Statement:
stringlengths 7
24.3k
|
---|
lemma subterm_inj_on_subset:
assumes "subterm_inj_on f A"
and "B \<subseteq> A"
shows "subterm_inj_on f B" |
lemma gcollapse_groot_None [simp]:
"groot_sym t = None \<Longrightarrow> gcollapse t = None"
"fst (groot t) = None \<Longrightarrow> gcollapse t = None" |
lemma single_Trg_last_in_targets:
assumes "Arr T"
shows "[\<Lambda>.Trg (last T)] \<in> targets T" |
lemma permutes_bij_inv_into: \<^marker>\<open>contributor \<open>Lukas Bulwahn\<close>\<close>
fixes A :: "'a set"
and B :: "'b set"
assumes "p permutes A"
and "bij_betw f A B"
shows "(\<lambda>x. if x \<in> B then f (p (inv_into A f x)) else x) permutes B" |
lemma fromArr_toArr [simp]:
assumes "arr f" and "\<not>ide f"
shows "fromArr (toArr f) = f" |
lemma Con_char:
shows "\<T> \<lbrace>\<frown>\<rbrace> \<U> \<longleftrightarrow>
N.is_Cong_class \<T> \<and> N.is_Cong_class \<U> \<and> (\<exists>t u. t \<in> \<T> \<and> u \<in> \<U> \<and> t \<frown> u)" |
theorem main\<^sub>K: \<open>G \<TTurnstile>\<^sub>K p \<longleftrightarrow> G \<turnstile>\<^sub>K p\<close> |
lemma farkas_minkowsky_weyl_theorem:
"(\<exists> X. X \<subseteq> carrier_vec n \<and> finite X \<and> P = cone X)
\<longleftrightarrow> (\<exists> A nr. A \<in> carrier_mat nr n \<and> P = polyhedral_cone A)" |
lemma OclOr7[simp]: "(null or null) = null" |
lemma subst_lconsts_empty_subst[simp]: "subst_lconsts empty_subst = {}" |
lemma (in Ring) exact3_comp_0:"\<lbrakk>R module L; R module M; R module N;
f \<in> mHom R L M; g \<in> mHom R M N; exact3 R L f M g N\<rbrakk> \<Longrightarrow>
compos L g f = mzeromap L N" |
lemma comp_ipresIGFreshAbs:
assumes "ipresIGWlsAbs hA MOD MOD'"
and "ipresIGFreshAbs hA MOD MOD'" and "ipresIGFreshAbs hA' MOD' MOD''"
shows "ipresIGFreshAbs (hA' o hA) MOD MOD''" |
lemma atom_fresh_perm: "\<lbrakk>x \<in> Vs; y \<in> Vs\<rbrakk> \<Longrightarrow> atom x \<sharp> p \<bullet> y" |
lemma ccompare_set_code [code]:
"CCOMPARE('a :: ccompare set) =
(case ID CCOMPARE('a) of None \<Rightarrow> None | Some _ \<Rightarrow> Some (comp_of_ords cless_eq_set cless_set))" |
theorem th_3: "c_unfold (length ls) (c_fold ls) = ls" |
lemma prim_glue:
assumes last_neq: "us = \<epsilon> \<or> last us \<noteq> w"
and unique_blocks: "\<And>bs\<^sub>1 bs\<^sub>2. glue_block w us bs\<^sub>1 \<Longrightarrow> glue_block w us bs\<^sub>2
\<Longrightarrow> concat bs\<^sub>1 = concat bs\<^sub>2 \<Longrightarrow> bs\<^sub>1 = bs\<^sub>2"
shows "primitive us \<Longrightarrow> primitive (glue w us)" |
lemma expands_to_divide:
"trimmed G \<Longrightarrow> basis_wf basis \<Longrightarrow> (f expands_to F) basis \<Longrightarrow> (g expands_to G) basis \<Longrightarrow>
((\<lambda>x. f x / g x) expands_to F / G) basis" |
lemma label_incr_0_rev [dest]:
"\<lbrakk>n \<oplus> i = Label 0; i > 0\<rbrakk> \<Longrightarrow> False" |
lemma (in dist_execution) state_is_associated_string:
assumes "is_valid_state_id i"
shows "is_certified_associated_string (set (received_messages i)) (state i)" |
lemma DropToShift:
fixes
l i list
assumes
"l + i < length list"
shows
"(drop l list) ! i = list ! (l + i)" |
lemma bconf_Try[iff]:
"P,sh \<turnstile>\<^sub>b (try e\<^sub>1 catch(C V) e\<^sub>2,b) \<surd> \<longleftrightarrow> P,sh \<turnstile>\<^sub>b (e\<^sub>1,b) \<surd>" |
lemma exec_Cons_1 [intro]:
"P \<turnstile> (0,s,stk) \<rightarrow>* (j,t,stk') \<Longrightarrow>
instr#P \<turnstile> (1,s,stk) \<rightarrow>* (1+j,t,stk')" |
lemma outgoing_transitions_deterministic2: "(\<And>s a b ba aa bb bc.
((a, b), ba) |\<in>| outgoing_transitions e s \<Longrightarrow>
((aa, bb), bc) |\<in>| (outgoing_transitions e s) - {|((a, b), ba)|} \<Longrightarrow> b \<noteq> bb \<or> ba \<noteq> bc \<Longrightarrow> \<not>choice ba bc)
\<Longrightarrow> deterministic e" |
theorem zeta_neg_of_nat:
"zeta (-of_nat n) = -of_real (bernoulli' (Suc n)) / of_nat (Suc n)" |
lemma ferrack:
assumes qf: "qfree p"
shows "qfree (ferrack p) \<and> Ifm vs bs (ferrack p) = Ifm vs bs (E p)"
(is "_ \<and> ?rhs = ?lhs") |
lemma disj_gtt_states_disj_snd_ta_states:
assumes dist_st: "gtt_states \<G>\<^sub>1 |\<inter>| gtt_states \<G>\<^sub>2 = {||}"
shows "\<Q> (snd \<G>\<^sub>1) |\<inter>| \<Q> (snd \<G>\<^sub>2) = {||}" |
lemma
"syzygy_basis DRLEX [Vec\<^sub>0 0 (X * Y - Z), Vec\<^sub>0 0 (X * Z - Y), Vec\<^sub>0 0 (Y * Z - X)] =
[
Vec\<^sub>0 0 (- X * Z + Y) + Vec\<^sub>0 1 (X * Y - Z),
Vec\<^sub>0 0 (- Y * Z + X) + Vec\<^sub>0 2 (X * Y - Z),
Vec\<^sub>0 1 (- Y * Z + X) + Vec\<^sub>0 2 (X * Z - Y),
Vec\<^sub>0 0 (Y - Y * Z ^ 2) + Vec\<^sub>0 1 (Y ^ 2 * Z - Z) + Vec\<^sub>0 2 (Y ^ 2 - Z ^ 2)
]" |
lemma (in vmc_path) strategy_attracts_lset:
assumes "strategy_attracts p \<sigma> A W" "v0 \<in> A"
shows "lset P \<inter> W \<noteq> {}" |
lemma degree_le:
assumes d: "\<forall>j \<ge> d. pdevs_apply x j = 0"
shows "degree x \<le> d" |
lemma ternary_lift5: "eval_ternary_Not tv = TernaryUnknown \<longleftrightarrow> tv = TernaryUnknown" |
lemma word_plus_mcs_4:
"\<lbrakk>v + x \<le> w + x; x \<le> v + x\<rbrakk> \<Longrightarrow> v \<le> (w::'a::len word)" |
lemma table_of_mapf_SomeD [dest!]:
"table_of (map (\<lambda>(k,x). (k, f x)) t) k = Some z \<Longrightarrow> (\<exists>y\<in>table_of t k: z=f y)" |
lemma srs: "r2s \<circ> s2r = id" |
lemma bigo_add_commute_imp: "f \<in> g +o O(h) \<Longrightarrow> g \<in> f +o O(h)" |
lemma word_upto_set_eq: "a \<le> b \<Longrightarrow> x \<in> set (word_upto a b) \<longleftrightarrow> a \<le> x \<and> x \<le> b" |
lemma smap_union_empty2[simp]: "m \<union>. {}. = m" |
lemma openin_contains_ball:
"openin (top_of_set T) S \<longleftrightarrow>
S \<subseteq> T \<and> (\<forall>x \<in> S. \<exists>e. 0 < e \<and> ball x e \<inter> T \<subseteq> S)"
(is "?lhs = ?rhs") |
lemma "dom(map_of system_UploadDroid) \<subseteq> set (nodesL policy)" |
lemma swap_cs_Trans_Snapshot:
assumes
"c \<turnstile> ev \<mapsto> d" and
"d \<turnstile> ev' \<mapsto> e" and
"isTrans ev" and
"isSnapshot ev'" and
"c \<turnstile> ev' \<mapsto> d'" and
"d' \<turnstile> ev \<mapsto> e'"
shows
"cs e i = cs e' i" |
lemma wtA_gA[simp]: "Ik.wtA at \<Longrightarrow> GE.wtA (gA at)" |
lemma rk_ABPRa :
assumes "rk {A, B, P} = 3" and "rk {A, B, C, A', B', C', P} = 3" and "rk {P, Q, R} = 2"
and "rk {P, R} = 2" and "rk {A', B', P, Q} = 4"
shows "rk {A, B, P, R, a} \<ge> 4" |
lemma ptrm_alpha_equiv_fvs:
assumes "X \<approx> Y"
shows "ptrm_fvs X = ptrm_fvs Y" |
lemma keys_lower: "keys (lower p v) = {u\<in>keys p. u \<prec>\<^sub>t v}" |
lemma satisfies_tableau_Cons: "v \<Turnstile>\<^sub>t t \<Longrightarrow> v \<Turnstile>\<^sub>e e \<Longrightarrow> v \<Turnstile>\<^sub>t (e # t)" |
lemma permutations_of_set_singleton [simp]: "permutations_of_set {x} = {[x]}" |
lemma fsm_transition_output[intro]: "\<And> t . t \<in> (transitions M) \<Longrightarrow> t_output t \<in> outputs M" |
lemma merkle_interface_unit:
"merkle_interface hash_unit blinding_of_unit merge_unit" |
lemma tr_sem_equiv':
assumes "\<forall>(t,t') \<in> set D. (fv t \<union> fv t') \<inter> bvars\<^sub>s\<^sub>s\<^sub>t A = {}"
and "fv\<^sub>s\<^sub>s\<^sub>t A \<inter> bvars\<^sub>s\<^sub>s\<^sub>t A = {}"
and "ground M"
and \<I>: "interpretation\<^sub>s\<^sub>u\<^sub>b\<^sub>s\<^sub>t \<I>"
shows "\<lbrakk>M; set D \<cdot>\<^sub>p\<^sub>s\<^sub>e\<^sub>t \<I>; A\<rbrakk>\<^sub>s \<I> \<longleftrightarrow> (\<exists>A' \<in> set (tr A D). \<lbrakk>M; A'\<rbrakk>\<^sub>d \<I>)" (is "?P \<longleftrightarrow> ?Q") |
lemma PO_l2_inv4 [iff]: "reach l2 \<subseteq> l2_inv4" |
lemma oprod_monoR:
assumes "ozero <o r" "s <o t"
shows "r *o s <o r *o t" (is "?L <o ?R") |
lemma sup_right_dist_test_set:
"test_set A \<Longrightarrow> test_set { x \<squnion> -p | x . x \<in> A }" |
lemma Cons_shuffles_subset1: "(#) x ` shuffles xs ys \<subseteq> shuffles (x # xs) ys" |
lemma (in fin_digraph) pair_fin_digraph_mk_symmetric[intro]: "pair_fin_digraph (mk_symmetric G)" |
lemma get_root_node_si_is_component_unsafe:
assumes "heap_is_wellformed h" and "type_wf h" and "known_ptrs h"
assumes "h \<turnstile> get_root_node_si ptr' \<rightarrow>\<^sub>r root"
shows "set |h \<turnstile> get_scdom_component ptr'|\<^sub>r = set |h \<turnstile> get_scdom_component root|\<^sub>r \<or>
set |h \<turnstile> get_scdom_component ptr'|\<^sub>r \<inter> set |h \<turnstile> get_scdom_component root|\<^sub>r = {}" |
lemma usc_imp_limsup:
fixes f :: "'a::metric_space \<Rightarrow> ereal"
assumes "usc_at x0 f"
assumes "x \<longlonglongrightarrow> x0"
shows "f x0 \<ge> limsup (f \<circ> x)" |
lemma sorted_simps: "sorted [] = True" "sorted (x # ys) = ((\<forall>y \<in> set ys. x\<le>y) \<and> sorted ys)" |
lemma Oops_range_spies1:
"\<lbrakk> Says Kas A (Crypt KeyA \<lbrace>Key authK, Peer, Ta, authTicket\<rbrace>)
\<in> set evs ;
evs \<in> kerbIV \<rbrakk> \<Longrightarrow> authK \<notin> range shrK \<and> authK \<in> symKeys" |
lemma card_union_disjoint_fset:
shows "xs |\<inter>| ys = {||} \<Longrightarrow> card_fset (xs |\<union>| ys) = card_fset xs + card_fset ys" |
lemma arg_uminus:
assumes "z \<noteq> 0"
shows "Arg (-z) = \<downharpoonright>Arg z + pi\<downharpoonleft>" |
lemma seq_hoare_inv_r_3 [hoare]: "\<lbrakk> \<lbrace>p\<rbrace>Q\<^sub>1\<lbrace>p\<rbrace>\<^sub>u ; \<lbrace>p\<rbrace>Q\<^sub>2\<lbrace>q\<rbrace>\<^sub>u \<rbrakk> \<Longrightarrow> \<lbrace>p\<rbrace>Q\<^sub>1 ;; Q\<^sub>2\<lbrace>q\<rbrace>\<^sub>u" |
lemma ovalidNF_wp_comb1 [wp_comb]:
"\<lbrakk> ovalidNF P' f Q; ovalidNF P f Q'; \<And>s. P s \<Longrightarrow> P' s \<rbrakk> \<Longrightarrow> ovalidNF P f (\<lambda>r s. Q r s \<and> Q' r s)" |
lemma idiv_ile_mono2: "\<lbrakk> 0 < m; m \<le> (n::enat) \<rbrakk> \<Longrightarrow> k div n \<le> k div m" |
theorem freshEnv_idEnv: "freshEnv xs x idEnv" |
lemma sublist_CONS1_E:
fixes l1 l2
assumes "subseq (h # l1) l2"
shows "subseq l1 l2" |
lemma CARD_prod [card_simps]:
"CARD('a * 'b) = card_prod CARD('a) CARD('b)" |
lemma seqE_cons:
assumes "\<Gamma>,\<gamma>,p\<turnstile> \<langle>r#rs, s\<rangle> \<Rightarrow> t"
obtains ti where "\<Gamma>,\<gamma>,p\<turnstile> \<langle>[r],s\<rangle> \<Rightarrow> ti" "\<Gamma>,\<gamma>,p\<turnstile> \<langle>rs,ti\<rangle> \<Rightarrow> t" |
lemma unitary11_unitary11_gen [simp]:
assumes "unitary11 M"
shows "unitary11_gen M" |
lemma "maybe\<cdot>x\<cdot>ID = fromMaybe\<cdot>x" |
lemma reducecoeffh_numbound0: "numbound0 t \<Longrightarrow> numbound0 (reducecoeffh t g)" |
lemma Farkas_Lemma: fixes A :: "'a mat" and b :: "'a vec"
assumes A: "A \<in> carrier_mat n nr" and b: "b \<in> carrier_vec n"
shows "(\<exists> x. x \<ge> 0\<^sub>v nr \<and> A *\<^sub>v x = b) \<longleftrightarrow> (\<forall> y. y \<in> carrier_vec n \<longrightarrow> A\<^sup>T *\<^sub>v y \<ge> 0\<^sub>v nr \<longrightarrow> y \<bullet> b \<ge> 0)" |
lemma bij_finite_const_subst_exists':
assumes "finite (S::'v set)" "finite (T::('f,'v) terms)" "infinite (U::'f set)"
shows "\<exists>\<sigma>::('f,'v) subst. subst_domain \<sigma> = S
\<and> bij_betw \<sigma> (subst_domain \<sigma>) (subst_range \<sigma>)
\<and> subst_range \<sigma> \<subseteq> ((\<lambda>c. Fun c []) ` U) - T" |
lemma k_steps_to_rtrancl:
assumes steps: "\<forall>i<k. \<Gamma>\<turnstile> p i \<rightarrow> p (Suc i)"
shows "\<Gamma>\<turnstile>p 0\<rightarrow>\<^sup>* p k" |
lemma iT_Plus_neg_Plus_ge_cut_eq: "
b \<le> a \<Longrightarrow> (I \<oplus>- a) \<oplus> b = (I \<down>\<ge> a) \<oplus>- (a - b)" |
lemma analz_insert_freshCryptK:
"\<lbrakk>evs \<in> orb; Key K \<notin> analz (knows Spy evs);
Seskey \<notin> range shrK\<rbrakk> \<Longrightarrow>
(Crypt K X \<in> analz (insert (Key Seskey) (knows Spy evs))) =
(Crypt K X \<in> analz (knows Spy evs))" |
lemma while_denest_6:
"(w * (x \<star> y)) \<star> z = z \<squnion> w * ((x \<squnion> y * w) \<star> (y * z))" |
lemma evalcomb_PR_CONST[sepref_monadify_comb]:
"EVAL$(PR_CONST x) \<equiv> SP (RETURN$(PR_CONST x))" |
lemma mirror_elem_Min: "
\<lbrakk> finite I; I \<noteq> {} \<rbrakk> \<Longrightarrow> mirror_elem (iMin I) I = Max I" |
lemma fls_fresh [simp]: "a \<sharp> fls" |
theorem invertible_commutes_with_inverse:
"\<lbrakk> invertible a; a \<in> M \<rbrakk> \<Longrightarrow> \<eta> (inverse a) = inverse' (\<eta> a)" |
lemma Par2F:
fixes Q :: pi
and \<alpha> :: freeRes
and Q' :: pi
assumes QTrans: "Q \<Longrightarrow>\<^sub>l\<alpha> \<prec> Q'"
shows "P \<parallel> Q \<Longrightarrow>\<^sub>l\<alpha> \<prec> (P \<parallel> Q')" |
lemma abc_Hoare_plus_unhalt1:
"\<lbrace>P\<rbrace> (A::abc_prog) \<up> \<Longrightarrow> \<lbrace>P\<rbrace> (A [+] B) \<up>" |
lemma set_ord_eq_linorder[intro?]:
"eq_linorder cmp \<Longrightarrow> eq_linorder (cmp_set cmp)" |
lemma fronts_cons: "fronts (x#xs) = ((#) x) ` fronts xs \<union> {[]}" (is "?l = ?r") |
lemma differentiable_on_openD: "f differentiable at x"
if "f differentiable_on X" "open X" "x \<in> X" |
lemma lunionM_lUnionM1: "lunionM (lUnionM A) x = foldr lunionM A x" for A x |
lemma bi_unique_poly_rel[transfer_rule]: "bi_unique (mat_rel R)" |
lemma splitset_finite [simp]: "finite (splitset xs)" |
lemma list_augment_twice:
"list_augment (list_augment xs i u) j v = (list_pad_out xs (max i j))[i:=u, j:=v]" |
lemma get_attribute_is_l_get_attribute [instances]: "l_get_attribute type_wf get_attribute get_attribute_locs" |
lemma sliden_surj:"i < j \<Longrightarrow> surj_to (sliden i) (nset i j) {k. k \<le> (j - i)}" |
lemma IVT_two_functions:
fixes f :: "('a::{linear_continuum_topology, real_vector}) \<Rightarrow>
('b::{linorder_topology,real_normed_vector,ordered_ab_group_add})"
assumes conts: "continuous_on {a..b} f" "continuous_on {a..b} g"
and ahyp: "f a < g a" and bhyp: "g b < f b " and "a \<le> b"
shows "\<exists>x\<in>{a..b}. f x = g x" |
lemma (in prob_space) sum_indep_random_variable_lborel:
assumes ind: "indep_var borel X borel Y"
assumes [simp, measurable]: "random_variable lborel X"
assumes [simp, measurable]:"random_variable lborel Y"
shows "distr M lborel (\<lambda>x. X x + Y x) = convolution (distr M lborel X) (distr M lborel Y)" |
lemma lspasl_a_inv:
"Gamma \<and> (h1,h2\<triangleright>h0) \<and> (h3,h4\<triangleright>h1) \<longrightarrow> Delta \<Longrightarrow>
(\<exists>h5. Gamma \<and> (h3,h5\<triangleright>h0) \<and> (h2,h4\<triangleright>h5) \<and> (h1,h2\<triangleright>h0) \<and> (h3,h4\<triangleright>h1)) \<longrightarrow> Delta" |
lemma "(a \<and> b) = (\<not> (\<not> a \<or> \<not> b))" |
lemma lcm_unique:
"a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
lemma cartesian_product:
fixes f::"('c \<Rightarrow> real)"
fixes g::"('d \<Rightarrow> real)"
assumes "finite A"
assumes "finite B"
shows "(\<Sum>b\<in>B. g b) * (\<Sum>a\<in>A. f a) = (\<Sum>ab\<in>A\<times>B. f (fst ab) * g (snd ab))" |
lemma Status_EmptySet:
"(Abs_hierauto ((@ x . True),
{Abs_seqauto ({ @ x . True}, (@ x . True), {}, {})}, {}, Map.empty(@ x . True \<mapsto> {})),
{@x. True},{}, @x. True) \<in>
{(HA,C,E,D) | HA C E D. Status HA C E D}" |
lemma upd_bruijn_pres_distinct:
assumes "sorted xs" "distinct xs"
shows "distinct (upd_bruijn xs)" |
lemma pass_io_set_from_pass_separator :
assumes "is_separator M q1 q2 A t1 t2"
and "pass_separator_ATC S A s1 t2"
and "observable M"
and "observable S"
and "q1 \<in> states M"
and "s1 \<in> states S"
and "(inputs S) = (inputs M)"
shows "pass_io_set (from_FSM S s1) (atc_to_io_set (from_FSM M q1) A)" |
lemma union_grounding_of_cls_ground: "is_ground_clss (\<Union> (grounding_of_cls ` N))" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.