Statement:
stringlengths 7
24.3k
|
---|
lemma ex1_poincare_line_general:
assumes "u \<noteq> v" "u \<noteq> inversion v"
shows "\<exists>! l. is_poincare_line l \<and> u \<in> circline_set l \<and> v \<in> circline_set l" |
lemma RS2Set[rule_format]: "set (removeShadowRules2 p) \<subseteq> set p" |
lemma eLet_rule':
assumes "\<And>x. x=v \<Longrightarrow> f x \<le> ESPEC \<Phi> \<Psi>"
shows "Let v (\<lambda>x. f x) \<le> ESPEC \<Phi> \<Psi>" |
lemma vfsequence_iff: "vfsequence xs \<longleftrightarrow> vsv xs \<and> \<D>\<^sub>\<circ> xs \<in>\<^sub>\<circ> \<omega>" |
lemma set_in_finite_cone:
assumes Vs: "Vs \<subseteq> carrier_vec n"
and fin: "finite Vs"
shows "Vs \<subseteq> finite_cone Vs" |
lemma supt_list_sound [simp]:
"set (supt_list t) = {s. t \<rhd> s}" |
lemma (in Ring) submodule_over_zeroring:"\<lbrakk>zeroring R; R module M;
submodule R M N\<rbrakk> \<Longrightarrow> N = {\<zero>\<^bsub>M\<^esub>}" |
lemma (in Corps) n_value_x_1:"\<lbrakk>valuation K v; 0 \<le> n;
x \<in> (vp K v) \<^bsup>(Vr K v) n\<^esup>\<rbrakk> \<Longrightarrow> n \<le> (n_val K v x)" |
lemma sub_add:
assumes "g \<in> carrier P"
assumes "f \<in> carrier P"
assumes "h \<in>carrier P"
shows "((f \<oplus>\<^bsub>P\<^esub> h) of g) = ((f of g) \<oplus>\<^bsub>P\<^esub> (h of g))" |
lemma cf_smcf_cf_id[slicing_commute]: "smcf_id (cat_smc \<CC>) = cf_smcf (cf_id \<CC>)" |
lemma support_postList: "support (postList xs) \<subseteq> lesvars xs" |
lemma equivP_pick_preserves:
assumes "equivP P \<phi> " and "(P///\<phi>) X"
shows "P (pick X)" |
lemma pmdl_struct:
assumes "struct_spec sel ap ab compl" and "compl_pmdl compl" and "is_Groebner_basis (fst ` set gs)"
and "ps \<noteq> []" and "set ps \<subseteq> (set bs) \<times> (set gs \<union> set bs)" and "unique_idx (gs @ bs) (snd data)"
and "sps = sel gs bs ps (snd data)" and "aux = compl gs bs (ps -- sps) sps (snd data)"
and "(hs, data') = add_indices aux (snd data)"
shows "pmdl (fst ` set (gs @ ab gs bs hs data')) = pmdl (fst ` set (gs @ bs))" |
lemma next'_next:
assumes "v \<noteq> \<bottom>"
assumes "vs \<noteq> \<bottom>"
shows "next'\<cdot>v\<cdot>(tree_map'\<cdot>csnd\<cdot>t) = tree_map'\<cdot>csnd\<cdot>(next\<cdot>(v :# vs)\<cdot>t)" |
lemma (in encoding) indRelRPO_iff_exists_source_target_relation:
fixes Pred :: "(('procS, 'procT) Proc \<times> ('procS, 'procT) Proc) \<Rightarrow> bool"
shows "(\<forall>(P, Q) \<in> indRelRPO. Pred (P, Q)) = (\<exists>Rel. (\<forall>S. (SourceTerm S, TargetTerm (\<lbrakk>S\<rbrakk>)) \<in> Rel)
\<and> (\<forall>(P, Q) \<in> Rel. Pred (P, Q)) \<and> preorder Rel)" |
lemma poly_map_pullback_char:
assumes "is_poly_tuple n fs"
assumes "length fs = m"
assumes "is_poly_tuple k gs"
assumes "length gs = n"
shows "(pullback (R\<^bsup>k\<^esup>) (poly_map k gs) (poly_map n fs)) =
poly_map k (map (poly_compose n k gs) fs)" |
lemma tfin_enat_code[code]: "(tfin :: enat set) = Collect_set (\<lambda>x. x \<noteq> \<infinity>)" |
lemma append_queue_rep: "linearize (append_queue a q) = linearize q @ [a]" |
lemma sum_Basis_sum_nth_Basis_list:
"(\<Sum>i\<in>Basis. f i) = (\<Sum>i<DIM('a::executable_euclidean_space). f ((Basis_list::'a list) ! i))" |
lemma border_short_dec: assumes border: "x \<le>b w" and short: "\<^bold>|x\<^bold>| + \<^bold>|x\<^bold>| \<le> \<^bold>|w\<^bold>|"
shows "x \<cdot> x\<inverse>\<^sup>>(w\<^sup><\<inverse>x) \<cdot> x = w" |
theorem Szemeredi_Regularity_Lemma:
assumes "\<epsilon> > 0"
obtains M where "\<And>G. card (uverts G) > 0 \<Longrightarrow> \<exists>P. regular_partition \<epsilon> G P \<and> card P \<le> M" |
lemma [code]:
"IArray.exists p as \<longleftrightarrow> exists_upto p (length' as) as" |
lemma ttree_join_transfer[transfer_rule]: "rel_fun (pcr_ttree (=)) (rel_fun (pcr_ttree (=)) (pcr_ttree (=))) (\<union>) (\<squnion>)" |
lemma wf_sees_method_fun:
"\<lbrakk>P \<turnstile> C has least M = mthd via Cs; P \<turnstile> C has least M = mthd' via Cs';
wf_prog wf_md P\<rbrakk>
\<Longrightarrow> mthd = mthd' \<and> Cs = Cs'" |
lemma lns_distI [intro]:
assumes "\<And>x e. x \<in> B \<Longrightarrow> e > 0 \<Longrightarrow> (\<exists>y\<in>B. (dist y x) \<le> e \<and> y \<succ>[P] x)"
shows "local_nonsatiation B P" |
lemma path2_transfer [transfer_rule]:
assumes [transfer_rule]: "right_total A"
and [transfer_rule]: "(A ===> (=)) \<alpha>e \<alpha>e2"
and [transfer_rule]: "(A ===> (=)) \<alpha>n \<alpha>n2"
and [transfer_rule]: "(A ===> (=)) invar invar2"
and [transfer_rule]: "(A ===> (=)) inEdges' inEdges2"
shows "(A ===> (=)) path2 (graph_path_base.path2 \<alpha>n2 invar2 inEdges2)" |
lemma \<L>\<^sub>b_split_tendsto_opt: "(\<lambda>n. (\<L>\<^sub>b_split ^^ n) v) \<longlonglongrightarrow> \<nu>\<^sub>b_opt" |
lemma(in UP_cring) UP_subring_taylor_appr:
assumes "subring S R"
assumes "g \<in> carrier (UP (R \<lparr> carrier := S \<rparr>))"
assumes "a \<in> S"
assumes "b \<in> S"
shows "\<exists>c \<in> S. to_fun g a= to_fun g b \<oplus> (deriv g b)\<otimes> (a \<ominus> b) \<oplus> (c \<otimes> (a \<ominus> b)[^](2::nat))" |
lemma pop_list [simp]: "invar common \<Longrightarrow> 0 < size common \<Longrightarrow> pop common = (x, common') \<Longrightarrow>
x # list common' = list common" |
lemma PiE_defaut_undefined_eq: "PiE_dflt I undefined M = PiE I M" |
lemma find_first_distinct_ofsm_table_is_first :
assumes "q1 \<in> FSM.states M"
and "q2 \<in> FSM.states M"
and "ofsm_table_fix M (\<lambda>q . states M) 0 q1 \<noteq> ofsm_table_fix M (\<lambda>q . states M) 0 q2"
shows "ofsm_table M (\<lambda>q . states M) (find_first_distinct_ofsm_table M q1 q2) q1 \<noteq> ofsm_table M (\<lambda>q . states M) (find_first_distinct_ofsm_table M q1 q2) q2"
and "k' < (find_first_distinct_ofsm_table M q1 q2) \<Longrightarrow> ofsm_table M (\<lambda>q . states M) k' q1 = ofsm_table M (\<lambda>q . states M) k' q2" |
lemma collect_subfmlas_app: "\<exists>phis'. collect_subfmlas r phis = phis @ phis'" |
lemma costBIT_4y:
assumes "x\<noteq>y" "x : {x0,y0}" "y\<in>{x0,y0}"
shows
"E (type4 [x0, y0] x y \<bind>
(\<lambda>s. BIT_step s y \<bind>
(\<lambda>(a, is'). return_pmf (real (t\<^sub>p (fst s) y a))))) = 0.5" |
lemma holomorphic_on_Un [holomorphic_intros]:
assumes "f holomorphic_on A" "f holomorphic_on B" "open A" "open B"
shows "f holomorphic_on (A \<union> B)" |
lemma finite_cycles: "finite (cycles)" |
lemma [simp,code_unfold]: "\<upsilon> \<two> = true" |
lemma k_adju_var: "\<exists>F. \<forall>x.\<forall>f::'a::order \<Rightarrow> 'b::complete_lattice. (F x \<le> f) = (x \<le> (\<lambda>k. k y) f)" |
lemma cf_list_entries:
assumes "i \<le> deg R p"
shows "(cf_list R p)!i = p i" |
lemma unfold2' :
assumes context_ok: "cp E"
and args_def_or_valid: "(\<tau> \<Turnstile> \<delta> self) \<and> (f_\<upsilon> a1 \<tau>)"
and pre_satisfied: "\<tau> \<Turnstile> PRE self a1"
and postsplit_satisfied: "\<tau> \<Turnstile> POST' self a1" (* split constraint holds on post-state *)
and post_decomposable : "\<And> res. (POST self a1 res) =
((POST' self a1) and (res \<triangleq> (BODY self a1)))"
shows "(\<tau> \<Turnstile> E(f self a1)) = (\<tau> \<Turnstile> E(BODY self a1))" |
lemma id_WHILEIT[id_rules]:
"PR_CONST (WHILEIT I) ::\<^sub>i TYPE(('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a nres) \<Rightarrow> 'a \<Rightarrow> 'a nres)" |
lemma equiv_up_to_refl [simp, intro!]:
"P \<Turnstile> c \<sim> c" |
lemma r_child_lower_bound: "l \<le> p \<Longrightarrow> p < r_child l p" |
lemma
eventually_in_cballs:
assumes "d > 0" "c > 0"
shows "eventually (\<lambda>e. cball t0 (c * e) \<times> (cball x0 e) \<subseteq> cball (t0, x0) d) (at_right 0)" |
lemma LinLs: "L0 i j : Ls & L1 i j : Ls & L2 i j : Ls & L3 i j : Ls" |
lemma wf_tuple_Suc_fvi_SomeI: "0 \<in> MFOTL.fvi b \<phi> \<Longrightarrow> wf_tuple n (MFOTL.fvi (Suc b) \<phi>) v \<Longrightarrow>
wf_tuple (Suc n) (MFOTL.fvi b \<phi>) (Some x # v)" |
lemma separated_by_wall_ex_foldpair:
assumes "H\<in>walls" "separated_by H C D"
shows "\<exists>(f,g)\<in>foldpairs. H = {f\<turnstile>\<C>,g\<turnstile>\<C>} \<and> C\<in>f\<turnstile>\<C> \<and> D\<in>g\<turnstile>\<C>" |
lemma R_loop_mono: "X \<le> X' \<Longrightarrow> LOOP X INV I \<subseteq> LOOP X' INV I" |
lemma eps_nfa'_step_eps_closure_cong: "step_eps_closure bs q q' \<Longrightarrow> q \<in> nfa'.Q \<Longrightarrow>
(q' \<in> nfa'.Q \<and> nfa'.step_eps_closure bs q q') \<or>
(nfa'.step_eps_closure bs q qf' \<and> step_eps_closure bs qf' q')" |
lemma sees_method_mono2:
"\<lbrakk> P \<turnstile> C' \<preceq>\<^sup>* C; wf_prog wf_md P;
P \<turnstile> C sees M:Ts\<rightarrow>T = m in D; P \<turnstile> C' sees M:Ts'\<rightarrow>T' = m' in D' \<rbrakk>
\<Longrightarrow> P \<turnstile> Ts [\<le>] Ts' \<and> P \<turnstile> T' \<le> T" |
lemma true_dsij_zero:"(P \<or> true) = true" |
lemma comparator_lex_comp_aux: "comparator (lex_comp_aux::'a::nat_term comparator)" |
lemma closed_funI:
assumes "\<And>x. g x \<in> carrier R"
shows "closed_fun R g" |
lemma REFL_IMP_3_CONJ_1:
fixes R P x y
assumes "((\<lambda>x y. R x y \<and> P x y)\<^sup>+\<^sup>+ x y)"
shows "R\<^sup>+\<^sup>+ x y" |
lemma (in \<Z>) ord_of_nat_in_Vset[simp]: "a\<^sub>\<nat> \<in>\<^sub>\<circ> Vset \<alpha>" |
lemma "x\<^sup>\<omega> \<cdot> y = x\<^sup>\<omega>" |
lemma shiftr_uint8_code [code]:
"drop_bit n x = (if n < 8 then uint8_shiftr x (integer_of_nat n) else 0)" |
lemma prj1_simps [simp]:
assumes "cospan f g"
shows "arr \<p>\<^sub>1[f, g]" and "dom \<p>\<^sub>1[f, g] = f \<down>\<down> g" and "cod \<p>\<^sub>1[f, g] = dom f" |
lemma real_poly_uminus:
assumes "set (coeffs p) \<subseteq> \<real>"
shows "set (coeffs (-p)) \<subseteq> \<real>" |
lemma finite_tvs[simp]: "finite (tvs t)" |
lemma min_element:
fixes k :: nat
assumes "\<exists> (m::nat). P m"
shows "\<exists> mm. P mm \<and> (\<forall> m'. m' < mm \<longrightarrow> \<not> P m')" |
lemma Snoc_step1_SnocD:
"step1 r (ys @ [y]) (xs @ [x])
\<Longrightarrow> (step1 r ys xs \<and> y = x \<or> ys = xs \<and> r y x)" |
lemma "((a::nat) - (b - (c - (d - e)))) = (a - (b - (c - (d - e))))" |
lemma lift_Postdomination:
assumes wf:"CFGExit_wf sourcenode targetnode kind valid_edge Entry Def Use
state_val Exit"
and pd:"Postdomination sourcenode targetnode kind valid_edge Entry Exit"
and inner:"CFGExit.inner_node sourcenode targetnode valid_edge Entry Exit nx"
shows "Postdomination src trg knd
(lift_valid_edge valid_edge sourcenode targetnode kind Entry Exit) NewEntry NewExit" |
lemma lowner_lub_add:
assumes "matrix_seq d f" "matrix_seq d g" "\<forall> n. trace (f n + g n) \<le> 1"
shows "matrix_seq.lowner_lub (\<lambda>n. f n + g n) = matrix_seq.lowner_lub f + matrix_seq.lowner_lub g" |
lemma merge_mdeg_le_1: "max_deg (merge t1) \<le> 1" |
lemma Fls_E [intro!]: "insert Fls H \<turnstile> A" |
lemma (in bounded_linear) has_derivative:
"(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F" |
lemma interpretation_grounds_all:
"interpretation\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<theta> \<Longrightarrow> (\<And>v. fv (\<theta> v) = {})" |
lemma det3_nonneg_scaleR_segment2:
assumes "det3 x y z \<ge> 0"
assumes "a > 0"
shows "det3 x ((1 - a) *\<^sub>R x + a *\<^sub>R y) z \<ge> 0" |
lemma lossless_spmf_inline1:
assumes lossless: "\<And>s x. x \<in> outs_\<I> \<I> \<Longrightarrow> lossless_spmf (the_gpv (callee s x))"
shows "lossless_spmf (inline1 callee gpv s)" |
lemma sub2_closed [simp]:
"sub2 d l (r,A) = (r',A') \<Longrightarrow> A \<in> carrier_mat m n \<Longrightarrow> A' \<in> carrier_mat m n" |
lemma ord_term_canc_left:
assumes "t \<oplus> v \<preceq>\<^sub>t s \<oplus> v"
shows "t \<preceq> s" |
lemma itrev: "itrev xs ys = rev xs @ ys" |
lemma space_x0[simp]: "x0 \<in> space (prob_algebra Ms) \<Longrightarrow> space x0 = space Ms" |
lemma wt_bij_finite_tatom_subst_exists:
assumes "finite (S::'var set)" "finite (T::('fun,'var) terms)"
and "\<And>x. x \<in> S \<Longrightarrow> \<exists>a. \<Gamma> (Var x) = TAtom a"
shows "\<exists>\<sigma>::('fun,'var) subst. subst_domain \<sigma> = S
\<and> bij_betw \<sigma> (subst_domain \<sigma>) (subst_range \<sigma>)
\<and> subst_range \<sigma> \<subseteq> ((\<lambda>c. Fun c []) ` \<C>\<^sub>p\<^sub>u\<^sub>b) - T
\<and> wt\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<sigma>
\<and> wf\<^sub>t\<^sub>r\<^sub>m\<^sub>s (subst_range \<sigma>)" |
lemma nsubst_ode:
fixes I::"('sf, 'sc, 'sz) interp"
fixes \<nu>::"'sz state"
fixes \<nu>'::"'sz state"
assumes good_interp:"is_interp I"
shows "osafe ODE \<Longrightarrow> OadmitFO \<sigma> ODE U \<Longrightarrow> (\<And>i. dsafe (\<sigma> i)) \<Longrightarrow> ODE_sem I (OsubstFO ODE \<sigma>) (fst \<nu>)= ODE_sem (adjointFO I \<sigma> \<nu>) ODE (fst \<nu>)" |
lemma has_type_le_env [rule_format (no_asm)]: "A \<turnstile> e::t \<Longrightarrow> \<forall>B. A \<le> B \<longrightarrow> B \<turnstile> e::t" |
lemma snd_msum_aform[simp]: "snd (msum_aform n f g) = msum_pdevs n (snd f) (snd g)" |
lemma d0_omega_mult:
"d(x\<^sup>\<omega> * y * bot) = d(x\<^sup>\<omega> * bot)" |
lemma unitary11_gen_iff:
shows "unitary11_gen M \<longleftrightarrow>
(\<exists> k a b. k \<noteq> 0 \<and> mat_det (a, b, cnj b, cnj a) \<noteq> 0 \<and>
M = k *\<^sub>s\<^sub>m (a, b, cnj b, cnj a))" (is "?lhs = ?rhs") |
lemma affine_independent_span_eq:
fixes S :: "'a::euclidean_space set"
assumes "\<not> affine_dependent S" "card S = Suc (DIM ('a))"
shows "affine hull S = UNIV" |
lemma af_subsequence_W_GF_advice:
assumes "i \<le> n"
assumes "suffix n w \<Turnstile>\<^sub>n ((af \<psi> (w [i \<rightarrow> n]))[X]\<^sub>\<nu>)"
assumes "\<And>j. j < i \<Longrightarrow> suffix n w \<Turnstile>\<^sub>n ((af \<phi> (w [j \<rightarrow> n]))[X]\<^sub>\<nu>)"
shows "suffix (Suc n) w \<Turnstile>\<^sub>n (af (\<phi> W\<^sub>n \<psi>) (prefix (Suc n) w))[X]\<^sub>\<nu>" |
lemma L6_Boiler:
assumes h1:"SteamBoiler x s y"
and h2:"ts x"
and h3:"hd (x j) = Zero"
shows "(hd (s j)) - (10::nat) \<le> hd (s (Suc j))" |
lemma smooth_on_sqrt: "k-smooth_on S (\<lambda>x. sqrt (f x))"
if "k-smooth_on S f" "0 \<notin> f ` S" "open S" |
lemma Span_eq_combine_set:
assumes "set Us \<subseteq> carrier R" shows "Span K Us = { combine Ks Us | Ks. set Ks \<subseteq> K }" |
lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)"
for f :: "real \<Rightarrow> real" and x y :: real |
lemma npos_len: "\<^bold>|u\<^bold>| \<le> 0 \<Longrightarrow> u = \<epsilon>" |
lemma degree_shleg_poly [simp]: "degree shleg_poly = n" |
lemma after_summary_union: "after_summary (M + N) S = after_summary M S + after_summary N S" |
lemma foreach_impl_correct_presentation:
fixes Qi Vi \<pi>i defines "Q \<equiv> Q_\<alpha> Qi" and "\<pi> \<equiv> M_lookup \<pi>i"
assumes A: "foreach_impl Qi \<pi>i u (G_adj g u) = (Qi',\<pi>i')"
assumes I: "prim_invar_impl Qi \<pi>i"
shows "Q_invar Qi' \<and> M_invar \<pi>i'
\<and> Q_\<alpha> Qi' = Qinter Q \<pi> u \<and> M_lookup \<pi>i' = \<pi>' Q \<pi> u" |
lemma sum_in_Rats [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<rat>) \<Longrightarrow> sum f A \<in> \<rat>" |
lemma LI_preproc_wf\<^sub>s\<^sub>t:
assumes "wf\<^sub>s\<^sub>t X S"
shows "wf\<^sub>s\<^sub>t X (LI_preproc S)" |
lemma CLS_eqI:
assumes "B.ide f"
shows "\<lbrakk>\<lbrakk>f\<rbrakk>\<rbrakk> = \<lbrakk>\<lbrakk>g\<rbrakk>\<rbrakk> \<longleftrightarrow> f \<cong>\<^sub>B g" |
lemma is_scc_ex:
"\<exists>scc. is_scc E scc \<and> v \<in> scc" |
lemma prom_neq_reqm [iff]:
"prom B' ofr A' r' I' (cons M L) J C \<noteq> reqm A r n I B" |
lemma obj_MkObj:
assumes "A \<in> Obj"
shows "H.obj (MkObj A)" |
lemma zero_in_succ [simp,intro]: "Ord i \<Longrightarrow> 0 \<^bold>\<in> succ i" |
lemma ik\<^sub>s\<^sub>t_update\<^sub>s\<^sub>t_subset_rcv:
assumes "receive\<langle>t\<rangle>\<^sub>s\<^sub>t#S \<in> \<S>"
"\<S>' = update\<^sub>s\<^sub>t \<S> (receive\<langle>t\<rangle>\<^sub>s\<^sub>t#S)"
"\<A>' = \<A>@[Step (send\<langle>t\<rangle>\<^sub>s\<^sub>t)]"
shows "(\<Union>(ik\<^sub>s\<^sub>t ` dual\<^sub>s\<^sub>t ` \<S>')) \<union> (ik\<^sub>e\<^sub>s\<^sub>t \<A>') \<subseteq>
(\<Union>(ik\<^sub>s\<^sub>t ` dual\<^sub>s\<^sub>t ` \<S>)) \<union> (ik\<^sub>e\<^sub>s\<^sub>t \<A>)" (is ?A)
"(\<Union>(assignment_rhs\<^sub>s\<^sub>t ` \<S>')) \<union> (assignment_rhs\<^sub>e\<^sub>s\<^sub>t \<A>') \<subseteq>
(\<Union>(assignment_rhs\<^sub>s\<^sub>t ` \<S>)) \<union> (assignment_rhs\<^sub>e\<^sub>s\<^sub>t \<A>)" (is ?B) |
lemma rel_FGco_neg_distr_cond_eq:
fixes tytok :: "('l1 \<times> 'l1' \<times> 'l1'' \<times> 'f1 \<times> 'f2) itself"
shows "rel_FGco_neg_distr_cond (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=) (=)
(=) (=) (=) (=) (=) (=) (=) (=) tytok" |
lemma rel_witness_option:
shows set_rel_witness_option: "\<lbrakk> rel_option A x y; (a, b) \<in> set_option (rel_witness_option (x, y)) \<rbrakk> \<Longrightarrow> A a b"
and map1_rel_witness_option: "rel_option A x y \<Longrightarrow> map_option fst (rel_witness_option (x, y)) = x"
and map2_rel_witness_option: "rel_option A x y \<Longrightarrow> map_option snd (rel_witness_option (x, y)) = y" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.