content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def get_hdf_filepaths(hdf_dir): """Get a list of downloaded HDF files which is be used for iterating through hdf file conversion.""" print "Building list of downloaded HDF files..." hdf_filename_list = [] hdf_filepath_list = [] for dir in hdf_dir: for dir_path, subdir, files in os.walk(dir): for f in files: if f.endswith(".hdf"): hdf_filename_list.append(os.path.splitext(f)[0]) hdf_filepath_list.append(os.path.join(dir_path, f)) return hdf_filename_list, hdf_filepath_list
a64aa83d06b218a0faf3372e09c2ac337ce106aa
14,306
def mask_depth_image(depth_image, min_depth, max_depth): """ mask out-of-range pixel to zero """ ret, depth_image = cv2.threshold( depth_image, min_depth, 100000, cv2.THRESH_TOZERO) ret, depth_image = cv2.threshold( depth_image, max_depth, 100000, cv2.THRESH_TOZERO_INV) depth_image = np.expand_dims(depth_image, 2) return depth_image
39fde62083666a9bb4a546c29aa736a23724e25f
14,307
def prompt_for_password(prompt=None): """Fake prompt function that just returns a constant string""" return 'promptpass'
49499970c7698b08f38078c557637907edef3223
14,309
def heading(start, end): """ Find how to get from the point on a planet specified as a tuple start to a point specified in the tuple end """ start = ( radians(start[0]), radians(start[1])) end = ( radians(end[0]), radians(end[1])) delta_lon = end[1] - start[1] delta_lat = log(tan(pi/4 + end[0]/2)/tan(pi/4 + start[0]/2)) return int(round((360 + degrees(atan2(delta_lon, delta_lat))) % 360))
97bd69fc308bdf1a484901ad25b415def20f25ee
14,310
def get_frame_list(video, jump_size = 6, **kwargs): """ Returns list of frame numbers including first and last frame. """ frame_numbers =\ [frame_number for frame_number in range(0, video.frame_count, jump_size)] last_frame_number = video.frame_count - 1; if frame_numbers[-1] != last_frame_number: frame_numbers.append(last_frame_number) return frame_numbers
786de04b4edf224045216de226ac61fdd42b0d7b
14,311
def build_xlsx_response(wb, title="report"): """ Take a workbook and return a xlsx file response """ title = generate_filename(title, '.xlsx') myfile = BytesIO() myfile.write(save_virtual_workbook(wb)) response = HttpResponse( myfile.getvalue(), content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet') response['Content-Disposition'] = 'attachment; filename=%s' % title response['Content-Length'] = myfile.tell() return response
c9990c818b45fc68646ff28d39ea0b914e362db1
14,312
def top_k(*args, **kwargs): """ See https://www.tensorflow.org/api_docs/python/tf/nn/top_k . """ return tensorflow.nn.top_k(*args, **kwargs)
0b0a9f250a466f439301d840af2213f6b2758656
14,313
def determine_d_atoms_without_connectivity(zmat, coords, a_atoms, n): """ A helper function to determine d_atoms without connectivity information. Args: zmat (dict): The zmat. coords (list, tuple): Just the 'coords' part of the xyz dict. a_atoms (list): The determined a_atoms. n (int): The 0-index of the atom in the zmat to be added. Returns: list: The d_atoms. """ d_atoms = [atom for atom in a_atoms] for i in reversed(range(n)): if i not in d_atoms and i in list(zmat['map'].keys()) and (i >= len(zmat['symbols']) or not is_dummy(zmat, i)): angle = calculate_angle(coords=coords, atoms=[zmat['map'][z_index] for z_index in d_atoms[1:] + [i]]) if not is_angle_linear(angle): d_atoms.append(i) break if len(d_atoms) < 4: # try again and consider dummies for i in reversed(range(n)): if i not in d_atoms and i in list(zmat['map'].keys()): angle = calculate_angle(coords=coords, atoms=[zmat['map'][z_index] for z_index in d_atoms[1:] + [i]]) if not is_angle_linear(angle): d_atoms.append(i) break return d_atoms
8b2a60f6092e24b9bc6f71e4ad8753e06c2e6373
14,314
def all_of_them(): """ Return page with all products with given name from API. """ if 'username' in session: return render_template('productsearch.html', username=escape(session['username']), vars=lyst) else: return "Your are not logged in"
cee22ba57e108edaedc9330c21caa9cb60968aa5
14,315
def is_blank(line): """Determines if a selected line consists entirely of whitespace.""" return whitespace_re.match(line) is not None
1120d7a70ce5c08eb5f179cd3d2a258af5cd3bc2
14,316
import re import collections import urllib def _gff_line_map(line, params): """Map part of Map-Reduce; parses a line of GFF into a dictionary. Given an input line from a GFF file, this: - decides if the file passes our filtering limits - if so: - breaks it into component elements - determines the type of attribute (flat, parent, child or annotation) - generates a dictionary of GFF info which can be serialized as JSON """ gff3_kw_pat = re.compile("\w+=") def _split_keyvals(keyval_str): """Split key-value pairs in a GFF2, GTF and GFF3 compatible way. GFF3 has key value pairs like: count=9;gene=amx-2;sequence=SAGE:aacggagccg GFF2 and GTF have: Sequence "Y74C9A" ; Note "Clone Y74C9A; Genbank AC024206" name "fgenesh1_pg.C_chr_1000003"; transcriptId 869 """ quals = collections.defaultdict(list) if keyval_str is None: return quals # ensembl GTF has a stray semi-colon at the end if keyval_str[-1] == ';': keyval_str = keyval_str[:-1] # GFF2/GTF has a semi-colon with at least one space after it. # It can have spaces on both sides; wormbase does this. # GFF3 works with no spaces. # Split at the first one we can recognize as working parts = keyval_str.split(" ; ") if len(parts) == 1: parts = keyval_str.split("; ") if len(parts) == 1: parts = keyval_str.split(";") # check if we have GFF3 style key-vals (with =) is_gff2 = True if gff3_kw_pat.match(parts[0]): is_gff2 = False key_vals = [p.split('=') for p in parts] # otherwise, we are separated by a space with a key as the first item else: pieces = [p.strip().split(" ") for p in parts] key_vals = [(p[0], " ".join(p[1:])) for p in pieces] for key, val in key_vals: val = (val[1:-1] if (len(val) > 0 and val[0] == '"' and val[-1] == '"') else val) if val: quals[key].extend(val.split(',')) # if we don't have a value, make this a key=True/False style # attribute else: quals[key].append('true') for key, vals in quals.items(): quals[key] = [urllib.unquote(v) for v in vals] return quals, is_gff2 def _nest_gff2_features(gff_parts): """Provide nesting of GFF2 transcript parts with transcript IDs. exons and coding sequences are mapped to a parent with a transcript_id in GFF2. This is implemented differently at different genome centers and this function attempts to resolve that and map things to the GFF3 way of doing them. """ # map protein or transcript ids to a parent for transcript_id in ["transcript_id", "transcriptId", "proteinId"]: try: gff_parts["quals"]["Parent"] = \ gff_parts["quals"][transcript_id] break except KeyError: pass # case for WormBase GFF -- everything labelled as Transcript if gff_parts["quals"].has_key("Transcript"): # parent types if gff_parts["type"] in ["Transcript"]: if not gff_parts["id"]: gff_parts["id"] = gff_parts["quals"]["Transcript"][0] # children types elif gff_parts["type"] in ["intron", "exon", "three_prime_UTR", "coding_exon", "five_prime_UTR", "CDS", "stop_codon", "start_codon"]: gff_parts["quals"]["Parent"] = gff_parts["quals"]["Transcript"] return gff_parts strand_map = {'+' : 1, '-' : -1, '?' : None, None: None} line = line.strip() if line[:2] == "##": return [('directive', line[2:])] elif line[0] != "#": parts = line.split('\t') should_do = True if params.limit_info: for limit_name, limit_values in params.limit_info.items(): cur_id = tuple([parts[i] for i in params.filter_info[limit_name]]) if cur_id not in limit_values: should_do = False break if should_do: assert len(parts) >= 9, line gff_parts = [(None if p == '.' else p) for p in parts] gff_info = dict() # collect all of the base qualifiers for this item quals, is_gff2 = _split_keyvals(gff_parts[8]) gff_info["is_gff2"] = is_gff2 if gff_parts[1]: quals["source"].append(gff_parts[1]) if gff_parts[5]: quals["score"].append(gff_parts[5]) if gff_parts[7]: quals["phase"].append(gff_parts[7]) gff_info['quals'] = dict(quals) gff_info['rec_id'] = gff_parts[0] # if we are describing a location, then we are a feature if gff_parts[3] and gff_parts[4]: gff_info['location'] = [int(gff_parts[3]) - 1, int(gff_parts[4])] gff_info['type'] = gff_parts[2] gff_info['id'] = quals.get('ID', [''])[0] gff_info['strand'] = strand_map[gff_parts[6]] if is_gff2: gff_info = _nest_gff2_features(gff_info) # features that have parents need to link so we can pick up # the relationship if gff_info['quals'].has_key('Parent'): final_key = 'child' elif gff_info['id']: final_key = 'parent' # Handle flat features else: final_key = 'feature' # otherwise, associate these annotations with the full record else: final_key = 'annotation' return [(final_key, (simplejson.dumps(gff_info) if params.jsonify else gff_info))] return []
555ca7d4ce455563e7230d4b85f4f4404fa839bc
14,317
def smoothEvolve(problem, orig_point, first_ref, second_ref): """Evolves using RVEA with abrupt change of reference vectors.""" pop = Population(problem, assign_type="empty", plotting=False) try: pop.evolve(slowRVEA, {"generations_per_iteration": 200, "iterations": 15}) except IndexError: return pop.archive try: pop.evolve( slowRVEA, { "generations_per_iteration": 10, "iterations": 20, "old_point": orig_point, "ref_point": first_ref, }, ) except IndexError: return pop.archive try: pop.evolve( slowRVEA, { "generations_per_iteration": 10, "iterations": 20, "old_point": first_ref, "ref_point": second_ref, }, ) except IndexError: return pop.archive return pop.archive
fd7f7e82e8b029597affd63ec04da3d40c049c98
14,318
def combine_color_channels(discrete_rgb_images): """ Combine discrete r,g,b images to RGB iamges. :param discrete_rgb_images: :return: """ color_imgs = [] for r, g, b in zip(*discrete_rgb_images): # pca output is float64, positive and negative. normalize the images to [0, 255] rgb r = (255 * (r - np.max(r)) / -np.ptp(r)).astype(int) g = (255 * (g - np.max(g)) / -np.ptp(g)).astype(int) b = (255 * (b - np.max(b)) / -np.ptp(b)).astype(int) color_imgs.append(cv2.merge((r, g, b))) return color_imgs
246653a698c997faffade25405b1dfafb8236510
14,319
def decohere_earlier_link(tA, tB, wA, wB, T_coh): """Applies decoherence to the earlier generated of the two links. Parameters ---------- tA : float Waiting time of one of the links. wA : float Corresponding fidelity tB : float Waiting time of the other link. wB : float Corresponding fidelity t_both : float Time both links experience decoherence (e.g. communication time) T_coh : float Memory coherence time. If set to 0, there is no decay. Returns ------- Tuple (float : tA, float : tB, float : wA, float : wB) after decoherence. """ delta_t = abs(tA - tB) if(tA < tB): wA = wern_after_memory_decoherence(wA, delta_t, T_coh) elif(tB < tA): wB = wern_after_memory_decoherence(wB, delta_t, T_coh) return wA, wB
0ec19f50d1673f69211ac7af21ab942612fe8a67
14,320
import torch def train( network: RNN, data: np.ndarray, epochs: int = 10, _n_seqs: int = 10, _n_steps: int = 50, lr: int = 0.001, clip: int = 5, val_frac: int = 0.2, cuda: bool = True, print_every: int = 10, ): """Train RNN.""" network.train() opt = torch.optim.Adam(network.parameters(), lr=lr) criterion = nn.CrossEntropyLoss() val_idx = int(len(data) * (1 - val_frac)) data, val_data = data[:val_idx], data[val_idx:] if cuda: network.cuda() step = 0 train_loss = [] validation_loss = [] for i in range(epochs): h = network.init_hidden(_n_seqs) for x, y in get_batches(data, _n_seqs, _n_steps): step += 1 # One-hot encode, make Torch tensors x = one_hot_encode(x, network.vocab) inputs, targets = torch.from_numpy(x), torch.from_numpy(y) if cuda: inputs, targets = inputs.cuda(), targets.cuda() h = tuple([m.data for m in h]) network.zero_grad() output, h = network.forward(inputs, h) loss = criterion(output, targets.view(_n_seqs * _n_steps)) loss.backward() # Avoid exploding gradients nn.utils.clip_grad_norm_(network.parameters(), clip) opt.step() if step % print_every == 0: # Validation loss val_h = network.init_hidden(_n_seqs) val_losses = [] for x, y in get_batches(val_data, _n_seqs, _n_steps): x = one_hot_encode(x, network.vocab) x, y = torch.from_numpy(x), torch.from_numpy(y) val_h = tuple([m.data for m in val_h]) inputs, targets = x, y if cuda: inputs, targets = inputs.cuda(), targets.cuda() output, val_h = network.forward(inputs, val_h) val_loss = criterion(output, targets.view(_n_seqs * _n_steps)) val_losses.append(val_loss.item()) train_loss.append(loss.item()) validation_loss.append(np.mean(val_losses)) print( f"Epoch: {i + 1} / {epochs},", f"Step: {step},", f"Loss: {loss.item():.4f},", "Val Loss: {:.4f}".format(np.mean(val_losses)), ) return train_loss, validation_loss
97c642c0b2849cb530121d914c586bc6ee76a26b
14,321
def simple_lunar_phase(jd): """ This just does a quick-and-dirty estimate of the Moon's phase given the date. """ lunations = (jd - 2451550.1) / LUNAR_PERIOD percent = lunations - int(lunations) phase_angle = percent * 360. delta_t = phase_angle * LUNAR_PERIOD / 360. moon_day = int(delta_t + 0.5) phase = get_phase_description(phase_angle) bgcolor = get_moon_color(delta_t) return dict( angle = phase_angle, day = moon_day, phase = phase, days_since_new_moon = delta_t, bgcolor = bgcolor, )
539d407241a0390b140fad4b67e2173ff1dee66c
14,322
def fetch_traj(data, sample_index, colum_index): """ Returns the state sequence. It also deletes the middle index, which is the transition point from history to future. """ # data shape: [sample_index, time, feature] traj = np.delete(data[sample_index, :, colum_index:colum_index+1], history_len-1, axis=1) return traj.flatten()
da373d3890f2c89754e36f78b78fb582b429109d
14,323
from datetime import datetime def validate_date(period: str, start: bool = False) -> pd.Timestamp: """Validate the format of date passed as a string. :param period: Date in string. If None, date of today is assigned. :type period: str :param start: Whether argument passed is a starting date or an ending date, defaults to False. :type start: bool, optional :raises IntegerDateInputError: If integer type object is passed. :return: Date with format YYYY-MM-DD or YY-MM-DD. :rtype: pandas.Timestamp """ if isinstance(period, int): raise IntegerDateInputError('Input type of period should be in string.') if period is None: date = _convert_none_to_date(start) else: try: date_format = '%y-%m-%d' period = datetime.strptime(period, date_format) except ValueError: date_format = '%Y-%m-%d' finally: date = string_to_date(period, date_format) return date
99c76ee2e23beaff92a8ad67bf38b26c5f33f4bd
14,324
import copy def rec_module_mic(echograms, mic_specs): """ Apply microphone directivity gains to a set of given echograms. Parameters ---------- echograms : ndarray, dtype = Echogram Target echograms. Dimension = (nSrc, nRec) mic_specs : ndarray Microphone directions and directivity factor. Dimension = (nRec, 4) Returns ------- rec_echograms : ndarray, dtype = Echogram Echograms subjected to microphone gains. Dimension = (nSrc, nRec) Raises ----- TypeError, ValueError: if method arguments mismatch in type, dimension or value. Notes ----- Each row of `mic_specs` is expected to be described as [x, y, z, alpha], with (x, y, z) begin the unit vector of the mic orientation. `alpha` must be contained in the range [0(dipole), 1(omni)], so that directivity is expressed as: d(theta) = a + (1-a)*cos(theta). """ nSrc = echograms.shape[0] nRec = echograms.shape[1] _validate_echogram_array(echograms) _validate_ndarray_2D('mic_specs', mic_specs, shape0=nRec, shape1=C+1) mic_vecs = mic_specs[:,:C] mic_coeffs = mic_specs[:,-1] rec_echograms = copy.copy(echograms) # Do nothing if all orders are zeros(omnis) if not np.all(mic_coeffs == 1): for ns in range(nSrc): for nr in range(nRec): nRefl = len(echograms[ns, nr].value) # Get vectors from source to receiver rec_vecs = echograms[ns, nr].coords rec_vecs = rec_vecs / np.sqrt(np.sum(np.power(rec_vecs,2), axis=1))[:,np.newaxis] mic_gains = mic_coeffs[nr] + (1 - mic_coeffs[nr]) * np.sum(rec_vecs * mic_vecs[nr,:], axis=1) rec_echograms[ns, nr].value = echograms[ns, nr].value * mic_gains[:,np.newaxis] _validate_echogram_array(rec_echograms) return rec_echograms
91abe86095cab7ccb7d3f2f001892df4a809106b
14,325
def is_string_like(obj): # from John Hunter, types-free version """Check if obj is string.""" try: obj + '' except (TypeError, ValueError): return False return True
cb7682f91009794011c7c663f98e539d8543c8fd
14,326
def divide(): """Handles division, returns a string of the answer""" a = int(request.args["a"]) b = int(request.args["b"]) quotient = str(int(operations.div(a, b))) return quotient
50c48f9802b3f11e3322b88a45068cad7e354637
14,328
def ax2cu(ax): """Axis angle pair to cubochoric vector.""" return Rotation.ho2cu(Rotation.ax2ho(ax))
6f1c6e181d1e25a2bf28605f01d66fa6a8ffcd45
14,329
def define_genom_loc(current_loc, pstart, p_center, pend, hit_start, hit_end, hit_strand, ovl_range): """ [Local] Returns location label to be given to the annotated peak, if upstream/downstream or overlapping one edge of feature.""" all_pos = ["start", "end"] closest_pos, dmin = distance_to_peak_center( p_center, hit_start, hit_end, hit_strand, all_pos) if current_loc == "not.specified": # Not internal if closest_pos == "end" and any(ovl_range): return "overlapEnd" elif closest_pos == "start" and any(ovl_range): return "overlapStart" elif not any(ovl_range): # Check about direction :"upstream", "downstream" current_loc = find_peak_dir( hit_start, hit_end, hit_strand, pstart, p_center, pend) return current_loc return current_loc
87f89a1d392935a008b7997930bf16dda96cf36b
14,331
import torch def actp(Gij, X0, jacobian=False): """ action on point cloud """ X1 = Gij[:,:,None,None] * X0 if jacobian: X, Y, Z, d = X1.unbind(dim=-1) o = torch.zeros_like(d) B, N, H, W = d.shape if isinstance(Gij, SE3): Ja = torch.stack([ d, o, o, o, Z, -Y, o, d, o, -Z, o, X, o, o, d, Y, -X, o, o, o, o, o, o, o, ], dim=-1).view(B, N, H, W, 4, 6) elif isinstance(Gij, Sim3): Ja = torch.stack([ d, o, o, o, Z, -Y, X, o, d, o, -Z, o, X, Y, o, o, d, Y, -X, o, Z, o, o, o, o, o, o, o ], dim=-1).view(B, N, H, W, 4, 7) return X1, Ja return X1, None
87f85a713b72de65064224086d9c4715f704d800
14,333
def isPalindrome(s): """Assumes s is a str Returns True if s is a palindrome; False otherwise. Punctuation marks, blanks, and capitalization are ignored.""" def toChars(s): s = s.lower() letters = '' for c in s: if c in 'abcdefghijklmnopqrstuvwxyz': letters = letters + c return letters def isPal(s): print(' isPal called with', s) if len(s) <= 1: print(' About to return True from base case') return True else: answer = s[0] == s[-1] and isPal(s[1:-1]) print(' About to return', answer, 'for', s) return answer return isPal(toChars(s))
496f5fa92088a5ecb1b99be811e68501513ee3a4
14,334
import logging def compute_irs(ground_truth_data, representation_function, random_state, diff_quantile=0.99, num_train=gin.REQUIRED, batch_size=gin.REQUIRED): """Computes the Interventional Robustness Score. Args: ground_truth_data: GroundTruthData to be sampled from. representation_function: Function that takes observations as input and outputs a dim_representation sized representation for each observation. random_state: Numpy random state used for randomness. diff_quantile: Float value between 0 and 1 to decide what quantile of diffs to select (use 1.0 for the version in the paper). num_train: Number of points used for training. batch_size: Batch size for sampling. Returns: Dict with IRS and number of active dimensions. """ logging.info("Generating training set.") mus, ys = utils.generate_batch_factor_code(ground_truth_data, representation_function, num_train, random_state, batch_size) assert mus.shape[1] == num_train ys_discrete = utils.make_discretizer(ys) active_mus = _drop_constant_dims(mus) if not active_mus.any(): irs_score = 0.0 else: irs_score = scalable_disentanglement_score(ys_discrete.T, active_mus.T, diff_quantile)["avg_score"] score_dict = {} score_dict["IRS"] = irs_score score_dict["num_active_dims"] = np.sum(active_mus) return score_dict
0ff37699367946fa099f4a5a48cbc66d89af8a29
14,336
def Grab_Pareto_Min_Max(ref_set_array, objective_values, num_objs, num_dec_vars, objectives_names=[], create_txt_file='No'): """ Purposes: Identifies the operating policies producing the best and worst performance in each objective. Gets called automatically by processing_reference_set.Reference_Set() Required Args: 1. ref_set_array: an array of P arrays, P=number of points in the reference set. Each of the P arrays contains N=num_objs+num_vars (number of objective values in optimization problem and number of decision variables). Decision variables come first, followed by objective values. 2. objective_values: The objective value portion of the ref_set_array. It is also an array of P arrays, where each of the P arrays is of length num_objs. 3. num_objs = integer number of objective values (e.g., 5) 4. num_dec_vars: integer number of decision variable values (e.g., 30) Optional Args: 5. objectives_names: (list of names of objectives for objective_values returned from Reference_Set, as defined above). Example: ['Sediment', 'Hydropower']. Used to name .txt file and provide output dictionary keys. 6. create_text_file: String of 'Yes' or 'No'. Indicates whether users wants function to produce text files of operating policies. Returns: 1. indices of ref_set_array that correspond to the points of the highest and lowest value in each of the objectives. 2. Various text files that store the DPS parameters corresponding to the operating policy, if the user wishes to create such files. """ # Find operating policy parameters corresponding to the largest objective # List of index of (1) highest and (2) lowest values (column in objective_values array) indices = [[0 for i in range(2)] for j in range(num_objs)] indices_dict = {} for obj in range(num_objs): indices[obj][0] = np.argmin(objective_values[obj]) # MIN for each objective indices[obj][1] = np.argmax(objective_values[obj]) # MAX for each objective if create_txt_file == 'Yes': # Save max and min policies so PySedSim can import them. np.savetxt('RBF_Parameters_max_' + objectives_names[obj] + '.txt', ref_set_array[indices[1][obj]][0:num_dec_vars], newline=' ') np.savetxt('RBF_Parameters_min_' + objectives_names[obj] + '.txt', ref_set_array[indices[0][obj]][0:num_dec_vars], newline=' ') indices = np.asarray(indices) # cast list as array indices_dict[objectives_names[obj]] = {'Min': indices[obj][0], 'Max': indices[obj][1]} return indices_dict
882ba260576550d2c9de20e950594d5369410187
14,337
def edist(x, y): """ Compute the Euclidean distance between two samples x, y \in R^d.""" try: dist = np.sqrt(np.sum((x-y)**2)) except ValueError: print 'Dimensionality of samples must match!' else: return dist
e0b0e586b49bf3e19eafa2cbf271fb3b1ddc2b99
14,338
def allsec_preorder(h): """ Alternative to using h.allsec(). This returns all sections in order from the root. Traverses the topology each neuron in "pre-order" """ #Iterate over all sections, find roots roots = root_sections(h) # Build list of all sections sec_list = [] for r in roots: add_pre(h,sec_list,r) return sec_list
0407bd37c3f975ba91a51b3058d6c619813f2526
14,340
def get_func_bytes(*args): """get_func_bytes(func_t pfn) -> int""" return _idaapi.get_func_bytes(*args)
56000602c9d1d98fb1b76c809cce6c3458a3f426
14,341
def balanced_accuracy(y_true, y_score): """Compute accuracy using one-hot representaitons.""" if isinstance(y_true, list) and isinstance(y_score, list): # Online scenario if y_true[0].ndim == 2 and y_score[0].ndim == 2: # Flatten to single (very long prediction) y_true = np.concatenate(y_true, axis=0) y_score = np.concatenate(y_score, axis=0) if y_score.ndim == 3 and y_score.shape[-1] == 1: y_score = np.ravel(y_score) y_true = np.ravel(y_true).astype(int) y_score = np.around(y_score).astype(int) if y_true.ndim == 2 and y_true.shape[-1] != 1: y_true = np.argmax(y_true, axis=-1) if y_true.ndim == 2 and y_true.shape[-1] == 1: y_true = np.round(y_true).astype(int) if y_score.ndim == 2 and y_score.shape[-1] != 1: y_score = np.argmax(y_score, axis=-1) if y_score.ndim == 2 and y_score.shape[-1] == 1: y_score = np.round(y_score).astype(int) return balanced_accuracy_score(y_true, y_score)
9745769ac047863b902f0e74f17680f9ccee5a53
14,342
import json from dateutil import tz from datetime import datetime async def get_weather(weather): """ For .weather command, gets the current weather of a city. """ if not OWM_API: await weather.reply( f"`{JAVES_NNAME}:` **Get an API key from** https://openweathermap.org/ `first.`") return APPID = OWM_API if not weather.pattern_match.group(1): CITY = DEFCITY if not CITY: await weather.reply( f"`{JAVES_NNAME}:` **Please specify a city or set one as default using the WEATHER_DEFCITY config variable.**" ) return else: CITY = weather.pattern_match.group(1) timezone_countries = { timezone: country for country, timezones in c_tz.items() for timezone in timezones } if "," in CITY: newcity = CITY.split(",") if len(newcity[1]) == 2: CITY = newcity[0].strip() + "," + newcity[1].strip() else: country = await get_tz((newcity[1].strip()).title()) try: countrycode = timezone_countries[f'{country}'] except KeyError: await weather.reply("`Invalid country.`") return CITY = newcity[0].strip() + "," + countrycode.strip() url = f'https://api.openweathermap.org/data/2.5/weather?q={CITY}&appid={APPID}' request = get(url) result = json.loads(request.text) if request.status_code != 200: await weather.reply(f"`Invalid country.`") return cityname = result['name'] curtemp = result['main']['temp'] humidity = result['main']['humidity'] min_temp = result['main']['temp_min'] max_temp = result['main']['temp_max'] desc = result['weather'][0] desc = desc['main'] country = result['sys']['country'] sunrise = result['sys']['sunrise'] sunset = result['sys']['sunset'] wind = result['wind']['speed'] winddir = result['wind']['deg'] ctimezone = tz(c_tz[country][0]) time = datetime.now(ctimezone).strftime("%A, %I:%M %p") fullc_n = c_n[f"{country}"] dirs = ["N", "NE", "E", "SE", "S", "SW", "W", "NW"] div = (360 / len(dirs)) funmath = int((winddir + (div / 2)) / div) findir = dirs[funmath % len(dirs)] kmph = str(wind * 3.6).split(".") mph = str(wind * 2.237).split(".") def fahrenheit(f): temp = str(((f - 273.15) * 9 / 5 + 32)).split(".") return temp[0] def celsius(c): temp = str((c - 273.15)).split(".") return temp[0] def sun(unix): xx = datetime.fromtimestamp(unix, tz=ctimezone).strftime("%I:%M %p") return xx await weather.reply( f"**Temperature:** `{celsius(curtemp)}°C | {fahrenheit(curtemp)}°F`\n" + f"**Min. Temp.:** `{celsius(min_temp)}°C | {fahrenheit(min_temp)}°F`\n" + f"**Max. Temp.:** `{celsius(max_temp)}°C | {fahrenheit(max_temp)}°F`\n" + f"**Humidity:** `{humidity}%`\n" + f"**Wind:** `{kmph[0]} kmh | {mph[0]} mph, {findir}`\n" + f"**Sunrise:** `{sun(sunrise)}`\n" + f"**Sunset:** `{sun(sunset)}`\n\n" + f"**{desc}**\n" + f"`{cityname}, {fullc_n}`\n" + f"`{time}`")
b93c21eadefa2b4504708ae2663bfdcbf0555668
14,343
def read_table(source, columns=None, nthreads=1, metadata=None, use_pandas_metadata=False): """ Read a Table from Parquet format Parameters ---------- source: str or pyarrow.io.NativeFile Location of Parquet dataset. If a string passed, can be a single file name or directory name. For passing Python file objects or byte buffers, see pyarrow.io.PythonFileInterface or pyarrow.io.BufferReader. columns: list If not None, only these columns will be read from the file. nthreads : int, default 1 Number of columns to read in parallel. Requires that the underlying file source is threadsafe metadata : FileMetaData If separately computed use_pandas_metadata : boolean, default False If True and file has custom pandas schema metadata, ensure that index columns are also loaded Returns ------- pyarrow.Table Content of the file as a table (of columns) """ if is_string(source): fs = LocalFileSystem.get_instance() if fs.isdir(source): return fs.read_parquet(source, columns=columns, metadata=metadata) pf = ParquetFile(source, metadata=metadata) return pf.read(columns=columns, nthreads=nthreads, use_pandas_metadata=use_pandas_metadata)
0d0e4990e88c39920e380cca315332f7c36f6ee8
14,344
def _export_cert_from_task_keystore( task, keystore_path, alias, password=KEYSTORE_PASS): """ Retrieves certificate from the keystore with given alias by executing a keytool in context of running container and loads the certificate to memory. Args: task (str): Task id of container that contains the keystore keystore_path (str): Path inside container to keystore containing the certificate alias (str): Alias of the certificate in the keystore Returns: x509.Certificate object """ args = ['-rfc'] if password: args.append('-storepass "{password}"'.format(password=password)) args_str = ' '.join(args) cert_bytes = sdk_tasks.task_exec( task, _keystore_export_command(keystore_path, alias, args_str) )[1].encode('ascii') return x509.load_pem_x509_certificate( cert_bytes, DEFAULT_BACKEND)
8ae8a0e1d46f121597d70aff35a26ce15c448399
14,346
def eta_expand( path: qlast.Path, stype: s_types.Type, *, ctx: context.ContextLevel, ) -> qlast.Expr: """η-expansion of an AST path""" if not ALWAYS_EXPAND and not stype.contains_object(ctx.env.schema): # This isn't strictly right from a "fully η expanding" perspective, # but for our uses, we only need to make sure that objects are # exposed to the output, so we can skip anything not containing one. return path if isinstance(stype, s_types.Array): return eta_expand_array(path, stype, ctx=ctx) elif isinstance(stype, s_types.Tuple): return eta_expand_tuple(path, stype, ctx=ctx) else: return path
294e9b0e2aa158dc4e8d57917031986f824fd55d
14,347
from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score import timeit def NBAccuracy(features_train, labels_train, features_test, labels_test): """ compute the accuracy of your Naive Bayes classifier """ # create classifier clf = GaussianNB() # fit the classifier on the training features and labels timeit(lambda: clf.fit(features_train, labels_train), "fit") # use the trained classifier to predict labels for the test features labels_pred = timeit(lambda: clf.predict(features_test), "predict") # calculate and return the accuracy on the test data # this is slightly different than the example, # where we just print the accuracy # you might need to import an sklearn module accuracy = accuracy_score(labels_test, labels_pred) return accuracy
c4c6d5a37341a811023bb0040616ebeb1c44be13
14,348
import json def verify(body): # noqa: E501 """verify Verifies user with given user id. # noqa: E501 :param body: User id that is required for verification. :type body: dict | bytes :rtype: UserVerificationResponse """ if connexion.request.is_json: body = VerifyUser.from_dict(connexion.request.get_json()) # noqa: E501 user_id = body.user_id user_json = store.value_of(user_id) if user_json == None: response = Error(code=400, message="Invalid user id.") return response, 400 user_dict = json.loads(user_json) user = User.from_dict(user_dict) texts = get_texts(user_id) if not texts: response = Error( code=400, message="Can not recognize characters from identity card." ) return response, 400 language = body.language doc_text_label = get_doc(texts, language=language) user_text_label = create_user_text_label(user) text_validation_point = validate_text_label(doc_text_label, user_text_label) print("text_validation_point: " + str(text_validation_point)) names = recognize_face(user_id) if not names: response = Error( code=400, message="Can not recognize face from identity card." ) return response, 400 face_validation_point = point_on_recognition(names, user_id) print("face_validation_point: " + str(face_validation_point)) verification_rate = text_validation_point + face_validation_point response = UserVerificationResponse( code=200, verification_rate=verification_rate ) return response, 200 else: error = Error(code=400, message="Provide a json payload that contains userId") return error, 400
76b2ad631dffbf59b1c2ffeb12069983d0540b51
14,349
def load_interface(interface_name, data): """ Load an interface :param interface_name: a string representing the name of the interface :param data: a dictionary of arguments to be used for initializing the interface :return: an Interface object of the appropriate type """ if interface_name not in _interfaces: raise Exception('Unknown interface') return load_class_from_data(_interfaces[interface_name], data)
e57e0710d5ad5080b2da1f734581d1b205aedc77
14,350
def get_full_word(*args): """get_full_word(ea_t ea) -> ulonglong""" return _idaapi.get_full_word(*args)
8eb45586888fc836146441bb00bc3c3096ea2c5e
14,352
def full_setup(battery_chemistry): """This function gets the baseline vehicle and creates modifications for different configurations, as well as the mission and analyses to go with those configurations.""" # Collect baseline vehicle data and changes when using different configuration settings vehicle = vehicle_setup() # Modify Battery net = vehicle.networks.battery_propeller bat = net.battery if battery_chemistry == 'NMC': bat = SUAVE.Components.Energy.Storages.Batteries.Constant_Mass.Lithium_Ion_LiNiMnCoO2_18650() elif battery_chemistry == 'LFP': bat = SUAVE.Components.Energy.Storages.Batteries.Constant_Mass.Lithium_Ion_LiFePO4_18650() bat.mass_properties.mass = 500. * Units.kg bat.max_voltage = 500. initialize_from_mass(bat) # Assume a battery pack module shape. This step is optional but # required for thermal analysis of the pack number_of_modules = 10 bat.module_config.total = int(np.ceil(bat.pack_config.total/number_of_modules)) bat.module_config.normal_count = int(np.ceil(bat.module_config.total/bat.pack_config.series)) bat.module_config.parallel_count = int(np.ceil(bat.module_config.total/bat.pack_config.parallel)) net.battery = bat net.battery = bat net.voltage = bat.max_voltage configs = configs_setup(vehicle) # Get the analyses to be used when different configurations are evaluated configs_analyses = analyses_setup(configs) # Create the mission that will be flown mission = mission_setup(configs_analyses, vehicle) missions_analyses = missions_setup(mission) # Add the analyses to the proper containers analyses = SUAVE.Analyses.Analysis.Container() analyses.configs = configs_analyses analyses.missions = missions_analyses return configs, analyses
9335521ad5a238ab0a566c80d1443cc5c052a37a
14,353
def sph_yn_exact(n, z): """Return the value of y_n computed using the exact formula. The expression used is http://dlmf.nist.gov/10.49.E4 . """ zm = mpmathify(z) s1 = sum((-1)**k*_a(2*k, n)/zm**(2*k+1) for k in xrange(0, int(n/2) + 1)) s2 = sum((-1)**k*_a(2*k+1, n)/zm**(2*k+2) for k in xrange(0, int((n-1)/2) + 1)) return -cos(zm - n*pi/2)*s1 + sin(zm - n*pi/2)*s2
490c31a3311fb922f5d33337aaeb70f167b25772
14,354
def f_bis(n1 : float, n2 : float, n3 : float) -> str: """ ... cf ci-dessus ... """ if n1 < n2: if n2 < n3: return 'cas 1' elif n1 < n3: return 'cas 2' else: return 'cas 5' elif n1 < n3: return 'cas 3' elif n2 < n3: return 'cas 4' else: return 'cas 6'
e46c147a5baef02878700e546b11b7ae44b8909a
14,355
def calc_B_effective(*B_phasors): """It calculates the effective value of the magnetic induction field B (microTesla) in a given point, considering the magnetic induction of all the cables provided. Firstly, the function computes the resulting real and imaginary parts of the x and y magnetic induction field components considering all the contributing cables given as input (typically three or six cables). The 'B_components' 2x2 numpy matrix indicates this intermediate step. Secondly, the module of the effective magnetic induction field B is calculated as the squared root of the sum of the squares of the components mentioned above. Lastly, the result is transformed from Tesla units to micro Tesla units. Parameters ------------------- *B_phasors : numpy.ndarray Respectively the real and imaginary part (columns) of the x and y components (rows) of the magnetic induction field B produced by a single cable in a given point Returns ------------------- B_effective_microT : float Effective magnetic induction field B (microTesla) calculated in the given point Notes ------------------- The current function implements the calculations present both in [1]_"Norma Italiana CEI 106-11" formulas (3-4) and [2]_"Norma Italiana CEI 211-4" formulas (17). References ------------------- ..[1] Norma Italiana CEI 106-11, "Guide for the determination of the respect widths for power lines and substations according to DPCM 8 July 2003 (Clause 6) - Part 1: Overhead lines and cables", first edition, 2006-02. ..[2] Norma Italiana CEI 211-4, "Guide to calculation methods of electric and magnetic fields generated by power-lines and electrical substations", second edition, 2008-09. """ B_components = 0 for B_phasor in B_phasors: B_components += B_phasor B_effective_T = np.sqrt(np.sum(B_components**2)) B_effective_microT = B_effective_T*10**(6) return B_effective_microT
a24ae9330018f9dc24ebbba66ccc4bc4bd79a7cb
14,356
def elision_count(l): """Returns the number of elisions in a given line Args: l (a bs4 <line>): The line Returns: (int): The number of elisions """ return sum([(1 if _has_elision(w) else 0) for w in l("word")])
c031765089a030328d68718577872a6d2f70b88d
14,357
def get_final_df(model, data): """ This function takes the `model` and `data` dict to construct a final dataframe that includes the features along with true and predicted prices of the testing dataset """ # if predicted future price is higher than the current, # then calculate the true future price minus the current price, to get the buy profit buy_profit = lambda current, pred_future, true_future: true_future - current if pred_future > current else 0 # if the predicted future price is lower than the current price, # then subtract the true future price from the current price sell_profit = lambda current, pred_future, true_future: current - true_future if pred_future < current else 0 X_test = data["X_test"] y_test = data["y_test"] # perform prediction and get prices y_pred = model.predict(X_test) if SCALE: y_test = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(np.expand_dims(y_test, axis=0))) y_pred = np.squeeze(data["column_scaler"]["adjclose"].inverse_transform(y_pred)) test_df = data["test_df"] # add predicted future prices to the dataframe test_df[f"adjclose_{LOOKUP_STEP}"] = y_pred # add true future prices to the dataframe test_df[f"true_adjclose_{LOOKUP_STEP}"] = y_test # sort the dataframe by date test_df.sort_index(inplace=True) final_df = test_df # add the buy profit column final_df["buy_profit"] = list(map(buy_profit, final_df["adjclose"], final_df[f"adjclose_{LOOKUP_STEP}"], final_df[f"true_adjclose_{LOOKUP_STEP}"]) # since we don't have profit for last sequence, add 0's ) # add the sell profit column final_df["sell_profit"] = list(map(sell_profit, final_df["adjclose"], final_df[f"adjclose_{LOOKUP_STEP}"], final_df[f"true_adjclose_{LOOKUP_STEP}"]) # since we don't have profit for last sequence, add 0's ) return final_df
e28f19c5072693872bf17a89cf39cc6afa74517b
14,358
def read_fragment_groups(input_string,natoms,num_channels): """ read in the fragment groups for each channel """ inp_line = _get_integer_line(input_string,'FragmentGroups',natoms) assert inp_line is not None out=' '.join(inp_line) return out
81ae922add4d0c1680bbeb5223ad85a265ac3040
14,359
def pad_tile_on_edge(tile, tile_row, tile_col, tile_size, ROI): """ add the padding to the tile on the edges. If the tile's center is outside of ROI, move it back to the edge Args: tile: tile value tile_row: row number of the tile relative to its ROI tile_col: col number of the tile relative to its ROI tile_size: default tile size which may be different from the input tile ROI: ROI value which contains the input tile Return: the padded tile """ tile_height, tile_width, tile_channel = tile.shape tile_row_lower = tile_row tile_row_upper = tile_row + tile_height tile_col_lower = tile_col tile_col_upper = tile_col + tile_width # if the tile's center is outside of ROI, move it back to the edge, # and then add the padding if tile_height < tile_size / 2: tile_row_lower = tile_row_upper - tile_size // 2 tile_height = tile_size // 2 if tile_width < tile_size / 2: tile_col_lower = tile_col_upper - tile_size // 2 tile_width = tile_size // 2 tile = ROI[tile_row_lower: tile_row_upper, tile_col_lower: tile_col_upper, ] padding = ((0, tile_size - tile_height), (0, tile_size - tile_width), (0, 0)) return np.pad(tile, padding, "reflect")
bf829ead79f6347423dae8f4c534352d648a3845
14,361
def calc_kfold_score(model, df, y, n_splits=3, shuffle=True): """ Calculate crossvalidation score for the given model and data. Uses sklearn's KFold with shuffle=True. :param model: an instance of sklearn-model :param df: the dataframe with training data :param y: dependent value :param n_splits: the amount of splits (i.e. K in K-fold) :param shuffle: whether to shuffle or not :return: mean, std """ kf = KFold(n_splits=n_splits, shuffle=shuffle) scores = list(calc_kfold_score_helper(model, kf, df, y)) mean = np.mean(scores) std = np.std(scores) return mean, std
09e646d40b245be543c5183b8c964fe8ee4f699f
14,362
def obter_forca (unidade): """Esta funcao devolve a forca de ataque da unidade dada como argumento""" return unidade[2]
34fe4acac8e0e3f1964faf8e4b26fa31148cf2a6
14,363
from typing import Dict def get_default_configuration(cookiecutter_json: CookiecutterJson) -> Dict[str, str]: """ Get the default values for the cookiecutter configuration. """ default_options = dict() for key, value in cookiecutter_json.items(): if isinstance(value, str) and "{{" not in value: # ignore templated values default_options[key] = value elif isinstance(value, list): assert len(value) > 0, "Option list must have at least one element" default_options[key] = value[0] return default_options
8a8e3a9b80d3440f1e6031498c210b7b5577aa03
14,364
def random_nodes_generator(num_nodes, seed=20): """ :param int num_nodes: An Integer denoting the number of nodes :param int seed: (Optional) Integer specifying the seed for controlled randomization. :return: A dictionary containing the coordinates. :rtype: dict """ np.random.seed(seed) max_coord_val = num_nodes num_coord_grid = max_coord_val * max_coord_val index = np.arange(max_coord_val * max_coord_val) np.random.shuffle(index) random_slice_start = np.random.randint(0, num_coord_grid - num_nodes) coord_index = index[random_slice_start:random_slice_start + num_nodes] x_array = np.arange(max_coord_val).repeat(max_coord_val) y_array = np.tile(np.arange(max_coord_val), max_coord_val) node_coord = np.empty((num_nodes, 2), dtype=np.int32) node_coord[:, 0] = x_array[coord_index] node_coord[:, 1] = y_array[coord_index] node_dict = {} for i in range(num_nodes): node_dict[i] = (x_array[coord_index[i]], y_array[coord_index[i]]) return node_dict
5fa08ccc2cd3a4c34962a29ca9a7566ca5e64592
14,365
def OpenDocumentTextMaster(): """ Creates a text master document """ doc = OpenDocument('application/vnd.oasis.opendocument.text-master') doc.text = Text() doc.body.addElement(doc.text) return doc
6813f527ced0f1cd89e0824ac10aeb78d06799a4
14,366
def get_visible_desktops(): """ Returns a list of visible desktops. The first desktop is on Xinerama screen 0, the second is on Xinerama screen 1, etc. :return: A list of visible desktops. :rtype: util.PropertyCookie (CARDINAL[]/32) """ return util.PropertyCookie(util.get_property(root, '_NET_VISIBLE_DESKTOPS'))
9fba922a5c83ed4635391f6ed5319fcfe4fd424d
14,367
def spherical_noise( gridData=None, order_max=8, kind="complex", spherical_harmonic_bases=None ): """Returns order-limited random weights on a spherical surface. Parameters ---------- gridData : io.SphericalGrid SphericalGrid containing azimuth and colatitude order_max : int, optional Spherical order limit [Default: 8] kind : {'complex', 'real'}, optional Spherical harmonic coefficients data type [Default: 'complex'] spherical_harmonic_bases : array_like, optional Spherical harmonic base coefficients (not yet weighted by spatial sampling grid) [Default: None] Returns ------- noisy_weights : array_like, complex Noisy weights """ if spherical_harmonic_bases is None: if gridData is None: raise TypeError( "Either a grid or the spherical harmonic bases have to be provided." ) gridData = SphericalGrid(*gridData) spherical_harmonic_bases = sph_harm_all( order_max, gridData.azimuth, gridData.colatitude, kind=kind ) else: order_max = _np.int(_np.sqrt(spherical_harmonic_bases.shape[1]) - 1) return _np.inner( spherical_harmonic_bases, _np.random.randn((order_max + 1) ** 2) + 1j * _np.random.randn((order_max + 1) ** 2), )
82ef238ef0d72100435306267bf8248f82b70fd8
14,369
def rollback_command(): """Command to perform a rollback fo the repo.""" return Command().command(_rollback_command).require_clean().require_migration().with_database()
abfed20ff8cfa08af084fc8c956ebb8d312c985f
14,370
import numpy def circumcenter(vertices): """ Compute the circumcenter of a triangle (the center of the circle which passes through all the vertices of the triangle). :param vertices: The triangle vertices (3 by n matrix with the vertices as rows (where n is the dimension of the space)). :returns: The triangle circumcenter. :rtype: n-dimensional vector """ # Compute trilinear coordinates trilinear = numpy.zeros(3) for i in range(3): trilinear[i] = numpy.cos(angle(vertices, i)) bary = trilinear_to_barycentric(trilinear, vertices) return barycentric_to_cartesian(bary, vertices)
314e7650b6fec6c82880541de32c1378e720c8c8
14,371
def get_ROC_curve_naive(values, classes): """ Naive implementation of a ROC curve generator that iterates over a number of thresholds. """ # get number of positives and negatives: n_values = len(values); totalP = len(np.where(classes > 0)[0]); totalN = n_values - totalP; min_val = np.min(values); max_val = np.max(values); thresholds = np.arange(min_val, max_val, 1.0); n_thresholds = len(thresholds); TP = np.zeros([n_thresholds, 1]); FP = np.zeros([n_thresholds, 1]); for t in range(n_thresholds): inds = np.where(values >= thresholds[t]); P = np.sum(classes[inds[0]]); TP[t] = P / totalP; F = len(inds[0]) - P; FP[t] = F / totalN; return TP, FP;
5950c207746c39c4787b3a472c83fbca5599d654
14,373
import re def worker(path, opt): """Worker for each process. Args: path (str): Image path. opt (dict): Configuration dict. It contains: crop_size (int): Crop size. step (int): Step for overlapped sliding window. thresh_size (int): Threshold size. Patches whose size is smaller than thresh_size will be dropped. save_folder (str): Path to save folder. compression_level (int): for cv2.IMWRITE_PNG_COMPRESSION. Returns: process_info (str): Process information displayed in progress bar. """ crop_size = opt['crop_size'] step = opt['step'] thresh_size = opt['thresh_size'] img_name, extension = osp.splitext(osp.basename(path)) # remove the x2, x3, x4 and x8 in the filename for DIV2K img_name = re.sub('x[2348]', '', img_name) img = mmcv.imread(path, flag='unchanged') if img.ndim == 2 or img.ndim == 3: h, w = img.shape[:2] else: raise ValueError(f'Image ndim should be 2 or 3, but got {img.ndim}') h_space = np.arange(0, h - crop_size + 1, step) if h - (h_space[-1] + crop_size) > thresh_size: h_space = np.append(h_space, h - crop_size) w_space = np.arange(0, w - crop_size + 1, step) if w - (w_space[-1] + crop_size) > thresh_size: w_space = np.append(w_space, w - crop_size) index = 0 for x in h_space: for y in w_space: index += 1 cropped_img = img[x:x + crop_size, y:y + crop_size, ...] cv2.imwrite( osp.join(opt['save_folder'], f'{img_name}_s{index:03d}{extension}'), cropped_img, [cv2.IMWRITE_PNG_COMPRESSION, opt['compression_level']]) process_info = f'Processing {img_name} ...' return process_info
68b43995cb147bedad7b94c6f4960cef2646ed87
14,374
def RobotNet(images,dropout): """ Build the model for Robot where it will be used as RobotNet. Args: images: 4-D tensor with shape [batch_size, height, width, channals]. dropout: A Python float. The probability that each element is kept. Returns: Output tensor with the computed classes. """ # _X = tf.reshape(images, shape=[-1, IMAGE_HEIGTH, IMAGE_WIDTH, IMAGE_CHANNAL]) # X = tf.cast(_X, tf.float32) X = tf.cast(images, tf.float32) weights1=tf.Variable(tf.random_normal([11, 11, 3, 96],stddev=0.01)) biases1=tf.Variable(tf.zeros([96])) conv1 = conv2d('conv1', X, weights1, biases1,stride=[4,4],padding='SAME') norm1 = norm('norm1', conv1, lsize=2) pool1= max_pool('pool1', norm1, 3, 2) weights2=tf.Variable(tf.random_normal([5, 5, 96, 256],stddev=0.01)) biases2=tf.Variable(tf.constant(0.1,shape=[256])) conv2 = conv2d('conv2', pool1, weights2, biases2,stride=[1,1],padding='SAME') norm2 = norm('norm2', conv2, lsize=2) pool2= max_pool('pool2', norm2, 3, 2) weights3=tf.Variable(tf.random_normal([3, 3, 256, 384],stddev=0.01)) biases3=tf.Variable(tf.zeros([384])) conv3 = conv2d('conv3', pool2, weights3, biases3,stride=[1,1],padding='SAME') weights4=tf.Variable(tf.random_normal([3, 3, 384, 384],stddev=0.01)) biases4=tf.Variable(tf.constant(0.1,shape=[384])) conv4 = conv2d('conv4', conv3, weights4, biases4,stride=[1,1],padding='SAME') weights5=tf.Variable(tf.random_normal([3, 3, 384, 256],stddev=0.01)) biases5=tf.Variable(tf.constant(0.1,shape=[256])) conv5 = conv2d('conv5', conv4, weights5, biases5,stride=[1,1],padding='SAME') pool5= max_pool('pool5', conv5, 3, 2) p_h=pool5.get_shape().as_list()[1] p_w=pool5.get_shape().as_list()[2] print('p_h:',p_h) print('p_w:',p_w) weights6=tf.Variable(tf.random_normal([p_h*p_w*256, 4096],stddev=0.005)) biases6=tf.Variable(tf.constant(0.1,shape=[4096])) dense1 = tf.reshape(pool5, [-1, weights6.get_shape().as_list()[0]]) fc6= tf.nn.relu(tf.matmul(dense1, weights6) + biases6, name='fc6') drop6=tf.nn.dropout(fc6, dropout) weights7=tf.Variable(tf.random_normal([4096, 4096],stddev=0.005)) biases7=tf.Variable(tf.constant(0.1,shape=[4096])) fc7= tf.nn.relu(tf.matmul(drop6, weights7) + biases7, name='fc7') drop7=tf.nn.dropout(fc7, dropout) weights8=tf.Variable(tf.random_normal([4096, 2],stddev=0.01)) biases8=tf.Variable(tf.zeros([2])) net_out= tf.matmul(drop7, weights8) + biases8 saver = tf.train.Saver({v.op.name: v for v in [weights1,biases1,weights2,biases2,weights3,biases3, weights4,biases4,weights5,biases5,weights6,biases6, weights7,biases7,weights8,biases8]}) return net_out,saver
9bab69a9a0a01436c9b4225ec882231dc561c204
14,375
def cvReleaseMemStorage(*args): """cvReleaseMemStorage(PyObject obj)""" return _cv.cvReleaseMemStorage(*args)
a11985f756672ab7b7c5ed58336daad1a975c0d2
14,376
import typing def GetCommitsInOrder( repo: git.Repo, head_ref: str = "HEAD", tail_ref: typing.Optional[str] = None) -> typing.List[git.Commit]: """Get a list of all commits, in chronological order from old to new. Args: repo: The repo to list the commits of. head_ref: The starting point for iteration, e.g. the commit closest to head. tail_ref: The end point for iteration, e.g. the commit closest to tail. This commit is NOT included in the returned values. Returns: A list of git.Commit objects. """ def TailCommitIterator(): stop_commit = repo.commit(tail_ref) for commit in repo.iter_commits(head_ref): if commit == stop_commit: break yield commit if tail_ref: commit_iter = TailCommitIterator() else: commit_iter = repo.iter_commits(head_ref) try: return list(reversed(list(commit_iter))) except git.GitCommandError: # If HEAD is not found, an exception is raised. return []
57db975d44af80a5c6a8e251842182f6a0f572af
14,378
def return_sw_checked(softwareversion, osversion): """ Check software existence, return boolean. :param softwareversion: Software release version. :type softwareversion: str :param osversion: OS version. :type osversion: str """ if softwareversion is None: serv = bbconstants.SERVERS["p"] softwareversion = networkutils.sr_lookup(osversion, serv) softwareversion, swchecked = sw_check_contingency(softwareversion) else: swchecked = True return softwareversion, swchecked
9f7efb06150468e553ac6a066b2c7750fd233d4c
14,380
from re import A import copy def apply( f: tp.Callable[..., None], obj: A, *rest: A, inplace: bool = False, _top_inplace: tp.Optional[bool] = None, _top_level: bool = True, ) -> A: """ Applies a function to all `to.Tree`s in a Pytree. Works very similar to `jax.tree_map`, but its values are `to.Tree`s instead of leaves, also `f` should apply the changes inplace to Tree object. Arguments: f: The function to apply. obj: a pytree possibly containing Trees. *rest: additional pytrees. inplace: If `True`, the input `obj` is mutated. Returns: A new pytree with the updated Trees or the same input `obj` if `inplace` is `True`. """ if _top_inplace is None: _top_inplace = inplace if _top_level: rest = copy(rest) if not inplace: obj = copy(obj) objs = (obj,) + rest def nested_fn(obj, *rest): if isinstance(obj, Tree): apply( f, obj, *rest, inplace=True, _top_inplace=_top_inplace, _top_level=False, ) jax.tree_map( nested_fn, *objs, is_leaf=lambda x: isinstance(x, Tree) and not x in objs, ) if isinstance(obj, Tree): if _top_inplace or obj._mutable: f(obj, *rest) else: with _make_mutable_toplevel(obj): f(obj, *rest) return obj
9a4d29546eb47ba4838fccb58f78495411c99e1c
14,381
import requests def imageSearch(query, top=10): """Returns the decoded json response content :param query: query for search :param top: number of search result """ # set search url query = '%27' + parse.quote_plus(query) + '%27' # web result only base url base_url = 'https://api.datamarket.azure.com/Bing/Search/v1/Image' url = base_url + '?Query=' + query + '&$top=' + str(top) + '&$format=json&ImageFilters=%27Aspect%3ASquare%27' # create credential for authentication user_agent = "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.73 Safari/537.36" # create auth object auth = HTTPBasicAuth("", API_KEY) # set headers headers = {'User-Agent': user_agent} # get response from search url response_data = requests.get(url, headers=headers, auth=auth) # decode json response content json_result = response_data.json() return json_result['d']['results']
4c731b0ead57e5ec4ab290c9afc67d6066cce093
14,382
def pack_inputs(inputs): """Pack a list of `inputs` tensors to a tuple. Args: inputs: a list of tensors. Returns: a tuple of tensors. if any input is None, replace it with a special constant tensor. """ inputs = tf.nest.flatten(inputs) outputs = [] for x in inputs: if x is None: outputs.append(tf.constant(0, shape=[], dtype=tf.int32)) else: outputs.append(x) return tuple(outputs)
2801929a1109cd3c416d8b3229399a0a9b73a38f
14,383
def entries_as_dict(month_index): """Convert index xml list to list of dictionaries.""" # Search path findentrylist = etree.ETXPath("//section[@id='month-index']/ul/li") # Extract data entries_xml = findentrylist(month_index) entries = [to_entry_dict(entry_index_xml) for entry_index_xml in entries_xml] return entries
2fba6699457ca9726d4ce93b480e722bb6c8223d
14,384
def resnet50(): """Constructs a ResNet-50 model. """ return Bottleneck, [3, 4, 6, 3]
197dc833c966146226721e56315d3f12d9c13398
14,385
def build_service_job_mapping(client, configured_jobs): """ :param client: A Chronos client used for getting the list of running jobs :param configured_jobs: A list of jobs configured in Paasta, i.e. jobs we expect to be able to find :returns: A dict of {(service, instance): last_chronos_job} where last_chronos_job is the latest job matching (service, instance) or None if there is no such job """ service_job_mapping = {} all_chronos_jobs = client.list() for job in configured_jobs: # find all the jobs belonging to each service matching_jobs = chronos_tools.filter_chronos_jobs( jobs=all_chronos_jobs, service=job[0], instance=job[1], include_disabled=True, include_temporary=True, ) matching_jobs = chronos_tools.sort_jobs(matching_jobs) # Only consider the most recent one service_job_mapping[job] = matching_jobs[0] if len(matching_jobs) > 0 else None return service_job_mapping
58cdf0a7f7561d1383f8f4c4e4cdd0f46ccfad0c
14,386
def _validate_labels(labels, lon=True): """ Convert labels argument to length-4 boolean array. """ if labels is None: return [None] * 4 which = 'lon' if lon else 'lat' if isinstance(labels, str): labels = (labels,) array = np.atleast_1d(labels).tolist() if all(isinstance(_, str) for _ in array): bool_ = [False] * 4 opts = ('left', 'right', 'bottom', 'top') for string in array: if string in opts: string = string[0] elif set(string) - set('lrbt'): raise ValueError( f'Invalid {which}label string {string!r}. Must be one of ' + ', '.join(map(repr, opts)) + " or a string of single-letter characters like 'lr'." ) for char in string: bool_['lrbt'.index(char)] = True array = bool_ if len(array) == 1: array.append(False) # default is to label bottom or left if len(array) == 2: if lon: array = [False, False, *array] else: array = [*array, False, False] if len(array) != 4 or any(isinstance(_, str) for _ in array): raise ValueError(f'Invalid {which}label spec: {labels}.') return array
6b4f4870692b3c89f2c51f920892852eeecc418d
14,387
def celsius_to_fahrenheit(temperature_C): """ converts C -> F """ return temperature_C * 9.0 / 5.0 + 32.0
47c789c560c5b7d035252418bd7fb0819b7631a4
14,388
import re from datetime import datetime def _parse_date_time(date): """Parse time string. This matches 17:29:43. Args: date (str): the date string to be parsed. Returns: A tuple of the format (date_time, nsec), where date_time is a datetime.time object and nsec is 0. Raises: ValueError: if the date format does not match. """ pattern = re.compile( r'^(?P<hour>\d{2}):(?P<min>\d{2}):(?P<sec>\d{2})$' ) if not pattern.match(date): raise ValueError('Wrong date format: {}'.format(date)) hour = pattern.search(date).group('hour') minute = pattern.search(date).group('min') sec = pattern.search(date).group('sec') nsec = 0 time = datetime.time(int(hour), int(minute), int(sec)) return time, nsec
2d7f4b067d1215623c2e8e4217c98591a1794481
14,389
def parsed_user(request, institute_obj): """Return user info""" user_info = { 'email': '[email protected]', 'name': 'John Doe', 'location': 'here', 'institutes': [institute_obj['internal_id']], 'roles': ['admin'] } return user_info
773363dc41f599abe27a5913434f88d1a20c131d
14,390
def lastFromUT1(ut1, longitude): """Convert from universal time (MJD) to local apparent sidereal time (deg). Inputs: - ut1 UT1 MJD - longitude longitude east (deg) Returns: - last local apparent sideral time (deg) History: 2002-08-05 ROwen First version, loosely based on the TCC's tut_LAST. 2014-04-25 ROwen Add from __future__ import division, absolute_import and use relative import. """ # convert UT1 to local mean sidereal time, in degrees lmst = lmstFromUT1(ut1, longitude) # find apparent - mean sidereal time, in degrees # note: this wants the TDB date, but UT1 is probably close enough appMinusMean = llv.eqeqx(ut1) / opscore.RO.PhysConst.RadPerDeg # find local apparent sideral time, in degrees, in range [0, 360) return opscore.RO.MathUtil.wrapPos (lmst + appMinusMean)
0ba587125c0c422349acf7bb9753b09956fd9bed
14,391
import itertools def strip_translations_header(translations: str) -> str: """ Strip header from translations generated by ``xgettext``. Header consists of multiple lines separated from the body by an empty line. """ return "\n".join(itertools.dropwhile(len, translations.splitlines()))
b96c964502724008306d627d785224be08bddb86
14,393
import random def sample_targets_and_primes(targets, primes, n_rounds, already_sampled_targets=None, already_sampled_primes=None): """ Sample targets `targets` and primes `primes` for `n_rounds` number of rounds. Omit already sampled targets or primes which can be passed as sets `already_sampled_targets` and `already_sampled_primes`. `targets` and `primes` must be dicts with class -> [files] mapping (as delivered from `get_amp_images`. Will return a sample of size "num. of target classes * number of targets per class // `n_rounds`" as list of 4-tuples with: - target class - target file - prime class - prime file This function makes sure that you present N targets in random order split into R rounds, where each prime of each prime class is matched with a random target *per target class* by calling it as such: ``` # round 1: sample_round_1 = sample_targets_and_primes(targets, primes, Constants.num_rounds) # round 2: sample_round_2 = sample_targets_and_primes(targets, primes, Constants.num_rounds, already_sampled_targets=<targets from sample_round_1>) ... ``` """ # set defaults if not already_sampled_targets: already_sampled_targets = set() if not already_sampled_primes: already_sampled_primes = set() # make sure we have sets if not isinstance(already_sampled_targets, set): raise ValueError('`already_sampled_targets` must be a set.') if not isinstance(already_sampled_primes, set): raise ValueError('`already_sampled_primes` must be a set.') # get number of classes n_prime_classes = len(primes) n_target_classes = len(targets) if not n_prime_classes: raise ValueError('No target images found.') if not n_target_classes: raise ValueError('No prime images found.') # create a list of primes with 2-tuples: (class, file) # order of primes is random inside prime class primes_list = [] for primes_classname, class_primes in primes.items(): class_primes = list(set(class_primes) - already_sampled_primes) # omit already sampled primes # random order of primes inside class random.shuffle(class_primes) primes_list.extend(zip([primes_classname] * len(class_primes), class_primes)) n_primes = len(primes_list) targets_round = [] # holds the output list with 4-tuples # construct a sample of targets per target class for target_classname, class_targets in targets.items(): n_targets = len(class_targets) if n_targets % n_rounds != 0: raise ValueError('Number of targets in class (%d in "%s") must be a multiple of' ' number of rounds (%d)' % (n_targets, target_classname, n_rounds)) # omit already sampled targets class_targets = set(class_targets) - already_sampled_targets # get a sample of class targets as random sample without replacement of size "number of targets divided # by number of rounds" so that you can split targets into several rounds targets_sample = random.sample(class_targets, n_targets // n_rounds) n_targets_sample = len(targets_sample) if n_targets_sample % n_primes != 0: raise ValueError('Number of sampled targets in class (%d in "%s") must be a multiple of' ' number of primes (%d)' % (n_targets_sample, target_classname, n_primes)) # primes sample is the primes list repeated so that it matches the length of targets in this target class # this makes sure that for each target class all primes will be shown primes_sample = primes_list * (n_targets_sample // n_primes) primes_sample_classes, primes_sample_prime = list(zip(*primes_sample)) assert len(primes_sample) == n_targets_sample # add targets-primes combinations for this round targets_round.extend(zip([target_classname] * n_targets_sample, targets_sample, primes_sample_classes, primes_sample_prime)) # random order of targets-primes combinations random.shuffle(targets_round) return targets_round
6b73cdadf3016f1dc248deb2625eae1dd620553b
14,394
def getsign(num): """input the raw num string, return a tuple (sign_num, num_abs). """ sign_num = '' if num.startswith('±'): sign_num = plus_minus num_abs = num.lstrip('±+-') if not islegal(num_abs): return sign_num, '' else: try: temp = float(num) if (temp < 0) and (sign_num == ''): sign_num = sign_negative elif (temp > 0) and (sign_num == ''): if ('+' in num): sign_num = sign_positive else: if num.startswith('-'): sign_num = sign_negative if num.startswith('+'): sign_num = sign_positive num_abs = num.lstrip('+-') except ValueError: raise return sign_num, num_abs
46fc5a7ac8e366479c40e2ccc1a33f57a736b343
14,395
from typing import Mapping from typing import Union def _convert_actions_to_commands( subvol: Subvol, build_appliance: Subvol, action_to_names_or_rpms: Mapping[RpmAction, Union[str, _LocalRpm]], ) -> Mapping[YumDnfCommand, Union[str, _LocalRpm]]: """ Go through the list of RPMs to install and change the action to downgrade if it is a local RPM with a lower version than what is installed. Also use `local_install` and `local_remove` for _LocalRpm. See the docs in `YumDnfCommand` for the rationale. """ cmd_to_names_or_rpms = {} for action, names_or_rpms in action_to_names_or_rpms.items(): for nor in names_or_rpms: cmd, new_nor = _action_to_command( subvol, build_appliance, action, nor ) if cmd == YumDnfCommand.noop: continue if cmd is None: # pragma: no cover raise AssertionError(f"Unsupported {action}, {nor}") cmd_to_names_or_rpms.setdefault(cmd, set()).add(new_nor) return cmd_to_names_or_rpms
519d09754b18bcabef405f3d39a959b1296d3c6c
14,396
def fit_DBscan (image_X, eps, eps_grain_boundary, min_sample, min_sample_grain_boundary, filter_boundary, remove_large_clusters, remove_small_clusters, binarize_bdr_coord, binarize_grain_coord, ): """ Function to measure counts and average sizes of instances within an image args: image_X: np array containing a preporcessed image eps: float, parameter for the DBscan algorithm from sklearn eps_grain_boundary:float, parameter for the DBscan algorithm from sklearn min_sample: int, parameter for the DBscan algorithm from sklearn min_sample_grain_boundary: int float, parameter for the DBscan algorithm from sklearn filter_boundary:int, threshold to apply while finding the grain boundaries remove_large_clusters: int indicating how many of the largest clusters shall be removed remove_small_clusters:int indicating how many of the smallest clusters shall be removed binarize_bdr_coord: int for the binarization of the grain boundaries binarize_grain_coord:: int for the binarization of the grain interiors returns: m_CL: float, log10(mean (predicted cluster radius in pixels)) s_CL: float, log10(predicted cluster count) """ print('Finding grain boundaries') bdr_coord=np.array(binarize_array_high(image_X, binarize_bdr_coord)) bdr_coord=find_grain_boundaries(bdr_coord, eps=eps_grain_boundary, min_sample=min_sample_grain_boundary, filter_boundary=filter_boundary) bdr_coord_df=pd.DataFrame(bdr_coord) bdr_coord_df.columns=['X','Y'] bdr_coord_df['Z']=255 df_grain=pd.pivot_table(bdr_coord_df, index='X', columns='Y', values='Z', fill_value=0) df_grain=df_grain.to_numpy() print('Measuring grains') grain_coord = np.array(binarize_array(df_grain, binarize_grain_coord)) (m_CL, s_CL, clusters)=find_grains(grain_coord, eps, min_sample, remove_large_clusters, remove_small_clusters) return (m_CL, s_CL, clusters)
b32218e6d45dc766d749af9247ee1d343236fef0
14,397
def get_today_timestring(): """Docen.""" return pd.Timestamp.today().strftime('%Y-%m-%d')
f749a5a63f7c55053918eb3f95bb56c2325f4362
14,398
from pathlib import Path import json def load_json(filepath): """ Load a json file :param filepath: path to json file """ fp = Path(filepath) if not fp.exists(): raise ValueError("Unrecognized file path: {}".format(filepath)) with open(filepath) as f: data = json.load(f) return data
657509a50961f7b9c83536a8973884eef5bbed5e
14,399
import requests import random def handle(req): """handle a request to the function Args: req (str): request body """ r = requests.get("http://api.open-notify.org/astros.json") result = r.json() index = random.randint(0, len(result["people"]) - 1) name = result["people"][index]["name"] return "{} is in space".format(name)
7d951443bc5b6f3db86602d635a8c9ce84b703fb
14,400
import hashlib def get_file_hashsum(file_name: str): """Generate a SHA-256 hashsum of the given file.""" hash_sha256 = hashlib.sha256() with open(file_name, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hash_sha256.update(chunk) return hash_sha256.hexdigest()
d515b6b7b743396240ada8d888b8bfbc4c316373
14,401
def generate_primes(n): """Generates a list of prime numbers up to `n` """ global PRIMES k = PRIMES[-1] + 2 while k <= n: primes_so_far = PRIMES[:] divisible = False for p in primes_so_far: if k % p == 0: divisible = True break if not divisible: PRIMES.append(k) k += 2 return PRIMES
4ea29f8dc8dad11bf6c71fcb1dcc6b75b91bece5
14,402
def Convex(loss, L2_reg): """ loss: src_number loss [loss_1, loss_2, ... loss_src_number] """ src_number = len(loss) lam = cp.Variable(src_number) prob = cp.Problem( cp.Minimize(lam @ loss + L2_reg * cp.norm(lam, 2)), [cp.sum(lam) == 1, lam >= 0] ) # prob.solve() prob.solve(solver="SCS") lam_optimal = lam.value return lam_optimal
f2a6ecc464e2f87684d1537775816d22dc30d837
14,403
from limitlessled.pipeline import Pipeline def state(new_state): """State decorator. Specify True (turn on) or False (turn off). """ def decorator(function): """Decorator function.""" # pylint: disable=no-member,protected-access def wrapper(self, **kwargs): """Wrap a group state change.""" pipeline = Pipeline() transition_time = DEFAULT_TRANSITION # Stop any repeating pipeline. if self.repeating: self.repeating = False self.group.stop() # Not on and should be? Turn on. if not self.is_on and new_state is True: pipeline.on() # Set transition time. if ATTR_TRANSITION in kwargs: transition_time = kwargs[ATTR_TRANSITION] # Do group type-specific work. function(self, transition_time, pipeline, **kwargs) # Update state. self._is_on = new_state self.group.enqueue(pipeline) self.schedule_update_ha_state() return wrapper return decorator
156b7bbad0a943af6bb4280e4fdb1dde2b6e320a
14,404
def rotTransMatrixNOAD(axis, s, c, t): """ build a rotate * translate matrix - MUCH faster for derivatives since we know there are a ton of zeros and can act accordingly :param axis: x y or z as a character :param s: sin of theta :param c: cos of theta :param t: translation (a 3 tuple) :return: """ if axis == "Z" or axis == "z": return N.array([[c, -s, 0, c * t[0] - s * t[1]], [s, c, 0, s * t[0] + c * t[1]], [0, 0, 1, t[2]], [0, 0, 0, 1]]) elif axis == "Y" or axis == "y": return N.array([[c, 0, s, c * t[0] + s * t[2]], [0, 1, 0, t[1]], [-s, 0, c, c * t[2] - s * -t[0]], [0, 0, 0, 1]]) elif axis == "X" or axis == "x": return N.array([[1, 0, 0, t[0]], [0, c, -s, c * t[1] - s * t[2]], [0, s, c, s * t[1] + c * t[2]], [0, 0, 0, 1]]) else: print "Unsupported Axis:", axis raise NotImplementedError
f6e8d6474ba90e3a253229124e0571d67025c818
14,405
def angular_diameter_distance(z, cosmo=None): """ Angular diameter distance in Mpc at a given redshift. This gives the proper (sometimes called 'physical') transverse distance corresponding to an angle of 1 radian for an object at redshift `z`. Parameters ---------- z : array_like Input redshifts. Returns ------- angdist : astropy.units.Quantity Angular diameter distance at each input redshift. """ if cosmo is None: cosmo = _get_current() return cosmo.angular_diameter_distance(z)
694f9fcaa6ce2585315f63e69351ac47589e248c
14,406
def main(stdin): """ Take sorted standard in from Hadoop and return lines. Value is just a place holder. """ for line_num in stdin: # Remove trailing newlines. line_num = line_num.rstrip() # Omit empty lines. try: (line, num) = line_num.rsplit('\t', 1) print(("{line}\t{num}").format(line=line, num=num)) except ValueError: pass return None
811e184d9425c1c76681c823b463b99ebde2c25c
14,407
def _ignore_module_import_frames(file_name, name, line_number, line): """ Ignores import frames of extension loading. Parameters ---------- file_name : `str` The frame's respective file's name. name : `str` The frame's respective function's name. line_number : `int` The line's index where the exception occurred. line : `str` The frame's respective stripped line. Returns ------- should_show_frame : `bool` Whether the frame should be shown. """ should_show_frame = True if file_name.startswith('<') and file_name.endswith('>'): should_show_frame = False elif file_name == EXTENSION_LOADER_EXTENSION_FILE_PATH: if name == '_load': if line == 'loaded = self._load_module()': should_show_frame = False elif name == '_load_module': if line == 'spec.loader.exec_module(module)': should_show_frame = False elif file_name == EXTENSION_LOADER_EXTENSION_LOADER_FILE_PATH: if name == '_extension_loader_task': if line in ( 'module = await KOKORO.run_in_executor(extension._load)', 'await entry_point(module)', 'entry_point(module)', ): should_show_frame = False elif name == '_extension_unloader_task': if line in ( 'await exit_point(module)', 'exit_point(module)', ): should_show_frame = False return should_show_frame
8f3e506e99b32d2945ea665367d5447ef1b05732
14,408
def get_tf_tensor_data(tensor): """Get data from tensor.""" assert isinstance(tensor, tensor_pb2.TensorProto) is_raw = False if tensor.tensor_content: data = tensor.tensor_content is_raw = True elif tensor.float_val: data = tensor.float_val elif tensor.dcomplex_val: data = tensor.dcomplex_val elif tensor.int_val: data = tensor.int_val elif tensor.int64_val: data = tensor.int64_val elif tensor.bool_val: data = tensor.bool_val elif tensor.dtype == tf.int32: data = [0] elif tensor.dtype == tf.int64: data = [0] elif tensor.dtype == tf.float32: data = [0.] elif tensor.dtype == tf.float16: data = [0] elif tensor.string_val: data = tensor.string_val else: raise ValueError('tensor data not supported') return [is_raw, data]
f2d62a7ccba252d5c94cd9979eb01a0b44282d4a
14,409
def coth(x): """ Return the hyperbolic cotangent of x. """ return 1.0/tanh(x)
92d490563c8595b8c11334cd38afbf9ef389dfe8
14,411
def param_is_numeric(p): """ Test whether any parameter is numeric; functionally, determines if any parameter is convertible to a float. :param p: An input parameter :return: """ try: float(p) return True except ValueError: return False
b92579ba019389cf21002b63ca6e2ebdfad7d86f
14,412
def convert_graph_to_angular_abstract_graph(graph: Graph, simple_graph=True, return_tripel_edges=False) -> Graph: """Converts a graph into an abstract angular graph Can be used to calculate a path tsp Arguments: graph {Graph} -- Graph to be converted simple_graph {bool} -- Indicates if graph is simple return_tripel_edges {bool} -- Also return translation for original edges to abstract Returns: Graph -- Converted abstract graph """ # create a vertex for every edge in the original graph # For geometric instances, only one direction of edges is needed vertices = np.array([[u, v] for u, v in graph.edges if u < v]) edges = {} tripel_edges = {} for i, vertex in enumerate(vertices): ran = range(i+1, len(vertices)) if simple_graph else range(len(vertices)) for j in ran: if j == i: continue other = vertices[j] if np.intersect1d(vertex, other).size > 0: shared_vertex = np.intersect1d(vertex, other) non_shared = np.setdiff1d(np.hstack([vertex, other]), shared_vertex) edges[(i, j)] = get_angle( graph.vertices[shared_vertex], graph.vertices[non_shared[0]], graph.vertices[non_shared[1]] ) if return_tripel_edges: from_vertex = np.intersect1d(vertex, non_shared) to_vertex = np.intersect1d(other, non_shared) edge = (*from_vertex, *to_vertex) tripel_edges[(*shared_vertex, *edge)] = (i, j) graph = Graph(vertices, edges.keys(), c=edges) if return_tripel_edges: return (tripel_edges, graph) return graph
2f81743824549d8e19f70f1843d6449eb12e7e5d
14,413
def login_to_site(url, username, password, user_tag, pass_tag): """ :param url: :param username: :param password: :param user_tag: :param pass_tag: :return: :raise: """ browser = mechanize.Browser(factory=mechanize.RobustFactory()) browser.set_handle_robots(False) browser.set_handle_referer(True) browser.set_handle_refresh(True) browser.set_handle_robots(False) browser.open(url) # noinspection PyCallingNonCallable,PyCallingNonCallable,PyCallingNonCallable,PyCallingNonCallable browser.select_form(nr=0) browser["USER"] = username browser["password"] = password # noinspection PyCallingNonCallable browser.submit() # noinspection PyCallingNonCallable if "Case Search Login Error" in browser.response().get_data(): raise ValueError("Could not login to PACER Case Search. Check your " "username and password") print ("You are logged on to the Public Access to Court Electronic " "Records (PACER) Case Search website as " + username + ". All costs " "will be billed to this account.") return browser
6c906e037a619031eb45bb26f01da71833fa3e41
14,414
async def test_db( service: Service = Depends(Service) ) -> HTTPSuccess: """Test the API to determine if the database is connected.""" if service.test().__class__ is not None: return { "message": "Database connected." } else: return {"message": "Database not connected." }
67e4530af6959fef03f55879ee3781ebf993f11c
14,415
import tqdm def model_fit_predict(): """ Training example was implemented according to machine-learning-mastery forum The function takes data from the dictionary returned from splitWindows.create_windows function https://machinelearningmastery.com/stateful-stateless-lstm-time-series-forecasting-python/ :return: np.array of predictions """ X, y, test_input = windows_dict['X'], windows_dict['y'], windows_dict['X_test'] # Predictions are stored in a list predictions = [] with tqdm(total=X.shape[0], desc="Training the model, saving predictions") as progress_bar: # Save model History in order to check error data history = History() # build model framework current_model = model_builder(X) # Make predictions for each window for i in range(X.shape[0]): # TRAIN (FIT) model for each epoch # history = current_model.fit( # input_X[i], target_X[i], # epochs=_epochs, batch_size=batch, # verbose=0, shuffle=False, validation_split=0.1, # callbacks=[history] # ) # print(X[i].shape, X[i].dtype, y[i].shape, y[i].dtype) for e in range(epochs): current_model.fit( X[i], y[i], epochs=1, batch_size=batch, verbose=0, shuffle=False, callbacks=[history] ) current_model.reset_states() # PREDICT and save results predictions.append( current_model.predict(test_input[i], batch_size=batch_test, verbose=0) ) progress_bar.update(1) return np.asarray(predictions)
753ca4e90034864e709809cc1bd2f30640554f28
14,416
from functools import partial import multiprocessing as mp import gc def mp_variant_annotations(df_mp, df_split_cols='', df_sampleid='all', drop_hom_ref=True, n_cores=1): """ Multiprocessing variant annotations see variantAnnotations.process_variant_annotations for description of annotations This function coordinates the annotation of variants using the multiprocessing library. Parameters --------------- df_mp: pandas df, required VCF DataFrame df_split_cols: dict, optional key:FORMAT id value:#fields expected e.g. {'AD':2} indicates Allelic Depth should be split into 2 columns. df_sampleid: list, required list of sample_ids, can be 'all' drop_hom_ref: bool, optional specifies whether to drop all homozygous reference variants from dataframe. FALSE REQUIRES LARGE MEMORY FOOTPRINT n_cores: int, optional Number of multiprocessing jobs to start. Be careful as memory is copied to each process, RAM intensive """ print('starting multiprocessing') pool = mp.Pool(int(n_cores)) # tasks = np.array_split(df_mp.copy(), int(n_cores)) #breaks with older # pandas/numpy dfs = df_split(df_mp.copy(), int(n_cores)) mp_process = partial(process_variant_annotations, sample_id=df_sampleid, split_columns=df_split_cols, drop_hom_ref=drop_hom_ref) results = [] del df_mp gc.collect() r = pool.map_async(mp_process, \ dfs, callback=results.append) r.wait() pool.close() pool.join() pool.terminate() print('multiprocessing complete') res_df = pd.concat([df for df in results[0] if len(df) > 0]) cat_cols = ['vartype1', 'vartype2', 'a1', 'a2', \ 'GT1', 'GT2', 'GT','sample_ids', 'zygosity'] res_df.loc[:, cat_cols] = res_df[cat_cols].astype('category') return res_df
8569a4eb82ff04db1bee46b00bbd9eedf8b4d094
14,417
def find_attachments(pattern, cursor): """Return a list of attachments that match the specified pattern. Args: pattern: The path to the attachment, as a SQLite pattern (to be passed to a LIKE clause). cursor: The Cursor object through which the SQLite queries are sent to the Zotero database. Returns: A list of (parentItemID, path) pairs that match the specified pattern. The returned list is empty if no matches are found. """ query = 'SELECT parentItemID, path FROM itemAttachments WHERE path LIKE ?' cursor.execute(query, (pattern,)) return list(cursor)
614649f6fd5972b026b191bb1a272e270dedffe5
14,418
def generate_symmetric_matrix(n_unique_action: int, random_state: int) -> np.ndarray: """Generate symmetric matrix Parameters ----------- n_unique_action: int (>= len_list) Number of actions. random_state: int Controls the random seed in sampling elements of matrix. Returns --------- symmetric_matrix: array-like, shape (n_unique_action, n_unique_action) """ random_ = check_random_state(random_state) base_matrix = random_.normal(scale=5, size=(n_unique_action, n_unique_action)) symmetric_matrix = ( np.tril(base_matrix) + np.tril(base_matrix).T - np.diag(base_matrix.diagonal()) ) return symmetric_matrix
acb5d537762f2f306be8f300845dc6560c1dd121
14,419
def model_fields_map(model, fields=None, exclude=None, prefix='', prefixm='', attname=True, rename=None): """ На основании переданной модели, возвращает список tuple, содержащих путь в орм к этому полю, и с каким именем оно должно войти в результат. Обрабатываются только обычные поля, m2m и generic сюда не войдут. ARGUMENTS: :param model: модель или инстанс модели, на основе которой будет формироваться список полей :param None | collections.Container fields: список полей, которые будут забраны из модели :param None | collections.Container exclude: список полей, которые не будут забираться :param str prefix: ORM путь, по которому будут распологаться модель в запросе :param str prefixm: префикс, который будет добавлен к имени поля :param bool attname: использовать имя name (model) или attname(model_id) эти поля отличаются для внешних ключей :param dict rename: словарь переименования полей :rtype: list[tuple[str]] """ data = [] rename = rename or {} attribute = 'attname' if attname else 'name' for f in model._meta.concrete_fields: if fields and f.attname not in fields and f.name not in fields: continue if exclude and f.attname in exclude and f.name not in exclude: continue param_name = getattr(f, attribute) new_param_name = rename[param_name] if param_name in rename else param_name data.append(('{}{}'.format(prefix, param_name), '{}{}'.format(prefixm, new_param_name))) return data
812247543e5f714e0d2ef57cf018b0741679f83e
14,420