet'): """ Interactive plotting utility for ipython notebook Args: Yr: np.ndarray movie A,C,b,f: np.ndarrays outputs of matrix factorization algorithm d1,d2: floats dimensions of movie (x and y) YrA: np.ndarray ROI filtered residual as it is given from update_temporal_components If not given, then it is computed (K x T) image_neurons: np.ndarray image to be overlaid to neurons (for instance the average) thr: double threshold regulating the extent of the displayed patches denoised_color: string or None color name (e.g. 'red') or hex color code (e.g. '#F0027F') cmap: string name of colormap (e.g. 'viridis') used to plot image_neurons """ # PREPROCESSING nr, T = C.shape nA2 = np.ravel(np.power(A, 2).sum(0)) if type( A) == np.ndarray else np.ravel(A.power(2).sum(0)) b = np.squeeze(b) f = np.squeeze(f) if YrA is None: Y_r = np.array(spdiags(old_div(1, nA2), 0, nr, nr) * (A.T * np.matrix(Yr) - (A.T * np.matrix(b[:, np.newaxis])) * np.matrix(f[np.newaxis]) - A.T.dot(A) * np.matrix(C)) + C) else: Y_r = C + YrA x = np.arange(T) if image_neurons is None: image_neurons = A.mean(1).reshape((d1, d2), order='F') coors = get_contours(A, (d1, d2), thr) cc1 = [cor['coordinates'][:, 0] for cor in coors] cc2 = [cor['coordinates'][:, 1] for cor in coors] c1 = cc1[0] c2 = cc2[0] # PLOTTING fig, axes = plt.subplots(2) axes[0].imshow(image_neurons, cmap = 'gray') axes[0].set_title('Neural map') axes[1].plot(C[0], label = 'C: raw traces', c = 'blue') axes[1].plot(Y_r[0], label = 'Y_r: residuals', c = 'red') axes[1].plot(S[0], label = 'S: deconvolved activity', c = 'green') plt.legend() axes[1].set_xlabel('t [frames]') # WIDGETS neuron_nr_slider = IntSlider(description = 'Neuron Number', value = 0, min = 0, max = len(C) - 1) def neuron_nr_handler(*args): i = neuron_nr_slider.value axes[1].clear() axes[1].plot(C[i], label = 'C: raw traces', c = 'blue') axes[1].plot(Y_r[i], label = 'Y_r: residuals', c = 'red') axes[1].plot(S[i], label = 'S: deconvolved activity', c = 'green') plt.legend() axes[1].set_xlabel('t [frames]') neuron_nr_slider.observe(neuron_nr_handler, 'value') widgets = [neuron_nr_slider] return fig, widgets
84db2e40734b21ebb6be5eef8eeb89bbe2838542
14,450
def menu(): """Manda el Menú \n Opciones: 1: Añadir a un donante 2: Añadir a un donatario 3: Revisar la lista de donantes 4: Revisar la lista de donatarios 5: Realizar una transfusion 6: Estadisticas 7: Salir Returns: opc(num):Opcion del menu """ print("\nBienvenido a el sistema de Donacion de Sangre. Elige la accion que deseas realizar.\n1.Añadir Donante de Sangre\n2.Añadir Donatario de Sangre\n3.Revisar lista de Donantes\n4.Revisar Lista de Donatarios\n5.Realizar una transfusion\n6.Estadisticas\n7.Salir") opc=int(input("Seleccionar: ")) return opc
805d1ef48fbe03f8185e3c7be71ce3d9aa6104df
14,451
import shutil def get_engine(hass, config): """Set up Pico speech component.""" if shutil.which("pico2wave") is None: _LOGGER.error("'pico2wave' was not found") return False return PicoProvider(config[CONF_LANG])
d03a19dcff4bc8556a84b434d14468a45ffc7e6c
14,452
from typing import Tuple from typing import List def load_cp() -> Tuple[List[str], List[List[float]]]: """ Loads cloud point data; target values given in Celsius Returns: Tuple[List[str], List[List[float]]]: (smiles strings, target values); target values have shape (n_samples, 1) """ return _load_set('cp')
84b11da1b3cd1a9ecaf5e1419d69b877c160e2aa
14,453
def look_up(f, *args, **kwargs): """ :param f: :type f: :param args: :type args: :param kwargs: :type kwargs: :return: :rtype:""" ag_hash = hash(args) + make_hash(kwargs) if f in global_table: if ag_hash in global_table[f]: return global_table[f][ag_hash] res = global_table[f][ag_hash] = f(*args, **kwargs) return res global_table[f] = {} res = global_table[f][ag_hash] = f(*args, **kwargs) return res
ebc9015066959f66cd98db226178cdf087fc897b
14,454
def getenv(key, default=None): """Get an environment variable, return None if it doesn't exist. The optional second argument can specify an alternate default. """ return environ.get(key, default)
0e355c73dbbdc971e4442123dc5945dc04fac8fc
14,455
def read_tag(request, tid, *args, **kwargs): """read_tag(tid) returns ...""" s = api.read_tag(request, tid, *args, **kwargs) return render_to_response('read/tag.html', s)
7582e752563f35eb8d025625eaac87d8a9f45f32
14,456
def ber_img(original_img_bin, decoded_img_bin): """Compute Bit-Error-Rate (BER) by comparing 2 binary images.""" if not original_img_bin.shape == decoded_img_bin.shape: raise ValueError('Original and decoded images\' shapes don\'t match !') height, width, k = original_img_bin.shape errors_bits = abs(original_img_bin - decoded_img_bin).sum() errors_bits = errors_bits.flatten() total_bits = np.prod(original_img_bin.shape) ber = errors_bits / total_bits return(ber)
f5768aa5435a76bcd82b331d76dadf554749e82d
14,457
def get_fractal_patterns_WtoE_NtoS(fractal_portrait, width, height): """ get all fractal patterns from fractal portrait, from West to East, from North to South """ fractal_patterns = [] for x in range(width): # single fractal pattern f_p = get_fractal_patterns_zero_amounts() for y in range(height): if fractal_portrait[x][y] != EMPTY_PLACE: f_p[fractal_portrait[x][y]] += 1 if any(v > 0 for v in f_p.values()): fractal_patterns.append(f_p) return fractal_patterns
ad5e2025515231ae8efb256b5dc466d66fedb467
14,458
import time from datetime import datetime import requests import io def rating(date=None): """P2peye comprehensive rating and display results. from https://www.p2peye.com Args: date: if None, download latest data, if like '201812', that download month data. Returns: DataFrame """ start = time.time() if date is None: date = str(pd.to_datetime(datetime.datetime.now())-pd.DateOffset(months=1))[:7].replace('-', '') assert (isinstance(date, str) and len(date)==6), "`date` shoule format '201812' or None" url_txt = 'https://raw.githubusercontent.com/Hourout/datasets/master/report/p2peye/rating/p2peye_rating'+date+'.txt' s = requests.get(url_txt).content data = pd.read_csv(io.StringIO(s.decode('utf-8'))) print('p2peye rating dataset download completed, run time %d min %.2f sec' %divmod((time.time()-start), 60)) return data
d76205c933c07764938b38fbfcdcbbe84b584471
14,459
def crop_image(src, box, expand=0): """Read sensor data and crop a bounding box Args: src: a rasterio opened path box: geopandas geometry polygon object expand: add padding in percent to the edge of the crop Returns: masked_image: a crop of sensor data at specified bounds """ #Read data and mask try: left, bottom, right, top = box.bounds expand_width = (right - left) * expand /2 expand_height = (top - bottom) * expand / 2 #If expand is greater than increase both size if expand >= 0: expanded_left = left - expand_width expanded_bottom = bottom - expand_height expanded_right = right + expand_width expanded_top = top+expand_height else: #Make sure of no negative boxes expanded_left = left+expand_width expanded_bottom = bottom+expand expanded_right = right-expand_width expanded_top = top-expand_height window = rasterio.windows.from_bounds(expanded_left, expanded_bottom, expanded_right, expanded_top, transform=src.transform) masked_image = src.read(window=window) except Exception as e: raise ValueError("sensor path: {} failed at reading window {} with error {}".format(src, box.bounds,e)) #Roll depth to channel last masked_image = np.rollaxis(masked_image, 0, 3) #Skip empty frames if masked_image.size ==0: raise ValueError("Empty frame crop for box {} in sensor path {}".format(box, src)) return masked_image
84948cf3c81fe650d15acd834f89c532e9658466
14,460
def add_msgpack_support(cls, ext, add_cls_methods=True): """Adds serialization support, Enables packing and unpacking with msgpack with 'pack.packb' and 'pack.unpackb' methods. If add_method then enables equality, reading and writing for the classs. Specificly, adds methods: bytes <- obj.to_binary() obj <- cls.from_binary(bytes) boolean <- obj1 == obj2 Args: cls: class ext: an unique code for the msgpack's Ext hook """ def enc(obj): return packb(obj.__dict__) def dec(data): obj = cls.__new__(cls) obj.__dict__.update(unpackb(data)) return obj def eq(a, b): if type(a) != type(b): return NotImplemented return a.__dict__ == b.__dict__ if add_cls_methods: if cls.__eq__ is object.__eq__: cls.__eq__ = eq cls.to_bytes = enc cls.from_bytes = staticmethod(dec) _pack_reg[cls] = (ext, enc) petlib.pack.register_coders(cls, ext, enc, dec)
fa8a6fcce7103466f923b84eeb6f5bdae8383b79
14,461
def UnN(X, Z, N, sampling_type): """Computes block-wise complete U-statistic.""" return UN(X, Z, N, Un, sampling_type=sampling_type)
0e2fb8c62cbcca99017bc7d0ff2c13dbecad1ab3
14,463
def view_log_view(request, model_name, object_id): """view log view Arguments: request {object} -- wsgi request object content_type {str} -- content type object_id {int} -- admin_log id Returns: retun -- html view """ if model_name not in register_form: return render(request, 'admin/error.html', {'error_msg': 'illegal request!'}) model = register_form[model_name]['model'] res = get_object_or_404(model, pk=object_id) log_entries = LogEntry.objects.filter( content_type_id=get_content_type_for_model(model).pk, object_id=res.id ) return render(request, 'admin/view_log.html', { 'log_data': log_entries })
55ebd2d5226e06b1f5833595b0efad3de81140d7
14,464
from typing import Tuple from typing import Dict def parse_markdown(source: str) -> Tuple[str, Dict]: """Parse a Markdown document using our custom parser. Args: source (str): the Markdown source text Returns: tuple(str, dict): 1. the converted output as a string 2. any extracted metadata as a dict """ # Reset or we'll have leftover garbage from the previous file _md_parser.reset() html: str = _md_parser.convert(source) meta: Dict = set_metadata(_md_parser.metadata) return html, meta
2bf5a8d43f3763d6b1356dc0496ab4ed1896fe99
14,465
def flatten_list(nested_list): # Essentially we want to loop through each element in the list # and check to see if it is of type integer or list """ Flatten a arbitrarily nested list Args: nested_list: a nested list with item to be either integer or list example: [2,[[3,[4]], 5]] Returns: a flattened list with only integers example: [2,3,4,5] """ result = [] for element in nested_list: if isinstance(element, int): result.append(element) elif hasattr(element, '__iter__'): #check to see if it is of type list list_result = flatten_list(element) #recursive call for single_integer in list_result: result.append(single_integer) return result
d79b350167cd1fdf35582e9b149bfb364741d566
14,466
import inspect def detect_runner(): """ Guess which test runner we're using by traversing the stack and looking for the first matching module. This *should* be reasonably safe, as it's done during test discovery where the test runner should be the stack frame immediately outside. """ if _test_runner_override is not None: return _test_runner_override global _test_runner_guess if _test_runner_guess is False: stack = inspect.stack() for record in reversed(stack): frame = record[0] module = frame.f_globals.get("__name__").partition(".")[0] if module in _test_runner_aliases: module = _test_runner_aliases[module] if module in _test_runners: _test_runner_guess = module break if record[1].endswith("python2.6/unittest.py"): _test_runner_guess = "unittest" break else: _test_runner_guess = None return _test_runner_guess
881758d42e5047fe58106a99377dcc7191c0010c
14,467
def retinanet( mode, offsets_mean=None, offsets_std=None, architecture='resnet50', train_bn=False, channels_fmap=256, num_anchors_per_pixel=9, num_object_classes=1, pi=0.01, alpha=0.25, gamma=2.0, confidence_threshold=0.05, num_top_scoring=1000, batch_size=2, max_objects_per_class_per_img=100, iou_threshold=0.5, output_top_scoring=False ): """ Builds a RetinaNet. Parameters ---------- mode : string The mode of building a retinanet either in 'training' or 'inference'. offsets_mean, offsets_std : float The mean and std of anchor offsets for a given dataset. If offsets are normalized, they will be used to de-normalize offsets. architecture : string, optional ResNet architecture in {'resnet50', 'resnet101'}. The default is 'resnet50'. train_bn : boolean, optional Whether one should normalize the layer input by the mean and variance over the current batch. The default is False, i.e., use the moving average of mean and variance to normalize the layer input. channels_fmap : integer, optional The number of filters in all FPN conv layers. The default is 256. num_anchors_per_pixel : integer, optional The number of anchors to generate at different scales for every pixel; see anchors.anchors_from_fpn(). The default is 9. num_object_classes : integer, optional The number of classes containing only objects, i.e., object classes denoted by positive integers while background denoted by 0. The default is 1. pi : float, optional The bias initialization at the final conv layer of the classification subnet, prevents the large number of anchors from generating a large loss value in the first iteration of training. The default is 0.01. alpha : float, optional A weighting factor in [0,1] for the object class, addressing class imbalance. The default is 0.25. gamma : float, optional A focusing parameter >= 0 for removing easy examples. The default is 2.0. confidence_threshold : float, optional The minimum selection's probabilites. The default is 0.05. num_top_scoring : integer, optional The number of top-scoring selections. The default is 1000. batch_size : integer, optional The batch size of input images. The default is 2. max_objects_per_class_per_img : integer, optional The maximum number of objects over all images for a particular class. The default is 100. iou_threshold : float, optional An iou threshold for NMS. The default is 0.5. output_top_scoring : boolean, optional Whether to include the output of detections.select_top_scoring() in the inference mode. The default is False. Returns ------- model : tf keras The retinanet. - Training mode * inputs are a batch of images, anchor indicators, ground-truth class ids and offsets generated by data_gen.data_generator(); * outputs are predicted anchor probabilities, offsets, classification and regression losses. - Inference mode * inputs are a batch of raw images, a list of anchors at all levels generated by anchors.anchors_from_fpn() and a window with shape of [1, 4] used in clipping anchors in detections.SelectTopScoring() where 4 is (y1, x1, y2, x2) corner coordinates for all images in the batch. * outputs is a list of detections, each has corresponding target boxes, class ids and scores. """ assert mode in ['training', 'inference'] # input images images = tf.keras.Input(shape=(None, None, 3), name='images') if mode == 'training': # inputs generated by anchors.anchors_targets() gt_anchor_indicators = tf.keras.Input( shape=(None,), name='gt_anchor_indicators', dtype=tf.int32) gt_anchor_class_ids = tf.keras.Input( shape=(None, num_object_classes), name='gt_anchor_class_ids', dtype=tf.int32) gt_anchor_offsets = tf.keras.Input( shape=(None, 4), name='gt_anchor_offsets', dtype=tf.float32) # backbone, ResNet + FPN fmaps = resnet_fpn.resnet_fpn( images, architecture, train_bn, channels_fmap) if mode == 'inference': # input generated by anchors.anchors_from_fpn(), and then each # element is broadcasted to batch_size, resulting in shape of # [batch_size, num_anchors_per_fmap, 4] anchors_fpn_batches = [] for i in range(len(fmaps)): anchors_i = tf.keras.Input( shape=(None, 4), name='anchors_p'+str(i+3), dtype=tf.float32) anchors_fpn_batches.append(anchors_i) # input used when clipping anchors in detections.SelectTopScoring() window = tf.keras.Input( shape=(4), batch_size=1, name='window', dtype=tf.int32) # classification and regression subnets cls_subnet = subnets.cls_subnet( num_anchors_per_pixel, num_object_classes, channels_fmap, pi) reg_subnet = subnets.reg_subnet( num_anchors_per_pixel, channels_fmap) # outputs, list, each element is for one FPN level if mode == 'training': pred_anchor_probs, pred_anchor_offsets = [], [] else: list_anchor_idxes = [] list_anchors, list_class_ids, list_scores = [], [], [] # loop for each FPN level for i in range(len(fmaps)): # fmap, [batch_size, h_i, w_i, channels_fmap] where h_i and w_i denote # the current fmap size p = fmaps[i] # cls, [batch_size, h_i, w_i, num_anchors_per_pixel*num_object_classes] pred_anchor_probs_i = cls_subnet([p]) # reshape, [batch_size, h_i*w_i*num_anchors_per_pixel, num_object_classes] pred_anchor_probs_i = tf.keras.layers.Reshape( (-1, num_object_classes), name='cls_probs_p'+str(i+3) )(pred_anchor_probs_i) # reg, [batch_size, h_i, w_i, num_anchors_per_pixel*4] pred_anchor_offsets_i = reg_subnet([p]) # reshape, [batch_size, h_i*w_i*num_anchors_per_pixel, 4] pred_anchor_offsets_i = tf.keras.layers.Reshape( (-1, 4), name='reg_offsets_p'+str(i+3) )(pred_anchor_offsets_i) if mode == 'training': pred_anchor_probs.append(pred_anchor_probs_i) pred_anchor_offsets.append(pred_anchor_offsets_i) else: # filter low confidence, select top-scoring and refine anchors anchors_i = anchors_fpn_batches[i] select_top_scoring_inputs_i = [ anchors_i, pred_anchor_probs_i, pred_anchor_offsets_i, window] select_top_scoring_outputs_i = detections.SelectTopScoring( confidence_threshold, num_top_scoring, batch_size, offsets_mean, offsets_std, name='select_top_detection_p'+str(i+3) )(select_top_scoring_inputs_i) list_anchor_idxes.append(select_top_scoring_outputs_i[0]) list_anchors.append(select_top_scoring_outputs_i[1]) list_class_ids.append(select_top_scoring_outputs_i[2]) list_scores.append(select_top_scoring_outputs_i[3]) if mode == 'training': # probs, [batch_size, num_anchors, num_object_classes] pred_anchor_probs = tf.keras.layers.Concatenate( axis=1, name='pred_anchor_probs')(pred_anchor_probs) # offsets, [batch_size, num_anchors, 4] pred_anchor_offsets = tf.keras.layers.Concatenate( axis=1, name='pred_anchor_offsets')(pred_anchor_offsets) # cls loss cls_inputs = [ gt_anchor_indicators, gt_anchor_class_ids, pred_anchor_probs] cls_loss = losses.ClsLoss(alpha, gamma)(cls_inputs) # reg loss reg_inputs = [ gt_anchor_indicators, gt_anchor_offsets, pred_anchor_offsets] reg_loss = losses.RegLoss()(reg_inputs) # training model's inputs and outputs inputs = [ images, gt_anchor_indicators, gt_anchor_class_ids, gt_anchor_offsets,] outputs = [ pred_anchor_probs, pred_anchor_offsets, cls_loss, reg_loss] else: # NMS nms_fpn_inputs = [ list_anchor_idxes, list_anchors, list_class_ids, list_scores] nms_fpn_outputs = detections.NMS_FPN( max_objects_per_class_per_img, iou_threshold, batch_size, name='nms' )(nms_fpn_inputs) # anchors_batch, class_ids_batch, scores_batch = nms_fpn_outputs # inference model's inputs and outputs inputs = [images, anchors_fpn_batches, window] if output_top_scoring: outputs = [nms_fpn_inputs, nms_fpn_outputs] else: outputs = nms_fpn_outputs with tf.device('/cpu:0'): model = tf.keras.Model(inputs, outputs, name='RetinaNet') return model
a3cdb088345740583c7ea08049e5f03f8d496cad
14,468
from typing import Union from typing import Tuple from typing import List from typing import Literal def default_chap_exec(gallery_or_id: Union[Gallery, int], chap: Chapter, only_values=False) \ -> Union[Tuple[str, dict], Tuple[int, Union[str, List[str]], int, bytes, int, Literal[0, 1]]]: """Pass a Gallery object or gallery id and a Chapter object""" gid: int if isinstance(gallery_or_id, Gallery): gallery: Gallery = gallery_or_id gid = gallery.id in_archive = gallery.is_archive else: gid = gallery_or_id in_archive = chap.in_archive if only_values: result_exec = (gid, chap.title, chap.number, str.encode(chap.path), chap.pages, in_archive) else: result_exec = ( """ INSERT INTO chapters(series_id, chapter_title, chapter_number, chapter_path, pages, in_archive) VALUES(:series_id, :chapter_title, :chapter_number, :chapter_path, :pages, :in_archive)""", { 'series_id': gid, 'chapter_title': chap.title, 'chapter_number': chap.number, 'chapter_path': str.encode(chap.path), 'pages': chap.pages, 'in_archive': in_archive } ) return result_exec
8bd8cbfc47ce3463f2ea6da313cc871d8b6dcdf5
14,469
from typing import List from typing import Dict from typing import Literal from typing import Any def get_matching_based_variables(match_definitions:List[Dict[Literal['name', 'matching'],Any]], global_dict=None, local_dict=None, var_lenght=0): """ Function to construct an array with values depending on the condition provided by user The idea is to define things like, for example, 'region' for a table, indicating which analysis region is used. Example: Assume we want to have region="SRB" when "MET>100 && mt2<450". For ``MET=[50 ,150,250]`` and ``mt2=[300,400,500]``, when provided with argument ``matching_definitions=[{name:"SRB","matching":["np.logical_and(MET>100,mt2<450)"]}]`` will give output of ``[None,SRB, None]``. Args: match_definitions: list of dictionaries defining matching conditions and the value associated with the match. Each dictionary has to have field 'name' (value of variable when condition is met) and 'matching' -- list of cuts and indices for which the condition is met. Conditions are concacanated to each other. In the example above ``matching_definitions=[{name:"SRB","matching":["np.logical_and(MET>100,mt2<450)"]}`` is equivalent to ``matching_definitions=[{name:"SRB","matching":[1]}`` (index specifying position that matches) submission_dict: collections of variables and other known objects to be used in the transformation local_vars: yet another collection of variables known to be used in the transformation var_lenght: lenght of the corresponding variable/table (in case index is is chosen for matching specification) """ result=None for specification in match_definitions: var=specification.get('name',None) if(var is None): raise ValueError(f"matching_definitions have to have name for each specification.") cuts=specification.get('matching',[]) for cut in cuts: if(type(cut)==str): cutOutput=np.where(eval(cut,global_dict,local_dict),var,None) ToAppend=cutOutput.reshape(len(cutOutput),1) if(not result): result=ToAppend else: result=np.concatenate((result,ToAppend),axis=1) elif(type(cut)==int): if(cut>=len(cuts)): raise RuntimeError("lenght of cut table smaller than required index.") else: ToAppend=np.array([[None]]*len(var_lenght)) ToAppend[cut]=var if(not result): result=ToAppend else: result=np.concatenate((result,ToAppend),axis=1) else: raise TypeError("Variable cutDefinitions has improper content.") return result
6722bb4f258ef69c4aab74970f8f924ca938bbf5
14,471
def _AStar_graph(problem: BridgeProblem) -> (list, list): """Used for graphing, returns solution as well as all nodes in a list""" all_nodes = [problem.initial_node] pq = [(problem.initial_node.path_cost + problem.h(problem.initial_node.state), problem.initial_node)] closed = set() while True: assert pq priority, node = heappop(pq) if problem.goal_test(node): return problem.get_ancestors(node), all_nodes closed.add(node) children = problem.expand(node) for node in children: priority = node.path_cost + problem.h(node.state) bn = (priority, node) inpq = None for i, (_, pq_node) in enumerate(pq): if node == pq_node: inpq = i if node not in closed and inpq is None: heappush(pq, bn) elif inpq is not None and bn < pq[inpq]: pq.pop(inpq) pq.append(bn) heapify(pq) all_nodes.extend(children)
a1616f7d499f12a229843007d7bc4939cbd02a7a
14,472
def plot_setup(name, figsize=None, fontsize=9, font='paper', dpi=None): """ Setup a PDF page for plot. name: PDF file name. If not ending with .pdf, will automatically append. figsize: dimension of the plot in inches, should be an array of length two. fontsize: fontsize for legends and labels. font: font for legends and labels, 'paper' uses Times New Roman, 'default' uses default, a tuple of (family, font, ...) customizes font. dpi: resolution of the figure. """ paper_plot(fontsize=fontsize, font=font) if not name.endswith('.pdf'): name += '.pdf' pdfpage = matplotlib.backends.backend_pdf.PdfPages(name) fig = matplotlib.pyplot.figure(figsize=figsize, dpi=dpi) return pdfpage, fig
4f9595757df57ee451dddc82815a91b727feb1f1
14,473
def author_endyear(pub2author_df = None, colgroupby = 'AuthorId', datecol = 'Year', show_progress=False): """ Calculate the year of last publication for each author. Parameters ---------- pub2author_df : DataFrame, default None, Optional A DataFrame with the author2publication information. colgroupby : str, default 'AuthorId', Optional The DataFrame column with Author Ids. If None then the database 'AuthorId' is used. datecol : str, default 'Year', Optional The DataFrame column with Date information. If None then the database 'Year' is used. Returns ------- DataFrame Productivity DataFrame with 2 columns: 'AuthorId', 'CareerLength' """ newname_dict = zip2dict([str(datecol), '0'], ['EndYear']*2) return pub2author_df.groupby(colgroupby)[datecol].max().to_frame().reset_index().rename(columns=newname_dict)
8a3ebf5e1870a8aa79ed2cba18fbb18fa634e604
14,474
def to_gif(images, fps): """Converts image sequence (4D numpy array) to gif.""" imageio.mimsave('./animation.gif', images, fps=fps) return embed.embed_file('./animation.gif')
b329da4710a5ad2da57ed2cf6b774ac4b6b8c7dd
14,475
import logging def get_half_max_down(signal, peak): """See `get_half_max_up` for explanation. This is a minor modification of the above function. """ if peak['peak'] == 0: return np.nan fflag = False half_max = signal[peak['peak']] / 2 falling_signal = signal[peak['peak']:(peak['right']+1)] closest_idx = (np.abs(falling_signal - half_max)).argmin() + peak['peak'] if closest_idx <= 1 or closest_idx >= 98: logging.warning('HM_DOWN: half-max too close to end of signal') return np.nan # If the signal at the index is nearly equal to half max, take that index if np.allclose(half_max, signal[closest_idx]): half_max_point = closest_idx # ...otherwise interpolate else: ix = -1 triplet = signal[(closest_idx - 1):(closest_idx + 2)] if triplet[0] > half_max > triplet[1]: ix = 0 elif triplet[1] > half_max > triplet[2]: ix = 1 else: logging.warning('HM_DOWN: simple method for interpolating' ' half-max decay time failed') fflag = True if ix != -1: y = [ix,ix+1] x = [triplet[ix], triplet[ix+1]] f = interp1d(x,y) trip_coord = f(half_max) half_max_point = closest_idx + (trip_coord - 1) if fflag == True: half_max_down = np.nan else: half_max_down = float(half_max_point - peak['peak']) return half_max_down
0b9b20b66a82d8a60aa650bc1bacd24f67f217f1
14,476
import copy def ternary(c): """ Encodes the circuit with ternary values Parameters ---------- c : Circuit Circuit to encode. Returns ------- Circuit Encoded circuit. """ if c.blackboxes: raise ValueError(f"{c.name} contains a blackbox") t = copy(c) # add dual nodes for n in c: if c.type(n) in ["and", "nand"]: t.add(f"{n}_x", "and") t.add( f"{n}_x_in_fi", "or", fanout=f"{n}_x", fanin=[f"{p}_x" for p in c.fanin(n)], ) t.add(f"{n}_0_not_in_fi", "nor", fanout=f"{n}_x") for p in c.fanin(n): t.add( f"{p}_is_0", "nor", fanout=f"{n}_0_not_in_fi", fanin=[p, f"{p}_x"] ) elif c.type(n) in ["or", "nor"]: t.add(f"{n}_x", "and") t.add( f"{n}_x_in_fi", "or", fanout=f"{n}_x", fanin=[f"{p}_x" for p in c.fanin(n)], ) t.add(f"{n}_1_not_in_fi", "nor", fanout=f"{n}_x") for p in c.fanin(n): t.add(f"{p}_is_1", "and", fanout=f"{n}_1_not_in_fi", fanin=p) t.add(f"{p}_not_x", "not", fanout=f"{p}_is_1", fanin=f"{p}_x") elif c.type(n) in ["buf", "not"]: p = c.fanin(n).pop() t.add(f"{n}_x", "buf", fanin=f"{p}_x") elif c.type(n) in ["output"]: p = c.fanin(n).pop() t.add(f"{n}_x", "output", fanin=f"{p}_x") elif c.type(n) in ["xor", "xnor"]: t.add(f"{n}_x", "or", fanin=(f"{p}_x" for p in c.fanin(n))) elif c.type(n) in ["0", "1"]: t.add(f"{n}_x", "0") elif c.type(n) in ["input"]: t.add(f"{n}_x", "input") else: raise ValueError(f"Node {n} has unrecognized type: {c.type(n)}") return t
6fd813b957da408c23cc8a37038b8f3b660fdc73
14,478
from typing import List from typing import Dict def eval_lane_per_frame( gt_file: str, pred_file: str, bound_ths: List[float] ) -> Dict[str, np.ndarray]: """Compute mean,recall and decay from per-frame evaluation.""" task2arr: Dict[str, np.ndarray] = dict() # str -> 2d array gt_byte = np.asarray(Image.open(gt_file)) pred_byte = np.asarray(Image.open(pred_file)) gt_foreground = get_foreground(gt_byte) pd_foreground = get_foreground(pred_byte) for task_name, class_func in sub_task_funcs.items(): task_scores: List[List[float]] = [] for value in range(len(sub_task_cats[task_name])): gt_mask = class_func(gt_byte, value) & gt_foreground pd_mask = class_func(pred_byte, value) & pd_foreground cat_scores = [ eval_lane_per_threshold(gt_mask, pd_mask, bound_th) for bound_th in bound_ths ] task_scores.append(cat_scores) task2arr[task_name] = np.array(task_scores) return task2arr
571cd737151576869170e33d181f89d22bc0657b
14,479
import torch def membrane(field, voxel_size=1, bound='dct2', dim=None, weights=None): """Precision matrix for the Membrane energy Note ---- .. This is exactly equivalent to SPM's membrane energy Parameters ---------- field : (..., *spatial) tensor voxel_size : float or sequence[float], default=1 bound : str, default='dct2' dim : int, default=field.dim() weights : (..., *spatial) tensor, optional Returns ------- field : (..., *spatial) tensor """ if weights is None: return _membrane_l2(field, voxel_size, bound, dim) def mul_(x, y): """Smart in-place multiplication""" if ((torch.is_tensor(x) and x.requires_grad) or (torch.is_tensor(y) and y.requires_grad)): return x * y else: return x.mul_(y) backend = dict(dtype=field.dtype, device=field.device) dim = dim or field.dim() if torch.is_tensor(voxel_size): voxel_size = make_vector(voxel_size, dim, **backend) dims = list(range(field.dim()-dim, field.dim())) fieldf = diff(field, dim=dims, voxel_size=voxel_size, side='f', bound=bound) weights = torch.as_tensor(weights, **backend) fieldf = mul_(fieldf, weights[..., None]) fieldb = diff(field, dim=dims, voxel_size=voxel_size, side='b', bound=bound) fieldb = mul_(fieldb, weights[..., None]) dims = list(range(fieldb.dim() - 1 - dim, fieldb.dim() - 1)) fieldb = div(fieldb, dim=dims, voxel_size=voxel_size, side='b', bound=bound) dims = list(range(fieldf.dim()-1-dim, fieldf.dim()-1)) field = div(fieldf, dim=dims, voxel_size=voxel_size, side='f', bound=bound) del fieldf field += fieldb field *= 0.5 return field
5e238ca2253fc7105b1bbfba58947ac442c05699
14,480
from typing import Tuple import struct def get_uint64(dgram: bytes, start_index: int) -> Tuple[int, int]: """Get a 64-bit big-endian unsigned integer from the datagram. Args: dgram: A datagram packet. start_index: An index where the integer starts in the datagram. Returns: A tuple containing the integer and the new end index. Raises: ParseError if the datagram could not be parsed. """ try: if len(dgram[start_index:]) < _UINT64_DGRAM_LEN: raise ParseError('Datagram is too short') return ( struct.unpack('>Q', dgram[start_index:start_index + _UINT64_DGRAM_LEN])[0], start_index + _UINT64_DGRAM_LEN) except (struct.error, TypeError) as e: raise ParseError('Could not parse datagram %s' % e)
e5ed2470656e3c0d1a8efe02bd638ac05245f187
14,481
import torch from typing import Optional from typing import List def fftshift(x: torch.Tensor, dim: Optional[List[int]] = None) -> torch.Tensor: """ Similar to np.fft.fftshift but applies to PyTorch Tensors Args: x: A PyTorch tensor. dim: Which dimension to fftshift. Returns: fftshifted version of x. """ if dim is None: # this weird code is necessary for toch.jit.script typing dim = [0] * (x.dim()) for i in range(1, x.dim()): dim[i] = i # also necessary for torch.jit.script shift = [0] * len(dim) for i, dim_num in enumerate(dim): shift[i] = x.shape[dim_num] // 2 return roll(x, shift, dim)
a1ff7a81df83df63dcbcf56cf89d9b0e54c16ba0
14,482
def flatten(x): """Flattens nested list""" if isinstance(x, list): return [a for i in x for a in flatten(i)] else: return [x]
7d348f8287dfccfbb77a52a84a5642c265381eb1
14,483
import copy def get_capture_points_gazebo(bag, odom_topic='/gazebo/model_states', sync_topic='/mavros/imu/data_raw', camera_freq=20, sync_topic_freq=100, method='every'): """ method(string): method for sampling capturing points. 'every': Sample IMU for every n msgs, and then capture odometry msg which has the closest timestamp. This requires the existence of odom_msg for every imu_msg. """ odom_msg_list = [] odom_time_list = [] odom_stamp_list = [] capture_time_list = [] sync_topic_num = 0 for topic, msg, t in bag: if topic==odom_topic: odom_msg_list.append(msg) odom_time_list.append(t.to_time()) odom_stamp_list.append(copy.deepcopy(t)) for topic, msg, t in bag: if topic==sync_topic: if odom_time_list[0] > t.to_time(): continue if sync_topic_num % (int(sync_topic_freq/camera_freq)) == 0: capture_time_list.append(t.to_time()) sync_topic_num += 1 assert len(odom_msg_list)==len(odom_time_list) and len(odom_msg_list)==len(odom_stamp_list), 'length of odom_(msg/time/stamp)_list is not equal.' # start sampling odometry capture_points = [] curr_odom_idx = 0 for idx, capture_time in enumerate(capture_time_list): # take an odometry msg which has the timestamp closest to capture_time if capture_time < min(odom_time_list): continue while abs(capture_time - odom_time_list[curr_odom_idx]) >= 5*10**(-5): curr_odom_idx += 1 if curr_odom_idx >= len(odom_time_list): break if curr_odom_idx >= len(odom_time_list): break if odom_topic=='/gazebo/gazebo_states': capture_point = get_capture_point_from_gazebo_model_states(idx, odom_msg_list[curr_odom_idx], odom_stamp_list[curr_odom_idx]) elif odom_topic=='/odometry': capture_point = get_capture_point_from_navmsgs_odom(idx, odom_msg_list[curr_odom_idx], odom_stamp_list[curr_odom_idx]) capture_points.append(capture_point) return capture_points
75d351c0ecd6ad8dad6e7cfcd2ecd04d0826405b
14,484
import fileinput def parse_input(): """Parse input and return array of calendar A user can either pass the calendar via the stdin or via one or several icalendar files. This method will parse the input and return an array of valid icalendar """ input_data = '' calendars = [] for line in fileinput.input(): if 'BEGIN:VCALENDAR' in line: calendars.append(input_data) input_data = line else: input_data += line calendars.append(input_data) return calendars[1:]
a60a760968f139da0b7753ae5717d78b640cb232
14,485
def identity(obj): """Returns the ``obj`` parameter itself :param obj: The parameter to be returned :return: ``obj`` itself >>> identity(5) 5 >>> foo = 2 >>> identity(foo) is foo True """ return obj
a3271a831d2e91fe6eebed7e80c18e7c81996da6
14,486
def percent_clipper(x, percentiles): """ Takes data as np.ndarray and percentiles as array-like Returns clipped ndarray """ LOWERBOUND, UPPERBOUND = np.percentile(x, [percentiles[0], percentiles[1]) return np.clip(x, LOWERBOUND, UPPERBOUND)
3d114a956bfd0b6b8349c39f5c42f4487a812ee7
14,487
def check_prob_vector(p): """ Check if a vector is a probability vector. Args: p, array/list. """ assert np.all(p >= 0), p assert np.isclose(np.sum(p), 1), p return True
f9a6ea74fe9e5ff8a7244e7cc8aee2cbf5ae512e
14,488
def relabel_subgraph(): """ This function adapts an existing sampler by relabelling the vertices in the edge list to have dense index. Returns ------- sample: a function, that when invoked, produces a sample for the input function. """ def relabel(edge_list, positive_vertices): shape = edge_list.shape vertex_index, edge_list = np.unique(edge_list, return_inverse=True) edge_list = edge_list.astype(np.int32).reshape(shape) # relabel the positive vertices positive_verts = np.searchsorted(vertex_index, positive_vertices) is_positive = np.zeros_like(vertex_index) is_positive[positive_verts] = 1 return edge_list, vertex_index, is_positive def sample(data): edge_list = data['edge_list'] positive_vertices = data.get('positive_vertices', tf.unique(tf.reshape(edge_list, [-1]))[0]) vertex_index = data.get('vertex_index', None) if isinstance(edge_list, tf.Tensor): new_edge_list, new_vertex_index, is_positive = tf.py_func(relabel, [edge_list, positive_vertices], [tf.int32, tf.int32, tf.int32], stateful=False) new_edge_list.set_shape(edge_list.shape) new_vertex_index.set_shape([None]) is_positive.set_shape([None]) else: new_edge_list, new_vertex_index, is_positive = relabel(edge_list, positive_vertices) if vertex_index is not None: if isinstance(vertex_index, tf.Tensor): vertex_index = tf.gather(vertex_index, new_vertex_index, name='resample_vertex_index') else: vertex_index = vertex_index[new_vertex_index] else: vertex_index = new_vertex_index return {**data, 'edge_list': new_edge_list, 'vertex_index': vertex_index, 'is_positive': is_positive} return sample
e9b8269640663b830c894c4aa4f8a8cce2b49af7
14,489
def init_binary(mocker): """Initialize a dummy BinaryDigitalAssetFile for testing.""" mocker.patch.multiple( houdini_package_runner.items.digital_asset.BinaryDigitalAssetFile, __init__=lambda x, y, z: None, ) def _create(): return houdini_package_runner.items.digital_asset.BinaryDigitalAssetFile( None, None ) return _create
34a3ee5fb09f413bf07b36f1b73189472c188f3d
14,491
def with_setup_(setup=None, teardown=None): """Decorator like `with_setup` of nosetest but which can be applied to any function""" def decorated(function): def app(*args, **kwargs): if setup: setup() try: function(*args, **kwargs) finally: if teardown: teardown() return app return decorated
f9e8eddfd01ee99e458857de403c49b91dafa92c
14,492
import click def post_options(): """Standard arguments and options for posting timeseries readings. """ options = [ click.argument('port'), click.argument('value', type=JSONParamType()), click.option('--timestamp', metavar='DATE', help='the time of the reading'), ] def wrapper(func): func.__doc__ += _post_options_docs for option in reversed(options): func = option(func) return func return wrapper
7b7c386bfcbf36f1365392a6ba2562fa0ed520ce
14,493
def authenticated(f): """Decorator for authenticating with the Hub""" @wraps(f) def decorated(*args, **kwargs): token = request.cookies.get(auth.cookie_name) if token: user = auth.user_for_token(token) else: user = None if user: return f(user, *args, **kwargs) else: # redirect to login url on failed auth state = auth.generate_state(next_url=request.path) response = make_response( redirect(auth.login_url + '&state=%s' % state) ) response.set_cookie(auth.state_cookie_name, state) return response return decorated
1149f14ad540521b71efa3a3240c13719ccf8a17
14,494
def json_complex_hook(dct): """ Return an encoded complex number to it's python representation. :param dct: (dict) json encoded complex number (__complex__) :return: python complex number """ if isinstance(dct, dict): if '__complex__' in dct: parts = dct['__complex__'] assert len(parts) == 2 return parts[0] + parts[1] * 1j return dct
a3c8cb13485279ab3b222eb63efdfdf6421c17a6
14,495
def reg_logLiklihood(x, weights, y, C): """Regularizd log-liklihood function (cost function to minimized in logistic regression classification with L2 regularization) Parameters ----------- x : {array-like}, shape = [n_samples, n_features + 1] feature vectors. Note, first column of x must be a vector of ones. weights : 1d-array, shape = [1, 1 + n_features] Coefficients that weight each samples feature vector y : list, shape = [n_samples,], values = 1|0 target values C : float Regularization parameter. C is equal to 1/lambda Returns ----------- Value of regularized log-liklihood function with the given feature values, weights, target values, and regularization parameter """ z = np.dot(x, weights) reg_term = (1 / (2 * C)) * np.dot(weights.T, weights) return -1 * np.sum((y * np.log(logistic_func(z))) + ((1 - y) * np.log(1 - logistic_func(z)))) + reg_term
4a13bac09a6989463014784c72c72729ec40e718
14,496
import itertools def estimate_gridsearch_size(model, params): """ Compute the total number of parameter combinations in a grid search Parameters ---------- model: str name of the model to train. The function currently supports feedforward neural networks (model = 'FNN'), long-short term memory (model = 'LSTM') and naive discriminative learning (model = 'NDL') also commonly known as Rescorla-Wagner model. params: dict of lists parameter set of the grid search: Returns ------- int number of param combinations """ ### FNN model if model == 'FNN': # Extract the dimensions of the pretrained embeddings pretrain_embed_dim = {} embed_inputs = params['embedding_input'] for i, e in enumerate(embed_inputs): if embed_inputs[i] and embed_inputs[i] != 'learn': pretrain_embed_dim.update({embed_inputs[i]:extract_embedding_dim(embed_inputs[i])}) # Create a list of dictionaries giving all possible parameter combinations keys, values = zip(*params.items()) grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)] ### Remove impossible combinations ind_to_remove = [] for i,d in enumerate(grid_full): # In the case of no hidden layer, no need to set the 'activation' parameter - only 'last_activation' is used if grid_full[i]['hidden_layers'] == 0: grid_full[i]['activation'] = None # In the case of hot encoding or pretrained embedding, no need to set embedding_dim, otherwise, # it is essential to set embedding_dim, so remove all cases where embedding_dim is not given with # embeddings to be learned from scratch if not grid_full[i]['embedding_input']: grid_full[i]['embedding_dim'] = None elif grid_full[i]['embedding_input'] == 'learn' and not grid_full[i]['embedding_dim']: ind_to_remove.append(i) elif grid_full[i]['embedding_input'] and grid_full[i]['embedding_input'] != 'learn': grid_full[i]['embedding_dim'] = pretrain_embed_dim[grid_full[i]['embedding_input']] # In the case of embeddings, it is essential to set 'max_len' (max_len cannot be None), # so remove all cases where embeddings are used max_len is not given if grid_full[i]['embedding_input'] and not grid_full[i]['max_len']: ind_to_remove.append(i) # First remove the detected impossible combinations (e.g. 'embedding_input = 'learn', embedding_dim = None') for ii in sorted(ind_to_remove, reverse = True): del grid_full[ii] # Second remove the duplicated combinations 'embedding_input != 'learn', embedding_dim = None' grid_full = [dict(t) for t in {tuple(d.items()) for d in grid_full}] ### LSTM model elif model == 'LSTM': # Extract the dimensions of the pretrained embeddings pretrain_embed_dim = {} embed_inputs = params['embedding_input'] for i, e in enumerate(embed_inputs): if embed_inputs[i] and embed_inputs[i] != 'learn': pretrain_embed_dim.update({embed_inputs[i]:extract_embedding_dim(embed_inputs[i])}) ### Create a list of dictionaries giving all possible parameter combinations keys, values = zip(*params.items()) grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)] ### Remove impossible combinations ind_to_remove = [] for i,d in enumerate(grid_full): # In the case of hot encoding or pretrained embedding, no need to set embedding_dim, otherwise, # it is essential to set embedding_dim, so remove all cases where embedding_dim is not given with # embeddings to be learned from scratch if not grid_full[i]['embedding_input']: grid_full[i]['embedding_dim'] = None elif grid_full[i]['embedding_input'] == 'learn' and not grid_full[i]['embedding_dim']: ind_to_remove.append(i) elif grid_full[i]['embedding_input'] and grid_full[i]['embedding_input'] != 'learn': grid_full[i]['embedding_dim'] = pretrain_embed_dim[grid_full[i]['embedding_input']] # First remove the combinations 'embedding_input = 'learn', embedding_dim = None' for ii in sorted(ind_to_remove, reverse = True): del grid_full[ii] # Second remove the duplicated combinations 'embedding_input != 'learn', embedding_dim = None' grid_full = [dict(t) for t in {tuple(d.items()) for d in grid_full}] ### NDL model elif model == 'NDL': ### Create a list of dictionaries giving all possible parameter combinations keys, values = zip(*params.items()) grid_full = [dict(zip(keys, v)) for v in itertools.product(*values)] # Raise an error if a non-supported model is entered else: raise ValueError(f'The entered model "{model}" is not supported') return len(grid_full)
8105a457b3ec30c3cdc6c42bb71afd229770b376
14,499
import pytz from datetime import datetime def str2posix(timelist): """ This will take a list of strings with the date along with a start and end time and make a list with the posix times. Inputs timelist - A list of strings with the data followed by two times. The date for the second time can also be used, it will be at index 2 and the second time will be at index 3. Outputs dtts - A list of posix times from the original inputs""" if len(timelist)==3: timelist.insert(2,timelist[0]) (dt1,dt2) = parser.parse(timelist[0]+ ' '+timelist[1]),parser.parse(timelist[2]+ ' '+timelist[3]) dt1 =dt1.replace(tzinfo=pytz.utc) dt2 = dt2.replace(tzinfo=pytz.utc) dt1ts = (dt1 -datetime(1970,1,1,0,0,0,tzinfo=pytz.utc)).total_seconds() dt2ts = (dt2 -datetime(1970,1,1,0,0,0,tzinfo=pytz.utc)).total_seconds() return [dt1ts,dt2ts]
476fc634b967419818ef41d9ff4b21f9e4f76ff1
14,502
def keys_verif(verif: bool = True): """ Used to verify existence of private or/and public keys of ElGamal. """ print("\nChecking the presence of keys in the system....") if isFileHere("public_key.kpk", config.DIRECTORY_PROCESSING): # from cipher.asymmetric import elGamal as elG print(f"\nPublic key is already here.\n") if isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING): print(f"Private key is here too.\n") if verif and not query_yn("Do you want to keep them? (default: No)", "no"): rmFile("public_key.kpk", config.DIRECTORY_PROCESSING) rmFile("private_key.kpk", config.DIRECTORY_PROCESSING) rmFile("encrypted.kat", config.DIRECTORY_PROCESSING) return True else: print("Private key's missing.\n") if query_yn("Do you want to add them now?\n"): while not isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING): input("Please put your 'private_key.kpk' file into the 'processing' folder.") print("Find it !") keys_verif() else: katsuAsymm() elif isFileHere("private_key.kpk", config.DIRECTORY_PROCESSING): print("\nPrivate key's already here but not public one's.\n") if query_yn("Do you want to add them now? ( default: No)\n", "no"): while not isFileHere("public_key.kpk", config.DIRECTORY_PROCESSING): input("Please put your 'public_key.kpk' file into the 'processing' folder.") print("find it !") keys_verif() else: return True else: return True return False
824b8c31ad9cc0fb1b2ef7eef585e47c2e338a8b
14,503
def r2(ground_truth, simulation, join='inner', fill_value=0): """ R-squared value between ground truth and simulation Inputs: ground_truth - ground truth measurement (data frame) with measurement in the "value" column simulation - simulation measurement (data frame) with measurement in the "value" column join - type of join to perform between ground truth and simulation fill_value - fill value for non-overlapping joins """ if simulation is None or ground_truth is None: return None if len(simulation) == 0 or len(ground_truth) == 0: return None if type(ground_truth) is list: ground_truth = np.nan_to_num(ground_truth) simulation = np.nan_to_num(simulation) ground_truth = ground_truth[np.isfinite(ground_truth)] simulation = simulation[np.isfinite(simulation)] return np.sqrt(((np.asarray(ground_truth) - np.asarray(simulation)) ** 2).mean()) ground_truth = ground_truth[np.isfinite(ground_truth.value)] simulation = simulation[np.isfinite(simulation.value)] df = join_dfs(ground_truth,simulation,join=join,fill_value=fill_value) if df.empty: return None else: return r2_score(df["value_gt"],df["value_sim"])
75d78e575bef0a59620cbdbf1992396a8edd0929
14,504
def depth_analysis_transform_1(rgb_tensor, depth_tensor, num_filters): """Builds the analysis transform.""" with tf.variable_scope("analysis"): # --------------------------------------- rgb branch with tf.variable_scope("layer_0"): layer = tfc.SignalConv2D( num_filters, (9, 9), corr=True, strides_down=4, padding="same_zeros", use_bias=True, activation=tf.nn.relu) rgb_tensor = layer(rgb_tensor) # --------------------------------------- depth branch with tf.variable_scope("layer_d0"): layer = tfc.SignalConv2D( num_filters, (9, 9), corr=True, strides_down=4, padding="same_zeros", use_bias=True, activation=tf.nn.relu) depth_tensor = layer(depth_tensor) # --------------------------------------- fusion tf.summary.histogram('rgb_tensor', rgb_tensor) tf.summary.histogram('depth_tensor', depth_tensor) tensor = rgb_tensor + depth_tensor with tf.variable_scope("layer_1"): layer = tfc.SignalConv2D( num_filters, (5, 5), corr=True, strides_down=2, padding="same_zeros", use_bias=True, activation=tf.nn.relu) tensor = layer(tensor) with tf.variable_scope("layer_2"): layer = tfc.SignalConv2D( num_filters, (5, 5), corr=True, strides_down=2, padding="same_zeros", use_bias=False, activation=None) tensor = layer(tensor) return tensor
27637e35619f61e5da2b965392a39b38cdfb6a29
14,506
def hub_quantile_prediction_dict_validator(target_group_dict, prediction_dict): """ Does hub prediction_dict validation as documented in `json_io_dict_from_quantile_csv_file()` """ error_messages = [] # return value. filled next valid_quantiles = target_group_dict['quantiles'] prediction_quantiles = prediction_dict['prediction']['quantile'] if set(valid_quantiles) != set(prediction_quantiles): error_messages.append(f"prediction_dict quantiles != valid_quantiles. valid_quantiles={valid_quantiles}, " f"prediction_quantiles={prediction_quantiles}") return error_messages
ec13824557ef9533d7c4a777daadd07414752767
14,508
def allclose_periodical(x, y, a, b, atol=1e-10): """ Checks np.allclose(x,y), but assumes both x and y are periodical with respect to interval (a,b) """ assert(len(x) == len(y)) period = b-a x_p = np.remainder(x-a,period) # now in 0, b-a y_p = np.remainder(y-a,period) return all(np.isclose(x_p[i], y_p[i], atol=atol) or np.isclose(x_p[i], y_p[i]+period, atol=atol) or np.isclose(x_p[i], y_p[i]-period, atol=atol) for i in range(len(x_p)))
bd1c58a362a9c3926bffbcb0a27e355bfc982955
14,509
import operator def get_categories_to_rows_ratio(df): """ Gets ratio of unique categories to number of rows in the categorical variable; do this for each categorical variable :param df: pd.DataFrame :return: array of tuples """ cat_columns = get_categorical_variable_names(df) ratios = {col:len(df[col].unique()) / df[col].count() for col in cat_columns} sorted_ratios = sorted(ratios.items(), key=operator.itemgetter(1), reverse=True) return sorted_ratios
2734b898b6c6538b65d54709be617a6dd393c3da
14,510
def _width_left_set(size: int, lsize: int, value: list, fmt: str, meta: dict) -> dict: """Width setting of paragraph with left repositioning.""" return Plain([RawInline(fmt, '<p style="text-align:left !important;' 'text-indent:0 !important;' 'position:relative;width:{0};left:{1}">'. format(size, lsize))] + value + [RawInline(fmt, '</p>')])
6042b0d255fe804d7423b5e49dd700bd7f0b9bdf
14,511
def GetMappingKeyName(run, user): """Returns a str used to uniquely identify a mapping.""" return 'RunTesterMap_%s_%s' % (run.key().name(), str(user.user_id()))
b4eb80ca5f084ea956f6a458f92de1b85e722cda
14,512
def get_invitee_from_table(invite_code: str, table): """ Get a dictionary of the stored information for this invite code. Args: invite_code: The invitation code to search for table: A DynamoDB table for querying Returns: A dictionary of information stored under the invite code Throws: UnknownInviteCodeError: If the invite code is not in the database """ response = table.query( KeyConditionExpression=Key('invite_code').eq(invite_code) ) items = response['Items'] if len(items) == 0: # If there were no matches to the code then throw an error raise UnknownInviteCodeError() # The output will be a list, so we'll just use the first one since there # should not be duplicates items = items[0] # DynamoDB cannot store empty strings, so we use null instead and convert # between it as needed. At this point in time, we have no significance for # null so this works fine. items = {k: convert_null_to_empty_string(v) for k, v in items.items()} return items
1377e20a58174f69d8984e36aab3426c0eb392bd
14,513
import math def d_beta_dr(radius, beta, mass_r, epsilon, pressure, h_r): """ d_beta_dr """ return 2. * (1 - 2 * (mass_r/radius)) ** (-1.) * h_r * \ ( -2. * math.pi * (5*epsilon + 9*pressure + f(epsilon, pressure)) + (3/radius**2.) + 2*(1 - 2 * mass_r / radius)**(-1) * \ ((mass_r/radius) + 4 * math.pi*radius*pressure)**2 ) + (2 * beta/radius) *(1 - 2 * mass_r / radius)**(-1) * \ (-1 + mass_r/radius + 2 * math.pi * radius**2 * (epsilon - pressure))
0880439516b70e07c01be3164a3c030bb9deeaca
14,514
import json def score(capstone, student_api): """ Calculates the score of the students' API model :param student_api: StudentApi object :return: score as a float """ # Check which simulators have datapoints with outcomes outcomes simulator_ids = [] for simulator in capstone.simulators.all(): if simulator.datapoints.exclude(outcome="").count() > 0: simulator_ids.append(simulator.id) if len(simulator_ids) == 0: raise RuntimeError("No simulators with outcomes found.") qs = DueDatapoint.objects.filter( simulator_id__in=simulator_ids, student=student_api.student, ) outcomes = [] predictions = [] sensitive_class_race = {} sensitive_class_sex = {} for ddp in qs: # loop through each entry in DueDataPoint outcome = bool(json.loads(ddp.datapoint.outcome)) data = json.loads(ddp.datapoint.data) if ddp.response_status != 200: # Missing or bad response predictions.append(not outcome) outcomes.append(outcome) else: try: prediction = json.loads(ddp.response_content)["prediction"] except (json.JSONDecodeError, KeyError): predictions.append(not outcome) outcomes.append(outcome) else: sex = data["sex"].lower() if sex not in sensitive_class_sex: sensitive_class_sex[sex] = { "outcomes": [], "predictions": [], } sensitive_class_sex[sex]["outcomes"].append(outcome) sensitive_class_sex[sex]["predictions"].append(prediction) race = data["race"].lower() if race not in sensitive_class_race: sensitive_class_race[race] = { "outcomes": [], "predictions": [], } sensitive_class_race[race]["outcomes"].append(outcome) sensitive_class_race[race]["predictions"].append(prediction) if not isinstance(prediction, bool): predictions.append(not outcome) else: predictions.append(prediction) outcomes.append(outcome) logger.info(student_api.student) f1_score = metrics.f1_score(outcomes, predictions, pos_label=True) logger.info("f1_score %s" % f1_score) race_diff = fairness_score_precision(sensitive_class_race) sex_diff = fairness_score_precision(sensitive_class_sex) is_fair = race_diff < 0.2 and sex_diff < 0.2 logger.info("race_diff %s" % race_diff) logger.info("sex_diff %s" % sex_diff) logger.info("is_fair %s" % is_fair) if not is_fair: f1_score -= 0.1 return f1_score
bb4f545835f480c9fac97acc698daef08a7684f2
14,515
def clean_lhdf(df: pd.DataFrame): """ Removes unneccessary columms from the location history data frame and computes new required columns Parameters ---------- df : pandas.DataFrame DataFrame to process Returns ------- Copy of `df`, altered the following way: * Colums removed * `activity` * `altitude` * `heading` * Columns expected in `df` * `time` * `latitudeE7` * `longitudeE7` * Columns added * `date` (Format `YYYY-MM-DD`) * `weekday` (Format: `0-6`; 0 = Sunday) * `daytime` (Format: HH:ii, 24h style) * `lat` (Format: dd.ddddd) * `lon` (Format: dd.ddddd) """ df = df.copy() # Drop unneccessary cols df.drop(labels=["activity", "altitude", "heading"], axis=1, inplace=True) # compute time cols df.loc[:, "date"] = df.time.dt.strftime("%Y-%m-%d") df.loc[:, "weekday"] = df.time.dt.strftime("%w") #was: %u df.loc[:, "daytime"] = df.time.dt.strftime("%H:%M") df.loc[:,"lat"] = pd.to_numeric(df.latitudeE7) / 1e7 df.loc[:,"lng"] = pd.to_numeric(df.longitudeE7) / 1e7 return df
86280a333082e964553030d4e586a267e93edfae
14,516
def year_from_operating_datetime(df): """Add a 'year' column based on the year in the operating_datetime. Args: df (pandas.DataFrame): A DataFrame containing EPA CEMS data. Returns: pandas.DataFrame: A DataFrame containing EPA CEMS data with a 'year' column. """ df['year'] = df.operating_datetime_utc.dt.year return df
1c7bbc6465d174465151e5e777671f319ee656b7
14,517
def is_thrift(target): """Returns True if the target has thrift IDL sources.""" return isinstance(target, JavaThriftLibrary)
4a56cf5cec923933fec628173cb2ab1a122b0127
14,518
def get_instance(value, model): """Returns a model instance from value. If value is a string, gets by key name, if value is an integer, gets by id and if value is an instance, returns the instance. """ if not issubclass(model, db.Model): raise TypeError('Invalid type (model); expected subclass of Model.') if isinstance(value, basestring): return model.get_by_key_name(value) elif isinstance(value, (int, long)): return model.get_by_id(value) elif isinstance(value, model): return value else: raise TypeError('Invalid type (value); expected string, number or ' '%s.' % model.__name__)
85544b057e3e6c82730ba743a625610c55b48ff0
14,519
def clean_infix(token, INFIX): """ Checks token for infixes. (ex. bumalik = balik) token: word to be stemmed for infixes returns STRING """ if check_validation(token): return token for infix in INFIX_SET: if len(token) - len(infix) >= 3 and count_vowel(token[len(infix):]) >= 2: if token[0] == token[4] and token[1: 4] == infix: INFIX.append(infix) return token[4:] elif token[2] == token[4] and token[1: 3] == infix: INFIX.append(infix) return token[0] + token[3:] elif token[1: 3] == infix and check_vowel(token[3]): INFIX.append(infix) return token[0] + token[3:] return token
fdd8e90bdea14ca2344dd465622bd2e79905e4fe
14,520
def seq_to_encoder(input_seq): """从输入空格分隔的数字id串,转成预测用的encoder、decoder、target_weight等 """ input_seq_array = [int(v) for v in input_seq.split()] encoder_input = [PAD_ID] * \ (input_seq_len - len(input_seq_array)) + input_seq_array decoder_input = [GO_ID] + [PAD_ID] * (output_seq_len - 1) encoder_inputs = [np.array([v], dtype=np.int32) for v in encoder_input] decoder_inputs = [np.array([v], dtype=np.int32) for v in decoder_input] target_weights = [np.array([1.0], dtype=np.float32)] * output_seq_len return encoder_inputs, decoder_inputs, target_weights
9a9203aa9e3005acd7d55516fbe8c5710ea25ae3
14,521
def getMergers(tree, map_strain2species, options): """merge strains to species. returns the new tree with species merged and a dictionary of genes including the genes that have been merged. Currently, only binary merges are supported. """ n = TreeTools.GetSize(tree) + 1 all_strains = map_strain2species.keys() all_species = map_strain2species.values() genes = [] for x in range(n): g = {} for s in all_strains: g[s] = set() genes.append(g) # build list of species pairs that can be joined. map_species2strain = IOTools.getInvertedDictionary(map_strain2species) pairs = [] for species, strains in map_species2strain.items(): for x in range(len(strains)): for y in range(0, x): pairs.append((strains[x], strains[y])) # map of genes to new genes # each entry in the list is a pair of genes of the same species # but different strains to be joined. map_genes2new_genes = [] # dictionary of merged genes. This is to ensure that no gene # is merged twice merged_genes = {} def count_genes(node_id): """record number of genes per species for each node This is done separately for each strain. The counts are aggregated for each species over strains by taking the maximum gene count per strain. This ignores any finer tree structure below a species node. """ node = tree.node(node_id) if node.succ: this_node_set = genes[node_id] # process non-leaf node for s in node.succ: # propagate: terminated nodes force upper nodes to terminate # (assigned to None). if not genes[s]: this_node_set = None break # check if node merges genes that are not part of the positive # set for strain in all_strains: if strain in map_strain2species: # merge genes from all children this_node_set[strain] = this_node_set[ strain].union(genes[s][strain]) if len(this_node_set[strain]) > 1: # more than two genes for a single species, so no # join this_node_set = None break elif strain not in map_strain2species and \ this_node_set[strain] > 0: this_node_set = None break if this_node_set is None: genes[node_id] = None return for strain_x, strain_y in pairs: if len(this_node_set[strain_x]) == 1 and len(this_node_set[strain_y]) == 1: species = map_strain2species[strain_x] gene_x, gene_y = tuple(this_node_set[strain_x])[0], tuple( this_node_set[strain_y])[0] # check if these to genes have already been merged or are # merged with other partners already # The merged genes are assigned the same node_id, if they have # been already merged. key1 = strain_x + gene_x key2 = strain_y + gene_y if key1 > key2: key1, key2 = key2, key1 merge = False if key1 in merged_genes and key2 in merged_genes: if merged_genes[key1] == merged_genes[key2]: merge = True elif key1 not in merged_genes and key2 not in merged_genes: merge = True merged_genes[key1] = node_id merged_genes[key2] = node_id if merge: map_genes2new_genes.append( (node_id, species, strain_x, gene_x, strain_y, gene_y)) # once two genes have been joined, they can not be remapped # further genes[node_id] = None return else: # process leaf strain, t, g, q = parseIdentifier(node.data.taxon, options) if strain in map_strain2species: genes[node_id][strain].add(g) else: # do not process nodes that do not need to be mapped genes[node_id] = None tree.dfs(tree.root, post_function=count_genes) return map_genes2new_genes
48fb083027e00d93754ee4064edbc268ea4047a5
14,522
def convolve_with_gaussian( data: np.ndarray, kernel_width: int = 21 ) -> np.ndarray: """ Convolves a 1D array with a gaussian kernel of given width """ # create kernel and normalize area under curve norm = stats.norm(0, kernel_width) X = np.linspace(norm.ppf(0.0001), norm.ppf(0.9999), kernel_width) _kernnel = norm.pdf(X) kernel = _kernnel / np.sum(_kernnel) return np.convolve(data, kernel, mode="same")
63949d9c235a1a467858077de8dda8455c139551
14,523
def post_netspeed(event, context): """ Speed test data ingestion handler """ return process_reading(event['query'], NETSPEED_SQL)
8414fe3608b7433a177f0c8c54cce61d01339b67
14,524
import json def notify_host_disabled(token, host_name): """ Notify OpenStack Nova that a host is disabled """ url = token.get_service_url(OPENSTACK_SERVICE.NOVA, strip_version=True) if url is None: raise ValueError("OpenStack Nova URL is invalid") # Get the service ID for the nova-compute service. compute_service_id = get_host_service_id(token, host_name, 'nova-compute') api_cmd = url + "/v2.1/%s/os-services/%s" % (token.get_tenant_id(), compute_service_id) api_cmd_headers = dict() api_cmd_headers['Content-Type'] = "application/json" api_cmd_headers['X-OpenStack-Nova-API-Version'] = NOVA_API_VERSION api_cmd_payload = dict() api_cmd_payload['forced_down'] = True response = rest_api_request(token, "PUT", api_cmd, api_cmd_headers, json.dumps(api_cmd_payload)) return response
904c951a37b8b84df4aa48951c424686a123ff30
14,525
def compute_moments_weights_slow(mu, x2, neighbors, weights): """ This version exaustively iterates over all |E|^2 terms to compute the expected moments exactly. Used to test the more optimized formulations that follow """ N = neighbors.shape[0] K = neighbors.shape[1] # Calculate E[G] EG = 0 for i in range(N): for k in range(K): j = neighbors[i, k] wij = weights[i, k] EG += wij*mu[i]*mu[j] # Calculate E[G^2] EG2 = 0 for i in range(N): EG2_i = 0 for k in range(K): j = neighbors[i, k] wij = weights[i, k] for x in range(N): for z in range(K): y = neighbors[x, z] wxy = weights[x, z] s = wij*wxy if s == 0: continue if i == x: if j == y: t1 = x2[i]*x2[j] else: t1 = x2[i]*mu[j]*mu[y] elif i == y: if j == x: t1 = x2[i]*x2[j] else: t1 = x2[i]*mu[j]*mu[x] else: # i is unique since i can't equal j if j == x: t1 = mu[i] * x2[j] * mu[y] elif j == y: t1 = mu[i] * x2[j] * mu[x] else: # i and j are unique, no shared nodes t1 = mu[i] * mu[j] * mu[x] * mu[y] EG2_i += s * t1 EG2 += EG2_i return EG, EG2
5a2984174f366a34f16490bb7b9252ec4eaf08db
14,526
import functools def sum_fn(fun, ndims=0): """Higher order helper for summing the result of fun.""" @functools.wraps(fun) def wrapped(*args): batch_loglik = fun(*args) return jnp.sum( batch_loglik.reshape((-1,) + batch_loglik.shape[-ndims + len(batch_loglik.shape):]), axis=0) return wrapped
521a4084fee84f16de5714010be9528296f8b231
14,527
from typing import Optional def get_control_policy_attachments(language: Optional[str] = None, output_file: Optional[str] = None, policy_type: Optional[str] = None, target_id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetControlPolicyAttachmentsResult: """ This data source provides the Resource Manager Control Policy Attachments of the current Alibaba Cloud user. > **NOTE:** Available in v1.120.0+. ## Example Usage Basic Usage ```python import pulumi import pulumi_alicloud as alicloud example = alicloud.resourcemanager.get_control_policy_attachments(target_id="example_value") pulumi.export("firstResourceManagerControlPolicyAttachmentId", example.attachments[0].id) ``` :param str language: The language. Valid value `zh-CN`, `en`, and `ja`. Default value `zh-CN` :param str policy_type: The type of policy. :param str target_id: The Id of target. """ __args__ = dict() __args__['language'] = language __args__['outputFile'] = output_file __args__['policyType'] = policy_type __args__['targetId'] = target_id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('alicloud:resourcemanager/getControlPolicyAttachments:getControlPolicyAttachments', __args__, opts=opts, typ=GetControlPolicyAttachmentsResult).value return AwaitableGetControlPolicyAttachmentsResult( attachments=__ret__.attachments, id=__ret__.id, ids=__ret__.ids, language=__ret__.language, output_file=__ret__.output_file, policy_type=__ret__.policy_type, target_id=__ret__.target_id)
cfa39ca8926c281151b5ae06ef89ce865dfd0af4
14,528
def get_gdb(chip_name=None, gdb_path=None, log_level=None, log_stream_handler=None, log_file_handler=None, log_gdb_proc_file=None, remote_target=None, remote_address=None, remote_port=None, **kwargs): """ set to != None value to redefine get_gdb logic Parameters ---------- chip_name : Any(None, str) gdb_path : Any(None, str) log_level : Any(None, str) log_stream_handler : Any(None, str) log_file_handler : Any(None, str) log_gdb_proc_file : Any(None, str) remote_target : Any(None, str) remote_address : Any(None, str) remote_port : Any(None, str) Returns ------- Gdb """ _gdb = _str_to_class("Gdb" + get_good_name(chip_name)) return _gdb(gdb_path=gdb_path, log_level=log_level, log_stream_handler=log_stream_handler, log_file_handler=log_file_handler, log_gdb_proc_file=log_gdb_proc_file, remote_target=remote_target, remote_address=remote_address, remote_port=remote_port, **kwargs)
15dc451b9cbf21c5f96279a17449e4169e0bae83
14,529
from typing import Callable from typing import Awaitable def check(func: Callable[..., Awaitable[Callable[[CommandContext], Awaitable[bool]]]]) -> Check: """ A decorator which creates a check from a function. """ return Check(func)
2354eef311e1867333ade47996fb37cee07ce4cd
14,531
def service_c(request): """ Renders the service chair page with service submissions """ events = ServiceEvent.objects.filter(semester=get_semester()) submissions_pending = ServiceSubmission.objects.filter(semester=get_semester(), status='0').order_by("date") submissions_submitted = ServiceSubmission.objects.filter(semester=get_semester(), status='1').order_by( "date") position = Position.objects.get(title=Position.PositionChoices.SERVICE_CHAIR) hours_pending = 0 for submission in submissions_pending: hours_pending += submission.hours for submission in submissions_submitted: hours_pending += submission.hours hours_approved = 0 submissions_approved = ServiceSubmission.objects.filter(semester=get_semester(), status='2') for submission in submissions_approved: hours_approved += submission.hours context = { 'events': events, 'hours_approved': hours_approved, 'hours_pending': hours_pending, 'submissions_pending': submissions_pending, 'submissions_submitted': submissions_submitted, 'position': position, } return render(request, 'service-chair/service-chair.html', context)
96d9b281c562a0ddb31d09723012cc9411c4ff09
14,532
def get_tank_history(request, tankid): """ Returns a response listing the device history for each tank. """ # Sanitize tankid tankid = int(tankid) # This query is too complex to be worth constructing in ORM, so just use raw SQL. cursor = connection.cursor() cursor.execute("""\ SELECT t.time, t.device_id AS mac FROM (SELECT d.time, d.device_id, LAG(d.device_id) OVER(ORDER BY d.time) AS prev_device_id FROM (SELECT time, tankid, device_id FROM devices_datum WHERE tankid = %s ) AS d ) AS t WHERE t.device_id IS DISTINCT FROM t.prev_device_id; """, [tankid]) history = dictfetchall(cursor) history_serializer = TankHistorySerializer(history, many=True) return JsonResponse(history_serializer.data, safe=False)
39c21c9761ff0e40e1c1f8904cf9b9881faf13ed
14,533
import inspect def get_absolute_module(obj): """ Get the abolulte path to the module for the given object. e.g. assert get_absolute_module(get_absolute_module) == 'artemis.general.should_be_builtins' :param obj: A python module, class, method, function, traceback, frame, or code object :return: A string representing the import path. """ file_path = inspect.getfile(obj) return file_path_to_absolute_module(file_path)
ea2c85d9ba90414cddce00dcc5ed092b8c6777a2
14,534