entry_point
stringlengths
1
65
original_triton_python_code
stringlengths
208
619k
optimised_triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
Hswish
import torch import torch.nn as nn from torch.quantization import QuantStub from torch.quantization import DeQuantStub class Hsigmoid(nn.Module): def __init__(self, inplace=True, add_stub=False): super().__init__() self.float_op = nn.quantized.FloatFunctional() self.relu6 = nn.ReLU6(inplace=inplace) self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub def forward(self, x): if self.add_stub: x = self.quant(x) relu6 = self.relu6(self.float_op.add_scalar(x, 3.0)) mul = self.float_op.mul_scalar(relu6, 1 / 6.0) if self.add_stub: mul = self.dequant(mul) return mul def fuse_model(self): pass class Hswish(nn.Module): def __init__(self, inplace=True, add_stub=False): super(Hswish, self).__init__() self.float_op = nn.quantized.FloatFunctional() self.hsigmoid = Hsigmoid(inplace, add_stub=False) self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub def forward(self, x): if self.add_stub: x = self.quant(x) mul = self.float_op.mul(x, self.hsigmoid(x)) if self.add_stub: mul = self.dequant(mul) return mul def fuse_model(self): pass def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from torch.quantization import QuantStub from torch.quantization import DeQuantStub assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tmp9 = tmp0 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class Hsigmoid(nn.Module): def __init__(self, inplace=True, add_stub=False): super().__init__() self.float_op = nn.quantized.FloatFunctional() self.relu6 = nn.ReLU6(inplace=inplace) self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub def forward(self, x): if self.add_stub: x = self.quant(x) relu6 = self.relu6(self.float_op.add_scalar(x, 3.0)) mul = self.float_op.mul_scalar(relu6, 1 / 6.0) if self.add_stub: mul = self.dequant(mul) return mul def fuse_model(self): pass class HswishNew(nn.Module): def __init__(self, inplace=True, add_stub=False): super(HswishNew, self).__init__() self.float_op = nn.quantized.FloatFunctional() self.hsigmoid = Hsigmoid(inplace, add_stub=False) self.quant = QuantStub() self.dequant = DeQuantStub() self.add_stub = add_stub def fuse_model(self): pass def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
akosik-anyvision/incubator-tvm
Hswish
false
18,240
[ "Apache-2.0" ]
9
e1b11712ac09c32614483d24a4c7e0245ee4cb4b
https://github.com/akosik-anyvision/incubator-tvm/tree/e1b11712ac09c32614483d24a4c7e0245ee4cb4b
AddAndNorm
import torch import torch.nn as nn class AddAndNorm(nn.Module): def __init__(self, d_model, p_drop): super(AddAndNorm, self).__init__() self.layer_norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(p_drop) def forward(self, inputs, x): return self.layer_norm(inputs + self.dropout(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'p_drop': 0.5}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_native_layer_norm_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp9, xmask) tl.store(out_ptr1 + x2, tmp13, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_native_layer_norm_0[grid(64)](primals_2, primals_1, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_1[grid(256)](primals_2, primals_1, buf0, buf1, primals_3, primals_4, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 del primals_3 del primals_4 return buf3, buf2 class AddAndNormNew(nn.Module): def __init__(self, d_model, p_drop): super(AddAndNormNew, self).__init__() self.layer_norm = nn.LayerNorm(d_model) self.dropout = nn.Dropout(p_drop) def forward(self, input_0, input_1): primals_3 = self.layer_norm.weight primals_4 = self.layer_norm.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
jaehyek/attention-is-all-you-need
AddAndNorm
false
12,596
[ "MIT" ]
0
9b421f7c98414aeb9f397c5195e3a6a9080a4669
https://github.com/jaehyek/attention-is-all-you-need/tree/9b421f7c98414aeb9f397c5195e3a6a9080a4669
LanguageModelCriterion
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/y6/cy6c63inntzv3gk7tttvtntl47lyazeloek7emnkrhkhkqbx5kci.py # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] # Source node to ATen node mapping: # neg => neg # output => mul # output_1 => div # sum_1 => sum_1 # sum_2 => sum_2 # Graph fragment: # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%squeeze,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%neg, %arg2_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg2_1,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) triton_per_fused_div_mul_neg_sum_0 = async_compile.triton('triton_per_fused_div_mul_neg_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i64', 2: '*i64', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mul_neg_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp9 = tl.load(in_ptr2 + (r0), None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), "index out of bounds: 0 <= tmp4 < 4") tmp6 = tl.load(in_ptr1 + (tmp4 + (4*r0)), None, eviction_policy='evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp17, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [neg, output, sum_1, sum_2, output_1], Original ATen: [aten.neg, aten.mul, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0.run(buf2, arg0_1, arg1_1, arg2_1, 1, 16, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.int64) arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.int64) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.autograd import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_mul_neg_sum_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp9 = tl.load(in_ptr2 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * r0), None, eviction_policy= 'evict_last') tmp7 = -tmp6 tmp8 = tmp7.to(tl.float32) tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp14 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp16 = tl.sum(tmp14, 1)[:, None] tmp17 = tmp13 / tmp16 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_mul_neg_sum_0[grid(1)](buf2, arg0_1, arg1_1, arg2_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class LanguageModelCriterionNew(nn.Module): def __init__(self): super(LanguageModelCriterionNew, self).__init__() def forward(self, input_0, input_1, input_2): arg1_1 = input_0 arg0_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
GeorgeKostenkov/ImageCaptioning.pytorch
LanguageModelCriterion
false
11,439
[ "MIT" ]
0
8f17433fdaba2f89774e45ad5a3a88b880932ee6
https://github.com/GeorgeKostenkov/ImageCaptioning.pytorch/tree/8f17433fdaba2f89774e45ad5a3a88b880932ee6
PACnv
import torch import torch.nn as nn class PACnv(nn.Module): def __init__(self, nf, k_size=3): super(PACnv, self).__init__() self.k2 = nn.Conv2d(nf, nf, 1) self.sigmoid = nn.Sigmoid() self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) def forward(self, x): y = self.k2(x) y = self.sigmoid(y) out = torch.mul(self.k3(x), y) out = self.k4(out) return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'nf': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp2) tmp5 = tmp3 * tmp4 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(256)](buf1, primals_2, buf2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf4 = extern_kernels.convolution(buf3, primals_5, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) return buf4, primals_1, primals_3, primals_4, primals_5, buf1, buf2, buf3 class PACnvNew(nn.Module): def __init__(self, nf, k_size=3): super(PACnvNew, self).__init__() self.k2 = nn.Conv2d(nf, nf, 1) self.sigmoid = nn.Sigmoid() self.k3 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) self.k4 = nn.Conv2d(nf, nf, kernel_size=k_size, padding=(k_size - 1 ) // 2, bias=False) def forward(self, input_0): primals_1 = self.k2.weight primals_2 = self.k2.bias primals_4 = self.k3.weight primals_5 = self.k4.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
grofit/traiNNer
PACnv
false
15,469
[ "Apache-2.0" ]
78
12d006fd44ed304e4178839c53b1f3d95ca25dcb
https://github.com/grofit/traiNNer/tree/12d006fd44ed304e4178839c53b1f3d95ca25dcb
DeepMind
import torch import torch.nn as nn import torch.nn.functional as F class DeepMind(nn.Module): def __init__(self): super(DeepMind, self).__init__() self.conv1 = nn.Conv2d(4, 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 32, 3, stride=1) self.fc1 = nn.Linear(32 * 7 * 7, 512) nn.init.orthogonal_(self.conv1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv2.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv3.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.fc1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.constant_(self.conv1.bias.data, 0) nn.init.constant_(self.conv2.bias.data, 0) nn.init.constant_(self.conv3.bias.data, 0) nn.init.constant_(self.fc1.bias.data, 0) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(-1, 32 * 7 * 7) x = F.relu(self.fc1(x)) return x def get_inputs(): return [torch.rand([4, 4, 144, 144])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 1225 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 196 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_2, (32,), (1,)) assert_size_stride(primals_3, (4, 4, 144, 144), (82944, 20736, 144, 1)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (512, 1568), (1568, 1)) assert_size_stride(primals_9, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 32, 35, 35), (39200, 1225, 35, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(156800)](buf1, primals_2, 156800, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 16, 16), (16384, 256, 16, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(65536)](buf3, primals_5, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 14, 14), (6272, 196, 14, 1)) buf5 = buf4 del buf4 buf9 = empty_strided_cuda((4, 32, 14, 14), (6272, 196, 14, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_2[grid(25088)]( buf5, primals_7, buf9, 25088, XBLOCK=128, num_warps=4, num_stages=1 ) del primals_7 buf6 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (16, 1568), (1568, 1), 0 ), reinterpret_tensor(primals_8, (1568, 512), (1, 1568), 0), out=buf6) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((16, 512), (512, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(8192)](buf7, primals_9, buf8, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 return (buf7, primals_1, primals_3, primals_4, primals_6, buf1, buf3, reinterpret_tensor(buf5, (16, 1568), (1568, 1), 0), buf8, primals_8, buf9) class DeepMindNew(nn.Module): def __init__(self): super(DeepMindNew, self).__init__() self.conv1 = nn.Conv2d(4, 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 32, 3, stride=1) self.fc1 = nn.Linear(32 * 7 * 7, 512) nn.init.orthogonal_(self.conv1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv2.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv3.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.fc1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.constant_(self.conv1.bias.data, 0) nn.init.constant_(self.conv2.bias.data, 0) nn.init.constant_(self.conv3.bias.data, 0) nn.init.constant_(self.fc1.bias.data, 0) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.fc1.weight primals_9 = self.fc1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
TianhongDai/Self_Imitation_Learning
DeepMind
false
14,839
[ "MIT" ]
61
e49003582fa3d875495d84682f2a3332d4922dbc
https://github.com/TianhongDai/Self_Imitation_Learning/tree/e49003582fa3d875495d84682f2a3332d4922dbc
ConcatSquashLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/2l/c2lbebbusddknc6lqjzbw4dwlncsmj2czynpigxl6tvqeprnhehy.py # Topologically Sorted Source Nodes: [gate, mul, ret], Original ATen: [aten.sigmoid, aten.mul, aten.add] # Source node to ATen node mapping: # gate => sigmoid # mul => mul # ret => add # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_5, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %view_3), kwargs = {}) triton_poi_fused_add_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(in_out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [bias], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(primals_7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [gate, mul, ret], Original ATen: [aten.sigmoid, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0.run(buf3, buf2, buf0, 256, grid=grid(256), stream=stream0) return (buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0, reinterpret_tensor(primals_7, (64, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch.nn import Linear import torch.utils.tensorboard assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_sigmoid_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(in_out_ptr0 + x0, tmp5, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(primals_7, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_add_mul_sigmoid_0[grid(256)](buf3, buf2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(primals_7, (64, 4), (4, 1), 0), buf2 class ConcatSquashLinearNew(Module): def __init__(self, dim_in, dim_out, dim_ctx): super(ConcatSquashLinearNew, self).__init__() self._layer = Linear(dim_in, dim_out) self._hyper_bias = Linear(dim_ctx, dim_out, bias=False) self._hyper_gate = Linear(dim_ctx, dim_out) def forward(self, input_0, input_1): primals_1 = self._layer.weight primals_2 = self._layer.bias primals_4 = self._hyper_bias.weight primals_5 = self._hyper_gate.weight primals_6 = self._hyper_gate.bias primals_3 = input_0 primals_7 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
entc-17-fyp-05/diffusion-point-cloud
ConcatSquashLinear
false
16,271
[ "MIT" ]
138
cde2e501855dea31496ddffad16f40aa588e3af8
https://github.com/entc-17-fyp-05/diffusion-point-cloud/tree/cde2e501855dea31496ddffad16f40aa588e3af8
TemporalPooling
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/ch/cchwyippaifkg3wzdlar3zblomxznwnqipberzksnr5o2fzygobs.py # Topologically Sorted Source Nodes: [x_1, contiguous], Original ATen: [aten.avg_pool3d, aten.clone] # Source node to ATen node mapping: # contiguous => clone # x_1 => avg_pool3d # Graph fragment: # %avg_pool3d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool3d.default](args = (%permute, [3, 1, 1], [2, 1, 1], [1, 0, 0]), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_avg_pool3d_clone_0 = async_compile.triton('triton_poi_fused_avg_pool3d_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool3d_clone_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool3d_clone_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x1 = (xindex // 4) % 4 x0 = xindex % 4 x5 = xindex % 64 x4 = xindex tmp0 = (-1) + (2*x3) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = x0 tmp11 = tmp10 >= tmp1 tmp12 = tmp10 < tmp3 tmp13 = tmp11 & tmp12 tmp14 = tmp5 & tmp9 tmp15 = tmp14 & tmp13 tmp16 = tl.load(in_ptr0 + ((-64) + x5 + (128*x3)), tmp15 & xmask, other=0.0) tmp17 = 2*x3 tmp18 = tmp17 >= tmp1 tmp19 = tmp17 < tmp3 tmp20 = tmp18 & tmp19 tmp21 = tmp20 & tmp9 tmp22 = tmp21 & tmp13 tmp23 = tl.load(in_ptr0 + (x5 + (128*x3)), tmp22 & xmask, other=0.0) tmp24 = tmp23 + tmp16 tmp25 = 1 + (2*x3) tmp26 = tmp25 >= tmp1 tmp27 = tmp25 < tmp3 tmp28 = tmp26 & tmp27 tmp29 = tmp28 & tmp9 tmp30 = tmp29 & tmp13 tmp31 = tl.load(in_ptr0 + (64 + x5 + (128*x3)), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp24 tmp33 = (x0*x1) + (((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))) + ((-1)*x0*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))) + ((-1)*x1*((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))) + (x0*x1*((5) * ((5) <= (2 + (2*x3))) + (2 + (2*x3)) * ((2 + (2*x3)) < (5)))) + (((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))*((5) * ((5) <= (2 + (2*x3))) + (2 + (2*x3)) * ((2 + (2*x3)) < (5)))) + ((-1)*x0*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))*((5) * ((5) <= (2 + (2*x3))) + (2 + (2*x3)) * ((2 + (2*x3)) < (5)))) + ((-1)*x1*((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))*((5) * ((5) <= (2 + (2*x3))) + (2 + (2*x3)) * ((2 + (2*x3)) < (5)))) + ((-2)*x0*x1*x3) + ((-2)*x3*((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))) + (2*x0*x3*((4) * ((4) <= (1 + x1)) + (1 + x1) * ((1 + x1) < (4)))) + (2*x1*x3*((4) * ((4) <= (1 + x0)) + (1 + x0) * ((1 + x0) < (4)))) tmp34 = tmp32 / tmp33 tl.store(in_out_ptr0 + (x4), tmp34, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 2, 4, 4), (128, 16, 64, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf0, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1, contiguous], Original ATen: [aten.avg_pool3d, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool3d_clone_0.run(buf1, arg0_1, 128, grid=grid(128), stream=stream0) del arg0_1 return (reinterpret_tensor(buf1, (2, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.distributions import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_avg_pool3d_clone_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x1 = xindex // 4 % 4 x0 = xindex % 4 x5 = xindex % 64 x4 = xindex tmp0 = -1 + 2 * x3 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = x0 tmp11 = tmp10 >= tmp1 tmp12 = tmp10 < tmp3 tmp13 = tmp11 & tmp12 tmp14 = tmp5 & tmp9 tmp15 = tmp14 & tmp13 tmp16 = tl.load(in_ptr0 + (-64 + x5 + 128 * x3), tmp15 & xmask, other=0.0) tmp17 = 2 * x3 tmp18 = tmp17 >= tmp1 tmp19 = tmp17 < tmp3 tmp20 = tmp18 & tmp19 tmp21 = tmp20 & tmp9 tmp22 = tmp21 & tmp13 tmp23 = tl.load(in_ptr0 + (x5 + 128 * x3), tmp22 & xmask, other=0.0) tmp24 = tmp23 + tmp16 tmp25 = 1 + 2 * x3 tmp26 = tmp25 >= tmp1 tmp27 = tmp25 < tmp3 tmp28 = tmp26 & tmp27 tmp29 = tmp28 & tmp9 tmp30 = tmp29 & tmp13 tmp31 = tl.load(in_ptr0 + (64 + x5 + 128 * x3), tmp30 & xmask, other=0.0) tmp32 = tmp31 + tmp24 tmp33 = x0 * x1 + (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4)) * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4)) + -1 * x0 * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4)) + -1 * x1 * (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4)) + x0 * x1 * (5 * (5 <= 2 + 2 * x3) + (2 + 2 * x3) * (2 + 2 * x3 < 5)) + (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4) ) * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4)) * (5 * (5 <= 2 + 2 * x3) + (2 + 2 * x3) * (2 + 2 * x3 < 5)) + -1 * x0 * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4)) * (5 * (5 <= 2 + 2 * x3) + (2 + 2 * x3) * (2 + 2 * x3 < 5)) + -1 * x1 * (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4)) * (5 * (5 <= 2 + 2 * x3) + (2 + 2 * x3) * (2 + 2 * x3 < 5)) + -2 * x0 * x1 * x3 + -2 * x3 * (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4)) * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4) ) + 2 * x0 * x3 * (4 * (4 <= 1 + x1) + (1 + x1) * (1 + x1 < 4) ) + 2 * x1 * x3 * (4 * (4 <= 1 + x0) + (1 + x0) * (1 + x0 < 4)) tmp34 = tmp32 / tmp33 tl.store(in_out_ptr0 + x4, tmp34, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 2, 4, 4), (128, 16, 64, 4, 1), torch.float32) buf1 = reinterpret_tensor(buf0, (1, 2, 4, 4, 4), (128, 64, 16, 4, 1), 0 ) del buf0 get_raw_stream(0) triton_poi_fused_avg_pool3d_clone_0[grid(128)](buf1, arg0_1, 128, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf1, (2, 4, 4, 4), (64, 16, 4, 1), 0), class TemporalPoolingNew(nn.Module): def __init__(self, frames, kernel_size=3, stride=2, mode='avg'): """ Parameters ---------- frames (int): number of input frames kernel_size stride mode """ super().__init__() self.frames = frames pad_size = (kernel_size - 1) // stride if mode == 'avg': self.pool = nn.AvgPool3d(kernel_size=(kernel_size, 1, 1), stride=(stride, 1, 1), padding=(pad_size, 0, 0)) elif mode == 'max': self.pool = nn.MaxPool3d(kernel_size=(kernel_size, 1, 1), stride=(stride, 1, 1), padding=(pad_size, 0, 0)) else: raise ValueError('only support avg or max') def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IBM/AdaMML
TemporalPooling
false
8,256
[ "Apache-2.0" ]
32
be50c02188e6b31ca3a25f285b1b538c137d3d5c
https://github.com/IBM/AdaMML/tree/be50c02188e6b31ca3a25f285b1b538c137d3d5c
Tanh
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/xl/cxloexse7pimfzmoolq2a3cvc7xncqfy2w4h3uwjp5c2zfwtzg4v.py # Topologically Sorted Source Nodes: [tanh, add, mul], Original ATen: [aten.tanh, aten.add, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # tanh => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh, 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {}) triton_poi_fused_add_mul_tanh_0 = async_compile.triton('triton_poi_fused_add_mul_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_tanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + (x0), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tanh, add, mul], Original ATen: [aten.tanh, aten.add, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_tanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.tanh(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = 0.5 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_tanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class TanhNew(Module): """Rectified Tanh, since we predict betwee 0 and 1""" def __init__(self): super().__init__() self.params = [] def backward(self, d_dx): return 0.5 * d_dx * (1 - torch.tanh(self.x) ** 2) def param(self): return self.params def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
LucaZampieri/DL
Tanh
false
772
[ "MIT" ]
0
e53ade2638ccc3ca368e15c8454845856776e719
https://github.com/LucaZampieri/DL/tree/e53ade2638ccc3ca368e15c8454845856776e719
IMul
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/p7/cp7q4ygkticqaby6s2m6wxiksnded4xo7kzlzdrkn2gkm4uhmfll.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] # Source node to ATen node mapping: # x => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %mul), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr1 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, arg1_1, arg0_1, 256, grid=grid(256), stream=stream0) del arg1_1 return (arg0_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_mul_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr1 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, arg1_1, arg0_1, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 return arg0_1, class IMulNew(torch.nn.Module): def __init__(self): super(IMulNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
bunderhi/torch2trt
IMul
false
1,599
[ "MIT" ]
0
fa5e31e742a0f0c9a9ee38909a6fa56bb07ba96d
https://github.com/bunderhi/torch2trt/tree/fa5e31e742a0f0c9a9ee38909a6fa56bb07ba96d
SigmoidCrossEntropyLoss
import torch from torch import Tensor from typing import List from typing import Optional from typing import Union from torch import nn class SigmoidCrossEntropyLoss(nn.Module): def __init__(self, class_weights: 'Optional[Union[Tensor, List]]'=None, **kwargs): """ Params: class_weights: List or 1D tensor of length equal to number of classes. """ super().__init__() if class_weights: self.loss_fn = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.Tensor(class_weights)) else: self.loss_fn = nn.BCEWithLogitsLoss(reduction='none') def forward(self, preds: 'Tensor', target: 'Tensor') ->Tensor: if preds.ndim != 2: raise RuntimeError( 'SigmoidCrossEntropyLoss currently supported for 2D tensors.') element_loss = self.loss_fn(preds.type(torch.float32), target.type( torch.float32)) loss = torch.sum(element_loss, dim=1) loss = torch.mean(loss) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import Tensor from typing import List from typing import Optional from typing import Union from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_mean_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp15 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp39 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.minimum(tmp5, tmp3) tmp7 = tl_math.abs(tmp3) tmp8 = -tmp7 tmp9 = tl_math.exp(tmp8) tmp10 = libdevice.log1p(tmp9) tmp11 = tmp6 - tmp10 tmp12 = tmp4 - tmp11 tmp14 = tmp1 - tmp13 tmp16 = tmp14 * tmp15 tmp17 = triton_helpers.minimum(tmp5, tmp15) tmp18 = tl_math.abs(tmp15) tmp19 = -tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = libdevice.log1p(tmp20) tmp22 = tmp17 - tmp21 tmp23 = tmp16 - tmp22 tmp24 = tmp12 + tmp23 tmp26 = tmp1 - tmp25 tmp28 = tmp26 * tmp27 tmp29 = triton_helpers.minimum(tmp5, tmp27) tmp30 = tl_math.abs(tmp27) tmp31 = -tmp30 tmp32 = tl_math.exp(tmp31) tmp33 = libdevice.log1p(tmp32) tmp34 = tmp29 - tmp33 tmp35 = tmp28 - tmp34 tmp36 = tmp24 + tmp35 tmp38 = tmp1 - tmp37 tmp40 = tmp38 * tmp39 tmp41 = triton_helpers.minimum(tmp5, tmp39) tmp42 = tl_math.abs(tmp39) tmp43 = -tmp42 tmp44 = tl_math.exp(tmp43) tmp45 = libdevice.log1p(tmp44) tmp46 = tmp41 - tmp45 tmp47 = tmp40 - tmp46 tmp48 = tmp36 + tmp47 tmp49 = tl.broadcast_to(tmp48, [XBLOCK, RBLOCK]) tmp51 = tl.sum(tmp49, 1)[:, None] tmp52 = 4.0 tmp53 = tmp51 / tmp52 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp53, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_mean_sum_0[grid(1)]( buf2, arg1_1, arg0_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class SigmoidCrossEntropyLossNew(nn.Module): def __init__(self, class_weights: 'Optional[Union[Tensor, List]]'=None, **kwargs): """ Params: class_weights: List or 1D tensor of length equal to number of classes. """ super().__init__() if class_weights: self.loss_fn = nn.BCEWithLogitsLoss(reduction='none', pos_weight=torch.Tensor(class_weights)) else: self.loss_fn = nn.BCEWithLogitsLoss(reduction='none') def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
carlogrisetti/ludwig
SigmoidCrossEntropyLoss
false
1,636
[ "Apache-2.0" ]
0
5c0887f14867e1577e0ddc3806c5cf7a781fb665
https://github.com/carlogrisetti/ludwig/tree/5c0887f14867e1577e0ddc3806c5cf7a781fb665
DilatedCircularConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/cf/ccfncuaiiq2b2cm2ukiqzzmjt7yfp62hajssoz5gl32cryt35yix.py # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # input_1 => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%slice_1, %primals_1, %primals_1], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = (xindex // 12) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + ((4*x1) + ((-4) + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr0 + ((4*x1) + ((-8) + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_1/inductor_cache/bo/cbobw73zf5udllzw6ypzn2lpl3t5xgyic35frylcttxdzai224c5.py # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv1d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%cat, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 9), (36, 9, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 192, grid=grid(192), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 9), (36, 9, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 9), (36, 9, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 12), (48, 12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(192)](primals_1, buf0, 192, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 return buf2, primals_2, buf0 class DilatedCircularConvNew(nn.Module): def __init__(self, state_dim, out_state_dim=None, n_adj=4, dilation=1): super(DilatedCircularConvNew, self).__init__() self.n_adj = n_adj self.dilation = dilation out_state_dim = state_dim if out_state_dim is None else out_state_dim self.fc = nn.Conv1d(state_dim, out_state_dim, kernel_size=self. n_adj * 2 + 1, dilation=self.dilation) def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
LiWentomng/boxlevelset
DilatedCircularConv
false
8,468
[ "Apache-2.0" ]
25
8cc40bf6ae4a343c482c676c72259cc12c29d31c
https://github.com/LiWentomng/boxlevelset/tree/8cc40bf6ae4a343c482c676c72259cc12c29d31c
TransformerLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/52/c525by6g4qqvzpkamxv56vfyu6zlvbqfepthe4npppzrrv2boata.py # Topologically Sorted Source Nodes: [means, x_zeromean], Original ATen: [aten.mean, aten.sub] # Source node to ATen node mapping: # means => mean # x_zeromean => sub # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) triton_poi_fused_mean_sub_0 = async_compile.triton('triton_poi_fused_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/jb/cjbxtrhaay7rotsyysuftg23isdvjimy5xsuoa3afjgeuvhmcet3.py # Topologically Sorted Source Nodes: [pow_1, variances, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add => add # mul => mul # pow_1 => pow_1 # sqrt => sqrt # variances => mean_1 # x => div # x_1 => add_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [-1], True), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-12), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {}) triton_poi_fused_add_div_mean_mul_pow_sqrt_1 = async_compile.triton('triton_poi_fused_add_div_mean_mul_pow_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_pow_sqrt_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + (x2), tmp21, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/uc/cucgrga44gtlwzw6ehoy4jrwzm5fghn3ljf7iugmdjhe6m7mjcas.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_4, %primals_5, %primals_6],), kwargs = {}) triton_poi_fused_cat_2 = async_compile.triton('triton_poi_fused_cat_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + ((-4) + x0), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tl.load(in_ptr2 + ((-8) + x0), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + (x0), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/7v/c7vmyyo5wxjwhczncwe26c5vvxpnuc4d63pyhv44adhxrqqhbkd6.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat] # Source node to ATen node mapping: # multi_head_attention_forward => cat_2 # Graph fragment: # %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view_5, %repeat_1],), kwargs = {}) triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 16) x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + (16*x2)), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 5, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr1 + (x0), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x4), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hr/chreiskn3cjyo3eff2gsxuz7ampglelwlsrzs7kmnwjm4l5lzi5w.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] # Source node to ATen node mapping: # multi_head_attention_forward => mul_1 # Graph fragment: # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {}) triton_poi_fused_mul_4 = async_compile.triton('triton_poi_fused_mul_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = x2 % 4 tmp2 = tl.full([1], 0, tl.int64) tmp3 = tmp1 >= tmp2 tmp4 = tl.full([1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr0 + (x0 % 4), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr1 + ((-4) + (x0 % 4)), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tmp13 = tl.full([1], 12, tl.int64) tmp14 = tmp1 < tmp13 tmp15 = tl.load(in_ptr2 + ((-8) + (x0 % 4)), tmp12 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(in_out_ptr0 + (x2), tmp20, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/qq/cqqiwi6cphov3y4cw45pihso7kygfbxrztamsxi6ywv3sllhzvz5.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, exp, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (5*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (5*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (5*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (5*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + (5*x0)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ti/ctik3dxqudjbuxk6lecrd6cxqp5ncnz6kele7crpn6ziyqip447n.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] # Source node to ATen node mapping: # multi_head_attention_forward => amax, div_1, exp, sub_1, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 5) tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/na/cnaxt66xj2zhaned4fgx5elukrpsiq623ib46puxb6rcdh4iismy.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] # Source node to ATen node mapping: # multi_head_attention_forward => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_7 = async_compile.triton('triton_poi_fused_clone_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/yx/cyx6uhp26itou7morodlakbwephiwz7r7jx56snt2ukwrojhlmfp.py # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] # Source node to ATen node mapping: # multi_head_attention_forward => mean_2 # Graph fragment: # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view_11, [1]), kwargs = {}) triton_poi_fused_mean_8 = async_compile.triton('triton_poi_fused_mean_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mean_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mean_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = (xindex // 20) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (80*x1)), xmask) tmp1 = tl.load(in_ptr0 + (20 + x0 + (80*x1)), xmask) tmp3 = tl.load(in_ptr0 + (40 + x0 + (80*x1)), xmask) tmp5 = tl.load(in_ptr0 + (60 + x0 + (80*x1)), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/hu/chuhaqnv3eocytas2o5zkt2laav3cpr7gqx5s2m2tsctpi2kooe7.py # Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, pow_2, variances_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow] # Source node to ATen node mapping: # means_1 => mean_3 # pow_2 => pow_2 # variances_1 => mean_4 # x_3 => add_2 # x_zeromean_1 => sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mean_3), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_2, [-1], True), kwargs = {}) triton_poi_fused_add_mean_pow_sub_9 = async_compile.triton('triton_poi_fused_add_mean_pow_sub_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_pow_sub_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_pow_sub_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/ps/cpsrkyasbkreyck4njrazduiuuaugpsanaxlzzqhnuxs7rd6xtwj.py # Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, add_3, sqrt_1, x_4, mul_1, x_5], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul] # Source node to ATen node mapping: # add_3 => add_3 # means_1 => mean_3 # mul_1 => mul_2 # sqrt_1 => sqrt_1 # x_3 => add_2 # x_4 => div_2 # x_5 => add_4 # x_zeromean_1 => sub_2 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add_2, [-1], True), kwargs = {}) # %sub_2 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %mean_3), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_4, 1e-12), kwargs = {}) # %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_3,), kwargs = {}) # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_2, %sqrt_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_14, %div_2), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_15), kwargs = {}) triton_poi_fused_add_div_mean_mul_sqrt_sub_10 = async_compile.triton('triton_poi_fused_add_div_mean_mul_sqrt_sub_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_sqrt_sub_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tl.load(in_ptr2 + (x2), xmask) tmp4 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + (x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = 1e-12 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/in/cingjrjcsnplp4mnf7j3qaenyi3g6h7mejtd6hllewoqj33nanxc.py # Topologically Sorted Source Nodes: [mul_2, truediv_2, erf, add_5, x_6], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] # Source node to ATen node mapping: # add_5 => add_5 # erf => erf # mul_2 => mul_3 # truediv_2 => div_3 # x_6 => mul_4 # Graph fragment: # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_13, 0.5), kwargs = {}) # %div_3 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view_13, 1.4142135623730951), kwargs = {}) # %erf : [num_users=1] = call_function[target=torch.ops.aten.erf.default](args = (%div_3,), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%erf, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %add_5), kwargs = {}) triton_poi_fused_add_div_erf_mul_11 = async_compile.triton('triton_poi_fused_add_div_erf_mul_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_erf_mul_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_erf_mul_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/55/c55kf6uasfvlyi4fs3esg22nysynhdxbi47sxnyfzfqq64pxh7xj.py # Topologically Sorted Source Nodes: [x_3, x_8], Original ATen: [aten.add] # Source node to ATen node mapping: # x_3 => add_2 # x_8 => add_6 # Graph fragment: # %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_10), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_15), kwargs = {}) triton_poi_fused_add_12 = async_compile.triton('triton_poi_fused_add_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_out_ptr0 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, ), (1, )) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4, ), (1, )) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, ), (1, )) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4, ), (1, )) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [means, x_zeromean], Original ATen: [aten.mean, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_mean_sub_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, variances, add, sqrt, x, mul, x_1], Original ATen: [aten.pow, aten.mean, aten.add, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_pow_sqrt_1.run(primals_2, buf0, primals_3, buf1, 64, grid=grid(64), stream=stream0) del primals_2 del primals_3 buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((12, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] triton_poi_fused_cat_2.run(primals_4, primals_5, primals_6, buf3, 12, grid=grid(12), stream=stream0) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(buf3, (4, ), (1, ), 4), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(buf3, (4, ), (1, ), 8), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del buf3 buf6 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf5, primals_8, buf6, 80, grid=grid(80), stream=stream0) del primals_8 buf7 = reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 64), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul] triton_poi_fused_mul_4.run(buf7, primals_4, primals_5, primals_6, 64, grid=grid(64), stream=stream0) del primals_4 del primals_5 del primals_6 buf8 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.cat] triton_poi_fused_cat_3.run(buf4, primals_7, buf8, 80, grid=grid(80), stream=stream0) del primals_7 buf9 = empty_strided_cuda((16, 4, 5), (20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 1, 5), (1, 0, 16), 0), out=buf9) buf10 = reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 64), 0); del buf4 # reuse buf11 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 64), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf9, buf10, buf11, 64, grid=grid(64), stream=stream0) buf12 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf12, buf10, buf11, 320, grid=grid(320), stream=stream0) buf13 = reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm] extern_kernels.bmm(buf12, reinterpret_tensor(buf6, (16, 5, 1), (1, 16, 0), 0), out=buf13) buf14 = reinterpret_tensor(buf10, (4, 16, 1), (16, 1, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone] triton_poi_fused_clone_7.run(buf13, buf14, 4, 16, grid=grid(4, 16), stream=stream0) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0); del buf13 # reuse # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm] extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_10 buf16 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mean] triton_poi_fused_mean_8.run(buf12, buf16, 80, grid=grid(80), stream=stream0) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, pow_2, variances_1], Original ATen: [aten.add, aten.mean, aten.sub, aten.pow] triton_poi_fused_add_mean_pow_sub_9.run(primals_1, buf15, buf17, buf18, 16, grid=grid(16), stream=stream0) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, means_1, x_zeromean_1, add_3, sqrt_1, x_4, mul_1, x_5], Original ATen: [aten.add, aten.mean, aten.sub, aten.sqrt, aten.div, aten.mul] triton_poi_fused_add_div_mean_mul_sqrt_sub_10.run(primals_14, primals_1, buf15, buf17, buf18, primals_15, buf19, 64, grid=grid(64), stream=stream0) del buf17 del buf18 del primals_15 buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf20) del primals_17 buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul_2, truediv_2, erf, add_5, x_6], Original ATen: [aten.mul, aten.div, aten.erf, aten.add] triton_poi_fused_add_div_erf_mul_11.run(buf20, buf21, 64, grid=grid(64), stream=stream0) buf22 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf21, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf22) buf23 = reinterpret_tensor(buf22, (4, 4, 4), (16, 4, 1), 0); del buf22 # reuse # Topologically Sorted Source Nodes: [x_3, x_8], Original ATen: [aten.add] triton_poi_fused_add_12.run(buf23, primals_1, buf15, primals_19, 64, grid=grid(64), stream=stream0) del primals_19 return (buf23, buf16, primals_1, primals_14, reinterpret_tensor(buf1, (16, 4), (4, 1), 0), buf12, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), buf15, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), buf20, reinterpret_tensor(buf21, (16, 4), (4, 1), 0), primals_18, primals_16, primals_9, reinterpret_tensor(buf6, (16, 1, 5), (1, 1, 16), 0), reinterpret_tensor(buf7, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf8, (16, 5, 1), (1, 16, 1), 0), primals_13, primals_12, primals_11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import uuid from torch import Tensor import torch.nn as nn from typing import Tuple import torch.nn.functional as F from typing import Optional from typing import Dict from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = tmp0 - tmp9 tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp2 * tmp2 tmp5 = tmp4 * tmp4 tmp6 = tmp3 + tmp5 tmp8 = tmp7 * tmp7 tmp9 = tmp6 + tmp8 tmp11 = tmp10 * tmp10 tmp12 = tmp9 + tmp11 tmp13 = 4.0 tmp14 = tmp12 / tmp13 tmp15 = 1e-12 tmp16 = tmp14 + tmp15 tmp17 = libdevice.sqrt(tmp16) tmp18 = tmp1 / tmp17 tmp19 = tmp0 * tmp18 tmp21 = tmp19 + tmp20 tl.store(out_ptr0 + x2, tmp21, xmask) @triton.jit def triton_poi_fused_cat_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x0, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (-4 + x0), tmp9 & xmask, eviction_policy= 'evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (-8 + x0), tmp11 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x0, tmp16, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 16 x3 = xindex % 16 x0 = xindex % 4 x4 = xindex tmp0 = x2 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x3 + 16 * x2), tmp4 & xmask, other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp9 = tl.load(in_ptr1 + x0, tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x4, tmp10, xmask) @triton.jit def triton_poi_fused_mul_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = x2 % 4 tl.full([1], 0, tl.int64) tmp4 = tl.full([1], 4, tl.int64) tmp5 = tmp1 < tmp4 tmp6 = tl.load(in_ptr0 + x0 % 4, tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tmp1 >= tmp4 tmp8 = tl.full([1], 8, tl.int64) tmp9 = tmp1 < tmp8 tmp10 = tmp7 & tmp9 tmp11 = tl.load(in_ptr1 + (-4 + x0 % 4), tmp10 & xmask, eviction_policy ='evict_last', other=0.0) tmp12 = tmp1 >= tmp8 tl.full([1], 12, tl.int64) tmp15 = tl.load(in_ptr2 + (-8 + x0 % 4), tmp12 & xmask, eviction_policy ='evict_last', other=0.0) tmp16 = tl.where(tmp10, tmp11, tmp15) tmp17 = tl.where(tmp5, tmp6, tmp16) tmp18 = tmp0 + tmp17 tmp19 = 1.0 tmp20 = tmp18 * tmp19 tl.store(in_out_ptr0 + x2, tmp20, xmask) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 5 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 5 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 5 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 5 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (4 + 5 * x0), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp0 - tmp8 tmp10 = tl_math.exp(tmp9) tmp11 = tmp1 - tmp8 tmp12 = tl_math.exp(tmp11) tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tl_math.exp(tmp14) tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp8 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_6(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 320 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 5 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tl.store(in_out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_clone_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_mean_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = xindex // 20 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 80 * x1), xmask) tmp1 = tl.load(in_ptr0 + (20 + x0 + 80 * x1), xmask) tmp3 = tl.load(in_ptr0 + (40 + x0 + 80 * x1), xmask) tmp5 = tl.load(in_ptr0 + (60 + x0 + 80 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_add_mean_pow_sub_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_div_mean_mul_sqrt_sub_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x2, xmask) tmp4 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr4 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp7 = 1e-12 tmp8 = tmp6 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp5 / tmp9 tmp11 = tmp0 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_div_erf_mul_11(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tmp3 = 0.7071067811865475 tmp4 = tmp0 * tmp3 tmp5 = libdevice.erf(tmp4) tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tmp2 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_12(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_out_ptr0 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_8, (1, 1, 4), (4, 4, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, 4), (4, 1)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4,), (1,)) assert_size_stride(primals_16, (4, 4), (4, 1)) assert_size_stride(primals_17, (4,), (1,)) assert_size_stride(primals_18, (4, 4), (4, 1)) assert_size_stride(primals_19, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mean_sub_0[grid(64)](primals_1, buf0, 64, XBLOCK= 64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(64)](primals_2, buf0, primals_3, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 del primals_3 buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0) del buf0 extern_kernels.mm(reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf2) buf3 = empty_strided_cuda((12,), (1,), torch.float32) triton_poi_fused_cat_2[grid(12)](primals_4, primals_5, primals_6, buf3, 12, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(buf3, (4,), (1,), 4), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_12, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4) buf5 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(buf3, (4,), (1,), 8), reinterpret_tensor(buf1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf5) del buf3 buf6 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_3[grid(80)](buf5, primals_8, buf6, 80, XBLOCK= 128, num_warps=4, num_stages=1) del primals_8 buf7 = reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 64), 0) del buf2 triton_poi_fused_mul_4[grid(64)](buf7, primals_4, primals_5, primals_6, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_4 del primals_5 del primals_6 buf8 = empty_strided_cuda((5, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_3[grid(80)](buf4, primals_7, buf8, 80, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 buf9 = empty_strided_cuda((16, 4, 5), (20, 5, 1), torch.float32) extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 1, 5), (1, 0, 16), 0), out=buf9) buf10 = reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 64), 0) del buf4 buf11 = reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 64), 0) del buf5 triton_poi_fused__softmax_5[grid(64)](buf9, buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = buf9 del buf9 triton_poi_fused__softmax_6[grid(320)](buf12, buf10, buf11, 320, XBLOCK=256, num_warps=4, num_stages=1) buf13 = reinterpret_tensor(buf11, (16, 4, 1), (4, 1, 1), 0) del buf11 extern_kernels.bmm(buf12, reinterpret_tensor(buf6, (16, 5, 1), (1, 16, 0), 0), out=buf13) buf14 = reinterpret_tensor(buf10, (4, 16, 1), (16, 1, 1), 0) del buf10 triton_poi_fused_clone_7[grid(4, 16)](buf13, buf14, 4, 16, XBLOCK= 16, YBLOCK=4, num_warps=1, num_stages=1) buf15 = reinterpret_tensor(buf13, (16, 4), (4, 1), 0) del buf13 extern_kernels.addmm(primals_10, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_10 buf16 = empty_strided_cuda((4, 4, 5), (20, 5, 1), torch.float32) triton_poi_fused_mean_8[grid(80)](buf12, buf16, 80, XBLOCK=128, num_warps=4, num_stages=1) buf17 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf18 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_mean_pow_sub_9[grid(16)](primals_1, buf15, buf17, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_mean_mul_sqrt_sub_10[grid(64)](primals_14, primals_1, buf15, buf17, buf18, primals_15, buf19, 64, XBLOCK= 64, num_warps=1, num_stages=1) del buf17 del buf18 del primals_15 buf20 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_17, reinterpret_tensor(buf19, (16, 4), (4, 1), 0), reinterpret_tensor(primals_16, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf20) del primals_17 buf21 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_div_erf_mul_11[grid(64)](buf20, buf21, 64, XBLOCK=64, num_warps=1, num_stages=1) buf22 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf21, (16, 4), (4, 1), 0), reinterpret_tensor(primals_18, (4, 4), (1, 4), 0), out=buf22) buf23 = reinterpret_tensor(buf22, (4, 4, 4), (16, 4, 1), 0) del buf22 triton_poi_fused_add_12[grid(64)](buf23, primals_1, buf15, primals_19, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_19 return buf23, buf16, primals_1, primals_14, reinterpret_tensor(buf1, ( 16, 4), (4, 1), 0), buf12, reinterpret_tensor(buf14, (16, 4), (4, 1), 0 ), buf15, reinterpret_tensor(buf19, (16, 4), (4, 1), 0 ), buf20, reinterpret_tensor(buf21, (16, 4), (4, 1), 0 ), primals_18, primals_16, primals_9, reinterpret_tensor(buf6, (16, 1, 5), (1, 1, 16), 0), reinterpret_tensor(buf7, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf8, (16, 5, 1), (1, 16, 1), 0 ), primals_13, primals_12, primals_11 def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def utils_softmax(x, dim: 'int', onnx_trace: 'bool'=False): if onnx_trace: return F.softmax(x.float(), dim=dim) else: return F.softmax(x, dim=dim, dtype=torch.float32) def with_incremental_state(cls): cls.__bases__ = (FairseqIncrementalState,) + tuple(b for b in cls. __bases__ if b != FairseqIncrementalState) return cls class ESM1LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-12, affine=True): """Construct a layernorm layer in the TF style (eps inside the sqrt).""" super().__init__() self.hidden_size = (hidden_size,) if isinstance(hidden_size, int ) else tuple(hidden_size) self.eps = eps self.affine = bool(affine) if self.affine: self.weight = nn.Parameter(torch.ones(hidden_size)) self.bias = nn.Parameter(torch.zeros(hidden_size)) else: self.weight, self.bias = None, None def forward(self, x): dims = tuple(-(i + 1) for i in range(len(self.hidden_size))) means = x.mean(dims, keepdim=True) x_zeromean = x - means variances = x_zeromean.pow(2).mean(dims, keepdim=True) x = x_zeromean / torch.sqrt(variances + self.eps) if self.affine: x = self.weight * x + self.bias return x class FairseqIncrementalState(object): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.init_incremental_state() def init_incremental_state(self): self._incremental_state_id = str(uuid.uuid4()) def _get_full_incremental_state_key(self, key: 'str') ->str: return '{}.{}'.format(self._incremental_state_id, key) def get_incremental_state(self, incremental_state: 'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str' ) ->Optional[Dict[str, Optional[Tensor]]]: """Helper for getting incremental state for an nn.Module.""" full_key = self._get_full_incremental_state_key(key) if incremental_state is None or full_key not in incremental_state: return None return incremental_state[full_key] def set_incremental_state(self, incremental_state: 'Optional[Dict[str, Dict[str, Optional[Tensor]]]]', key: 'str', value: 'Dict[str, Optional[Tensor]]') ->Optional[Dict[str, Dict[str, Optional[Tensor]]]]: """Helper for setting incremental state for an nn.Module.""" if incremental_state is not None: full_key = self._get_full_incremental_state_key(key) incremental_state[full_key] = value return incremental_state @with_incremental_state class MultiheadAttention(nn.Module): """Multi-headed attention. See "Attention Is All You Need" for more details. """ def __init__(self, embed_dim, num_heads, kdim=None, vdim=None, dropout= 0.0, bias=True, add_bias_kv=False, add_zero_attn=False, self_attention=False, encoder_decoder_attention=False): super().__init__() self.embed_dim = embed_dim self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim self.num_heads = num_heads self.dropout = dropout self.head_dim = embed_dim // num_heads assert self.head_dim * num_heads == self.embed_dim, 'embed_dim must be divisible by num_heads' self.scaling = self.head_dim ** -0.5 self.self_attention = self_attention self.encoder_decoder_attention = encoder_decoder_attention assert not self.self_attention or self.qkv_same_dim, 'Self-attention requires query, key and value to be of the same size' self.k_proj = nn.Linear(self.kdim, embed_dim, bias=bias) self.v_proj = nn.Linear(self.vdim, embed_dim, bias=bias) self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) if add_bias_kv: self.bias_k = Parameter(torch.Tensor(1, 1, embed_dim)) self.bias_v = Parameter(torch.Tensor(1, 1, embed_dim)) else: self.bias_k = self.bias_v = None self.add_zero_attn = add_zero_attn self.reset_parameters() self.onnx_trace = False self.enable_torch_version = False if hasattr(F, 'multi_head_attention_forward'): self.enable_torch_version = True else: self.enable_torch_version = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): if self.qkv_same_dim: nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2)) nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2)) else: nn.init.xavier_uniform_(self.k_proj.weight) nn.init.xavier_uniform_(self.v_proj.weight) nn.init.xavier_uniform_(self.q_proj.weight) nn.init.xavier_uniform_(self.out_proj.weight) if self.out_proj.bias is not None: nn.init.constant_(self.out_proj.bias, 0.0) if self.bias_k is not None: nn.init.xavier_normal_(self.bias_k) if self.bias_v is not None: nn.init.xavier_normal_(self.bias_v) def forward(self, query, key: 'Optional[Tensor]', value: 'Optional[Tensor]', key_padding_mask: 'Optional[Tensor]'=None, incremental_state: 'Optional[Dict[str, Dict[str, Optional[Tensor]]]]'=None, need_weights: 'bool'=True, static_kv: 'bool'=False, attn_mask: 'Optional[Tensor]'=None, before_softmax: 'bool'=False, need_head_weights: 'bool'=False) ->Tuple[Tensor, Optional[Tensor]]: """Input shape: Time x Batch x Channel Args: key_padding_mask (ByteTensor, optional): mask to exclude keys that are pads, of shape `(batch, src_len)`, where padding elements are indicated by 1s. need_weights (bool, optional): return the attention weights, averaged over heads (default: False). attn_mask (ByteTensor, optional): typically used to implement causal attention, where the mask prevents the attention from looking forward in time (default: None). before_softmax (bool, optional): return the raw attention weights and values before the attention softmax. need_head_weights (bool, optional): return the attention weights for each head. Implies *need_weights*. Default: return the average attention weights over all heads. """ if need_head_weights: need_weights = True tgt_len, bsz, embed_dim = query.size() assert embed_dim == self.embed_dim assert list(query.size()) == [tgt_len, bsz, embed_dim] if (self.enable_torch_version and not self.onnx_trace and incremental_state is None and not static_kv and not torch.jit. is_scripting() and not need_head_weights): assert key is not None and value is not None return F.multi_head_attention_forward(query, key, value, self. embed_dim, self.num_heads, torch.empty([0]), torch.cat(( self.q_proj.bias, self.k_proj.bias, self.v_proj.bias)), self.bias_k, self.bias_v, self.add_zero_attn, self.dropout, self.out_proj.weight, self.out_proj.bias, self.training, key_padding_mask, need_weights, attn_mask, use_separate_proj_weight=True, q_proj_weight=self.q_proj. weight, k_proj_weight=self.k_proj.weight, v_proj_weight= self.v_proj.weight) if incremental_state is not None: saved_state = self._get_input_buffer(incremental_state) if saved_state is not None and 'prev_key' in saved_state: if static_kv: assert self.encoder_decoder_attention and not self.self_attention key = value = None else: saved_state = None if self.self_attention: q = self.q_proj(query) k = self.k_proj(query) v = self.v_proj(query) elif self.encoder_decoder_attention: q = self.q_proj(query) if key is None: assert value is None k = v = None else: k = self.k_proj(key) v = self.v_proj(key) else: assert key is not None and value is not None q = self.q_proj(query) k = self.k_proj(key) v = self.v_proj(value) q *= self.scaling if self.bias_k is not None: assert self.bias_v is not None k = torch.cat([k, self.bias_k.repeat(1, bsz, 1)]) v = torch.cat([v, self.bias_v.repeat(1, bsz, 1)]) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat([key_padding_mask, key_padding_mask.new_zeros(key_padding_mask.size(0), 1) ], dim=1) q = q.contiguous().view(tgt_len, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if k is not None: k = k.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if v is not None: v = v.contiguous().view(-1, bsz * self.num_heads, self.head_dim ).transpose(0, 1) if saved_state is not None: if 'prev_key' in saved_state: _prev_key = saved_state['prev_key'] assert _prev_key is not None prev_key = _prev_key.view(bsz * self.num_heads, -1, self. head_dim) if static_kv: k = prev_key else: assert k is not None k = torch.cat([prev_key, k], dim=1) if 'prev_value' in saved_state: _prev_value = saved_state['prev_value'] assert _prev_value is not None prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim) if static_kv: v = prev_value else: assert v is not None v = torch.cat([prev_value, v], dim=1) prev_key_padding_mask: 'Optional[Tensor]' = None if 'prev_key_padding_mask' in saved_state: prev_key_padding_mask = saved_state['prev_key_padding_mask'] assert k is not None and v is not None key_padding_mask = (MultiheadAttention. _append_prev_key_padding_mask(key_padding_mask= key_padding_mask, prev_key_padding_mask= prev_key_padding_mask, batch_size=bsz, src_len=k.size(1), static_kv=static_kv)) saved_state['prev_key'] = k.view(bsz, self.num_heads, -1, self. head_dim) saved_state['prev_value'] = v.view(bsz, self.num_heads, -1, self.head_dim) saved_state['prev_key_padding_mask'] = key_padding_mask assert incremental_state is not None incremental_state = self._set_input_buffer(incremental_state, saved_state) assert k is not None src_len = k.size(1) if key_padding_mask is not None and key_padding_mask.dim() == 0: key_padding_mask = None if key_padding_mask is not None: assert key_padding_mask.size(0) == bsz assert key_padding_mask.size(1) == src_len if self.add_zero_attn: assert v is not None src_len += 1 k = torch.cat([k, k.new_zeros((k.size(0), 1) + k.size()[2:])], dim=1) v = torch.cat([v, v.new_zeros((v.size(0), 1) + v.size()[2:])], dim=1) if attn_mask is not None: attn_mask = torch.cat([attn_mask, attn_mask.new_zeros( attn_mask.size(0), 1)], dim=1) if key_padding_mask is not None: key_padding_mask = torch.cat([key_padding_mask, torch.zeros (key_padding_mask.size(0), 1).type_as(key_padding_mask) ], dim=1) attn_weights = torch.bmm(q, k.transpose(1, 2)) attn_weights = MultiheadAttention.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz) assert list(attn_weights.size()) == [bsz * self.num_heads, tgt_len, src_len] if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0) if self.onnx_trace: attn_mask = attn_mask.repeat(attn_weights.size(0), 1, 1) attn_weights += attn_mask if key_padding_mask is not None: attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) attn_weights = attn_weights.masked_fill(key_padding_mask. unsqueeze(1).unsqueeze(2), float('-inf')) attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) if before_softmax: return attn_weights, v attn_weights_float = utils_softmax(attn_weights, dim=-1, onnx_trace =self.onnx_trace) attn_weights = attn_weights_float.type_as(attn_weights) attn_probs = F.dropout(attn_weights_float.type_as(attn_weights), p= self.dropout, training=self.training) assert v is not None attn = torch.bmm(attn_probs, v) assert list(attn.size()) == [bsz * self.num_heads, tgt_len, self. head_dim] if self.onnx_trace and attn.size(1) == 1: attn = attn.contiguous().view(tgt_len, bsz, embed_dim) else: attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim) attn = self.out_proj(attn) attn_weights: 'Optional[Tensor]' = None if need_weights: attn_weights = attn_weights_float.view(bsz, self.num_heads, tgt_len, src_len).transpose(1, 0) if not need_head_weights: attn_weights = attn_weights.mean(dim=0) return attn, attn_weights @staticmethod def _append_prev_key_padding_mask(key_padding_mask: 'Optional[Tensor]', prev_key_padding_mask: 'Optional[Tensor]', batch_size: 'int', src_len: 'int', static_kv: 'bool') ->Optional[Tensor]: if prev_key_padding_mask is not None and static_kv: new_key_padding_mask = prev_key_padding_mask elif prev_key_padding_mask is not None and key_padding_mask is not None: new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), key_padding_mask.float()], dim=1) elif prev_key_padding_mask is not None: filler = torch.zeros((batch_size, src_len - prev_key_padding_mask.size(1)), device= prev_key_padding_mask.device) new_key_padding_mask = torch.cat([prev_key_padding_mask.float(), filler.float()], dim=1) elif key_padding_mask is not None: filler = torch.zeros((batch_size, src_len - key_padding_mask. size(1)), device=key_padding_mask.device) new_key_padding_mask = torch.cat([filler.float(), key_padding_mask.float()], dim=1) else: new_key_padding_mask = prev_key_padding_mask return new_key_padding_mask @torch.jit.export def reorder_incremental_state(self, incremental_state: 'Dict[str, Dict[str, Optional[Tensor]]]', new_order: 'Tensor'): """Reorder buffered internal state (for incremental generation).""" input_buffer = self._get_input_buffer(incremental_state) if input_buffer is not None: for k in input_buffer.keys(): input_buffer_k = input_buffer[k] if input_buffer_k is not None: if self.encoder_decoder_attention and input_buffer_k.size(0 ) == new_order.size(0): break input_buffer[k] = input_buffer_k.index_select(0, new_order) incremental_state = self._set_input_buffer(incremental_state, input_buffer) return incremental_state def _get_input_buffer(self, incremental_state: 'Optional[Dict[str, Dict[str, Optional[Tensor]]]]') ->Dict[str, Optional[Tensor]]: result = self.get_incremental_state(incremental_state, 'attn_state') if result is not None: return result else: empty_result: 'Dict[str, Optional[Tensor]]' = {} return empty_result def _set_input_buffer(self, incremental_state: 'Dict[str, Dict[str, Optional[Tensor]]]', buffer: 'Dict[str, Optional[Tensor]]'): return self.set_incremental_state(incremental_state, 'attn_state', buffer) def apply_sparse_mask(attn_weights, tgt_len: 'int', src_len: 'int', bsz: 'int'): return attn_weights def upgrade_state_dict_named(self, state_dict, name): prefix = name + '.' if name != '' else '' items_to_add = {} keys_to_remove = [] for k in state_dict.keys(): if k.endswith(prefix + 'in_proj_weight'): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + 'q_proj.weight'] = state_dict[k][:dim] items_to_add[prefix + 'k_proj.weight'] = state_dict[k][dim: 2 * dim] items_to_add[prefix + 'v_proj.weight'] = state_dict[k][2 * dim: ] keys_to_remove.append(k) k_bias = prefix + 'in_proj_bias' if k_bias in state_dict.keys(): dim = int(state_dict[k].shape[0] / 3) items_to_add[prefix + 'q_proj.bias'] = state_dict[k_bias][: dim] items_to_add[prefix + 'k_proj.bias'] = state_dict[k_bias][ dim:2 * dim] items_to_add[prefix + 'v_proj.bias'] = state_dict[k_bias][ 2 * dim:] keys_to_remove.append(prefix + 'in_proj_bias') for k in keys_to_remove: del state_dict[k] for key, value in items_to_add.items(): state_dict[key] = value class TransformerLayerNew(nn.Module): """Transformer layer block.""" def __init__(self, embed_dim, ffn_embed_dim, attention_heads, add_bias_kv=True, use_esm1b_layer_norm=False): super().__init__() self.embed_dim = embed_dim self.ffn_embed_dim = ffn_embed_dim self.attention_heads = attention_heads self._init_submodules(add_bias_kv, use_esm1b_layer_norm) def _init_submodules(self, add_bias_kv, use_esm1b_layer_norm): BertLayerNorm = (ESM1bLayerNorm if use_esm1b_layer_norm else ESM1LayerNorm) self.self_attn = MultiheadAttention(self.embed_dim, self. attention_heads, add_bias_kv=add_bias_kv, add_zero_attn=False) self.self_attn_layer_norm = BertLayerNorm(self.embed_dim) self.fc1 = nn.Linear(self.embed_dim, self.ffn_embed_dim) self.fc2 = nn.Linear(self.ffn_embed_dim, self.embed_dim) self.final_layer_norm = BertLayerNorm(self.embed_dim) def forward(self, input_0): primals_7 = self.self_attn.bias_k primals_8 = self.self_attn.bias_v primals_9 = self.self_attn.k_proj.weight primals_2 = self.self_attn.k_proj.bias primals_11 = self.self_attn.v_proj.weight primals_3 = self.self_attn.v_proj.bias primals_12 = self.self_attn.q_proj.weight primals_4 = self.self_attn.q_proj.bias primals_13 = self.self_attn.out_proj.weight primals_5 = self.self_attn.out_proj.bias primals_6 = self.self_attn_layer_norm.weight primals_10 = self.self_attn_layer_norm.bias primals_16 = self.fc1.weight primals_14 = self.fc1.bias primals_18 = self.fc2.weight primals_15 = self.fc2.bias primals_17 = self.final_layer_norm.weight primals_19 = self.final_layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19]) return output[0], output[1]
boxiangliu/esm
TransformerLayer
false
1,634
[ "MIT" ]
0
3c143d99103e0ea38a9455f30a73cd9c87376606
https://github.com/boxiangliu/esm/tree/3c143d99103e0ea38a9455f30a73cd9c87376606
FluidGravityForce
import torch import torch.nn as nn class FluidGravityForce(nn.Module): def __init__(self, gravity, maxSpeed=3): """ Initializes a fluid gravity model. Arguments: gravity: Gravity vector in the global frame (same as particle l) for the simulation maxSpeed: The maximum magnitude of the particle velocities. Higher velocities are clamped. Previous work used: MAX_VEL = 0.5*0.1*NSUBSTEPS/DT """ super(FluidGravityForce, self).__init__() self.gravity = gravity self.maxSpeed = maxSpeed self.relu = nn.ReLU() def _cap_magnitude(self, A, cap): d = len(A.size()) vv = torch.norm(A, 2, d - 1, keepdim=True) vv = cap / (vv + 0.0001) vv = -(self.relu(-vv + 1.0) - 1.0) return A * vv def forward(self, locs, vel, dt): """ Applies gravity force to fluid sim Inputs: locs: A BxNx3 tensor where B is the batch size, N is the number of particles. The tensor contains the locations of every particle. vels: A BxNx3 tensor that contains the velocity of every particle dt: timestep to predict for gravity: 1x1x3 tensor containing the direction of gravity in the same coordinate frame as particles maxSpeed: maximum velocity possible for nay particle Returns: locs: A BxNx3 tensor with the new particle positions vel: A BxNx3 tensor with the new particle velocities """ vel = vel + self.gravity * dt vel = self._cap_magnitude(vel, self.maxSpeed) locs = locs + vel * dt return locs, vel def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {'gravity': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp7 * tmp2 tmp9 = tmp6 + tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp13 * tmp2 tmp15 = tmp12 + tmp14 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp19 * tmp2 tmp21 = tmp18 + tmp20 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 0.0001 tmp26 = tmp24 + tmp25 tmp27 = tl.full([1], 1, tl.int32) tmp28 = tmp27 / tmp26 tmp29 = 3.0 tmp30 = tmp28 * tmp29 tmp31 = -tmp30 tl.store(out_ptr0 + x0, tmp31, xmask) @triton.jit def triton_poi_fused_add_mul_neg_relu_sub_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr3 + x2, xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tmp6 = 1.0 tmp7 = tmp5 + tmp6 tmp8 = tl.full([1], 0, tl.int32) tmp9 = triton_helpers.maximum(tmp8, tmp7) tmp10 = tmp9 - tmp6 tmp11 = -tmp10 tmp12 = tmp4 * tmp11 tmp14 = tmp12 * tmp1 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp12, xmask) tl.store(out_ptr1 + x2, tmp15, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_add_linalg_vector_norm_mul_neg_reciprocal_0[grid(64)]( arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_neg_relu_sub_1[grid(256)](arg1_1, arg0_1, buf0, arg2_1, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del buf0 return buf2, buf1 class FluidGravityForceNew(nn.Module): def __init__(self, gravity, maxSpeed=3): """ Initializes a fluid gravity model. Arguments: gravity: Gravity vector in the global frame (same as particle l) for the simulation maxSpeed: The maximum magnitude of the particle velocities. Higher velocities are clamped. Previous work used: MAX_VEL = 0.5*0.1*NSUBSTEPS/DT """ super(FluidGravityForceNew, self).__init__() self.gravity = gravity self.maxSpeed = maxSpeed self.relu = nn.ReLU() def _cap_magnitude(self, A, cap): d = len(A.size()) vv = torch.norm(A, 2, d - 1, keepdim=True) vv = cap / (vv + 0.0001) vv = -(self.relu(-vv + 1.0) - 1.0) return A * vv def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
ucsdarclab/liquid_reconstruction
FluidGravityForce
false
4,469
[ "MIT" ]
0
5559edbf71dba05d432d85e7dbbfe3634e650aeb
https://github.com/ucsdarclab/liquid_reconstruction/tree/5559edbf71dba05d432d85e7dbbfe3634e650aeb
RewardEstimator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/z5/cz5bgdo2gmhnnmtf6w7lrjkvliacxo7nomq7mbmjquxqyxqgt5bj.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # x_1 => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2, ), (1, )) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf0 # reuse buf4 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf4, 128, grid=grid(128), stream=stream0) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), (2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 2), (2, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (2, 4), (4, 1)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (1, 2), (2, 1)) assert_size_stride(primals_5, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 2), (2, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 2), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 2), (32, 8, 2, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(128)](buf1, primals_3, buf4, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf3 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 2), ( 2, 1), 0), reinterpret_tensor(primals_4, (2, 1), (1, 2), 0), alpha=1, beta=1, out=buf3) del primals_5 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 2), (2, 1), 0), primals_4, buf4 def reset_parameters_util_x(model): for module in model.modules(): if isinstance(module, nn.Linear): nn.init.xavier_normal_(module.weight.data, 1) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.GRUCell): for mm in module.parameters(): if mm.data.ndimension() == 2: nn.init.xavier_normal_(mm.data, 1) elif mm.data.ndimension() == 1: mm.data.zero_() class RewardEstimatorNew(nn.Module): """Estimates the reward the agent will receive. Value used as a baseline in REINFORCE loss""" def __init__(self, hid_dim): super(RewardEstimatorNew, self).__init__() self.hid_dim = hid_dim self.v1 = nn.Linear(hid_dim, math.ceil(hid_dim / 2)) self.v2 = nn.Linear(math.ceil(hid_dim / 2), 1) self.reset_parameters() def reset_parameters(self): reset_parameters_util_x(self) def forward(self, input_0): primals_2 = self.v1.weight primals_3 = self.v1.bias primals_4 = self.v2.weight primals_5 = self.v2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
olipinski/MultimodalGame
RewardEstimator
false
10,633
[ "BSD-3-Clause" ]
0
cfacc66baebfadb6ed6a8b44b3dd71a298285d68
https://github.com/olipinski/MultimodalGame/tree/cfacc66baebfadb6ed6a8b44b3dd71a298285d68
Net
import torch import torch.nn as nn import torch.nn.functional as F class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 128, 3, padding=1) self.conv2 = nn.Conv2d(128, 64, 3, padding=1) self.conv3 = nn.Conv2d(64, 3, 3, padding=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) return x def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 3 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, None) tl.store(out_ptr0 + x3, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (128, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (128,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (3, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (3,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 128, 64, 64), (524288, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(2097152)](buf1, primals_2, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 64, 64), (262144, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_1[grid(1048576)](buf3, primals_5, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 4096, 64, 1)) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((4, 3, 64, 64), (12288, 4096, 64, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_2[grid(49152)]( buf5, primals_7, buf6, 49152, XBLOCK=512, num_warps=4, num_stages=1 ) del primals_7 return buf5, primals_1, primals_3, primals_4, primals_6, buf1, buf3, buf6 class NetNew(nn.Module): def __init__(self): super(NetNew, self).__init__() self.conv1 = nn.Conv2d(3, 128, 3, padding=1) self.conv2 = nn.Conv2d(128, 64, 3, padding=1) self.conv3 = nn.Conv2d(64, 3, 3, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
suttergustavo/SCC0251_Final_Project
Net
false
10,826
[ "MIT" ]
0
81b91ff6ee7675c8bfaedc6ada6bd09baa65d630
https://github.com/suttergustavo/SCC0251_Final_Project/tree/81b91ff6ee7675c8bfaedc6ada6bd09baa65d630
PreNet
import torch import torch.nn as nn import torch.nn.functional as F class PreNet(nn.Module): def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): super().__init__() self.fc1 = nn.Linear(in_dims, fc1_dims) self.fc2 = nn.Linear(fc1_dims, fc2_dims) self.p = dropout def forward(self, x): x = self.fc1(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) x = self.fc2(x) x = F.relu(x) x = F.dropout(x, self.p, training=self.training) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_dims': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (256, 4), (4, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (128, 256), (256, 1)) assert_size_stride(primals_5, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 256), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf0 buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(16384)](buf1, primals_2, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 128), (128, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 256), (256, 1), 0), reinterpret_tensor(primals_4, (256, 128), (1, 256), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 128), (2048, 512, 128, 1), 0) del buf2 buf4 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(8192)](buf3, primals_5, buf4, 8192, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 256), (256, 1), 0 ), buf4, primals_4, buf5 class PreNetNew(nn.Module): def __init__(self, in_dims, fc1_dims=256, fc2_dims=128, dropout=0.5): super().__init__() self.fc1 = nn.Linear(in_dims, fc1_dims) self.fc2 = nn.Linear(fc1_dims, fc2_dims) self.p = dropout def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
YoghesWaran/tacotron
PreNet
false
18,142
[ "MIT" ]
10
0b97486da7698229bad09e2072cfa3313ae7effe
https://github.com/YoghesWaran/tacotron/tree/0b97486da7698229bad09e2072cfa3313ae7effe
SigsqrtModule
import torch import torch.nn as nn def sigsqrt(v): return v / torch.sqrt(1 + v.abs()) class SigsqrtModule(nn.Module): def forward(self, v): return sigsqrt(v) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_add_div_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.abs(tmp0) tmp2 = 1.0 tmp3 = tmp1 + tmp2 tmp4 = libdevice.sqrt(tmp3) tmp5 = tmp0 / tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_add_div_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, def sigsqrt(v): return v / torch.sqrt(1 + v.abs()) class SigsqrtModuleNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
finalgruntgit/diautils
SigsqrtModule
false
10,273
[ "MIT" ]
0
b9d7666ed5023700db01a4295430c52721acfc25
https://github.com/finalgruntgit/diautils/tree/b9d7666ed5023700db01a4295430c52721acfc25
TransformerEncoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/5w/c5wnubyijcgstpnbhnht5ommr737mwfx67lgpfc6mvwlwmhzfkmq.py # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] # Source node to ATen node mapping: # q_1 => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/hz/chz2sqsqk26mwhf2dxhgh44jfpu2er5yqjftwkzfav5ctqtx5e7f.py # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_output_weights_1 => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/3f/c3fx6bzkalkw7u7askqdnz4rzlcoyqiec4r434sjc5x3axxgkrmr.py # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # attn_output_weights_1 => div, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/um/cumdt56px4jhgi4x7ers5m2jlyr4stfdyfhyb47o43khr5qzdg6f.py # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # contiguous_3 => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_3 = async_compile.triton('triton_poi_fused_clone_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t2/ct2fj4cxakdevxwd5upea4iyfznuislybj5p4wd6jgtx5ayzurnk.py # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src => add # src_1 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_4 = async_compile.triton('triton_poi_fused_add_native_layer_norm_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6g/c6gddvf7hivp3xdh4pyazhygzjkdnh5sxyn6itmcverzcfqnfwwt.py # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # src => add # src_1 => add_1, add_2, mul_1, mul_2, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %view_11), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_6), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/7y/c7y56bfcp3tbow6bnl5mnl3pgzgiplulza2aqzgubrrb2fm6djiq.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_6 = async_compile.triton('triton_poi_fused_relu_threshold_backward_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32768 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, None) tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5j/c5jq4slay2gzyh6whguivh7mf6amdb7fclvyghyk5gdqukw7fkho.py # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] # Source node to ATen node mapping: # src_2 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %view_15), kwargs = {}) triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_out_ptr0 + (x2), xmask) tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/m7/cm7alyvey7ehr4ipkugewxth4wd7hd3x37adkk5crh4vogw2ddrm.py # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_3 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4d/c4dqmytly5zolisxgude22db5p3pbommvxualmvn6ercwtoppkm7.py # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # src_3 => add_4, add_5, mul_3, mul_4, rsqrt_1, sub_2, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_12), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_13), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (2048, 4), (4, 1)) assert_size_stride(primals_9, (2048, ), (1, )) assert_size_stride(primals_10, (4, 2048), (2048, 1)) assert_size_stride(primals_11, (4, ), (1, )) assert_size_stride(primals_12, (4, ), (1, )) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [k], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_2, (4, ), (1, ), 4), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [v], Original ATen: [aten.addmm] extern_kernels.addmm(reinterpret_tensor(primals_2, (4, ), (1, ), 8), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [q_1], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(buf3, primals_2, 64, grid=grid(64), stream=stream0) del primals_2 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output_weights], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf4, buf5, 256, grid=grid(256), stream=stream0) buf6 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [attn_output_weights_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [attn_output], Original ATen: [aten.bmm] extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone] triton_poi_fused_clone_3.run(buf7, buf8, 4, 16, grid=grid(4, 16), stream=stream0) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0); del buf7 # reuse # Topologically Sorted Source Nodes: [src2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_5 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_4.run(primals_1, buf9, buf10, buf11, 16, grid=grid(16), stream=stream0) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [src, src_1], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(primals_1, buf9, buf10, buf11, primals_6, primals_7, buf12, 64, grid=grid(64), stream=stream0) del primals_7 buf13 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 2048), (8192, 2048, 1), 0); del buf13 # reuse buf20 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_6.run(buf14, primals_9, buf20, 32768, grid=grid(32768), stream=stream0) del primals_9 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [src_2], Original ATen: [aten.add] triton_poi_fused_add_7.run(buf16, buf12, primals_11, 64, grid=grid(64), stream=stream0) del primals_11 buf17 = buf11; del buf11 # reuse buf18 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf16, buf17, buf18, 16, grid=grid(16), stream=stream0) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [src_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf16, buf17, buf18, primals_12, primals_13, buf19, 64, grid=grid(64), stream=stream0) del buf17 del buf18 del primals_13 return (buf19, primals_1, primals_6, primals_12, buf6, reinterpret_tensor(buf8, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), buf16, primals_10, buf20, primals_8, primals_4, reinterpret_tensor(buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_6(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (12, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (2048, 4), (4, 1)) assert_size_stride(primals_9, (2048,), (1,)) assert_size_stride(primals_10, (4, 2048), (2048, 1)) assert_size_stride(primals_11, (4,), (1,)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_2, (4,), (1,), 4), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_2, (4,), (1,), 8), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_3 buf3 = reinterpret_tensor(buf0, (4, 4, 4), (16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(64)](buf3, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf4 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (1, 16, 0), 0), reinterpret_tensor(buf1, (16, 1, 4), (1, 1, 16), 0), out=buf4) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 buf7 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (16, 4, 1), (1, 16, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 16)](buf7, buf8, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf9) del primals_5 buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(16)](primals_1, buf9, buf10, buf11, 16, XBLOCK=16, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(64)](primals_1, buf9, buf10, buf11, primals_6, primals_7, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf13 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (4, 2048), (1, 4), 0), out=buf13) buf14 = reinterpret_tensor(buf13, (4, 4, 2048), (8192, 2048, 1), 0) del buf13 buf20 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) triton_poi_fused_relu_threshold_backward_6[grid(32768)](buf14, primals_9, buf20, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf15 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_10, (2048, 4), (1, 2048), 0), out=buf15) buf16 = reinterpret_tensor(buf15, (4, 4, 4), (16, 4, 1), 0) del buf15 triton_poi_fused_add_7[grid(64)](buf16, buf12, primals_11, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_11 buf17 = buf11 del buf11 buf18 = buf10 del buf10 triton_poi_fused_native_layer_norm_8[grid(16)](buf16, buf17, buf18, 16, XBLOCK=16, num_warps=1, num_stages=1) buf19 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(64)](buf16, buf17, buf18, primals_12, primals_13, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf17 del buf18 del primals_13 return buf19, primals_1, primals_6, primals_12, buf6, reinterpret_tensor( buf8, (16, 4), (4, 1), 0), buf9, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(buf14, (16, 2048), (2048, 1), 0 ), buf16, primals_10, buf20, primals_8, primals_4, reinterpret_tensor( buf2, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf3, (16, 1, 4), (1, 1, 16), 0), reinterpret_tensor(buf1, (16, 4, 1), (1, 16, 1), 0) def _get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class DotProductAttention(nn.Module): def __init__(self, dropout=0.0): super(DotProductAttention, self).__init__() self.dropout = dropout def forward(self, q, k, v, attn_mask=None): attn_output_weights = torch.bmm(q, k.transpose(1, 2)) if attn_mask is not None: attn_output_weights += attn_mask attn_output_weights = F.softmax(attn_output_weights, dim=-1) attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=self.training) attn_output = torch.bmm(attn_output_weights, v) return attn_output class MultiheadAttention(nn.Module): def __init__(self, embed_dim, num_heads, dropout=0.0, bias=True, kdim= None, vdim=None): super(MultiheadAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads self.kdim = kdim if kdim is not None else embed_dim self.vdim = vdim if vdim is not None else embed_dim self._qkv_same_embed_dim = (self.kdim == embed_dim and self.vdim == embed_dim) if self._qkv_same_embed_dim: self.in_proj_weight = nn.Parameter(torch.empty(3 * embed_dim, embed_dim)) else: raise RuntimeError( 'Do not support q, k, v have different dimensions') if bias: self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim)) else: self.register_parameter('in_proj_bias', None) self.out_proj = nn.Linear(embed_dim, embed_dim) if self._qkv_same_embed_dim: nn.init.xavier_uniform_(self.in_proj_weight) if self.in_proj_bias is not None: nn.init.constant_(self.in_proj_bias, 0.0) nn.init.constant_(self.out_proj.bias, 0.0) self.dotproductattention = DotProductAttention(dropout) def forward(self, q, k, v, attn_mask=None, key_padding_mask=None): tsz, bsz, embed_dim = q.shape[0], q.shape[1], q.shape[2] head_dim = embed_dim // self.num_heads assert head_dim * self.num_heads == embed_dim, 'embed_dim must be divisible by num_heads' scaling = float(head_dim) ** -0.5 _b = self.in_proj_bias _start = None _end = embed_dim _w = self.in_proj_weight[:_end, :] if _b is not None: _b = _b[:_end] q = F.linear(q, _w, _b) _b = self.in_proj_bias _start = embed_dim _end = embed_dim * 2 _w = self.in_proj_weight[_start:_end, :] if _b is not None: _b = _b[_start:_end] k = F.linear(k, _w, _b) _b = self.in_proj_bias _start = embed_dim * 2 _end = None _w = self.in_proj_weight[_start:, :] if _b is not None: _b = _b[_start:] v = F.linear(v, _w, _b) q = q * scaling q = q.contiguous().view(-1, bsz * self.num_heads, head_dim).transpose( 0, 1) k = k.contiguous().view(-1, bsz * self.num_heads, head_dim).transpose( 0, 1) v = v.contiguous().view(-1, bsz * self.num_heads, head_dim).transpose( 0, 1) if attn_mask is not None: attn_mask = attn_mask.unsqueeze(0).repeat(bsz, 1, 1) attn_mask = attn_mask.unsqueeze(1).repeat(1, self.num_heads, 1, 1) attn_mask = attn_mask.reshape(-1, *attn_mask.shape[2:]) if key_padding_mask is not None: key_padding_mask = key_padding_mask.unsqueeze(1).repeat(1, tsz, 1) key_padding_mask = key_padding_mask.unsqueeze(1).repeat(1, self .num_heads, 1, 1) key_padding_mask = key_padding_mask.reshape(-1, * key_padding_mask.shape[2:]) if attn_mask is not None and key_padding_mask is not None: mask = attn_mask + key_padding_mask elif attn_mask is not None: mask = attn_mask elif key_padding_mask is not None: mask = key_padding_mask else: mask = None attn_output = self.dotproductattention(q, k, v, mask) attn_output = attn_output.transpose(0, 1).contiguous().view(tsz, bsz, self.embed_dim) return self.out_proj(attn_output), None class TransformerEncoderLayerNew(nn.Module): def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerEncoderLayerNew, self).__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) self.linear1 = nn.Linear(d_model, dim_feedforward) self.dropout = nn.Dropout(dropout) self.linear2 = nn.Linear(dim_feedforward, d_model) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout1 = nn.Dropout(dropout) self.dropout2 = nn.Dropout(dropout) self.activation = _get_activation_fn(activation) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerEncoderLayerNew, self).__setstate__(state) def forward(self, input_0): primals_3 = self.self_attn.in_proj_weight primals_2 = self.self_attn.in_proj_bias primals_4 = self.self_attn.out_proj.weight primals_5 = self.self_attn.out_proj.bias primals_8 = self.linear1.weight primals_9 = self.linear1.bias primals_10 = self.linear2.weight primals_6 = self.linear2.bias primals_7 = self.norm1.weight primals_11 = self.norm1.bias primals_12 = self.norm2.weight primals_13 = self.norm2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0]
amazon-research/long-short-term-transformer
TransformerEncoderLayer
false
14,844
[ "Apache-2.0" ]
52
a425be4b52ab68fddd85c91d26571e4cdfe8379a
https://github.com/amazon-research/long-short-term-transformer/tree/a425be4b52ab68fddd85c91d26571e4cdfe8379a
RegressionModel
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/au/caug6nesiygukdpkrndsclkfho3dygoeotjtbnihl4wlyyiuddug.py # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # out => convolution # out_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 16) % 256 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ra/craiyjihtbxcgcvbf4spz6ao2jo32kxcrold46xqwkp43zzisnpl.py # Topologically Sorted Source Nodes: [contiguous, view], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # contiguous => clone # view => view # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) # %view : [num_users=1] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [4, -1, 4]), kwargs = {}) triton_poi_fused_clone_view_1 = async_compile.triton('triton_poi_fused_clone_view_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 64], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 60 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (960*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + (60*y3)), tmp2, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (256, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256, ), (1, )) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (60, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (60, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, out_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16384, grid=grid(16384), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [out_2, out_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf3, primals_5, 16384, grid=grid(16384), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [out_4], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [out_4, out_5], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf5, primals_7, 16384, grid=grid(16384), stream=stream0) del primals_7 # Topologically Sorted Source Nodes: [out_6], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [out_6, out_7], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_0.run(buf7, primals_9, 16384, grid=grid(16384), stream=stream0) del primals_9 # Topologically Sorted Source Nodes: [out_8], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 60, 4, 4), (960, 16, 4, 1)) buf9 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch.float32) buf10 = reinterpret_tensor(buf9, (4, 240, 4), (960, 4, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [contiguous, view], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_1.run(buf10, buf8, primals_11, 64, 60, grid=grid(64, 60), stream=stream0) del buf8 del primals_11 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((256, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((60, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((60, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_clone_view_1(in_out_ptr0, in_ptr0, in_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 60 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 960 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 60 * y3), tmp2, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (256, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (256,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (60, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (60,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 256, 4, 4), (4096, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(16384)](buf1, primals_2, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 256, 4, 4), (4096, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(16384)](buf3, primals_5, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 256, 4, 4), (4096, 16, 4, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_0[grid(16384)](buf5, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 4, 4), (4096, 16, 4, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_0[grid(16384)](buf7, primals_9, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_9 buf8 = extern_kernels.convolution(buf7, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 60, 4, 4), (960, 16, 4, 1)) buf9 = empty_strided_cuda((4, 4, 4, 60), (960, 240, 60, 1), torch. float32) buf10 = reinterpret_tensor(buf9, (4, 240, 4), (960, 4, 1), 0) del buf9 triton_poi_fused_clone_view_1[grid(64, 60)](buf10, buf8, primals_11, 64, 60, XBLOCK=64, YBLOCK=4, num_warps=4, num_stages=1) del buf8 del primals_11 return (buf10, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, buf1, buf3, buf5, buf7) class RegressionModelNew(nn.Module): def __init__(self, num_features_in, num_anchors=15, feature_size=256): super(RegressionModelNew, self).__init__() self.conv1 = nn.Conv2d(num_features_in, feature_size, kernel_size=3, padding=1) self.act1 = nn.ReLU() self.conv2 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act2 = nn.ReLU() self.conv3 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act3 = nn.ReLU() self.conv4 = nn.Conv2d(feature_size, feature_size, kernel_size=3, padding=1) self.act4 = nn.ReLU() self.output = nn.Conv2d(feature_size, num_anchors * 4, kernel_size= 3, padding=1) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_8 = self.conv4.weight primals_9 = self.conv4.bias primals_10 = self.output.weight primals_11 = self.output.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
BradleyBrown19/CustomObjectDetector
RegressionModel
false
2,112
[ "Apache-2.0" ]
0
11c14ec6127c553ac365703c768b75dde33d9a4d
https://github.com/BradleyBrown19/CustomObjectDetector/tree/11c14ec6127c553ac365703c768b75dde33d9a4d
VanillaGenerativeAdversarialLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/je/cjeivr6lviuw6yxgsg65jubqgwe5tcn5hstw7xmebsjzgrut7qcw.py # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits] # Source node to ATen node mapping: # binary_cross_entropy_with_logits => abs_1, exp, full_default, full_default_1, log1p, mean, minimum, mul, neg, sub_1, sub_2 # Graph fragment: # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%full_default, %arg0_1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %minimum : [num_users=1] = call_function[target=torch.ops.aten.minimum.default](args = (%full_default_1, %arg0_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%abs_1,), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%minimum, %log1p), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %sub_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sub_2,), kwargs = {}) triton_per_fused_binary_cross_entropy_with_logits_0 = async_compile.triton('triton_per_fused_binary_cross_entropy_with_logits_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_binary_cross_entropy_with_logits_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = 0.0 tmp2 = tmp1 * tmp0 tmp3 = triton_helpers.minimum(tmp1, tmp0) tmp4 = tl_math.abs(tmp0) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 - tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [binary_cross_entropy_with_logits], Original ATen: [aten.binary_cross_entropy_with_logits] stream0 = get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_0.run(buf1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_binary_cross_entropy_with_logits_0(in_out_ptr0, in_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 0.0 tmp2 = tmp1 * tmp0 tmp3 = triton_helpers.minimum(tmp1, tmp0) tmp4 = tl_math.abs(tmp0) tmp5 = -tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = libdevice.log1p(tmp6) tmp8 = tmp3 - tmp7 tmp9 = tmp2 - tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_binary_cross_entropy_with_logits_0[grid(1)](buf1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 return buf1, class VanillaGenerativeAdversarialLossNew(nn.Module): """ Loss for `Vanilla Generative Adversarial Network <https://arxiv.org/abs/1406.2661>`_ Args: reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output, ``'sum'``: the output will be summed. Default: ``'mean'`` Inputs: - prediction (tensor): unnormalized discriminator predictions - real (bool): if the ground truth label is for real images or fake images. Default: true .. warning:: Do not use sigmoid as the last layer of Discriminator. """ def __init__(self, reduction='mean'): super(VanillaGenerativeAdversarialLossNew, self).__init__() self.bce_loss = nn.BCEWithLogitsLoss(reduction=reduction) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Liuhong99/CST
VanillaGenerativeAdversarialLoss
false
8,486
[ "MIT" ]
20
f6653a4ee7968fa3ba875a182670636f648be783
https://github.com/Liuhong99/CST/tree/f6653a4ee7968fa3ba875a182670636f648be783
CSAM
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/6q/c6q46q7lsepa4jw5qgcgbc5kiud5wm57hubk6vfo4gk47vl2tprk.py # Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu] # Source node to ATen node mapping: # y => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%primals_1,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y_1 => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/k4/ck42otglczd2qtk6fovmlu2yv7bzgywgiadyjygqbvu4m2rftbjm.py # Topologically Sorted Source Nodes: [y_3, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # y_3 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_2 = async_compile.triton('triton_poi_fused_mul_sigmoid_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (1, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(primals_1, buf0, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [y_3, mul], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_2.run(primals_1, buf3, buf4, 256, grid=grid(256), stream=stream0) return (buf4, primals_1, primals_2, primals_4, buf0, buf2, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (1, 4, 3, 3), (36, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_0[grid(256)](primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 1, 4, 4), (16, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_2[grid(256)](primals_1, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, primals_1, primals_2, primals_4, buf0, buf2, buf3 class CSAMNew(nn.Module): """ Compact Spatial Attention Module """ def __init__(self, channels): super(CSAMNew, self).__init__() mid_channels = 4 self.relu1 = nn.ReLU() self.conv1 = nn.Conv2d(channels, mid_channels, kernel_size=1, padding=0 ) self.conv2 = nn.Conv2d(mid_channels, 1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() nn.init.constant_(self.conv1.bias, 0) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
arkel23/mmgeneration
CSAM
false
9,946
[ "Apache-2.0" ]
0
41a30e2972f2037f6aac60ed761bed3fe47bfe4d
https://github.com/arkel23/mmgeneration/tree/41a30e2972f2037f6aac60ed761bed3fe47bfe4d
SpacialGatingUnit
import torch from torch import nn import torch.utils.data import torch.nn.functional from typing import Optional import torch.autograd class SpacialGatingUnit(nn.Module): """ ## Spatial Gating Unit $$s(Z) = Z_1 \\odot f_{W,b}(Z_2)$$ where $f_{W,b}(Z) = W Z + b$ is a linear transformation along the sequence dimension, and $\\odot$ is element-wise multiplication. $Z$ is split into to parts of equal size $Z_1$ and $Z_2$ along the channel dimension (embedding dimension). """ def __init__(self, d_z: 'int', seq_len: 'int'): """ * `d_z` is the dimensionality of $Z$ * `seq_len` is the sequence length """ super().__init__() self.norm = nn.LayerNorm([d_z // 2]) self.weight = nn.Parameter(torch.zeros(seq_len, seq_len).uniform_(- 0.01, 0.01), requires_grad=True) self.bias = nn.Parameter(torch.ones(seq_len), requires_grad=True) def forward(self, z: 'torch.Tensor', mask: 'Optional[torch.Tensor]'=None): """ * `z` is the input $Z$ of shape `[seq_len, batch_size, d_z]` * `mask` is is a boolean mask of shape `[seq_len, seq_len, 1]` that controls the visibility of tokens among each other. The last dimension of size `1` is the batch, which we have in other transformer implementations and was left for compatibility. """ seq_len = z.shape[0] z1, z2 = torch.chunk(z, 2, dim=-1) if mask is not None: assert mask.shape[0] == 1 or mask.shape[0] == seq_len assert mask.shape[1] == seq_len assert mask.shape[2] == 1 mask = mask[:, :, 0] z2 = self.norm(z2) weight = self.weight[:seq_len, :seq_len] if mask is not None: weight = weight * mask z2 = torch.einsum('ij,jbd->ibd', weight, z2) + self.bias[:seq_len, None, None] return z1 * z2 def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_z': 4, 'seq_len': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 / tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp3 - tmp1 tmp5 = tmp4 * tmp4 tmp7 = tmp6 - tmp1 tmp8 = tmp7 * tmp7 tmp9 = tmp5 + tmp8 tmp10 = 2.0 tmp11 = tmp9 / tmp10 tmp12 = 1e-05 tmp13 = tmp11 + tmp12 tmp14 = libdevice.rsqrt(tmp13) tmp15 = tmp2 * tmp14 tmp17 = tmp15 * tmp16 tmp19 = tmp17 + tmp18 tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp19, xmask) @triton.jit def triton_poi_fused_add_mul_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x3 = xindex // 2 x4 = xindex x2 = xindex // 8 tmp0 = tl.load(in_ptr0 + (x0 + 4 * x3), xmask) tmp1 = tl.load(in_out_ptr0 + x4, xmask) tmp2 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 * tmp3 tl.store(in_out_ptr0 + x4, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (2,), (1,)) assert_size_stride(primals_3, (2,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(16)](primals_1, buf0, 16, XBLOCK=16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 2), (8, 2, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(32)](primals_1, buf0, primals_2, primals_3, buf1, buf2, 32, XBLOCK=32, num_warps=1, num_stages=1) del buf0 del primals_2 del primals_3 buf3 = empty_strided_cuda((1, 4, 8), (32, 8, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_4, (1, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf2, (1, 4, 8), (0, 8, 1), 0), out=buf3 ) buf4 = reinterpret_tensor(buf3, (4, 4, 2), (8, 2, 1), 0) del buf3 triton_poi_fused_add_mul_2[grid(32)](buf4, primals_1, primals_5, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_5 return buf4, reinterpret_tensor(primals_1, (4, 4, 2), (16, 4, 1), 0 ), buf1, reinterpret_tensor(primals_4, (1, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf2, (1, 8, 4), (32, 1, 8), 0) class SpacialGatingUnitNew(nn.Module): """ ## Spatial Gating Unit $$s(Z) = Z_1 \\odot f_{W,b}(Z_2)$$ where $f_{W,b}(Z) = W Z + b$ is a linear transformation along the sequence dimension, and $\\odot$ is element-wise multiplication. $Z$ is split into to parts of equal size $Z_1$ and $Z_2$ along the channel dimension (embedding dimension). """ def __init__(self, d_z: 'int', seq_len: 'int'): """ * `d_z` is the dimensionality of $Z$ * `seq_len` is the sequence length """ super().__init__() self.norm = nn.LayerNorm([d_z // 2]) self.weight = nn.Parameter(torch.zeros(seq_len, seq_len).uniform_(- 0.01, 0.01), requires_grad=True) self.bias = nn.Parameter(torch.ones(seq_len), requires_grad=True) def forward(self, input_0): primals_4 = self.weight primals_5 = self.bias primals_2 = self.norm.weight primals_3 = self.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Aarsh2001/annotated_deep_learning_paper_implementations
SpacialGatingUnit
false
4,782
[ "MIT" ]
1
ff0d5c065da1a46769f5f66fddc252c178f8fa37
https://github.com/Aarsh2001/annotated_deep_learning_paper_implementations/tree/ff0d5c065da1a46769f5f66fddc252c178f8fa37
LinearAdditionComposition
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/hk/chkw3kgvyjknvy3tuin72elihifeho7w4nt6ifpydj2ebu2nju26.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %view_3), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf2, primals_2, buf1, primals_5, 256, grid=grid(256), stream=stream0) del buf1 del primals_2 del primals_5 return (buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.parallel import torch.utils.data import torch.distributions assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf2, primals_2, buf1, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_5 return buf2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0) class CompositionFunction(torch.nn.Module): def __init__(self, representation_size: 'int'): super().__init__() def forward(self, x: 'torch.Tensor', y: 'torch.Tensor') ->torch.Tensor: raise NotImplementedError class LinearAdditionCompositionNew(CompositionFunction): def __init__(self, representation_size: 'int'): super().__init__(representation_size) self.linear_1 = torch.nn.Linear(representation_size, representation_size) self.linear_2 = torch.nn.Linear(representation_size, representation_size) def forward(self, input_0, input_1): primals_1 = self.linear_1.weight primals_2 = self.linear_1.bias primals_4 = self.linear_2.weight primals_5 = self.linear_2.bias primals_3 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
XeniaOhmer/SystematicRepresentations
LinearAdditionComposition
false
1,237
[ "MIT" ]
0
825208d1be659dc820e61f577cdb53afc47302f4
https://github.com/XeniaOhmer/SystematicRepresentations/tree/825208d1be659dc820e61f577cdb53afc47302f4
ContrastiveLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/v2/cv2ohk4vpat6jimblbxldlcmj6xwbdtpffu3zhdixmnvm47unics.py # Topologically Sorted Source Nodes: [sub, pow_1, distances], Original ATen: [aten.sub, aten.pow, aten.sum] # Source node to ATen node mapping: # distances => sum_1 # pow_1 => pow_1 # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg2_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1]), kwargs = {}) triton_poi_fused_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_pow_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tmp1 = tl.load(in_ptr1 + (x0 + (64*x1)), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask) tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x1)), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask) tmp10 = tl.load(in_ptr1 + (32 + x0 + (64*x1)), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask) tmp15 = tl.load(in_ptr1 + (48 + x0 + (64*x1)), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + (x2), tmp18, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/zr/czr2vrtmp2zzmoldsxojgyuiyfeueaymvvtixpuppz45iypjtjb3.py # Topologically Sorted Source Nodes: [mul, mul_1, add, add_1, sqrt, sub_1, relu, pow_2, mul_2, add_2, losses, mean], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.rsub, aten.relu, aten.pow, aten.mean] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # losses => mul_3 # mean => mean # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # pow_2 => pow_2 # relu => relu # sqrt => sqrt # sub_1 => sub_1 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sum_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, -1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_1, 1e-09), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (4, %sqrt), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub_1,), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%relu, 2), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, %pow_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.5), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%mul_3,), kwargs = {}) triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1 = async_compile.triton('triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + (r2), None) tmp1 = tl.load(in_ptr1 + (r0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = tmp0 * tmp3 tmp5 = 1.0 tmp6 = tmp4 + tmp5 tmp7 = 1e-09 tmp8 = tmp1 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = 4.0 tmp11 = tmp10 - tmp9 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tmp13 * tmp13 tmp15 = tmp6 * tmp14 tmp16 = tmp2 + tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 256.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp23, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, pow_1, distances], Original ATen: [aten.sub, aten.pow, aten.sum] stream0 = get_raw_stream(0) triton_poi_fused_pow_sub_sum_0.run(arg1_1, arg2_1, buf0, 64, grid=grid(64), stream=stream0) del arg1_1 del arg2_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, mul_1, add, add_1, sqrt, sub_1, relu, pow_2, mul_2, add_2, losses, mean], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.rsub, aten.relu, aten.pow, aten.mean] triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1.run(buf2, arg0_1, buf0, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp4 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp9 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp10 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp14 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp15 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tmp8 + tmp12 tmp16 = tmp14 - tmp15 tmp17 = tmp16 * tmp16 tmp18 = tmp13 + tmp17 tl.store(out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp1 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp3 = -1.0 tmp4 = tmp0 * tmp3 tmp5 = 1.0 tmp6 = tmp4 + tmp5 tmp7 = 1e-09 tmp8 = tmp1 + tmp7 tmp9 = libdevice.sqrt(tmp8) tmp10 = 4.0 tmp11 = tmp10 - tmp9 tmp12 = tl.full([1], 0, tl.int32) tmp13 = triton_helpers.maximum(tmp12, tmp11) tmp14 = tmp13 * tmp13 tmp15 = tmp6 * tmp14 tmp16 = tmp2 + tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp19 = tl.broadcast_to(tmp18, [RBLOCK]) tmp21 = triton_helpers.promote_to_tensor(tl.sum(tmp19, 0)) tmp22 = 256.0 tmp23 = tmp21 / tmp22 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp23, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_sub_sum_0[grid(64)](arg1_1, arg2_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg1_1 del arg2_1 buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 triton_per_fused_add_mean_mul_pow_relu_rsub_sqrt_1[grid(1)](buf2, arg0_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class ContrastiveLossNew(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise output1/output2: embeddings nx2 """ def __init__(self, margin): super(ContrastiveLossNew, self).__init__() self.margin = margin self.eps = 1e-09 def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
Sigma10010/nuclei_cells_det
ContrastiveLoss
false
17,931
[ "MIT" ]
4
c074175fec8938472bb4cddabd83d1d0ea78f230
https://github.com/Sigma10010/nuclei_cells_det/tree/c074175fec8938472bb4cddabd83d1d0ea78f230
HingeLoss
import torch class HingeLoss(torch.nn.Module): def __init__(self): super(HingeLoss, self).__init__() def forward(self, x, y, margin=2): output = (margin - x + y).clamp(min=0) return output.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_mean_rsub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp3 = tl.load(in_ptr1 + r0, None) tmp1 = 2.0 tmp2 = tmp1 - tmp0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = 256.0 tmp11 = tmp9 / tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_mean_rsub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class HingeLossNew(torch.nn.Module): def __init__(self): super(HingeLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
bashish101/ir
HingeLoss
false
1,522
[ "MIT" ]
0
cc90e86827c19035f38d0d85154f073a86aa9796
https://github.com/bashish101/ir/tree/cc90e86827c19035f38d0d85154f073a86aa9796
RelateModule
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn class RelateModule(nn.Module): def __init__(self, dim): super().__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1, dilation=(1, 1)) self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=2, dilation=(2, 2)) self.conv3 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=4, dilation=(4, 4)) self.conv4 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=8, dilation=(8, 8)) self.conv5 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1, dilation=(1, 1)) self.conv6 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0) torch.nn.init.kaiming_normal_(self.conv1.weight) torch.nn.init.kaiming_normal_(self.conv2.weight) torch.nn.init.kaiming_normal_(self.conv3.weight) torch.nn.init.kaiming_normal_(self.conv4.weight) torch.nn.init.kaiming_normal_(self.conv5.weight) torch.nn.init.kaiming_normal_(self.conv6.weight) self.dim = dim def forward(self, feats, attn): feats = torch.mul(feats, attn.repeat(1, self.dim, 1, 1)) out = F.relu(self.conv1(feats)) out = F.relu(self.conv2(out)) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = F.relu(self.conv5(out)) out = torch.sigmoid(self.conv6(out)) return out def get_inputs(): return [torch.rand([4, 4, 64, 64]), torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {'dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_repeat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 16384 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14) = args args.clear() assert_size_stride(primals_1, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_2, (4, 4, 64, 64), (16384, 4096, 64, 1)) assert_size_stride(primals_3, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_14, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_repeat_0[grid(65536)](primals_2, primals_1, buf0, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(65536)](buf2, primals_4, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_4 buf3 = extern_kernels.convolution(buf2, primals_5, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_1[grid(65536)](buf4, primals_6, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_6 buf5 = extern_kernels.convolution(buf4, primals_7, stride=(1, 1), padding=(4, 4), dilation=(4, 4), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf6 = buf5 del buf5 triton_poi_fused_convolution_relu_1[grid(65536)](buf6, primals_8, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_8 buf7 = extern_kernels.convolution(buf6, primals_9, stride=(1, 1), padding=(8, 8), dilation=(8, 8), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf7, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf8 = buf7 del buf7 triton_poi_fused_convolution_relu_1[grid(65536)](buf8, primals_10, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_10 buf9 = extern_kernels.convolution(buf8, primals_11, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf10 = buf9 del buf9 triton_poi_fused_convolution_relu_1[grid(65536)](buf10, primals_12, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_12 buf11 = extern_kernels.convolution(buf10, primals_13, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf12 = buf11 del buf11 triton_poi_fused_convolution_sigmoid_2[grid(16384)](buf12, primals_14, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_14 return (buf12, primals_3, primals_5, primals_7, primals_9, primals_11, primals_13, buf0, buf2, buf4, buf6, buf8, buf10, buf12) class RelateModuleNew(nn.Module): def __init__(self, dim): super().__init__() self.conv1 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1, dilation=(1, 1)) self.conv2 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=2, dilation=(2, 2)) self.conv3 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=4, dilation=(4, 4)) self.conv4 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=8, dilation=(8, 8)) self.conv5 = nn.Conv2d(dim, dim, kernel_size=(3, 3), padding=1, dilation=(1, 1)) self.conv6 = nn.Conv2d(dim, 1, kernel_size=(1, 1), padding=0) torch.nn.init.kaiming_normal_(self.conv1.weight) torch.nn.init.kaiming_normal_(self.conv2.weight) torch.nn.init.kaiming_normal_(self.conv3.weight) torch.nn.init.kaiming_normal_(self.conv4.weight) torch.nn.init.kaiming_normal_(self.conv5.weight) torch.nn.init.kaiming_normal_(self.conv6.weight) self.dim = dim def forward(self, input_0, input_1): primals_3 = self.conv1.weight primals_4 = self.conv1.bias primals_5 = self.conv2.weight primals_6 = self.conv2.bias primals_7 = self.conv3.weight primals_8 = self.conv3.bias primals_9 = self.conv4.weight primals_10 = self.conv4.bias primals_11 = self.conv5.weight primals_12 = self.conv5.bias primals_13 = self.conv6.weight primals_14 = self.conv6.bias primals_2 = input_0 primals_1 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14]) return output[0]
SpyrosMouselinos/DeltaFormers
RelateModule
false
5,858
[ "Apache-2.0" ]
1
38508fa9b85f2c50aa0031b67e7e8feff1a75b27
https://github.com/SpyrosMouselinos/DeltaFormers/tree/38508fa9b85f2c50aa0031b67e7e8feff1a75b27
ECAAttention
import torch from torch import nn from torch.nn import init class ECAAttention(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=( kernel_size - 1) // 2) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, x): y = self.gap(x) y = y.squeeze(-1).permute(0, 2, 1) y = self.conv(y) y = self.sigmoid(y) y = y.permute(0, 2, 1).unsqueeze(-1) return x * y.expand_as(x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (4, 1, 4 ), (4, 0, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (4, 1, 4), (4, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(256)](primals_1, buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf4, primals_1, primals_2, reinterpret_tensor(buf1, (4, 1, 4), (4, 1, 1), 0), buf3 class ECAAttentionNew(nn.Module): def __init__(self, kernel_size=3): super().__init__() self.gap = nn.AdaptiveAvgPool2d(1) self.conv = nn.Conv1d(1, 1, kernel_size=kernel_size, padding=( kernel_size - 1) // 2) self.sigmoid = nn.Sigmoid() def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): init.normal_(m.weight, std=0.001) if m.bias is not None: init.constant_(m.bias, 0) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Nitin-Mane/External-Attention-pytorch
ECAAttention
false
14,112
[ "MIT" ]
4,466
1ceda306c41063af11c956334747763444a4d83f
https://github.com/Nitin-Mane/External-Attention-pytorch/tree/1ceda306c41063af11c956334747763444a4d83f
Relu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/vi/cvifmuqhkjjr4xnuhjexxj5yw4w6hrc2juje6vvdwio2ama7bkpd.py # Topologically Sorted Source Nodes: [clamp_min, sub], Original ATen: [aten.clamp_min, aten.sub] # Source node to ATen node mapping: # clamp_min => clamp_min # sub => sub # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, 0.5), kwargs = {}) triton_poi_fused_clamp_min_sub_0 = async_compile.triton('triton_poi_fused_clamp_min_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_min_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_min_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.5 tmp4 = tmp2 - tmp3 tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_min, sub], Original ATen: [aten.clamp_min, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_clamp_min_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch.nn import Module assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_min_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 0.5 tmp4 = tmp2 - tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class ReluNew(Module): def bwd(self, out, inp): inp.g = (inp > 0).float() * out.g def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Akramz/Impractical-DL
Relu
false
11,152
[ "MIT" ]
0
ff909e369fb765c0857800925e39c433057ae8ac
https://github.com/Akramz/Impractical-DL/tree/ff909e369fb765c0857800925e39c433057ae8ac
iMAE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/kl/ckludarp77wgjczr7iik6fprozu4scarwt3ztwu57unki4egy6mk.py # Topologically Sorted Source Nodes: [target, setitem_1, target_1, setitem_3, outputs, setitem, outputs_1, setitem_2, loss, cnt], Original ATen: [aten.div, aten.lift_fresh, aten.index_put, aten.reciprocal, aten.mul, aten.sum] # Source node to ATen node mapping: # cnt => sum_2 # loss => sum_1 # outputs => div # outputs_1 => mul, reciprocal # setitem => full_default, index_put # setitem_1 => full_default_1, index_put_1 # setitem_2 => full_default_2, index_put_2 # setitem_3 => full_default_3, index_put_3 # target => div_1 # target_1 => mul_1, reciprocal_1 # Graph fragment: # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg1_1, 1000.0), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_1 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%div_1, [%eq_1], %full_default_1), kwargs = {}) # %reciprocal_1 : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%index_put_1,), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal_1, 1.0), kwargs = {}) # %full_default_3 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_3 : [num_users=2] = call_function[target=torch.ops.aten.index_put_.default](args = (%mul_1, [%eq_3], %full_default_3), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, 1000.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%div, [%eq], %full_default), kwargs = {}) # %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%index_put,), kwargs = {}) # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 1.0), kwargs = {}) # %full_default_2 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cpu, pin_memory: False}) # %index_put_2 : [num_users=1] = call_function[target=torch.ops.aten.index_put_.default](args = (%mul, [%eq_2], %full_default_2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view, [-1], True), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%view_1, [-1], True), kwargs = {}) triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0 = async_compile.triton('triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp13 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = 0.001 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = tmp2 == tmp3 tmp5 = -1.0 tmp6 = tl.where(tmp4, tmp5, tmp2) tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tmp10 == tmp5 tmp12 = tl.where(tmp11, tmp3, tmp10) tmp14 = tmp13 * tmp1 tmp15 = tmp14 == tmp3 tmp16 = tl.where(tmp15, tmp5, tmp14) tmp17 = tmp7 / tmp16 tmp18 = tmp17 * tmp9 tmp19 = tmp18 == tmp5 tmp20 = tl.where(tmp19, tmp3, tmp18) tmp21 = tmp12 > tmp3 tmp22 = tmp21.to(tl.float32) tmp23 = tmp12 * tmp22 tmp24 = tmp20 * tmp22 tmp25 = tmp23 - tmp24 tmp26 = tl_math.abs(tmp25) tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tmp31 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + (x0), tmp30, xmask) tl.store(out_ptr1 + (x0), tmp34, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qz/cqz2vfmobz2hrhya7c3vow4lxpxacz2mch7fn6l2jgloq5sbmnrq.py # Topologically Sorted Source Nodes: [truediv_4, mean], Original ATen: [aten.div, aten.mean] # Source node to ATen node mapping: # mean => mean # truediv_4 => div_2 # Graph fragment: # %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %sum_2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div_2,), kwargs = {}) triton_per_fused_div_mean_1 = async_compile.triton('triton_per_fused_div_mean_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mean_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 / tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = 4.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp7, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf5 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) # Topologically Sorted Source Nodes: [target, setitem_1, target_1, setitem_3, outputs, setitem, outputs_1, setitem_2, loss, cnt], Original ATen: [aten.div, aten.lift_fresh, aten.index_put, aten.reciprocal, aten.mul, aten.sum] stream0 = get_raw_stream(0) triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0.run(arg1_1, arg0_1, buf4, buf5, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [truediv_4, mean], Original ATen: [aten.div, aten.mean] triton_per_fused_div_mean_1.run(buf7, buf4, buf5, 1, 4, grid=grid(1), stream=stream0) del buf4 del buf5 return (buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp13 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = 0.001 tmp2 = tmp0 * tmp1 tmp3 = 0.0 tmp4 = tmp2 == tmp3 tmp5 = -1.0 tmp6 = tl.where(tmp4, tmp5, tmp2) tmp7 = tl.full([1, 1], 1, tl.int32) tmp8 = tmp7 / tmp6 tmp9 = 1.0 tmp10 = tmp8 * tmp9 tmp11 = tmp10 == tmp5 tmp12 = tl.where(tmp11, tmp3, tmp10) tmp14 = tmp13 * tmp1 tmp15 = tmp14 == tmp3 tmp16 = tl.where(tmp15, tmp5, tmp14) tmp17 = tmp7 / tmp16 tmp18 = tmp17 * tmp9 tmp19 = tmp18 == tmp5 tmp20 = tl.where(tmp19, tmp3, tmp18) tmp21 = tmp12 > tmp3 tmp22 = tmp21.to(tl.float32) tmp23 = tmp12 * tmp22 tmp24 = tmp20 * tmp22 tmp25 = tmp23 - tmp24 tmp26 = tl_math.abs(tmp25) tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.where(xmask, tmp27, 0) tmp30 = tl.sum(tmp29, 1)[:, None] tmp31 = tl.broadcast_to(tmp22, [XBLOCK, RBLOCK]) tmp33 = tl.where(xmask, tmp31, 0) tmp34 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr0 + x0, tmp30, xmask) tl.store(out_ptr1 + x0, tmp34, xmask) @triton.jit def triton_per_fused_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 / tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = 4.0 tmp7 = tmp5 / tmp6 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp7, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf4 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) buf5 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32) get_raw_stream(0) triton_per_fused_div_index_put_lift_fresh_mul_reciprocal_sum_0[grid(4) ](arg1_1, arg0_1, buf4, buf5, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf6 = empty_strided_cuda((), (), torch.float32) buf7 = buf6 del buf6 triton_per_fused_div_mean_1[grid(1)](buf7, buf4, buf5, 1, 4, XBLOCK =1, num_warps=2, num_stages=1) del buf4 del buf5 return buf7, class iMAENew(nn.Module): def __init__(self): super(iMAENew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
anglixjtu/MSG_CHN_WACV20
iMAE
false
14,856
[ "Apache-2.0" ]
61
6910894cf3caed2ffde27586f96b132b0c1d1a98
https://github.com/anglixjtu/MSG_CHN_WACV20/tree/6910894cf3caed2ffde27586f96b132b0c1d1a98
SPPLayer
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/4m/c4m5w4y7qnqrt7o32xjvwkhlxdmbadwmibuly55v4t4jrg6szca5.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [0, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tl.store(out_ptr0 + (x0), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tl.store(out_ptr0 + x0, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SPPLayerNew(torch.nn.Module): def __init__(self, level): super(SPPLayerNew, self).__init__() self.level = level def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
IrisDinge/YoloV3_DOTA
SPPLayer
false
5,342
[ "MIT" ]
1
cdfe6375a2323e9ee162e50a46478d8a66529e6c
https://github.com/IrisDinge/YoloV3_DOTA/tree/cdfe6375a2323e9ee162e50a46478d8a66529e6c
HighwayNetwork
import torch import torch.nn as nn import torch.nn.functional as F class HighwayNetwork(nn.Module): def __init__(self, size): super().__init__() self.W1 = nn.Linear(size, size) self.W2 = nn.Linear(size, size) self.W1.bias.data.fill_(0.0) def forward(self, x): x1 = self.W1(x) x2 = self.W2(x) g = torch.sigmoid(x2) y = g * F.relu(x1) + (1.0 - g) * x return y def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_relu_rsub_sigmoid_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp8 = tl.load(in_ptr2 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = tmp1 * tmp4 tmp6 = 1.0 tmp7 = tmp6 - tmp1 tmp9 = tmp7 * tmp8 tmp10 = tmp5 + tmp9 tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_relu_rsub_sigmoid_0[grid(256)](buf1, buf0, primals_3, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_3, buf0, buf1 class HighwayNetworkNew(nn.Module): def __init__(self, size): super().__init__() self.W1 = nn.Linear(size, size) self.W2 = nn.Linear(size, size) self.W1.bias.data.fill_(0.0) def forward(self, input_0): primals_1 = self.W1.weight primals_2 = self.W1.bias primals_4 = self.W2.weight primals_5 = self.W2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
cassiavb/Tacotron
HighwayNetwork
false
6,391
[ "MIT" ]
1
946408f8cd7b5fe9c53931c631267ba2a723910d
https://github.com/cassiavb/Tacotron/tree/946408f8cd7b5fe9c53931c631267ba2a723910d
StochasticPool2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/l3/cl3qgtljwm55hj7prrlq32vnxhqj5elf2qeptwkrprrhumnm7twn.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.avg_pool2d] # Source node to ATen node mapping: # output => avg_pool2d # Graph fragment: # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%arg0_1, [2, 2], [2, 2]), kwargs = {}) triton_poi_fused_avg_pool2d_0 = async_compile.triton('triton_poi_fused_avg_pool2d_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [output], Original ATen: [aten.avg_pool2d] stream0 = get_raw_stream(0) triton_poi_fused_avg_pool2d_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class StochasticPool2dNew(torch.nn.Module): def __init__(self, kernel_size=2, stride=2, padding=0): super(StochasticPool2dNew, self).__init__() self.kernel_size = kernel_size self.stride = stride self.padding = padding self.grid_size = kernel_size self.padding = torch.nn.ConstantPad2d((0, 1, 0, 1), 0) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
cclauss/DL4AGX
StochasticPool2d
false
6,401
[ "Apache-2.0" ]
1
b4d73f6c39b0428e32ce5656352800cc7e2cfb22
https://github.com/cclauss/DL4AGX/tree/b4d73f6c39b0428e32ce5656352800cc7e2cfb22
RDivInt
import torch class RDivInt(torch.nn.Module): def __init__(self): super(RDivInt, self).__init__() def forward(self, x): return 100 / x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_reciprocal_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp1 / tmp0 tmp3 = 100.0 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_reciprocal_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class RDivIntNew(torch.nn.Module): def __init__(self): super(RDivIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RDivInt
false
10,528
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
SMAPE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/cw/ccwh5w6dnsrvah5y4bktgerbrrgslxvxjp3hwu5yxsohakfrungc.py # Topologically Sorted Source Nodes: [sub, abs_1, abs_2, add, abs_3, add_1, truediv, loss], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # abs_2 => abs_2 # abs_3 => abs_3 # add => add # add_1 => add_1 # loss => mean # sub => sub # truediv => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%abs_2, 0.01), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg1_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %abs_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%abs_1, %add_1), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%div,), kwargs = {}) triton_per_fused_abs_add_div_mean_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.abs(tmp0) tmp5 = 0.01 tmp6 = tmp4 + tmp5 tmp7 = tl_math.abs(tmp1) tmp8 = tmp6 + tmp7 tmp9 = tmp3 / tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp14, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sub, abs_1, abs_2, add, abs_3, add_1, truediv, loss], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch as th assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl_math.abs(tmp0) tmp5 = 0.01 tmp6 = tmp4 + tmp5 tmp7 = tl_math.abs(tmp1) tmp8 = tmp6 + tmp7 tmp9 = tmp3 / tmp8 tmp10 = tl.broadcast_to(tmp9, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 256.0 tmp14 = tmp12 / tmp13 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp14, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0[grid(1)](buf1, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class SMAPENew(th.nn.Module): """Symmetric Mean Absolute error. :math:`\\frac{|x - y|} {|x| + |y| + \\epsilon}` Args: eps(float): small number to avoid division by 0. """ def __init__(self, eps=0.01): super(SMAPENew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
PeterZs/sbmc
SMAPE
false
5,713
[ "Apache-2.0" ]
1
ac3f5452efe0166ea73942f37cc60b1f0e1ee555
https://github.com/PeterZs/sbmc/tree/ac3f5452efe0166ea73942f37cc60b1f0e1ee555
MulticlassDiceLoss
import torch import torch.nn as nn class DiceLoss(nn.Module): def __init__(self): super(DiceLoss, self).__init__() def forward(self, input, target, logits=True): if logits: input = nn.Sigmoid()(input) N = target.size(0) smooth = 1 input_flat = input.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) loss = 1 - loss.sum() / N return loss class MulticlassDiceLoss(nn.Module): """ requires one hot encoded target. Applies DiceLoss on each class iteratively. requires input.shape[0:1] and target.shape[0:1] to be (N, C) where N is batch size and C is number of classes """ def __init__(self): super(MulticlassDiceLoss, self).__init__() def forward(self, input, target, weights=None, logits=True): C = target.shape[1] dice = DiceLoss() totalLoss = 0 for i in range(C): diceLoss = dice(input[:, i], target[:, i], logits) if weights is not None: diceLoss *= weights[i] totalLoss += diceLoss return totalLoss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) @triton.jit def triton_per_fused_mul_sum_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (32 + r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) @triton.jit def triton_per_fused_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (48 + r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) @triton.jit def triton_per_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0) tmp2 = tl.load(in_ptr1 + (16 + r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp14 = tl.where(xmask, tmp12, 0) tmp15 = tl.sum(tmp14, 1)[:, None] tl.store(out_ptr0 + x0, tmp7, xmask) tl.store(out_ptr1 + x0, tmp11, xmask) tl.store(out_ptr2 + x0, tmp15, xmask) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_4(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp5 = tl.load(in_ptr1 + r0, None) tmp6 = tl.load(in_ptr2 + r0, None) tmp13 = tl.load(in_ptr3 + r0, None) tmp16 = tl.load(in_ptr4 + r0, None) tmp17 = tl.load(in_ptr5 + r0, None) tmp24 = tl.load(in_ptr6 + r0, None) tmp27 = tl.load(in_ptr7 + r0, None) tmp28 = tl.load(in_ptr8 + r0, None) tmp35 = tl.load(in_ptr9 + r0, None) tmp38 = tl.load(in_ptr10 + r0, None) tmp39 = tl.load(in_ptr11 + r0, None) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp7 = tmp5 + tmp6 tmp8 = tmp7 + tmp1 tmp9 = tmp4 / tmp8 tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.sum(tmp10, 1)[:, None] tmp14 = tmp13 + tmp1 tmp15 = tmp14 * tmp3 tmp18 = tmp16 + tmp17 tmp19 = tmp18 + tmp1 tmp20 = tmp15 / tmp19 tmp21 = tl.broadcast_to(tmp20, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp25 = tmp24 + tmp1 tmp26 = tmp25 * tmp3 tmp29 = tmp27 + tmp28 tmp30 = tmp29 + tmp1 tmp31 = tmp26 / tmp30 tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK]) tmp34 = tl.sum(tmp32, 1)[:, None] tmp36 = tmp35 + tmp1 tmp37 = tmp36 * tmp3 tmp40 = tmp38 + tmp39 tmp41 = tmp40 + tmp1 tmp42 = tmp37 / tmp41 tmp43 = tl.broadcast_to(tmp42, [XBLOCK, RBLOCK]) tmp45 = tl.sum(tmp43, 1)[:, None] tmp46 = 0.25 tmp47 = tmp12 * tmp46 tmp48 = tmp1 - tmp47 tmp49 = 0.0 tmp50 = tmp48 + tmp49 tmp51 = tmp23 * tmp46 tmp52 = tmp1 - tmp51 tmp53 = tmp50 + tmp52 tmp54 = tmp34 * tmp46 tmp55 = tmp1 - tmp54 tmp56 = tmp53 + tmp55 tmp57 = tmp45 * tmp46 tmp58 = tmp1 - tmp57 tmp59 = tmp56 + tmp58 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp59, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf1 = empty_strided_cuda((4,), (1,), torch.float32) buf2 = empty_strided_cuda((4,), (1,), torch.float32) get_raw_stream(0) triton_per_fused_mul_sum_0[grid(4)](arg1_1, arg0_1, buf0, buf1, buf2, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((4,), (1,), torch.float32) buf9 = empty_strided_cuda((4,), (1,), torch.float32) buf10 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mul_sum_1[grid(4)](arg1_1, arg0_1, buf8, buf9, buf10, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf12 = empty_strided_cuda((4,), (1,), torch.float32) buf13 = empty_strided_cuda((4,), (1,), torch.float32) buf14 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mul_sum_2[grid(4)](arg1_1, arg0_1, buf12, buf13, buf14, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) buf4 = empty_strided_cuda((4,), (1,), torch.float32) buf5 = empty_strided_cuda((4,), (1,), torch.float32) buf6 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mul_sum_3[grid(4)](arg1_1, arg0_1, buf4, buf5, buf6, 4, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 buf11 = empty_strided_cuda((), (), torch.float32) buf16 = buf11 del buf11 triton_per_fused_add_div_mul_rsub_sum_4[grid(1)](buf16, buf0, buf1, buf2, buf4, buf5, buf6, buf8, buf9, buf10, buf12, buf13, buf14, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf0 del buf1 del buf10 del buf12 del buf13 del buf14 del buf2 del buf4 del buf5 del buf6 del buf8 del buf9 return buf16, class DiceLoss(nn.Module): def __init__(self): super(DiceLoss, self).__init__() def forward(self, input, target, logits=True): if logits: input = nn.Sigmoid()(input) N = target.size(0) smooth = 1 input_flat = input.view(N, -1) target_flat = target.view(N, -1) intersection = input_flat * target_flat loss = 2 * (intersection.sum(1) + smooth) / (input_flat.sum(1) + target_flat.sum(1) + smooth) loss = 1 - loss.sum() / N return loss class MulticlassDiceLossNew(nn.Module): """ requires one hot encoded target. Applies DiceLoss on each class iteratively. requires input.shape[0:1] and target.shape[0:1] to be (N, C) where N is batch size and C is number of classes """ def __init__(self): super(MulticlassDiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
LanXiangExcavator/python-classifier-2021
MulticlassDiceLoss
false
11,630
[ "BSD-2-Clause" ]
0
851079e76db8e5070132d1120dba941967e1245b
https://github.com/LanXiangExcavator/python-classifier-2021/tree/851079e76db8e5070132d1120dba941967e1245b
GLU
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/yd/cydoiibutfe3ome7v57n5uwsr4vxzbjyuhhdscab4ea22iuzhboe.py # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # mul => mul # sigmoid => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%getitem_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %sigmoid), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = (xindex // 2) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x1)), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + (4*x1)), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) # Topologically Sorted Source Nodes: [sigmoid, mul], Original ATen: [aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(arg0_1, buf0, 512, grid=grid(512), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp1 = tl.load(in_ptr0 + (2 + x0 + 4 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 2), (128, 32, 8, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(512)](arg0_1, buf0, 512, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class GLUNew(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
zhengx18/conformer
GLU
false
13,169
[ "MIT" ]
0
a258c0b0cc70034f53d2b2040badf5d58aab95bc
https://github.com/zhengx18/conformer/tree/a258c0b0cc70034f53d2b2040badf5d58aab95bc
MLP
import torch import torch.nn as nn import torch.nn.functional as F class MLP(nn.Module): def __init__(self, indim, hs, outdim, mlp_drop): super().__init__() """ eh, et, |eh-et|, eh*et """ indim = 4 * indim self.linear1 = nn.Linear(indim, 2 * hs) self.linear2 = nn.Linear(2 * hs, outdim) self.drop = nn.Dropout(mlp_drop) def forward(self, head_rep, tail_rep): """ :param head_rep: (?, hs) :param tail_rep: (?, hs) :param doc_rep: (1, hs) :return: logits (?, outdim) """ mlp_input = [head_rep, tail_rep, torch.abs(head_rep - tail_rep), head_rep * tail_rep] mlp_input = torch.cat(mlp_input, -1) h = self.drop(F.relu(self.linear1(mlp_input))) return self.linear2(h) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'indim': 4, 'hs': 4, 'outdim': 4, 'mlp_drop': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 - tmp16 tmp18 = tl_math.abs(tmp17) tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype) tmp20 = tl.where(tmp14, tmp18, tmp19) tmp21 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp24 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp21 & xmask, eviction_policy='evict_last', other=0.0) tmp26 = tmp24 * tmp25 tmp27 = tl.full(tmp26.shape, 0.0, tmp26.dtype) tmp28 = tl.where(tmp21, tmp26, tmp27) tmp29 = tl.where(tmp14, tmp20, tmp28) tmp30 = tl.where(tmp9, tmp10, tmp29) tmp31 = tl.where(tmp4, tmp5, tmp30) tl.store(out_ptr0 + x2, tmp31, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (8, 16), (16, 1)) assert_size_stride(primals_4, (8,), (1,)) assert_size_stride(primals_5, (4, 8), (8, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(1024)](primals_1, primals_2, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor(primals_3, (16, 8), (1, 16), 0), out=buf1) del primals_3 buf2 = reinterpret_tensor(buf1, (4, 4, 4, 8), (128, 32, 8, 1), 0) del buf1 buf4 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(512)](buf2, primals_4, buf4, 512, XBLOCK=128, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf2, (64, 8), ( 8, 1), 0), reinterpret_tensor(primals_5, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf3) del primals_6 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (64, 16), (16, 1), 0), reinterpret_tensor( buf2, (64, 8), (8, 1), 0), primals_5, buf4 class MLPNew(nn.Module): def __init__(self, indim, hs, outdim, mlp_drop): super().__init__() """ eh, et, |eh-et|, eh*et """ indim = 4 * indim self.linear1 = nn.Linear(indim, 2 * hs) self.linear2 = nn.Linear(2 * hs, outdim) self.drop = nn.Dropout(mlp_drop) def forward(self, input_0, input_1): primals_3 = self.linear1.weight primals_4 = self.linear1.bias primals_5 = self.linear2.weight primals_6 = self.linear2.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
AndrewZhe/Three-Sentences-Are-All-You-Need
MLP
false
7,686
[ "MIT" ]
21
afad6f9e700c9a95e03ef200718ebee8e18ca016
https://github.com/AndrewZhe/Three-Sentences-Are-All-You-Need/tree/afad6f9e700c9a95e03ef200718ebee8e18ca016
Encoder
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ew/cewggrlrjef57abtf6el5udfhzggviurshs4m5fekyv42qhvvt7h.py # Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # mixture_w => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%squeeze,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1), (4, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0); del buf0 # reuse buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool) # Topologically Sorted Source Nodes: [mixture_w], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, buf2, 4, grid=grid(4), stream=stream0) return (buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.hub assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), primals_1, stride=(2,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1), (4, 1, 1)) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 buf2 = empty_strided_cuda((4, 1), (1, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4)](buf1, buf2, 4, XBLOCK=4, num_warps=1, num_stages=1) return buf1, primals_1, reinterpret_tensor(primals_2, (1, 4, 4), (16, 4, 1), 0), buf2 class EncoderNew(nn.Module): """Estimation of the nonnegative mixture weight by a 1-D conv layer. """ def __init__(self, L, N, audio_channels): super(EncoderNew, self).__init__() self.L, self.N = L, N self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride= L // 2, bias=False) def forward(self, input_0): primals_1 = self.conv1d_U.weight primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
JavierCane/demucs
Encoder
false
5,392
[ "MIT" ]
1
01d14844a71be7b5d86adf06a8501a951157c3fe
https://github.com/JavierCane/demucs/tree/01d14844a71be7b5d86adf06a8501a951157c3fe
RegularizationLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/z6/cz65otpefkrsdsadg7ggbaguamtjixzzb43c5clmwpdknwextane.py # Topologically Sorted Source Nodes: [kl_div, log], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum, aten.div] # Source node to ATen node mapping: # kl_div => div, eq, full_default, full_default_1, isnan, log_1, mul, mul_1, sub, sum_1, where, where_1 # log => log # Graph fragment: # %isnan : [num_users=1] = call_function[target=torch.ops.aten.isnan.default](args = (%expand,), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], nan), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%expand, 0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%expand,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %log_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %mul_1), kwargs = {}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%isnan, %full_default_1, %where), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%permute,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %log), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %mul), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sub,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, 4), kwargs = {}) triton_per_fused_div_log_mul_sub_sum_xlogy_0 = async_compile.triton('triton_per_fused_div_log_mul_sub_sum_xlogy_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_log_mul_sub_sum_xlogy_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_log_mul_sub_sum_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp10 = tl.load(in_ptr1 + (r0), None) tmp2 = libdevice.isnan(tmp1).to(tl.int1) tmp3 = 0.0 tmp4 = tmp1 == tmp3 tmp5 = tl_math.log(tmp1) tmp6 = tmp1 * tmp5 tmp7 = tl.where(tmp4, tmp3, tmp6) tmp8 = float("nan") tmp9 = tl.where(tmp2, tmp8, tmp7) tmp11 = tl_math.log(tmp10) tmp12 = tmp1 * tmp11 tmp13 = tmp9 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 0.25 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp18, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [kl_div, log], Original ATen: [aten.xlogy, aten.log, aten.mul, aten.sub, aten.sum, aten.div] stream0 = get_raw_stream(0) triton_per_fused_div_log_mul_sub_sum_xlogy_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_div_log_mul_sub_sum_xlogy_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp10 = tl.load(in_ptr1 + r0, None) tmp2 = libdevice.isnan(tmp1).to(tl.int1) tmp3 = 0.0 tmp4 = tmp1 == tmp3 tmp5 = tl_math.log(tmp1) tmp6 = tmp1 * tmp5 tmp7 = tl.where(tmp4, tmp3, tmp6) tmp8 = float('nan') tmp9 = tl.where(tmp2, tmp8, tmp7) tmp11 = tl_math.log(tmp10) tmp12 = tmp1 * tmp11 tmp13 = tmp9 - tmp12 tmp14 = tl.broadcast_to(tmp13, [RBLOCK]) tmp16 = triton_helpers.promote_to_tensor(tl.sum(tmp14, 0)) tmp17 = 0.25 tmp18 = tmp16 * tmp17 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp18, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_div_log_mul_sub_sum_xlogy_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class RegularizationLossNew(nn.Module): def __init__(self, lambda_p: 'float', max_layers: 'int'): super().__init__() p_g = torch.zeros((max_layers,)) not_halted = 1.0 for k in range(max_layers): p_g[k] = lambda_p * not_halted not_halted = not_halted * (1 - lambda_p) self.p_g = nn.Parameter(p_g, requires_grad=False) self.kl_div = nn.KLDivLoss(reduction='batchmean') def forward(self, input_0): arg1_1 = self.p_g arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
ChenghaoMou/embeddings
RegularizationLoss
false
7,883
[ "MIT" ]
12
e63c2f2f4a688302de37bb8ccfd37a0170e2c374
https://github.com/ChenghaoMou/embeddings/tree/e63c2f2f4a688302de37bb8ccfd37a0170e2c374
HGNN_embedding
import math import torch from torch import nn import torch.nn.functional as F from torch.nn.parameter import Parameter class HGNN_conv(nn.Module): def __init__(self, in_ft, out_ft, bias=True): super(HGNN_conv, self).__init__() self.weight = Parameter(torch.Tensor(in_ft, out_ft)) if bias: self.bias = Parameter(torch.Tensor(out_ft)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, x: 'torch.Tensor', G: 'torch.Tensor'): x = x.matmul(self.weight) if self.bias is not None: x = x + self.bias x = G.matmul(x) return x class HGNN_embedding(nn.Module): def __init__(self, in_ch, n_hid, dropout=0.5): super(HGNN_embedding, self).__init__() self.dropout = dropout self.hgc1 = HGNN_conv(in_ch, n_hid) self.hgc2 = HGNN_conv(n_hid, n_hid) def forward(self, x, G): x = F.relu(self.hgc1(x, G)) x = F.dropout(x, self.dropout) x = F.relu(self.hgc2(x, G)) return x def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_ch': 4, 'n_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import math from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp3 = 0.0 tmp4 = tmp2 <= tmp3 tl.store(in_out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf3, buf12, 256, XBLOCK=128, num_warps=4, num_stages=1) buf4 = torch.ops.aten.native_dropout.default(buf3, 0.5, True) buf5 = buf4[0] buf6 = buf4[1] del buf4 buf7 = reinterpret_tensor(buf3, (64, 4), (4, 1), 0) del buf3 extern_kernels.mm(reinterpret_tensor(buf5, (64, 4), (4, 1), 0), primals_5, out=buf7) buf8 = reinterpret_tensor(buf7, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf7 triton_poi_fused_add_0[grid(256)](buf8, primals_6, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_6 buf9 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(primals_4, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) del buf8 buf10 = reinterpret_tensor(buf9, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf9 buf11 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(256)](buf10, buf11, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf10, buf6, buf11, reinterpret_tensor(primals_4, (16, 4, 4), ( 16, 1, 4), 0), reinterpret_tensor(buf5, (4, 64), (1, 4), 0 ), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), buf12, reinterpret_tensor(primals_1, (4, 64), (1, 4), 0) class HGNN_conv(nn.Module): def __init__(self, in_ft, out_ft, bias=True): super(HGNN_conv, self).__init__() self.weight = Parameter(torch.Tensor(in_ft, out_ft)) if bias: self.bias = Parameter(torch.Tensor(out_ft)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, x: 'torch.Tensor', G: 'torch.Tensor'): x = x.matmul(self.weight) if self.bias is not None: x = x + self.bias x = G.matmul(x) return x class HGNN_embeddingNew(nn.Module): def __init__(self, in_ch, n_hid, dropout=0.5): super(HGNN_embeddingNew, self).__init__() self.dropout = dropout self.hgc1 = HGNN_conv(in_ch, n_hid) self.hgc2 = HGNN_conv(n_hid, n_hid) def forward(self, input_0, input_1): primals_2 = self.hgc1.weight primals_3 = self.hgc1.bias primals_5 = self.hgc2.weight primals_6 = self.hgc2.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
DCMMC/HGNN
HGNN_embedding
false
13,545
[ "MIT" ]
124
4315f27faaffb8f2cf1463049a4dc596694e44e1
https://github.com/DCMMC/HGNN/tree/4315f27faaffb8f2cf1463049a4dc596694e44e1
AsymmetricMultiLabelLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/e4/ce4e54mfe5otcr6xxd4qebxibsmgtzh26qfys65uqm4o45rripaa.py # Topologically Sorted Source Nodes: [x_sigmoid, clamp_1, log, los_pos, sub_1, xs_neg, add, xs_neg_1, clamp_2, log_1, los_neg, loss, pt0, sub_2, pt1, pt, sub_4, mul_4, sub_3, mul_5, one_sided_gamma, one_sided_w, loss_1, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.pow, aten.sum, aten.neg] # Source node to ATen node mapping: # add => add # clamp_1 => clamp_min # clamp_2 => clamp_min_1 # log => log # log_1 => log_1 # los_neg => mul_1 # los_pos => mul # loss => add_1 # loss_1 => mul_6 # mul_4 => mul_4 # mul_5 => mul_5 # neg => neg # one_sided_gamma => add_3 # one_sided_w => pow_1 # pt => add_2 # pt0 => mul_2 # pt1 => mul_3 # sub_1 => sub_1 # sub_2 => sub_2 # sub_3 => sub_3 # sub_4 => sub_4 # sum_1 => sum_1 # x_sigmoid => sigmoid # xs_neg => sub # xs_neg_1 => clamp_max # Graph fragment: # %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sigmoid, 1e-08), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %log), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, 0.05), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 1), kwargs = {}) # %clamp_min_1 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%clamp_max, 1e-08), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%clamp_min_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %log_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %sub_2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %add_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, 1), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, 4), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %mul_5), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%sub_4, %add_3), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_1, %pow_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_6,), kwargs = {}) # %neg : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%sum_1,), kwargs = {}) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tl.sigmoid(tmp1) tmp3 = 1e-08 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tl_math.log(tmp4) tmp6 = tmp0 * tmp5 tmp7 = 1.0 tmp8 = tmp7 - tmp0 tmp9 = tmp7 - tmp2 tmp10 = 0.05 tmp11 = tmp9 + tmp10 tmp12 = triton_helpers.minimum(tmp11, tmp7) tmp13 = triton_helpers.maximum(tmp12, tmp3) tmp14 = tl_math.log(tmp13) tmp15 = tmp8 * tmp14 tmp16 = tmp6 + tmp15 tmp17 = tmp2 * tmp0 tmp18 = tmp12 * tmp8 tmp19 = tmp17 + tmp18 tmp20 = tmp7 - tmp19 tmp21 = tmp0 * tmp7 tmp22 = 4.0 tmp23 = tmp8 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = libdevice.pow(tmp20, tmp24) tmp26 = tmp16 * tmp25 tmp27 = tl.broadcast_to(tmp26, [RBLOCK]) tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0)) tmp30 = -tmp29 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp30, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x_sigmoid, clamp_1, log, los_pos, sub_1, xs_neg, add, xs_neg_1, clamp_2, log_1, los_neg, loss, pt0, sub_2, pt1, pt, sub_4, mul_4, sub_3, mul_5, one_sided_gamma, one_sided_w, loss_1, sum_1, neg], Original ATen: [aten.sigmoid, aten.clamp, aten.log, aten.mul, aten.rsub, aten.add, aten.pow, aten.sum, aten.neg] stream0 = get_raw_stream(0) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0.run(buf1, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.parallel import torch._utils import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tl.sigmoid(tmp1) tmp3 = 1e-08 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = tl_math.log(tmp4) tmp6 = tmp0 * tmp5 tmp7 = 1.0 tmp8 = tmp7 - tmp0 tmp9 = tmp7 - tmp2 tmp10 = 0.05 tmp11 = tmp9 + tmp10 tmp12 = triton_helpers.minimum(tmp11, tmp7) tmp13 = triton_helpers.maximum(tmp12, tmp3) tmp14 = tl_math.log(tmp13) tmp15 = tmp8 * tmp14 tmp16 = tmp6 + tmp15 tmp17 = tmp2 * tmp0 tmp18 = tmp12 * tmp8 tmp19 = tmp17 + tmp18 tmp20 = tmp7 - tmp19 tmp21 = tmp0 * tmp7 tmp22 = 4.0 tmp23 = tmp8 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = libdevice.pow(tmp20, tmp24) tmp26 = tmp16 * tmp25 tmp27 = tl.broadcast_to(tmp26, [RBLOCK]) tmp29 = triton_helpers.promote_to_tensor(tl.sum(tmp27, 0)) tmp30 = -tmp29 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sum_0[grid(1)]( buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class AsymmetricMultiLabelLossNew(nn.Module): def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super(AsymmetricMultiLabelLossNew, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Alicegaz/torchok
AsymmetricMultiLabelLoss
false
16,922
[ "Apache-2.0" ]
8
7b8f95df466a25b1ad8ee93bed1a3c7516440cf4
https://github.com/Alicegaz/torchok/tree/7b8f95df466a25b1ad8ee93bed1a3c7516440cf4
AdaptiveInstanceNorm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/52/c526p7iwll7vx7gobeuv6q3lym4ek7lbhopuykpcibc57bou263i.py # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] # Source node to ATen node mapping: # weight => mul # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, 0.7071067811865476), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/jo/cjo3wxmtawsvu7opemz2xwvsknw4nxv74xivifhgb7csue6qqjbi.py # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] # Source node to ATen node mapping: # mul_1 => mul_2 # out => add, rsqrt, var_mean # out_1 => add_1 # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%getitem, %view_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %getitem_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_mul_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_mul_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (x2), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + (8*x3)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp21, xmask) tl.store(out_ptr1 + (r1 + (16*x0)), tmp31, xmask) tl.store(out_ptr0 + (x0), tmp10, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8, ), (1, )) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [weight], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(primals_1, buf0, 32, grid=grid(32), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf3 # reuse buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [out, mul_1, out_1], Original ATen: [aten._native_batch_norm_legit, aten.mul, aten.add] triton_per_fused__native_batch_norm_legit_add_mul_1.run(buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, grid=grid(16), stream=stream0) del buf1 del primals_2 return (buf6, buf0, primals_3, primals_4, buf2, buf5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((8, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((8, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4 ), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf1 del primals_2 return buf6, buf0, primals_3, primals_4, buf2, buf5 def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNormNew(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input_0, input_1): primals_2 = self.style.linear.bias primals_1 = self.style.linear.weight_orig primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
blandocs/Tag2Pix
AdaptiveInstanceNorm
false
14,967
[ "MIT" ]
232
733d729067608dbe2c1122c9128f2f38bc0a8edd
https://github.com/blandocs/Tag2Pix/tree/733d729067608dbe2c1122c9128f2f38bc0a8edd
OnnxPow
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/rw/crw3qydkgjmifxnk2lsi7cnidtaocksbhyv6htmtnrfv2zqr2lbi.py # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] # Source node to ATen node mapping: # pow_1 => pow_1 # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) triton_poi_fused_pow_0 = async_compile.triton('triton_poi_fused_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1], Original ATen: [aten.pow] stream0 = get_raw_stream(0) triton_poi_fused_pow_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from typing import Optional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = libdevice.pow(tmp0, tmp1) tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, def old_style_broadcast(first: 'torch.Tensor', second: 'torch.Tensor', axis: 'int') ->torch.Tensor: rank = len(first.shape) axis = axis + rank if axis < 0 else axis second_shape = [1] * axis + list(second.shape) second_shape = second_shape + [1] * (rank - len(second_shape)) return second.view(second_shape) class OnnxToTorchModule: """ Marker class for onnx2torch modules. """ pass class OnnxPowNew(nn.Module, OnnxToTorchModule): def __init__(self, broadcast: 'Optional[int]'=None, axis: 'Optional[int]'=None): super().__init__() self.axis = axis self.broadcast = broadcast def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
ENOT-AutoDL/onnx2torch
OnnxPow
false
13,626
[ "Apache-2.0" ]
144
2391987b3349bed1670ac3c1bc9062a37323abe3
https://github.com/ENOT-AutoDL/onnx2torch/tree/2391987b3349bed1670ac3c1bc9062a37323abe3
NeuralClassifier
import torch import torch.nn as nn import torch.utils.data class NeuralClassifier(nn.Module): def __init__(self, input_size, n_classes): super(NeuralClassifier, self).__init__() self.input_size = input_size self.mapping1 = nn.Linear(input_size, input_size) self.mapping2 = nn.Linear(input_size, n_classes) self.f = torch.sigmoid def forward(self, x): x = self.f(self.mapping1(x)) return self.f(self.mapping2(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_sigmoid_0[grid(256)](buf3, primals_5, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 return buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf1, buf3, primals_4 class NeuralClassifierNew(nn.Module): def __init__(self, input_size, n_classes): super(NeuralClassifierNew, self).__init__() self.input_size = input_size self.mapping1 = nn.Linear(input_size, input_size) self.mapping2 = nn.Linear(input_size, n_classes) self.f = torch.sigmoid def forward(self, input_0): primals_1 = self.mapping1.weight primals_2 = self.mapping1.bias primals_4 = self.mapping2.weight primals_5 = self.mapping2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
JayWalker512/PacketGAN
NeuralClassifier
false
17,460
[ "MIT" ]
5
93d4266ab9299c25ffd1f0aedf68fa4639f66572
https://github.com/JayWalker512/PacketGAN/tree/93d4266ab9299c25ffd1f0aedf68fa4639f66572
ConstractiveThresholdHingeLoss
import torch import torch.nn as nn from torch.nn import functional as F class ConstractiveThresholdHingeLoss(nn.Module): def __init__(self, hingethresh=0.0, margin=2.0): super(ConstractiveThresholdHingeLoss, self).__init__() self.threshold = hingethresh self.margin = margin def forward(self, out_vec_t0, out_vec_t1, label): distance = F.pairwise_distance(out_vec_t0, out_vec_t1, p=2) similar_pair = torch.clamp(distance - self.threshold, min=0.0) dissimilar_pair = torch.clamp(self.margin - distance, min=0.0) constractive_thresh_loss = torch.sum((1 - label) * torch.pow( similar_pair, 2) + label * torch.pow(dissimilar_pair, 2)) return constractive_thresh_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_norm_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp13 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tl.store(out_ptr0 + x0, tmp24, xmask) @triton.jit def triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.0 tmp5 = tmp3 - tmp4 tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp6 * tmp6 tmp8 = tmp2 * tmp7 tmp9 = 2.0 tmp10 = tmp9 - tmp3 tmp11 = triton_helpers.maximum(tmp10, tmp4) tmp12 = tmp11 * tmp11 tmp13 = tmp0 * tmp12 tmp14 = tmp8 + tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = triton_helpers.promote_to_tensor(tl.sum(tmp15, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_norm_sub_0[grid(64)](arg1_1, arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_clamp_mul_pow_rsub_sub_sum_1[grid(1)](arg2_1, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del arg2_1 del buf0 return buf1, class ConstractiveThresholdHingeLossNew(nn.Module): def __init__(self, hingethresh=0.0, margin=2.0): super(ConstractiveThresholdHingeLossNew, self).__init__() self.threshold = hingethresh self.margin = margin def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
tommy90191/Find_Tiny_but_Important_Image_Changes
ConstractiveThresholdHingeLoss
false
4,448
[ "MIT" ]
0
429d679606f96f32db4cddf167a9cfb963d3df26
https://github.com/tommy90191/Find_Tiny_but_Important_Image_Changes/tree/429d679606f96f32db4cddf167a9cfb963d3df26
ISAB
import math import torch import torch.nn as nn import torch.nn.functional as F class MAB(nn.Module): def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False): super(MAB, self).__init__() self.dim_V = dim_V self.num_heads = num_heads self.fc_q = nn.Linear(dim_Q, dim_V) self.fc_k = nn.Linear(dim_K, dim_V) self.fc_v = nn.Linear(dim_K, dim_V) if ln: self.ln0 = nn.LayerNorm(dim_V) self.ln1 = nn.LayerNorm(dim_V) self.fc_o = nn.Linear(dim_V, dim_V) def forward(self, Q, K): Q = self.fc_q(Q) K, V = self.fc_k(K), self.fc_v(K) dim_split = self.dim_V // self.num_heads Q_ = torch.cat(Q.split(dim_split, 2), 0) K_ = torch.cat(K.split(dim_split, 2), 0) V_ = torch.cat(V.split(dim_split, 2), 0) A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2 ) O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2) O = O if getattr(self, 'ln0', None) is None else self.ln0(O) O = O + F.relu(self.fc_o(O)) O = O if getattr(self, 'ln1', None) is None else self.ln1(O) return O class ISAB(nn.Module): def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False): super(ISAB, self).__init__() self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out)) nn.init.xavier_uniform_(self.I) self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln) self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln) def forward(self, X): H = self.mab0(self.I.repeat(X.size(0), 1, 1), X) return self.mab1(X, H) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim_in': 4, 'dim_out': 4, 'num_heads': 4, 'num_inds': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_repeat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x0 + 16 * x1), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * (-4 + x1)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tmp12 = tl.full([1], 12, tl.int64) tmp13 = tmp0 < tmp12 tmp14 = tmp11 & tmp13 tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * (-8 + x1)), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp0 >= tmp12 tl.full([1], 16, tl.int64) tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * (-12 + x1)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.where(tmp14, tmp15, tmp19) tmp21 = tl.where(tmp9, tmp10, tmp20) tmp22 = tl.where(tmp4, tmp5, tmp21) tl.store(out_ptr0 + x2, tmp22, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + x1, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 2, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr0 + (16 + x1), tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.load(in_ptr1 + (16 + x1), tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 3, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr0 + (32 + x1), tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tl.load(in_ptr1 + (32 + x1), tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tl.full([1], 4, tl.int64) tmp31 = tl.load(in_ptr0 + (48 + x1), tmp28 & xmask, eviction_policy= 'evict_last', other=0.0) tmp32 = tl.load(in_ptr1 + (48 + x1), tmp28 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tmp31 + tmp32 tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype) tmp35 = tl.where(tmp28, tmp33, tmp34) tmp36 = tl.where(tmp22, tmp27, tmp35) tmp37 = tl.where(tmp13, tmp18, tmp36) tmp38 = tl.where(tmp4, tmp9, tmp37) tl.store(out_ptr0 + x2, tmp38, xmask) @triton.jit def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tl.full([1], 0, tl.int32) tmp5 = triton_helpers.maximum(tmp4, tmp3) tmp6 = tmp0 + tmp5 tmp7 = 0.0 tmp8 = tmp5 <= tmp7 tl.store(out_ptr0 + x2, tmp6, xmask) tl.store(out_ptr1 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 ) = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (4,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4, 4), (4, 1)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_repeat_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_4, reinterpret_tensor(buf0, (16, 4), ( 4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf2) del primals_5 del primals_6 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_8, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf3) del primals_7 del primals_8 buf4 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) triton_poi_fused_cat_1[grid(64)](buf1, buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 64), 0) del buf1 triton_poi_fused_cat_1[grid(64)](buf3, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 1), 0) del buf3 triton_poi_fused_cat_1[grid(64)](buf2, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf4, reinterpret_tensor(buf6, (16, 1, 4), (4, 0, 1), 0), out=buf7) buf8 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = buf7 del buf7 triton_poi_fused__softmax_3[grid(256)](buf8, buf9, 256, XBLOCK=128, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(buf9, buf5, out=buf10) buf11 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf4, buf10, buf11, 64, XBLOCK=64, num_warps=1, num_stages=1) buf12 = reinterpret_tensor(buf10, (16, 4), (4, 1), 0) del buf10 extern_kernels.mm(reinterpret_tensor(buf11, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf12) buf13 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_12, reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13) del primals_11 del primals_12 buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf28 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_5[grid(64)](buf11, buf12, primals_10, buf14, buf28, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_10 buf15 = buf12 del buf12 extern_kernels.addmm(primals_14, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15) del primals_14 buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_16, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf16) del primals_16 buf17 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32) triton_poi_fused_cat_1[grid(64)](buf13, buf17, 64, XBLOCK=64, num_warps=1, num_stages=1) buf18 = reinterpret_tensor(buf13, (16, 4, 1), (4, 1, 64), 0) del buf13 triton_poi_fused_cat_1[grid(64)](buf16, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = reinterpret_tensor(buf16, (16, 4, 1), (4, 1, 1), 0) del buf16 triton_poi_fused_cat_1[grid(64)](buf15, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) buf20 = buf8 del buf8 extern_kernels.bmm(buf17, reinterpret_tensor(buf19, (16, 1, 4), (4, 0, 1), 0), out=buf20) buf21 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf20, buf21, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf22 = buf20 del buf20 triton_poi_fused__softmax_3[grid(256)](buf21, buf22, 256, XBLOCK= 128, num_warps=4, num_stages=1) del buf21 buf23 = reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 1), 0) del buf15 extern_kernels.bmm(buf22, buf18, out=buf23) buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf17, buf23, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1) buf25 = reinterpret_tensor(buf23, (16, 4), (4, 1), 0) del buf23 extern_kernels.mm(reinterpret_tensor(buf24, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf25) buf26 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf27 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_add_relu_threshold_backward_5[grid(64)](buf24, buf25, primals_18, buf26, buf27, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf25 del primals_18 return buf26, reinterpret_tensor(buf0, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf9, reinterpret_tensor(buf11, (16, 4), (4, 1), 0 ), reinterpret_tensor(buf14, (16, 4), (4, 1), 0 ), buf22, reinterpret_tensor(buf24, (16, 4), (4, 1), 0 ), buf27, primals_17, reinterpret_tensor(buf18, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf17, (16, 1, 4), (4, 1, 1), 0 ), buf19, primals_15, primals_13, buf28, primals_9, reinterpret_tensor( buf5, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 4 ), (4, 1, 1), 0), buf6, primals_3 class MAB(nn.Module): def __init__(self, dim_Q, dim_K, dim_V, num_heads, ln=False): super(MAB, self).__init__() self.dim_V = dim_V self.num_heads = num_heads self.fc_q = nn.Linear(dim_Q, dim_V) self.fc_k = nn.Linear(dim_K, dim_V) self.fc_v = nn.Linear(dim_K, dim_V) if ln: self.ln0 = nn.LayerNorm(dim_V) self.ln1 = nn.LayerNorm(dim_V) self.fc_o = nn.Linear(dim_V, dim_V) def forward(self, Q, K): Q = self.fc_q(Q) K, V = self.fc_k(K), self.fc_v(K) dim_split = self.dim_V // self.num_heads Q_ = torch.cat(Q.split(dim_split, 2), 0) K_ = torch.cat(K.split(dim_split, 2), 0) V_ = torch.cat(V.split(dim_split, 2), 0) A = torch.softmax(Q_.bmm(K_.transpose(1, 2)) / math.sqrt(self.dim_V), 2 ) O = torch.cat((Q_ + A.bmm(V_)).split(Q.size(0), 0), 2) O = O if getattr(self, 'ln0', None) is None else self.ln0(O) O = O + F.relu(self.fc_o(O)) O = O if getattr(self, 'ln1', None) is None else self.ln1(O) return O class ISABNew(nn.Module): def __init__(self, dim_in, dim_out, num_heads, num_inds, ln=False): super(ISABNew, self).__init__() self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out)) nn.init.xavier_uniform_(self.I) self.mab0 = MAB(dim_out, dim_in, dim_out, num_heads, ln=ln) self.mab1 = MAB(dim_in, dim_out, dim_out, num_heads, ln=ln) def forward(self, input_0): primals_1 = self.I primals_3 = self.mab0.fc_q.weight primals_4 = self.mab0.fc_q.bias primals_5 = self.mab0.fc_k.weight primals_6 = self.mab0.fc_k.bias primals_7 = self.mab0.fc_v.weight primals_8 = self.mab0.fc_v.bias primals_9 = self.mab0.fc_o.weight primals_10 = self.mab0.fc_o.bias primals_11 = self.mab1.fc_q.weight primals_12 = self.mab1.fc_q.bias primals_13 = self.mab1.fc_k.weight primals_14 = self.mab1.fc_k.bias primals_15 = self.mab1.fc_v.weight primals_16 = self.mab1.fc_v.bias primals_17 = self.mab1.fc_o.weight primals_18 = self.mab1.fc_o.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18]) return output[0]
ernoult/set_transformer
ISAB
false
12,362
[ "MIT" ]
0
4b380106e1f43b7eb6315624c57d4d1d38737b78
https://github.com/ernoult/set_transformer/tree/4b380106e1f43b7eb6315624c57d4d1d38737b78
Attention
import math import torch import torch.nn as nn import torch.nn.functional as F class Attention(nn.Module): """ Compute 'Scaled Dot Product Attention """ def forward(self, query, key, value, mask=None, dropout=None): scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(query .size(-1)) if mask is not None: scores = scores.masked_fill(mask == 0, -1000000000.0) p_attn = F.softmax(scores, dim=-1) if dropout is not None: p_attn = dropout(p_attn) return torch.matmul(p_attn, value), p_attn def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3 ) del arg2_1 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2 class AttentionNew(nn.Module): """ Compute 'Scaled Dot Product Attention """ def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
JacobTyo/Syntax-Encoding_EMNLP2018
Attention
false
11,658
[ "MIT" ]
0
5aed2fdd01dc7d0baebbd555c97a25fedbde0c39
https://github.com/JacobTyo/Syntax-Encoding_EMNLP2018/tree/5aed2fdd01dc7d0baebbd555c97a25fedbde0c39
L2Norm
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/5t/c5tspqtzeidbs36gvaxcfbh25f4xhztbl4xcft3spdsrzuwzcvde.py # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div] # Source node to ATen node mapping: # mul => mul # norm => add # pow_1 => pow_1 # sqrt => sqrt # sum_1 => sum_1 # truediv => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_1, 2), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-10), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %primals_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul, %add), kwargs = {}) triton_poi_fused_add_div_mul_pow_sqrt_sum_0 = async_compile.triton('triton_poi_fused_add_div_mul_pow_sqrt_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_pow_sqrt_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-10 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pow_1, sum_1, sqrt, norm, mul, truediv], Original ATen: [aten.pow, aten.sum, aten.sqrt, aten.add, aten.mul, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) del primals_2 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_pow_sqrt_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 1e-10 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_pow_sqrt_sum_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf0, primals_1 class L2NormNew(nn.Module): def __init__(self, n_dims, scale=20.0, eps=1e-10): super(L2NormNew, self).__init__() self.n_dims = n_dims self.weight = nn.Parameter(torch.Tensor(self.n_dims)) self.eps = eps self.scale = scale def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
AllenPeng0209/SaccadeNet
L2Norm
false
7,643
[ "Apache-2.0" ]
30
0fce4266cbffc9a2c5f70335efa636da849ce70c
https://github.com/AllenPeng0209/SaccadeNet/tree/0fce4266cbffc9a2c5f70335efa636da849ce70c
Triangle
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/gn/cgnakgpc2ihihojtlb466su5scbp6ziuoraworb454o4qbzwpgnf.py # Topologically Sorted Source Nodes: [abs_1], Original ATen: [aten.abs] # Source node to ATen node mapping: # abs_1 => abs_1 # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%arg0_1,), kwargs = {}) triton_poi_fused_abs_0 = async_compile.triton('triton_poi_fused_abs_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl_math.abs(tmp0) tl.store(out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [abs_1], Original ATen: [aten.abs] stream0 = get_raw_stream(0) triton_poi_fused_abs_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl_math.abs(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_abs_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class TriangleNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
continual-ml/mpcl
Triangle
false
1,732
[ "Apache-2.0" ]
0
3b7112882ee832212494072e2f5ea7779e3b8aa6
https://github.com/continual-ml/mpcl/tree/3b7112882ee832212494072e2f5ea7779e3b8aa6
LeakyClamp
import torch import torch.nn as nn class LeakyClamp(nn.Module): def __init__(self, cap): super(LeakyClamp, self).__init__() self.cap = cap self.leakyrelu = nn.LeakyReLU(inplace=False) self.leakyrelu2 = nn.LeakyReLU(inplace=False) def forward(self, x): x = self.leakyrelu(x) x_ret = -self.leakyrelu2(-x + self.cap) + self.cap return x_ret def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'cap': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_leaky_relu_neg_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.01 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = -tmp5 tmp7 = 4.0 tmp8 = tmp6 + tmp7 tmp9 = tmp8 > tmp1 tmp10 = tmp8 * tmp3 tmp11 = tl.where(tmp9, tmp8, tmp10) tmp12 = -tmp11 tmp13 = tmp12 + tmp7 tl.store(out_ptr0 + x0, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_leaky_relu_neg_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class LeakyClampNew(nn.Module): def __init__(self, cap): super(LeakyClampNew, self).__init__() self.cap = cap self.leakyrelu = nn.LeakyReLU(inplace=False) self.leakyrelu2 = nn.LeakyReLU(inplace=False) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
junweima/pytorch-cnn-visualizations
LeakyClamp
false
3,779
[ "MIT" ]
0
c535e76e0a169d02a17ec5c8cc109ea687d698c1
https://github.com/junweima/pytorch-cnn-visualizations/tree/c535e76e0a169d02a17ec5c8cc109ea687d698c1
ConvLR
import torch import torch.nn as nn class ConvLR(nn.Module): """[u * v + res] version of torch.nn.ConvLR""" def __init__(self, in_planes, out_planes, kernel_size, stride, padding, rank_ratio=0.25, bias=True, device=None, dtype=None): super().__init__() sliced_rank = int(min(in_planes, out_planes) * rank_ratio) self.u = nn.Conv2d(in_channels=in_planes, out_channels=sliced_rank, kernel_size=kernel_size, stride=stride, padding=padding, bias= False, device=device, dtype=dtype) self.v = nn.Conv2d(in_channels=sliced_rank, out_channels=out_planes, kernel_size=1, stride=1, padding=0, bias=bias, device=device, dtype=dtype) self.res = nn.Conv2d(in_channels=in_planes, out_channels=out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias= False, device=device, dtype=dtype) def forward(self, input): return self.v(self.u(input)) + self.res(input) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_planes': 4, 'out_planes': 4, 'kernel_size': 4, 'stride': 1, 'padding': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (1, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 1, 1, 1), (1, 1, 1, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 9, 9), (81, 81, 9, 1)) buf1 = extern_kernels.convolution(buf0, primals_3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = extern_kernels.convolution(primals_2, primals_5, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf3 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_convolution_0[grid(1296)](buf3, primals_4, buf2, 1296, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del primals_4 return buf3, primals_1, primals_2, primals_3, primals_5, buf0 class ConvLRNew(nn.Module): """[u * v + res] version of torch.nn.ConvLR""" def __init__(self, in_planes, out_planes, kernel_size, stride, padding, rank_ratio=0.25, bias=True, device=None, dtype=None): super().__init__() sliced_rank = int(min(in_planes, out_planes) * rank_ratio) self.u = nn.Conv2d(in_channels=in_planes, out_channels=sliced_rank, kernel_size=kernel_size, stride=stride, padding=padding, bias= False, device=device, dtype=dtype) self.v = nn.Conv2d(in_channels=sliced_rank, out_channels=out_planes, kernel_size=1, stride=1, padding=0, bias=bias, device=device, dtype=dtype) self.res = nn.Conv2d(in_channels=in_planes, out_channels=out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias= False, device=device, dtype=dtype) def forward(self, input_0): primals_1 = self.u.weight primals_3 = self.v.weight primals_4 = self.v.bias primals_2 = self.res.weight primals_5 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
razered/alternate
ConvLR
false
10,705
[ "MIT" ]
0
18e876aadc76d5f675cf940549b4bcd6e80a0288
https://github.com/razered/alternate/tree/18e876aadc76d5f675cf940549b4bcd6e80a0288
DCRBranch
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/3a/c3ahpcqb72o7gdbgt53cgnedr7p2tje6sfperji7zazze5egjmmz.py # Topologically Sorted Source Nodes: [prelu], Original ATen: [aten._prelu_kernel] # Source node to ATen node mapping: # prelu => gt, mul, where # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %view_1), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %view_1, %mul), kwargs = {}) triton_poi_fused__prelu_kernel_0 = async_compile.triton('triton_poi_fused__prelu_kernel_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__prelu_kernel_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp3 = tl.load(in_ptr1 + (0)) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, ), (1, )) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [representation], Original ATen: [aten.addmm] extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [prelu], Original ATen: [aten._prelu_kernel] stream0 = get_raw_stream(0) triton_poi_fused__prelu_kernel_0.run(buf0, primals_4, buf1, 256, grid=grid(256), stream=stream0) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [classification], Original ATen: [aten.addmm] extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_5, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data import torch.optim import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__prelu_kernel_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__prelu_kernel_0[grid(256)](buf0, primals_4, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_6, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_5 class DCRBranchNew(nn.Module): """Branch Network for DCR""" def __init__(self, num_classes, in_channels, mid_channels, normalized_embeddings=False): super().__init__() self.normalized_embeddings = normalized_embeddings self.fc1 = nn.Linear(in_channels, mid_channels) self.fc2 = nn.Linear(mid_channels, num_classes) self.relu = nn.PReLU() def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_5 = self.fc2.weight primals_6 = self.fc2.bias primals_4 = self.relu.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0], output[1]
gyfastas/CS7319E1G16
DCRBranch
false
6,770
[ "MIT" ]
1
03126af04766abcb269d0c8db481c96c856d21ef
https://github.com/gyfastas/CS7319E1G16/tree/03126af04766abcb269d0c8db481c96c856d21ef
PixelNorm
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ac/cacq2ozdcuapw47muftqa3nsd7sizr5hbvn56lcihrxskm4kxkh5.py # Topologically Sorted Source Nodes: [mean, sqrt, add, truediv], Original ATen: [aten.mean, aten.sqrt, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mean => mean # sqrt => sqrt # truediv => div # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%arg0_1, [1], True), kwargs = {}) # %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%mean,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-08), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %add), kwargs = {}) triton_poi_fused_add_div_mean_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_mean_sqrt_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mean_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = 1e-08 tmp12 = tmp10 + tmp11 tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + (x3), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mean, sqrt, add, truediv], Original ATen: [aten.mean, aten.sqrt, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mean_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mean_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = 4.0 tmp9 = tmp7 / tmp8 tmp10 = libdevice.sqrt(tmp9) tmp11 = 1e-08 tmp12 = tmp10 + tmp11 tmp13 = tmp0 / tmp12 tl.store(out_ptr0 + x3, tmp13, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mean_sqrt_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class PixelNormNew(torch.nn.Module): """ PixelNorm from ProgressiveGAN """ def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Vermeille/Torchelie
PixelNorm
false
14,552
[ "MIT" ]
117
43957d83238372ae6436aac90127865c2040b76c
https://github.com/Vermeille/Torchelie/tree/43957d83238372ae6436aac90127865c2040b76c
FocalLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/td/ctdj5kazgiki6gdaadhqtp2x7tq2ee5ey5hqqdcoqmp54jyhf74f.py # Topologically Sorted Source Nodes: [CE], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # CE => amax, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%arg1_1, [1], True), kwargs = {}) # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %amax), kwargs = {}) triton_poi_fused__log_softmax_0 = async_compile.triton('triton_poi_fused__log_softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + (x3), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/a5/ca5phv45vmmddjrbnnw2ojzhqm46xsxmtq4o33bgxb6kagd6i5vu.py # Topologically Sorted Source Nodes: [CE, neg, p, sub, pow_1, loss, sum_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow] # Source node to ATen node mapping: # CE => exp, log, mul, neg, sub_1, sum_1, sum_2 # loss => mul_1 # neg => neg_1 # p => exp_1 # pow_1 => pow_1 # sub => sub_2 # sum_1 => sum_3 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg0_1), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %neg : [num_users=2] = call_function[target=torch.ops.aten.neg.default](args = (%sum_2,), kwargs = {}) # %neg_1 : [num_users=1] = call_function[target=torch.ops.aten.neg.default](args = (%neg,), kwargs = {}) # %exp_1 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%neg_1,), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %exp_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 1.0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%pow_1, %neg), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul_1,), kwargs = {}) triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1 = async_compile.triton('triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) r2 = rindex tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp13 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = tmp31 * tmp27 tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp35, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [CE], Original ATen: [aten._log_softmax] stream0 = get_raw_stream(0) triton_poi_fused__log_softmax_0.run(arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [CE, neg, p, sub, pow_1, loss, sum_1], Original ATen: [aten._log_softmax, aten.mul, aten.sum, aten.neg, aten.exp, aten.rsub, aten.pow] triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1.run(buf0, arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del buf0 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp5 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp13 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp20 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp24 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tmp28 = -tmp27 tmp29 = tl_math.exp(tmp28) tmp30 = 1.0 tmp31 = tmp30 - tmp29 tmp32 = tmp31 * tmp27 tmp33 = tl.broadcast_to(tmp32, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp35, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((), (), torch.float32) triton_per_fused__log_softmax_exp_mul_neg_pow_rsub_sum_1[grid(1)](buf0, arg0_1, buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del buf0 return buf2, class FocalLossNew(nn.Module): def __init__(self, weight=None, gamma=1.0, num_classes=80): super(FocalLossNew, self).__init__() assert gamma >= 0 self.gamma = gamma self.weight = weight self.num_classes = num_classes def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
WdBlink/Teacher-Student-Faster-Rcnn
FocalLoss
false
9,559
[ "MIT" ]
0
df8085c61e334abb04bab5e8192de8cb4ce2b2af
https://github.com/WdBlink/Teacher-Student-Faster-Rcnn/tree/df8085c61e334abb04bab5e8192de8cb4ce2b2af
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/i4/ci44c2ldlci5e3yalq7xchwovbhi2gsymashgexqyb6dvn4fz5qd.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 37632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 784) % 12 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ss/cssevaqgyquj7ysbcbnqyoh7e3cjpl6oyju4auil4xyiabbuqvwi.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x => getitem, getitem_1 # Graph fragment: # %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {}) # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = (xindex // 14) x2 = (xindex // 2352) x4 = xindex % 2352 tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + (2368*x2)), tmp6, xmask) tl.store(out_ptr1 + (x4 + (2432*x2)), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/xe/cxelxvpw3asckozc53rh36773aohp5hqpbp2nos5ymcdqhxvo4bl.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 100) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/tn/ctnw4tbgfy47ppke77vu7rtiz7dl5o3ahickx4p64n7c5rmrrix6.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # x_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = (xindex // 5) x2 = xindex tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1)), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x2), tmp15, xmask) tl.store(out_ptr1 + (x2), tmp16, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/jn/cjnqv3sgcv5x2iz7ij5zdad6ofabcnonrlksgsxu2ob7n274gz6b.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_3 => relu_2 # Graph fragment: # %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/6m/c6m6u2ctjb4r4ra3sizrwezzkzegfp2ombflmfg3dwjfci2pen7h.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (12, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (12, ), (1, )) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 12, 5, 5), (300, 25, 5, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120, ), (1, )) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84, ), (1, )) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 12, 28, 28), (9408, 784, 28, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 37632, grid=grid(37632), stream=stream0) del primals_2 buf2 = empty_strided_cuda((4, 12, 14, 14), (2368, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 12, 14, 14), (2432, 196, 14, 1), torch.int8) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 9408, grid=grid(9408), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf5, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 1600, grid=grid(1600), stream=stream0) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8; del buf8 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf9, primals_7, 480, grid=grid(480), stream=stream0) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_5.run(buf11, primals_9, 336, grid=grid(336), stream=stream0) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) # Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((12, 3, 5, 5), (75, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 32, 32), (3072, 1024, 32, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 12, 5, 5), (300, 25, 5, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((120, 400), (400, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((120, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((84, 120), (120, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((84, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((10, 84), (84, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 37632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 2352 x4 = xindex % 2352 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 2368 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 2432 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (12, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 12, 5, 5), (300, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 12, 28, 28), (9408, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(37632)](buf1, primals_2, 37632, XBLOCK=512, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 12, 14, 14), (2368, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 12, 14, 14), (2432, 196, 14, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(9408)](buf1, buf2, buf3, 9408, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6) class NetNew(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(3, 12, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(12, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
neal2018/torch_learn
Net
false
10,603
[ "MIT" ]
0
80bda3a44952aca6fce7156fe4aecb48ddd602ee
https://github.com/neal2018/torch_learn/tree/80bda3a44952aca6fce7156fe4aecb48ddd602ee
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/t4/ct4b67pdo2nqkmug5ve6psoz6ptovf44cjwac2selnsbhojvain4.py # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] # Source node to ATen node mapping: # cat => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %repeat_1], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*((((4*x1) + x0) // 16) % 4)) + ((((4*x1) + x0) % 16) % 4)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*(x1 % 4)) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/rs/crsikvivgof4u6qcelh3gov7oade5uaprup6quh2r4qjgsssen7k.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # e => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/2k/c2k6idl77paa5lpvj6v4mi3dzsgbzy45voclv5jrtwxnvtfb6k4v.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => amax, exp, sub, sum_1 # attention_10 => amax_3, exp_3, sub_3, sum_4 # attention_3 => where_4 # attention_4 => amax_1, exp_1, sub_1, sum_2 # attention_6 => where_7 # attention_7 => amax_2, exp_2, sub_2, sum_3 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_2 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 36, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp41 = tl.load(in_ptr4 + (4*x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp75 = tl.load(in_ptr6 + (4*x0), xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp109 = tl.load(in_ptr8 + (4*x0), xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) tl.store(out_ptr2 + (x0), tmp62, xmask) tl.store(out_ptr3 + (x0), tmp73, xmask) tl.store(out_ptr4 + (x0), tmp96, xmask) tl.store(out_ptr5 + (x0), tmp107, xmask) tl.store(out_ptr6 + (x0), tmp130, xmask) tl.store(out_ptr7 + (x0), tmp141, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/hw/chwxxijpaa43oudupbua5ibrakqm6zclctq55ppd6yvy4nqixzjb.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => div, exp, sub # attention_10 => div_3, exp_3, sub_3 # attention_3 => where_4 # attention_4 => div_1, exp_1, sub_1 # attention_6 => where_7 # attention_7 => div_2, exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: '*fp32', 11: '*i1', 12: '*fp32', 13: '*fp32', 14: '*i1', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x2), xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + (x2), xmask) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + (x2), xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + (x2), xmask) tmp28 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + (x2), xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + (x2), xmask) tmp38 = tl.load(in_ptr11 + (x1), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + (x2), tmp12, xmask) tl.store(in_out_ptr1 + (x2), tmp22, xmask) tl.store(in_out_ptr2 + (x2), tmp32, xmask) tl.store(in_out_ptr3 + (x2), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/6f/c6fg755hkzgmiizoydcu7wlmcvduiztugqjkietqkvpoph4vrtad.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x2), tmp52, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/6q/c6qm3bsuqnbgmfnlkkyiezkvruidr5w4kgvxblmhqrkljef5u2ab.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => amax_4, exp_4, sub_4, sum_5 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %amax_4 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_13, [1], True), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_4, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_5 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/4f/c4fpasprzjcely6grqxmcycpm24taaowwba6rqvchhupdivgc3gx.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => div_4, exp_4, sub_4 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %div_4 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_4, %sum_5), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_6 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*i1', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/kh/ckhqmfqvhnwvyhbpb3iprnlwi2pqyf7jm2xk5yxlguo5jfsog2io.py # Topologically Sorted Source Nodes: [x_3, log_softmax], Original ATen: [aten.elu, aten._log_softmax] # Source node to ATen node mapping: # log_softmax => amax_5, sub_5 # x_3 => expm1_4, gt_14, mul_22, mul_24, where_14 # Graph fragment: # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm_14, 0), kwargs = {}) # %mul_22 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_14, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_22,), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_14 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %mul_22, %mul_24), kwargs = {}) # %amax_5 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_14, [1], True), kwargs = {}) # %sub_5 : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_14, %amax_5), kwargs = {}) triton_poi_fused__log_softmax_elu_7 = async_compile.triton('triton_poi_fused__log_softmax_elu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_elu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tmp8 > tmp1 tmp10 = tmp8 * tmp3 tmp11 = libdevice.expm1(tmp10) tmp12 = tmp11 * tmp3 tmp13 = tl.where(tmp9, tmp10, tmp12) tmp15 = tmp14 > tmp1 tmp16 = tmp14 * tmp3 tmp17 = libdevice.expm1(tmp16) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp15, tmp16, tmp18) tmp20 = triton_helpers.maximum(tmp13, tmp19) tmp22 = tmp21 > tmp1 tmp23 = tmp21 * tmp3 tmp24 = libdevice.expm1(tmp23) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp22, tmp23, tmp25) tmp27 = triton_helpers.maximum(tmp20, tmp26) tmp29 = tmp28 > tmp1 tmp30 = tmp28 * tmp3 tmp31 = libdevice.expm1(tmp30) tmp32 = tmp31 * tmp3 tmp33 = tl.where(tmp29, tmp30, tmp32) tmp34 = triton_helpers.maximum(tmp27, tmp33) tmp35 = tmp7 - tmp34 tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/wb/cwb6yk7fx4digcmhrmo6tjyge2t73fzx437t3vl5lroa6x7t6fem.py # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] # Source node to ATen node mapping: # log_softmax => exp_5, log, sub_6, sum_6 # Graph fragment: # %exp_5 : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub_5,), kwargs = {}) # %sum_6 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_5, [1], True), kwargs = {}) # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_6,), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub_5, %log), kwargs = {}) triton_poi_fused__log_softmax_8 = async_compile.triton('triton_poi_fused__log_softmax_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 128, grid=grid(128), stream=stream0) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_leaky_relu_1.run(primals_4, buf4, 16, grid=grid(16), stream=stream0) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf9, buf10, 128, grid=grid(128), stream=stream0) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf11, buf12, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_2], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf17, buf18, 128, grid=grid(128), stream=stream0) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf19, buf20, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_3], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_3], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf25, buf26, 128, grid=grid(128), stream=stream0) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_6], Original ATen: [aten.mm] extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf27, buf28, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_2.run(buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, grid=grid(4), stream=stream0) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0); del buf11 # reuse buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0); del buf19 # reuse buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_3.run(buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.mm] extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.mm] extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.mm] extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.mm] extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf8, buf16, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.mm] extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [cat_5], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf34, buf35, 128, grid=grid(128), stream=stream0) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_8], Original ATen: [aten.mm] extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_4], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = buf6; del buf6 # reuse buf39 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_5.run(buf4, buf37, buf36, buf38, buf39, 4, grid=grid(4), stream=stream0) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0); del buf36 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_6.run(buf40, buf4, buf37, buf38, buf39, 16, grid=grid(16), stream=stream0) del buf38 del buf39 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_4], Original ATen: [aten.mm] extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3, log_softmax], Original ATen: [aten.elu, aten._log_softmax] triton_poi_fused__log_softmax_elu_7.run(buf41, buf42, 16, grid=grid(16), stream=stream0) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax] triton_poi_fused__log_softmax_8.run(buf42, buf43, 16, grid=grid(16), stream=stream0) del buf42 return (buf43, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf43, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor(buf35, (8, 16), (1, 8), 0), reinterpret_tensor(primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor(buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * ((4 * x1 + x0) // 16 % 4) + (4 * x1 + x0) % 16 % 4), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * (x1 % 4) + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp40 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp41 = tl.load(in_ptr4 + 4 * x0, xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp51 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp57 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp74 = tl.load(in_ptr5 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp75 = tl.load(in_ptr6 + 4 * x0, xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp85 = tl.load(in_ptr5 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp91 = tl.load(in_ptr5 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp108 = tl.load(in_ptr7 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp109 = tl.load(in_ptr8 + 4 * x0, xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp119 = tl.load(in_ptr7 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp125 = tl.load(in_ptr7 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) tl.store(out_ptr2 + x0, tmp62, xmask) tl.store(out_ptr3 + x0, tmp73, xmask) tl.store(out_ptr4 + x0, tmp96, xmask) tl.store(out_ptr5 + x0, tmp107, xmask) tl.store(out_ptr6 + x0, tmp130, xmask) tl.store(out_ptr7 + x0, tmp141, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x2, xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + x2, xmask) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + x2, xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + x2, xmask) tmp28 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + x2, xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + x2, xmask) tmp38 = tl.load(in_ptr11 + x1, xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + x2, tmp12, xmask) tl.store(in_out_ptr1 + x2, tmp22, xmask) tl.store(in_out_ptr2 + x2, tmp32, xmask) tl.store(in_out_ptr3 + x2, tmp42, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x2, tmp52, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused__log_softmax_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp21 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tmp9 = tmp8 > tmp1 tmp10 = tmp8 * tmp3 tmp11 = libdevice.expm1(tmp10) tmp12 = tmp11 * tmp3 tmp13 = tl.where(tmp9, tmp10, tmp12) tmp15 = tmp14 > tmp1 tmp16 = tmp14 * tmp3 tmp17 = libdevice.expm1(tmp16) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp15, tmp16, tmp18) tmp20 = triton_helpers.maximum(tmp13, tmp19) tmp22 = tmp21 > tmp1 tmp23 = tmp21 * tmp3 tmp24 = libdevice.expm1(tmp23) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp22, tmp23, tmp25) tmp27 = triton_helpers.maximum(tmp20, tmp26) tmp29 = tmp28 > tmp1 tmp30 = tmp28 * tmp3 tmp31 = libdevice.expm1(tmp30) tmp32 = tmp31 * tmp3 tmp33 = tl.where(tmp29, tmp30, tmp32) tmp34 = triton_helpers.maximum(tmp27, tmp33) tmp35 = tmp7 - tmp34 tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused__log_softmax_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](primals_4, buf4, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf9, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf17, buf18, 128, XBLOCK=128, num_warps=4, num_stages=1) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf25, buf26, 128, XBLOCK=128, num_warps=4, num_stages=1) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_2[grid(4)](buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0) del buf2 buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0) del buf11 buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0) del buf19 buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0) del buf27 triton_poi_fused__softmax_leaky_relu_mul_where_3[grid(16)](buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf8, buf16, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf34, buf35, 128, XBLOCK=128, num_warps=4, num_stages=1) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = buf6 del buf6 buf39 = buf5 del buf5 triton_poi_fused__softmax_leaky_relu_mul_where_5[grid(4)](buf4, buf37, buf36, buf38, buf39, 4, XBLOCK=4, num_warps=1, num_stages=1) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0) del buf36 triton_poi_fused__softmax_leaky_relu_mul_where_6[grid(16)](buf40, buf4, buf37, buf38, buf39, 16, XBLOCK=16, num_warps=1, num_stages=1 ) del buf38 del buf39 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_elu_7[grid(16)](buf41, buf42, 16, XBLOCK=16, num_warps=1, num_stages=1) buf43 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_8[grid(16)](buf42, buf43, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf42 return (buf43, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, buf43, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor( buf35, (8, 16), (1, 8), 0), reinterpret_tensor(primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor( buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor( buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), ( 1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor( primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) N = h.size()[0] a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1) ], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout, alpha, nheads): """Dense version of GAT.""" super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttentionLayer(nhid * nheads, nclass, dropout= dropout, alpha=alpha, concat=False) def forward(self, input_0, input_1): primals_1 = self.attention_0.W primals_3 = self.attention_0.a primals_2 = self.attention_1.W primals_6 = self.attention_1.a primals_4 = self.attention_2.W primals_8 = self.attention_2.a primals_5 = self.attention_3.W primals_10 = self.attention_3.a primals_11 = self.out_att.W primals_12 = self.out_att.a primals_7 = input_0 primals_9 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
Kkuntal990/pyGAT
GAT
false
9,294
[ "MIT" ]
0
ab9d1f35dfc60c1ce2070164c23ed363101aebfb
https://github.com/Kkuntal990/pyGAT/tree/ab9d1f35dfc60c1ce2070164c23ed363101aebfb
LossW2V
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/tl/ctlpxbtdd7xpp2w7csr33nzd7wygsuhnhohfb323ylrzxjixrxyb.py # Topologically Sorted Source Nodes: [l1_loss, loss, l1_loss_1, loss_1, l1_loss_2, loss_2, l1_loss_3, loss_3, loss_4], Original ATen: [aten.sub, aten.abs, aten.mean, aten.add, aten.div] # Source node to ATen node mapping: # l1_loss => abs_1, mean, sub # l1_loss_1 => abs_2, mean_1, sub_1 # l1_loss_2 => abs_3, mean_2, sub_2 # l1_loss_3 => abs_4, mean_3, sub_3 # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # loss_4 => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select, %select_1), kwargs = {}) # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean, 0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_2, %select_3), kwargs = {}) # %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mean_1), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_4, %select_5), kwargs = {}) # %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mean_2), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_6, %select_7), kwargs = {}) # %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mean_3), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused_abs_add_div_mean_sub_0 = async_compile.triton('triton_per_fused_abs_add_div_mean_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_div_mean_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp7 = tl.load(in_ptr0 + (64 + r0), None) tmp8 = tl.load(in_ptr1 + (64 + r0), None) tmp14 = tl.load(in_ptr0 + (128 + r0), None) tmp15 = tl.load(in_ptr1 + (128 + r0), None) tmp21 = tl.load(in_ptr0 + (192 + r0), None) tmp22 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp9 = tmp7 - tmp8 tmp10 = tl_math.abs(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp23 = tmp21 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp6 / tmp28 tmp30 = 0.0 tmp31 = tmp29 + tmp30 tmp32 = tmp13 / tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp20 / tmp28 tmp35 = tmp33 + tmp34 tmp36 = tmp27 / tmp28 tmp37 = tmp35 + tmp36 tmp38 = 0.25 tmp39 = tmp37 * tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp39, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [l1_loss, loss, l1_loss_1, loss_1, l1_loss_2, loss_2, l1_loss_3, loss_3, loss_4], Original ATen: [aten.sub, aten.abs, aten.mean, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0.run(buf4, arg1_1, arg0_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_abs_add_div_mean_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp7 = tl.load(in_ptr0 + (64 + r0), None) tmp8 = tl.load(in_ptr1 + (64 + r0), None) tmp14 = tl.load(in_ptr0 + (128 + r0), None) tmp15 = tl.load(in_ptr1 + (128 + r0), None) tmp21 = tl.load(in_ptr0 + (192 + r0), None) tmp22 = tl.load(in_ptr1 + (192 + r0), None) tmp2 = tmp0 - tmp1 tmp3 = tl_math.abs(tmp2) tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp6 = tl.sum(tmp4, 1)[:, None] tmp9 = tmp7 - tmp8 tmp10 = tl_math.abs(tmp9) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp13 = tl.sum(tmp11, 1)[:, None] tmp16 = tmp14 - tmp15 tmp17 = tl_math.abs(tmp16) tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp23 = tmp21 - tmp22 tmp24 = tl_math.abs(tmp23) tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.sum(tmp25, 1)[:, None] tmp28 = 64.0 tmp29 = tmp6 / tmp28 tmp30 = 0.0 tmp31 = tmp29 + tmp30 tmp32 = tmp13 / tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp20 / tmp28 tmp35 = tmp33 + tmp34 tmp36 = tmp27 / tmp28 tmp37 = tmp35 + tmp36 tmp38 = 0.25 tmp39 = tmp37 * tmp38 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp39, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_abs_add_div_mean_sub_0[grid(1)](buf4, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf4, class LossW2VNew(nn.Module): """Triplet loss with hard positive/negative mining. Reference: Hermans et al. In Defense of the Triplet Loss for Person Re-Identification. arXiv:1703.07737. Code imported from https://github.com/Cysu/open-reid/blob/master/reid/loss/triplet.py. Args: - margin (float): margin for triplet. """ def cosine_distance(self, x1, x2, eps=1e-08): cos = torch.nn.functional.cosine_similarity return torch.mean(1.0 - cos(x1, x2)) def RMSELoss(self, yhat, y, eps=1e-06): return torch.sqrt(torch.mean((yhat - y) ** 2) + eps) def __init__(self, num_classes_attributes=(8, 22, 32, 32, 21, 16), weights=None, attr_loss_type='L1'): super(LossW2VNew, self).__init__() self.loss = 0 self.num_classes_attributes = num_classes_attributes None if attr_loss_type == 'L1': self.loss = nn.L1Loss() None elif attr_loss_type == 'L2': self.loss = nn.MSELoss() None elif attr_loss_type == 'cos': self.loss = self.cosine_distance None self.weights = weights def remove_zeros(self, label_att, predicted_attributes_group): mask = label_att[:, :] != 0 mask = torch.prod(mask, dim=1) mask = mask.nonzero().squeeze(-1) label_att = label_att[mask, :] predicted_attributes_group = predicted_attributes_group[mask, :] return label_att, predicted_attributes_group def remove_element(self, label_matrix): all_mask = [] for i in range(0, label_matrix.size()[0]): mask = label_matrix[i, :, :] == 0 mask = torch.sum(mask, dim=1) mask = (mask != label_matrix[i, :, :].size()[1]).nonzero()[:, 0] sel_mask = label_matrix[i, mask, :] all_mask.append(sel_mask) return all_mask def elab_label_attributes(self, label_attributes): end_index = 0 start_index = 0 for i in xrange(len(self.num_classes_attributes)): start_index = end_index end_index = start_index + self.num_classes_attributes[i] """ 64x131x50 """ label_attributes_group = label_attributes[:, start_index: end_index, :] label_attributes_group = self.remove_element(label_attributes_group ) def _forward(self, predicted_attributes, label_attributes): end_index = 0 start_index = 0 loss = 0 for i in xrange(len(self.num_classes_attributes)): start_index = end_index end_index = start_index + self.num_classes_attributes[i] """ 64x131x50 """ label_attributes_group = label_attributes[:, start_index: end_index, :] """ 64x50 """ predicted_attributes_group = predicted_attributes[i] predicted_attributes_group = predicted_attributes_group.unsqueeze(1 ) """ 64x131x50 """ predicted_attributes_group = predicted_attributes_group.repeat([ 1, label_attributes_group.size(1), 1]) """ 256x50 """ predicted_attributes_group = predicted_attributes_group.reshape( predicted_attributes_group.size(0) * predicted_attributes_group.size(1), predicted_attributes_group.size(2)) """ 256x50 """ label_attributes_group = label_attributes_group.reshape( label_attributes_group.size(0) * label_attributes_group. size(1), label_attributes_group.size(2)) """ 64x300 """ if self.weights is not None: W = self.weights[start_index:end_index] W = W.unsqueeze(0).unsqueeze(2).expand(label_attributes_group .size(0), -1, label_attributes_group.size(2)) label_att = (label_attributes_group * W).sum(1) else: label_att, predicted_attributes_group = self.remove_zeros( label_attributes_group, predicted_attributes_group) part_loss = self.loss(predicted_attributes_group, label_att) if torch.isnan(part_loss).any(): None loss = loss + part_loss return loss def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Nabeel-Malkani/Digital-Image-Processing
LossW2V
false
17,736
[ "MIT" ]
4
dee03cb61c54db55c5a2bfa9ca0f9dea7dba66a6
https://github.com/Nabeel-Malkani/Digital-Image-Processing/tree/dee03cb61c54db55c5a2bfa9ca0f9dea7dba66a6
TransformerDecoderLayer
from torch.nn import Module import torch from torch import Tensor from typing import Optional import torch.nn.functional as F from torch.nn.modules import Module from torch.nn.modules.activation import MultiheadAttention from torch.nn.modules import Dropout from torch.nn.modules import Linear from torch.nn.modules import LayerNorm def _get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerDecoderLayer(Module): """TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = decoder_layer(tgt, memory) """ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerDecoderLayer, self).__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = MultiheadAttention(d_model, nhead, dropout= dropout) self.linear1 = Linear(d_model, dim_feedforward) self.dropout = Dropout(dropout) self.linear2 = Linear(dim_feedforward, d_model) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.norm3 = LayerNorm(d_model) self.dropout1 = Dropout(dropout) self.dropout2 = Dropout(dropout) self.dropout3 = Dropout(dropout) self.activation = _get_activation_fn(activation) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerDecoderLayer, self).__setstate__(state) def forward(self, tgt: 'Tensor', memory: 'Tensor', tgt_mask: 'Optional[Tensor]'=None, memory_mask: 'Optional[Tensor]'=None, tgt_key_padding_mask: 'Optional[Tensor]'=None, memory_key_padding_mask: 'Optional[Tensor]'=None) ->Tensor: """Pass the inputs (and mask) through the decoder layer. Args: tgt: the sequence to the decoder layer (required). memory: the sequence from the last layer of the encoder (required). tgt_mask: the mask for the tgt sequence (optional). memory_mask: the mask for the memory sequence (optional). tgt_key_padding_mask: the mask for the tgt keys per batch (optional). memory_key_padding_mask: the mask for the memory keys per batch (optional). Shape: see the docs in Transformer class. """ tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask, key_padding_mask=tgt_key_padding_mask)[0] tgt = tgt + self.dropout1(tgt2) tgt = self.norm1(tgt) tgt2, attention_weight = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask, key_padding_mask=memory_key_padding_mask) tgt = tgt + self.dropout2(tgt2) tgt = self.norm2(tgt) tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) tgt = tgt + self.dropout3(tgt2) tgt = self.norm3(tgt) return tgt, attention_weight def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'d_model': 4, 'nhead': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.nn import Module import torch.nn.functional as F from torch.nn.modules import Module from torch.nn.modules.activation import MultiheadAttention from torch.nn.modules import Dropout from torch.nn.modules import Linear from torch.nn.modules import LayerNorm assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask) tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_mean_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (16 + x0), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_out_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (12, 4), (4, 1)) assert_size_stride(primals_3, (12,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (12, 4), (4, 1)) assert_size_stride(primals_10, (12,), (1,)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4,), (1,)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (2048, 4), (4, 1)) assert_size_stride(primals_16, (2048,), (1,)) assert_size_stride(primals_17, (4, 2048), (2048, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 4), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf1) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_3, (4,), (1,), 8), primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf2) del primals_2 buf3 = reinterpret_tensor(buf0, (4, 4, 1), (1, 4, 16), 0) del buf0 get_raw_stream(0) triton_poi_fused_mul_0[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf4 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf3, reinterpret_tensor(buf1, (4, 1, 4), (1, 1, 4), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf4, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1) buf6 = buf4 del buf4 triton_poi_fused__softmax_2[grid(64)](buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf6, reinterpret_tensor(buf2, (4, 4, 1), (1, 4, 1), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf7, buf8, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (4, 4), (4, 1), 0) del buf7 extern_kernels.addmm(primals_5, reinterpret_tensor(buf8, (4, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha =1, beta=1, out=buf9) del primals_5 buf10 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf11 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused_add_native_layer_norm_4[grid(4)](primals_1, buf9, buf10, buf11, 4, XBLOCK=4, num_warps=1, num_stages=1) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](primals_1, buf9, buf10, buf11, primals_6, primals_7, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_7 buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf13) buf14 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_10, (4,), (1,), 4), primals_8, reinterpret_tensor(primals_9, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf14) buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(reinterpret_tensor(primals_10, (4,), (1,), 8), primals_8, reinterpret_tensor(primals_9, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf15) buf16 = reinterpret_tensor(buf13, (4, 4, 1), (1, 4, 16), 0) del buf13 triton_poi_fused_mul_0[grid(16)](buf16, primals_10, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_10 buf17 = buf5 del buf5 extern_kernels.bmm(buf16, reinterpret_tensor(buf14, (4, 1, 4), (1, 1, 4), 0), out=buf17) buf18 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(64)](buf17, buf18, 64, XBLOCK=64, num_warps=1, num_stages=1) buf19 = buf17 del buf17 triton_poi_fused__softmax_2[grid(64)](buf18, buf19, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf18 buf20 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(buf19, reinterpret_tensor(buf15, (4, 4, 1), (1, 4, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32) triton_poi_fused_clone_3[grid(4, 4)](buf20, buf21, 4, 4, XBLOCK=4, YBLOCK=4, num_warps=1, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4), (4, 1), 0) del buf20 extern_kernels.mm(reinterpret_tensor(buf21, (4, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf22) buf23 = empty_strided_cuda((1, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mean_6[grid(16)](buf19, buf23, 16, XBLOCK=16, num_warps=1, num_stages=1) buf24 = buf22 del buf22 triton_poi_fused_add_7[grid(16)](buf24, buf12, primals_12, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_12 buf25 = buf11 del buf11 buf26 = buf10 del buf10 triton_poi_fused_native_layer_norm_8[grid(4)](buf24, buf25, buf26, 4, XBLOCK=4, num_warps=1, num_stages=1) buf27 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(16)](buf24, buf25, buf26, primals_13, primals_14, buf27, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_14 buf28 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32) extern_kernels.mm(buf27, reinterpret_tensor(primals_15, (4, 2048), (1, 4), 0), out=buf28) buf29 = buf28 del buf28 triton_poi_fused_relu_10[grid(8192)](buf29, primals_16, 8192, XBLOCK=256, num_warps=4, num_stages=1) del primals_16 buf30 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf29, reinterpret_tensor(primals_17, (2048, 4), (1, 2048), 0), out=buf30) buf31 = buf30 del buf30 triton_poi_fused_add_7[grid(16)](buf31, buf27, primals_18, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_18 buf32 = buf26 del buf26 buf33 = buf25 del buf25 triton_poi_fused_native_layer_norm_8[grid(4)](buf31, buf32, buf33, 4, XBLOCK=4, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(16)](buf31, buf32, buf33, primals_19, primals_20, buf34, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf32 del buf33 del primals_20 return (buf34, reinterpret_tensor(buf23, (4, 4), (4, 1), 0), primals_1, primals_6, primals_13, primals_19, buf6, reinterpret_tensor(buf8, ( 4, 4), (4, 1), 0), buf9, buf12, primals_8, buf19, reinterpret_tensor(buf21, (4, 4), (4, 1), 0), buf24, buf27, buf29, buf31, primals_17, primals_15, primals_11, reinterpret_tensor(buf15, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf16, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf14, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (4, 1), 0), primals_4, reinterpret_tensor(buf2, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf3, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf1, (4, 4, 1), (1, 4, 1), 0)) def _get_activation_fn(activation): if activation == 'relu': return F.relu elif activation == 'gelu': return F.gelu raise RuntimeError('activation should be relu/gelu, not {}'.format( activation)) class TransformerDecoderLayerNew(Module): """TransformerDecoderLayer is made up of self-attn, multi-head-attn and feedforward network. This standard decoder layer is based on the paper "Attention Is All You Need". Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information Processing Systems, pages 6000-6010. Users may modify or implement in a different way during application. Args: d_model: the number of expected features in the input (required). nhead: the number of heads in the multiheadattention models (required). dim_feedforward: the dimension of the feedforward network model (default=2048). dropout: the dropout value (default=0.1). activation: the activation function of intermediate layer, relu or gelu (default=relu). Examples:: >>> decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8) >>> memory = torch.rand(10, 32, 512) >>> tgt = torch.rand(20, 32, 512) >>> out = decoder_layer(tgt, memory) """ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation='relu'): super(TransformerDecoderLayerNew, self).__init__() self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout) self.multihead_attn = MultiheadAttention(d_model, nhead, dropout= dropout) self.linear1 = Linear(d_model, dim_feedforward) self.dropout = Dropout(dropout) self.linear2 = Linear(dim_feedforward, d_model) self.norm1 = LayerNorm(d_model) self.norm2 = LayerNorm(d_model) self.norm3 = LayerNorm(d_model) self.dropout1 = Dropout(dropout) self.dropout2 = Dropout(dropout) self.dropout3 = Dropout(dropout) self.activation = _get_activation_fn(activation) def __setstate__(self, state): if 'activation' not in state: state['activation'] = F.relu super(TransformerDecoderLayerNew, self).__setstate__(state) def forward(self, input_0, input_1): primals_2 = self.self_attn.in_proj_weight primals_3 = self.self_attn.in_proj_bias primals_1 = self.self_attn.out_proj.weight primals_5 = self.self_attn.out_proj.bias primals_9 = self.multihead_attn.in_proj_weight primals_10 = self.multihead_attn.in_proj_bias primals_4 = self.multihead_attn.out_proj.weight primals_6 = self.multihead_attn.out_proj.bias primals_15 = self.linear1.weight primals_16 = self.linear1.bias primals_17 = self.linear2.weight primals_7 = self.linear2.bias primals_12 = self.norm1.weight primals_13 = self.norm1.bias primals_14 = self.norm2.weight primals_18 = self.norm2.bias primals_19 = self.norm3.weight primals_20 = self.norm3.bias primals_8 = input_0 primals_11 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return output[0], output[1]
ruiguo-bio/smer
TransformerDecoderLayer
false
12,963
[ "MIT" ]
0
e50c814629d02d9e0892b705d5b6273a3537cb11
https://github.com/ruiguo-bio/smer/tree/e50c814629d02d9e0892b705d5b6273a3537cb11
GaussianFilter
import torch import torch.nn as nn import torch.utils.data class GaussianFilter(nn.Module): def __init__(self, kernel_size=13, stride=1, padding=6): super(GaussianFilter, self).__init__() mean = (kernel_size - 1) / 2.0 variance = ((kernel_size - 1) / 6.0) ** 2.0 x_coord = torch.arange(kernel_size) x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1).float() gaussian_kernel = torch.exp(-torch.sum((xy_grid - mean) ** 2.0, dim =-1) / (2 * variance)) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(3, 1, 1, 1) self.gaussian_filter = nn.Conv2d(3, 3, kernel_size, stride=stride, padding=padding, groups=3, bias=False) self.gaussian_filter.weight.data = gaussian_kernel self.gaussian_filter.weight.requires_grad = False def forward(self, x): return self.gaussian_filter(x) def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 3 y1 = yindex // 3 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 3 * x2 + 12288 * y1), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4096 * y3), tmp0, ymask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (3, 1, 13, 13), (169, 169, 13, 1)) assert_size_stride(arg1_1, (4, 3, 64, 64), (12288, 4096, 64, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(12, 4096)](arg1_1, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del arg1_1 buf1 = extern_kernels.convolution(buf0, arg0_1, stride=(1, 1), padding=(6, 6), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=3, bias=None) assert_size_stride(buf1, (4, 3, 64, 64), (12288, 1, 192, 3)) del arg0_1 buf2 = reinterpret_tensor(buf0, (4, 3, 64, 64), (12288, 4096, 64, 1), 0 ) del buf0 triton_poi_fused_convolution_1[grid(12, 4096)](buf1, buf2, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del buf1 return buf2, class GaussianFilterNew(nn.Module): def __init__(self, kernel_size=13, stride=1, padding=6): super(GaussianFilterNew, self).__init__() mean = (kernel_size - 1) / 2.0 variance = ((kernel_size - 1) / 6.0) ** 2.0 x_coord = torch.arange(kernel_size) x_grid = x_coord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1).float() gaussian_kernel = torch.exp(-torch.sum((xy_grid - mean) ** 2.0, dim =-1) / (2 * variance)) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(3, 1, 1, 1) self.gaussian_filter = nn.Conv2d(3, 3, kernel_size, stride=stride, padding=padding, groups=3, bias=False) self.gaussian_filter.weight.data = gaussian_kernel self.gaussian_filter.weight.requires_grad = False def forward(self, input_0): arg0_1 = self.gaussian_filter.weight arg1_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
JaguAroo/SRResCGAN
GaussianFilter
false
597
[ "MIT" ]
0
9aac612aff631f7fb9142e0a36de9559cfc1a62d
https://github.com/JaguAroo/SRResCGAN/tree/9aac612aff631f7fb9142e0a36de9559cfc1a62d
SpatialGather_Module
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/iv/civr7hz7pwb7nd5q352sqsjvxezkx6m6jnyztaygkt2ugewh5ejx.py # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] # Source node to ATen node mapping: # probs_1 => div, exp, sum_1 # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [2], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [2], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_0 = async_compile.triton('triton_per_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + (16*x0)), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_per_fused__softmax_0.run(arg0_1, buf2, 16, 16, grid=grid(16), stream=stream0) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [probs_1, ocr_context], Original ATen: [aten._softmax, aten.bmm] extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return (reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tmp7 * tmp1 tmp9 = tl_math.exp(tmp8) tmp10 = tl.broadcast_to(tmp9, [XBLOCK, RBLOCK]) tmp12 = tl.where(xmask, tmp10, 0) tmp13 = tl.sum(tmp12, 1)[:, None] tmp14 = tmp9 / tmp13 tl.store(out_ptr2 + (r1 + 16 * x0), tmp14, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(16)](arg0_1, buf2, 16, 16, XBLOCK= 1, num_warps=2, num_stages=1) del arg0_1 buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(buf2, reinterpret_tensor(arg1_1, (4, 16, 4), (64, 1, 16), 0), out=buf3) del arg1_1 del buf2 return reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 1, 4, 1), 0), class SpatialGather_ModuleNew(nn.Module): """ Aggregate the context features according to the initial predicted probability distribution. Employ the soft-weighted method to aggregate the context. Output: The correlation of every class map with every feature map shape = [n, num_feats, num_classes, 1] """ def __init__(self, cls_num=0, scale=1): super(SpatialGather_ModuleNew, self).__init__() self.cls_num = cls_num self.scale = scale def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
garylidd/semantic-segmentation
SpatialGather_Module
false
10,114
[ "BSD-3-Clause" ]
0
64ae675076bea12ab994e7ae88d719a413e9c484
https://github.com/garylidd/semantic-segmentation/tree/64ae675076bea12ab994e7ae88d719a413e9c484
MaxPool2d
import torch import numpy as np import torch.nn as nn from numbers import Number def normcdf(value, mu=0.0, stddev=1.0): sinv = 1.0 / stddev if isinstance(stddev, Number) else stddev.reciprocal() return 0.5 * (1.0 + torch.erf((value - mu) * sinv / np.sqrt(2.0))) def _normal_log_pdf(value, mu, stddev): var = stddev ** 2 log_scale = np.log(stddev) if isinstance(stddev, Number) else torch.log( stddev) return -(value - mu) ** 2 / (2.0 * var) - log_scale - np.log(np.sqrt( 2.0 * np.pi)) def normpdf(value, mu=0.0, stddev=1.0): return torch.exp(_normal_log_pdf(value, mu, stddev)) def keep_variance_fn(x): return x + 0.001 class MaxPool2d(nn.Module): def __init__(self, keep_variance_fn=None): super(MaxPool2d, self).__init__() self._keep_variance_fn = keep_variance_fn def _max_pool_internal(self, mu_a, mu_b, var_a, var_b): stddev = torch.sqrt(var_a + var_b) ab = mu_a - mu_b alpha = ab / stddev pdf = normpdf(alpha) cdf = normcdf(alpha) z_mu = stddev * pdf + ab * cdf + mu_b z_var = (mu_a + mu_b) * stddev * pdf + (mu_a ** 2 + var_a) * cdf + ( mu_b ** 2 + var_b) * (1.0 - cdf) - z_mu ** 2 if self._keep_variance_fn is not None: z_var = self._keep_variance_fn(z_var) return z_mu, z_var def _max_pool_1x2(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, :, 0::2] mu_b = inputs_mean[:, :, :, 1::2] var_a = inputs_variance[:, :, :, 0::2] var_b = inputs_variance[:, :, :, 1::2] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def _max_pool_2x1(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, 0::2, :] mu_b = inputs_mean[:, :, 1::2, :] var_a = inputs_variance[:, :, 0::2, :] var_b = inputs_variance[:, :, 1::2, :] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def forward(self, inputs_mean, inputs_variance): z_mean, z_variance = self._max_pool_1x2(inputs_mean, inputs_variance) outputs_mean, outputs_variance = self._max_pool_2x1(z_mean, z_variance) return outputs_mean, outputs_variance def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import numpy as np import torch.nn as nn from numbers import Number assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 2 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 2 * x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 2 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp2 * tmp6 tmp8 = tmp0 - tmp1 tmp9 = tmp8 / tmp6 tmp10 = 0.0 tmp11 = tmp9 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = -tmp12 tmp14 = 0.5 tmp15 = tmp13 * tmp14 tmp16 = 0.9189385332046727 tmp17 = tmp15 - tmp16 tmp18 = tl_math.exp(tmp17) tmp19 = tmp7 * tmp18 tmp20 = tmp0 * tmp0 tmp21 = tmp20 + tmp3 tmp22 = 1.0 tmp23 = tmp11 * tmp22 tmp24 = 1.414213562373095 tmp25 = tmp23 / tmp24 tmp26 = libdevice.erf(tmp25) tmp27 = tmp26 + tmp22 tmp28 = tmp27 * tmp14 tmp29 = tmp21 * tmp28 tmp30 = tmp19 + tmp29 tmp31 = tmp6 * tmp18 tmp32 = tmp8 * tmp28 tmp33 = tmp31 + tmp32 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp34 tmp36 = tmp1 * tmp1 tmp37 = tmp36 + tmp4 tmp38 = tmp22 - tmp28 tmp39 = tmp37 * tmp38 tmp40 = tmp30 + tmp39 tmp41 = tmp40 - tmp35 tl.store(in_out_ptr0 + x0, tmp41, xmask) @triton.jit def triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr2, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr1 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy ='evict_last') tmp33 = tl.load(in_ptr1 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr1 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy ='evict_last') tmp54 = tl.load(in_ptr2 + (x0 + 4 * x1), xmask) tmp55 = tl.load(in_ptr2 + (2 + x0 + 4 * x1), xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.sqrt(tmp2) tmp6 = tmp4 - tmp5 tmp7 = tmp6 / tmp3 tmp8 = 0.0 tmp9 = tmp7 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = -tmp10 tmp12 = 0.5 tmp13 = tmp11 * tmp12 tmp14 = 0.9189385332046727 tmp15 = tmp13 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp3 * tmp16 tmp18 = 1.0 tmp19 = tmp9 * tmp18 tmp20 = 1.414213562373095 tmp21 = tmp19 / tmp20 tmp22 = libdevice.erf(tmp21) tmp23 = tmp22 + tmp18 tmp24 = tmp23 * tmp12 tmp25 = tmp6 * tmp24 tmp26 = tmp17 + tmp25 tmp27 = tmp26 + tmp5 tmp28 = tmp27 * tmp27 tmp31 = tmp29 + tmp30 tmp32 = libdevice.sqrt(tmp31) tmp35 = tmp33 - tmp34 tmp36 = tmp35 / tmp32 tmp37 = tmp36 - tmp8 tmp38 = tmp37 * tmp37 tmp39 = -tmp38 tmp40 = tmp39 * tmp12 tmp41 = tmp40 - tmp14 tmp42 = tl_math.exp(tmp41) tmp43 = tmp32 * tmp42 tmp44 = tmp37 * tmp18 tmp45 = tmp44 / tmp20 tmp46 = libdevice.erf(tmp45) tmp47 = tmp46 + tmp18 tmp48 = tmp47 * tmp12 tmp49 = tmp35 * tmp48 tmp50 = tmp43 + tmp49 tmp51 = tmp50 + tmp34 tmp52 = tmp51 + tmp27 tmp53 = tmp51 - tmp27 tmp56 = tmp54 + tmp55 tmp57 = libdevice.sqrt(tmp56) tmp58 = tmp53 / tmp57 tmp59 = tmp58 - tmp8 tmp60 = tmp59 * tmp59 tmp61 = -tmp60 tmp62 = tmp61 * tmp12 tmp63 = tmp62 - tmp14 tmp64 = tl_math.exp(tmp63) tmp65 = tmp57 * tmp64 tmp66 = tmp59 * tmp18 tmp67 = tmp66 / tmp20 tmp68 = libdevice.erf(tmp67) tmp69 = tmp68 + tmp18 tmp70 = tmp69 * tmp12 tmp71 = tmp53 * tmp70 tmp72 = tmp65 + tmp71 tmp73 = tmp72 + tmp27 tmp74 = tmp51 * tmp51 tmp75 = tmp52 * tmp57 tmp76 = tmp75 * tmp64 tmp77 = tmp74 + tmp54 tmp78 = tmp77 * tmp70 tmp79 = tmp76 + tmp78 tmp80 = tmp28 + tmp55 tmp81 = tmp18 - tmp70 tmp82 = tmp80 * tmp81 tmp83 = tmp79 + tmp82 tmp84 = tmp73 * tmp73 tmp85 = tmp83 - tmp84 tl.store(out_ptr2 + x2, tmp73, xmask) tl.store(in_out_ptr0 + x2, tmp85, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32) buf3 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_0[grid (128)](buf3, arg0_1, arg1_1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf8 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) buf6 = buf0 del buf0 buf9 = buf6 del buf6 triton_poi_fused_add_div_erf_exp_log_mul_neg_pow_rsub_sqrt_sub_1[grid (64)](buf9, arg1_1, arg0_1, buf3, buf8, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del arg1_1 del buf3 return buf8, buf9 def normcdf(value, mu=0.0, stddev=1.0): sinv = 1.0 / stddev if isinstance(stddev, Number) else stddev.reciprocal() return 0.5 * (1.0 + torch.erf((value - mu) * sinv / np.sqrt(2.0))) def _normal_log_pdf(value, mu, stddev): var = stddev ** 2 log_scale = np.log(stddev) if isinstance(stddev, Number) else torch.log( stddev) return -(value - mu) ** 2 / (2.0 * var) - log_scale - np.log(np.sqrt( 2.0 * np.pi)) def normpdf(value, mu=0.0, stddev=1.0): return torch.exp(_normal_log_pdf(value, mu, stddev)) def keep_variance_fn(x): return x + 0.001 class MaxPool2dNew(nn.Module): def __init__(self, keep_variance_fn=None): super(MaxPool2dNew, self).__init__() self._keep_variance_fn = keep_variance_fn def _max_pool_internal(self, mu_a, mu_b, var_a, var_b): stddev = torch.sqrt(var_a + var_b) ab = mu_a - mu_b alpha = ab / stddev pdf = normpdf(alpha) cdf = normcdf(alpha) z_mu = stddev * pdf + ab * cdf + mu_b z_var = (mu_a + mu_b) * stddev * pdf + (mu_a ** 2 + var_a) * cdf + ( mu_b ** 2 + var_b) * (1.0 - cdf) - z_mu ** 2 if self._keep_variance_fn is not None: z_var = self._keep_variance_fn(z_var) return z_mu, z_var def _max_pool_1x2(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, :, 0::2] mu_b = inputs_mean[:, :, :, 1::2] var_a = inputs_variance[:, :, :, 0::2] var_b = inputs_variance[:, :, :, 1::2] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def _max_pool_2x1(self, inputs_mean, inputs_variance): mu_a = inputs_mean[:, :, 0::2, :] mu_b = inputs_mean[:, :, 1::2, :] var_a = inputs_variance[:, :, 0::2, :] var_b = inputs_variance[:, :, 1::2, :] outputs_mean, outputs_variance = self._max_pool_internal(mu_a, mu_b, var_a, var_b) return outputs_mean, outputs_variance def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
DoggyLiu0116/MamboNet
MaxPool2d
false
5,096
[ "MIT" ]
1
3b708091422491f660c4bd5eb12b06ce3b8a5f79
https://github.com/DoggyLiu0116/MamboNet/tree/3b708091422491f660c4bd5eb12b06ce3b8a5f79
Liner_Qnet
import torch import torch.nn as nn import torch.nn.functional as F class Liner_Qnet(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.L1 = nn.Linear(input_size, hidden_size) self.L2 = nn.Linear(hidden_size, output_size) def forward(self, x): x = self.L1(x) x = F.relu(x) x = self.L2(x) return x def save(self, fname='model.pth'): model_path = './model' if not os.path.exists(model_path): os.mkdir(model_path) model_path = os.path.join(model_path, fname) torch.save(self, model_path) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3 class Liner_QnetNew(nn.Module): def __init__(self, input_size, hidden_size, output_size): super().__init__() self.L1 = nn.Linear(input_size, hidden_size) self.L2 = nn.Linear(hidden_size, output_size) def save(self, fname='model.pth'): model_path = './model' if not os.path.exists(model_path): os.mkdir(model_path) model_path = os.path.join(model_path, fname) torch.save(self, model_path) def forward(self, input_0): primals_1 = self.L1.weight primals_2 = self.L1.bias primals_4 = self.L2.weight primals_5 = self.L2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
BodaSadalla98/snake-ai
Liner_Qnet
false
8,841
[ "MIT" ]
0
03cc56f39c708d403e51777959138ef776110824
https://github.com/BodaSadalla98/snake-ai/tree/03cc56f39c708d403e51777959138ef776110824
GlobalAveragePooling
import torch from torch import nn class GlobalAveragePooling(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x.mean([2, 3]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 return buf1, class GlobalAveragePoolingNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
PeterouZh/CIPS-3D
GlobalAveragePooling
false
14,163
[ "MIT" ]
308
9b8bfa0fb23f642af042e150ccd70408f9d137c6
https://github.com/PeterouZh/CIPS-3D/tree/9b8bfa0fb23f642af042e150ccd70408f9d137c6
SpatialSELayer1d
import torch import torch.nn as nn import torch.nn.functional as F class SpatialSELayer1d(nn.Module): def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer1d, self).__init__() self.conv = nn.Conv1d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_tensor, weights=None): """ :param weights: weights for few shot learning :param input_tensor: X, shape = (batch_size, num_channels, W) :return: output_tensor """ batch_size, channel, a = input_tensor.size() if weights is not None: weights = torch.mean(weights, dim=0) weights = weights.view(1, channel, 1) out = F.conv2d(input_tensor, weights) else: out = self.conv(input_tensor) squeeze_tensor = self.sigmoid(out) return input_tensor * squeeze_tensor.view(batch_size, 1, a) def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'num_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 4), (4, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(64)](primals_1, buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf2, primals_1, primals_2, buf1 class SpatialSELayer1dNew(nn.Module): def __init__(self, num_channels): """ :param num_channels: No of input channels """ super(SpatialSELayer1dNew, self).__init__() self.conv = nn.Conv1d(num_channels, 1, 1) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
ioanvl/1d_squeeze_excitation
SpatialSELayer1d
false
10,245
[ "MIT" ]
0
f422dc4b8e7de6239a6fb7d1688048db5053e733
https://github.com/ioanvl/1d_squeeze_excitation/tree/f422dc4b8e7de6239a6fb7d1688048db5053e733
mfm
import torch import torch.nn as nn class mfm(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfm, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, x): x = self.filter(x) out = torch.split(x, self.out_channels, 1) return torch.max(out[0], out[1]) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_eq_gt_lt_maximum_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 128 * x2), xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (64 + x3 + 128 * x2), xmask) tmp4 = tl.load(in_ptr1 + (4 + x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp7 = tmp2 == tmp5 tmp8 = tmp2 > tmp5 tmp9 = tmp2 < tmp5 tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + x4, tmp7, xmask) tl.store(out_ptr2 + x4, tmp8, xmask) tl.store(out_ptr3 + x4, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (8, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 8, 4, 4), (128, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_eq_gt_lt_maximum_0[grid(256)](buf0, primals_2, buf1, buf2, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf0 del primals_2 return buf1, primals_1, primals_3, buf2, buf3, buf4 class mfmNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, type=1): super(mfmNew, self).__init__() self.out_channels = out_channels if type == 1: self.filter = nn.Conv2d(in_channels, 2 * out_channels, kernel_size=kernel_size, stride=stride, padding=padding) else: self.filter = nn.Linear(in_channels, 2 * out_channels) def forward(self, input_0): primals_1 = self.filter.weight primals_2 = self.filter.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
BradyFU/DVG
mfm
false
13,417
[ "MIT" ]
102
53fd50cdc51d783b33394726b8f8a2b2216f157b
https://github.com/BradyFU/DVG/tree/53fd50cdc51d783b33394726b8f8a2b2216f157b
VAE_Kl_Loss
import torch import torch.nn as nn import torch.nn.functional import torch.nn.parallel import torch.utils.data import torch.optim import torch.utils.data.distributed class VAE_Kl_Loss(nn.Module): def __init__(self, if_print=False): super(VAE_Kl_Loss, self).__init__() self.if_print = if_print def forward(self, means, variances): loss = self.standard_KL_loss(means, variances) if self.if_print: None return loss def standard_KL_loss(self, means, variances): loss_KL = torch.mean(torch.sum(0.5 * (means ** 2 + torch.exp( variances) - variances - 1), dim=1)) return loss_KL def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional import torch.nn.parallel import torch.utils.data import torch.optim import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_exp_mean_mul_pow_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp2 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp10 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp12 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp19 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp21 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp28 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp30 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp1 = tmp0 * tmp0 tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp5 = tmp4 - tmp2 tmp6 = 1.0 tmp7 = tmp5 - tmp6 tmp8 = 0.5 tmp9 = tmp7 * tmp8 tmp11 = tmp10 * tmp10 tmp13 = tl_math.exp(tmp12) tmp14 = tmp11 + tmp13 tmp15 = tmp14 - tmp12 tmp16 = tmp15 - tmp6 tmp17 = tmp16 * tmp8 tmp18 = tmp9 + tmp17 tmp20 = tmp19 * tmp19 tmp22 = tl_math.exp(tmp21) tmp23 = tmp20 + tmp22 tmp24 = tmp23 - tmp21 tmp25 = tmp24 - tmp6 tmp26 = tmp25 * tmp8 tmp27 = tmp18 + tmp26 tmp29 = tmp28 * tmp28 tmp31 = tl_math.exp(tmp30) tmp32 = tmp29 + tmp31 tmp33 = tmp32 - tmp30 tmp34 = tmp33 - tmp6 tmp35 = tmp34 * tmp8 tmp36 = tmp27 + tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 64.0 tmp41 = tmp39 / tmp40 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp41, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_exp_mean_mul_pow_sub_sum_0[grid(1)](buf2, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf2, class VAE_Kl_LossNew(nn.Module): def __init__(self, if_print=False): super(VAE_Kl_LossNew, self).__init__() self.if_print = if_print def standard_KL_loss(self, means, variances): loss_KL = torch.mean(torch.sum(0.5 * (means ** 2 + torch.exp( variances) - variances - 1), dim=1)) return loss_KL def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
TPCD/LifelongReID
VAE_Kl_Loss
false
14,456
[ "MIT" ]
63
cb33f9c29fe398e7546db345fab1c338dda8252f
https://github.com/TPCD/LifelongReID/tree/cb33f9c29fe398e7546db345fab1c338dda8252f
Hardtanh
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/f4/cf4zefswxrsydbjproeidollo6rytseyglc75txavuo7fzjc2jum.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.hardtanh] # Source node to ATen node mapping: # x => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, -2), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 2), kwargs = {}) triton_poi_fused_hardtanh_0 = async_compile.triton('triton_poi_fused_hardtanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_hardtanh_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = -2.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.hardtanh] stream0 = get_raw_stream(0) triton_poi_fused_hardtanh_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = -2.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 2.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tl.store(out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_hardtanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK= 128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardtanhNew(nn.Module): def __init__(self): super(HardtanhNew, self).__init__() self.layer = nn.Hardtanh(-2, 2) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
yifanpu001/PytorchToCaffe
Hardtanh
false
4,710
[ "MIT" ]
0
37c1ebfc3547e93b1c174721036d03c831c60e48
https://github.com/yifanpu001/PytorchToCaffe/tree/37c1ebfc3547e93b1c174721036d03c831c60e48
JointsMSELoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/ik/cik3daggkczn6yw5fhxreelmv4f7337qr27ccf6o2xrjfrel5wsp.py # Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, mul_9, mul_10, mse_loss_3, mul_11, loss_3, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div] # Source node to ATen node mapping: # loss => add # loss_1 => add_1 # loss_2 => add_2 # loss_3 => add_3 # mse_loss => mean, pow_1, sub # mse_loss_1 => mean_1, pow_2, sub_1 # mse_loss_2 => mean_2, pow_3, sub_2 # mse_loss_3 => mean_3, pow_4, sub_3 # mul => mul # mul_1 => mul_1 # mul_10 => mul_10 # mul_11 => mul_11 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # mul_6 => mul_6 # mul_7 => mul_7 # mul_8 => mul_8 # mul_9 => mul_9 # truediv => div # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, %select), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, %select_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %mul_1), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, %select_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, %select_3), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_3, %mul_4), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_1, 2), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_2,), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_5), kwargs = {}) # %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, %select_4), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_5, %select_5), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_6, %mul_7), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_2, 2), kwargs = {}) # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_3,), kwargs = {}) # %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_8), kwargs = {}) # %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_6, %select_6), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_7, %select_7), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_9, %mul_10), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub_3, 2), kwargs = {}) # %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%pow_4,), kwargs = {}) # %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.5), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_11), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_3, 4), kwargs = {}) triton_per_fused_add_div_mse_loss_mul_0 = async_compile.triton('triton_per_fused_add_div_mse_loss_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {4: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=(4,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mse_loss_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp12 = tmp10 * tmp11 tmp14 = tmp13 * tmp11 tmp15 = tmp12 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp22 = tmp20 * tmp21 tmp24 = tmp23 * tmp21 tmp25 = tmp22 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp32 = tmp30 * tmp31 tmp34 = tmp33 * tmp31 tmp35 = tmp32 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 4.0 tmp41 = tmp9 / tmp40 tmp42 = 0.5 tmp43 = tmp41 * tmp42 tmp44 = 0.0 tmp45 = tmp43 + tmp44 tmp46 = tmp19 / tmp40 tmp47 = tmp46 * tmp42 tmp48 = tmp45 + tmp47 tmp49 = tmp29 / tmp40 tmp50 = tmp49 * tmp42 tmp51 = tmp48 + tmp50 tmp52 = tmp39 / tmp40 tmp53 = tmp52 * tmp42 tmp54 = tmp51 + tmp53 tmp55 = 0.25 tmp56 = tmp54 * tmp55 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp56, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, mul_1, mse_loss, mul_2, loss, mul_3, mul_4, mse_loss_1, mul_5, loss_1, mul_6, mul_7, mse_loss_2, mul_8, loss_2, mul_9, mul_10, mse_loss_3, mul_11, loss_3, truediv], Original ATen: [aten.mul, aten.mse_loss, aten.add, aten.div] stream0 = get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0.run(buf4, arg0_1, arg2_1, arg1_1, 1, 4, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 return (buf4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mse_loss_mul_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp21 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp30 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp5 = tmp2 - tmp4 tmp6 = tmp5 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp12 = tmp10 * tmp11 tmp14 = tmp13 * tmp11 tmp15 = tmp12 - tmp14 tmp16 = tmp15 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.sum(tmp17, 1)[:, None] tmp22 = tmp20 * tmp21 tmp24 = tmp23 * tmp21 tmp25 = tmp22 - tmp24 tmp26 = tmp25 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp32 = tmp30 * tmp31 tmp34 = tmp33 * tmp31 tmp35 = tmp32 - tmp34 tmp36 = tmp35 * tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 4.0 tmp41 = tmp9 / tmp40 tmp42 = 0.5 tmp43 = tmp41 * tmp42 tmp44 = 0.0 tmp45 = tmp43 + tmp44 tmp46 = tmp19 / tmp40 tmp47 = tmp46 * tmp42 tmp48 = tmp45 + tmp47 tmp49 = tmp29 / tmp40 tmp50 = tmp49 * tmp42 tmp51 = tmp48 + tmp50 tmp52 = tmp39 / tmp40 tmp53 = tmp52 * tmp42 tmp54 = tmp51 + tmp53 tmp55 = 0.25 tmp56 = tmp54 * tmp55 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp56, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) assert_size_stride(arg2_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf4 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mse_loss_mul_0[grid(1)](buf4, arg0_1, arg2_1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf4, class JointsMSELossNew(nn.Module): def __init__(self, use_target_weight): super(JointsMSELossNew, self).__init__() self.criterion = nn.MSELoss(size_average=True) self.use_target_weight = use_target_weight def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
AlongRide/Py3torch_HigherHRNet
JointsMSELoss
false
4,829
[ "MIT" ]
1
62c455b62c0ac6d1de482fd3740dc947033e9e9a
https://github.com/AlongRide/Py3torch_HigherHRNet/tree/62c455b62c0ac6d1de482fd3740dc947033e9e9a
InnerProductDecoder
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/hn/chnsjoso43zxwc4rs5k2ujcpccyhrverh5okecwh4vbrmpmq4kaa.py # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # adj => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%bmm,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + (x0), tmp1, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [bmm], Original ATen: [aten.bmm] extern_kernels.bmm(arg0_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [adj], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, 64, grid=grid(64), stream=stream0) return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.modules.loss import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(arg0_1, reinterpret_tensor(arg0_1, (4, 4, 4), ( 16, 1, 4), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(64)](buf1, 64, XBLOCK=64, num_warps =1, num_stages=1) return buf1, class InnerProductDecoderNew(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoderNew, self).__init__() self.dropout = dropout self.act = act def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
WanyuGroup/CVPR2022-OrphicX
InnerProductDecoder
false
1,208
[ "MIT" ]
0
98d8d8259439c45661573e575cf956331df16abc
https://github.com/WanyuGroup/CVPR2022-OrphicX/tree/98d8d8259439c45661573e575cf956331df16abc
SpatialAttention
import torch import torch.nn.parallel import torch.utils.data import torch.nn as nn import torch.cuda class SpatialAttention(nn.Module): def __init__(self): super(SpatialAttention, self).__init__() self.conv = nn.Conv2d(2, 1, 7, padding=3, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x: 'torch.Tensor') ->torch.Tensor: feat_avg = torch.mean(x, dim=1, keepdim=True) feat_max = torch.max(x, dim=1, keepdim=True)[0] feature = torch.cat((feat_avg, feat_max), dim=1) return self.sigmoid(self.conv(feature)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn.parallel import torch.utils.data import torch.nn as nn import torch.cuda assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_sigmoid_1(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 7, 7), (98, 49, 7, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_sigmoid_1[grid(64)](buf2, 64, XBLOCK=64, num_warps =1, num_stages=1) return buf2, primals_2, buf0, buf2 class SpatialAttentionNew(nn.Module): def __init__(self): super(SpatialAttentionNew, self).__init__() self.conv = nn.Conv2d(2, 1, 7, padding=3, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
NeilDG/NeuralNets-Experiment3
SpatialAttention
false
887
[ "MIT" ]
0
f0d2f788eeca49f803f65810c155491ce687cf9e
https://github.com/NeilDG/NeuralNets-Experiment3/tree/f0d2f788eeca49f803f65810c155491ce687cf9e
MultVAE_encoder
import torch import torch.sparse import torch.nn as nn class MultVAE_encoder(nn.Module): def __init__(self, item_dim: 'int', hidden_dim=600, latent_dim=200, n_hidden_layers=1, dropout=0.5, nonlinearity=nn.Tanh): super(MultVAE_encoder, self).__init__() self.item_dim = item_dim self.latent_dim = latent_dim self.nonlinearity = nn.Tanh() self.layers = nn.Sequential() self.layers.add_module('input_dropout', nn.Dropout(dropout)) self.layers.add_module('linear_enc_1', nn.Linear(in_features= item_dim, out_features=hidden_dim)) self.layers.add_module('Tanh_enc_1', self.nonlinearity) if n_hidden_layers > 0: for i in range(n_hidden_layers): self.layers.add_module('hidden_enc_{}'.format(i + 1), nn. Linear(in_features=hidden_dim, out_features=hidden_dim)) self.layers.add_module('Tanh_enc_{}'.format(i + 2), self. nonlinearity) self.mu = nn.Linear(in_features=hidden_dim, out_features=latent_dim) self.logvar = nn.Linear(in_features=hidden_dim, out_features=latent_dim ) def forward(self, x): output = self.layers(x) mu = self.mu(output) logvar = self.logvar(output) return mu, logvar def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'item_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.sparse import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 38400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 600 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (600, 4), (4, 1)) assert_size_stride(primals_3, (600,), (1,)) assert_size_stride(primals_4, (600, 600), (600, 1)) assert_size_stride(primals_5, (600,), (1,)) assert_size_stride(primals_6, (200, 600), (600, 1)) assert_size_stride(primals_7, (200,), (1,)) assert_size_stride(primals_8, (200, 600), (600, 1)) assert_size_stride(primals_9, (200,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 600), (600, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 600), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 600), (9600, 2400, 600, 1), 0 ) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(38400)](buf1, primals_3, 38400, XBLOCK =256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 600), (600, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 600), (600, 1), 0), reinterpret_tensor(primals_4, (600, 600), (1, 600), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 600), (9600, 2400, 600, 1), 0 ) del buf2 triton_poi_fused_tanh_0[grid(38400)](buf3, primals_5, 38400, XBLOCK =256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 600), (600, 1), 0), reinterpret_tensor(primals_6, (600, 200), (1, 600 ), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 600), (600, 1), 0), reinterpret_tensor(primals_8, (600, 200), (1, 600 ), 0), alpha=1, beta=1, out=buf5) del primals_9 return reinterpret_tensor(buf4, (4, 4, 4, 200), (3200, 800, 200, 1), 0 ), reinterpret_tensor(buf5, (4, 4, 4, 200), (3200, 800, 200, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), buf1, buf3, primals_8, primals_6, primals_4 class MultVAE_encoderNew(nn.Module): def __init__(self, item_dim: 'int', hidden_dim=600, latent_dim=200, n_hidden_layers=1, dropout=0.5, nonlinearity=nn.Tanh): super(MultVAE_encoderNew, self).__init__() self.item_dim = item_dim self.latent_dim = latent_dim self.nonlinearity = nn.Tanh() self.layers = nn.Sequential() self.layers.add_module('input_dropout', nn.Dropout(dropout)) self.layers.add_module('linear_enc_1', nn.Linear(in_features= item_dim, out_features=hidden_dim)) self.layers.add_module('Tanh_enc_1', self.nonlinearity) if n_hidden_layers > 0: for i in range(n_hidden_layers): self.layers.add_module('hidden_enc_{}'.format(i + 1), nn. Linear(in_features=hidden_dim, out_features=hidden_dim)) self.layers.add_module('Tanh_enc_{}'.format(i + 2), self. nonlinearity) self.mu = nn.Linear(in_features=hidden_dim, out_features=latent_dim) self.logvar = nn.Linear(in_features=hidden_dim, out_features=latent_dim ) def forward(self, input_0): primals_2 = self.layers.linear_enc_1.weight primals_3 = self.layers.linear_enc_1.bias primals_4 = self.layers.hidden_enc_1.weight primals_5 = self.layers.hidden_enc_1.bias primals_6 = self.mu.weight primals_7 = self.mu.bias primals_8 = self.logvar.weight primals_9 = self.logvar.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
EricHe98/sad_final_project
MultVAE_encoder
false
17,258
[ "MIT" ]
3
4b2b57e44f939840eede6f134493c5f8d809b1a7
https://github.com/EricHe98/sad_final_project/tree/4b2b57e44f939840eede6f134493c5f8d809b1a7
MyNet
import torch import torch.nn as nn class MyNet(nn.Module): def __init__(self): super(MyNet, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3, out_channels=8, kernel_size =5, stride=2, padding=0) self.conv2_1 = nn.Conv2d(8, 16, 3, 1, 0) self.conv2_2 = nn.Conv2d(16, 16, 3, 1, 0) self.conv3_1 = nn.Conv2d(16, 24, 3, 1, 0) self.conv3_2 = nn.Conv2d(24, 24, 3, 1, 0) self.conv4_1 = nn.Conv2d(24, 40, 3, 1, 1) self.conv4_2 = nn.Conv2d(40, 80, 3, 1, 1) self.ip1 = nn.Linear(80 * 4 * 4, 128) self.ip2 = nn.Linear(128, 128) self.ip3 = nn.Linear(128, 42) self.prelu = nn.PReLU() self.avg_pool = nn.AvgPool2d(2, 2, ceil_mode=True) def forward(self, x): x = self.avg_pool(self.prelu(self.conv1_1(x))) x = self.prelu(self.conv2_1(x)) x = self.prelu(self.conv2_2(x)) x = self.avg_pool(x) x = self.prelu(self.conv3_1(x)) x = self.prelu(self.conv3_2(x)) x = self.avg_pool(x) x = self.prelu(self.conv4_1(x)) x = self.prelu(self.conv4_2(x)) ip = x.view(-1, 4 * 4 * 80) ip = self.prelu(self.ip1(ip)) ip = self.prelu(self.ip2(ip)) ip = self.ip3(ip) return ip def get_inputs(): return [torch.rand([4, 3, 144, 144])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 24 xnumel = 25 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 75 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 xnumel = 20736 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 20736 * y3), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 62208 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 8 y1 = yindex // 8 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 8 * x2 + 72 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 256 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 384 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 16 * x2 + 144 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 576 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 24 y1 = yindex // 24 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 24 * x2 + 216 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 960 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 24 y1 = yindex // 24 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 24 * x2 + 216 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 3200 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 40 y1 = yindex // 40 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 40 * x2 + 360 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_8(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_avg_pool2d_9(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 39200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 35 x2 = xindex // 280 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1 + 1120 * x2), xmask) tmp1 = tl.load(in_ptr0 + (8 + x0 + 16 * x1 + 1120 * x2), xmask) tmp3 = tl.load(in_ptr0 + (560 + x0 + 16 * x1 + 1120 * x2), xmask) tmp5 = tl.load(in_ptr0 + (568 + x0 + 16 * x1 + 1120 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_10(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 69696 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_11(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 61504 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_avg_pool2d_12(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 256 % 16 x1 = xindex // 16 % 16 x0 = xindex % 16 x3 = xindex // 4096 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 31, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 32 * x1 + 992 * x2 + 15376 * x3), tmp10, other=0.0) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (16 + x0 + 32 * x1 + 992 * x2 + 15376 * x3), tmp16, other=0.0) tmp18 = tmp17 + tmp11 tmp19 = 1 + 2 * x2 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp22 & tmp9 tmp24 = tl.load(in_ptr0 + (496 + x0 + 32 * x1 + 992 * x2 + 15376 * x3), tmp23, other=0.0) tmp25 = tmp24 + tmp18 tmp26 = tmp22 & tmp15 tmp27 = tl.load(in_ptr0 + (512 + x0 + 32 * x1 + 992 * x2 + 15376 * x3), tmp26, other=0.0) tmp28 = tmp27 + tmp25 tmp29 = (31 * (31 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 31)) * ( 31 * (31 <= 2 + 2 * x2) + (2 + 2 * x2) * (2 + 2 * x2 < 31) ) + -2 * x1 * (31 * (31 <= 2 + 2 * x2) + (2 + 2 * x2) * (2 + 2 * x2 < 31)) + -2 * x2 * (31 * (31 <= 2 + 2 * x1) + (2 + 2 * x1) * (2 + 2 * x1 < 31)) + 4 * x1 * x2 tmp30 = tmp28 / tmp29 tl.store(out_ptr0 + x6, tmp30, None) @triton.jit def triton_poi_fused__prelu_kernel_convolution_13(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_14(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13824 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 24 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_avg_pool2d_15(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 3456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 24 x1 = xindex // 24 % 6 x2 = xindex // 144 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 48 * x1 + 576 * x2), xmask) tmp1 = tl.load(in_ptr0 + (24 + x0 + 48 * x1 + 576 * x2), xmask) tmp3 = tl.load(in_ptr0 + (288 + x0 + 48 * x1 + 576 * x2), xmask) tmp5 = tl.load(in_ptr0 + (312 + x0 + 48 * x1 + 576 * x2), xmask) tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_16(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5760 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.store(in_out_ptr0 + x2, tmp2, xmask) tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__prelu_kernel_convolution_17(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 144 xnumel = 80 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex y2 = yindex % 36 y3 = yindex // 36 tmp0 = tl.load(in_out_ptr0 + (x1 + 80 * y0), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, YBLOCK]) tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp7 = tmp6 * tmp2 tmp8 = tl.where(tmp4, tmp2, tmp7) tl.debug_barrier() tl.store(in_out_ptr0 + (x1 + 80 * y0), tmp2, xmask & ymask) tl.store(out_ptr0 + (y2 + 36 * x1 + 2880 * y3), tmp8, xmask & ymask) @triton.jit def triton_poi_fused__prelu_kernel_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1152 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + 0) tmp4 = tl.broadcast_to(tmp3, [XBLOCK]) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp5 = tmp4 * tmp0 tmp6 = tl.where(tmp2, tmp0, tmp5) tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22) = args args.clear() assert_size_stride(primals_1, (8, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 3, 144, 144), (62208, 20736, 144, 1)) assert_size_stride(primals_4, (1,), (1,)) assert_size_stride(primals_5, (16, 8, 3, 3), (72, 9, 3, 1)) assert_size_stride(primals_6, (16,), (1,)) assert_size_stride(primals_7, (16, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_8, (16,), (1,)) assert_size_stride(primals_9, (24, 16, 3, 3), (144, 9, 3, 1)) assert_size_stride(primals_10, (24,), (1,)) assert_size_stride(primals_11, (24, 24, 3, 3), (216, 9, 3, 1)) assert_size_stride(primals_12, (24,), (1,)) assert_size_stride(primals_13, (40, 24, 3, 3), (216, 9, 3, 1)) assert_size_stride(primals_14, (40,), (1,)) assert_size_stride(primals_15, (80, 40, 3, 3), (360, 9, 3, 1)) assert_size_stride(primals_16, (80,), (1,)) assert_size_stride(primals_17, (128, 1280), (1280, 1)) assert_size_stride(primals_18, (128,), (1,)) assert_size_stride(primals_19, (128, 128), (128, 1)) assert_size_stride(primals_20, (128,), (1,)) assert_size_stride(primals_21, (42, 128), (128, 1)) assert_size_stride(primals_22, (42,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 3, 5, 5), (75, 1, 15, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(24, 25)](primals_1, buf0, 24, 25, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 144, 144), (62208, 1, 432, 3), torch.float32) triton_poi_fused_1[grid(12, 20736)](primals_3, buf1, 12, 20736, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((16, 8, 3, 3), (72, 1, 24, 8), torch.float32) triton_poi_fused_2[grid(128, 9)](primals_5, buf2, 128, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_5 buf3 = empty_strided_cuda((16, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_3[grid(256, 9)](primals_7, buf3, 256, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_7 buf4 = empty_strided_cuda((24, 16, 3, 3), (144, 1, 48, 16), torch. float32) triton_poi_fused_4[grid(384, 9)](primals_9, buf4, 384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_9 buf5 = empty_strided_cuda((24, 24, 3, 3), (216, 1, 72, 24), torch. float32) triton_poi_fused_5[grid(576, 9)](primals_11, buf5, 576, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_11 buf6 = empty_strided_cuda((40, 24, 3, 3), (216, 1, 72, 24), torch. float32) triton_poi_fused_6[grid(960, 9)](primals_13, buf6, 960, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_13 buf7 = empty_strided_cuda((80, 40, 3, 3), (360, 1, 120, 40), torch. float32) triton_poi_fused_7[grid(3200, 9)](primals_15, buf7, 3200, 9, XBLOCK =16, YBLOCK=64, num_warps=4, num_stages=1) del primals_15 buf8 = extern_kernels.convolution(buf1, buf0, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 8, 70, 70), (39200, 1, 560, 8)) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((4, 8, 70, 70), (39200, 1, 560, 8), torch.float32) triton_poi_fused__prelu_kernel_convolution_8[grid(156800)](buf9, primals_2, primals_4, buf10, 156800, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf11 = empty_strided_cuda((4, 8, 35, 35), (9800, 1, 280, 8), torch .float32) triton_poi_fused_avg_pool2d_9[grid(39200)](buf10, buf11, 39200, XBLOCK=512, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 16, 33, 33), (17424, 1, 528, 16)) buf13 = buf12 del buf12 buf14 = empty_strided_cuda((4, 16, 33, 33), (17424, 1, 528, 16), torch.float32) triton_poi_fused__prelu_kernel_convolution_10[grid(69696)](buf13, primals_6, primals_4, buf14, 69696, XBLOCK=1024, num_warps=4, num_stages=1) del primals_6 buf15 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 16, 31, 31), (15376, 1, 496, 16)) buf16 = buf15 del buf15 buf17 = empty_strided_cuda((4, 16, 31, 31), (15376, 1, 496, 16), torch.float32) triton_poi_fused__prelu_kernel_convolution_11[grid(61504)](buf16, primals_8, primals_4, buf17, 61504, XBLOCK=256, num_warps=4, num_stages=1) del primals_8 buf18 = empty_strided_cuda((4, 16, 16, 16), (4096, 1, 256, 16), torch.float32) triton_poi_fused_avg_pool2d_12[grid(16384)](buf17, buf18, 16384, XBLOCK=256, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf18, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 24, 14, 14), (4704, 1, 336, 24)) buf20 = buf19 del buf19 buf21 = empty_strided_cuda((4, 24, 14, 14), (4704, 1, 336, 24), torch.float32) triton_poi_fused__prelu_kernel_convolution_13[grid(18816)](buf20, primals_10, primals_4, buf21, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_10 buf22 = extern_kernels.convolution(buf21, buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 24, 12, 12), (3456, 1, 288, 24)) buf23 = buf22 del buf22 buf24 = empty_strided_cuda((4, 24, 12, 12), (3456, 1, 288, 24), torch.float32) triton_poi_fused__prelu_kernel_convolution_14[grid(13824)](buf23, primals_12, primals_4, buf24, 13824, XBLOCK=256, num_warps=4, num_stages=1) del primals_12 buf25 = empty_strided_cuda((4, 24, 6, 6), (864, 1, 144, 24), torch. float32) triton_poi_fused_avg_pool2d_15[grid(3456)](buf24, buf25, 3456, XBLOCK=256, num_warps=4, num_stages=1) buf26 = extern_kernels.convolution(buf25, buf6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf26, (4, 40, 6, 6), (1440, 1, 240, 40)) buf27 = buf26 del buf26 buf28 = empty_strided_cuda((4, 40, 6, 6), (1440, 1, 240, 40), torch .float32) triton_poi_fused__prelu_kernel_convolution_16[grid(5760)](buf27, primals_14, primals_4, buf28, 5760, XBLOCK=256, num_warps=4, num_stages=1) del primals_14 buf29 = extern_kernels.convolution(buf28, buf7, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf29, (4, 80, 6, 6), (2880, 1, 480, 80)) buf30 = buf29 del buf29 buf31 = empty_strided_cuda((4, 80, 6, 6), (2880, 36, 6, 1), torch. float32) triton_poi_fused__prelu_kernel_convolution_17[grid(144, 80)](buf30, primals_16, primals_4, buf31, 144, 80, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_16 buf32 = empty_strided_cuda((9, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_18, reinterpret_tensor(buf31, (9, 1280 ), (1280, 1), 0), reinterpret_tensor(primals_17, (1280, 128), ( 1, 1280), 0), alpha=1, beta=1, out=buf32) del primals_18 buf33 = empty_strided_cuda((9, 128), (128, 1), torch.float32) triton_poi_fused__prelu_kernel_18[grid(1152)](buf32, primals_4, buf33, 1152, XBLOCK=256, num_warps=4, num_stages=1) buf34 = empty_strided_cuda((9, 128), (128, 1), torch.float32) extern_kernels.addmm(primals_20, buf33, reinterpret_tensor( primals_19, (128, 128), (1, 128), 0), alpha=1, beta=1, out=buf34) del primals_20 buf35 = empty_strided_cuda((9, 128), (128, 1), torch.float32) triton_poi_fused__prelu_kernel_18[grid(1152)](buf34, primals_4, buf35, 1152, XBLOCK=256, num_warps=4, num_stages=1) buf36 = empty_strided_cuda((9, 42), (42, 1), torch.float32) extern_kernels.addmm(primals_22, buf35, reinterpret_tensor( primals_21, (128, 42), (1, 128), 0), alpha=1, beta=1, out=buf36) del primals_22 return (buf36, buf0, buf1, primals_4, buf2, buf3, buf4, buf5, buf6, buf7, buf9, buf10, buf11, buf13, buf14, buf16, buf17, buf18, buf20, buf21, buf23, buf24, buf25, buf27, buf28, buf30, reinterpret_tensor (buf31, (9, 1280), (1280, 1), 0), buf32, buf33, buf34, buf35, primals_21, primals_19, primals_17) class MyNetNew(nn.Module): def __init__(self): super(MyNetNew, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3, out_channels=8, kernel_size =5, stride=2, padding=0) self.conv2_1 = nn.Conv2d(8, 16, 3, 1, 0) self.conv2_2 = nn.Conv2d(16, 16, 3, 1, 0) self.conv3_1 = nn.Conv2d(16, 24, 3, 1, 0) self.conv3_2 = nn.Conv2d(24, 24, 3, 1, 0) self.conv4_1 = nn.Conv2d(24, 40, 3, 1, 1) self.conv4_2 = nn.Conv2d(40, 80, 3, 1, 1) self.ip1 = nn.Linear(80 * 4 * 4, 128) self.ip2 = nn.Linear(128, 128) self.ip3 = nn.Linear(128, 42) self.prelu = nn.PReLU() self.avg_pool = nn.AvgPool2d(2, 2, ceil_mode=True) def forward(self, input_0): primals_1 = self.conv1_1.weight primals_2 = self.conv1_1.bias primals_5 = self.conv2_1.weight primals_6 = self.conv2_1.bias primals_7 = self.conv2_2.weight primals_8 = self.conv2_2.bias primals_9 = self.conv3_1.weight primals_10 = self.conv3_1.bias primals_11 = self.conv3_2.weight primals_12 = self.conv3_2.bias primals_13 = self.conv4_1.weight primals_14 = self.conv4_1.bias primals_15 = self.conv4_2.weight primals_16 = self.conv4_2.bias primals_17 = self.ip1.weight primals_18 = self.ip1.bias primals_19 = self.ip2.weight primals_20 = self.ip2.bias primals_21 = self.ip3.weight primals_22 = self.ip3.bias primals_4 = self.prelu.weight primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22]) return output[0]
DeepDuke/Face_Keypoints_Dectection
MyNet
false
485
[ "MIT" ]
0
9f09e1ad113734a9ba5d006d3f817a497db572aa
https://github.com/DeepDuke/Face_Keypoints_Dectection/tree/9f09e1ad113734a9ba5d006d3f817a497db572aa
MLP
import torch import torch.nn as nn from collections import OrderedDict class MLP(nn.Module): def __init__(self, input_dims, n_hiddens, n_class): super(MLP, self).__init__() assert isinstance(input_dims, int), 'Please provide int for input_dims' self.input_dims = input_dims current_dims = input_dims layers = OrderedDict() if isinstance(n_hiddens, int): n_hiddens = [n_hiddens] else: n_hiddens = list(n_hiddens) for i, n_hidden in enumerate(n_hiddens): layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden) layers['relu{}'.format(i + 1)] = nn.ReLU() layers['drop{}'.format(i + 1)] = nn.Dropout(0.2) current_dims = n_hidden layers['out'] = nn.Linear(current_dims, n_class) self.model = nn.Sequential(layers) None def forward(self, input): input = input.view(input.size(0), -1) assert input.size(1) == self.input_dims return self.model.forward(input) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dims': 4, 'n_hiddens': 4, 'n_class': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return buf2, primals_1, buf1, primals_4 class MLPNew(nn.Module): def __init__(self, input_dims, n_hiddens, n_class): super(MLPNew, self).__init__() assert isinstance(input_dims, int), 'Please provide int for input_dims' self.input_dims = input_dims current_dims = input_dims layers = OrderedDict() if isinstance(n_hiddens, int): n_hiddens = [n_hiddens] else: n_hiddens = list(n_hiddens) for i, n_hidden in enumerate(n_hiddens): layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden) layers['relu{}'.format(i + 1)] = nn.ReLU() layers['drop{}'.format(i + 1)] = nn.Dropout(0.2) current_dims = n_hidden layers['out'] = nn.Linear(current_dims, n_class) self.model = nn.Sequential(layers) None def forward(self, input_0): primals_1 = self.model.fc1.weight primals_3 = self.model.fc1.bias primals_2 = self.model.out.weight primals_5 = self.model.out.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
ZhiTingXin/pytorch-playground
MLP
false
9,716
[ "MIT" ]
0
b319eaf290ad6d793e41efc488309cedf24eba96
https://github.com/ZhiTingXin/pytorch-playground/tree/b319eaf290ad6d793e41efc488309cedf24eba96
BPR
import torch import torch.nn as nn import torch.nn.functional as F class BPR(nn.Module): def __init__(self, user_size, item_size, dim, weight_decay): super().__init__() self.W = nn.Parameter(torch.empty(user_size, dim)) self.H = nn.Parameter(torch.empty(item_size, dim)) nn.init.xavier_normal_(self.W.data) nn.init.xavier_normal_(self.H.data) self.weight_decay = weight_decay def forward(self, u, i, j): """Return loss value. Args: u(torch.LongTensor): tensor stored user indexes. [batch_size,] i(torch.LongTensor): tensor stored item indexes which is prefered by user. [batch_size,] j(torch.LongTensor): tensor stored item indexes which is not prefered by user. [batch_size,] Returns: torch.FloatTensor """ u = self.W[u, :] i = self.H[i, :] j = self.H[j, :] x_ui = torch.mul(u, i).sum(dim=1) x_uj = torch.mul(u, j).sum(dim=1) x_uij = x_ui - x_uj log_prob = F.logsigmoid(x_uij).sum() regularization = self.weight_decay * (u.norm(dim=1).pow(2).sum() + i.norm(dim=1).pow(2).sum() + j.norm(dim=1).pow(2).sum()) return -log_prob + regularization def recommend(self, u): """Return recommended item list given users. Args: u(torch.LongTensor): tensor stored user indexes. [batch_size,] Returns: pred(torch.LongTensor): recommended item list sorted by preference. [batch_size, item_size] """ u = self.W[u, :] x_ui = torch.mm(u, self.H.t()) pred = torch.argsort(x_ui, dim=1) return pred def get_inputs(): return [torch.ones([4], dtype=torch.int64), torch.ones([4], dtype=torch .int64), torch.ones([4], dtype=torch.int64)] def get_init_inputs(): return [[], {'user_size': 4, 'item_size': 4, 'dim': 4, 'weight_decay': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0( in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp7 = tl.load(in_ptr2 + r0, None) tmp26 = tl.load(in_ptr4 + r0, None) tmp1 = tl.full([XBLOCK, RBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4), 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + 4 * tmp4, None, eviction_policy='evict_last') tmp8 = tmp7 + tmp1 tmp9 = tmp7 < 0 tmp10 = tl.where(tmp9, tmp8, tmp7) tl.device_assert((0 <= tmp10) & (tmp10 < 4), 'index out of bounds: 0 <= tmp10 < 4') tmp12 = tl.load(in_ptr3 + 4 * tmp10, None, eviction_policy='evict_last') tmp13 = tmp6 * tmp12 tmp14 = tl.load(in_ptr1 + (1 + 4 * tmp4), None, eviction_policy= 'evict_last') tmp15 = tl.load(in_ptr3 + (1 + 4 * tmp10), None, eviction_policy= 'evict_last') tmp16 = tmp14 * tmp15 tmp17 = tmp13 + tmp16 tmp18 = tl.load(in_ptr1 + (2 + 4 * tmp4), None, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr3 + (2 + 4 * tmp10), None, eviction_policy= 'evict_last') tmp20 = tmp18 * tmp19 tmp21 = tmp17 + tmp20 tmp22 = tl.load(in_ptr1 + (3 + 4 * tmp4), None, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr3 + (3 + 4 * tmp10), None, eviction_policy= 'evict_last') tmp24 = tmp22 * tmp23 tmp25 = tmp21 + tmp24 tmp27 = tmp26 + tmp1 tmp28 = tmp26 < 0 tmp29 = tl.where(tmp28, tmp27, tmp26) tl.device_assert((0 <= tmp29) & (tmp29 < 4), 'index out of bounds: 0 <= tmp29 < 4') tmp31 = tl.load(in_ptr3 + 4 * tmp29, None, eviction_policy='evict_last') tmp32 = tmp6 * tmp31 tmp33 = tl.load(in_ptr3 + (1 + 4 * tmp29), None, eviction_policy= 'evict_last') tmp34 = tmp14 * tmp33 tmp35 = tmp32 + tmp34 tmp36 = tl.load(in_ptr3 + (2 + 4 * tmp29), None, eviction_policy= 'evict_last') tmp37 = tmp18 * tmp36 tmp38 = tmp35 + tmp37 tmp39 = tl.load(in_ptr3 + (3 + 4 * tmp29), None, eviction_policy= 'evict_last') tmp40 = tmp22 * tmp39 tmp41 = tmp38 + tmp40 tmp42 = tmp6 * tmp6 tmp43 = tmp14 * tmp14 tmp44 = tmp42 + tmp43 tmp45 = tmp18 * tmp18 tmp46 = tmp44 + tmp45 tmp47 = tmp22 * tmp22 tmp48 = tmp46 + tmp47 tmp49 = libdevice.sqrt(tmp48) tmp50 = tmp49 * tmp49 tmp51 = tl.broadcast_to(tmp50, [XBLOCK, RBLOCK]) tmp53 = tl.sum(tmp51, 1)[:, None] tmp54 = tmp12 * tmp12 tmp55 = tmp15 * tmp15 tmp56 = tmp54 + tmp55 tmp57 = tmp19 * tmp19 tmp58 = tmp56 + tmp57 tmp59 = tmp23 * tmp23 tmp60 = tmp58 + tmp59 tmp61 = libdevice.sqrt(tmp60) tmp62 = tmp61 * tmp61 tmp63 = tl.broadcast_to(tmp62, [XBLOCK, RBLOCK]) tmp65 = tl.sum(tmp63, 1)[:, None] tmp66 = tmp31 * tmp31 tmp67 = tmp33 * tmp33 tmp68 = tmp66 + tmp67 tmp69 = tmp36 * tmp36 tmp70 = tmp68 + tmp69 tmp71 = tmp39 * tmp39 tmp72 = tmp70 + tmp71 tmp73 = libdevice.sqrt(tmp72) tmp74 = tmp73 * tmp73 tmp75 = tl.broadcast_to(tmp74, [XBLOCK, RBLOCK]) tmp77 = tl.sum(tmp75, 1)[:, None] tmp78 = tmp25 - tmp41 tmp79 = 0.0 tmp80 = triton_helpers.minimum(tmp79, tmp78) tmp81 = tl_math.abs(tmp78) tmp82 = -tmp81 tmp83 = tl_math.exp(tmp82) tmp84 = libdevice.log1p(tmp83) tmp85 = tmp80 - tmp84 tmp86 = tl.broadcast_to(tmp85, [XBLOCK, RBLOCK]) tmp88 = tl.sum(tmp86, 1)[:, None] tmp89 = -tmp88 tmp90 = tmp53 + tmp65 tmp91 = tmp90 + tmp77 tmp92 = 4.0 tmp93 = tmp91 * tmp92 tmp94 = tmp89 + tmp93 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp94, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4,), (1,)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf2 = empty_strided_cuda((), (), torch.float32) buf6 = buf2 del buf2 get_raw_stream(0) triton_per_fused_add_index_linalg_vector_norm_log_sigmoid_forward_mul_neg_pow_sub_sum_0[ grid(1)](buf6, primals_2, primals_1, primals_4, primals_3, primals_5, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) return buf6, primals_1, primals_2, primals_3, primals_4, primals_5 class BPRNew(nn.Module): def __init__(self, user_size, item_size, dim, weight_decay): super().__init__() self.W = nn.Parameter(torch.empty(user_size, dim)) self.H = nn.Parameter(torch.empty(item_size, dim)) nn.init.xavier_normal_(self.W.data) nn.init.xavier_normal_(self.H.data) self.weight_decay = weight_decay def recommend(self, u): """Return recommended item list given users. Args: u(torch.LongTensor): tensor stored user indexes. [batch_size,] Returns: pred(torch.LongTensor): recommended item list sorted by preference. [batch_size, item_size] """ u = self.W[u, :] x_ui = torch.mm(u, self.H.t()) pred = torch.argsort(x_ui, dim=1) return pred def forward(self, input_0, input_1, input_2): primals_1 = self.W primals_3 = self.H primals_2 = input_0 primals_4 = input_1 primals_5 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
EternalImmortal/bpr
BPR
false
9,008
[ "MIT" ]
0
ba95806530e51b580359d22ed533ad461124fa22
https://github.com/EternalImmortal/bpr/tree/ba95806530e51b580359d22ed533ad461124fa22
VectorQuantizer
import torch import torch.nn as nn import torch.nn.functional as F class VectorQuantizer(nn.Module): def __init__(self, num_embeddings, embedding_dim, commitment_cost): super(VectorQuantizer, self).__init__() self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self. _embedding_dim) self._embedding.weight.data.uniform_(-1 / self._num_embeddings, 1 / self._num_embeddings) self._commitment_cost = commitment_cost def forward(self, inputs): inputs = inputs.permute(0, 2, 3, 1).contiguous() input_shape = inputs.shape flat_input = inputs.view(-1, self._embedding_dim) distances = torch.sum(flat_input ** 2, dim=1, keepdim=True ) + torch.sum(self._embedding.weight ** 2, dim=1 ) - 2 * torch.matmul(flat_input, self._embedding.weight.t()) encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) encodings = torch.zeros(encoding_indices.shape[0], self. _num_embeddings, device=inputs.device) encodings.scatter_(1, encoding_indices, 1) quantized = torch.matmul(encodings, self._embedding.weight).view( input_shape) e_latent_loss = F.mse_loss(quantized.detach(), inputs) q_latent_loss = F.mse_loss(quantized, inputs.detach()) loss = q_latent_loss + self._commitment_cost * e_latent_loss quantized = inputs + (quantized - inputs).detach() avg_probs = torch.mean(encodings, dim=0) perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10))) return loss, quantized.permute(0, 3, 1, 2).contiguous( ), perplexity, encodings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_embeddings': 4, 'embedding_dim': 4, 'commitment_cost': 4} ]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_view_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (16 * x1 + 64 * (y0 // 16) + y0 % 16), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_mul_pow_sub_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp19 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp14 = tmp13 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp16 * tmp16 tmp18 = tmp15 + tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp10 + tmp21 tmp24 = 2.0 tmp25 = tmp23 * tmp24 tmp26 = tmp22 - tmp25 tl.store(in_out_ptr0 + x2, tmp26, xmask) @triton.jit def triton_poi_fused_argmin_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp32 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 < tmp1 tmp3 = tmp0 == tmp1 tmp4 = tmp0 != tmp0 tmp5 = tmp1 != tmp1 tmp6 = tmp4 > tmp5 tmp7 = tmp2 | tmp6 tmp8 = tmp4 & tmp5 tmp9 = tmp3 | tmp8 tmp10 = tl.full([1], 0, tl.int64) tmp11 = tl.full([1], 1, tl.int64) tmp12 = tmp10 < tmp11 tmp13 = tmp9 & tmp12 tmp14 = tmp7 | tmp13 tmp15 = tl.where(tmp14, tmp0, tmp1) tmp16 = tl.where(tmp14, tmp10, tmp11) tmp18 = tmp15 < tmp17 tmp19 = tmp15 == tmp17 tmp20 = tmp15 != tmp15 tmp21 = tmp17 != tmp17 tmp22 = tmp20 > tmp21 tmp23 = tmp18 | tmp22 tmp24 = tmp20 & tmp21 tmp25 = tmp19 | tmp24 tmp26 = tl.full([1], 2, tl.int64) tmp27 = tmp16 < tmp26 tmp28 = tmp25 & tmp27 tmp29 = tmp23 | tmp28 tmp30 = tl.where(tmp29, tmp15, tmp17) tmp31 = tl.where(tmp29, tmp16, tmp26) tmp33 = tmp30 < tmp32 tmp34 = tmp30 == tmp32 tmp35 = tmp30 != tmp30 tmp36 = tmp32 != tmp32 tmp37 = tmp35 > tmp36 tmp38 = tmp33 | tmp37 tmp39 = tmp35 & tmp36 tmp40 = tmp34 | tmp39 tmp41 = tl.full([1], 3, tl.int64) tmp42 = tmp31 < tmp41 tmp43 = tmp40 & tmp42 tmp44 = tmp38 | tmp43 tl.where(tmp44, tmp30, tmp32) tmp46 = tl.where(tmp44, tmp31, tmp41) tl.store(out_ptr0 + x0, tmp46, xmask) @triton.jit def triton_poi_fused_scatter_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = x0 tmp2 = tmp0 == tmp1 tmp3 = 1.0 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_per_fused_add_clone_mse_loss_mul_4(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 4 r1 = rindex // 4 % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr1 + (r1 + 16 * r0 + 64 * r2), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = 256.0 tmp8 = tmp6 / tmp7 tmp9 = 4.0 tmp10 = tmp8 * tmp9 tmp11 = tmp8 + tmp10 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp11, None) @triton.jit def triton_per_fused_mean_5(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * r1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + x0, tmp4, xmask) @triton.jit def triton_per_fused_add_exp_log_mean_mul_neg_sum_6(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = 64.0 tmp2 = tmp0 / tmp1 tmp3 = 1e-10 tmp4 = tmp2 + tmp3 tmp5 = tl_math.log(tmp4) tmp6 = tmp2 * tmp5 tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.sum(tmp7, 1)[:, None] tmp10 = -tmp9 tmp11 = tl_math.exp(tmp10) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp11, None) @triton.jit def triton_poi_fused_clone_7(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 4 y1 = yindex // 4 tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask) tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tmp2 = tmp1 - tmp0 tmp3 = tmp0 + tmp2 tl.store(out_ptr0 + (x2 + 16 * y3), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_clone_mse_loss_mse_loss_backward_8(in_out_ptr0, in_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 16 y1 = yindex // 16 tmp0 = tl.load(in_out_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 0.0078125 tmp4 = tmp2 * tmp3 tl.debug_barrier() tl.store(in_out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_view_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 4), (1, 4 ), 0), out=buf1) buf2 = buf1 del buf1 triton_poi_fused_add_mul_pow_sub_sum_1[grid(256)](buf2, buf0, primals_2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = empty_strided_cuda((64,), (1,), torch.int64) triton_poi_fused_argmin_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = buf2 del buf2 triton_poi_fused_scatter_3[grid(256)](buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf3 buf5 = buf0 del buf0 extern_kernels.mm(buf4, primals_2, out=buf5) del primals_2 buf6 = empty_strided_cuda((), (), torch.float32) buf11 = buf6 del buf6 triton_per_fused_add_clone_mse_loss_mul_4[grid(1)](buf11, buf5, primals_1, 1, 256, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_mean_5[grid(4)](buf4, buf7, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((), (), torch.float32) buf12 = buf8 del buf8 triton_per_fused_add_exp_log_mean_mul_neg_sum_6[grid(1)](buf12, buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf7 buf9 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_7[grid(16, 16)](primals_1, buf5, buf9, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1) buf10 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_clone_mse_loss_mse_loss_backward_8[grid(64, 4)](buf10, primals_1, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 return buf11, buf9, buf12, buf4, buf10, reinterpret_tensor(buf4, (4, 64 ), (1, 4), 0) class VectorQuantizerNew(nn.Module): def __init__(self, num_embeddings, embedding_dim, commitment_cost): super(VectorQuantizerNew, self).__init__() self._embedding_dim = embedding_dim self._num_embeddings = num_embeddings self._embedding = nn.Embedding(self._num_embeddings, self. _embedding_dim) self._embedding.weight.data.uniform_(-1 / self._num_embeddings, 1 / self._num_embeddings) self._commitment_cost = commitment_cost def forward(self, input_0): primals_2 = self._embedding.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0], output[1], output[2], output[3]
acyclics/neurips2020-procgen-starter-kit
VectorQuantizer
false
1,384
[ "Apache-2.0" ]
0
16d52eb72d41c6b808c20644501710842134add4
https://github.com/acyclics/neurips2020-procgen-starter-kit/tree/16d52eb72d41c6b808c20644501710842134add4
PositionwiseFeedForward
import torch import torch.utils.data import torch.nn as nn import torch.nn.functional as F class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Conv1d(d_in, d_hid, 1) self.w_2 = nn.Conv1d(d_hid, d_in, 1) self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x output = x.transpose(1, 2) output = self.w_2(F.relu(self.w_1(output))) output = output.transpose(1, 2) output = self.dropout(output) output = self.layer_norm(output + residual) return output def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'d_in': 4, 'd_hid': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask) tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask) tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask) tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask) tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) tl.store(out_ptr1 + x2, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + y3, ymask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x2, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2 + 4 * y3), tmp13, xmask & ymask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4), (16, 4, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_5 buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf6 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(16)](buf4, primals_1, buf5, buf6, 16, XBLOCK=16, num_warps=1, num_stages=1) buf7 = buf0 del buf0 triton_poi_fused_add_native_layer_norm_4[grid(16, 4)](buf4, primals_1, buf5, buf6, primals_6, primals_7, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del buf5 del buf6 del primals_7 return buf7, primals_1, primals_2, primals_4, primals_6, buf2, buf4 class PositionwiseFeedForwardNew(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Conv1d(d_in, d_hid, 1) self.w_2 = nn.Conv1d(d_hid, d_in, 1) self.layer_norm = nn.LayerNorm(d_in) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_6 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
Doomski99/MarcCoru2019CropType
PositionwiseFeedForward
false
11,386
[ "MIT" ]
0
17db294ef51bdd39fd884e0052141d8092b98b86
https://github.com/Doomski99/MarcCoru2019CropType/tree/17db294ef51bdd39fd884e0052141d8092b98b86
NNet
import torch import torch.nn as nn import torch.nn.functional as F class NNet(nn.Module): def __init__(self, input_dim, output_dim): super(NNet, self).__init__() self.linear1 = nn.Linear(input_dim, 64) self.linear2 = nn.Linear(64, 256) self.linear3 = nn.Linear(256, output_dim) def forward(self, x): x = F.relu(self.linear1(x)) x = F.relu(self.linear2(x)) x = self.linear3(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_dim': 4, 'output_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (64, 4), (4, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (256, 64), (64, 1)) assert_size_stride(primals_5, (256,), (1,)) assert_size_stride(primals_6, (4, 256), (256, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 64), (64, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 64), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 64), (1024, 256, 64, 1), 0) del buf0 buf6 = empty_strided_cuda((4, 4, 4, 64), (1024, 256, 64, 1), torch.bool ) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(4096)](buf1, primals_2, buf6, 4096, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 256), (256, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor(primals_4, (64, 256), (1, 64), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 256), (4096, 1024, 256, 1), 0 ) del buf2 buf5 = empty_strided_cuda((4, 4, 4, 256), (4096, 1024, 256, 1), torch.bool) triton_poi_fused_relu_threshold_backward_1[grid(16384)](buf3, primals_5, buf5, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 256), (256, 1), 0), reinterpret_tensor(primals_6, (256, 4), (1, 256), 0), alpha=1, beta=1, out=buf4) del primals_7 return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 64), (64, 1), 0), reinterpret_tensor( buf3, (64, 256), (256, 1), 0), primals_6, buf5, primals_4, buf6 class NNetNew(nn.Module): def __init__(self, input_dim, output_dim): super(NNetNew, self).__init__() self.linear1 = nn.Linear(input_dim, 64) self.linear2 = nn.Linear(64, 256) self.linear3 = nn.Linear(256, output_dim) def forward(self, input_0): primals_1 = self.linear1.weight primals_2 = self.linear1.bias primals_4 = self.linear2.weight primals_5 = self.linear2.bias primals_6 = self.linear3.weight primals_7 = self.linear3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
gautam-sharma1/Imitation-Learning
NNet
false
3,527
[ "MIT" ]
0
20b6fcd2a8d6de8eb95e6831f5b379a083306361
https://github.com/gautam-sharma1/Imitation-Learning/tree/20b6fcd2a8d6de8eb95e6831f5b379a083306361
PositionwiseFeedForward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/4u/c4u3liwgy6ah3xlxfhvbczvvfare3yvkd7osc2eyowkxndto3p24.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, rsqrt, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gn/cgn3tpasui6fv3xxba47jzqip7bgipyrz4akedry64e2fx5k4rvd.py # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # layer_norm => add, add_1, mul, mul_1, rsqrt, sub, var_mean # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_3, [3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_3, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_2), kwargs = {}) triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/3a/c3asrsyuybhvyyokqadgkn4dnhzrdoetfuhpfcg2pkqy2j4beaia.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_relu_threshold_backward_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/h3/ch3dkn75z5nv2s6poei22lobtkafusftzt2ks6goill4cq3nfbmj.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add_2 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_3, %primals_3), kwargs = {}) triton_poi_fused_add_3 = async_compile.triton('triton_poi_fused_add_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] stream0 = get_raw_stream(0) triton_poi_fused_native_layer_norm_0.run(primals_3, buf0, buf1, 64, grid=grid(64), stream=stream0) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_1.run(primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, grid=grid(256), stream=stream0) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf3 # reuse buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_2.run(buf4, primals_5, buf7, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] triton_poi_fused_add_3.run(buf6, primals_7, primals_3, 256, grid=grid(256), stream=stream0) del primals_7 return (buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(buf4, (64, 4), (4, 1), 0), primals_6, buf7, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) get_raw_stream(0) triton_poi_fused_native_layer_norm_0[grid(64)](primals_3, buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_1[grid(256)](primals_3, buf0, buf1, primals_1, primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del buf1 del primals_1 del primals_2 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) buf4 = reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf3 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(256)](buf4, primals_5, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf5) buf6 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused_add_3[grid(256)](buf6, primals_7, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 return buf6, primals_3, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf4, (64, 4), (4, 1), 0 ), primals_6, buf7, primals_4 class PositionwiseFeedForwardNew(nn.Module): """ A two-layer Feed-Forward-Network with residual layer norm. Args: d_model (int): the size of input for the first-layer of the FFN. d_ff (int): the hidden layer size of the second-layer of the FNN. dropout (float): dropout probability in :math:`[0, 1)`. """ def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForwardNew, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) self.dropout_1 = nn.Dropout(dropout) self.relu = nn.ReLU() self.dropout_2 = nn.Dropout(dropout) def forward(self, input_0): primals_4 = self.w_1.weight primals_1 = self.w_1.bias primals_6 = self.w_2.weight primals_2 = self.w_2.bias primals_5 = self.layer_norm.weight primals_7 = self.layer_norm.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
ChenRocks/Distill-BERT-Textgen-ONMT
PositionwiseFeedForward
false
17,101
[ "MIT" ]
7
d83dd1a95af7513cbfae4a2768f6effc2f3a589f
https://github.com/ChenRocks/Distill-BERT-Textgen-ONMT/tree/d83dd1a95af7513cbfae4a2768f6effc2f3a589f
CE_Loss
import torch from torch import nn import torch.nn.functional as F import torch.utils class CE_Loss(nn.Module): def __init__(self, temperature=1): super(CE_Loss, self).__init__() self.T = temperature def forward(self, output_batch, teacher_outputs): output_batch = F.log_softmax(output_batch / self.T, dim=1) teacher_outputs = F.softmax(teacher_outputs / self.T, dim=1) loss = -self.T * self.T * torch.sum(torch.mul(output_batch, teacher_outputs)) / teacher_outputs.size(0) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn import torch.utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp3 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x3, tmp16, xmask) @triton.jit def triton_per_fused__log_softmax__softmax_div_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r3 = rindex r0 = rindex % 16 r2 = rindex // 64 tmp0 = tl.load(in_ptr0 + r3, None) tmp1 = tl.load(in_ptr0 + (r0 + 64 * r2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr0 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp14 = tl.load(in_ptr1 + r3, None) tmp15 = tl.load(in_ptr1 + (r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + (16 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp18 = tl.load(in_ptr1 + (32 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp20 = tl.load(in_ptr1 + (48 + r0 + 64 * r2), None, eviction_policy= 'evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tmp17 = tmp15 + tmp16 tmp19 = tmp17 + tmp18 tmp21 = tmp19 + tmp20 tmp22 = tmp14 / tmp21 tmp23 = tmp13 * tmp22 tmp24 = tl.broadcast_to(tmp23, [RBLOCK]) tmp26 = triton_helpers.promote_to_tensor(tl.sum(tmp24, 0)) tmp27 = -1.0 tmp28 = tmp26 * tmp27 tmp29 = 0.25 tmp30 = tmp28 * tmp29 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp30, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](arg1_1, buf1, 256, XBLOCK= 256, num_warps=4, num_stages=1) del arg1_1 buf3 = empty_strided_cuda((), (), torch.float32) buf4 = buf3 del buf3 triton_per_fused__log_softmax__softmax_div_mul_sum_2[grid(1)](buf4, buf0, buf1, 1, 256, num_warps=2, num_stages=1) del buf0 del buf1 return buf4, class CE_LossNew(nn.Module): def __init__(self, temperature=1): super(CE_LossNew, self).__init__() self.T = temperature def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
NeutrinoLiu/FedML
CE_Loss
false
2,667
[ "Apache-2.0" ]
0
1670b2a3f0b2d63c374a9a4a19449090c694bc78
https://github.com/NeutrinoLiu/FedML/tree/1670b2a3f0b2d63c374a9a4a19449090c694bc78
SparseDownSampleClose
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data class SparseDownSampleClose(nn.Module): def __init__(self, stride): super(SparseDownSampleClose, self).__init__() self.pooling = nn.MaxPool2d(stride, stride) self.large_number = 600 def forward(self, d, mask): encode_d = -(1 - mask) * self.large_number - d d = -self.pooling(encode_d) mask_result = self.pooling(mask) d_result = d - (1 - mask_result) * self.large_number return d_result, mask_result def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'stride': 1}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp6 = tl.load(in_ptr1 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp3 = -tmp2 tmp4 = 600.0 tmp5 = tmp3 * tmp4 tmp7 = tmp5 - tmp6 tmp8 = -tmp7 tmp9 = tmp2 * tmp4 tmp10 = tmp8 - tmp9 tl.store(out_ptr0 + x0, tmp0, xmask) tl.store(in_out_ptr0 + x0, tmp10, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_max_pool2d_with_indices_mul_neg_rsub_sub_0[grid(256)]( buf2, arg0_1, arg1_1, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf2, buf1 class SparseDownSampleCloseNew(nn.Module): def __init__(self, stride): super(SparseDownSampleCloseNew, self).__init__() self.pooling = nn.MaxPool2d(stride, stride) self.large_number = 600 def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0], output[1]
phatli/PENet_ICRA2021
SparseDownSampleClose
false
4,119
[ "MIT" ]
0
18594b8f11d4d99022d9c80a86a6e2d4e854404a
https://github.com/phatli/PENet_ICRA2021/tree/18594b8f11d4d99022d9c80a86a6e2d4e854404a
DecoderLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/ue/cueewzxuy4vxtpvu3vvsk7dj77iejxhffcljrvuqynhlke7j7x72.py # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] # Source node to ATen node mapping: # attn => clone # truediv => div # Graph fragment: # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%permute_3, 2.0), kwargs = {}) # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_div_0 = async_compile.triton('triton_poi_fused_clone_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ri/cricgdtr5c24l63g746gjtdd45qor3pkzmi7qmyygyd24ejrijb7.py # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] # Source node to ATen node mapping: # attn => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = (yindex // 16) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x2) + (64*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tt/cttmvktt3m2x2nl56afa7l3abaxt7wlehowakdzngkhgs35f3n7u.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_11, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_11, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ry/cryn7ntc2gpkbfzbre3xh7lffx7zkbskw6oihbzsekkgajmdbki6.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6b/c6busvilz5nn36jjet3bmw7cqddirh4sgalamjr3fsrp3sbsacfi.py # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] # Source node to ATen node mapping: # output => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) % 4 x2 = (xindex // 16) % 4 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (4*x2) + (16*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6m/c6mhj5zwirfhy5e4o45uaeov72uwfby4udubpm2fcz42iqvs2g57.py # Topologically Sorted Source Nodes: [q_4, q_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_4 => add # q_5 => var_mean # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add, [2]), kwargs = {correction: 0, keepdim: True}) triton_poi_fused_add_native_layer_norm_5 = async_compile.triton('triton_poi_fused_add_native_layer_norm_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + (x0), tmp16, xmask) tl.store(out_ptr1 + (x0), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4x/c4xhyeqwdsmcjrai7qupnp32wkqqkb7huwel4p2t7ouguqvlxfyq.py # Topologically Sorted Source Nodes: [q_4, q_5], Original ATen: [aten.add, aten.native_layer_norm] # Source node to ATen node mapping: # q_4 => add # q_5 => add_1, add_2, mul, mul_1, rsqrt, sub_1 # Graph fragment: # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_17, %primals_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-06), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %getitem_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_6), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_7), kwargs = {}) triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x2), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + (x2), tmp13, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/fr/cfrvmolzdvsekgv4ejh4rokymzyx2ewy7rgqbypf7vpbjl3l2peb.py # Topologically Sorted Source Nodes: [q_10], Original ATen: [aten.add] # Source node to ATen node mapping: # q_10 => add_3 # Graph fragment: # %add_3 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_35, %add_2), kwargs = {}) triton_poi_fused_add_7 = async_compile.triton('triton_poi_fused_add_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/za/czafm2jgycg472xvixvwihaduwf6hk7i4vs4m7lhryedtui37wqi.py # Topologically Sorted Source Nodes: [q_11], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # q_11 => add_4, rsqrt_1, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) triton_poi_fused_native_layer_norm_8 = async_compile.triton('triton_poi_fused_native_layer_norm_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + (x0), tmp8, xmask) tl.store(out_ptr1 + (x0), tmp23, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/4d/c4dqmytly5zolisxgude22db5p3pbommvxualmvn6ercwtoppkm7.py # Topologically Sorted Source Nodes: [q_11], Original ATen: [aten.native_layer_norm] # Source node to ATen node mapping: # q_11 => add_4, add_5, mul_2, mul_3, rsqrt_1, sub_3, var_mean_1 # Graph fragment: # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_3, [2]), kwargs = {correction: 0, keepdim: True}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-06), kwargs = {}) # %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %getitem_3), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %rsqrt_1), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_2, %primals_13), kwargs = {}) # %add_5 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_3, %primals_14), kwargs = {}) triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ol/coljc3cs7q6hio3b326qftbftlnedhni7mopq6hnmq3reufgrywy.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_37,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_10 = async_compile.triton('triton_poi_fused_relu_threshold_backward_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_10(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/52/c52akk2vbz5dkkvkpur5tbjpgwwmk2uilv4wxplzlflwaytizptm.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] # Source node to ATen node mapping: # x_2 => add_6 # Graph fragment: # %add_6 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_39, %add_5), kwargs = {}) triton_poi_fused_add_11 = async_compile.triton('triton_poi_fused_add_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 16), (16, 1)) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (16, 4), (4, 1)) assert_size_stride(primals_10, (16, 4), (4, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4, ), (1, )) assert_size_stride(primals_14, (4, ), (1, )) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4, ), (1, )) assert_size_stride(primals_19, (4, ), (1, )) assert_size_stride(primals_20, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv, attn], Original ATen: [aten.div, aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_div_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf4, 64, 4, grid=grid(64, 4), stream=stream0) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [attn], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf6, buf7, 256, grid=grid(256), stream=stream0) buf8 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf2, buf8, 256, grid=grid(256), stream=stream0) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [output], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf9, buf10, 256, grid=grid(256), stream=stream0) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) # Topologically Sorted Source Nodes: [q_4, q_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_5.run(buf11, primals_1, buf12, buf13, 16, grid=grid(16), stream=stream0) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_4, q_5], Original ATen: [aten.add, aten.native_layer_norm] triton_poi_fused_add_native_layer_norm_6.run(buf11, primals_1, buf12, buf13, primals_6, primals_7, buf14, 64, grid=grid(64), stream=stream0) del primals_7 buf15 = reinterpret_tensor(buf9, (16, 16), (16, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 16), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_5], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), out=buf16) del primals_10 buf17 = empty_strided_cuda((16, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_6], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), out=buf17) del primals_11 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_1, attn_2], Original ATen: [aten.div, aten.clone] triton_poi_fused_clone_div_0.run(buf15, buf18, 256, grid=grid(256), stream=stream0) buf19 = reinterpret_tensor(buf15, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf15 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf16, buf19, 64, 4, grid=grid(64, 4), stream=stream0) buf20 = reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [attn_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf19, (16, 4, 4), (16, 4, 1), 0), out=buf20) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_2.run(buf20, buf21, 256, grid=grid(256), stream=stream0) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf20 # reuse # Topologically Sorted Source Nodes: [softmax_1], Original ATen: [aten._softmax] triton_poi_fused__softmax_3.run(buf21, buf22, 256, grid=grid(256), stream=stream0) buf23 = buf21; del buf21 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf17, buf23, 256, grid=grid(256), stream=stream0) buf24 = reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0); del buf17 # reuse # Topologically Sorted Source Nodes: [output_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 4, 1), 0), out=buf24) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone] triton_poi_fused_clone_4.run(buf24, buf25, 256, grid=grid(256), stream=stream0) del buf24 buf26 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_7], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf25, (16, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0); del buf26 # reuse # Topologically Sorted Source Nodes: [q_10], Original ATen: [aten.add] triton_poi_fused_add_7.run(buf27, buf14, 64, grid=grid(64), stream=stream0) buf28 = buf13; del buf13 # reuse buf29 = buf12; del buf12 # reuse # Topologically Sorted Source Nodes: [q_11], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf27, buf28, buf29, 16, grid=grid(16), stream=stream0) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [q_11], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf27, buf28, buf29, primals_13, primals_14, buf30, 64, grid=grid(64), stream=stream0) del primals_14 buf31 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf31) buf32 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0); del buf31 # reuse buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_10.run(buf32, primals_16, buf38, 64, grid=grid(64), stream=stream0) del primals_16 buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf32, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0); del buf33 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.add] triton_poi_fused_add_11.run(buf34, primals_18, buf30, 64, grid=grid(64), stream=stream0) del primals_18 buf35 = buf29; del buf29 # reuse buf36 = buf28; del buf28 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_8.run(buf34, buf35, buf36, 16, grid=grid(16), stream=stream0) buf37 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.native_layer_norm] triton_poi_fused_native_layer_norm_9.run(buf34, buf35, buf36, primals_19, primals_20, buf37, 64, grid=grid(64), stream=stream0) del buf35 del buf36 del primals_20 return (buf37, buf7, buf22, primals_1, primals_6, primals_13, primals_19, buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 16), (16, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(buf32, (16, 4), (4, 1), 0), buf34, primals_17, buf38, primals_15, primals_12, reinterpret_tensor(buf23, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf18, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf19, (16, 4, 4), (16, 1, 4), 0), primals_9, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_19 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tmp1 = 0.5 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 16 y1 = yindex // 16 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 % 4 x2 = xindex // 16 % 4 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-06 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) @triton.jit def triton_poi_fused_add_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_native_layer_norm_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-06 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_9(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_10(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_add_11(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (16, 4), (4, 1)) assert_size_stride(primals_3, (16, 4), (4, 1)) assert_size_stride(primals_4, (16, 4), (4, 1)) assert_size_stride(primals_5, (4, 16), (16, 1)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_9, (16, 4), (4, 1)) assert_size_stride(primals_10, (16, 4), (4, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (4, 16), (16, 1)) assert_size_stride(primals_13, (4,), (1,)) assert_size_stride(primals_14, (4,), (1,)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) assert_size_stride(primals_17, (4, 4), (4, 1)) assert_size_stride(primals_18, (4,), (1,)) assert_size_stride(primals_19, (4,), (1,)) assert_size_stride(primals_20, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2) del primals_4 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_div_0[grid(256)](buf0, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(64, 4)](buf1, buf4, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf5 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_3[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) buf8 = buf6 del buf6 triton_poi_fused_clone_4[grid(256)](buf2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 4), (16, 4, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(256)](buf9, buf10, 256, XBLOCK=256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf10, (16, 16), (16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0), out=buf11) buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_5[grid(16)](buf11, primals_1, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_6[grid(64)](buf11, primals_1, buf12, buf13, primals_6, primals_7, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 buf15 = reinterpret_tensor(buf9, (16, 16), (16, 1), 0) del buf9 extern_kernels.mm(reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 16), (1, 4), 0), out=buf15) buf16 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (4, 16), (1, 4), 0), out=buf16) del primals_10 buf17 = empty_strided_cuda((16, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), out=buf17) del primals_11 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_div_0[grid(256)](buf15, buf18, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf19 = reinterpret_tensor(buf15, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf15 triton_poi_fused_clone_1[grid(64, 4)](buf16, buf19, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf20 = reinterpret_tensor(buf16, (16, 4, 4), (16, 4, 1), 0) del buf16 extern_kernels.bmm(reinterpret_tensor(buf18, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf19, (16, 4, 4), (16, 4, 1), 0), out=buf20 ) buf21 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_2[grid(256)](buf20, buf21, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf22 = reinterpret_tensor(buf20, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf20 triton_poi_fused__softmax_3[grid(256)](buf21, buf22, 256, XBLOCK= 256, num_warps=4, num_stages=1) buf23 = buf21 del buf21 triton_poi_fused_clone_4[grid(256)](buf17, buf23, 256, XBLOCK=256, num_warps=4, num_stages=1) buf24 = reinterpret_tensor(buf17, (16, 4, 4), (16, 4, 1), 0) del buf17 extern_kernels.bmm(reinterpret_tensor(buf22, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf23, (16, 4, 4), (16, 4, 1), 0), out=buf24 ) buf25 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(256)](buf24, buf25, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf24 buf26 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf25, (16, 16), (16, 1), 0), reinterpret_tensor(primals_12, (16, 4), (1, 16), 0), out=buf26) buf27 = reinterpret_tensor(buf26, (4, 4, 4), (16, 4, 1), 0) del buf26 triton_poi_fused_add_7[grid(64)](buf27, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) buf28 = buf13 del buf13 buf29 = buf12 del buf12 triton_poi_fused_native_layer_norm_8[grid(16)](buf27, buf28, buf29, 16, XBLOCK=16, num_warps=1, num_stages=1) buf30 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(64)](buf27, buf28, buf29, primals_13, primals_14, buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_14 buf31 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf31) buf32 = reinterpret_tensor(buf31, (4, 4, 4), (16, 4, 1), 0) del buf31 buf38 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_10[grid(64)](buf32, primals_16, buf38, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_16 buf33 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf32, (16, 4), (4, 1), 0), reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), out=buf33) buf34 = reinterpret_tensor(buf33, (4, 4, 4), (16, 4, 1), 0) del buf33 triton_poi_fused_add_11[grid(64)](buf34, primals_18, buf30, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_18 buf35 = buf29 del buf29 buf36 = buf28 del buf28 triton_poi_fused_native_layer_norm_8[grid(16)](buf34, buf35, buf36, 16, XBLOCK=16, num_warps=1, num_stages=1) buf37 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_9[grid(64)](buf34, buf35, buf36, primals_19, primals_20, buf37, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf35 del buf36 del primals_20 return (buf37, buf7, buf22, primals_1, primals_6, primals_13, primals_19, buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0), buf11, reinterpret_tensor(buf14, (16, 4), (4, 1), 0), reinterpret_tensor(primals_8, (16, 4), (4, 1), 0), buf22, reinterpret_tensor(buf25, (16, 16), (16, 1), 0), buf27, reinterpret_tensor(buf30, (16, 4), (4, 1), 0), reinterpret_tensor( buf32, (16, 4), (4, 1), 0), buf34, primals_17, buf38, primals_15, primals_12, reinterpret_tensor(buf23, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf18, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf19, (16, 4, 4), (16, 1, 4), 0), primals_9, primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0)) class ScaledDotProductAttention(nn.Module): """ Scaled Dot-Product Attention """ def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): """ Multi-Head Attention module """ def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-06) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) q, attn = self.attention(q, k, v, mask=mask) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): """ A two-feed-forward-layer module """ def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) self.w_2 = nn.Linear(d_hid, d_in) self.layer_norm = nn.LayerNorm(d_in, eps=1e-06) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x class DecoderLayerNew(nn.Module): """ Compose with three layers """ def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.1): super(DecoderLayerNew, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.enc_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout= dropout) def forward(self, input_0, input_1): primals_2 = self.slf_attn.w_qs.weight primals_3 = self.slf_attn.w_ks.weight primals_4 = self.slf_attn.w_vs.weight primals_5 = self.slf_attn.fc.weight primals_6 = self.slf_attn.layer_norm.weight primals_7 = self.slf_attn.layer_norm.bias primals_9 = self.enc_attn.w_qs.weight primals_10 = self.enc_attn.w_ks.weight primals_11 = self.enc_attn.w_vs.weight primals_12 = self.enc_attn.fc.weight primals_13 = self.enc_attn.layer_norm.weight primals_14 = self.enc_attn.layer_norm.bias primals_15 = self.pos_ffn.w_1.weight primals_16 = self.pos_ffn.w_1.bias primals_17 = self.pos_ffn.w_2.weight primals_18 = self.pos_ffn.w_2.bias primals_19 = self.pos_ffn.layer_norm.weight primals_20 = self.pos_ffn.layer_norm.bias primals_1 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20]) return output[0], output[1], output[2]
Rajathbharadwaj/algorithmic-efficiency
DecoderLayer
false
14,286
[ "Apache-2.0" ]
49
47d2928836e0574bc54cc3ad58860dd4daf86cce
https://github.com/Rajathbharadwaj/algorithmic-efficiency/tree/47d2928836e0574bc54cc3ad58860dd4daf86cce
AuxsiameseMLP
import torch from torch import nn from torch.nn import functional as F class AuxsiameseMLP(nn.Module): """ basic structure similar to the MLP input is splited into two 1*14*14 images for separating training, share the same parameters softmax for the auxiliary output layers """ def __init__(self): super(AuxsiameseMLP, self).__init__() self.fc1 = nn.Linear(196, 160) self.fc2 = nn.Linear(160, 10) self.fc3 = nn.Linear(20, 2) def forward(self, x1, x2): x1 = x1.view(-1, 196) x1 = F.relu(self.fc1(x1)) x1 = self.fc2(x1) x2 = x2.view(-1, 196) x2 = F.relu(self.fc1(x2)) x2 = self.fc2(x2) x = torch.cat([x1, x2], dim=1) x = F.relu(x) x = torch.sigmoid(self.fc3(x)) return x, x1, x2 def get_inputs(): return [torch.rand([4, 196]), torch.rand([4, 196])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 640 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 160 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_out_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = tmp5 + tmp1 tmp7 = triton_helpers.maximum(tmp3, tmp6) tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(in_out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_cat_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 20 x1 = xindex // 20 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 10, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (10 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 20, tl.int64) tmp9 = tl.load(in_ptr1 + (10 * x1 + (-10 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tmp11 = tl.full([1], 0, tl.int32) tmp12 = triton_helpers.maximum(tmp11, tmp10) tl.store(out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 2 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 196), (196, 1)) assert_size_stride(primals_2, (160, 196), (196, 1)) assert_size_stride(primals_3, (160,), (1,)) assert_size_stride(primals_4, (10, 160), (160, 1)) assert_size_stride(primals_5, (10,), (1,)) assert_size_stride(primals_6, (4, 196), (196, 1)) assert_size_stride(primals_7, (2, 20), (20, 1)) assert_size_stride(primals_8, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 160), (160, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (196, 160), (1, 196), 0), out=buf0) buf3 = empty_strided_cuda((4, 160), (160, 1), torch.float32) extern_kernels.mm(primals_6, reinterpret_tensor(primals_2, (196, 160), (1, 196), 0), out=buf3) del primals_2 buf1 = buf0 del buf0 buf4 = buf3 del buf3 get_raw_stream(0) triton_poi_fused_relu_0[grid(640)](buf1, buf4, primals_3, 640, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (160, 10), (1, 160), 0), alpha=1, beta=1, out=buf2) buf5 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_5, buf4, reinterpret_tensor(primals_4, (160, 10), (1, 160), 0), alpha=1, beta=1, out=buf5) del primals_5 buf6 = empty_strided_cuda((4, 20), (20, 1), torch.float32) triton_poi_fused_cat_relu_1[grid(80)](buf2, buf5, buf6, 80, XBLOCK= 128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.mm(buf6, reinterpret_tensor(primals_7, (20, 2), (1, 20), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_sigmoid_2[grid(8)](buf8, primals_8, 8, XBLOCK=8, num_warps=1, num_stages=1) del primals_8 return (buf8, buf2, buf5, primals_1, buf1, primals_6, buf4, buf6, buf8, primals_7, primals_4) class AuxsiameseMLPNew(nn.Module): """ basic structure similar to the MLP input is splited into two 1*14*14 images for separating training, share the same parameters softmax for the auxiliary output layers """ def __init__(self): super(AuxsiameseMLPNew, self).__init__() self.fc1 = nn.Linear(196, 160) self.fc2 = nn.Linear(160, 10) self.fc3 = nn.Linear(20, 2) def forward(self, input_0, input_1): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_7 = self.fc3.weight primals_8 = self.fc3.bias primals_1 = input_0 primals_6 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0], output[1], output[2]
EE559DeepLearningEPFL/Project1
AuxsiameseMLP
false
388
[ "MIT" ]
0
cbafdfee26771ae0ba3cd36375e68d92e9f108b2
https://github.com/EE559DeepLearningEPFL/Project1/tree/cbafdfee26771ae0ba3cd36375e68d92e9f108b2
CharbonnierLoss
import torch import torch.utils.data import torch.nn as nn class CharbonnierLoss(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-06): super(CharbonnierLoss, self).__init__() self.eps = eps def forward(self, x, y): diff = x - y loss = torch.sum(torch.sqrt(diff * diff + self.eps)) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mul_sqrt_sub_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 1e-06 tmp5 = tmp3 + tmp4 tmp6 = libdevice.sqrt(tmp5) tmp7 = tl.broadcast_to(tmp6, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_add_mul_sqrt_sub_sum_0[grid(1)](arg0_1, arg1_1, buf0, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf0, class CharbonnierLossNew(nn.Module): """Charbonnier Loss (L1)""" def __init__(self, eps=1e-06): super(CharbonnierLossNew, self).__init__() self.eps = eps def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
EvgeneyZ/TMNet
CharbonnierLoss
false
13,649
[ "Apache-2.0" ]
90
8a42754747c2fa575e9108c13b5018a884f46099
https://github.com/EvgeneyZ/TMNet/tree/8a42754747c2fa575e9108c13b5018a884f46099
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/cs/ccsc4agybgmugec3jvvy5c5pyth7eqpczdwczcfpy422yi2l7o3s.py # Topologically Sorted Source Nodes: [prediction, mul, intersection, mul_1, sum_2, sum_3, add, union, truediv, sub], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # intersection => sum_1 # mul => mul # mul_1 => mul_1 # prediction => sigmoid # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # truediv => div # union => add_1 # Graph fragment: # %sigmoid : [num_users=2] = call_function[target=torch.ops.aten.sigmoid.default](args = (%arg0_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%sigmoid,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1e-07), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sigmoid_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sigmoid_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sigmoid_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp2 = tl.load(in_ptr1 + (r0), None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp1, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp2, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 2.0 tmp14 = tmp6 * tmp13 tmp15 = tmp9 + tmp12 tmp16 = 1e-07 tmp17 = tmp15 + tmp16 tmp18 = tmp14 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [prediction, mul, intersection, mul_1, sum_2, sum_3, add, union, truediv, sub], Original ATen: [aten.sigmoid, aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sigmoid_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sigmoid_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tmp4 = tl.broadcast_to(tmp3, [RBLOCK]) tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0)) tmp7 = tl.broadcast_to(tmp1, [RBLOCK]) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp7, 0)) tmp10 = tl.broadcast_to(tmp2, [RBLOCK]) tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0)) tmp13 = 2.0 tmp14 = tmp6 * tmp13 tmp15 = tmp9 + tmp12 tmp16 = 1e-07 tmp17 = tmp15 + tmp16 tmp18 = tmp14 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sigmoid_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): def __init__(self): super(DiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
BloodAxe/segmentation-networks-benchmark
DiceLoss
false
7,872
[ "MIT" ]
34
2e3feb560102230be9369ab442b4a59cc86dff61
https://github.com/BloodAxe/segmentation-networks-benchmark/tree/2e3feb560102230be9369ab442b4a59cc86dff61
AE_3D_200
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/aj/cajk2kri4vac3zy6ml2euhqgxisl7zmz2wt3ui5o2nd2hf6kbpst.py # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh => tanh # Graph fragment: # %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16384], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/25/c25cnezu4wyxlp3cukaewsn365vbeoybs3nai7soeby547veyxw6.py # Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh_1 => tanh_1 # Graph fragment: # %tanh_1 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_3,), kwargs = {}) triton_poi_fused_tanh_1 = async_compile.triton('triton_poi_fused_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/a2/ca2xzlwqstbgkxjyr3hcr6jhop5mrerzaq24nvnbqyp2hpaznrh2.py # Topologically Sorted Source Nodes: [tanh_2], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh_2 => tanh_2 # Graph fragment: # %tanh_2 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_5,), kwargs = {}) triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/n2/cn2tlht35rsyni6b5ifsgngiaor3ibplop4ap27iswkzgykwtc5r.py # Topologically Sorted Source Nodes: [tanh_3], Original ATen: [aten.tanh] # Source node to ATen node mapping: # tanh_3 => tanh_3 # Graph fragment: # %tanh_3 : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_7,), kwargs = {}) triton_poi_fused_tanh_3 = async_compile.triton('triton_poi_fused_tanh_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17 = args args.clear() assert_size_stride(primals_1, (200, 4), (4, 1)) assert_size_stride(primals_2, (200, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (100, 200), (200, 1)) assert_size_stride(primals_5, (100, ), (1, )) assert_size_stride(primals_6, (50, 100), (100, 1)) assert_size_stride(primals_7, (50, ), (1, )) assert_size_stride(primals_8, (3, 50), (50, 1)) assert_size_stride(primals_9, (3, ), (1, )) assert_size_stride(primals_10, (50, 3), (3, 1)) assert_size_stride(primals_11, (50, ), (1, )) assert_size_stride(primals_12, (100, 50), (50, 1)) assert_size_stride(primals_13, (100, ), (1, )) assert_size_stride(primals_14, (200, 100), (100, 1)) assert_size_stride(primals_15, (200, ), (1, )) assert_size_stride(primals_16, (4, 200), (200, 1)) assert_size_stride(primals_17, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [tanh], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 12800, grid=grid(12800), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 100), (1, 200), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [tanh_1], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf3, primals_5, 6400, grid=grid(6400), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 50), (1, 100), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [tanh_2], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf5, primals_7, 3200, grid=grid(3200), stream=stream0) del primals_7 buf6 = empty_strided_cuda((64, 3), (3, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf5, (64, 50), (50, 1), 0), reinterpret_tensor(primals_8, (50, 3), (1, 50), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 3), (48, 12, 3, 1), 0); del buf6 # reuse # Topologically Sorted Source Nodes: [tanh_3], Original ATen: [aten.tanh] triton_poi_fused_tanh_3.run(buf7, primals_9, 192, grid=grid(192), stream=stream0) del primals_9 buf8 = empty_strided_cuda((64, 50), (50, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf7, (64, 3), (3, 1), 0), reinterpret_tensor(primals_10, (3, 50), (1, 3), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 50), (800, 200, 50, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [tanh_4], Original ATen: [aten.tanh] triton_poi_fused_tanh_2.run(buf9, primals_11, 3200, grid=grid(3200), stream=stream0) del primals_11 buf10 = empty_strided_cuda((64, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf9, (64, 50), (50, 1), 0), reinterpret_tensor(primals_12, (50, 100), (1, 50), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 100), (1600, 400, 100, 1), 0); del buf10 # reuse # Topologically Sorted Source Nodes: [tanh_5], Original ATen: [aten.tanh] triton_poi_fused_tanh_1.run(buf11, primals_13, 6400, grid=grid(6400), stream=stream0) del primals_13 buf12 = empty_strided_cuda((64, 200), (200, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf11, (64, 100), (100, 1), 0), reinterpret_tensor(primals_14, (100, 200), (1, 100), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 200), (3200, 800, 200, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [tanh_6], Original ATen: [aten.tanh] triton_poi_fused_tanh_0.run(buf13, primals_15, 12800, grid=grid(12800), stream=stream0) del primals_15 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_7], Original ATen: [aten.addmm] extern_kernels.addmm(primals_17, reinterpret_tensor(buf13, (64, 200), (200, 1), 0), reinterpret_tensor(primals_16, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf14) del primals_17 return (reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, buf9, buf11, buf13, primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((200, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((100, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((50, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((3, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((3, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((50, 3), (3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((100, 50), (50, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((200, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((200, ), (1, ), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, 200), (200, 1), device='cuda:0', dtype=torch.float32) primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 200 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 50 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_tanh_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 3 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (200, 4), (4, 1)) assert_size_stride(primals_2, (200,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (100, 200), (200, 1)) assert_size_stride(primals_5, (100,), (1,)) assert_size_stride(primals_6, (50, 100), (100, 1)) assert_size_stride(primals_7, (50,), (1,)) assert_size_stride(primals_8, (3, 50), (50, 1)) assert_size_stride(primals_9, (3,), (1,)) assert_size_stride(primals_10, (50, 3), (3, 1)) assert_size_stride(primals_11, (50,), (1,)) assert_size_stride(primals_12, (100, 50), (50, 1)) assert_size_stride(primals_13, (100,), (1,)) assert_size_stride(primals_14, (200, 100), (100, 1)) assert_size_stride(primals_15, (200,), (1,)) assert_size_stride(primals_16, (4, 200), (200, 1)) assert_size_stride(primals_17, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 200), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 200), (3200, 800, 200, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(12800)](buf1, primals_2, 12800, XBLOCK =128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 200), (200, 1), 0), reinterpret_tensor(primals_4, (200, 100), (1, 200), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf2 triton_poi_fused_tanh_1[grid(6400)](buf3, primals_5, 6400, XBLOCK= 128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 100), (100, 1), 0), reinterpret_tensor(primals_6, (100, 50), (1, 100), 0), out=buf4) buf5 = reinterpret_tensor(buf4, (4, 4, 4, 50), (800, 200, 50, 1), 0) del buf4 triton_poi_fused_tanh_2[grid(3200)](buf5, primals_7, 3200, XBLOCK= 128, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((64, 3), (3, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf5, (64, 50), (50, 1), 0), reinterpret_tensor(primals_8, (50, 3), (1, 50), 0), out=buf6) buf7 = reinterpret_tensor(buf6, (4, 4, 4, 3), (48, 12, 3, 1), 0) del buf6 triton_poi_fused_tanh_3[grid(192)](buf7, primals_9, 192, XBLOCK=128, num_warps=4, num_stages=1) del primals_9 buf8 = empty_strided_cuda((64, 50), (50, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (64, 3), (3, 1), 0), reinterpret_tensor(primals_10, (3, 50), (1, 3), 0), out=buf8) buf9 = reinterpret_tensor(buf8, (4, 4, 4, 50), (800, 200, 50, 1), 0) del buf8 triton_poi_fused_tanh_2[grid(3200)](buf9, primals_11, 3200, XBLOCK= 128, num_warps=4, num_stages=1) del primals_11 buf10 = empty_strided_cuda((64, 100), (100, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf9, (64, 50), (50, 1), 0), reinterpret_tensor(primals_12, (50, 100), (1, 50), 0), out=buf10) buf11 = reinterpret_tensor(buf10, (4, 4, 4, 100), (1600, 400, 100, 1), 0) del buf10 triton_poi_fused_tanh_1[grid(6400)](buf11, primals_13, 6400, XBLOCK =128, num_warps=4, num_stages=1) del primals_13 buf12 = empty_strided_cuda((64, 200), (200, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf11, (64, 100), (100, 1), 0), reinterpret_tensor(primals_14, (100, 200), (1, 100), 0), out=buf12) buf13 = reinterpret_tensor(buf12, (4, 4, 4, 200), (3200, 800, 200, 1), 0) del buf12 triton_poi_fused_tanh_0[grid(12800)](buf13, primals_15, 12800, XBLOCK=128, num_warps=4, num_stages=1) del primals_15 buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_17, reinterpret_tensor(buf13, (64, 200 ), (200, 1), 0), reinterpret_tensor(primals_16, (200, 4), (1, 200), 0), alpha=1, beta=1, out=buf14) del primals_17 return (reinterpret_tensor(buf14, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf3, buf5, buf7, buf9, buf11, buf13, primals_16, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) class AE_3D_200New(nn.Module): def __init__(self, n_features=4): super(AE_3D_200New, self).__init__() self.en1 = nn.Linear(n_features, 200) self.en2 = nn.Linear(200, 100) self.en3 = nn.Linear(100, 50) self.en4 = nn.Linear(50, 3) self.de1 = nn.Linear(3, 50) self.de2 = nn.Linear(50, 100) self.de3 = nn.Linear(100, 200) self.de4 = nn.Linear(200, n_features) self.tanh = nn.Tanh() def encode(self, x): return self.en4(self.tanh(self.en3(self.tanh(self.en2(self.tanh( self.en1(x))))))) def decode(self, x): return self.de4(self.tanh(self.de3(self.tanh(self.de2(self.tanh( self.de1(self.tanh(x)))))))) def describe(self): return 'in-200-100-50-3-50-100-200-out' def forward(self, input_0): primals_1 = self.en1.weight primals_2 = self.en1.bias primals_4 = self.en2.weight primals_5 = self.en2.bias primals_6 = self.en3.weight primals_7 = self.en3.bias primals_8 = self.en4.weight primals_9 = self.en4.bias primals_10 = self.de1.weight primals_11 = self.de1.bias primals_12 = self.de2.weight primals_13 = self.de2.bias primals_14 = self.de3.weight primals_15 = self.de3.bias primals_16 = self.de4.weight primals_17 = self.de4.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
gitter-badger/HEPAutoencoders
AE_3D_200
false
12,432
[ "Apache-2.0" ]
0
43010cd66fa4335a04b30b87926148e1c8d92de9
https://github.com/gitter-badger/HEPAutoencoders/tree/43010cd66fa4335a04b30b87926148e1c8d92de9
MultiClassDiceLoss
import torch import torch.nn as nn class DiceLoss(nn.Module): """DiceLoss. .. seealso:: Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." 2016 fourth international conference on 3D vision (3DV). IEEE, 2016. Args: smooth (float): Value to avoid division by zero when images and predictions are empty. Attributes: smooth (float): Value to avoid division by zero when images and predictions are empty. """ def __init__(self, smooth=1.0): super(DiceLoss, self).__init__() self.smooth = smooth def forward(self, prediction, target): iflat = prediction.reshape(-1) tflat = target.reshape(-1) intersection = (iflat * tflat).sum() return -(2.0 * intersection + self.smooth) / (iflat.sum() + tflat. sum() + self.smooth) class MultiClassDiceLoss(nn.Module): """Multi-class Dice Loss. Inspired from https://arxiv.org/pdf/1802.10508. Args: classes_of_interest (list): List containing the index of a class which its dice will be added to the loss. If is None all classes are considered. Attributes: classes_of_interest (list): List containing the index of a class which its dice will be added to the loss. If is None all classes are considered. dice_loss (DiceLoss): Class computing the Dice loss. """ def __init__(self, classes_of_interest=None): super(MultiClassDiceLoss, self).__init__() self.classes_of_interest = classes_of_interest self.dice_loss = DiceLoss() def forward(self, prediction, target): dice_per_class = 0 n_classes = prediction.shape[1] if self.classes_of_interest is None: self.classes_of_interest = range(n_classes) for i in self.classes_of_interest: dice_per_class += self.dice_loss(prediction[:, i], target[:, i]) return dice_per_class / len(self.classes_of_interest) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_neg_sum_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (64 * (r0 // 16) + r0 % 16), None) tmp1 = tl.load(in_ptr1 + (64 * (r0 // 16) + r0 % 16), None) tmp12 = tl.load(in_ptr0 + (16 + 64 * (r0 // 16) + r0 % 16), None) tmp13 = tl.load(in_ptr1 + (16 + 64 * (r0 // 16) + r0 % 16), None) tmp24 = tl.load(in_ptr0 + (48 + 64 * (r0 // 16) + r0 % 16), None) tmp25 = tl.load(in_ptr1 + (48 + 64 * (r0 // 16) + r0 % 16), None) tmp36 = tl.load(in_ptr0 + (32 + 64 * (r0 // 16) + r0 % 16), None) tmp37 = tl.load(in_ptr1 + (32 + 64 * (r0 // 16) + r0 % 16), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp8 = tl.sum(tmp6, 1)[:, None] tmp9 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp11 = tl.sum(tmp9, 1)[:, None] tmp14 = tmp12 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.sum(tmp15, 1)[:, None] tmp18 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp20 = tl.sum(tmp18, 1)[:, None] tmp21 = tl.broadcast_to(tmp13, [XBLOCK, RBLOCK]) tmp23 = tl.sum(tmp21, 1)[:, None] tmp26 = tmp24 * tmp25 tmp27 = tl.broadcast_to(tmp26, [XBLOCK, RBLOCK]) tmp29 = tl.sum(tmp27, 1)[:, None] tmp30 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp32 = tl.sum(tmp30, 1)[:, None] tmp33 = tl.broadcast_to(tmp25, [XBLOCK, RBLOCK]) tmp35 = tl.sum(tmp33, 1)[:, None] tmp38 = tmp36 * tmp37 tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK]) tmp41 = tl.sum(tmp39, 1)[:, None] tmp42 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp44 = tl.sum(tmp42, 1)[:, None] tmp45 = tl.broadcast_to(tmp37, [XBLOCK, RBLOCK]) tmp47 = tl.sum(tmp45, 1)[:, None] tmp48 = 2.0 tmp49 = tmp5 * tmp48 tmp50 = 1.0 tmp51 = tmp49 + tmp50 tmp52 = -tmp51 tmp53 = tmp8 + tmp11 tmp54 = tmp53 + tmp50 tmp55 = tmp52 / tmp54 tmp56 = 0.0 tmp57 = tmp55 + tmp56 tmp58 = tmp17 * tmp48 tmp59 = tmp58 + tmp50 tmp60 = -tmp59 tmp61 = tmp20 + tmp23 tmp62 = tmp61 + tmp50 tmp63 = tmp60 / tmp62 tmp64 = tmp57 + tmp63 tmp65 = tmp41 * tmp48 tmp66 = tmp65 + tmp50 tmp67 = -tmp66 tmp68 = tmp44 + tmp47 tmp69 = tmp68 + tmp50 tmp70 = tmp67 / tmp69 tmp71 = tmp64 + tmp70 tmp72 = tmp29 * tmp48 tmp73 = tmp72 + tmp50 tmp74 = -tmp73 tmp75 = tmp32 + tmp35 tmp76 = tmp75 + tmp50 tmp77 = tmp74 / tmp76 tmp78 = tmp71 + tmp77 tmp79 = 0.25 tmp80 = tmp78 * tmp79 tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp80, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf10 = empty_strided_cuda((), (), torch.float32) buf13 = buf10 del buf10 get_raw_stream(0) triton_per_fused_add_div_mul_neg_sum_0[grid(1)](buf13, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf13, class DiceLoss(nn.Module): """DiceLoss. .. seealso:: Milletari, Fausto, Nassir Navab, and Seyed-Ahmad Ahmadi. "V-net: Fully convolutional neural networks for volumetric medical image segmentation." 2016 fourth international conference on 3D vision (3DV). IEEE, 2016. Args: smooth (float): Value to avoid division by zero when images and predictions are empty. Attributes: smooth (float): Value to avoid division by zero when images and predictions are empty. """ def __init__(self, smooth=1.0): super(DiceLoss, self).__init__() self.smooth = smooth def forward(self, prediction, target): iflat = prediction.reshape(-1) tflat = target.reshape(-1) intersection = (iflat * tflat).sum() return -(2.0 * intersection + self.smooth) / (iflat.sum() + tflat. sum() + self.smooth) class MultiClassDiceLossNew(nn.Module): """Multi-class Dice Loss. Inspired from https://arxiv.org/pdf/1802.10508. Args: classes_of_interest (list): List containing the index of a class which its dice will be added to the loss. If is None all classes are considered. Attributes: classes_of_interest (list): List containing the index of a class which its dice will be added to the loss. If is None all classes are considered. dice_loss (DiceLoss): Class computing the Dice loss. """ def __init__(self, classes_of_interest=None): super(MultiClassDiceLossNew, self).__init__() self.classes_of_interest = classes_of_interest self.dice_loss = DiceLoss() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Elameri/ivadomed
MultiClassDiceLoss
false
9,306
[ "MIT" ]
0
76b5cea46f90f938aafd5ec26e072d559c764b43
https://github.com/Elameri/ivadomed/tree/76b5cea46f90f938aafd5ec26e072d559c764b43
InstanceNormalization
import torch import torch.nn as nn class InstanceNormalization(torch.nn.Module): """InstanceNormalization Improves convergence of neural-style. ref: https://arxiv.org/pdf/1607.08022.pdf """ def __init__(self, dim, eps=1e-09): super(InstanceNormalization, self).__init__() self.scale = nn.Parameter(torch.FloatTensor(dim)) self.shift = nn.Parameter(torch.FloatTensor(dim)) self.eps = eps self._reset_parameters() def _reset_parameters(self): self.scale.data.uniform_() self.shift.data.zero_() def forward(self, x): n = x.size(2) * x.size(3) t = x.view(x.size(0), x.size(1), n) mean = torch.mean(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) var = torch.var(t, 2).unsqueeze(2).unsqueeze(3).expand_as(x) * ((n - 1) / float(n)) scale_broadcast = self.scale.unsqueeze(1).unsqueeze(1).unsqueeze(0) scale_broadcast = scale_broadcast.expand_as(x) shift_broadcast = self.shift.unsqueeze(1).unsqueeze(1).unsqueeze(0) shift_broadcast = shift_broadcast.expand_as(x) out = (x - mean) / torch.sqrt(var + self.eps) out = out * scale_broadcast + shift_broadcast return out def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_sqrt_sub_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp30 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = tmp0 - tmp20 tmp24 = 0.9375 tmp25 = tmp22 * tmp24 tmp26 = 1e-09 tmp27 = tmp25 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = tmp23 / tmp28 tmp31 = tmp29 * tmp30 tmp33 = tmp31 + tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp22, xmask) tl.store(out_ptr0 + (r1 + 16 * x0), tmp33, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 buf5 = buf3 del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_sqrt_sub_var_0[grid(16)](buf1, buf5, primals_1, primals_2, primals_3, buf6, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_2 del primals_3 return buf6, primals_1, reinterpret_tensor(buf1, (4, 4, 1, 1), (4, 1, 1, 1), 0), reinterpret_tensor(buf5, (4, 4, 1, 1), (4, 1, 1, 1), 0) class InstanceNormalizationNew(torch.nn.Module): """InstanceNormalization Improves convergence of neural-style. ref: https://arxiv.org/pdf/1607.08022.pdf """ def __init__(self, dim, eps=1e-09): super(InstanceNormalizationNew, self).__init__() self.scale = nn.Parameter(torch.FloatTensor(dim)) self.shift = nn.Parameter(torch.FloatTensor(dim)) self.eps = eps self._reset_parameters() def _reset_parameters(self): self.scale.data.uniform_() self.shift.data.zero_() def forward(self, input_0): primals_2 = self.scale primals_3 = self.shift primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
E-Dreamer-LQ/Astronomical_Target_Detection
InstanceNormalization
false
17,234
[ "MIT" ]
6
0c2d6c2e516ff1efa28d44582442123c3a03f079
https://github.com/E-Dreamer-LQ/Astronomical_Target_Detection/tree/0c2d6c2e516ff1efa28d44582442123c3a03f079
NoiseLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/hy/chy2gdvcdlpxio6r2ezu76sbqj6jaum4snkq6izi5zxkdqh3u2yj.py # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # x => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %randn), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [noise], Original ATen: [aten.randn] buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, x], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(primals_1, primals_2, buf1, buf2, 256, grid=grid(256), stream=stream0) del primals_1 del primals_2 return (buf2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randn.default([4, 1, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf2, buf1 class NoiseLayerNew(nn.Module): """adds noise. noise is per pixel (constant over channels) with per-channel weight""" def __init__(self, channels): super().__init__() self.weight = nn.Parameter(torch.zeros(channels)) self.noise = None def forward(self, input_0): primals_2 = self.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
NeuralBending/StyleCLIP
NoiseLayer
false
14,085
[ "MIT" ]
91
190d3a0d48823ccdbdd15c7f8af6e08703a6dbd8
https://github.com/NeuralBending/StyleCLIP/tree/190d3a0d48823ccdbdd15c7f8af6e08703a6dbd8
Swish
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/ih/cihaiv6nadlw5leqmuxpmbmrhzyekxbv33t3jhwizo2zgmapx4bu.py # Topologically Sorted Source Nodes: [mul, sigmoid, mul_1, mul_2], Original ATen: [aten.mul, aten.sigmoid] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # sigmoid => sigmoid # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %primals_2), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %sigmoid), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, 1.67653251702), kwargs = {}) triton_poi_fused_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp2 * tmp0 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp0 * tmp4 tmp6 = 1.67653251702 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, sigmoid, mul_1, mul_2], Original ATen: [aten.mul, aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_mul_sigmoid_0.run(primals_2, primals_1, buf0, 256, grid=grid(256), stream=stream0) return (buf0, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((), (), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.utils.data from torch import nn import torch.jit assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp2 * tmp0 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp0 * tmp4 tmp6 = 1.67653251702 tmp7 = tmp5 * tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (), ()) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf0, primals_1, primals_2 def swish_func(x, beta=1.0): """ "Swish: a Self-Gated Activation Function" Searching for Activation Functions (https://arxiv.org/abs/1710.05941) If beta=1 applies the Sigmoid Linear Unit (SiLU) function element-wise If beta=0, Swish becomes the scaled linear function (identity activation) f(x) = x/2 As beta -> ∞, the sigmoid component converges to approach a 0-1 function (unit step), and multiplying that by x gives us f(x)=2max(0,x), which is the ReLU multiplied by a constant factor of 2, so Swish becomes like the ReLU function. Including beta, Swish can be loosely viewed as a smooth function that nonlinearly interpolate between identity (linear) and ReLU function. The degree of interpolation can be controlled by the model if beta is set as a trainable parameter. Alt: 1.78718727865 * (x * sigmoid(x) - 0.20662096414) """ """ result = x.clone() torch.sigmoid_(beta*x) x *= result return x #""" return x * torch.sigmoid(beta * x) class SwishNew(nn.Module): __constants__ = ['beta', 'slope', 'inplace'] def __init__(self, beta=1.0, slope=1.67653251702, inplace=False): """ Shape: - Input: (N, *) where * means, any number of additional dimensions - Output: (N, *), same shape as the input """ super().__init__() self.inplace = inplace self.beta = torch.nn.Parameter(torch.tensor(beta)) self.beta.requiresGrad = True self.slope = slope / 2 def forward(self, input_0): primals_1 = self.beta primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
BlueAmulet/BasicSR
Swish
false
7,822
[ "Apache-2.0" ]
12
7040913d8659a05af4c2428feb71c260efbf1e9c
https://github.com/BlueAmulet/BasicSR/tree/7040913d8659a05af4c2428feb71c260efbf1e9c
ResidualBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/zj/czjbomcj7alq7d2rpyq5jovfb4r4f7jmlbscailane6tzp5bclsn.py # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten._native_batch_norm_legit, aten.elu] # Source node to ATen node mapping: # output => var_mean # output_1 => expm1, gt, mul_1, mul_3, where # Graph fragment: # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_1, 0), kwargs = {}) # %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul_1, %mul_3), kwargs = {}) triton_per_fused__native_batch_norm_legit_elu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_elu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_elu_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = 0.0 tmp25 = tmp23 > tmp24 tmp26 = 1.0 tmp27 = tmp23 * tmp26 tmp28 = libdevice.expm1(tmp27) tmp29 = tmp28 * tmp26 tmp30 = tl.where(tmp25, tmp27, tmp29) tl.store(out_ptr2 + (r1 + (16*x0)), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/at/catgmbzwhox3nc2xeo6zs6mzasfybxlwxttgaih7j6pjgsp6x4l5.py # Topologically Sorted Source Nodes: [output_2, output_3, output_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.elu] # Source node to ATen node mapping: # output_2 => convolution # output_3 => add_1, rsqrt_1, var_mean_1 # output_4 => expm1_1, gt_1, mul_5, mul_7, where_1 # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_2, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%view_3, 0), kwargs = {}) # %mul_5 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_3, 1.0), kwargs = {}) # %expm1_1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_5,), kwargs = {}) # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_1, 1.0), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %mul_5, %mul_7), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_elu_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_elu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_elu_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_elu_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 1.0 tmp29 = tmp25 * tmp28 tmp30 = libdevice.expm1(tmp29) tmp31 = tmp30 * tmp28 tmp32 = tl.where(tmp27, tmp29, tmp31) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr1 + (r2 + (16*x3)), tmp32, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/rb/crbiu4u5ytzqglii4fqbg7tcmfshrvsdjcxspfuroyibunmibr5i.py # Topologically Sorted Source Nodes: [output_5, add], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # add => add_2 # output_5 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%where_1, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %convolution_1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_out_ptr0 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output, output_1], Original ATen: [aten._native_batch_norm_legit, aten.elu] stream0 = get_raw_stream(0) triton_per_fused__native_batch_norm_legit_elu_0.run(primals_1, buf3, 16, 16, grid=grid(16), stream=stream0) # Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.convolution] buf4 = extern_kernels.convolution(buf3, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4; del buf4 # reuse buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf9 = reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf7 # reuse buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [output_2, output_3, output_4], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.elu] triton_per_fused__native_batch_norm_legit_convolution_elu_1.run(buf5, buf9, primals_3, buf6, buf10, 16, 16, grid=grid(16), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [output_5], Original ATen: [aten.convolution] buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [output_5, add], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf12, primals_1, primals_5, 256, grid=grid(256), stream=stream0) del primals_1 del primals_5 return (buf12, primals_2, primals_4, buf3, buf5, buf6, buf9, buf10, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from functools import partial assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__native_batch_norm_legit_elu_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = tmp0 - tmp10 tmp18 = 16.0 tmp19 = tmp16 / tmp18 tmp20 = 1e-05 tmp21 = tmp19 + tmp20 tmp22 = libdevice.rsqrt(tmp21) tmp23 = tmp17 * tmp22 tmp24 = 0.0 tmp25 = tmp23 > tmp24 tmp26 = 1.0 tmp27 = tmp23 * tmp26 tmp28 = libdevice.expm1(tmp27) tmp29 = tmp28 * tmp26 tmp30 = tl.where(tmp25, tmp27, tmp29) tl.store(out_ptr2 + (r1 + 16 * x0), tmp30, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_elu_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl. constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tmp24 = tmp2 - tmp12 tmp25 = tmp24 * tmp23 tmp26 = 0.0 tmp27 = tmp25 > tmp26 tmp28 = 1.0 tmp29 = tmp25 * tmp28 tmp30 = libdevice.expm1(tmp29) tmp31 = tmp30 * tmp28 tmp32 = tl.where(tmp27, tmp29, tmp31) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr1 + (r2 + 16 * x3), tmp32, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_out_ptr0 + x3, xmask) tmp2 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x3, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused__native_batch_norm_legit_elu_0[grid(16)](primals_1, buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1)) buf5 = buf4 del buf4 buf6 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf7 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf9 = reinterpret_tensor(buf7, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf7 buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_convolution_elu_1[grid(16)]( buf5, buf9, primals_3, buf6, buf10, 16, 16, XBLOCK=1, num_warps =2, num_stages=1) del primals_3 buf11 = extern_kernels.convolution(buf10, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf11, (4, 4, 4, 4), (64, 16, 4, 1)) buf12 = buf11 del buf11 triton_poi_fused_add_convolution_2[grid(256)](buf12, primals_1, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 del primals_5 return buf12, primals_2, primals_4, buf3, buf5, buf6, buf9, buf10 def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=1): """3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2.""" init_scale = 1e-10 if init_scale == 0 else init_scale conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias, dilation=dilation, padding=padding, kernel_size=3) conv.weight.data *= init_scale conv.bias.data *= init_scale return conv def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1.0, padding=0): """1x1 convolution. Same as NCSNv1/v2.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation, padding=padding) init_scale = 1e-10 if init_scale == 0 else init_scale conv.weight.data *= init_scale conv.bias.data *= init_scale return conv class ConvMeanPool(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False): super().__init__() if not adjust_padding: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = conv else: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = nn.Sequential(nn.ZeroPad2d((1, 0, 1, 0)), conv) def forward(self, inputs): output = self.conv(inputs) output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4.0 return output class ResidualBlockNew(nn.Module): def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(), normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1): super().__init__() self.non_linearity = act self.input_dim = input_dim self.output_dim = output_dim self.resample = resample self.normalization = normalization if resample == 'down': if dilation > 1: self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation= dilation) self.normalize2 = normalization(input_dim) self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation= dilation) conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) else: self.conv1 = ncsn_conv3x3(input_dim, input_dim) self.normalize2 = normalization(input_dim) self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding) conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding) elif resample is None: if dilation > 1: conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation= dilation) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation= dilation) else: conv_shortcut = partial(ncsn_conv1x1) self.conv1 = ncsn_conv3x3(input_dim, output_dim) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim) else: raise Exception('invalid resample value') if output_dim != input_dim or resample is not None: self.shortcut = conv_shortcut(input_dim, output_dim) self.normalize1 = normalization(input_dim) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
henryaddison/score_sde_pytorch
ResidualBlock
false
12,507
[ "Apache-2.0" ]
0
be07c3a3346bf8ceadabf6a3b436db5d5c3d0252
https://github.com/henryaddison/score_sde_pytorch/tree/be07c3a3346bf8ceadabf6a3b436db5d5c3d0252
Scale
import torch from torch import nn from torch.nn import * class Scale(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, x): return x * self.scale def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'scale': 1.0}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ScaleNew(nn.Module): def __init__(self, scale): super().__init__() self.scale = scale def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
jlubars/autonomous-learning-library
Scale
false
10,295
[ "MIT" ]
0
5d2d2e1ee9e0876614d7113e26f026f126a3899f
https://github.com/jlubars/autonomous-learning-library/tree/5d2d2e1ee9e0876614d7113e26f026f126a3899f
AsymmetricLossOptimized
import torch import torch.nn as nn class AsymmetricLossOptimized(nn.Module): """ Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations https://github.com/Alibaba-MIIL/ASL/blob/main/src/loss_functions/losses.py """ def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimized, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps (self.targets) = (self.anti_targets) = (self.xs_pos) = (self.xs_neg ) = (self.asymmetric_w) = (self.loss) = None def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ self.targets = y self.anti_targets = 1 - y self.xs_pos = torch.sigmoid(x) self.xs_neg = 1.0 - self.xs_pos if self.clip is not None and self.clip > 0: self.xs_neg.add_(self.clip).clamp_(max=1) self.loss = self.targets * torch.log(self.xs_pos.clamp(min=self.eps)) self.loss.add_(self.anti_targets * torch.log(self.xs_neg.clamp(min= self.eps))) if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch._C.set_grad_enabled(False) self.xs_pos = self.xs_pos * self.targets self.xs_neg = self.xs_neg * self.anti_targets self.asymmetric_w = torch.pow(1 - self.xs_pos - self.xs_neg, self.gamma_pos * self.targets + self.gamma_neg * self. anti_targets) if self.disable_torch_grad_focal_loss: torch._C.set_grad_enabled(True) self.loss *= self.asymmetric_w return -self.loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask) tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = tl.sigmoid(tmp3) tmp5 = tmp4 * tmp0 tmp6 = tmp1 - tmp4 tmp7 = 0.05 tmp8 = tmp6 + tmp7 tmp9 = triton_helpers.minimum(tmp8, tmp1) tmp10 = tmp9 * tmp2 tmp11 = tmp1 - tmp5 tmp12 = tmp11 - tmp10 tmp13 = tmp0 * tmp1 tmp14 = 4.0 tmp15 = tmp2 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = libdevice.pow(tmp12, tmp16) tmp18 = 1e-08 tmp19 = triton_helpers.maximum(tmp4, tmp18) tmp20 = tl_math.log(tmp19) tmp21 = tmp0 * tmp20 tmp22 = triton_helpers.maximum(tmp9, tmp18) tmp23 = tl_math.log(tmp22) tmp24 = tmp2 * tmp23 tmp25 = tmp21 + tmp24 tmp26 = tmp25 * tmp17 tmp27 = -tmp26 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) tl.store(out_ptr2 + x0, tmp10, xmask) tl.store(out_ptr3 + x0, tmp17, xmask) tl.store(out_ptr4 + x0, tmp26, xmask) tl.store(out_ptr5 + x0, tmp27, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_log_mul_neg_pow_rsub_sigmoid_sub_0[grid(256) ](arg0_1, arg1_1, buf0, buf1, buf2, buf3, buf4, buf5, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf5, buf3, buf4, buf2, buf1, buf0 class AsymmetricLossOptimizedNew(nn.Module): """ Notice - optimized version, minimizes memory allocation and gpu uploading, favors inplace operations https://github.com/Alibaba-MIIL/ASL/blob/main/src/loss_functions/losses.py """ def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-08, disable_torch_grad_focal_loss=False): super(AsymmetricLossOptimizedNew, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps (self.targets) = (self.anti_targets) = (self.xs_pos) = (self.xs_neg ) = (self.asymmetric_w) = (self.loss) = None def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
LanXiangExcavator/python-classifier-2021
AsymmetricLossOptimized
false
11,621
[ "BSD-2-Clause" ]
0
851079e76db8e5070132d1120dba941967e1245b
https://github.com/LanXiangExcavator/python-classifier-2021/tree/851079e76db8e5070132d1120dba941967e1245b
FunctionalConv3d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/d4/cd4ygdjn67m65g44zq7u52lzpladubxfjg4l5h77qlkxilabiuwm.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%unsqueeze, %primals_1, %primals_2, [1, 1, 1], [0, 0, 0], [1, 1, 1], False, [0, 0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_2, 4, grid=grid(4), stream=stream0) del primals_2 return (reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask) tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_1, stride=(1, 1, 1), padding=(0, 0, 0), dilation=(1, 1, 1), transposed=False, output_padding=(0, 0, 0), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) buf1 = reinterpret_tensor(buf0, (1, 4, 1, 1, 1), (4, 1, 4, 4, 4), 0) del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(4)](buf1, primals_2, 4, XBLOCK= 4, num_warps=1, num_stages=1) del primals_2 return reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0 ), primals_1, reinterpret_tensor(primals_3, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0) class FunctionalConv3dNew(torch.nn.Module): def __init__(self, *args, **kwargs): super().__init__() self.conv = torch.nn.Conv3d(*args, **kwargs) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
PogChamper/torch2trt
FunctionalConv3d
false
14,270
[ "MIT" ]
3,363
43b12627ec0de4d212efb6d02b07570205085ccc
https://github.com/PogChamper/torch2trt/tree/43b12627ec0de4d212efb6d02b07570205085ccc
Pooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/qs/cqsgbydauqwdluexymrszxq7nqjh3tcbqqiq5ccrsj74pb354tqf.py # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] # Source node to ATen node mapping: # pooled_output_1 => tanh # Graph fragment: # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {}) triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [pooled_output_1], Original ATen: [aten.tanh] stream0 = get_raw_stream(0) triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1 class PoolerNew(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_1 = self.dense.weight primals_2 = self.dense.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
MaratSaidov/artificial-text-detection
Pooler
false
8,806
[ "MIT" ]
12
74b2100294232ec361db84fdc3a24fdeba1fce49
https://github.com/MaratSaidov/artificial-text-detection/tree/74b2100294232ec361db84fdc3a24fdeba1fce49
ShallowConvNet
import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.nn.functional as F import torch.onnx class ShallowConvNet(nn.Module): def __init__(self, hidden=1000): super(ShallowConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, hidden) self.fc2 = nn.Linear(hidden, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = self.fc2(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 4000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 1000 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (1000, 400), (400, 1)) assert_size_stride(primals_7, (1000,), (1,)) assert_size_stride(primals_8, (10, 1000), (1000, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 1000), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(4000)](buf9, primals_7, 4000, XBLOCK= 256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf9, reinterpret_tensor(primals_8, (1000, 10), (1, 1000), 0), alpha=1, beta=1, out=buf10) del primals_9 return (buf10, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, primals_8, primals_6) class ShallowConvNetNew(nn.Module): def __init__(self, hidden=1000): super(ShallowConvNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, hidden) self.fc2 = nn.Linear(hidden, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
CorentinChauvin/style-transfer-KD
ShallowConvNet
false
5,080
[ "MIT" ]
1
87bcb2963dbb8d09faf94c74a744f358cafe5427
https://github.com/CorentinChauvin/style-transfer-KD/tree/87bcb2963dbb8d09faf94c74a744f358cafe5427
LinearActor
import torch import torch.nn as nn class LinearActor(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(LinearActor, self).__init__() self.l1 = nn.Linear(state_dim, action_dim) self.max_action = max_action def forward(self, x): return self.max_action * torch.sigmoid(self.l1(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'state_dim': 4, 'action_dim': 4, 'max_action': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](buf0, buf1, 256, XBLOCK= 128, num_warps=4, num_stages=1) return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf0 class LinearActorNew(nn.Module): def __init__(self, state_dim, action_dim, max_action): super(LinearActorNew, self).__init__() self.l1 = nn.Linear(state_dim, action_dim) self.max_action = max_action def forward(self, input_0): primals_1 = self.l1.weight primals_2 = self.l1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
KuangenZhang/StructuredRL
LinearActor
false
5,448
[ "MIT" ]
1
9b05e5034ff0e045aabf83786efb0859f08e989a
https://github.com/KuangenZhang/StructuredRL/tree/9b05e5034ff0e045aabf83786efb0859f08e989a
CNNCifar
from _paritybench_helpers import _mock_config import torch import torch.nn.functional as nn_fnx from torch import nn class CNNCifar(nn.Module): def __init__(self, args): super(CNNCifar, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, x): x = self.pool(nn_fnx.relu(self.conv1(x))) x = self.pool(nn_fnx.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = nn_fnx.relu(self.fc1(x)) x = nn_fnx.relu(self.fc2(x)) x = self.fc3(x) return nn_fnx.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {'args': _mock_config(num_classes=4)}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused__log_softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp4 = tl_math.exp(tmp3) tmp5 = tmp2 + tmp4 tmp7 = tl_math.exp(tmp6) tmp8 = tmp5 + tmp7 tmp10 = tl_math.exp(tmp9) tmp11 = tmp8 + tmp10 tmp12 = tl_math.log(tmp11) tmp13 = tmp0 - tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (4, 84), (84, 1)) assert_size_stride(primals_11, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 4), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused__log_softmax_6[grid(16)](buf12, buf13, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf14 = buf12 del buf12 triton_poi_fused__log_softmax_7[grid(16)](buf13, buf14, 16, XBLOCK= 16, num_warps=1, num_stages=1) del buf13 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, buf14, primals_10, primals_8, primals_6) class CNNCifarNew(nn.Module): def __init__(self, args): super(CNNCifarNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, args.num_classes) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
amanapte/Federated-Learning-PyTorch
CNNCifar
false
11,134
[ "MIT" ]
0
ef48ed1457ba7deb53811e8e2a767f65bf82ae94
https://github.com/amanapte/Federated-Learning-PyTorch/tree/ef48ed1457ba7deb53811e8e2a767f65bf82ae94
DenseGraphConv
import math import torch from torch.nn import Parameter import torch.utils.data def uniform(size, tensor): bound = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-bound, bound) class DenseGraphConv(torch.nn.Module): """See :class:`torch_geometric.nn.conv.GraphConv`. """ def __init__(self, in_channels, out_channels, aggr='add', bias=True): assert aggr in ['add', 'mean', 'max'] super(DenseGraphConv, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.aggr = aggr self.weight = Parameter(torch.Tensor(in_channels, out_channels)) self.lin = torch.nn.Linear(in_channels, out_channels, bias=bias) self.reset_parameters() def reset_parameters(self): uniform(self.in_channels, self.weight) self.lin.reset_parameters() def forward(self, x, adj, mask=None): """ Args: x (Tensor): Node feature tensor :math:`\\mathbf{X} \\in \\mathbb{R}^{B \\times N \\times F}`, with batch-size :math:`B`, (maximum) number of nodes :math:`N` for each graph, and feature dimension :math:`F`. adj (Tensor): Adjacency tensor :math:`\\mathbf{A} \\in \\mathbb{R}^{B \\times N \\times N}`. The adjacency tensor is broadcastable in the batch dimension, resulting in a shared adjacency matrix for the complete batch. mask (BoolTensor, optional): Mask matrix :math:`\\mathbf{M} \\in {\\{ 0, 1 \\}}^{B \\times N}` indicating the valid nodes for each graph. (default: :obj:`None`) """ x = x.unsqueeze(0) if x.dim() == 2 else x adj = adj.unsqueeze(0) if adj.dim() == 2 else adj B, N, _ = adj.size() out = torch.matmul(adj, x) out = torch.matmul(out, self.weight) if self.aggr == 'mean': out = out / adj.sum(dim=-1, keepdim=True).clamp(min=1) elif self.aggr == 'max': out = out.max(dim=-1)[0] out = out + self.lin(x) if mask is not None: out = out * mask.view(B, N, 1) return out def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self. in_channels, self.out_channels) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math from torch.nn import Parameter import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x2 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](primals_2, buf0, 256, XBLOCK= 256, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4, 4), (16, 4, 1), 0), out=buf1) buf2 = reinterpret_tensor(buf0, (64, 4), (4, 1), 0) del buf0 extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_3, out=buf2) del primals_3 buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3) del primals_4 buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 triton_poi_fused_add_1[grid(256)](buf4, buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf4, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (4, 64), (1, 4), 0) def uniform(size, tensor): bound = 1.0 / math.sqrt(size) if tensor is not None: tensor.data.uniform_(-bound, bound) class DenseGraphConvNew(torch.nn.Module): """See :class:`torch_geometric.nn.conv.GraphConv`. """ def __init__(self, in_channels, out_channels, aggr='add', bias=True): assert aggr in ['add', 'mean', 'max'] super(DenseGraphConvNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.aggr = aggr self.weight = Parameter(torch.Tensor(in_channels, out_channels)) self.lin = torch.nn.Linear(in_channels, out_channels, bias=bias) self.reset_parameters() def reset_parameters(self): uniform(self.in_channels, self.weight) self.lin.reset_parameters() def __repr__(self): return '{}({}, {})'.format(self.__class__.__name__, self. in_channels, self.out_channels) def forward(self, input_0, input_1): primals_3 = self.weight primals_4 = self.lin.weight primals_5 = self.lin.bias primals_1 = input_0 primals_2 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
CFF-Dream/pytorch_geometric
DenseGraphConv
false
2,031
[ "MIT" ]
0
7c19ad74957409ee9e07314ce81524b3113b9c84
https://github.com/CFF-Dream/pytorch_geometric/tree/7c19ad74957409ee9e07314ce81524b3113b9c84
ColorJitterLayer
from torch.autograd import Function import math import numbers import torch import numpy as np import torch.nn as nn def hsv2rgb(hsv): """Convert a 4-d HSV tensor to the RGB counterpart. >>> %timeit hsv2rgb_lookup(hsv) 2.37 ms ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) >>> %timeit hsv2rgb(rgb) 298 µs ± 542 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> torch.allclose(hsv2rgb(hsv), hsv2rgb_lookup(hsv), atol=1e-6) True References [1] https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative """ h, s, v = hsv[:, [0]], hsv[:, [1]], hsv[:, [2]] c = v * s n = hsv.new_tensor([5, 3, 1]).view(3, 1, 1) k = (n + h * 6) % 6 t = torch.min(k, 4.0 - k) t = torch.clamp(t, 0, 1) return v - c * t def rgb2hsv(rgb): """Convert a 4-d RGB tensor to the HSV counterpart. Here, we compute hue using atan2() based on the definition in [1], instead of using the common lookup table approach as in [2, 3]. Those values agree when the angle is a multiple of 30°, otherwise they may differ at most ~1.2°. >>> %timeit rgb2hsv_lookup(rgb) 1.07 ms ± 2.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> %timeit rgb2hsv(rgb) 380 µs ± 555 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> (rgb2hsv_lookup(rgb) - rgb2hsv(rgb)).abs().max() tensor(0.0031, device='cuda:0') References [1] https://en.wikipedia.org/wiki/Hue [2] https://www.rapidtables.com/convert/color/rgb-to-hsv.html [3] https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py#L212 """ r, g, b = rgb[:, 0, :, :], rgb[:, 1, :, :], rgb[:, 2, :, :] Cmax = rgb.max(1)[0] Cmin = rgb.min(1)[0] hue = torch.atan2(math.sqrt(3) * (g - b), 2 * r - g - b) hue = hue % (2 * math.pi) / (2 * math.pi) saturate = 1 - Cmin / (Cmax + 1e-08) value = Cmax hsv = torch.stack([hue, saturate, value], dim=1) hsv[~torch.isfinite(hsv)] = 0.0 return hsv class RandomHSVFunction(Function): @staticmethod def forward(ctx, x, f_h, f_s, f_v): x = rgb2hsv(x) h = x[:, 0, :, :] h += f_h * 255.0 / 360.0 h = h % 1 x[:, 0, :, :] = h x[:, 1, :, :] = x[:, 1, :, :] * f_s x[:, 2, :, :] = x[:, 2, :, :] * f_v x = torch.clamp(x, 0, 1) x = hsv2rgb(x) return x @staticmethod def backward(ctx, grad_output): grad_input = None if ctx.needs_input_grad[0]: grad_input = grad_output.clone() return grad_input, None, None, None class ColorJitterLayer(nn.Module): def __init__(self, brightness, contrast, saturation, hue): super(ColorJitterLayer, self).__init__() self.brightness = self._check_input(brightness, 'brightness') self.contrast = self._check_input(contrast, 'contrast') self.saturation = self._check_input(saturation, 'saturation') self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5 ), clip_first_on_zero=False) def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True): if isinstance(value, numbers.Number): if value < 0: raise ValueError( 'If {} is a single number, it must be non negative.'. format(name)) value = [center - value, center + value] if clip_first_on_zero: value[0] = max(value[0], 0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError('{} values should be between {}'.format( name, bound)) else: raise TypeError( '{} should be a single number or a list/tuple with lenght 2.' .format(name)) if value[0] == value[1] == center: value = None return value def adjust_contrast(self, x): if self.contrast: factor = x.new_empty(x.size(0), 1, 1, 1).uniform_(*self.contrast) means = torch.mean(x, dim=[2, 3], keepdim=True) x = (x - means) * factor + means return torch.clamp(x, 0, 1) def adjust_hsv(self, x): f_h = x.new_zeros(x.size(0), 1, 1) f_s = x.new_ones(x.size(0), 1, 1) f_v = x.new_ones(x.size(0), 1, 1) if self.hue: f_h.uniform_(*self.hue) if self.saturation: f_s = f_s.uniform_(*self.saturation) if self.brightness: f_v = f_v.uniform_(*self.brightness) return RandomHSVFunction.apply(x, f_h, f_s, f_v) def transform(self, inputs): if np.random.rand() > 0.5: transforms = [self.adjust_contrast, self.adjust_hsv] else: transforms = [self.adjust_hsv, self.adjust_contrast] for t in transforms: inputs = t(inputs) return inputs def forward(self, inputs): return self.transform(inputs) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'brightness': 4, 'contrast': 4, 'saturation': 4, 'hue': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch.autograd import Function import math import numbers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_stack_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 12 x0 = xindex % 4 x2 = xindex // 48 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (16 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp6 = tl.load(in_ptr0 + (32 + x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp7 = tmp5 - tmp6 tmp8 = 1.7320508075688772 tmp9 = tmp7 * tmp8 tmp10 = tl.load(in_ptr0 + (x0 + 4 * x1 + 64 * x2), tmp4 & xmask, other=0.0) tmp11 = 2.0 tmp12 = tmp10 * tmp11 tmp13 = tmp12 - tmp5 tmp14 = tmp13 - tmp6 tmp15 = libdevice.atan2(tmp9, tmp14) tmp16 = 6.283185307179586 tmp17 = tmp15 % tmp16 tmp18 = tl.full([1], 0, tl.int32) tmp19 = tmp17 != tmp18 tmp20 = libdevice.signbit(tmp17 ) if tmp17.dtype is tl.float32 else tmp17 < 0 tmp21 = libdevice.signbit(tmp16 ) if tmp16.dtype is tl.float32 else tmp16 < 0 tmp22 = tmp20 != tmp21 tmp23 = tmp19 & tmp22 tmp24 = tmp17 + tmp16 tmp25 = tl.where(tmp23, tmp24, tmp17) tmp26 = 0.15915494309189535 tmp27 = tmp25 * tmp26 tmp28 = tl.full(tmp27.shape, 0.0, tmp27.dtype) tmp29 = tl.where(tmp4, tmp27, tmp28) tmp30 = tmp0 >= tmp3 tmp31 = tl.full([1], 8, tl.int64) tmp32 = tmp0 < tmp31 tmp33 = tmp30 & tmp32 tmp34 = tl.load(in_ptr0 + (x0 + 4 * (-4 + x1) + 64 * x2), tmp33 & xmask, other=0.0) tmp35 = tl.load(in_ptr0 + (16 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 & xmask, other=0.0) tmp36 = triton_helpers.minimum(tmp34, tmp35) tmp37 = tl.load(in_ptr0 + (32 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 & xmask, other=0.0) tmp38 = triton_helpers.minimum(tmp36, tmp37) tmp39 = tl.load(in_ptr0 + (48 + x0 + 4 * (-4 + x1) + 64 * x2), tmp33 & xmask, other=0.0) tmp40 = triton_helpers.minimum(tmp38, tmp39) tmp41 = triton_helpers.maximum(tmp34, tmp35) tmp42 = triton_helpers.maximum(tmp41, tmp37) tmp43 = triton_helpers.maximum(tmp42, tmp39) tmp44 = 1e-08 tmp45 = tmp43 + tmp44 tmp46 = tmp40 / tmp45 tmp47 = 1.0 tmp48 = tmp47 - tmp46 tmp49 = tl.full(tmp48.shape, 0.0, tmp48.dtype) tmp50 = tl.where(tmp33, tmp48, tmp49) tmp51 = tmp0 >= tmp31 tl.full([1], 12, tl.int64) tmp54 = tl.load(in_ptr0 + (x0 + 4 * (-8 + x1) + 64 * x2), tmp51 & xmask, other=0.0) tmp55 = tl.load(in_ptr0 + (16 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 & xmask, other=0.0) tmp56 = triton_helpers.maximum(tmp54, tmp55) tmp57 = tl.load(in_ptr0 + (32 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 & xmask, other=0.0) tmp58 = triton_helpers.maximum(tmp56, tmp57) tmp59 = tl.load(in_ptr0 + (48 + x0 + 4 * (-8 + x1) + 64 * x2), tmp51 & xmask, other=0.0) tmp60 = triton_helpers.maximum(tmp58, tmp59) tmp61 = tl.full(tmp60.shape, 0.0, tmp60.dtype) tmp62 = tl.where(tmp51, tmp60, tmp61) tmp63 = tl.where(tmp33, tmp50, tmp62) tmp64 = tl.where(tmp4, tmp29, tmp63) tl.store(out_ptr0 + x3, tmp64, xmask) @triton.jit def triton_poi_fused_index_put_lift_fresh_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 == tmp0 tmp2 = tl_math.abs(tmp0) tmp3 = float('inf') tmp4 = tmp2 != tmp3 tmp5 = tmp1 & tmp4 tmp6 = tmp5 == 0 tmp7 = 0.0 tmp8 = tl.where(tmp6, tmp7, tmp0) tl.store(out_ptr0 + x0, tmp8, xmask) @triton.jit def triton_poi_fused_new_zeros_2(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 0.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_new_ones_3(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = 1.0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_copy_div_mul_remainder_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 3 x0 = xindex % 16 x2 = xindex // 48 x3 = xindex tmp6 = tl.load(in_ptr0 + (x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr0 + (16 + x0 + 48 * x2), xmask, eviction_policy= 'evict_last') tmp26 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + x3, xmask) tmp0 = x1 tmp1 = tl.full([1], 1, tl.int32) tmp2 = tmp0 == tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = tmp1 == tmp3 tmp5 = tmp3 == tmp3 tmp8 = 255.0 tmp9 = tmp7 * tmp8 tmp10 = 0.002777777777777778 tmp11 = tmp9 * tmp10 tmp12 = tmp6 + tmp11 tmp13 = tl.where(tmp5, tmp12, tmp6) tmp14 = 1.0 tmp15 = tmp13 % tmp14 tmp16 = tmp15 != tmp3 tmp17 = libdevice.signbit(tmp15 ) if tmp15.dtype is tl.float32 else tmp15 < 0 tmp18 = libdevice.signbit(tmp14 ) if tmp14.dtype is tl.float32 else tmp14 < 0 tmp19 = tmp17 != tmp18 tmp20 = tmp16 & tmp19 tmp21 = tmp15 + tmp14 tmp22 = tl.where(tmp20, tmp21, tmp15) tmp24 = tl.where(tmp4, tmp12, tmp23) tmp25 = tl.where(tmp4, tmp22, tmp24) tmp27 = tmp25 * tmp26 tmp28 = tmp0 == tmp3 tmp30 = tl.where(tmp28, tmp12, tmp29) tmp31 = tl.where(tmp28, tmp22, tmp30) tmp32 = tl.where(tmp2, tmp27, tmp31) tl.store(out_ptr0 + x3, tmp32, xmask) @triton.jit def triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5( in_ptr0, in_ptr1, in_ptr2, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 12 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) x0 = xindex % 3 r2 = rindex x1 = xindex // 3 x3 = xindex tmp13 = tl.load(in_ptr0 + (32 + r2 + 48 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp14 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (r2 + 48 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tl.load(in_ptr0 + (16 + r2 + 48 * x1), xmask, eviction_policy= 'evict_last', other=0.0) tmp57 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = tl.full([1, 1], 1, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.full([1, 1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = 3.0 tmp6 = 1.0 tmp7 = tl.where(tmp4, tmp5, tmp6) tmp8 = 5.0 tmp9 = tl.where(tmp2, tmp8, tmp7) tmp10 = tl.full([1, 1], 0, tl.int32) tmp11 = tl.full([1, 1], 2, tl.int32) tmp12 = tmp10 == tmp11 tmp15 = tmp13 * tmp14 tmp17 = tl.where(tmp12, tmp15, tmp16) tmp18 = 0.0 tmp19 = triton_helpers.maximum(tmp17, tmp18) tmp20 = triton_helpers.minimum(tmp19, tmp6) tmp21 = 6.0 tmp22 = tmp20 * tmp21 tmp23 = tmp9 + tmp22 tmp24 = tmp23 % tmp21 tmp25 = tmp24 != tmp10 tmp26 = libdevice.signbit(tmp24 ) if tmp24.dtype is tl.float32 else tmp24 < 0 tmp27 = libdevice.signbit(tmp21 ) if tmp21.dtype is tl.float32 else tmp21 < 0 tmp28 = tmp26 != tmp27 tmp29 = tmp25 & tmp28 tmp30 = tmp24 + tmp21 tmp31 = tl.where(tmp29, tmp30, tmp24) tmp32 = 4.0 tmp33 = tmp32 - tmp31 tmp34 = triton_helpers.minimum(tmp31, tmp33) tmp35 = triton_helpers.maximum(tmp34, tmp18) tmp36 = tmp11 == tmp11 tmp37 = tl.where(tmp36, tmp15, tmp13) tmp38 = triton_helpers.maximum(tmp37, tmp18) tmp39 = triton_helpers.minimum(tmp38, tmp6) tmp40 = tl.full([1, 1], 1, tl.int32) tmp41 = tmp40 == tmp11 tmp43 = tl.where(tmp41, tmp15, tmp42) tmp44 = triton_helpers.maximum(tmp43, tmp18) tmp45 = triton_helpers.minimum(tmp44, tmp6) tmp46 = tmp39 * tmp45 tmp47 = triton_helpers.minimum(tmp35, tmp6) tmp48 = tmp46 * tmp47 tmp49 = tmp39 - tmp48 tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK]) tmp52 = tl.where(xmask, tmp50, 0) tmp53 = tl.sum(tmp52, 1)[:, None] tmp54 = 16.0 tmp55 = tmp53 / tmp54 tmp56 = tmp49 - tmp55 tmp58 = tmp56 * tmp57 tmp59 = tmp58 + tmp55 tmp60 = triton_helpers.maximum(tmp59, tmp18) tmp61 = triton_helpers.minimum(tmp60, tmp6) tl.store(out_ptr1 + (r2 + 16 * x3), tmp61, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12, 4), (48, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_stack_0[grid(192)](arg0_1, buf0, 192, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 triton_poi_fused_index_put_lift_fresh_1[grid(192)](buf0, buf0, 192, XBLOCK=256, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 1, 1), (1, 1, 1), torch.float32) triton_poi_fused_new_zeros_2[grid(4)](buf7, 4, XBLOCK=4, num_warps= 1, num_stages=1) buf8 = torch.ops.aten.uniform.default(buf7, -4.0, 4.0) buf9 = buf8 del buf8 buf10 = buf7 del buf7 triton_poi_fused_new_ones_3[grid(4)](buf10, 4, XBLOCK=4, num_warps= 1, num_stages=1) buf11 = torch.ops.aten.uniform.default(buf10, 0.0, 5.0) del buf10 buf12 = buf11 del buf11 buf13 = empty_strided_cuda((4, 3, 4, 4), (48, 16, 4, 1), torch.float32) triton_poi_fused_add_copy_div_mul_remainder_4[grid(192)](buf0, buf9, buf12, buf13, 192, XBLOCK=256, num_warps=4, num_stages=1) del buf12 buf14 = buf9 del buf9 triton_poi_fused_new_ones_3[grid(4)](buf14, 4, XBLOCK=4, num_warps= 1, num_stages=1) buf15 = torch.ops.aten.uniform.default(buf14, 0.0, 5.0) buf16 = buf15 del buf15 buf20 = reinterpret_tensor(buf14, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf14 buf21 = torch.ops.aten.uniform.default(buf20, 0.0, 5.0) del buf20 buf22 = buf21 del buf21 buf23 = reinterpret_tensor(buf0, (4, 3, 4, 4), (48, 16, 4, 1), 0) del buf0 triton_per_fused_add_clamp_copy_index_mean_minimum_mul_remainder_rsub_sub_5[ grid(12)](buf13, buf16, buf22, buf23, 12, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf13 del buf16 del buf22 return buf23, def hsv2rgb(hsv): """Convert a 4-d HSV tensor to the RGB counterpart. >>> %timeit hsv2rgb_lookup(hsv) 2.37 ms ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each) >>> %timeit hsv2rgb(rgb) 298 µs ± 542 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> torch.allclose(hsv2rgb(hsv), hsv2rgb_lookup(hsv), atol=1e-6) True References [1] https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative """ h, s, v = hsv[:, [0]], hsv[:, [1]], hsv[:, [2]] c = v * s n = hsv.new_tensor([5, 3, 1]).view(3, 1, 1) k = (n + h * 6) % 6 t = torch.min(k, 4.0 - k) t = torch.clamp(t, 0, 1) return v - c * t def rgb2hsv(rgb): """Convert a 4-d RGB tensor to the HSV counterpart. Here, we compute hue using atan2() based on the definition in [1], instead of using the common lookup table approach as in [2, 3]. Those values agree when the angle is a multiple of 30°, otherwise they may differ at most ~1.2°. >>> %timeit rgb2hsv_lookup(rgb) 1.07 ms ± 2.96 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> %timeit rgb2hsv(rgb) 380 µs ± 555 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each) >>> (rgb2hsv_lookup(rgb) - rgb2hsv(rgb)).abs().max() tensor(0.0031, device='cuda:0') References [1] https://en.wikipedia.org/wiki/Hue [2] https://www.rapidtables.com/convert/color/rgb-to-hsv.html [3] https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py#L212 """ r, g, b = rgb[:, 0, :, :], rgb[:, 1, :, :], rgb[:, 2, :, :] Cmax = rgb.max(1)[0] Cmin = rgb.min(1)[0] hue = torch.atan2(math.sqrt(3) * (g - b), 2 * r - g - b) hue = hue % (2 * math.pi) / (2 * math.pi) saturate = 1 - Cmin / (Cmax + 1e-08) value = Cmax hsv = torch.stack([hue, saturate, value], dim=1) hsv[~torch.isfinite(hsv)] = 0.0 return hsv class RandomHSVFunction(Function): @staticmethod def forward(ctx, x, f_h, f_s, f_v): x = rgb2hsv(x) h = x[:, 0, :, :] h += f_h * 255.0 / 360.0 h = h % 1 x[:, 0, :, :] = h x[:, 1, :, :] = x[:, 1, :, :] * f_s x[:, 2, :, :] = x[:, 2, :, :] * f_v x = torch.clamp(x, 0, 1) x = hsv2rgb(x) return x @staticmethod def backward(ctx, grad_output): grad_input = None if ctx.needs_input_grad[0]: grad_input = grad_output.clone() return grad_input, None, None, None class ColorJitterLayerNew(nn.Module): def __init__(self, brightness, contrast, saturation, hue): super(ColorJitterLayerNew, self).__init__() self.brightness = self._check_input(brightness, 'brightness') self.contrast = self._check_input(contrast, 'contrast') self.saturation = self._check_input(saturation, 'saturation') self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5 ), clip_first_on_zero=False) def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True): if isinstance(value, numbers.Number): if value < 0: raise ValueError( 'If {} is a single number, it must be non negative.'. format(name)) value = [center - value, center + value] if clip_first_on_zero: value[0] = max(value[0], 0) elif isinstance(value, (tuple, list)) and len(value) == 2: if not bound[0] <= value[0] <= value[1] <= bound[1]: raise ValueError('{} values should be between {}'.format( name, bound)) else: raise TypeError( '{} should be a single number or a list/tuple with lenght 2.' .format(name)) if value[0] == value[1] == center: value = None return value def adjust_contrast(self, x): if self.contrast: factor = x.new_empty(x.size(0), 1, 1, 1).uniform_(*self.contrast) means = torch.mean(x, dim=[2, 3], keepdim=True) x = (x - means) * factor + means return torch.clamp(x, 0, 1) def adjust_hsv(self, x): f_h = x.new_zeros(x.size(0), 1, 1) f_s = x.new_ones(x.size(0), 1, 1) f_v = x.new_ones(x.size(0), 1, 1) if self.hue: f_h.uniform_(*self.hue) if self.saturation: f_s = f_s.uniform_(*self.saturation) if self.brightness: f_v = f_v.uniform_(*self.brightness) return RandomHSVFunction.apply(x, f_h, f_s, f_v) def transform(self, inputs): if np.random.rand() > 0.5: transforms = [self.adjust_contrast, self.adjust_hsv] else: transforms = [self.adjust_hsv, self.adjust_contrast] for t in transforms: inputs = t(inputs) return inputs def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Jinoh-Cho/Visual-Genome-Image-Inpainting
ColorJitterLayer
false
9,226
[ "MIT" ]
0
f8c43bf2e4a9139d4c35903d0c323b9d8eb54859
https://github.com/Jinoh-Cho/Visual-Genome-Image-Inpainting/tree/f8c43bf2e4a9139d4c35903d0c323b9d8eb54859
Square
import torch import torch.nn as nn class Square(nn.Module): def __init__(self): super(Square, self).__init__() def forward(self, x): return torch.mul(x, x) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class SquareNew(nn.Module): def __init__(self): super(SquareNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
carlzhangweiwen/gazelle_mpc
Square
false
15,002
[ "MIT" ]
50
45818ccf6375100a8fe2680f44f37d713380aa5c
https://github.com/carlzhangweiwen/gazelle_mpc/tree/45818ccf6375100a8fe2680f44f37d713380aa5c