Statement:
stringlengths 7
24.3k
|
---|
lemma pickInp_psubstInp_qPsubstInp:
assumes good: "goodInp inp" and good_rho: "goodEnv rho"
shows "pickInp (inp %[rho]) %= ((pickInp inp) %[[pickE rho]])" |
lemma \<psi>_eq:
"\<psi> = ccos (\<theta> / 2) \<cdot>\<^sub>v \<alpha> + csin (\<theta> / 2) \<cdot>\<^sub>v \<beta>" |
lemma continuous_on_inverse_closed_map:
assumes contf: "continuous_on S f"
and imf: "f ` S = T"
and injf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
and oo: "\<And>U. closedin (top_of_set S) U \<Longrightarrow> closedin (top_of_set T) (f ` U)"
shows "continuous_on T g" |
lemma kc_6x5_hd: "hd kc6x5 = (1,1)" |
lemma entry_in_tree_keys:
assumes "(k, v) \<in> set (entries t)"
shows "k \<in> set (keys t)" |
lemma uadmit_sterm_ntadjoint:
assumes TUA:"NTUadmit \<sigma> \<theta> U"
assumes VA:"Vagree \<nu> \<omega> (-U)"
assumes dsafe:"\<And>i . dsafe (\<sigma> i)"
assumes good_interp:"is_interp I"
shows "sterm_sem (adjointFO I \<sigma> \<nu>) \<theta> = sterm_sem (adjointFO I \<sigma> \<omega>) \<theta>" |
lemma InitSeqThrowReds:
assumes "P \<turnstile> \<langle>INIT C ([C],b) \<leftarrow> unit,s\<^sub>0,b\<^sub>0\<rangle> \<rightarrow>* \<langle>throw a,s\<^sub>1,b\<^sub>1\<rangle>"
shows "P \<turnstile> \<langle>INIT C ([C],b) \<leftarrow> e,s\<^sub>0,b\<^sub>0\<rangle> \<rightarrow>* \<langle>throw a,s\<^sub>1,b\<^sub>1\<rangle>" |
lemma ps_ta_states: "\<Q> (ps_ta \<A>) |\<subseteq>| Wrapp |`| fPow (\<Q> \<A>)" |
lemma complete_ht_copy: "n \<le> List.length ss \<Longrightarrow>
<is_hashtable ss src * is_hashtable ds dst>
ht_copy n src dst
<\<lambda>r. is_hashtable ss src * is_hashtable (ls_copy n ss ds) r>" |
lemma (in comm_monoid_mult) prod_list_multf:
"(\<Prod>x\<leftarrow>xs. f x * g x) = prod_list (map f xs) * prod_list (map g xs)" |
lemma not_ex_not: "\<not> (\<exists> x \<bullet> \<not> P) = (\<forall> x \<bullet> P)" |
lemma ins_inorder_pairs [rewrite]:
"rbt_sorted t \<Longrightarrow> rbt_in_traverse_pairs (ins x v t) = ordered_insert_pairs x v (rbt_in_traverse_pairs t)" |
lemma Omega_mult:
"(x * y)\<^sup>\<Omega> = 1 \<squnion> x * (y * x)\<^sup>\<Omega> * y" |
lemma PRE_D1: "(Q x \<and> P x) \<longrightarrow> comp_PRE S1 Q (\<lambda>x _. P x) S x" |
lemma sec_case_party_collapse [simp]: "sec.case_party x x p = x" |
lemma saturated_upto_complete_if:
assumes
satur: "saturated_upto N" and
unsat: "\<not> satisfiable N"
shows "{#} \<in> N" |
lemma wf_cont:
assumes "wf tr" and "Inr tr' \<in> cont tr"
shows "wf tr'" |
lemma mkId4b: "(l,ll):(mkId h) \<Longrightarrow> l:Dom h \<and> l = ll" |
lemma lookup_operator_eq_name: "lookup_operator name = Some (name', pres, effs, layer) \<Longrightarrow> name = name'" |
theorem sorted_wrt_dist_nearest_neighbors:
"sorted_wrt_dist p (nearest_neighbors n p kdt)" |
lemma param_rbt_union[param]:
fixes less
assumes param_less[param]: "(less,less') \<in> Ra \<rightarrow> Ra \<rightarrow> Id"
shows "(ord.rbt_union less, ord.rbt_union less')
\<in> \<langle>Ra,Rb\<rangle>rbt_rel \<rightarrow> \<langle>Ra,Rb\<rangle>rbt_rel \<rightarrow> \<langle>Ra,Rb\<rangle>rbt_rel" |
lemma [code]:
fixes xs :: "('a::finite \<times> 'a) list"
shows "Wellfounded.acc (set xs) = bacc (set xs) (card_UNIV TYPE('a))" |
theorem RPO_SN_order_pair: "SN_order_pair RPO_S RPO_NS" |
lemma topspace_discrete_topology [simp]: "topspace(discrete_topology U) = U" |
lemma eval_conj_tuple_empty2:
assumes "fo_nmlzd Z xs" "fo_nmlzd Z ys"
"length nsx = length xs" "length nsy = length ys"
"sorted_distinct nsx" "sorted_distinct nsy"
"sorted_distinct ns" "set ns \<subseteq> set nsx \<inter> set nsy"
"fo_nmlz Z (proj_tuple ns (zip nsx xs)) \<noteq> fo_nmlz Z (proj_tuple ns (zip nsy ys)) \<or>
(proj_tuple ns (zip nsx xs) \<noteq> proj_tuple ns (zip nsy ys) \<and>
(\<forall>x \<in> set (proj_tuple ns (zip nsx xs)). isl x) \<and> (\<forall>y \<in> set (proj_tuple ns (zip nsy ys)). isl y))"
shows "eval_conj_tuple Z nsx nsy xs ys = {}" |
lemma insort_insert_sorted:
assumes "l<j"
assumes "insort_insert_post l j a a' i'"
assumes "ran_sorted a l j"
shows "ran_sorted a' l (j + 1)" |
lemma irreducible_poly_uminus_abs[simp]: "irreducible p \<Longrightarrow> irreducible (poly_uminus_abs p)" |
lemma gauge_integral_Fubini_curve_bounded_region_x:
fixes f g :: "('a::euclidean_space * 'b::euclidean_space) \<Rightarrow> 'c::euclidean_space" and
g1 g2:: "'a \<Rightarrow> 'b" and
s:: "('a * 'b) set"
assumes fun_lesbegue_integrable: "integrable lborel f" and
x_axis_gauge_integrable: "\<And>x. (\<lambda>y. f(x, y)) integrable_on UNIV" and
(*IS THIS redundant? NO IT IS NOT*)
x_axis_integral_measurable: "(\<lambda>x. integral UNIV (\<lambda>y. f(x, y))) \<in> borel_measurable lborel" and
f_is_g_indicator: "f = (\<lambda>x. if x \<in> s then g x else 0)" and
s_is_bounded_by_g1_and_g2: "s = {(x,y). (\<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i) \<and>
(\<forall>i\<in>Basis. (g1 x) \<bullet> i \<le> y \<bullet> i \<and> y \<bullet> i \<le> (g2 x) \<bullet> i)}"
shows "integral s g = integral (cbox a b) (\<lambda>x. integral (cbox (g1 x) (g2 x)) (\<lambda>y. g(x,y)))" |
lemma square_free_square_free_factorization:
"square_free (p :: 'a :: {field,factorial_ring_gcd,semiring_gcd_mult_normalize} poly) \<Longrightarrow>
degree p \<noteq> 0 \<Longrightarrow> square_free_factorization p (1,[(p,0)])" |
lemma cla_mono':
"Z' \<subseteq> V \<Longrightarrow> Z \<subseteq> Z' \<Longrightarrow> Closure\<^sub>\<alpha> Z \<subseteq> Closure\<^sub>\<alpha> Z'" |
lemma upper_asymptotic_density_0_Delta:
assumes "upper_asymptotic_density (A \<Delta> B) = 0"
shows "upper_asymptotic_density A = upper_asymptotic_density B" |
lemma renaming:
fixes P :: pi
and a :: name
and b :: name
and c :: name
assumes "c \<sharp> P"
shows "P[a::=b] = ([(c, a)] \<bullet> P)[c::=b]" |
lemma run_one_step_basic_cvtop_result:
assumes "run_one_step d i (s,vs,ves,$Cvtop t2 x312 t1 sx) = (s', vs', res)"
shows "(\<exists>r. res = RSNormal r) \<or> (\<exists>e. res = RSCrash e)" |
lemma setdist_closure_2 [simp]: "setdist T (closure S) = setdist T S" |
lemma rtrancl_to_subtuple:
"(subtuple r)\<^sup>*\<^sup>* xm ym \<Longrightarrow>
subtuple r\<^sup>*\<^sup>* xm ym" |
lemma fvi_plus_bound:
assumes "\<forall>i\<in>fvi (b + c) \<phi>. i < n"
shows "\<forall>i\<in>fvi b \<phi>. i < c + n" |
lemma word_2p_mult_inc:
assumes x: "2 * 2 ^ n < (2::'a::len word) * 2 ^ m"
assumes suc_n: "Suc n < LENGTH('a::len)"
shows "2^n < (2::'a::len word)^m" |
lemma ipresCons_imp_ipresSubstAll_aux:
assumes *: "ipresCons h hA MOD" and **: "igSubstCls MOD"
and "igConsIPresIGWls MOD" and "igFreshCls MOD"
assumes P: "wlsPar P"
shows
"(wls s X \<longrightarrow>
(\<forall> ys y Y. y \<in> varsOfS P ys \<and> Y \<in> termsOfS P (asSort ys) \<longrightarrow>
h (X #[Y / y]_ys) = igSubst MOD ys (h Y) y (h X)))
\<and>
(wlsAbs (us,s') A \<longrightarrow>
(\<forall> ys y Y. y \<in> varsOfS P ys \<and> Y \<in> termsOfS P (asSort ys) \<longrightarrow>
hA (A $[Y / y]_ys) = igSubstAbs MOD ys (h Y) y (hA A)))" |
lemma push_down_rank_tokens:
"\<lbrakk>rank x n = rank y n; rank x n = Some i\<rbrakk> \<Longrightarrow> (\<exists>q. x \<in> configuration q n \<and> y \<in> configuration q n)" |
lemma subcls''_eq_subcls: "subcls'' P = subcls (Program P)" |
lemma ts_inf_make_untimed_inf_tl:
assumes "ts x"
shows "inf_make_untimed (inf_tl x) i = inf_make_untimed x (Suc i)" |
lemma i_join_i_expand_iMOD: "
0 < k \<Longrightarrow> f \<odot>\<^sub>i k \<Join>\<^sub>i [n * k, mod k] = f \<Join>\<^sub>i [n\<dots>]" |
lemma step_4_push_big_size_ok_1: "\<lbrakk>
invar (States dir big small);
4 \<le> remaining_steps (States dir big small);
(step^^4) (States dir (Big.push x big) small) = States dir' big' small';
remaining_steps (States dir big small) + 1 \<le> 4 * size small
\<rbrakk> \<Longrightarrow> remaining_steps (States dir' big' small') + 1 \<le> 4 * size small'" |
lemma fls_prpart_minus [simp] : "fls_prpart (f - g) = fls_prpart f - fls_prpart g" |
lemma count_list_gr_0_iff: "0 < count_list u a \<longleftrightarrow> a \<in> set u" |
lemma subtr2_StepR:
assumes r: "root tr3 \<in> ns" and tr23: "Inr tr2 \<in> cont tr3" and s: "subtr2 ns tr1 tr2"
shows "subtr2 ns tr1 tr3" |
theorem CauchysMeanTheorem_Eq:
fixes z::"real list"
assumes "pos z"
shows "gmean z = mean z \<longleftrightarrow> het z = 0" |
lemma measure_of_eq:
assumes closed: "A \<subseteq> Pow \<Omega>" and eq: "(\<And>a. a \<in> sigma_sets \<Omega> A \<Longrightarrow> \<mu> a = \<mu>' a)"
shows "measure_of \<Omega> A \<mu> = measure_of \<Omega> A \<mu>'" |
lemma wf_interp_for_formula_FOr:
"wf_interp_for_formula (w, I) (FOr \<phi>1 \<phi>2) =
(wf_interp_for_formula (w, I) \<phi>1 \<and> wf_interp_for_formula (w, I) \<phi>2)" |
lemma lens_plus_swap:
"X \<bowtie> Y \<Longrightarrow> swap\<^sub>L ;\<^sub>L (X +\<^sub>L Y) = (Y +\<^sub>L X)" |
lemma powr_growth2:
"\<exists>C c2. 0 < c2 \<and> C < Min (set bs) \<and>
eventually (\<lambda>x. \<forall>u\<in>{C * x..x}. c2 * x powr p' \<ge> u powr p') at_top" |
lemma extreme_point_of_convex_hull_affine_independent:
fixes S :: "'a::euclidean_space set"
shows
"\<not> affine_dependent S
\<Longrightarrow> (x extreme_point_of (convex hull S) \<longleftrightarrow> x \<in> S)" |
lemma borel_eq_atLeastAtMost:
"borel = sigma UNIV (range (\<lambda>(a,b). {a..b} ::'a::ordered_euclidean_space set))"
(is "_ = ?SIGMA") |
lemma cauchy_ine\<^sub>N_I:
assumes "\<And>e. e > 0 \<Longrightarrow> (\<exists>M. \<forall>n\<ge>M. \<forall>m\<ge>M. eNorm N (u n - u m) < e)"
shows "cauchy_ine\<^sub>N N u" |
lemma lub_set: "lub S = \<Union>S" |
lemma lmap_eq_lmap_conv_llist_all2:
"lmap f xs = lmap g ys \<longleftrightarrow> llist_all2 (\<lambda>x y. f x = g y) xs ys" (is "?lhs \<longleftrightarrow> ?rhs") |
lemma Omega_one:
"1\<^sup>\<Omega> = top" |
lemma jumpNestingOk_eval_no_jump:
assumes eval: "prg Env\<turnstile> s0 \<midarrow>t\<succ>\<rightarrow> (v,s1)" and
jmpOk: "jumpNestingOk {} t" and
no_jmp: "abrupt s0 \<noteq> Some (Jump j)" and
wt: "Env\<turnstile>t\<Colon>T" and
wf: "wf_prog (prg Env)"
shows "abrupt s1 \<noteq> Some (Jump j) \<and>
(normal s1 \<longrightarrow> v=In2 (w,upd)
\<longrightarrow> abrupt s \<noteq> Some (Jump j')
\<longrightarrow> abrupt (upd val s) \<noteq> Some (Jump j'))" |
lemma lift_bool: "x \<Longrightarrow> x=True" |
lemma closedin_Int_closure_of:
"closedin (subtopology X S) T \<longleftrightarrow> S \<inter> X closure_of T = T" |
lemma dprodI [intro!]:
"\<lbrakk>(M,M') \<in> r; (N,N') \<in> s\<rbrakk> \<Longrightarrow> (Scons M N, Scons M' N') \<in> dprod r s" |
lemma lunit_char_eqn:
assumes "ide a"
shows "prod \<one> (lunit a) = prod \<iota> a \<cdot> assoc' \<one> \<one> a" |
lemma shEx_lift_seq_2 [uquant_lift]:
"(P ;; (\<^bold>\<exists> x \<bullet> Q x)) = (\<^bold>\<exists> x \<bullet> (P ;; Q x))" |
lemma(in UP_cring) cfs_monom_mult_2:
assumes "f \<in> carrier P"
assumes "a \<in> carrier R"
assumes "m < n"
shows "((monom P a n) \<otimes>\<^bsub>P\<^esub> f) m = \<zero>" |
lemma path2_tl_in_\<alpha>n[elim]: "g \<turnstile> n-ns\<rightarrow>m \<Longrightarrow> m \<in> set (\<alpha>n g)" |
lemma chine_assoc_naturality:
shows "cods.chine_assoc \<cdot> \<mu>\<nu>_\<pi>.chine = \<mu>\<nu>\<pi>.chine \<cdot> doms.chine_assoc" |
lemma pj_invim_cont_I:"\<lbrakk>Ring R; ideal R I; ideal (qring R I) J\<rbrakk> \<Longrightarrow>
I \<subseteq> (rInvim R (qring R I) (pj R I) J)" |
lemma epsclo_UN [simp]: "epsclo (\<Union>x\<in>A. B x) = (\<Union>x\<in>A. epsclo (B x))" |
lemma autoref_the[autoref_rules]:
assumes "SIDE_PRECOND (x\<noteq>None)"
assumes "(x',x)\<in>\<langle>R\<rangle>option_rel"
shows "(the x', (OP the ::: \<langle>R\<rangle>option_rel \<rightarrow> R)$x) \<in> R" |
lemma [code]:
"(\<sigma> \<Turnstile> m) = (case (m \<sigma>) of None \<Rightarrow> False | (Some (x,y)) \<Rightarrow> x)" |
lemma (in finite_product_prob_space) finite_measure_PiM_emb:
"(\<And>i. i \<in> I \<Longrightarrow> A i \<in> sets (M i)) \<Longrightarrow> measure (PiM I M) (Pi\<^sub>E I A) = (\<Prod>i\<in>I. measure (M i) (A i))" |
lemma qFresh_imp_ex_qAFresh2:
assumes "qGood X" and "qFresh xs x X" and "qFresh ys y X"
shows "\<exists> X'. qGood X' \<and> X #= X' \<and> qAFresh xs x X' \<and> qAFresh ys y X'" |
lemma ICdual: "\<I> \<^bold>\<equiv> \<C>\<^sup>d" |
lemma second_summand_overlap: "O z y \<Longrightarrow> O z (x \<oplus> y)" |
lemma inj_vreal_of_real: "inj vreal_of_real" |
lemma cmp_simps [simp]:
assumes "B.VV.arr \<mu>\<nu>"
shows "D.arr (cmp \<mu>\<nu>)"
and "D.dom (cmp \<mu>\<nu>) = H\<^sub>DoGF_GF.map (B.VV.dom \<mu>\<nu>)"
and "D.cod (cmp \<mu>\<nu>) = GFoH\<^sub>B.map (B.VV.cod \<mu>\<nu>)" |
lemma subcls1_induct [consumes 1]:
"\<lbrakk>ws_prog G; \<And>x. \<forall>y. (x, y) \<in> subcls1 G \<longrightarrow> P y \<Longrightarrow> P x\<rbrakk> \<Longrightarrow> P a" |
lemma val2formAppend:
fixes valuation1 :: Valuation and valuation2 :: Valuation
shows "val2form (valuation1 @ valuation2) = (val2form valuation1 @ val2form valuation2)" |
lemma card_UNIV_option: "CARD('a option) = (if CARD('a) = 0 then 0 else CARD('a) + 1)" |
lemma vars_load:
"\<lbrakk>0 \<le> i; i < size P; P !! i = LOAD x\<rbrakk> \<Longrightarrow> x \<in> set (vars P)" |
lemma remove_shadow_root_writes:
"writes (remove_shadow_root_locs element_ptr (the |h \<turnstile> get_shadow_root element_ptr|\<^sub>r))
(remove_shadow_root element_ptr) h h'" |
lemma cnf_of_literal_formula:
assumes "is_literal_formula f"
shows "cnf f = {{ literal_formula_to_literal f }}" |
lemma to_fun_res_ltrm:
assumes "a \<in> carrier Zp"
assumes "b \<in> carrier Zp"
assumes "f \<in> carrier Zp_x"
assumes "a k = b k"
shows "((ltrm f)\<bullet>a) k = ((ltrm f)\<bullet>b) k" |
lemma HFun_Sigma_Iff:
assumes "atom z \<sharp> (r,z',x,y,x',y')" "atom z' \<sharp> (r,x,y,x',y')"
"atom x \<sharp> (r,y,x',y')" "atom y \<sharp> (r,x',y')"
"atom x' \<sharp> (r,y')" "atom y' \<sharp> (r)"
shows
"{} \<turnstile>HFun_Sigma r IFF
All2 z r (All2 z' r (Ex x (Ex y (Ex x' (Ex y'
(Var z EQ HPair (Var x) (Var y) AND Var z' EQ HPair (Var x') (Var y')
AND OrdP (Var x) AND OrdP (Var x') AND
((Var x NEQ Var x') OR (Var y EQ Var y'))))))))" |
theorem sigma_protocol:
shows "chaum_ped_sigma.\<Sigma>_protocol n" |
lemma e_lam_intro[intro]: "\<lbrakk> v = VFun f;
\<forall> v1 v2. (v1,v2) \<in> set f \<longrightarrow> v2 \<in> E e ((x,v1)#\<rho>) \<rbrakk>
\<Longrightarrow> v \<in> E (ELam x e) \<rho>" |
lemma ta_der_ctxt_n_loop:
assumes "q |\<in>| ta_der \<A> t" "q |\<in>| ta_der \<A> C\<langle>Var q\<rangle>"
shows " q |\<in>| ta_der \<A> (C^n)\<langle>t\<rangle>" |
lemma sorted_list_of_set_bij_betw:
assumes "finite A"
shows "bij_betw (\<lambda>n. sorted_list_of_set A ! n) {..<card A} A" |
lemma lcp_lenI: assumes "i < min \<^bold>|u\<^bold>| \<^bold>|v\<^bold>|" and "take i u = take i v" and "u!i \<noteq> v!i"
shows "i = \<^bold>|u \<and>\<^sub>p v\<^bold>|" |
lemma rGamma_series_nonpos_Ints_LIMSEQ: "z \<in> \<int>\<^sub>\<le>\<^sub>0 \<Longrightarrow> rGamma_series z \<longlonglongrightarrow> 0" |
lemma emeasure_return_pmf[simp]: "emeasure (return_pmf x) X = indicator X x" |
lemma compact_imp_bounded:
assumes "compact U"
shows "bounded U" |
lemma in_var_plus [simp]: "in_var (x +\<^sub>L y) = in_var x +\<^sub>L in_var y" |
lemma M_perp_to_compass:
assumes "M_perp l m" and "a \<in> hyp2" and "proj2_incident a l"
and "b \<in> hyp2" and "proj2_incident b m"
shows "\<exists> J. is_K2_isometry J
\<and> apply_cltn2_line equator J = l \<and> apply_cltn2_line meridian J = m" |
lemma lemParallelTrans:
assumes "lineA \<parallel> lineB"
and "lineB \<parallel> lineC"
and "direction lineB \<noteq> vecZero"
shows "lineA \<parallel> lineC" |
theorem substEnv_def2:
"(rho &[Y / y]_ys) =
(\<lambda>xs x. case rho xs x of
None \<Rightarrow> if (xs = ys \<and> x = y) then Some Y else None
|Some X \<Rightarrow> Some (X #[Y / y]_ys))" |
lemma (in flowgraph) ntrp_mon_loc_e_no_ctx:
"((s,c),LOC e,(s',c'))\<in>ntrp fg \<Longrightarrow> mon_w fg e \<inter> mon_c fg c = {}" |
lemma (in Corps) eSum_tr:"
( \<forall>j \<le> n. (x j) \<in> carrier K) \<and>
( \<forall>j \<le> n. (b j) \<in> carrier K) \<and> l \<le> n \<and>
( \<forall>j\<in>({h. h \<le> n} -{l}). (g j = (x j) \<cdot>\<^sub>r (1\<^sub>r \<plusminus> -\<^sub>a (b j)))) \<and>
g l = (x l) \<cdot>\<^sub>r (-\<^sub>a (b l))
\<longrightarrow> (nsum K (\<lambda>j \<in> {h. h \<le> n}. (x j) \<cdot>\<^sub>r (1\<^sub>r \<plusminus> -\<^sub>a (b j))) n) \<plusminus> (-\<^sub>a (x l)) =
nsum K g n" |
lemma red_external_imp_red_external_aggr:
"P,t \<turnstile> \<langle>a\<bullet>M(vs), h\<rangle> -ta\<rightarrow>ext \<langle>va, h'\<rangle> \<Longrightarrow> (ta, va, h') \<in> red_external_aggr P t a M vs h" |
lemma subdivide_count_ex: "\<exists>n. L * abs (t1 - t0) / (Suc n) < 1" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.