Statement:
stringlengths
7
24.3k
lemma finsum_group: assumes "\<And>n. f n \<in> carrier R" assumes "\<And>n. g n \<in> carrier R" shows "finite S \<Longrightarrow> finsum R f S \<oplus> finsum R g S = finsum R (\<lambda>n. f n \<oplus> g n) S "
lemma CallRedsFinal: assumes wwf: "wwf_prog P" and "P,E \<turnstile> \<langle>e,s\<^sub>0\<rangle> \<rightarrow>* \<langle>ref(a,Cs),s\<^sub>1\<rangle>" "P,E \<turnstile> \<langle>es,s\<^sub>1\<rangle> [\<rightarrow>]* \<langle>map Val vs,(h\<^sub>2,l\<^sub>2)\<rangle>" and hp: "h\<^sub>2 a = Some(C,S)" and "method": "P \<turnstile> last Cs has least M = (Ts',T',pns',body') via Ds" and select: "P \<turnstile> (C,Cs@\<^sub>pDs) selects M = (Ts,T,pns,body) via Cs'" and size: "size vs = size pns" and casts: "P \<turnstile> Ts Casts vs to vs'" and l\<^sub>2': "l\<^sub>2' = [this \<mapsto> Ref(a,Cs'), pns[\<mapsto>]vs']" and body_case:"new_body = (case T' of Class D \<Rightarrow> \<lparr>D\<rparr>body | _ \<Rightarrow> body)" and body: "P,E(this \<mapsto> Class (last Cs'), pns [\<mapsto>] Ts) \<turnstile> \<langle>new_body,(h\<^sub>2,l\<^sub>2')\<rangle> \<rightarrow>* \<langle>ef,(h\<^sub>3,l\<^sub>3)\<rangle>" and final:"final ef" shows "P,E \<turnstile> \<langle>e\<bullet>M(es), s\<^sub>0\<rangle> \<rightarrow>* \<langle>ef,(h\<^sub>3,l\<^sub>2)\<rangle>"
lemma cf_proj_fst_is_functor: assumes "i \<in>\<^sub>\<circ> I" shows "\<pi>\<^sub>C\<^sub>.\<^sub>1 \<AA> \<BB> : \<AA> \<times>\<^sub>C \<BB> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<AA>"
lemma roots0: assumes p: "p \<noteq> 0" and p0: "degree p = 0" shows "{x. poly p x = 0} = {}"
theorem assumes "Re z > 1" and "a > (0::real)" shows Gamma_times_hurwitz_zeta_integral: "Gamma z * hurwitz_zeta a z = (\<integral>x\<in>{0<..}. (of_real x powr (z - 1) * of_real (exp (-a*x) / (1 - exp (-x)))) \<partial>lebesgue)" and Gamma_times_hurwitz_zeta_integrable: "set_integrable lebesgue {0<..} (\<lambda>x. of_real x powr (z - 1) * of_real (exp (-a*x) / (1 - exp (-x))))"
lemma rep_qbs_prob_space: "\<exists>X \<alpha> \<mu>. p = qbs_prob_space (X, \<alpha>, \<mu>) \<and> qbs_prob X \<alpha> \<mu>"
lemma singleton_sup_aux: "singleton default (A \<squnion> B) = (if A = \<bottom> then singleton default B else if B = \<bottom> then singleton default A else singleton default (single (singleton default A) \<squnion> single (singleton default B)))" for default
theorem (in finite_field) finite_field_order: "\<exists>n. order R = char R ^ n \<and> n > 0"
lemma decompose_rec: "ys \<noteq> [] \<Longrightarrow> decompose x (y#ys) = (case bezout_coefficients y (prod_list ys) of (a, b) \<Rightarrow> (b*x) # decompose (a*x) ys)"
lemma padic_add_closed: assumes "prime p" shows "\<And>x y. x \<in> carrier (padic_int p) \<Longrightarrow> y \<in> carrier (padic_int p) \<Longrightarrow> x \<oplus>\<^bsub>(padic_int p)\<^esub> y \<in> carrier (padic_int p)"
lemma pr_trans[trans]: fixes A::"'a prog" assumes prAB: "A \<sqsubseteq> B" and prBC: "B \<sqsubseteq> C" shows "A \<sqsubseteq> C"
lemma homeomorphic_ball01_UNIV: "ball (0::'a::real_normed_vector) 1 homeomorphic (UNIV:: 'a set)" (is "?B homeomorphic ?U")
lemma Source_union : "Source s \<union> Source t = Source (s \<union> t)"
lemma eeqButPID_trans: assumes "eeqButPID s s1" and "eeqButPID s1 s2" shows "eeqButPID s s2"
lemma product_simps[simp]: "alphabet\<^sub>2 (product AA) = \<Inter> (alphabet\<^sub>1 ` set AA)" "initial\<^sub>2 (product AA) = listset (map initial\<^sub>1 AA)" "transition\<^sub>2 (product AA) a ps = listset (map2 (\<lambda> A p. transition\<^sub>1 A a p) AA ps)" "condition\<^sub>2 (product AA) = condition (map condition\<^sub>1 AA)"
lemma gen_model_tc_rels[dest]: assumes M: "kripke M" and R: "(w', w'') \<in> (\<Union>a \<in> as. relations (gen_model M w) a)\<^sup>+" shows "(w', w'') \<in> (\<Union>a \<in> as. relations M a)\<^sup>+"
lemma fimageI1: assumes "x \<in>\<^sub>\<circ> \<R>\<^sub>\<bullet> (r \<restriction>\<^sup>l\<^sub>\<bullet> A)" shows "x \<in>\<^sub>\<circ> r `\<^sub>\<bullet> A"
lemma sameDom_refl: "sameDom inp inp"
lemma tendsto_Lambert_W_1: assumes "(f \<longlongrightarrow> L) F" "eventually (\<lambda>x. f x \<ge> -exp (-1)) F" shows "((\<lambda>x. Lambert_W (f x)) \<longlongrightarrow> Lambert_W L) F"
lemma bij_betw_characters_dcharacters: "bij_betw c2dc (characters G) (dcharacters n)"
lemma closed_le_abs [simp]: "closed {x. (C::real) \<le> abs x}"
lemma dom_prog_interpretation: "partial_function_definitions dom_prog_ord dom_prog_lub"
lemma vcg_arraycpy_unfolds[named_ss vcg_bb]: "wlp \<pi> (x[] ::= a) Q s = Q (UPD_STATE s x (s a))" "wp \<pi> (x[] ::= a) Q s = Q (UPD_STATE s x (s a))"
lemma mult_float_interval_mono: "mult_float_interval prec A B \<le> mult_float_interval prec X Y" if "A \<le> X" "B \<le> Y"
lemma ConjI[PLM_intro]: "\<lbrakk>[\<phi> in v]; [\<psi> in v]\<rbrakk> \<Longrightarrow> [\<phi> \<^bold>& \<psi> in v]"
lemma mod_ring_uminus[transfer_rule]: "(mod_ring_rel ===> mod_ring_rel) (uminus_p p) uminus"
lemma tm_weak_copy_correct6: "\<lbrace>\<lambda>tap. \<exists>z4. tap = (Bk \<up> z4, <[n::nat]> @[Bk])\<rbrace> tm_weak_copy \<lbrace>\<lambda>tap. \<exists>k l. tap = (Bk \<up> k, <[n::nat, n]> @ Bk \<up> l) \<rbrace>"
lemma Diag_implies_coherent: assumes "Diag t" shows "coherent t"
lemma octo_inner_1 [simp]: "inner 1 x = Ree x" and octo_inner_1_right [simp]: "inner x 1 = Ree x"
lemma these_tiny_tdghms_iff: (*not simp*) "\<NN> \<in>\<^sub>\<circ> these_tiny_tdghms \<alpha> \<AA> \<BB> \<FF> \<GG> \<longleftrightarrow> \<NN> : \<FF> \<mapsto>\<^sub>D\<^sub>G\<^sub>H\<^sub>M\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y \<GG> : \<AA> \<mapsto>\<mapsto>\<^sub>D\<^sub>G\<^sub>.\<^sub>t\<^sub>i\<^sub>n\<^sub>y\<^bsub>\<alpha>\<^esub> \<BB>"
lemma resolvable_design_num_res_classes: "size \<P> = \<r>"
lemma "zip\<cdot>[]\<cdot>[] = []"
lemma monom_eval_comp_fun: fixes g:: "'c \<Rightarrow> 'a" assumes "closed_fun R g" shows "comp_fun_commute (\<lambda> x . \<lambda>y. if y \<in> carrier R then (g x) \<otimes> y else \<zero>)"
lemma length_snoc: "length (xs @ [x]) = Suc (length xs)"
lemma assign_twice: "\<lbrakk> mwb_lens x; x \<sharp> f \<rbrakk> \<Longrightarrow> (x := e ;; x := f) = (x := f)"
lemma (in topological_space) filterlim_within_subset: "filterlim f l (at x within S) \<Longrightarrow> T \<subseteq> S \<Longrightarrow> filterlim f l (at x within T)"
lemma vsv_vdomain_vrange_vsingleton: assumes "\<D>\<^sub>\<circ> r = set {a}" and "\<R>\<^sub>\<circ> r = set{b}" shows "r = set {\<langle>a, b\<rangle>}"
lemma eq_poly_rel_eq[sepref_import_param]: \<open>((=), (=)) \<in> poly_rel \<rightarrow> poly_rel \<rightarrow> bool_rel\<close>
lemma "\<lbrakk>test p; test q; p\<cdot>x = p\<cdot>x\<cdot>q\<rbrakk> \<Longrightarrow> p\<cdot>x\<cdot>!q = 0"
lemma mtp_Raise: assumes "l \<le> d" shows "mtp (x + d + k) (Raise l k t) = mtp (x + d) t"
lemma class_rec_code [code]: "class_rec G C t f = (if wf_class G then (case class G C of None \<Rightarrow> class_rec G C t f | Some (D, fs, ms) \<Rightarrow> if C = Object then f Object fs ms t else f C fs ms (class_rec G D t f)) else class_rec G C t f)"
lemma det_four_block_mat_upper_right_zero_col: assumes A1: "A1 \<in> carrier_mat n n" and A20: "A2 = (0\<^sub>m n 1)" and A3: "A3 \<in> carrier_mat 1 n" and A4: "A4 \<in> carrier_mat 1 1" shows "det (four_block_mat A1 A2 A3 A4) = det A1 * det A4" (is "det ?A = _")
lemma staticSecret_in_initState [simp]: "staticSecret A \<subseteq> initState A"
lemma per_distinct_1: assumes "Per A B C" and "B \<noteq> C" shows "A \<noteq> C"
lemma smult_dvd_cancel: assumes "smult a p dvd q" shows "p dvd q"
lemma floor_conv_div_nat: "of_int (floor (real m / real n)) = real (m div n)"
lemma remove_writes: "writes (remove_child_locs (the |h \<turnstile> get_parent child|\<^sub>r) |h \<turnstile> get_owner_document (cast child)|\<^sub>r) (remove child) h h'"
lemma min_zpassign_simps[simp]: "min_zpassign (PWt x) = zhmset_of (wt_sym (min_ground_head (Var x)))" "min_zpassign (PCoef x i) = 1"
lemma map_of_delete [simp]: "k' \<noteq> k \<Longrightarrow> map_of (delete k al) k' = map_of al k'"
lemma distr_uminus_real: assumes "has_density M lborel (f :: real \<Rightarrow> ennreal)" shows "has_density (distr M borel uminus) lborel (\<lambda>x. f (- x))"
lemma SEval_def2: "SEval m e s = (\<exists>f. f \<in> set s & FEval m e f)"
lemma Infinitesimal_less_SReal: "x \<in> \<real> \<Longrightarrow> y \<in> Infinitesimal \<Longrightarrow> 0 < x \<Longrightarrow> y < x" for x y :: hypreal
lemma autoref_ABS: "\<lbrakk> \<And>x x'. (x,x')\<in>Ra \<Longrightarrow> (c x, a x')\<in>Rr \<rbrakk> \<Longrightarrow> (c, \<lambda>'x. a x)\<in>Ra\<rightarrow>Rr"
lemma assumes v: "valid_tmap t" shows mapset_some: "(mapOf t i = Some a) = ((i,a) : setOf t)"
lemma defs_uses_disjoint'[simp]: "n \<in> set (\<alpha>n g) \<Longrightarrow> v \<in> defs g n \<Longrightarrow> v \<in> uses g n \<Longrightarrow> False"
lemma Keys_init_syzygy_list: "Keys (set (init_syzygy_list bs)) = map_component (\<lambda>k. k + length bs) ` Keys (set bs) \<union> (\<lambda>i. term_of_pair (0, i)) ` {0..<length bs}"
lemma prod_monom_1_1: defines "P == (\<lambda> x n. (x[^]\<^bsub>(R)\<^esub> (CARD('a) ^ n) = x))" assumes m: "monom 1 1 \<in> carrier R" and eq: "P (monom 1 1) n" shows "P ((\<Prod>i = 0..<b::nat. monom 1 1) mod f) n"
lemma lambda\<Pi>\<^sub>3_aux[meta_aux]: "make\<Pi>\<^sub>3 (\<lambda>u v r s w. \<exists>x. \<nu>\<upsilon> x = u \<and> (\<exists>y. \<nu>\<upsilon> y = v \<and> (\<exists>z. \<nu>\<upsilon> z = r \<and> eval\<Pi>\<^sub>3 F (\<nu>\<upsilon> x) (\<nu>\<upsilon> y) (\<nu>\<upsilon> z) s w))) = F"
lemma to_cnf2_eq_Cons: "to_cnf2 x = (a,b) # list \<Longrightarrow> a = oLog \<omega> x"
lemma elimination_sing: "(\<forall>m \<in> M. F \<in> {m} co (B m)) ==> F \<in> M co (\<Union>m \<in> M. B m)"
lemma scalar_matrix_mult_row_code [code abstract]: "vec_nth (scalar_matrix_mult_row c A i) =(% j. c * (A $ i $ j))"
lemma from_digits_digit: assumes "x < base ^ n" shows "from_digits n (digit x) = x"
lemma match_correct: "match s w \<longleftrightarrow> w \<in> lang s"
lemma max_next_pcs_not_empty: "pc<length bp \<Longrightarrow> x : set (exec (bp!pc) (pc,s)) \<Longrightarrow> max_next_pcs bp \<noteq> {}"
lemma extend_preserves_model: (* only for ground *) assumes f_infpath: "wf_infpath (f :: nat \<Rightarrow> partial_pred_denot)" assumes C_ground: "ground\<^sub>l\<^sub>s C" assumes C_sat: "\<not>falsifies\<^sub>c (f (Suc n)) C" assumes n_max: "\<forall>l\<in>C. nat_of_fatom (get_atom l) \<le> n" shows "eval\<^sub>c HFun (extend f) C"
lemma "map\<cdot>(uncurry\<cdot>f)\<cdot>(zip\<cdot>x\<cdot>y) = zipWith\<cdot>f\<cdot>x\<cdot>y"
lemma fpxs_nth_shift [simp]: "fpxs_nth (fpxs_shift r f) n = fpxs_nth f (n + r)"
lemma DERIV_real_root_generic: assumes "0 < n" and "x \<noteq> 0" and "even n \<Longrightarrow> 0 < x \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))" and "even n \<Longrightarrow> x < 0 \<Longrightarrow> D = - inverse (real n * root n x ^ (n - Suc 0))" and "odd n \<Longrightarrow> D = inverse (real n * root n x ^ (n - Suc 0))" shows "DERIV (root n) x :> D"
lemma WT_red_external_aggr_imp_red_external: "\<lbrakk> wf_prog wf_md P; (ta, va, h') \<in> red_external_aggr P t a M vs h; P,h \<turnstile> a\<bullet>M(vs) : U; P,h \<turnstile> t \<surd>t \<rbrakk> \<Longrightarrow> P,t \<turnstile> \<langle>a\<bullet>M(vs), h\<rangle> -ta\<rightarrow>ext \<langle>va, h'\<rangle>"
lemma complex_eq_0: "z=0 \<longleftrightarrow> (Re z)\<^sup>2 + (Im z)\<^sup>2 = 0"
theorem ivls_of_aforms: "xs \<in> Joints XS \<Longrightarrow> bounded_by xs (ivls_of_aforms prec XS)"
lemma c_tl_c_drop: "c_tl (c_drop y x) = c_drop y (c_tl x)"
lemma flow_has_flowderiv: assumes "t \<in> existence_ivl0 x0" shows "((\<lambda>(x0, t). flow0 x0 t) has_derivative flowderiv x0 t) (at (x0, t) within S)"
lemma filtermap_append: "filtermap pred func (tr @ tr1) = filtermap pred func tr @ filtermap pred func tr1"
lemma subtopology_Times: shows "subtopology (prod_topology X Y) (S \<times> T) = prod_topology (subtopology X S) (subtopology Y T)"
lemma p_preserves_inv_imps_work_sum: assumes "next_propagate' c0 c1 loc t" and "inv_imps_work_sum c0" shows "inv_imps_work_sum c1"
lemma swap_self [simp]: "\<langle>a \<leftrightarrow> b\<rangle> * \<langle>a \<leftrightarrow> b\<rangle> = 1"
lemma Cod_Cod [simp]: shows "Arr t \<Longrightarrow> Cod (Cod t) = Cod t"
lemma interval_eq_iff: "a = b \<longleftrightarrow> lower a = lower b \<and> upper a = upper b"
lemma Serv_fresh_not_AKcryptSK: "Key servK \<notin> used evs \<Longrightarrow> \<not> AKcryptSK authK servK evs"
lemma path_conforms_with_strategy_ltl [intro]: "path_conforms_with_strategy p P \<sigma> \<Longrightarrow> path_conforms_with_strategy p (ltl P) \<sigma>"
lemma run_shift_elim[elim!]: assumes "run (r @- s) p" obtains "path r p" "run s (target r p)"
lemma observable_io_targets_language : assumes "io1 @ io2 \<in> LS M q1" and "observable M" and "q2 \<in> io_targets M io1 q1" shows "io2 \<in> LS M q2"
lemma assumes "invar_vebt t n " shows "perInsTrans (vebt_buildup n) t"
lemma sorted_list_of_set_keys: "sorted_list_of_set (keys f) = filter (\<lambda>k. k \<in> keys f) [0..<degree f]" (is "_ = ?r")
lemma valid_path_drop: "valid_path P \<Longrightarrow> valid_path (ldropn n P)"
lemma asBinp_equal_imp_alphaBinp: assumes "qGoodBinp qbinp" and "asBinp qbinp = asBinp qbinp'" shows "qbinp %%= qbinp'"
lemma ran_m_fmdrop: \<open>C \<in># dom_m N \<Longrightarrow> ran_m (fmdrop C N) = remove1_mset (the (fmlookup N C)) (ran_m N)\<close>
lemma add_top_left_ennreal [simp]: "top + x = (top :: ennreal)"
lemma vec_plus[simp,intro]: "\<lbrakk>vec nr u; vec nr v\<rbrakk> \<Longrightarrow> vec nr (vec_plusI pl u v)"
lemma LI_in_measure_trans: "(S\<^sub>1,\<theta>\<^sub>1) \<leadsto>\<^sup>+ (S\<^sub>2,\<theta>\<^sub>2) \<Longrightarrow> ((S\<^sub>2,\<theta>\<^sub>2),(S\<^sub>1,\<theta>\<^sub>1)) \<in> measure\<^sub>s\<^sub>t"
lemma subtype_wfT: fixes t1::\<tau> and t2::\<tau> assumes "\<Theta>; \<B>; \<Gamma> \<turnstile> t1 \<lesssim> t2" shows "\<Theta>; \<B>; \<Gamma> \<turnstile>\<^sub>w\<^sub>f t1 \<and> \<Theta>; \<B>; \<Gamma> \<turnstile>\<^sub>w\<^sub>f t2"
lemma sopen_preserves_body[simp]: fixes t s p assumes "body t" and "lc s" and "lc p" shows "body ({n \<rightarrow> [s,p]} t)"
lemma memval_size_s16: "|memval_type (Sint16_v v)|\<^sub>\<tau> = 2"
lemma valid_line_split: "valid_line l \<longleftrightarrow> l = [] \<or> (l!0 = B \<and> valid_line (tl l)) \<or> length l \<ge> 3 \<and> (\<forall> i < length l. l ! i = R) \<or> (\<exists> j < length l. j \<ge> 3 \<and> (\<forall> i < j. l ! i = R) \<and> l ! j = B \<and> valid_line (drop (j + 1) l))"
lemma ffb_loopI: "P \<le> {s. I s} \<Longrightarrow> {s. I s} \<le> Q \<Longrightarrow> {s. I s} \<le> fb\<^sub>\<F> F {s. I s} \<Longrightarrow> P \<le> fb\<^sub>\<F> (LOOP F INV I) Q"
lemma \<Delta>\<^sub>\<epsilon>_statesD': "q |\<in>| eps_states (\<Delta>\<^sub>\<epsilon> \<A> \<B>) \<Longrightarrow> q |\<in>| \<Q> \<A> |\<union>| \<Q> \<B>"
lemma subseq_strict_length: assumes a: "subseq x y" "x \<noteq> y" shows "length x < length y"
lemma aristo_conversion2 : assumes "A I B" shows "B I A"
lemma set_mult_inclusion: assumes H:"subgroup H G" assumes Q:"P \<subseteq> carrier G" assumes PQ:"H <#> P \<subseteq> H" shows "P \<subseteq> H"