Statement:
stringlengths 7
24.3k
|
---|
lemma prv_scnj2_imp_cnj:
"\<phi> \<in> fmla \<Longrightarrow> \<psi> \<in> fmla \<Longrightarrow> prv (imp (scnj {\<phi>,\<psi>}) (cnj \<phi> \<psi>))" |
lemma sfoldl_op'_strict[simp]:
"op'\<cdot>pat\<cdot>(sfoldl\<cdot>(op'\<cdot>pat)\<cdot>(us, \<bottom>)\<cdot>xs)\<cdot>x = \<bottom>" |
lemma WildOr:
"Wildcard (Or A B), \<Delta> \<equiv> Or (Wildcard A) (Wildcard B)" |
lemma convex_rel_interior_closure:
fixes S :: "'n::euclidean_space set"
assumes "convex S"
shows "rel_interior (closure S) = rel_interior S" |
lemma val_Zp_dist_infty:
assumes "a \<in> carrier Zp"
assumes "b \<in> carrier Zp"
assumes "val_Zp_dist a b = \<infinity>"
shows "a = b" |
lemma lowest_tops_lowest: "lowest_tops es = Some a \<Longrightarrow> e \<in> set es \<Longrightarrow> ifex_ordered e \<Longrightarrow> v \<in> ifex_var_set e \<Longrightarrow> a \<le> v" |
lemma dbm_entry_dbm_min:
assumes "dbm_entry_val u (Some c1) (Some c2) (min a b)"
shows "dbm_entry_val u (Some c1) (Some c2) b" |
lemma union_mono_aux: "A \<subseteq> B \<Longrightarrow> A \<union> C \<subseteq> B \<union> C" |
lemma upd_hd_next:
assumes p_ps: "List p next (p#ps)"
shows "List (next p) (next(p := q)) ps" |
lemma sys_block_size_subset: "sys_block_sizes \<subseteq> \<K>" |
theorem Zorn's_Lemma:
assumes r: "\<And>c. c \<in> chains S \<Longrightarrow> \<exists>x. x \<in> c \<Longrightarrow> \<Union>c \<in> S"
and aS: "a \<in> S"
shows "\<exists>y \<in> S. \<forall>z \<in> S. y \<subseteq> z \<longrightarrow> z = y" |
lemma vrestr_comp:
assumes "g \<in> measurable M M"
shows "(f o g)--` A = g--` (f--` A)" |
lemma subc_sub_closed_var [simp]: \<open>new c p \<Longrightarrow> closed (Suc m) p \<Longrightarrow>
subc c (Var m) (subst p (App c []) m) = p\<close> |
lemma (in prob_space) indep_sets_finite:
assumes I: "I \<noteq> {}" "finite I"
and F: "\<And>i. i \<in> I \<Longrightarrow> F i \<subseteq> events" "\<And>i. i \<in> I \<Longrightarrow> space M \<in> F i"
shows "indep_sets F I \<longleftrightarrow> (\<forall>A\<in>Pi I F. prob (\<Inter>j\<in>I. A j) = (\<Prod>j\<in>I. prob (A j)))" |
lemma r_hd [simp]: "eval r_hd [e] \<down>= e_hd e" |
lemma
fixes s :: "'a :: {nat_power_normed_field,banach,euclidean_space}"
assumes "s \<bullet> 1 > 1"
shows euler_product_fds_zeta:
"(\<lambda>n. \<Prod>p\<le>n. if prime p then inverse (1 - 1 / nat_power p s) else 1)
\<longlonglongrightarrow> eval_fds fds_zeta s" (is ?th1)
and eval_fds_zeta_nonzero: "eval_fds fds_zeta s \<noteq> 0" |
lemma le_oexp':
assumes "Ord \<alpha>" "1 < \<alpha>" "Ord \<beta>" shows "\<beta> \<le> \<alpha>\<up>\<beta>" |
lemma closed_Collect_eq:
fixes f g :: "'a::topological_space \<Rightarrow> 'b::t2_space"
assumes f: "continuous_on UNIV f" and g: "continuous_on UNIV g"
shows "closed {x. f x = g x}" |
lemma bool11: "(True \<longrightarrow> P) = P" |
lemma less_eq_sup_top:
"-x \<le> -y \<longleftrightarrow> --x \<squnion> -y = top" |
lemma f_nth_eq_map_f_nth: "\<lbrakk>as \<noteq> []; length as \<ge> n\<rbrakk> \<Longrightarrow> f (as ! (n - Suc 0)) = map f as ! (n - Suc 0)" |
lemma mult_distrib_inverse' [simp]: "(a * b) / a = b" |
lemma Fix2: "\<lbrakk>Monotone \<phi>; \<phi> (FIX \<phi>) (s, t,\<beta>)\<rbrakk> \<Longrightarrow> FIX \<phi> (s,t,\<beta>)" |
lemma
assumes "x > 0"
shows erf_remainder_integral_nonneg: "erf_remainder_integral n x \<ge> 0"
and erf_remainder_integral_bound: "erf_remainder_integral n x \<le> exp (-x\<^sup>2) / x ^ (2*n+1)" |
lemma maybe_and_not_true:
"(x \<and>? y \<noteq> true) = (x \<noteq> true \<or> y \<noteq> true)" |
lemma insert_ops_exist:
assumes "rga_ops xs"
shows "\<exists>ys. set xs = set ys \<and> insert_ops ys" |
lemma Lnode\<^sub>i_height: "height_up\<^sub>i (Lnode\<^sub>i k xs) = height (Leaf xs)" |
lemma mat_tensor_prod_2_prelim [simp]:
assumes "state 1 v" and "state 1 w"
shows "v \<Otimes> w = mat_of_cols_list 4
[[v $$ (0,0) * w $$ (0,0), v $$ (0,0) * w $$ (1,0), v $$ (1,0) * w $$ (0,0), v $$ (1,0) * w $$ (1,0)]]" |
lemma op_ntcf_components[cat_op_simps]:
shows "op_ntcf \<NN>\<lparr>NTMap\<rparr> = \<NN>\<lparr>NTMap\<rparr>"
and "op_ntcf \<NN>\<lparr>NTDom\<rparr> = op_cf (\<NN>\<lparr>NTCod\<rparr>)"
and "op_ntcf \<NN>\<lparr>NTCod\<rparr> = op_cf (\<NN>\<lparr>NTDom\<rparr>)"
and "op_ntcf \<NN>\<lparr>NTDGDom\<rparr> = op_cat (\<NN>\<lparr>NTDGDom\<rparr>)"
and "op_ntcf \<NN>\<lparr>NTDGCod\<rparr> = op_cat (\<NN>\<lparr>NTDGCod\<rparr>)" |
lemma mpoly_degree_mult_eq:
fixes p q :: "'a :: idom mpoly"
assumes "p \<noteq> 0" "q \<noteq> 0"
shows "MPoly_Type.degree (p * q) x = MPoly_Type.degree p x + MPoly_Type.degree q x" |
lemma k_frontier_is_node[intro, simp]:
"list_all k_isNode (k_frontier a)" |
lemma (in prob_space) AE_in_set_eq_1:
assumes A[measurable]: "A \<in> events" shows "(AE x in M. x \<in> A) \<longleftrightarrow> prob A = 1" |
lemma one_point:
assumes "mwb_lens x" "x \<sharp> v"
shows "(\<exists> x \<bullet> P \<and> var x =\<^sub>u v) = P\<lbrakk>v/x\<rbrakk>" |
lemma hm_rel_id_conv: "hm_rel id_assn id_assn = hm_rel_np"
\<comment> \<open>Used for generic algorithms: Unfold with this, then let decl-impl compose with \<open>map_rel\<close> again.\<close> |
lemma (in Module) ex_extension:"\<lbrakk>R module N; free_generator R M H;
f \<in> H \<rightarrow> carrier N; H1 \<subseteq> H; h \<in> H - H1; (H1, g) \<in> fsps R M N f H\<rbrakk> \<Longrightarrow>
\<exists>k. ((H1 \<union> {h}), k) \<in> fsps R M N f H" |
lemma cross7_basis_zero:
" u=0 \<Longrightarrow> (u \<times>\<^sub>7 axis 1 1 = 0) \<and> (u \<times>\<^sub>7 axis 2 1 = 0) \<and> (u \<times>\<^sub>7 axis 3 1 = 0)
\<and> (u \<times>\<^sub>7 axis 4 1 = 0) \<and> (u \<times>\<^sub>7 axis 5 1 = 0 ) \<and> (u \<times>\<^sub>7 axis 6 1 = 0 )
\<and> (u \<times>\<^sub>7 axis 7 1 = 0) " |
lemma fix_asset_price:
shows "\<exists>x Mkt2. x \<notin> stocks Mkt \<and>
coincides_on Mkt Mkt2 (stocks Mkt) \<and>
prices Mkt2 x = pr" |
lemma Im_divide: "Im (x / y) = (Im x * Re y - Re x * Im y) / ((Re y)\<^sup>2 + (Im y)\<^sup>2)" |
lemma Ratreal_code[code]:
"Ratreal = real_of_u \<circ> mau_of_rat" |
theorem sim_first: assumes H: "s \<approx> t" shows "first s = first t" |
lemma transfer_rfoldl[refine_transfer]:
assumes "\<And>s x. RETURN (f s x) \<le> F s x"
shows "RETURN (foldl f s l) \<le> rfoldl F s l" |
lemma "(p \<or> q) \<and> \<not>p \<Longrightarrow> q" |
lemma self_finance_updated_ind:
assumes "portfolio pf"
and "\<forall>n w. prices Mkt asset n w \<noteq> 0"
shows "cls_val_process Mkt (self_finance Mkt v pf asset) (Suc n) w = cls_val_process Mkt pf (Suc n) w +
(prices Mkt asset (Suc n) w / (prices Mkt asset n w)) *
(val_process Mkt (self_finance Mkt v pf asset) n w -
val_process Mkt pf n w)" |
lemma monotone_extreme_imp_extreme_bound:
"extreme_bound A (\<sqsubseteq>) (f ` I) (f e)" |
lemma residuated_strict: "residuated f \<Longrightarrow> f \<bottom> = \<bottom>" |
lemma inner_eucl_of_list:
fixes i::"'a::executable_euclidean_space"
assumes i: "i \<in> Basis"
assumes l: "length xs = DIM('a)"
shows "i \<bullet> eucl_of_list xs = xs ! (index Basis_list i)" |
lemma while_denest_3:
"(x \<star> w) \<star> x\<^sup>\<omega> = (x \<star> w)\<^sup>\<omega>" |
theorem constr_fp_uniq:
assumes "constr F E" "mono F" "\<Sqinter> (range E) = C"
shows "(C \<and> \<mu> F) = (C \<and> \<nu> F)" |
lemma msubst_lit [usubst]: "\<guillemotleft>x\<guillemotright>\<lbrakk>x\<rightarrow>v\<rbrakk> = v" |
lemma Max_le_Min_imp_singleton: "
\<lbrakk> finite A; A \<noteq> {}; Max A \<le> Min A \<rbrakk> \<Longrightarrow> A = {Min A}" |
lemma single_valued_monom_rel': \<open>IS_LEFT_UNIQUE monom_rel\<close> |
lemma correctCompositionDiffLevelsA82: "correctCompositionDiffLevels sA82" |
lemma map_of_ty_k':
"\<lbrakk>distinct (map (\<lambda>(cl, var, ty). var) cl_var_ty_list); distinct (map (\<lambda>(y, cl, var, var', v). var') y_cl_var_var'_v_list);
x' \<notin> (\<lambda>(y, cl, var, var', v). x_var var') ` set y_cl_var_var'_v_list; map fst y_cl_var_var'_v_list = map fst y_ty_list;
map (\<lambda>(cl, var, ty). ty) cl_var_ty_list = map snd y_ty_list; map (\<lambda>(y, cl, var, u). var) y_cl_var_var'_v_list = map (\<lambda>(cl, var, ty). var) cl_var_ty_list;
map_of (map (\<lambda>(cl, var, y). (x_var var, y)) cl_var_ty_list) (x_var var) = Some ty_var\<rbrakk>
\<Longrightarrow> (if x_var (case_option var (case_x (\<lambda>var'. var') var) (map_of (map (\<lambda>(y, cl, var, var', v). (x_var var, x_var var')) y_cl_var_var'_v_list) (x_var var))) = x' then Some ty_x_m
else (\<Gamma> ++ map_of (map (\<lambda>((y, cl, var, var', v), y', y). (x_var var', y)) (zip y_cl_var_var'_v_list y_ty_list)))
(x_var (case_option var (case_x (\<lambda>var'. var') var)
(map_of (map (\<lambda>(y, cl, var, var', v). (x_var var, x_var var')) y_cl_var_var'_v_list) (x_var var))))) =
Some ty_var" |
lemma ii_squared [simp]: "quat_ii\<^sup>2 = -1" |
lemma powr_log_cancel [simp]: "0 < a \<Longrightarrow> a \<noteq> 1 \<Longrightarrow> 0 < x \<Longrightarrow> a powr (log a x) = x" |
lemma OrdNotEqP_self_contra: "{x NEQ x} \<turnstile> Fls" |
lemma ins_root_order:
assumes "root_order k t"
shows "root_order_up\<^sub>i k (ins k x t)" |
lemma unite_wf_env:
fixes e v w
defines "e' \<equiv> unite v w e"
assumes pre: "pre_dfss v e"
and w: "w \<in> successors v" "w \<notin> vsuccs e v" "w \<in> visited e" "w \<notin> explored e"
shows "wf_env e'" |
lemma monad_state_alt_envT' [locale_witness]:
"monad_state_alt return (bind :: ('a, 'm) bind) (get :: ('s, 'm) get) put alt
\<Longrightarrow> monad_state_alt return (bind :: ('a, ('r, 'm) envT) bind) (get :: ('s, ('r, 'm) envT) get) put alt" |
lemma d_delta_ln_upper_15: "x > 0 \<Longrightarrow>
((\<lambda>x. ln_upper_15 x - ln x) has_field_derivative diff_delta_ln_upper_15 x) (at x)" |
lemma B'[simp]:"x \<noteq> bot \<Longrightarrow> x \<noteq> null \<Longrightarrow> (snd \<lceil>\<lceil>Rep_Pair\<^sub>b\<^sub>a\<^sub>s\<^sub>e x\<rceil>\<rceil>) \<noteq> bot" |
lemma upper_real_interval[simp]: "upper (real_interval x) = upper x" |
lemma us_mono:
assumes "i < j" and "j < sum_list y"
shows "\<^bold>u y i <\<^sub>v \<^bold>u y j" |
lemma
assumes "f \<in> X \<rightarrow>\<^sub>Q \<real>\<^sub>Q"
and "\<alpha> \<in> qbs_Mx X"
shows "(\<lambda>x. 2 * f (\<alpha> x) + (f (\<alpha> x))^2) \<in> \<real>\<^sub>Q \<rightarrow>\<^sub>Q \<real>\<^sub>Q" |
lemma p_subid_interr: "(x \<cdot> z \<cdot> 1\<^sub>\<pi>) \<parallel> (y \<cdot> z \<cdot> 1\<^sub>\<pi>) = (x \<parallel> y) \<cdot> z \<cdot> 1\<^sub>\<pi>" |
lemma upd_cond_alt: "upd_cond Q \<pi> u v' \<longleftrightarrow>
(v',u) \<in> edges g \<and> v'\<notin>S (A Q \<pi>) \<and> enat (w {v',u}) < Q v'" |
lemma multi_nonempty_split: "M \<noteq> {#} \<Longrightarrow> \<exists>A a. M = add_mset a A" |
lemma Neg_Imp_I [intro!]: "H \<turnstile> A \<Longrightarrow> insert B H \<turnstile> Fls \<Longrightarrow> H \<turnstile> Neg (A IMP B)" |
lemma pt_unit_inst:
shows "pt TYPE(unit) TYPE('x)" |
lemma usedBy_bop [unrest]: "\<lbrakk> x \<natural> u; x \<natural> v \<rbrakk> \<Longrightarrow> x \<natural> bop f u v" |
lemma Arccos_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Im(z + \<i> * csqrt(1 - z\<^sup>2))" |
lemma o_subst:
"subst \<pi>1 o subst \<pi>2 = subst (subst \<pi>1 o \<pi>2)" |
lemma path_connected_arc_complement:
fixes \<gamma> :: "real \<Rightarrow> 'a::euclidean_space"
assumes "arc \<gamma>" "2 \<le> DIM('a)"
shows "path_connected(- path_image \<gamma>)" |
lemma [simp]: "\<alpha> [] = (\<lambda>_. 0)" |
lemma share_all_until_volatile_write_update_sb:
assumes congr: "\<And>S. share (takeWhile (Not \<circ> is_volatile_Write\<^sub>s\<^sub>b) sb') S = share (takeWhile (Not \<circ> is_volatile_Write\<^sub>s\<^sub>b) sb) S"
shows "\<And>\<S> i. \<lbrakk>i < length ts; ts!i = (p,is,\<theta>,sb,\<D>,\<O>,\<R>)\<rbrakk>
\<Longrightarrow>
share_all_until_volatile_write ts \<S> =
share_all_until_volatile_write (ts[i := (p', is',\<theta>', sb', \<D>', \<O>',\<R>')]) \<S>" |
lemma norm_ket_k_ge_K:
"k \<ge> K \<Longrightarrow> inner_prod (ket_k k) (ket_k k) = 0" |
lemma trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p_finite[simp]: "finite (trms\<^sub>s\<^sub>s\<^sub>t\<^sub>p x)" |
lemma closure_complete: assumes "lang r = lang s"
shows "EX bs. closure as ([({r},{s})],[]) = Some([],bs)" (is ?C) |
theorem wls_psubst_Op_simp[simp]:
assumes "wlsInp delta inp" and "wlsBinp delta binp" and "wlsEnv rho"
shows
"((Op delta inp binp) #[rho]) = Op delta (inp %[rho]) (binp %%[rho])" |
lemma rsum_append: "rsum (D1 @ D2) f = rsum D1 f + rsum D2 f" |
lemma inv_atI[intro]: assumes "\<And> i. i < n \<Longrightarrow> p A i m"
shows "inv_at p A m" |
lemma Gromov_product_isometry:
assumes "isometry_on UNIV f"
shows "Gromov_product_at (f x) (f y) (f z) = Gromov_product_at x y z" |
lemma Initial_Label: "CTXT 0 [] outp P \<Longrightarrow> P" |
lemma reduce_implyP: \<open>reduce (ps \<^bold>\<leadsto>\<^sub>! q) = (map reduce ps \<^bold>\<leadsto>\<^sub>! reduce q)\<close> |
lemma nat_diff_left_cancel_eq1: "\<lbrakk> k - m = k - (n::nat); m < k \<rbrakk> \<Longrightarrow> m = n" |
lemma ac_fract:
assumes "c \<in> carrier Q\<^sub>p"
assumes "a \<in> nonzero Z\<^sub>p"
assumes "b \<in> nonzero Z\<^sub>p"
assumes "c = frac a b"
shows "angular_component c = (ac_Zp a)\<otimes>\<^bsub>Z\<^sub>p\<^esub> inv \<^bsub>Z\<^sub>p\<^esub>(ac_Zp b)" |
lemma analytic_at:
"f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)" |
lemma inc_above_dec_above_iff: "inc_above b i (dec_above b i x) = x \<longleftrightarrow> x < b \<or> b + i \<le> x" |
lemma array_map_conv_foldl_array_set:
assumes len: "array_length A = array_length a"
shows "array_map f a = foldl (\<lambda>A (k, v). array_set A k (f k v)) A (assoc_list_of_array a)" |
lemma real_less_ereal_iff:
"real_of_ereal y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)" |
lemma rejects_termination:
"observe_execution drinks 0 <> [(STR ''select'', [Str ''coke'']), (STR ''rejects'', [Num 50]), (STR ''coin'', [Num 50])] = [[]]" |
lemma all_edges_between_subset: "all_edges_between X Y G \<subseteq> X\<times>Y" |
lemma sdnets_noteq:
"onlyTwoNets a \<Longrightarrow> onlyTwoNets aa \<Longrightarrow> first_bothNet a \<noteq> first_bothNet aa \<Longrightarrow>
\<not> member DenyAll a \<Longrightarrow> \<not> member DenyAll aa \<Longrightarrow> sdnets a \<noteq> sdnets aa" |
lemma bisimScopeExtSym:
fixes x :: name
and Q :: "('a, 'b, 'c) psi"
and P :: "('a, 'b, 'c) psi"
assumes "x \<sharp> \<Psi>"
and "x \<sharp> Q"
shows "\<Psi> \<rhd> \<lparr>\<nu>x\<rparr>(P \<parallel> Q) \<sim> (\<lparr>\<nu>x\<rparr>P) \<parallel> Q" |
lemma "0 \<le> (n :: nat)" |
lemma lconf_hext: "\<lbrakk> P,h \<turnstile> l (:\<le>)\<^sub>w E; h \<unlhd> h' \<rbrakk> \<Longrightarrow> P,h' \<turnstile> l (:\<le>)\<^sub>w E" |
lemma is_fieldD: "is_field m \<Longrightarrow> \<exists> declC f. m=(declC,fdecl f)" |
lemma set_iterator_rule_P:
"\<lbrakk> set_iterator it S0;
I S0 \<sigma>0;
!!S \<sigma> x. \<lbrakk> c \<sigma>; x \<in> S; I S \<sigma>; S \<subseteq> S0 \<rbrakk> \<Longrightarrow> I (S - {x}) (f x \<sigma>);
!!\<sigma>. I {} \<sigma> \<Longrightarrow> P \<sigma>;
!!\<sigma> S. S \<subseteq> S0 \<Longrightarrow> S \<noteq> {} \<Longrightarrow> \<not> c \<sigma> \<Longrightarrow> I S \<sigma> \<Longrightarrow> P \<sigma>
\<rbrakk> \<Longrightarrow> P (it c f \<sigma>0)" |
lemma valid_dbm_non_empty_diag:
assumes "valid_dbm M" "[M]\<^bsub>v,n\<^esub> \<noteq> {}"
shows "\<forall> k \<le> n. M k k \<ge> \<one>" |
lemma PhiWhilePOp_Monotone:"Monotone (PhiWhilePOp A b \<Phi>)" |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.