Statement:
stringlengths 7
24.3k
|
---|
lemma eqExcPID_N_step_\<phi>_imp:
assumes ss1: "eqExcPID_N s s1"
and step: "step s a = (ou,s')" and step1: "step s1 a = (ou1,s1')"
and \<phi>: "\<phi> (Trans s a ou s')"
shows "\<phi> (Trans s1 a ou1 s1')" |
lemma blocks_index_simp_unique: "i1 < length \<B>s \<Longrightarrow> i2 < length \<B>s \<Longrightarrow> i1 \<noteq> i2 \<Longrightarrow> \<B>s ! i1 \<noteq> \<B>s ! i2" |
lemma opar_unicastTE [elim]:
"\<lbrakk>((\<sigma>, (s, t)), unicast i m, (\<sigma>', (s', t'))) \<in> oparp_sos i S T;
\<lbrakk>((\<sigma>, s), unicast i m, (\<sigma>', s')) \<in> S; t' = t\<rbrakk> \<Longrightarrow> P;
\<lbrakk>(t, unicast i m, t') \<in> T; s' = s; \<sigma>' i = \<sigma> i\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" |
lemma start_prog_Start_sees_start_method:
"P \<turnstile> Object sees_methods Mm
\<Longrightarrow> start_prog P C M \<turnstile>
Start sees start_m, Static : []\<rightarrow>Void = (1, 0, [Invokestatic C M 0,Return], []) in Start" |
lemma integer_less_eq_iff:
"k \<le> l \<longleftrightarrow> int_of_integer k \<le> int_of_integer l" |
lemma extend_invariant:
"(extend h F \<in> invariant (extend_set h A)) = (F \<in> invariant A)" |
lemma LIM_imp_LIM:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
assumes f: "f \<midarrow>a\<rightarrow> l"
and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
shows "g \<midarrow>a\<rightarrow> m" |
lemma ntcf_of_ntcf_arrow_components:
shows "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>\<lparr>NTMap\<rparr> = \<NN>\<lparr>NTMap\<rparr>"
and "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>\<lparr>NTDom\<rparr> = cf_of_cf_map \<AA> \<BB> (\<NN>\<lparr>NTDom\<rparr>)"
and "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>\<lparr>NTCod\<rparr> = cf_of_cf_map \<AA> \<BB> (\<NN>\<lparr>NTCod\<rparr>)"
and "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>\<lparr>NTDGDom\<rparr> = \<AA>"
and "ntcf_of_ntcf_arrow \<AA> \<BB> \<NN>\<lparr>NTDGCod\<rparr> = \<BB>" |
lemma sum_list_rmv1:
"a \<in> set xs \<Longrightarrow> \<Sum>:(remove1 a xs) = \<Sum>:xs - (a :: 'a :: ab_group_add)" |
lemma trms\<^sub>s\<^sub>s\<^sub>t_unlabel_suffix_subset:
"trms\<^sub>s\<^sub>s\<^sub>t (unlabel B) \<subseteq> trms\<^sub>s\<^sub>s\<^sub>t (unlabel (A@B))"
"trms\<^sub>s\<^sub>s\<^sub>t (proj_unl n B) \<subseteq> trms\<^sub>s\<^sub>s\<^sub>t (proj_unl n (A@B))" |
lemma lm04_15_register_masking:
fixes c :: nat
and l :: register
and ic :: configuration
and p :: program
and q :: nat
defines "b == B c"
defines "d == D q c b"
assumes cells_bounded: "cells_bounded ic p c"
assumes l: "l < length (snd ic)"
defines "r == RLe ic p b q"
shows "r l \<preceq> d" |
lemma (in Functor) CodFunctor: "f \<in> mor\<^bsub>CatDom F\<^esub> \<Longrightarrow> cod\<^bsub>CatCod F\<^esub> (F ## f) = F @@ (cod\<^bsub>CatDom F\<^esub> f)" |
lemma mset_le_trans: "K < M \<Longrightarrow> M < N \<Longrightarrow> K < (N::'a::preorder multiset)" |
lemma mono_id[simp, intro!]:
"mono id"
"mono (\<lambda>x. x)" |
lemma ereal_inverse_antimono:
fixes x y :: ereal
shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x" |
lemma minus_nonzero: "x : carrier G \<Longrightarrow> x \<noteq> \<zero> \<Longrightarrow> \<ominus> x \<noteq> \<zero>" |
lemma listsp_mono [mono]: "A \<le> B \<Longrightarrow> listsp A \<le> listsp B" |
theorem
"(c,s) \<Rightarrow> t \<Longrightarrow> (c,s) \<Rightarrow> t' \<Longrightarrow> t' = t" |
lemma int_nat_div:
"(int a) div (int b) = int ((a::nat) div b)" |
lemma range_to_fract_dvd_iff: assumes b: "b \<noteq> 0"
shows "Fract a b \<in> range to_fract \<longleftrightarrow> b dvd a" |
lemma cf_array_ArrMap_vsv: "vsv (cf_array \<BB> \<CC> \<DD> \<FF> \<GG>\<lparr>ArrMap\<rparr>)" |
lemma [simp]: "p \<in> set ps" |
lemma fun_rep_map2_rep[simp]: "f \<top> \<top> = \<top> \<Longrightarrow>
fun_rep (map2_st_rep f ps1 ps2) = (\<lambda>x. f (fun_rep ps1 x) (fun_rep ps2 x))" |
lemma f_bounded_below:
assumes c': "c' > 0"
obtains c where "\<And>x. x \<ge> x\<^sub>0 \<Longrightarrow> x \<le> x\<^sub>1 \<Longrightarrow> 2 * (c * f_approx x) \<le> f x" "c \<le> c'" "c > 0" |
lemma conj_qf[simp]: "qfree p \<Longrightarrow> qfree q \<Longrightarrow> qfree (conj p q)" |
lemma Infinitesimal_FreeUltrafilterNat_iff:
"(star_n X \<in> Infinitesimal) = (\<forall>u>0. eventually (\<lambda>n. norm (X n) < u) \<U>)" (is "?lhs = ?rhs") |
lemma set_tag_name_get_disconnected_nodes_is_l_set_tag_name_get_disconnected_nodes [instances]:
"l_set_tag_name_get_disconnected_nodes type_wf set_tag_name set_tag_name_locs
get_disconnected_nodes get_disconnected_nodes_locs" |
lemma proper_interval_integer_simps [code]:
includes integer.lifting fixes x y :: integer and xo yo :: "integer option" shows
"proper_interval (Some x) (Some y) = (1 < y - x)"
"proper_interval None yo = True"
"proper_interval xo None = True" |
lemma suffix_zero: "\<sigma> |\<^sub>s 0 = \<sigma>" |
lemma Busemann_function_le_Gromov_product:
"- Busemann_function_at xi y x/2 \<le> extended_Gromov_product_at x xi (to_Gromov_completion y)" |
lemma update_assoc_list_with_default_key_not_found :
assumes "distinct (map fst xys)"
and "k \<notin> set (map fst xys)"
shows "update_assoc_list_with_default k f d xys = xys @ [(k,f d)]" |
lemma real_polynomial_function_imp_sum:
assumes "real_polynomial_function f"
shows "\<exists>a n::nat. f = (\<lambda>x. \<Sum>i\<le>n. a i * x^i)" |
lemma fmdom'_fmupd[simp]: "fmdom' (fmupd a b m) = insert a (fmdom' m)" |
lemma repv_selectlike_other: "x\<noteq>y \<Longrightarrow> (repv \<omega> x d \<in> selectlike X \<omega> {y}) = (repv \<omega> x d \<in> X)" |
lemma Outpts_imp_knows_agents_secureM_sr:
"\<lbrakk> Outpts (Card A) A X \<in> set evs; evs \<in> sr \<rbrakk> \<Longrightarrow> X \<in> knows A evs" |
lemma fmpred_of_list[intro]:
assumes "\<And>k v. (k, v) \<in> set xs \<Longrightarrow> P k v"
shows "fmpred P (fmap_of_list xs)" |
lemma PAR_least:
assumes y: "y \<in> I x"
shows "PAR x {p\<in>space (PAR x). t \<le> p y \<and> select_first x p y} =
emeasure (exponential (escape_rate x)) {t ..} * ennreal (pmf (J x) y)" |
lemma zero_lens_compat [simp]: "0\<^sub>L ##\<^sub>L X" |
lemma continuous_on_sgn[continuous_intros]:
fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
assumes "continuous_on s f"
and "\<forall>x\<in>s. f x \<noteq> 0"
shows "continuous_on s (\<lambda>x. sgn (f x))" |
lemma content_division_of:
assumes "K \<in> \<D>" "\<D> division_of S"
shows "content K = (\<Prod>i \<in> Basis. interval_upperbound K \<bullet> i - interval_lowerbound K \<bullet> i)" |
lemma compare_lists_Cons [simp]:
"a < b \<Longrightarrow> compare_lists (a # as) (b # bs) = LT"
"a > b \<Longrightarrow> compare_lists (a # as) (b # bs) = GT"
"a = b \<Longrightarrow> compare_lists (a # as) (b # bs) = compare_lists as bs" |
lemma ordertype_nat_\<omega>:
assumes "infinite N" shows "ordertype N less_than = \<omega>" |
lemma Limsup_compose_continuous_mono:
fixes f :: "'a::{complete_linorder, linorder_topology} \<Rightarrow> 'b::{complete_linorder, linorder_topology}"
assumes c: "continuous_on UNIV f" and am: "mono f" and F: "F \<noteq> bot"
shows "Limsup F (\<lambda>n. f (g n)) = f (Limsup F g)" |
lemma lift_Pareto_SD_strict_iff:
assumes "p \<in> lotteries_on alts" "q \<in> lotteries_on alts"
shows "p \<prec>[Pareto(SD \<circ> R')] q \<longleftrightarrow> p \<prec>[Pareto(SD \<circ> R)] q" |
lemma interior_of_Int: "X interior_of (S \<inter> T) = X interior_of S \<inter> X interior_of T" (is "?lhs = ?rhs") |
lemma "\<exists>n. even n \<and> even (Suc n)" |
lemma restrict_map_disj':
"S \<inter> T = {} \<Longrightarrow> h |` S \<bottom> h' |` T" |
lemma Ord_cases [cases type: hf, case_names 0 succ]:
assumes Ok: "Ord(k)"
obtains "k = 0" | l where "Ord l" "succ l = k" |
lemma idx_of_uniq:
assumes
p_disjoint_sym: "\<forall>i j v. i<length p \<and> j<length p \<and> v\<in>p!i \<and> v\<in>p!j \<longrightarrow> i=j"
assumes A: "i<length p" "v\<in>p!i"
shows "idx_of p v = i" |
lemma null_strict[simp,code_unfold]: " f null = invalid" |
lemma fun_lub_simps[simp]:
"fun_lub lub {} = (\<lambda>x. lub {})"
"fun_lub lub {f} = (\<lambda>x. lub {f x})" |
lemma snd_readVariableRecursive:
assumes "v \<in> vars g" "n \<in> set (\<alpha>n g)" "finite (Mapping.keys phis)"
"\<And>n. (n,v) \<in> Mapping.keys phis \<Longrightarrow> length (predecessors g n) \<noteq> 1" "Mapping.lookup phis (Entry g,v) \<in> {None, Some []}"
shows
"phis'_aux g v {n} phis = snd (readVariableRecursive g v n phis)"
"set ms \<subseteq> set (\<alpha>n g) \<Longrightarrow> (phis'_aux g v (set ms) phis, map (\<lambda>m. lookupDef g m v) ms) = readArgs g v n phis ms" |
theorem safe: "s \<in> reach \<Longrightarrow> safe s r \<Longrightarrow> g \<in> isin s r \<Longrightarrow> owns s r = Some g" |
lemma lg_safe:
"lg 0 = 0"
"lg (Suc 0) = 0"
"lg (Suc (Suc 0)) = 1"
"0 < x \<Longrightarrow> lg (x + x) = 1 + lg x" |
lemma le_minus_power_downI: "0 \<le> x \<Longrightarrow> x ^ n \<le> - a \<Longrightarrow> a \<le> - power_down prec x n" |
lemma select_fold_exec\<^sub>S\<^sub>e\<^sub>q:
assumes "list_all (\<lambda>f. (\<tau> \<Turnstile> \<upsilon> f)) l"
shows "\<lceil>\<lceil>Rep_Sequence\<^sub>b\<^sub>a\<^sub>s\<^sub>e (foldl UML_Sequence.OclIncluding Sequence{} l \<tau>)\<rceil>\<rceil> = List.map (\<lambda>f. f \<tau>) l" |
lemma higher_id_iff: "higher p v = p \<longleftrightarrow> (p = 0 \<or> v \<prec>\<^sub>t tt p)" (is "?L \<longleftrightarrow> ?R") |
lemma (in vec_space) rank_card_indpt:
assumes "A \<in> carrier_mat n nc"
assumes "maximal S (\<lambda>T. T \<subseteq> set (cols A) \<and> lin_indpt T)"
shows "rank A = card S" |
lemma poly_roots_eq_imp_eq:
fixes p q :: "complex poly"
assumes "Polynomial.lead_coeff p = Polynomial.lead_coeff q"
assumes "poly_roots p = poly_roots q"
shows "p = q" |
lemma small_cfs[simp]: "small {\<FF>. \<FF> : \<AA> \<mapsto>\<mapsto>\<^sub>C\<^bsub>\<alpha>\<^esub> \<BB>}" |
lemma map_int_t[simp]:
assumes Tl: "list_all Ik.Ik.wt Tl" and \<xi>: "Ik.wtE \<xi>"
shows
"map2 ntsem (map Ik.Ik.tpOf Tl) (map (Ik.int \<xi>) Tl) =
map (TE.int (eenv \<xi>) \<circ> tT) Tl" |
lemma ereal_between:
fixes x e :: ereal
assumes "\<bar>x\<bar> \<noteq> \<infinity>"
and "0 < e"
shows "x - e < x"
and "x < x + e" |
lemma frestriction_fconverse: "r\<inverse>\<^sub>\<bullet> \<restriction>\<^sub>\<bullet> A = (r \<restriction>\<^sub>\<bullet> A)\<inverse>\<^sub>\<bullet>" |
lemma downset_iso_iff: "(\<down>x \<subseteq> \<down>y) = (x \<le> y)" |
lemma mat_of_rows_index: "i < length rs \<Longrightarrow> j < n \<Longrightarrow> mat_of_rows n rs $$ (i,j) = rs ! i $ j" |
lemma i_Exec_Stream_input_map: "
i_Exec_Comp_Stream trans_fun (f \<circ> input) c =
i_Exec_Comp_Stream (trans_fun \<circ> f) input c" |
lemma lesssub_list_impl_same_size:
"xs <_(Listn.le r) ys \<Longrightarrow> size ys = size xs" |
lemma vars_of_subterm :
assumes "x \<in> vars_of s"
shows "\<And> t. subterm t p s \<Longrightarrow> x \<in> vars_of t" |
lemma n_distrib_alt: "n x \<cdot> n z = n y \<cdot> n z \<Longrightarrow> n x \<oplus> n z = n y \<oplus> n z \<Longrightarrow> n x = n y" |
lemma sorted_list_of_set_UN_lessThan:
fixes k::nat
assumes sm: "strict_mono_sets {..<k} A" and "\<And>i. i < k \<Longrightarrow> finite (A i)"
shows "sorted_list_of_set (\<Union>i<k. A i) = concat (map (sorted_list_of_set \<circ> A) (sorted_list_of_set {..<k}))" |
lemma chop_leq_max:"N_Chop(i,j,k) \<and> consec j k \<longrightarrow>
(\<forall>n . n \<in> Rep_nat_int i \<and> n \<le> maximum j \<longrightarrow> n \<in> Rep_nat_int j)" |
lemma dagger_of_id_is_id [simp]:
"(1\<^sub>m n)\<^sup>\<dagger> = 1\<^sub>m n" |
lemma list_set_insert[param]:
assumes "y \<notin> Y"
assumes "(x, y) \<in> A" "(xs, Y) \<in> \<langle>A\<rangle> list_set_rel"
shows "(x # xs, insert y Y) \<in> \<langle>A\<rangle> list_set_rel" |
lemma dbl_dec_neg_numeral:
"Num.dbl_dec (- Num.numeral k) = - Num.numeral (Num.Bit1 k)" |
lemma qp_Neg[dest]: "qp (Neg Q) \<Longrightarrow> False" |
lemma eq_acom_iff_strip_anno:
"C1=C2 \<longleftrightarrow> strip C1 = strip C2 \<and> (\<forall>p<size(annos C1). anno C1 p = anno C2 p)" |
lemma extend_filter: "frequently P F \<Longrightarrow> inf F (principal {x. P x}) \<noteq> bot" |
lemma maybe_arith_int_Not_Num:
"(\<forall>n. maybe_arith_int f a1 a2 \<noteq> Some (Num n)) = (maybe_arith_int f a1 a2 = None)" |
lemma WT_implies_WTrt: "P,E \<turnstile> e :: T \<Longrightarrow> P,E,h \<turnstile> e : T"
and WTs_implies_WTrts: "P,E \<turnstile> es [::] Ts \<Longrightarrow> P,E,h \<turnstile> es [:] Ts" |
lemma singleton_appends_dotP [simp]: "dim_vec x = dim_vec y \<Longrightarrow> (x @\<^sub>v [v]\<^sub>v) \<bullet> (y @\<^sub>v [w]\<^sub>v) = x \<bullet> y + v * w" |
lemma real_root_commute: "root m (root n x) = root n (root m x)" |
lemma val_size_mem_r: "(a, b) \<in> set t \<Longrightarrow> val_size b < fun_size t" |
lemma terminates_strip_to_terminates:
assumes termi_strip: "strip F \<Gamma>\<turnstile>c\<down>s"
shows "\<Gamma>\<turnstile>c\<down>s" |
lemma True_eqvt [eqvt]:
shows "p \<bullet> True = True" |
lemma weakSimE:
fixes P :: ccs
and Rel :: "(ccs \<times> ccs) set"
and Q :: ccs
and \<alpha> :: act
and Q' :: ccs
assumes "P \<leadsto><Rel> Q"
and "Q \<longmapsto>\<alpha> \<prec> Q'"
obtains P' where "P \<Longrightarrow>\<alpha> \<prec> P'" and "(P', Q') \<in> Rel" |
lemma Sigma_triv: "(a, b) \<in> Sigma A B \<Longrightarrow> a \<in> A & b \<in> B a" |
lemma [simp]: "a \<in> G \<Longrightarrow> Rep_G (Abs_G a) = a" |
lemma circ_one_L:
"1\<^sup>\<circ> = L \<squnion> 1" |
lemma split_set_path_length:"{Cs. Subobjs P C Cs \<and> length Cs \<le> Suc(n)} =
{Cs. Subobjs P C Cs \<and> length Cs \<le> n} \<union> {Cs. Subobjs P C Cs \<and> length Cs = Suc(n)}" |
lemma lookup_monom_of_set:
"Poly_Mapping.lookup (monom_of_set X) i = (if finite X \<and> i \<in> X then 1 else 0)" |
lemma perp_in_col:
assumes "X PerpAt A B C D"
shows "Col A B X \<and> Col C D X" |
lemma pred_prod_conj [simp]:
shows pred_prod_conj1: "\<And>P Q R. pred_prod (\<lambda>x. P x \<and> Q x) R = (\<lambda>x. pred_prod P R x \<and> pred_prod Q R x)"
and pred_prod_conj2: "\<And>P Q R. pred_prod P (\<lambda>x. Q x \<and> R x) = (\<lambda>x. pred_prod P Q x \<and> pred_prod P R x)" |
lemma mono_D2:
assumes ordered: "P \<sqsubseteq> Q"
shows "(\<forall> s. s \<notin> D (P \<box> S) \<longrightarrow> Ra (P \<box> S) s = Ra (Q \<box> S) s)" |
lemma LID\<^sub>LI [intro]:
assumes "s = (\<sigma>, \<tau>, e)"
shows
"r \<in> LID\<^sub>S \<sigma> \<Longrightarrow> r \<in> LID\<^sub>L s"
"r \<in> LID\<^sub>S \<tau> \<Longrightarrow> r \<in> LID\<^sub>L s"
"r \<in> LID\<^sub>E e \<Longrightarrow> r \<in> LID\<^sub>L s" |
lemma distincts_inj_on_set:
assumes "distincts xss" shows "inj_on set (set xss)" |
lemma lang_ENC_split:
assumes "finite X" "X = Y1 \<union> Y2" "n = 0 \<or> (\<forall>p \<in> X. p < n)"
shows "lang n (ENC n X) = lang n (ENC n Y1) \<inter> lang n (ENC n Y2)" |
lemma ordertype_eqI:
assumes "wf r" "total_on A r" "small A" "wf s"
"bij_betw f A B" "(\<forall>x \<in> A. \<forall>y \<in> A. (f x, f y) \<in> s \<longleftrightarrow> (x,y) \<in> r)"
shows "ordertype A r = ordertype B s" |
lemma partial_fraction_decomposition:
fixes ys :: "('a \<times> nat) list"
defines "ys' \<equiv> map (\<lambda>(x,n). x ^ Suc n) ys :: 'a list"
assumes unit: "\<And>y. y \<in> fst ` set ys \<Longrightarrow> is_unit (lift y)"
assumes coprime: "pairwise coprime (set ys')"
assumes distinct: "distinct ys'"
assumes "partial_fraction_decomposition x ys = (a, zs)"
shows "lift a + (\<Sum>i<length ys. \<Sum>j\<le>snd (ys!i).
from_decomp (zs!i!j) (fst (ys!i)) (snd (ys!i)+1 - j)) =
lift x div lift (prod_list ys')" |
lemma Bossy_stable:
shows "Bossy.stable_on ds X \<longleftrightarrow> X = {d1h1, d3h3}"
(*<*) (is "?lhs = ?rhs") |
lemma suc_least:
"\<lbrakk>B \<le> Field r; a \<in> Field r; (\<And> b. b \<in> B \<Longrightarrow> a \<noteq> b \<and> (b,a) \<in> r)\<rbrakk>
\<Longrightarrow> (suc B, a) \<in> r" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.