Statement:
stringlengths
7
24.3k
lemma vec_plus_Cons: shows "vec_plus (a # as) (b # bs) = (a+b) # vec_plus as bs"
lemma permutes_induct [consumes 2, case_names id swap]: \<open>P p\<close> if \<open>p permutes S\<close> \<open>finite S\<close> and id: \<open>P id\<close> and swap: \<open>\<And>a b p. a \<in> S \<Longrightarrow> b \<in> S \<Longrightarrow> p permutes S \<Longrightarrow> P p \<Longrightarrow> P (transpose a b \<circ> p)\<close>
lemma param_opt_lowest_tops_lem: "param_opt i t e = None \<Longrightarrow> \<exists>y. lowest_tops [i,t,e] = Some y"
lemma fps_neg_nth [simp]: "(- f) $ n = - (f $ n)"
lemma pref_compE [elim]: assumes "u \<bowtie> v" obtains "u \<le>p v" | "v \<le>p u"
lemma BSIA_implies_IA: "(BSIA \<rho> \<V> Tr\<^bsub>ES\<^esub>) \<Longrightarrow> (IA \<rho> \<V> Tr\<^bsub>ES\<^esub>)"
lemma Ide_imp_Ide_last [simp]: assumes "Ide T" shows "R.ide (last T)"
lemma unique_favorites: "i \<in> agents \<Longrightarrow> favorites R i = {favorite R i}"
lemma infiniteTr_strong_coind[consumes 1, case_names sub]: assumes *: "phi tr" and **: "\<And> tr. phi tr \<Longrightarrow> \<exists> tr' \<in> set (sub tr). phi tr' \<or> infiniteTr tr'" shows "infiniteTr tr"
theorem f_Exec_Stream_causal: " xs \<down> n = ys \<down> n \<Longrightarrow> (f_Exec_Comp_Stream trans_fun xs c) \<down> n = (f_Exec_Comp_Stream trans_fun ys c) \<down> n"
lemma squarefreeD: "squarefree n \<Longrightarrow> x ^ 2 dvd n \<Longrightarrow> x dvd 1"
lemma lookup_map_key_PP: "lookup (Poly_Mapping.map_key PP p) t = lookup p (PP t)"
lemma dual_zero: "bot\<^sup>d = top"
lemma plus_eq_infty_iff_enat: "(m::enat) + n = \<infinity> \<longleftrightarrow> m=\<infinity> \<or> n=\<infinity>"
lemma defNode_eq[intro]: assumes "n \<in> set (\<alpha>n g)" "v \<in> allDefs g n" shows "defNode g v = n"
lemma "test (do { TEST_ID \<leftarrow> return ''test4-should-not-exist''; e \<leftarrow> Document_getElementById_document . createElement(''div''); e . setAttribute(''id'', TEST_ID); tmp0 \<leftarrow> Document_getElementById_document . getElementById(TEST_ID); assert_equals(tmp0, None, ''should be null''); tmp1 \<leftarrow> Document_getElementById_document . body; tmp1 . appendChild(e); tmp2 \<leftarrow> Document_getElementById_document . getElementById(TEST_ID); assert_equals(tmp2, e, ''should be the appended element'') }) Document_getElementById_heap"
lemma empty_\<Z>[simp]: "k > length Doc \<Longrightarrow> \<Z> k u = {}"
lemma (in Group) contain_commutator:"\<lbrakk>G \<guillemotright> H; (commutators G) \<subseteq> H\<rbrakk> \<Longrightarrow> G \<triangleright> H"
lemma Prefixes_union [simp]: "Prefixes (A \<union> B) = Prefixes A \<union> Prefixes B"
lemma "(sep_empty imp ((((p4 ** p1) \<longrightarrow>* ((p8 ** sep_empty ) \<longrightarrow>* p0)) imp (p1 \<longrightarrow>* (p1 ** ((p4 ** p1) \<longrightarrow>* ((p8 ** sep_empty ) \<longrightarrow>* p0))))) \<longrightarrow>* (((p4 ** p1) \<longrightarrow>* ((p8 ** sep_empty ) \<longrightarrow>* p0)) imp (p1 \<longrightarrow>* (((p1 ** p4) \<longrightarrow>* ((p8 ** sep_empty ) \<longrightarrow>* p0)) ** p1))))) (h::'a::heap_sep_algebra)"
lemma NR\<^sub>N_0[simp]: "NR\<^sub>N 0 u l = 0"
lemma restr_empty [simp]: "restrict {} al = []" "restrict A [] = []"
lemma outputSupportDerivative: fixes P :: pi and a :: name and b :: name and P' :: pi assumes "P \<longmapsto>a[b] \<prec> P'" shows "(supp P') \<subseteq> ((supp P)::name set)"
lemma T_Assign_helper: "\<lbrakk> eval_bool p \<tau> ; l' = (l \<tau>) (Inl v := eval_word e \<tau>) ; \<tau>' = \<tau> (| l := l' |) \<rbrakk> \<Longrightarrow> step_t a (\<tau>, (Assign (Var v) e, p)) \<tau>'"
lemma bounded_bilinear_sq_mtx_vec_mult: "bounded_bilinear (\<lambda>A s. A *\<^sub>V s)"
lemma list_empty: "list idle = [] \<longleftrightarrow> is_empty idle"
theorem ratfps_nth_bigo: fixes q :: "complex poly" assumes "R > 0" assumes roots1: "\<And>z. z \<in> ball 0 (1 / R) \<Longrightarrow> poly q z \<noteq> 0" assumes roots2: "\<And>z. z \<in> sphere 0 (1 / R) \<Longrightarrow> poly q z = 0 \<Longrightarrow> order z q \<le> Suc k" shows "fps_nth (fps_of_poly p / fps_of_poly q) \<in> O(\<lambda>n. of_nat n ^ k * of_real R ^ n)"
lemma inside_iter: "inside z n = (0 < Iter pdec2 n z)"
lemma prime_Esigma_mult: assumes "prime m" and "prime n" and "m \<noteq> n" shows "Esigma (m*n) = (Esigma n)*(Esigma m)"
lemma (in bibd) bibd_to_pbdI[intro]: assumes "\<Lambda> = 1" shows "k_PBD \<V> \<B> \<k>"
lemma spec_imp_exchange_spec: "FullSpec s \<Longrightarrow> cri.spec (smap exchange_config s)"
lemma r_result_converg': assumes "eval r_univ [i, x] \<down>= v" shows "\<exists>t. (\<forall>t'\<ge>t. eval r_result [t', i, x] \<down>= Suc v) \<and> (\<forall>t'<t. eval r_result [t', i, x] \<down>= 0)"
lemma degree_poly_mult_rat[simp]: assumes "r \<noteq> 0" shows "degree (poly_mult_rat r p) = degree p"
lemma le_convert:"\<lbrakk>a = b; a \<le> c\<rbrakk> \<Longrightarrow> b \<le> c"
lemma b_least2_aux2: "b_least2 f x y < y \<Longrightarrow> b_least2 f x (Suc y) = b_least2 f x y"
lemma e_type_local: assumes "\<S>\<bullet>\<C> \<turnstile> [Local n i vs es] : (ts _> ts')" shows "\<exists>tls. i < length (s_inst \<S>) \<and> length tls = n \<and> (\<S>\<bullet>((s_inst \<S>)!i)\<lparr>local := (local ((s_inst \<S>)!i)) @ (map typeof vs), return := Some tls\<rparr> \<turnstile> es : ([] _> tls)) \<and> ts' = ts @ tls"
lemma ref_WHILEIT_invarI: assumes "I s \<Longrightarrow> M \<le> \<Down>R (WHILEIT I b f s)" shows "M \<le> \<Down>R (WHILEIT I b f s)"
lemma wf_until_aux_Cons: "wf_until_aux \<sigma> n R pos \<phi> I \<psi> (a # aux) ne \<Longrightarrow> wf_until_aux \<sigma> n R pos \<phi> I \<psi> aux (Suc ne)"
lemma PO_l2_inv7 [iff]: "reach l2 \<subseteq> l2_inv7"
lemma (in Group) r_unit_sg:"\<lbrakk>G \<guillemotright> H; h \<in> H\<rbrakk> \<Longrightarrow> h \<cdot> \<one> = h"
lemma append_fun_equiv: "\<lbrakk> t1' \<sim> t1; t2' \<sim> t2 \<rbrakk> \<Longrightarrow> t1' @ t2' \<sim> t1 @ t2"
lemma has_fps_expansion_exp_neg1 [fps_expansion_intros]: "(\<lambda>x::'a :: {banach, real_normed_field}. exp (-x)) has_fps_expansion fps_exp (-1)"
lemma hd_o_singl[simp]: "hd o singl = id"
lemma subst_is_fresh[simp]: assumes "atom y \<sharp> z" shows "atom y \<sharp> e[y ::= z]" and "atom ` domA \<Gamma> \<sharp>* y \<Longrightarrow> atom y \<sharp> \<Gamma>[y::h=z]"
lemma Iagree_sub:"\<And>I J A B . A \<subseteq> B \<Longrightarrow> Iagree I J B \<Longrightarrow> Iagree I J A"
lemma owhile_NF [wp]: "\<lbrakk>\<And>a. ovalidNF (\<lambda>s. I a s \<and> C a s) (B a) I; \<And>a m. ovalid (\<lambda>s. I a s \<and> C a s \<and> M a s = m) (B a) (\<lambda>r s. M r s < m); \<And>a s. \<lbrakk>I a s; \<not> C a s\<rbrakk> \<Longrightarrow> Q a s\<rbrakk> \<Longrightarrow> ovalidNF (I a) (owhile_inv C B a I M) Q"
lemma set_of_times: "set_of (X * Y) = {x * y | x y. x \<in> set_of X \<and> y \<in> set_of Y}" for X Y::"'a :: {linordered_ring, real_normed_algebra, linear_continuum_topology} interval"
lemma language_state_elim[elim]: assumes "w \<in> LS M q" obtains r where "path M (w || r) q" "length w = length r"
lemma "\<lfloor>\<^bold>\<box>\<^bold>\<exists>\<^sup>E G \<^bold>\<leftrightarrow> \<^bold>\<box>\<^bold>\<exists>\<^sup>E \<^bold>\<down>G\<rfloor>"
lemma silent_moves_preds_transfers_path: "\<lbrakk>S,f \<turnstile> (n,s) =as\<Rightarrow>\<^sub>\<tau> (n',s'); valid_node n\<rbrakk> \<Longrightarrow> preds (map f as) s \<and> transfers (map f as) s = s' \<and> n -as\<rightarrow>* n'"
lemma g1_leadsto_a1: "\<turnstile> \<box>[(N1 \<or> N2) \<and> \<not>beta1]_(x,y,sem,pc1,pc2) \<and> SF(N1)_(x,y,sem,pc1,pc2) \<and> \<box>#True \<longrightarrow> (pc1 = #g \<leadsto> pc1 = #a)"
lemma HF_Ord [simp]: "Ord i \<Longrightarrow> HF i = W i"
lemma comp_one_vector: "one_vector x \<Longrightarrow> one_vector y \<Longrightarrow> one_vector (x * y)"
lemma inv_register_tensor[simp]: assumes [simp]: \<open>iso_register F\<close> \<open>iso_register G\<close> shows \<open>inv (F \<otimes>\<^sub>r G) = inv F \<otimes>\<^sub>r inv G\<close>
lemma reduce_system_matrix_equation_preserved_R: fixes p:: "real poly" fixes qs :: "real poly list" fixes subsets :: "(nat list*nat list) list" fixes signs :: "rat list list" assumes nonzero: "p \<noteq> 0" assumes welldefined_signs: "well_def_signs (length qs) signs" assumes welldefined_subsets: "all_list_constr_R (subsets) (length qs)" assumes distinct_signs: "distinct signs" assumes all_info: "set (characterize_consistent_signs_at_roots p qs) \<subseteq> set(signs)" assumes match: "satisfy_equation_R p qs subsets signs" assumes invertible_mat: "invertible_mat (matrix_A_R signs subsets)" shows "satisfy_equation_R p qs (get_subsets_R (reduce_system_R p (qs, ((matrix_A_R signs subsets), (subsets, signs))))) (get_signs_R (reduce_system_R p (qs, ((matrix_A_R signs subsets), (subsets, signs)))))"
lemma sylow_greater_zero: shows "card (subgroups_of_size (p ^ a)) > 0"
lemma Converter_parametric [transfer_rule]: "((A ===> rel_gpv'' (rel_prod B (rel_converter A B C R)) C R) ===> rel_converter A B C R) Converter Converter"
lemma zero_less_arctan_iff [simp]: "0 < arctan x \<longleftrightarrow> 0 < x"
lemma qtable_wf_tupleD: "qtable n A P Q X \<Longrightarrow> \<forall>x\<in>X. wf_tuple n A x"
lemma similar_nice_def: "x \<triangleleft>\<triangleright> y \<longleftrightarrow> (x = \<bottom> \<and> y = \<bottom> \<or> (\<exists> b. x = B\<cdot>(Discr b) \<and> y = CB\<cdot>(Discr b)) \<or> (\<exists> f g. x = Fn\<cdot>f \<and> y = CFn\<cdot>g \<and> (\<forall> a b. a \<triangleleft>\<triangleright> b\<cdot>C\<^sup>\<infinity> \<longrightarrow> f\<cdot>a \<triangleleft>\<triangleright> g\<cdot>b\<cdot>C\<^sup>\<infinity>)))" (is "?L \<longleftrightarrow> ?R")
lemma fold_A_comp_fixespointwise: "fixespointwise (fold_A \<circ> opp_fold_A) (\<Union> (fold_A \<turnstile> A))"
lemma abs_ik_append: "(ik\<^sub>s\<^sub>s\<^sub>t (A@B) \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a = (ik\<^sub>s\<^sub>s\<^sub>t A \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a \<union> (ik\<^sub>s\<^sub>s\<^sub>t B \<cdot>\<^sub>s\<^sub>e\<^sub>t I) \<cdot>\<^sub>\<alpha>\<^sub>s\<^sub>e\<^sub>t a"
lemma CAS_\<tau>red1r_xt3: "\<tau>red1gr uf P t h (e, xs) (e', xs') \<Longrightarrow> \<tau>red1gr uf P t h (Val v\<bullet>compareAndSwap(D\<bullet>F, Val v', e), xs) (Val v\<bullet>compareAndSwap(D\<bullet>F, Val v', e'), xs')"
lemma order_listI2[intro!] : "order r A \<Longrightarrow> order(Listn.le r) (\<Union>{nlists n A |n. n \<le> mxs})"
lemma inessential_eq_continuous_logarithm: fixes f :: "'a::real_normed_vector \<Rightarrow> complex" shows "(\<exists>a. homotopic_with_canon (\<lambda>h. True) S (-{0}) f (\<lambda>t. a)) \<longleftrightarrow> (\<exists>g. continuous_on S g \<and> (\<forall>x \<in> S. f x = exp(g x)))" (is "?lhs \<longleftrightarrow> ?rhs")
lemma finite_tvsT[simp]: "finite (tvsT T)"
lemma polyneg0: fixes p::"'a::ring_1 poly" shows "isnpolyh p n \<Longrightarrow> (~\<^sub>p p) = 0\<^sub>p \<longleftrightarrow> p = 0\<^sub>p"
lemma A_authenticates_B: "\<lbrakk> Crypt K (Number Ta) \<in> parts (spies evs); Crypt (shrK A) \<lbrace>Number Tk, Agent B, Key K, X\<rbrace> \<in> parts (spies evs); Key K \<notin> analz (spies evs); A \<notin> bad; B \<notin> bad; evs \<in> bankerb_gets \<rbrakk> \<Longrightarrow> Says B A (Crypt K (Number Ta)) \<in> set evs"
lemma mat_O_mult_beta: "mat_O *\<^sub>v \<beta> = - \<beta>"
lemma most_recent_write_recent: "\<lbrakk> P,E \<turnstile> r \<leadsto>mrw w; adal \<in> action_loc P E r; w' \<in> write_actions E; adal \<in> action_loc P E w' \<rbrakk> \<Longrightarrow> E \<turnstile> w' \<le>a w \<or> E \<turnstile> r \<le>a w'"
lemma pairs_stone: "(x,y) \<in> pairs \<Longrightarrow> pairs_sup (pairs_uminus (x,y)) (pairs_uminus (pairs_uminus (x,y))) = pairs_top"
lemma act_sup_distr: "\<alpha> (x \<squnion> y) p = (\<alpha> x p) \<squnion> (\<alpha> y p)"
lemma wadjust_loop_start_Oc_via_Bk_move[simp]: "wadjust_loop_right_move2 m rs (c, Bk # list) \<Longrightarrow> wadjust_loop_start m rs (c, Oc # list)"
lemma g_diff_alt: "g_diff s1 s2 = iterate_diff_set s1 s1.delete (s2.iteratei s2)"
lemma spmf_cond_bind_spmf_fst [simp]: "spmf (cond_bind_spmf_fst p f x) i = spmf p i * spmf (f i) x / spmf (bind_spmf p f) x"
lemma path_edge_rev_cases[case_names no_use split]: assumes "path (insert (u,v) E) w p x" obtains "path E w p x" | p1 p2 where "path (insert (u,v) E) w p1 u" "path E v p2 x"
lemma bless_eq_trans [trans]: assumes "s \<le>\<^sub>b t" and "t \<le>\<^sub>b u" shows "s \<le>\<^sub>b u"
lemma compl_set [code]: "- set xs = List.coset xs"
lemma alive_arr_loc [simp]: "isArrV x \<Longrightarrow> alive (ref (x.[i])) s = alive x s"
lemma inst_output_consistency: assumes rvpeq: "rvpeq (rcurrent s) s t" and current_eq: "rcurrent s = rcurrent t" shows "routput_f s a = routput_f t a"
lemma [trans] : "P' \<subseteq> P \<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P c Q,A \<Longrightarrow> \<Gamma>,\<Theta>\<turnstile>\<^sub>t\<^bsub>/F\<^esub> P' c Q,A"
lemma Arcsin_unique: "\<lbrakk>sin z = w; \<bar>Re z\<bar> < pi/2 \<or> (\<bar>Re z\<bar> = pi/2 \<and> Im z = 0)\<rbrakk> \<Longrightarrow> Arcsin w = z"
lemma val_ineq_cancel_le': assumes "a \<in> nonzero Q\<^sub>p" assumes "b \<in> carrier Q\<^sub>p" assumes "c \<in> carrier Q\<^sub>p" assumes "val b < val c" shows "val (a \<otimes> b) < val (a \<otimes> c)"
lemma basis_hull_sub: "\<BB> \<langle>G\<rangle> \<subseteq> G"
lemma transpos_id_1:"\<lbrakk>i \<le> n; j \<le> n; i \<noteq> j; x \<le> n; x \<noteq> i; x \<noteq> j\<rbrakk> \<Longrightarrow> transpos i j x = x"
lemma matchPres: fixes P :: pi and Q :: pi and a :: name and b :: name and Rel :: "(pi \<times> pi) set" and Rel' :: "(pi \<times> pi) set" assumes PSimQ: "P \<leadsto>\<^sup>^<Rel> Q" and RelStay: "\<And>P Q a. (P, Q) \<in> Rel \<Longrightarrow> ([a\<frown>a]P, Q) \<in> Rel" and RelRel': "Rel \<subseteq> Rel'" shows "[a\<frown>b]P \<leadsto>\<^sup>^<Rel'> [a\<frown>b]Q"
lemma "preorder R \<Longrightarrow> \<lfloor>T\<rfloor> \<and> \<lfloor>IV\<rfloor>"
lemma wf_subtrOf: assumes "wf tr" and "Inr n \<in> prodOf tr" shows "wf (subtrOf tr n)"
lemma unsat_state_core_unsat: "unsat_state_core s \<Longrightarrow> \<not> (\<exists> v. v \<Turnstile>\<^sub>s s)"
lemma maximal_distinct_prefix : assumes "\<not> distinct xs" obtains n where "distinct (take (Suc n) xs)" and "\<not> (distinct (take (Suc (Suc n)) xs))"
lemma ring_cfs_to_univ_poly_top_coeff: assumes "as \<in> carrier (R\<^bsup>Suc n\<^esup>)" shows "(ring_cfs_to_univ_poly n as) n = as ! n"
lemma trnl\<^sub>\<epsilon>_comp: assumes "ide u" and "seq \<mu> \<nu>" and "src f = trg \<mu>" shows "trnl\<^sub>\<epsilon> u (\<mu> \<cdot> \<nu>) = trnl\<^sub>\<epsilon> u \<mu> \<cdot> (f \<star> \<nu>)"
lemma Suc_mk_markovian[simp]: "\<pi>_Suc (mk_markovian p) x = mk_markovian (\<lambda>n. p (Suc n))"
lemma accepting_pair\<^sub>G\<^sub>R_abstract: assumes "finite (reach\<^sub>t \<Sigma> \<delta> q\<^sub>0)" and "finite (reach\<^sub>t \<Sigma> \<delta>' q\<^sub>0')" assumes "range w \<subseteq> \<Sigma>" assumes "run\<^sub>t \<delta> q\<^sub>0 w = f o (run\<^sub>t \<delta>' q\<^sub>0' w)" assumes "\<And>t. t \<in> reach\<^sub>t \<Sigma> \<delta>' q\<^sub>0' \<Longrightarrow> f t \<in> F \<longleftrightarrow> t \<in> F'" assumes "\<And>t i. i \<in> \<I> \<Longrightarrow> t \<in> reach\<^sub>t \<Sigma> \<delta>' q\<^sub>0' \<Longrightarrow> f t \<in> I i \<longleftrightarrow> t \<in> I' i" shows "accepting_pair\<^sub>G\<^sub>R \<delta> q\<^sub>0 (F, {I i | i. i \<in> \<I>}) w \<longleftrightarrow> accepting_pair\<^sub>G\<^sub>R \<delta>' q\<^sub>0' (F', {I' i | i. i \<in> \<I>}) w"
lemma knights_path_min1: "knights_path (board n m) ps \<Longrightarrow> min1 ps = 1"
lemma bisimReflexive: fixes \<Psi> :: 'b and P :: "('a, 'b, 'c) psi" shows "\<Psi> \<rhd> P \<sim> P"
lemma anti_mono: "l \<turnstile> c \<Longrightarrow> l' \<le> l \<Longrightarrow> l' \<turnstile> c"
lemma proper_it_mono_dres_dom_flat: assumes PR: "proper_it' it it'" assumes A: "\<And>kv x. flat_ge (f kv x) (f' kv x)" shows "flat_ge ((map_iterator_dom o it') s (case_dres False False c) (\<lambda>kv s. s \<bind> f kv) \<sigma>) ((map_iterator_dom o it') s (case_dres False False c) (\<lambda>kv s. s \<bind> f' kv) \<sigma>)"
lemma d_strict: "d(x) = bot \<longleftrightarrow> x \<le> Z"
lemma ASSERT_refine_left: assumes "\<Phi>" assumes "\<Phi> \<Longrightarrow> S \<le> \<Down>R S'" shows "do{ASSERT \<Phi>; S} \<le> \<Down>R S'"