entry_point
stringlengths 1
65
| original_triton_python_code
stringlengths 208
619k
| optimised_triton_code
stringlengths 1.15k
275k
| repo_name
stringlengths 7
115
| module_name
stringlengths 1
65
| synthetic
bool 1
class | uuid
int64 0
18.5k
| licenses
listlengths 1
6
| stars
int64 0
19.8k
| sha
stringlengths 40
40
| repo_link
stringlengths 72
180
|
---|---|---|---|---|---|---|---|---|---|---|
CausalConv1d
|
import torch
import torch.nn as nn
import torch.utils.data
import torch
class CausalConv1d(nn.Module):
"""A 1D causal convolution layer.
Input: (B, D_in, T), where B is the minibatch size, D_in is the number of
dimensions per step, and T is the number of steps.
Output: (B, D_out, T), where B is the minibatch size, D_out is the number
of dimensions in the output, and T is the number of steps.
Arguments:
in_channels (int): number of input channels
out_channels (int): number of output channels
"""
def __init__(self, in_channels, out_channels, dilation=1):
super(CausalConv1d, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding=
self.padding, dilation=dilation)
def forward(self, minibatch):
return self.causal_conv(minibatch)[:, :, :-self.padding]
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.utils.data
import torch
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 80
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 5 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 2), (8, 2, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,),
padding=(1,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 5), (20, 5, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(80)](buf1, primals_2, 80,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (4, 4, 4), (20, 5, 1), 0
), primals_1, primals_3
class CausalConv1dNew(nn.Module):
"""A 1D causal convolution layer.
Input: (B, D_in, T), where B is the minibatch size, D_in is the number of
dimensions per step, and T is the number of steps.
Output: (B, D_out, T), where B is the minibatch size, D_out is the number
of dimensions in the output, and T is the number of steps.
Arguments:
in_channels (int): number of input channels
out_channels (int): number of output channels
"""
def __init__(self, in_channels, out_channels, dilation=1):
super(CausalConv1dNew, self).__init__()
self.padding = dilation
self.causal_conv = nn.Conv1d(in_channels, out_channels, 2, padding=
self.padding, dilation=dilation)
def forward(self, input_0):
primals_1 = self.causal_conv.weight
primals_2 = self.causal_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
sagelywizard/snail
|
CausalConv1d
| false | 16,350 |
[
"MIT"
] | 100 |
1c64787aa970c82f65c3c9d253531d1c2b1bee08
|
https://github.com/sagelywizard/snail/tree/1c64787aa970c82f65c3c9d253531d1c2b1bee08
|
SpatialAttentionGate
|
import torch
import torch.nn.functional as F
import torch.nn as nn
class SpatialAttentionGate(nn.Module):
def __init__(self, channel, reduction=16):
super(SpatialAttentionGate, self).__init__()
self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0)
self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0)
def forward(self, x):
x = self.fc1(x)
x = F.relu(x, inplace=True)
x = self.fc2(x)
x = torch.sigmoid(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'channel': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (16, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 16, 1, 1), (16, 1, 1, 1))
assert_size_stride(primals_5, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 4, 4), (256, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1024)](buf1, primals_2,
1024, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 1, 4, 4), (16, 16, 4, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_sigmoid_1[grid(64)](buf3, primals_5,
64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, buf3
class SpatialAttentionGateNew(nn.Module):
def __init__(self, channel, reduction=16):
super(SpatialAttentionGateNew, self).__init__()
self.fc1 = nn.Conv2d(channel, reduction, kernel_size=1, padding=0)
self.fc2 = nn.Conv2d(reduction, 1, kernel_size=1, padding=0)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
lawwu/nni
|
SpatialAttentionGate
| false | 10,606 |
[
"MIT"
] | 0 |
b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
|
https://github.com/lawwu/nni/tree/b869dd48dfe36392e7b78c70ea35eb6d4b4779dc
|
LeakyReLU
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/n5/cn53c6d36bm2o6wr33epyebwkqx7owzyf77kp5pts3jxdcj6obrf.py
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
# Source node to ATen node mapping:
# leaky_relu => gt, mul, where
# Graph fragment:
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.01), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %mul), kwargs = {})
triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + (x0), tmp5, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [leaky_relu], Original ATen: [aten.leaky_relu]
stream0 = get_raw_stream(0)
triton_poi_fused_leaky_relu_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.0
tmp2 = tmp0 > tmp1
tmp3 = 0.01
tmp4 = tmp0 * tmp3
tmp5 = tl.where(tmp2, tmp0, tmp4)
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_leaky_relu_0[grid(256)](arg0_1, buf0, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class Activation(torch.nn.Module):
def __init__(self) ->None:
super().__init__()
def forward(self, inputs: 'torch.Tensor') ->torch.Tensor:
raise NotImplementedError
class LeakyReLUNew(Activation):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
altescy/xtorch
|
LeakyReLU
| false | 9,708 |
[
"MIT"
] | 0 |
bcbbbe645f4d62c211af5b3555c526cc60792c32
|
https://github.com/altescy/xtorch/tree/bcbbbe645f4d62c211af5b3555c526cc60792c32
|
ShakeResNeXt
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ej/cejfrwnzxinkchwn6symdb72fdtj7gix5hy2vuswodhbeh45mrae.py
# Topologically Sorted Source Nodes: [h, h_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# h => convolution
# h_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (4, 1024), (1024, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [h, h_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 1048576, grid=grid(1048576), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [h_2], Original ATen: [aten.avg_pool2d]
buf2 = torch.ops.aten.avg_pool2d.default(buf1, [8, 8], [8, 8], [0, 0], False, True, None)
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [h_4], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (16, 1024), (1024, 1), 0), reinterpret_tensor(primals_4, (1024, 4), (1, 1024), 0), alpha=1, beta=1, out=buf4)
del primals_5
return (buf4, primals_1, primals_3, buf1, reinterpret_tensor(buf3, (16, 1024), (1024, 1), 0), primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 1024), (1024, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import math
from torch.nn import functional as F
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (4, 1024), (1024, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 64, 64), (262144, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(1048576)](buf1, primals_2,
1048576, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = torch.ops.aten.avg_pool2d.default(buf1, [8, 8], [8, 8], [0,
0], False, True, None)
buf3 = buf2
del buf2
buf4 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf3, (16, 1024),
(1024, 1), 0), reinterpret_tensor(primals_4, (1024, 4), (1,
1024), 0), alpha=1, beta=1, out=buf4)
del primals_5
return buf4, primals_1, primals_3, buf1, reinterpret_tensor(buf3, (16,
1024), (1024, 1), 0), primals_4
class ShakeShake(torch.autograd.Function):
@staticmethod
def forward(ctx, x1, x2, training=True):
if training:
alpha = torch.FloatTensor(x1.size(0)).uniform_()
alpha = alpha.view(alpha.size(0), 1, 1, 1).expand_as(x1)
else:
alpha = 0.5
return alpha * x1 + (1 - alpha) * x2
@staticmethod
def backward(ctx, grad_output):
beta = torch.FloatTensor(grad_output.size(0)).uniform_()
beta = beta.view(beta.size(0), 1, 1, 1).expand_as(grad_output)
return beta * grad_output, (1 - beta) * grad_output, None
class Shortcut(nn.Module):
def __init__(self, in_ch, out_ch, stride):
super(Shortcut, self).__init__()
self.stride = stride
self.conv1 = nn.Conv2d(in_ch, out_ch // 2, 1, stride=1, padding=0,
bias=False)
self.conv2 = nn.Conv2d(in_ch, out_ch // 2, 1, stride=1, padding=0,
bias=False)
self.bn = nn.BatchNorm2d(out_ch)
def forward(self, x):
h = F.relu(x)
h1 = F.avg_pool2d(h, 1, self.stride)
h1 = self.conv1(h1)
h2 = F.avg_pool2d(F.pad(h, (-1, 1, -1, 1)), 1, self.stride)
h2 = self.conv2(h2)
h = torch.cat((h1, h2), 1)
return self.bn(h)
class ShakeBottleNeck(nn.Module):
def __init__(self, in_ch, mid_ch, out_ch, cardinary, stride=1):
super(ShakeBottleNeck, self).__init__()
self.equal_io = in_ch == out_ch
self.shortcut = None if self.equal_io else Shortcut(in_ch, out_ch,
stride=stride)
self.branch1 = self._make_branch(in_ch, mid_ch, out_ch, cardinary,
stride)
self.branch2 = self._make_branch(in_ch, mid_ch, out_ch, cardinary,
stride)
def forward(self, x):
h1 = self.branch1(x)
h2 = self.branch2(x)
h = ShakeShake.apply(h1, h2, self.training)
h0 = x if self.equal_io else self.shortcut(x)
return h + h0
def _make_branch(self, in_ch, mid_ch, out_ch, cardinary, stride=1):
return nn.Sequential(nn.Conv2d(in_ch, mid_ch, 1, padding=0, bias=
False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace=False), nn.
Conv2d(mid_ch, mid_ch, 3, padding=1, stride=stride, groups=
cardinary, bias=False), nn.BatchNorm2d(mid_ch), nn.ReLU(inplace
=False), nn.Conv2d(mid_ch, out_ch, 1, padding=0, bias=False),
nn.BatchNorm2d(out_ch))
class ShakeResNeXtNew(nn.Module):
def __init__(self, depth, w_base, cardinary, label):
super(ShakeResNeXtNew, self).__init__()
n_units = (depth - 2) // 9
n_chs = [64, 128, 256, 1024]
self.n_chs = n_chs
self.in_ch = n_chs[0]
self.c_in = nn.Conv2d(3, n_chs[0], 3, padding=1)
self.layer1 = self._make_layer(n_units, n_chs[0], w_base, cardinary)
self.layer2 = self._make_layer(n_units, n_chs[1], w_base, cardinary, 2)
self.layer3 = self._make_layer(n_units, n_chs[2], w_base, cardinary, 2)
self.fc_out = nn.Linear(n_chs[3], label)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2.0 / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def _make_layer(self, n_units, n_ch, w_base, cardinary, stride=1):
layers = []
mid_ch, out_ch = n_ch * (w_base // 64) * cardinary, n_ch * 4
for i in range(n_units):
layers.append(ShakeBottleNeck(self.in_ch, mid_ch, out_ch,
cardinary, stride=stride))
self.in_ch, stride = out_ch, 1
return nn.Sequential(*layers)
def forward(self, input_0):
primals_1 = self.c_in.weight
primals_2 = self.c_in.bias
primals_4 = self.fc_out.weight
primals_5 = self.fc_out.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
ang421/dda
|
ShakeResNeXt
| false | 9,913 |
[
"MIT"
] | 0 |
391ad696ec8479ce41a0d7d6bfbfae06edaddf67
|
https://github.com/ang421/dda/tree/391ad696ec8479ce41a0d7d6bfbfae06edaddf67
|
Block
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch._C
import torch.serialization
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last'
):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise NotImplementedError
self.normalized_shape = normalized_shape,
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight, self
.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class Block(nn.Module):
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
self.norm = LayerNorm(dim, eps=1e-06)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = self.gamma * x
x = x.permute(0, 3, 1, 2)
x = input + self.drop_path(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
import torch._C
import torch.serialization
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-06
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.
constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 16
y1 = yindex // 16
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 16 * x2 + 64 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y3, ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + y3, ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x2, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2 + 4 * y3), tmp8, xmask & ymask)
@triton.jit
def triton_poi_fused_gelu_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.5
tmp2 = tmp0 * tmp1
tmp3 = 0.7071067811865476
tmp4 = tmp0 * tmp3
tmp5 = libdevice.erf(tmp4)
tmp6 = 1.0
tmp7 = tmp5 + tmp6
tmp8 = tmp2 * tmp7
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, ynumel,
xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask)
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr2 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tmp3 = tmp1 * tmp2
tmp4 = tmp0 + tmp3
tl.store(out_ptr0 + (x2 + 16 * y3), tmp4, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 7, 7), (49, 49, 7, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (16, 4), (4, 1))
assert_size_stride(primals_7, (16,), (1,))
assert_size_stride(primals_8, (4, 16), (16, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=4, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(64)](buf1, buf2, buf3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_2[grid(64, 4)](buf1, buf2, buf3,
primals_4, primals_5, buf4, 64, 4, XBLOCK=4, YBLOCK=64,
num_warps=4, num_stages=1)
del buf2
del buf3
del primals_5
buf5 = empty_strided_cuda((64, 16), (16, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf4, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 16), (1, 4), 0),
alpha=1, beta=1, out=buf5)
del primals_7
buf6 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.
float32)
triton_poi_fused_gelu_3[grid(1024)](buf5, buf6, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, reinterpret_tensor(buf6, (64, 16),
(16, 1), 0), reinterpret_tensor(primals_8, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf7)
del primals_9
buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_4[grid(16, 16)](primals_1, primals_10, buf7,
buf8, 16, 16, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
return (buf8, primals_1, primals_2, primals_4, primals_10, buf1,
reinterpret_tensor(buf4, (64, 4), (4, 1), 0), buf5,
reinterpret_tensor(buf6, (64, 16), (16, 1), 0), buf7, primals_8,
primals_6)
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-06, data_format='channels_last'
):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ['channels_last', 'channels_first']:
raise NotImplementedError
self.normalized_shape = normalized_shape,
def forward(self, x):
if self.data_format == 'channels_last':
return F.layer_norm(x, self.normalized_shape, self.weight, self
.bias, self.eps)
elif self.data_format == 'channels_first':
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class BlockNew(nn.Module):
""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0.0, layer_scale_init_value=1e-06):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim)
self.norm = LayerNorm(dim, eps=1e-06)
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim)
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path
) if drop_path > 0.0 else nn.Identity()
def forward(self, input_0):
primals_3 = self.gamma
primals_2 = self.dwconv.weight
primals_4 = self.dwconv.bias
primals_5 = self.norm.weight
primals_9 = self.norm.bias
primals_6 = self.pwconv1.weight
primals_7 = self.pwconv1.bias
primals_8 = self.pwconv2.weight
primals_10 = self.pwconv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
CarnoZhao/mmsegmentation
|
Block
| false | 7,855 |
[
"Apache-2.0"
] | 18 |
bdaf3d93c4d33c3f0c15f95879fdd7ab78290c1c
|
https://github.com/CarnoZhao/mmsegmentation/tree/bdaf3d93c4d33c3f0c15f95879fdd7ab78290c1c
|
SinusoidPositionalEmbedding
|
import torch
import torch.nn as nn
class SinusoidPositionalEmbedding(nn.Module):
def forward(self, x):
seq_len, n_model = x[0].shape
pos = x.new_tensor(range(seq_len)).unsqueeze(-1) / 10000 ** (x.
new_tensor(range(n_model)) // 2 * 2 / n_model)
pos[:, 0::2], pos[:, 1::2] = pos[:, 0::2].sin(), pos[:, 1::2].cos()
return pos
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_floor_divide_lift_fresh_mul_pow_0(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 2, tl.int64)
tmp2 = tmp0 < tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = 0.0
tmp6 = 1.0
tmp7 = tl.where(tmp4, tmp5, tmp6)
tmp8 = tl.full([1], 3, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = 2.0
tmp11 = 3.0
tmp12 = tl.where(tmp9, tmp10, tmp11)
tmp13 = tl.where(tmp2, tmp7, tmp12)
tmp14 = x0
tmp15 = tmp14 < tmp1
tmp16 = tmp14 < tmp3
tmp17 = tl.where(tmp16, tmp5, tmp6)
tmp18 = tmp14 < tmp8
tmp19 = tl.where(tmp18, tmp10, tmp11)
tmp20 = tl.where(tmp15, tmp17, tmp19)
tmp21 = 0.5
tmp22 = tmp20 * tmp21
tmp23 = libdevice.floor(tmp22)
tmp24 = tmp23 * tmp10
tmp25 = 0.25
tmp26 = tmp24 * tmp25
tmp27 = 10000.0
tmp28 = libdevice.pow(tmp27, tmp26)
tmp29 = tmp13 / tmp28
tl.store(out_ptr0 + x2, tmp29, xmask)
@triton.jit
def triton_poi_fused_copy_cos_sin_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = x2 % 2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 == tmp1
tmp3 = tl.load(in_ptr0 + (2 * (x0 // 2) + 4 * x1), tmp2 & xmask,
eviction_policy='evict_last', other=0.0)
tmp4 = tl_math.sin(tmp3)
tmp5 = tl.full(tmp4.shape, 0.0, tmp4.dtype)
tmp6 = tl.where(tmp2, tmp4, tmp5)
tmp7 = x1
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tmp7 < tmp8
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp7 < tmp10
tmp12 = 0.0
tmp13 = 1.0
tmp14 = tl.where(tmp11, tmp12, tmp13)
tmp15 = tl.full([1], 3, tl.int64)
tmp16 = tmp7 < tmp15
tmp17 = 2.0
tmp18 = 3.0
tmp19 = tl.where(tmp16, tmp17, tmp18)
tmp20 = tl.where(tmp9, tmp14, tmp19)
tmp21 = x0
tmp22 = tmp21 < tmp8
tmp23 = tmp21 < tmp10
tmp24 = tl.where(tmp23, tmp12, tmp13)
tmp25 = tmp21 < tmp15
tmp26 = tl.where(tmp25, tmp17, tmp18)
tmp27 = tl.where(tmp22, tmp24, tmp26)
tmp28 = 0.5
tmp29 = tmp27 * tmp28
tmp30 = libdevice.floor(tmp29)
tmp31 = tmp30 * tmp17
tmp32 = 0.25
tmp33 = tmp31 * tmp32
tmp34 = 10000.0
tmp35 = libdevice.pow(tmp34, tmp33)
tmp36 = tmp20 / tmp35
tmp37 = tl.where(tmp2, tmp6, tmp36)
tmp38 = tmp21 >= tmp10
tmp39 = (-1 + x0) % 2
tmp40 = tmp39 == tmp1
tmp41 = tmp38 & tmp40
tmp42 = tl.load(in_ptr0 + (1 + 2 * triton_helpers.div_floor_integer(-1 +
x0, 2) + 4 * x1), tmp41 & xmask, eviction_policy='evict_last',
other=0.0)
tmp43 = tl_math.cos(tmp42)
tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype)
tmp45 = tl.where(tmp41, tmp43, tmp44)
tmp46 = tl.where(tmp41, tmp45, tmp37)
tl.store(in_out_ptr0 + x2, tmp46, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_floor_divide_lift_fresh_mul_pow_0[grid(16)](buf0,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf2 = buf1
del buf1
triton_poi_fused_copy_cos_sin_1[grid(16)](buf2, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
return buf2,
class SinusoidPositionalEmbeddingNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
yzhangcs/parser
|
SinusoidPositionalEmbedding
| false | 16,789 |
[
"MIT"
] | 439 |
3abebde1c9fe0bf2e99adce845aaf2a04b194f8a
|
https://github.com/yzhangcs/parser/tree/3abebde1c9fe0bf2e99adce845aaf2a04b194f8a
|
NN_softmax
|
import torch
from torch import nn
import torch.nn.functional as F
class NN_logsoftmax(nn.Module):
"""Build a new class for the network you want to run, returning log
softmax"""
def set_parameters(self, initializers):
"""Set the parameter values obtained from vanilla NN as initializers"""
with torch.no_grad():
self.fc1.weight.data = torch.from_numpy(initializers[0].copy())
self.fc1.bias.data = torch.from_numpy(initializers[1].copy())
self.fc2.weight.data = torch.from_numpy(initializers[2].copy())
self.fc2.bias.data = torch.from_numpy(initializers[3].copy())
"""Single layer network with layer_size nodes"""
def __init__(self, d, layer_size, num_classes):
super(NN_logsoftmax, self).__init__()
self.fc1 = nn.Linear(d, layer_size)
self.fc2 = nn.Linear(layer_size, num_classes)
"""Return the log softmax values for each of the classes"""
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class NN_softmax(NN_logsoftmax):
"""Build a new class for the network you want to run, returning non-log
softmax"""
"""Return the softmax values for each of the classes"""
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.softmax(x, dim=1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'d': 4, 'layer_size': 1, 'num_classes': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = 0.0
tmp7 = tmp5 <= tmp6
tl.store(in_out_ptr0 + x0, tmp5, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x3, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 16
x2 = xindex // 64
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 1), (1, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(64)](buf1,
primals_2, buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 1), (
1, 0), 0), reinterpret_tensor(primals_4, (1, 4), (1, 1), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf2, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf2
triton_poi_fused__softmax_2[grid(256)](buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 1), (1, 1), 0), buf4, primals_4, buf5
class NN_logsoftmax(nn.Module):
"""Build a new class for the network you want to run, returning log
softmax"""
def set_parameters(self, initializers):
"""Set the parameter values obtained from vanilla NN as initializers"""
with torch.no_grad():
self.fc1.weight.data = torch.from_numpy(initializers[0].copy())
self.fc1.bias.data = torch.from_numpy(initializers[1].copy())
self.fc2.weight.data = torch.from_numpy(initializers[2].copy())
self.fc2.bias.data = torch.from_numpy(initializers[3].copy())
"""Single layer network with layer_size nodes"""
def __init__(self, d, layer_size, num_classes):
super(NN_logsoftmax, self).__init__()
self.fc1 = nn.Linear(d, layer_size)
self.fc2 = nn.Linear(layer_size, num_classes)
"""Return the log softmax values for each of the classes"""
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
class NN_softmaxNew(NN_logsoftmax):
"""Build a new class for the network you want to run, returning non-log
softmax"""
"""Return the softmax values for each of the classes"""
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
laravomfell/tvd_loss
|
NN_softmax
| false | 7,076 |
[
"MIT"
] | 1 |
b30a925f95985a03ff70bfa40a6ec3662432779d
|
https://github.com/laravomfell/tvd_loss/tree/b30a925f95985a03ff70bfa40a6ec3662432779d
|
GlobalMaxPooling
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/54/c54fiiozms64dqfszq2hf52cdztx43kas6yivnlda7p3bxzbtzle.py
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
# Source node to ATen node mapping:
# max_1 => getitem
# Graph fragment:
# %getitem : [num_users=1] = call_function[target=operator.getitem](args = (%max_1, 0), kwargs = {})
triton_poi_fused_max_0 = async_compile.triton('triton_poi_fused_max_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_1], Original ATen: [aten.max]
stream0 = get_raw_stream(0)
triton_poi_fused_max_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp0, tmp1)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class GlobalMaxPoolingNew(nn.Module):
def __init__(self, dim=-1):
super(self.__class__, self).__init__()
self.dim = dim
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
numb3r33/toxic_comments_classification
|
GlobalMaxPooling
| false | 10,596 |
[
"MIT"
] | 0 |
c5de56751aee29b6dee6e330237a4fd0bcd7fd51
|
https://github.com/numb3r33/toxic_comments_classification/tree/c5de56751aee29b6dee6e330237a4fd0bcd7fd51
|
TransformerEncoderLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/dk/cdk4odz276xorciau5ehgl7f3s2mgkf3hrye6xep6kzubczdeqqy.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/oz/cozo2tvc7hyhhuvn7mvono4mqt4xjxbetoafx6siwgnsijj54xyl.py
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
# Source node to ATen node mapping:
# repeat => repeat
# Graph fragment:
# %repeat : [num_users=2] = call_function[target=torch.ops.aten.repeat.default](args = (%view_12, [1, 4, 1, 1]), kwargs = {})
triton_poi_fused_repeat_1 = async_compile.triton('triton_poi_fused_repeat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_repeat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/bx/cbxsgautsk4bd7exwaatk4zmdcujosx2bs6glhzldma6whelf3xa.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => exp, sum_1
# masked_fill_ => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
triton_poi_fused__softmax_masked_fill_2 = async_compile.triton('triton_poi_fused__softmax_masked_fill_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + (x2), tmp20, xmask)
tl.store(out_ptr1 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/k3/ck3ynjvzkegtm2kjok34x3fffzfegirtmypcfcgbywxdahuilxmg.py
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
# Source node to ATen node mapping:
# attn_weights => div_1, exp
# masked_fill_ => full_default, where
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -1.0000000200408773e+20), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%view_13, %full_default, %bmm), kwargs = {})
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {})
# %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_masked_fill_3 = async_compile.triton('triton_poi_fused__softmax_masked_fill_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_masked_fill_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex
x4 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last').to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + (x3), xmask)
tmp6 = tl.load(in_ptr1 + (x4), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + (x4), xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + (x3), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6t/c6t5a5ere3lqjiu7zh3uu4oxmpdoujdaqqmeunxqapgzo4m74uav.py
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous_3 => clone_4
# Graph fragment:
# %clone_4 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_4 = async_compile.triton('triton_poi_fused_clone_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/s7/cs7p2dyxlesdvuyx4owztmqg5sapsarlgzaivin7okeoe6lxygw7.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_18, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_native_layer_norm_5 = async_compile.triton('triton_poi_fused_native_layer_norm_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/y6/cy6mkjdwes62jaih4dzebyknvxezhquh37cme5cflrxbxff3z675.py
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm => add_1, add_2, mul, mul_1, rsqrt, sub_1
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_18, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_11), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_12), kwargs = {})
triton_poi_fused_native_layer_norm_6 = async_compile.triton('triton_poi_fused_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/u4/cu4mvhweewrefdurxuza5qfbqlwomkc67kmxkkaurh6luaf2e2fz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_21,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/he/chevf4d6tadiz3y2a2abr2lj2bvo3wyfykoivwj2s4xedp3vdjuf.py
# Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add]
# Source node to ATen node mapping:
# tensor_8 => add_3
# Graph fragment:
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_19, %view_23), kwargs = {})
triton_poi_fused_add_8 = async_compile.triton('triton_poi_fused_add_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_out_ptr0 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/hn/chnyp4bqchi6cc3qkpikodtjzt7sfs4gz3r2kunqaesb7ahrywso.py
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# layer_norm_1 => add_4, rsqrt_1, var_mean_1
# Graph fragment:
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_24, [1]), kwargs = {correction: 0, keepdim: True})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_4,), kwargs = {})
triton_poi_fused_native_layer_norm_9 = async_compile.triton('triton_poi_fused_native_layer_norm_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/2i/c2it3bfvz5dki6xljhyv3o2tjme4rnp2cbavnrl4nu6kpvzqdzbp.py
# Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# tensor_10 => mul_4
# Graph fragment:
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_25, %unsqueeze), kwargs = {})
triton_poi_fused_mul_10 = async_compile.triton('triton_poi_fused_mul_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, ), (1, ))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, ), (1, ))
assert_size_stride(primals_18, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, primals_4, buf1, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_4
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf3, primals_8, buf4, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_8
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf2, primals_6, buf5, 16, 4, grid=grid(16, 4), stream=stream0)
del primals_6
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [dot_prod], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [repeat], Original ATen: [aten.repeat]
triton_poi_fused_repeat_1.run(primals_2, buf7, 64, grid=grid(64), stream=stream0)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0); del buf2 # reuse
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_2.run(buf7, buf6, buf8, buf9, 64, grid=grid(64), stream=stream0)
buf10 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [masked_fill_, attn_weights], Original ATen: [aten.masked_fill, aten._softmax]
triton_poi_fused__softmax_masked_fill_3.run(buf10, buf7, buf8, buf9, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [attentioned], Original ATen: [aten.bmm]
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf8 # reuse
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_4.run(buf11, buf12, 16, 4, grid=grid(16, 4), stream=stream0)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0); del buf11 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_5.run(primals_1, buf13, buf14, buf15, 16, grid=grid(16), stream=stream0)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [layer_norm], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_6.run(primals_1, buf13, buf14, buf15, primals_11, primals_12, buf16, 64, grid=grid(64), stream=stream0)
del primals_12
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0); del buf17 # reuse
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_7.run(buf18, primals_14, buf24, 64, grid=grid(64), stream=stream0)
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0); del buf19 # reuse
# Topologically Sorted Source Nodes: [tensor_8], Original ATen: [aten.add]
triton_poi_fused_add_8.run(buf20, buf16, primals_16, 64, grid=grid(64), stream=stream0)
del primals_16
buf21 = buf15; del buf15 # reuse
buf22 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [layer_norm_1], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_9.run(buf20, buf21, buf22, 16, grid=grid(16), stream=stream0)
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [tensor_10], Original ATen: [aten.mul]
triton_poi_fused_mul_10.run(buf20, buf21, buf22, primals_17, primals_18, primals_2, buf23, 64, grid=grid(64), stream=stream0)
del buf21
del buf22
del primals_18
return (buf23, primals_1, primals_2, primals_11, primals_17, buf7, buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16, reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13, primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import math
import torch.nn.functional as F
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_repeat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tl.store(out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp7 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp12 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp16 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp17 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp8 = tl.where(tmp6, tmp2, tmp7)
tmp9 = tmp8 * tmp4
tmp10 = triton_helpers.maximum(tmp5, tmp9)
tmp13 = tl.where(tmp11, tmp2, tmp12)
tmp14 = tmp13 * tmp4
tmp15 = triton_helpers.maximum(tmp10, tmp14)
tmp18 = tl.where(tmp16, tmp2, tmp17)
tmp19 = tmp18 * tmp4
tmp20 = triton_helpers.maximum(tmp15, tmp19)
tmp21 = tmp5 - tmp20
tmp22 = tmp21 * tmp4
tmp23 = tl_math.exp(tmp22)
tmp24 = tmp9 - tmp20
tmp25 = tmp24 * tmp4
tmp26 = tl_math.exp(tmp25)
tmp27 = tmp23 + tmp26
tmp28 = tmp14 - tmp20
tmp29 = tmp28 * tmp4
tmp30 = tl_math.exp(tmp29)
tmp31 = tmp27 + tmp30
tmp32 = tmp19 - tmp20
tmp33 = tmp32 * tmp4
tmp34 = tl_math.exp(tmp33)
tmp35 = tmp31 + tmp34
tl.store(out_ptr0 + x2, tmp20, xmask)
tl.store(out_ptr1 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp6 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = -1.0000000200408773e+20
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp4 = 1.0
tmp5 = tmp3 * tmp4
tmp7 = tmp5 - tmp6
tmp8 = tmp7 * tmp4
tmp9 = tl_math.exp(tmp8)
tmp11 = tmp9 / tmp10
tl.store(in_out_ptr0 + x3, tmp11, xmask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_native_layer_norm_5(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_6(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_7(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_8(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_out_ptr0 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 + tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_9(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_mul_10(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tmp10 = tmp8 * tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17, primals_18
) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4,), (1,))
assert_size_stride(primals_18, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf0)
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_4, buf1, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_4
buf2 = buf0
del buf0
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf2)
del primals_5
buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf3)
del primals_7
buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(16, 4)](buf3, primals_8, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf5 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf3
triton_poi_fused_clone_0[grid(16, 4)](buf2, primals_6, buf5, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_6
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6)
buf7 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 4, 1), torch.bool)
triton_poi_fused_repeat_1[grid(64)](primals_2, buf7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 64), 0)
del buf2
buf9 = empty_strided_cuda((16, 4, 1), (4, 1, 64), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(64)](buf7, buf6, buf8,
buf9, 64, XBLOCK=64, num_warps=1, num_stages=1)
buf10 = buf6
del buf6
triton_poi_fused__softmax_masked_fill_3[grid(256)](buf10, buf7,
buf8, buf9, 256, XBLOCK=256, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (16, 4, 1), (4, 1, 1), 0)
del buf9
extern_kernels.bmm(buf10, reinterpret_tensor(buf4, (16, 4, 1), (4,
1, 0), 0), out=buf11)
buf12 = reinterpret_tensor(buf8, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf8
triton_poi_fused_clone_4[grid(16, 4)](buf11, buf12, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
buf13 = reinterpret_tensor(buf11, (16, 4), (4, 1), 0)
del buf11
extern_kernels.addmm(primals_10, reinterpret_tensor(buf12, (16, 4),
(4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf13)
del primals_10
buf14 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
buf15 = empty_strided_cuda((16, 1), (1, 16), torch.float32)
triton_poi_fused_native_layer_norm_5[grid(16)](primals_1, buf13,
buf14, buf15, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_6[grid(64)](primals_1, buf13,
buf14, buf15, primals_11, primals_12, buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_12
buf17 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(buf16, reinterpret_tensor(primals_13, (4, 4), (1,
4), 0), out=buf17)
buf18 = reinterpret_tensor(buf17, (4, 4, 4), (16, 4, 1), 0)
del buf17
buf24 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_7[grid(64)](buf18,
primals_14, buf24, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_14
buf19 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf18, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf19)
buf20 = reinterpret_tensor(buf19, (4, 4, 4), (16, 4, 1), 0)
del buf19
triton_poi_fused_add_8[grid(64)](buf20, buf16, primals_16, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_16
buf21 = buf15
del buf15
buf22 = buf14
del buf14
triton_poi_fused_native_layer_norm_9[grid(16)](buf20, buf21, buf22,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf23 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused_mul_10[grid(64)](buf20, buf21, buf22, primals_17,
primals_18, primals_2, buf23, 64, XBLOCK=64, num_warps=1,
num_stages=1)
del buf21
del buf22
del primals_18
return (buf23, primals_1, primals_2, primals_11, primals_17, buf7,
buf10, reinterpret_tensor(buf12, (16, 4), (4, 1), 0), buf13, buf16,
reinterpret_tensor(buf18, (16, 4), (4, 1), 0), reinterpret_tensor(
buf20, (16, 4), (4, 1), 0), primals_15, buf24, primals_13,
primals_9, reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf1, (16, 1, 4), (4, 1, 1), 0),
reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 1), 0))
def _normalize(tensor, norm_layer):
"""
Broadcast layer norm
"""
size = tensor.size()
return norm_layer(tensor.view(-1, size[-1])).view(size)
class MultiHeadAttention(nn.Module):
def __init__(self, n_heads, dim, dropout=0):
super(MultiHeadAttention, self).__init__()
self.n_heads = n_heads
self.dim = dim
self.attn_dropout = nn.Dropout(p=dropout)
self.q_lin = nn.Linear(dim, dim)
self.k_lin = nn.Linear(dim, dim)
self.v_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.q_lin.weight)
nn.init.xavier_normal_(self.k_lin.weight)
nn.init.xavier_normal_(self.v_lin.weight)
self.out_lin = nn.Linear(dim, dim)
nn.init.xavier_normal_(self.out_lin.weight)
def forward(self, query, key=None, value=None, mask=None):
batch_size, query_len, dim = query.size()
assert dim == self.dim, f'Dimensions do not match: {dim} query vs {self.dim} configured'
assert mask is not None, 'Mask is None, please specify a mask'
n_heads = self.n_heads
dim_per_head = dim // n_heads
scale = math.sqrt(dim_per_head)
def prepare_head(tensor):
_bsz, seq_len, _ = tensor.size()
tensor = tensor.view(batch_size, tensor.size(1), n_heads,
dim_per_head)
tensor = tensor.transpose(1, 2).contiguous().view(batch_size *
n_heads, seq_len, dim_per_head)
return tensor
if key is None and value is None:
key = value = query
elif value is None:
value = key
_, key_len, dim = key.size()
q = prepare_head(self.q_lin(query))
k = prepare_head(self.k_lin(key))
v = prepare_head(self.v_lin(value))
dot_prod = q.bmm(k.transpose(1, 2))
attn_mask = (mask == 0).view(batch_size, 1, -1, key_len).repeat(1,
n_heads, 1, 1).expand(batch_size, n_heads, query_len, key_len
).view(batch_size * n_heads, query_len, key_len)
assert attn_mask.shape == dot_prod.shape
dot_prod.masked_fill_(attn_mask, -float(1e+20))
attn_weights = F.softmax(dot_prod / scale, dim=-1)
attn_weights = self.attn_dropout(attn_weights)
attentioned = attn_weights.bmm(v)
attentioned = attentioned.view(batch_size, n_heads, query_len,
dim_per_head).transpose(1, 2).contiguous().view(batch_size,
query_len, dim)
out = self.out_lin(attentioned)
return out
class TransformerFFN(nn.Module):
def __init__(self, dim, dim_hidden, relu_dropout=0):
super(TransformerFFN, self).__init__()
self.relu_dropout = nn.Dropout(p=relu_dropout)
self.lin1 = nn.Linear(dim, dim_hidden)
self.lin2 = nn.Linear(dim_hidden, dim)
nn.init.xavier_uniform_(self.lin1.weight)
nn.init.xavier_uniform_(self.lin2.weight)
def forward(self, x):
x = F.relu(self.lin1(x))
x = self.relu_dropout(x)
x = self.lin2(x)
return x
class TransformerEncoderLayerNew(nn.Module):
def __init__(self, n_heads, embedding_size, ffn_size, attention_dropout
=0.0, relu_dropout=0.0, dropout=0.0):
super().__init__()
self.dim = embedding_size
self.ffn_dim = ffn_size
self.attention = MultiHeadAttention(n_heads, embedding_size,
dropout=attention_dropout)
self.norm1 = nn.LayerNorm(embedding_size)
self.ffn = TransformerFFN(embedding_size, ffn_size, relu_dropout=
relu_dropout)
self.norm2 = nn.LayerNorm(embedding_size)
self.dropout = nn.Dropout(p=dropout)
def forward(self, input_0, input_1):
primals_2 = self.attention.q_lin.weight
primals_4 = self.attention.q_lin.bias
primals_3 = self.attention.k_lin.weight
primals_6 = self.attention.k_lin.bias
primals_5 = self.attention.v_lin.weight
primals_8 = self.attention.v_lin.bias
primals_7 = self.attention.out_lin.weight
primals_10 = self.attention.out_lin.bias
primals_11 = self.norm1.weight
primals_12 = self.norm1.bias
primals_9 = self.ffn.lin1.weight
primals_14 = self.ffn.lin1.bias
primals_13 = self.ffn.lin2.weight
primals_16 = self.ffn.lin2.bias
primals_17 = self.norm2.weight
primals_18 = self.norm2.bias
primals_1 = input_0
primals_15 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18])
return output[0]
|
FrankVerhoef/Persona-Dialogue-Generation
|
TransformerEncoderLayer
| false | 5,186 |
[
"MIT"
] | 1 |
ffd8413c2e8b6446097902dd1c496aeb24b852b4
|
https://github.com/FrankVerhoef/Persona-Dialogue-Generation/tree/ffd8413c2e8b6446097902dd1c496aeb24b852b4
|
TransformerEncoderLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/6s/c6sstbvcita246hkfqwdeatnmsh3e6vlcncrzcwlsoqg7dmxvabp.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_0 = async_compile.triton('triton_poi_fused_native_layer_norm_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/zv/czv3tzezwxkylzsgkrivaldxprnr7tvjr5iihe4mbc7bzdev5lsj.py
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# src => add, add_1, mul, mul_1, rsqrt, sub, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%primals_1, [1]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %getitem_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %primals_2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {})
triton_poi_fused_native_layer_norm_1 = async_compile.triton('triton_poi_fused_native_layer_norm_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ah/cahpqo3o7hv3q647n5lretlqvfljlubj4ic7gscxws4yvkm5jzff.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
# Source node to ATen node mapping:
# multi_head_attention_forward => mul_2
# Graph fragment:
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute_3, 1.0), kwargs = {})
triton_poi_fused_mul_2 = async_compile.triton('triton_poi_fused_mul_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7s/c7spagnqvsgjrukyw5jujzjmswxuigeuvpyhxgdob766q2gfvgzr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => amax, exp, sub_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {})
triton_poi_fused__softmax_3 = async_compile.triton('triton_poi_fused__softmax_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/dw/cdwqsjnh2osfmjr2utzzaqdg2vrfivzkuhareq3urgidllj2bsvr.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# multi_head_attention_forward => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/y5/cy5gjrtl7netbzcjhig66pdorub2vbq2qvwmv3tamld2ehimmlz7.py
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# multi_head_attention_forward => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_7,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_5 = async_compile.triton('triton_poi_fused_clone_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask)
tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ji/cjikooh3unjvssdwbmc5bbgrf7argvwkpdjikzfpajfrzpotlkhf.py
# Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# src_1 => add_2
# src_2 => var_mean_1
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%add_2, [1]), kwargs = {correction: 0, keepdim: True})
triton_poi_fused_add_native_layer_norm_6 = async_compile.triton('triton_poi_fused_add_native_layer_norm_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + (x0), tmp16, xmask)
tl.store(out_ptr1 + (x0), tmp28, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/j4/cj4vucbv6vxdldbfg73k3ixw2brnd6f754oxugjq3s7syrcrb4qe.py
# Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm]
# Source node to ATen node mapping:
# src_1 => add_2
# src_2 => add_3, add_4, mul_3, mul_4, rsqrt_1, sub_2
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_8, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_3,), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_2, %getitem_9), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %rsqrt_1), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_3, %primals_8), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_4, %primals_9), kwargs = {})
triton_poi_fused_add_native_layer_norm_7 = async_compile.triton('triton_poi_fused_add_native_layer_norm_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_native_layer_norm_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ct/cct7fdnwiat77gmy2crh3kczskgz2h3fhqyydq4w5mawjn5eb6qf.py
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# relu => relu
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_8 = async_compile.triton('triton_poi_fused_relu_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/44/c444sh6bryz652bk24ocru63kbqhe67iwwzctt3isl7imfgv5iaa.py
# Topologically Sorted Source Nodes: [src_1, src_3], Original ATen: [aten.add]
# Source node to ATen node mapping:
# src_1 => add_2
# src_3 => add_5
# Graph fragment:
# %add_2 : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_1, %squeeze), kwargs = {})
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %add_tensor), kwargs = {})
triton_poi_fused_add_9 = async_compile.triton('triton_poi_fused_add_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp3 = tl.load(in_out_ptr0 + (x2), xmask)
tmp4 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12, ), (1, ))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (2048, 4), (4, 1))
assert_size_stride(primals_11, (2048, ), (1, ))
assert_size_stride(primals_12, (4, 2048), (2048, 1))
assert_size_stride(primals_13, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
stream0 = get_raw_stream(0)
triton_poi_fused_native_layer_norm_0.run(primals_1, buf0, buf1, 4, grid=grid(4), stream=stream0)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_1.run(primals_1, buf0, buf1, primals_2, primals_3, buf2, 16, grid=grid(16), stream=stream0)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 4), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(reinterpret_tensor(primals_5, (4, ), (1, ), 8), buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0); del buf3 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.mul]
triton_poi_fused_mul_2.run(buf6, primals_5, 16, grid=grid(16), stream=stream0)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1, 4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_3.run(buf7, buf8, 64, grid=grid(64), stream=stream0)
buf9 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf8, buf9, 64, grid=grid(64), stream=stream0)
del buf8
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.bmm]
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4, 1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.clone]
triton_poi_fused_clone_5.run(buf10, buf11, 4, 4, grid=grid(4, 4), stream=stream0)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0); del buf10 # reuse
# Topologically Sorted Source Nodes: [multi_head_attention_forward], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1; del buf1 # reuse
buf14 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_6.run(primals_1, buf12, buf13, buf14, 4, grid=grid(4), stream=stream0)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [src_1, src_2], Original ATen: [aten.add, aten.native_layer_norm]
triton_poi_fused_add_native_layer_norm_7.run(primals_1, buf12, buf13, buf14, primals_8, primals_9, buf15, 16, grid=grid(16), stream=stream0)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 2048), (1, 4), 0), out=buf16)
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu]
triton_poi_fused_relu_8.run(buf17, primals_11, 8192, grid=grid(8192), stream=stream0)
del primals_11
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (2048, 4), (1, 2048), 0), out=buf18)
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [src_1, src_3], Original ATen: [aten.add]
triton_poi_fused_add_9.run(buf19, primals_1, buf12, primals_13, 16, grid=grid(16), stream=stream0)
del primals_13
return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12, primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0), reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (4, 1), 32), reinterpret_tensor(primals_4, (4, 4), (4, 1), 16), reinterpret_tensor(primals_4, (4, 4), (4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((12, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((12, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((2048, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((2048, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, 2048), (2048, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_native_layer_norm_0(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_mul_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused__softmax_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_clone_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 4
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x1 = xindex
y0 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask)
tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_6(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = tmp27 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
tl.store(out_ptr1 + x0, tmp28, xmask)
@triton.jit
def triton_poi_fused_add_native_layer_norm_7(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = 1e-05
tmp7 = tmp5 + tmp6
tmp8 = libdevice.rsqrt(tmp7)
tmp9 = tmp4 * tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + x2, tmp13, xmask)
@triton.jit
def triton_poi_fused_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 2048
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_add_9(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp3 = tl.load(in_out_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tl.store(in_out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (12, 4), (4, 1))
assert_size_stride(primals_5, (12,), (1,))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (2048, 4), (4, 1))
assert_size_stride(primals_11, (2048,), (1,))
assert_size_stride(primals_12, (4, 2048), (2048, 1))
assert_size_stride(primals_13, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
buf1 = empty_strided_cuda((4, 1), (1, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_native_layer_norm_0[grid(4)](primals_1, buf0, buf1,
4, XBLOCK=4, num_warps=1, num_stages=1)
buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_native_layer_norm_1[grid(16)](primals_1, buf0,
buf1, primals_2, primals_3, buf2, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_2
del primals_3
buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4
), 0), out=buf3)
buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 4),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 16), alpha=
1, beta=1, out=buf4)
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(reinterpret_tensor(primals_5, (4,), (1,), 8),
buf2, reinterpret_tensor(primals_4, (4, 4), (1, 4), 32), alpha=
1, beta=1, out=buf5)
buf6 = reinterpret_tensor(buf3, (4, 4, 1), (1, 4, 16), 0)
del buf3
triton_poi_fused_mul_2[grid(16)](buf6, primals_5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del primals_5
buf7 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf6, reinterpret_tensor(buf4, (4, 1, 4), (1, 1,
4), 0), out=buf7)
buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_3[grid(64)](buf7, buf8, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf9 = buf7
del buf7
triton_poi_fused__softmax_4[grid(64)](buf8, buf9, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del buf8
buf10 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
extern_kernels.bmm(buf9, reinterpret_tensor(buf5, (4, 4, 1), (1, 4,
1), 0), out=buf10)
buf11 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
triton_poi_fused_clone_5[grid(4, 4)](buf10, buf11, 4, 4, XBLOCK=4,
YBLOCK=4, num_warps=1, num_stages=1)
buf12 = reinterpret_tensor(buf10, (4, 4), (4, 1), 0)
del buf10
extern_kernels.addmm(primals_7, reinterpret_tensor(buf11, (4, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf12)
del primals_7
buf13 = buf1
del buf1
buf14 = buf0
del buf0
triton_poi_fused_add_native_layer_norm_6[grid(4)](primals_1, buf12,
buf13, buf14, 4, XBLOCK=4, num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_native_layer_norm_7[grid(16)](primals_1, buf12,
buf13, buf14, primals_8, primals_9, buf15, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf13
del buf14
del primals_9
buf16 = empty_strided_cuda((4, 2048), (2048, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_10, (4, 2048),
(1, 4), 0), out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_relu_8[grid(8192)](buf17, primals_11, 8192, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_11
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.mm(buf17, reinterpret_tensor(primals_12, (2048, 4),
(1, 2048), 0), out=buf18)
buf19 = buf18
del buf18
triton_poi_fused_add_9[grid(16)](buf19, primals_1, buf12,
primals_13, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_13
return (buf19, primals_1, primals_8, buf2, buf9, reinterpret_tensor(
buf11, (4, 4), (4, 1), 0), buf12, buf15, buf17, primals_12,
primals_10, primals_6, reinterpret_tensor(buf5, (4, 1, 4), (1, 1, 4
), 0), reinterpret_tensor(buf6, (4, 1, 4), (1, 1, 4), 0),
reinterpret_tensor(buf4, (4, 4, 1), (1, 4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 32),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 16),
reinterpret_tensor(primals_4, (4, 4), (4, 1), 0))
def _get_activation_fn(activation: 'str'):
if activation == 'relu':
return nn.functional.relu
elif activation == 'gelu':
return nn.functional.gelu
raise RuntimeError('activation should be relu/gelu, not {}'.format(
activation))
class TransformerEncoderLayerNew(nn.Module):
"""
Modified from torch.nn.TransformerEncoderLayer.
Add support of normalize_before,
i.e., use layer_norm before the first block.
Args:
d_model:
the number of expected features in the input (required).
nhead:
the number of heads in the multiheadattention models (required).
dim_feedforward:
the dimension of the feedforward network model (default=2048).
dropout:
the dropout value (default=0.1).
activation:
the activation function of intermediate layer, relu or
gelu (default=relu).
normalize_before:
whether to use layer_norm before the first block.
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(10, 32, 512)
>>> out = encoder_layer(src)
"""
def __init__(self, d_model: 'int', nhead: 'int', dim_feedforward: 'int'
=2048, dropout: 'float'=0.1, activation: 'str'='relu',
normalize_before: 'bool'=True) ->None:
super(TransformerEncoderLayerNew, self).__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=0.0)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
self.normalize_before = normalize_before
def __setstate__(self, state):
if 'activation' not in state:
state['activation'] = nn.functional.relu
super(TransformerEncoderLayerNew, self).__setstate__(state)
def forward(self, input_0):
primals_4 = self.self_attn.in_proj_weight
primals_5 = self.self_attn.in_proj_bias
primals_1 = self.self_attn.out_proj.weight
primals_2 = self.self_attn.out_proj.bias
primals_10 = self.linear1.weight
primals_11 = self.linear1.bias
primals_12 = self.linear2.weight
primals_3 = self.linear2.bias
primals_7 = self.norm1.weight
primals_8 = self.norm1.bias
primals_9 = self.norm2.weight
primals_13 = self.norm2.bias
primals_6 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
marcinwitkowski/icefall
|
TransformerEncoderLayer
| false | 10,499 |
[
"Apache-2.0"
] | 0 |
73e917f689fa2ebfcfe5d484a34a262e74b77581
|
https://github.com/marcinwitkowski/icefall/tree/73e917f689fa2ebfcfe5d484a34a262e74b77581
|
LayerNorm
|
import torch
import torch.nn as nn
class LayerNorm(nn.Module):
"""Construct a layernorm module in the OpenAI style (epsilon inside the square root)."""
def __init__(self, n_state, e=1e-05):
super(LayerNorm, self).__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
"""
Input:
x: n_state-dim
Output:
o: n_state-dim
"""
def forward(self, x):
u = x.mean(-1, keepdim=True)
s = (x - u).pow(2).mean(-1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.e)
return self.g * x + self.b
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'n_state': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mean_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = 4.0
tmp9 = tmp7 / tmp8
tmp10 = tmp0 - tmp9
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_div_mean_mul_pow_sqrt_1(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp20 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = 4.0
tmp14 = tmp12 / tmp13
tmp15 = 1e-05
tmp16 = tmp14 + tmp15
tmp17 = libdevice.sqrt(tmp16)
tmp18 = tmp1 / tmp17
tmp19 = tmp0 * tmp18
tmp21 = tmp19 + tmp20
tl.store(out_ptr0 + x2, tmp21, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mean_sub_0[grid(256)](primals_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_div_mean_mul_pow_sqrt_1[grid(256)](primals_2,
buf0, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del buf0
del primals_2
del primals_3
return buf1, primals_1
class LayerNormNew(nn.Module):
"""Construct a layernorm module in the OpenAI style (epsilon inside the square root)."""
def __init__(self, n_state, e=1e-05):
super(LayerNormNew, self).__init__()
self.g = nn.Parameter(torch.ones(n_state))
self.b = nn.Parameter(torch.zeros(n_state))
self.e = e
"""
Input:
x: n_state-dim
Output:
o: n_state-dim
"""
def forward(self, input_0):
primals_2 = self.g
primals_3 = self.b
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
NickSchoelkopf/SummerTime
|
LayerNorm
| false | 891 |
[
"Apache-2.0"
] | 0 |
9a89aab8e1544e3c52c043b9c47ab325e665e11e
|
https://github.com/NickSchoelkopf/SummerTime/tree/9a89aab8e1544e3c52c043b9c47ab325e665e11e
|
GlobalPooling2D
|
import torch
from torch import nn
from typing import *
class GlobalPooling2D(nn.Module):
def __init__(self):
super(GlobalPooling2D, self).__init__()
def forward(self, x):
x = x.view(x.size(0), x.size(1), -1)
x = torch.mean(x, 2)
x = x.view(x.size(0), -1)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
from typing import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_view_0(in_out_ptr0, in_ptr0, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 16.0
tmp6 = tmp4 / tmp5
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_view_0[grid(16)](buf1, arg0_1, 16, 16, XBLOCK
=1, num_warps=2, num_stages=1)
del arg0_1
return buf1,
class GlobalPooling2DNew(nn.Module):
def __init__(self):
super(GlobalPooling2DNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
HughMun/MultiBench
|
GlobalPooling2D
| false | 13,797 |
[
"MIT"
] | 148 |
d5712a0815a9486b0e0c76b54cd63c880188fc8e
|
https://github.com/HughMun/MultiBench/tree/d5712a0815a9486b0e0c76b54cd63c880188fc8e
|
ComplexConvTranspose2d
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/yv/cyv6tiqnrs5v23ryzvbw2vt4qnufw6d22jee3c5qrlatmk4dks3w.py
# Topologically Sorted Source Nodes: [conv_transpose2d, conv_transpose2d_1, sub, conv_transpose2d_2, conv_transpose2d_3, add], Original ATen: [aten.convolution, aten.sub, aten.add]
# Source node to ATen node mapping:
# add => add
# conv_transpose2d => convolution
# conv_transpose2d_1 => convolution_1
# conv_transpose2d_2 => convolution_2
# conv_transpose2d_3 => convolution_3
# sub => sub
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_6, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution, %convolution_1), kwargs = {})
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_6, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], True, [0, 0], 1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %convolution_3), kwargs = {})
triton_poi_fused_add_convolution_sub_0 = async_compile.triton('triton_poi_fused_add_convolution_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_sub_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_convolution_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 49) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3), xmask)
tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_out_ptr1 + (x3), xmask)
tmp9 = tl.load(in_ptr3 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 - tmp5
tmp8 = tmp7 + tmp1
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tl.store(in_out_ptr0 + (x3), tmp6, xmask)
tl.store(in_out_ptr1 + (x3), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv_transpose2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
# Topologically Sorted Source Nodes: [conv_transpose2d_1], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 7, 7), (196, 49, 7, 1))
# Topologically Sorted Source Nodes: [conv_transpose2d_2], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(primals_6, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 7, 7), (196, 49, 7, 1))
# Topologically Sorted Source Nodes: [conv_transpose2d_3], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 7, 7), (196, 49, 7, 1))
buf2 = buf0; del buf0 # reuse
buf5 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv_transpose2d, conv_transpose2d_1, sub, conv_transpose2d_2, conv_transpose2d_3, add], Original ATen: [aten.convolution, aten.sub, aten.add]
stream0 = get_raw_stream(0)
triton_poi_fused_add_convolution_sub_0.run(buf2, buf5, primals_2, buf1, primals_5, buf4, 784, grid=grid(784), stream=stream0)
del buf1
del buf4
del primals_2
del primals_5
return (buf2, buf5, primals_1, primals_3, primals_4, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
from torch.nn import ConvTranspose2d
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_add_convolution_sub_0(in_out_ptr0, in_out_ptr1,
in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 49 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + x3, xmask)
tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_out_ptr1 + x3, xmask)
tmp9 = tl.load(in_ptr3 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 - tmp5
tmp8 = tmp7 + tmp1
tmp10 = tmp9 + tmp4
tmp11 = tmp8 + tmp10
tl.store(in_out_ptr0 + x3, tmp6, xmask)
tl.store(in_out_ptr1 + x3, tmp11, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 7, 7), (196, 49, 7, 1))
buf1 = extern_kernels.convolution(primals_6, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 7, 7), (196, 49, 7, 1))
buf3 = extern_kernels.convolution(primals_6, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 7, 7), (196, 49, 7, 1))
buf4 = extern_kernels.convolution(primals_3, primals_4, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 7, 7), (196, 49, 7, 1))
buf2 = buf0
del buf0
buf5 = buf3
del buf3
get_raw_stream(0)
triton_poi_fused_add_convolution_sub_0[grid(784)](buf2, buf5,
primals_2, buf1, primals_5, buf4, 784, XBLOCK=256, num_warps=4,
num_stages=1)
del buf1
del buf4
del primals_2
del primals_5
return buf2, buf5, primals_1, primals_3, primals_4, primals_6
class ComplexConvTranspose2dNew(Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, output_padding=0, groups=1, bias=True, dilation=1,
padding_mode='zeros'):
super(ComplexConvTranspose2dNew, self).__init__()
self.conv_tran_r = ConvTranspose2d(in_channels, out_channels,
kernel_size, stride, padding, output_padding, groups, bias,
dilation, padding_mode)
self.conv_tran_i = ConvTranspose2d(in_channels, out_channels,
kernel_size, stride, padding, output_padding, groups, bias,
dilation, padding_mode)
def forward(self, input_0, input_1):
primals_1 = self.conv_tran_r.weight
primals_2 = self.conv_tran_r.bias
primals_3 = self.conv_tran_i.weight
primals_5 = self.conv_tran_i.bias
primals_4 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0], output[1]
|
drydenwiebe/complexPyTorch
|
ComplexConvTranspose2d
| false | 12,328 |
[
"MIT"
] | 0 |
cea88ba7ee5692dfa1b40f0ba609ef14160d5073
|
https://github.com/drydenwiebe/complexPyTorch/tree/cea88ba7ee5692dfa1b40f0ba609ef14160d5073
|
FeatureMatchingLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/o4/co4nkh775yqqkfqacb4g54fsaqvetacvj6usp3wlmsdko5cyl66r.py
# Topologically Sorted Source Nodes: [l1_loss, mul, loss, l1_loss_1, mul_1, loss_1, l1_loss_2, mul_2, loss_2, l1_loss_3, mul_3, loss_3, l1_loss_4, mul_4, loss_4, l1_loss_5, mul_5, loss_5, l1_loss_6, mul_6, loss_6, l1_loss_7, mul_7, loss_7, l1_loss_8, mul_8, loss_8, l1_loss_9, mul_9, loss_9, l1_loss_10, mul_10, loss_10, l1_loss_11, mul_11, loss_11], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.add]
# Source node to ATen node mapping:
# l1_loss => abs_1, mean, sub
# l1_loss_1 => abs_2, mean_1, sub_1
# l1_loss_10 => abs_11, mean_10, sub_10
# l1_loss_11 => abs_12, mean_11, sub_11
# l1_loss_2 => abs_3, mean_2, sub_2
# l1_loss_3 => abs_4, mean_3, sub_3
# l1_loss_4 => abs_5, mean_4, sub_4
# l1_loss_5 => abs_6, mean_5, sub_5
# l1_loss_6 => abs_7, mean_6, sub_6
# l1_loss_7 => abs_8, mean_7, sub_7
# l1_loss_8 => abs_9, mean_8, sub_8
# l1_loss_9 => abs_10, mean_9, sub_9
# loss => add
# loss_1 => add_1
# loss_10 => add_10
# loss_11 => add_11
# loss_2 => add_2
# loss_3 => add_3
# loss_4 => add_4
# loss_5 => add_5
# loss_6 => add_6
# loss_7 => add_7
# loss_8 => add_8
# loss_9 => add_9
# mul => mul
# mul_1 => mul_1
# mul_10 => mul_10
# mul_11 => mul_11
# mul_2 => mul_2
# mul_3 => mul_3
# mul_4 => mul_4
# mul_5 => mul_5
# mul_6 => mul_6
# mul_7 => mul_7
# mul_8 => mul_8
# mul_9 => mul_9
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_1, %select_3), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_1,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 0.5), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_5, %select_7), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_1,), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_2,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_1, 0.5), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_1), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_9, %select_11), kwargs = {})
# %abs_3 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_2,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_3,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, 0.5), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_2), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_13, %select_15), kwargs = {})
# %abs_4 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_3,), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_4,), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_3, 0.5), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_17, %select_19), kwargs = {})
# %abs_5 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_4,), kwargs = {})
# %mean_4 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_5,), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_4, 0.5), kwargs = {})
# %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_4), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_21, %select_23), kwargs = {})
# %abs_6 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_5,), kwargs = {})
# %mean_5 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_6,), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_5, 0.5), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_5), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_25, %select_27), kwargs = {})
# %abs_7 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_6,), kwargs = {})
# %mean_6 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_7,), kwargs = {})
# %mul_6 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_6, 0.5), kwargs = {})
# %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_5, %mul_6), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_29, %select_31), kwargs = {})
# %abs_8 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_7,), kwargs = {})
# %mean_7 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_8,), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_7, 0.5), kwargs = {})
# %add_7 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_6, %mul_7), kwargs = {})
# %sub_8 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_33, %select_35), kwargs = {})
# %abs_9 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_8,), kwargs = {})
# %mean_8 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_9,), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_8, 0.5), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_7, %mul_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_37, %select_39), kwargs = {})
# %abs_10 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_9,), kwargs = {})
# %mean_9 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_10,), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_9, 0.5), kwargs = {})
# %add_9 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_8, %mul_9), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_41, %select_43), kwargs = {})
# %abs_11 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_10,), kwargs = {})
# %mean_10 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_11,), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_10, 0.5), kwargs = {})
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_9, %mul_10), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%select_45, %select_47), kwargs = {})
# %abs_12 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub_11,), kwargs = {})
# %mean_11 : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%abs_12,), kwargs = {})
# %mul_11 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_11, 0.5), kwargs = {})
# %add_11 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_10, %mul_11), kwargs = {})
triton_per_fused_abs_add_mean_mul_sub_0 = async_compile.triton('triton_per_fused_abs_add_mean_mul_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_add_mean_mul_sub_0', 'mutated_arg_names': ['in_out_ptr1'], 'no_x_dim': False, 'num_load': 24, 'num_reduction': 12, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_add_mean_mul_sub_0(in_out_ptr1, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp7 = tl.load(in_ptr0 + (16 + r0), None)
tmp8 = tl.load(in_ptr1 + (16 + r0), None)
tmp14 = tl.load(in_ptr0 + (144 + r0), None)
tmp15 = tl.load(in_ptr1 + (144 + r0), None)
tmp21 = tl.load(in_ptr0 + (32 + r0), None)
tmp22 = tl.load(in_ptr1 + (32 + r0), None)
tmp28 = tl.load(in_ptr0 + (160 + r0), None)
tmp29 = tl.load(in_ptr1 + (160 + r0), None)
tmp35 = tl.load(in_ptr0 + (64 + r0), None)
tmp36 = tl.load(in_ptr1 + (64 + r0), None)
tmp42 = tl.load(in_ptr0 + (192 + r0), None)
tmp43 = tl.load(in_ptr1 + (192 + r0), None)
tmp49 = tl.load(in_ptr0 + (80 + r0), None)
tmp50 = tl.load(in_ptr1 + (80 + r0), None)
tmp56 = tl.load(in_ptr0 + (208 + r0), None)
tmp57 = tl.load(in_ptr1 + (208 + r0), None)
tmp63 = tl.load(in_ptr0 + (96 + r0), None)
tmp64 = tl.load(in_ptr1 + (96 + r0), None)
tmp70 = tl.load(in_ptr0 + (224 + r0), None)
tmp71 = tl.load(in_ptr1 + (224 + r0), None)
tmp77 = tl.load(in_ptr0 + (128 + r0), None)
tmp78 = tl.load(in_ptr1 + (128 + r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp23 = tmp21 - tmp22
tmp24 = tl_math.abs(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp30 = tmp28 - tmp29
tmp31 = tl_math.abs(tmp30)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp37 = tmp35 - tmp36
tmp38 = tl_math.abs(tmp37)
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp44 = tmp42 - tmp43
tmp45 = tl_math.abs(tmp44)
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 - tmp50
tmp52 = tl_math.abs(tmp51)
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = tl.sum(tmp53, 1)[:, None]
tmp58 = tmp56 - tmp57
tmp59 = tl_math.abs(tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp65 = tmp63 - tmp64
tmp66 = tl_math.abs(tmp65)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = tl.sum(tmp67, 1)[:, None]
tmp72 = tmp70 - tmp71
tmp73 = tl_math.abs(tmp72)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp79 = tmp77 - tmp78
tmp80 = tl_math.abs(tmp79)
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 16.0
tmp85 = tmp6 / tmp84
tmp86 = 0.5
tmp87 = tmp85 * tmp86
tmp88 = 0.0
tmp89 = tmp87 + tmp88
tmp90 = tmp13 / tmp84
tmp91 = tmp90 * tmp86
tmp92 = tmp89 + tmp91
tmp93 = tmp27 / tmp84
tmp94 = tmp93 * tmp86
tmp95 = tmp92 + tmp94
tmp96 = tmp41 / tmp84
tmp97 = tmp96 * tmp86
tmp98 = tmp95 + tmp97
tmp99 = tmp55 / tmp84
tmp100 = tmp99 * tmp86
tmp101 = tmp98 + tmp100
tmp102 = tmp69 / tmp84
tmp103 = tmp102 * tmp86
tmp104 = tmp101 + tmp103
tmp105 = tmp83 / tmp84
tmp106 = tmp105 * tmp86
tmp107 = tmp104 + tmp106
tmp108 = tmp20 / tmp84
tmp109 = tmp108 * tmp86
tmp110 = tmp107 + tmp109
tmp111 = tmp34 / tmp84
tmp112 = tmp111 * tmp86
tmp113 = tmp110 + tmp112
tmp114 = tmp48 / tmp84
tmp115 = tmp114 * tmp86
tmp116 = tmp113 + tmp115
tmp117 = tmp62 / tmp84
tmp118 = tmp117 * tmp86
tmp119 = tmp116 + tmp118
tmp120 = tmp76 / tmp84
tmp121 = tmp120 * tmp86
tmp122 = tmp119 + tmp121
tl.debug_barrier()
tl.store(in_out_ptr1 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp122, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [l1_loss, mul, loss, l1_loss_1, mul_1, loss_1, l1_loss_2, mul_2, loss_2, l1_loss_3, mul_3, loss_3, l1_loss_4, mul_4, loss_4, l1_loss_5, mul_5, loss_5, l1_loss_6, mul_6, loss_6, l1_loss_7, mul_7, loss_7, l1_loss_8, mul_8, loss_8, l1_loss_9, mul_9, loss_9, l1_loss_10, mul_10, loss_10, l1_loss_11, mul_11, loss_11], Original ATen: [aten.sub, aten.abs, aten.mean, aten.mul, aten.add]
stream0 = get_raw_stream(0)
triton_per_fused_abs_add_mean_mul_sub_0.run(buf13, arg0_1, arg1_1, 1, 16, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf13, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_add_mean_mul_sub_0(in_out_ptr1, in_ptr0, in_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp7 = tl.load(in_ptr0 + (16 + r0), None)
tmp8 = tl.load(in_ptr1 + (16 + r0), None)
tmp14 = tl.load(in_ptr0 + (144 + r0), None)
tmp15 = tl.load(in_ptr1 + (144 + r0), None)
tmp21 = tl.load(in_ptr0 + (32 + r0), None)
tmp22 = tl.load(in_ptr1 + (32 + r0), None)
tmp28 = tl.load(in_ptr0 + (160 + r0), None)
tmp29 = tl.load(in_ptr1 + (160 + r0), None)
tmp35 = tl.load(in_ptr0 + (64 + r0), None)
tmp36 = tl.load(in_ptr1 + (64 + r0), None)
tmp42 = tl.load(in_ptr0 + (192 + r0), None)
tmp43 = tl.load(in_ptr1 + (192 + r0), None)
tmp49 = tl.load(in_ptr0 + (80 + r0), None)
tmp50 = tl.load(in_ptr1 + (80 + r0), None)
tmp56 = tl.load(in_ptr0 + (208 + r0), None)
tmp57 = tl.load(in_ptr1 + (208 + r0), None)
tmp63 = tl.load(in_ptr0 + (96 + r0), None)
tmp64 = tl.load(in_ptr1 + (96 + r0), None)
tmp70 = tl.load(in_ptr0 + (224 + r0), None)
tmp71 = tl.load(in_ptr1 + (224 + r0), None)
tmp77 = tl.load(in_ptr0 + (128 + r0), None)
tmp78 = tl.load(in_ptr1 + (128 + r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.sum(tmp4, 1)[:, None]
tmp9 = tmp7 - tmp8
tmp10 = tl_math.abs(tmp9)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.sum(tmp11, 1)[:, None]
tmp16 = tmp14 - tmp15
tmp17 = tl_math.abs(tmp16)
tmp18 = tl.broadcast_to(tmp17, [XBLOCK, RBLOCK])
tmp20 = tl.sum(tmp18, 1)[:, None]
tmp23 = tmp21 - tmp22
tmp24 = tl_math.abs(tmp23)
tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK])
tmp27 = tl.sum(tmp25, 1)[:, None]
tmp30 = tmp28 - tmp29
tmp31 = tl_math.abs(tmp30)
tmp32 = tl.broadcast_to(tmp31, [XBLOCK, RBLOCK])
tmp34 = tl.sum(tmp32, 1)[:, None]
tmp37 = tmp35 - tmp36
tmp38 = tl_math.abs(tmp37)
tmp39 = tl.broadcast_to(tmp38, [XBLOCK, RBLOCK])
tmp41 = tl.sum(tmp39, 1)[:, None]
tmp44 = tmp42 - tmp43
tmp45 = tl_math.abs(tmp44)
tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK])
tmp48 = tl.sum(tmp46, 1)[:, None]
tmp51 = tmp49 - tmp50
tmp52 = tl_math.abs(tmp51)
tmp53 = tl.broadcast_to(tmp52, [XBLOCK, RBLOCK])
tmp55 = tl.sum(tmp53, 1)[:, None]
tmp58 = tmp56 - tmp57
tmp59 = tl_math.abs(tmp58)
tmp60 = tl.broadcast_to(tmp59, [XBLOCK, RBLOCK])
tmp62 = tl.sum(tmp60, 1)[:, None]
tmp65 = tmp63 - tmp64
tmp66 = tl_math.abs(tmp65)
tmp67 = tl.broadcast_to(tmp66, [XBLOCK, RBLOCK])
tmp69 = tl.sum(tmp67, 1)[:, None]
tmp72 = tmp70 - tmp71
tmp73 = tl_math.abs(tmp72)
tmp74 = tl.broadcast_to(tmp73, [XBLOCK, RBLOCK])
tmp76 = tl.sum(tmp74, 1)[:, None]
tmp79 = tmp77 - tmp78
tmp80 = tl_math.abs(tmp79)
tmp81 = tl.broadcast_to(tmp80, [XBLOCK, RBLOCK])
tmp83 = tl.sum(tmp81, 1)[:, None]
tmp84 = 16.0
tmp85 = tmp6 / tmp84
tmp86 = 0.5
tmp87 = tmp85 * tmp86
tmp88 = 0.0
tmp89 = tmp87 + tmp88
tmp90 = tmp13 / tmp84
tmp91 = tmp90 * tmp86
tmp92 = tmp89 + tmp91
tmp93 = tmp27 / tmp84
tmp94 = tmp93 * tmp86
tmp95 = tmp92 + tmp94
tmp96 = tmp41 / tmp84
tmp97 = tmp96 * tmp86
tmp98 = tmp95 + tmp97
tmp99 = tmp55 / tmp84
tmp100 = tmp99 * tmp86
tmp101 = tmp98 + tmp100
tmp102 = tmp69 / tmp84
tmp103 = tmp102 * tmp86
tmp104 = tmp101 + tmp103
tmp105 = tmp83 / tmp84
tmp106 = tmp105 * tmp86
tmp107 = tmp104 + tmp106
tmp108 = tmp20 / tmp84
tmp109 = tmp108 * tmp86
tmp110 = tmp107 + tmp109
tmp111 = tmp34 / tmp84
tmp112 = tmp111 * tmp86
tmp113 = tmp110 + tmp112
tmp114 = tmp48 / tmp84
tmp115 = tmp114 * tmp86
tmp116 = tmp113 + tmp115
tmp117 = tmp62 / tmp84
tmp118 = tmp117 * tmp86
tmp119 = tmp116 + tmp118
tmp120 = tmp76 / tmp84
tmp121 = tmp120 * tmp86
tmp122 = tmp119 + tmp121
tl.debug_barrier()
tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp122, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf10 = empty_strided_cuda((), (), torch.float32)
buf13 = buf10
del buf10
get_raw_stream(0)
triton_per_fused_abs_add_mean_mul_sub_0[grid(1)](buf13, arg0_1,
arg1_1, 1, 16, XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf13,
class FeatureMatchingLossNew(nn.Module):
def __init__(self, n_layers_D, num_D):
super(FeatureMatchingLossNew, self).__init__()
self.criterion = nn.L1Loss()
self.n_layers_D = n_layers_D
self.num_D = num_D
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
alexander-telepov/RGB2MSI
|
FeatureMatchingLoss
| false | 6,164 |
[
"BSD-3-Clause"
] | 1 |
99f81f5547d40d0c92cfde39994a8c53629bd0f7
|
https://github.com/alexander-telepov/RGB2MSI/tree/99f81f5547d40d0c92cfde39994a8c53629bd0f7
|
ScaledDotProductAttention
|
import torch
import torch.optim.lr_scheduler
import torch.nn as nn
class ScaledDotProductAttention(nn.Module):
def __init__(self, d_model, attention_dropout=0.1):
super(ScaledDotProductAttention, self).__init__()
self.temper = d_model ** 0.5
self.dropout = nn.Dropout(attention_dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, q, k, v, attn_mask=None):
attn = torch.bmm(q, k.transpose(1, 2)) / self.temper
if attn_mask is not None:
assert attn_mask.size() == attn.size(
), 'Attention mask shape {} mismatch with Attention logit tensor shape {}.'.format(
attn_mask.size(), attn.size())
attn.data.masked_fill_(attn_mask, -float('inf'))
attn = self.softmax(attn)
attn = self.dropout(attn)
output = torch.bmm(attn, v)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'d_model': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.optim.lr_scheduler
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return buf3, buf2
class ScaledDotProductAttentionNew(nn.Module):
def __init__(self, d_model, attention_dropout=0.1):
super(ScaledDotProductAttentionNew, self).__init__()
self.temper = d_model ** 0.5
self.dropout = nn.Dropout(attention_dropout)
self.softmax = nn.Softmax(dim=-1)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
|
interrogator/self-attentive-parser
|
ScaledDotProductAttention
| false | 15,593 |
[
"MIT"
] | 88 |
660d0161cb6ec6455d1525d029ff09362dcf7faf
|
https://github.com/interrogator/self-attentive-parser/tree/660d0161cb6ec6455d1525d029ff09362dcf7faf
|
BoundNot
|
from _paritybench_helpers import _mock_config
import math
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import MSELoss
def isnan(x):
if isinstance(x, Patches):
return False
return torch.isnan(x).any()
class Perturbation:
def __init__(self):
pass
def set_eps(self, eps):
self.eps = eps
def concretize(self, x, A, sign=-1, aux=None):
raise NotImplementedError
def init(self, x, aux=None, forward=False):
raise NotImplementedError
class PerturbationL0Norm(Perturbation):
def __init__(self, eps, x_L=None, x_U=None, ratio=1.0):
self.eps = eps
self.x_U = x_U
self.x_L = x_L
self.ratio = ratio
def concretize(self, x, A, sign=-1, aux=None):
if A is None:
return None
eps = math.ceil(self.eps)
x = x.reshape(x.shape[0], -1, 1)
center = A.matmul(x)
x = x.reshape(x.shape[0], 1, -1)
original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2])
neg_mask = A < 0
pos_mask = A >= 0
if sign == 1:
A_diff = torch.zeros_like(A)
A_diff[pos_mask] = A[pos_mask] - original[pos_mask]
A_diff[neg_mask] = -original[neg_mask]
else:
A_diff = torch.zeros_like(A)
A_diff[pos_mask] = original[pos_mask]
A_diff[neg_mask] = original[neg_mask] - A[neg_mask]
A_diff, _ = torch.sort(A_diff, dim=2, descending=True)
bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2
) * self.ratio
return bound.squeeze(2)
def init(self, x, aux=None, forward=False):
x_L = x
x_U = x
if not forward:
return LinearBound(None, None, None, None, x_L, x_U), x, None
batch_size = x.shape[0]
dim = x.reshape(batch_size, -1).shape[-1]
eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1)
lw = eye.reshape(batch_size, dim, *x.shape[1:])
lb = torch.zeros_like(x)
uw, ub = lw.clone(), lb.clone()
return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None
def __repr__(self):
return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps)
class PerturbationLpNorm(Perturbation):
def __init__(self, eps, norm=np.inf, x_L=None, x_U=None):
self.eps = eps
self.norm = norm
self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 -
1.0 / self.norm)
self.x_L = x_L
self.x_U = x_U
"""Given an variable x and its bound matrix A, compute worst case bound according to Lp norm."""
def concretize(self, x, A, sign=-1, aux=None):
if A is None:
return None
def concretize_matrix(A):
nonlocal x
if not isinstance(A, eyeC):
A = A.reshape(A.shape[0], A.shape[1], -1)
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
x_ub = x_U.reshape(x_U.shape[0], -1, 1)
x_lb = x_L.reshape(x_L.shape[0], -1, 1)
center = (x_ub + x_lb) / 2.0
diff = (x_ub - x_lb) / 2.0
if not isinstance(A, eyeC):
bound = A.matmul(center) + sign * A.abs().matmul(diff)
else:
bound = center + sign * diff
else:
x = x.reshape(x.shape[0], -1, 1)
if not isinstance(A, eyeC):
deviation = A.norm(self.dual_norm, -1) * self.eps
bound = A.matmul(x) + sign * deviation.unsqueeze(-1)
else:
bound = x + sign * self.eps
bound = bound.squeeze(-1)
return bound
def concretize_patches(A):
nonlocal x
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
center = (x_U + x_L) / 2.0
diff = (x_U - x_L) / 2.0
if not A.identity == 1:
unfold_input = F.unfold(center, kernel_size=A.patches.
size(-1), padding=A.padding, stride=A.stride
).transpose(-2, -1)
unfold_input = unfold_input.view(unfold_input.size(0),
unfold_input.size(1), -1, A.patches.size(-3), A.
patches.size(-2), A.patches.size(-1))
prod = unfold_input * A.patches
prod = prod.sum((-1, -2, -3)).transpose(-2, -1)
bound = prod.view(prod.size(0), prod.size(1), int(math.
sqrt(prod.size(2))), int(math.sqrt(prod.size(2))))
unfold_input = F.unfold(diff, kernel_size=A.patches.
size(-1), padding=A.padding, stride=A.stride
).transpose(-2, -1)
unfold_input = unfold_input.view(unfold_input.size(0),
unfold_input.size(1), -1, A.patches.size(-3), A.
patches.size(-2), A.patches.size(-1))
prod = unfold_input * A.patches.abs()
prod = prod.sum((-1, -2, -3)).transpose(-2, -1)
bound += sign * prod.view(prod.size(0), prod.size(1),
int(math.sqrt(prod.size(2))), int(math.sqrt(prod.
size(2))))
else:
bound = center + sign * diff
return bound
else:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
raise NotImplementedError()
if isinstance(A, eyeC) or isinstance(A, torch.Tensor):
return concretize_matrix(A)
elif isinstance(A, Patches):
return concretize_patches(A)
elif isinstance(A, BoundList):
for b in A.bound_list:
if isinstance(b, eyeC) or isinstance(b, torch.Tensor):
pass
else:
raise NotImplementedError()
def init(self, x, aux=None, forward=False):
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
else:
x_L = x
x_U = x
if not forward:
return LinearBound(None, None, None, None, x_L, x_U), x, None
batch_size = x.shape[0]
dim = x.reshape(batch_size, -1).shape[-1]
eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1)
lw = eye.reshape(batch_size, dim, *x.shape[1:])
lb = torch.zeros_like(x)
uw, ub = lw.clone(), lb.clone()
return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None
def __repr__(self):
if self.norm == np.inf:
if self.x_L is None and self.x_U is None:
return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps)
else:
return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})'
.format(self.eps, self.x_L, self.x_U))
else:
return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm,
self.eps)
class PerturbationSynonym(Perturbation):
def __init__(self, budget, eps=1.0, use_simple=False):
super(PerturbationSynonym, self).__init__()
self._load_synonyms()
self.budget = budget
self.eps = eps
self.use_simple = use_simple
self.model = None
self.train = False
def __repr__(self):
return (
'perturbation(Synonym-based word substitution budget={}, eps={})'
.format(self.budget, self.eps))
def _load_synonyms(self, path='data/synonyms.json'):
with open(path) as file:
self.synonym = json.loads(file.read())
logger.info('Synonym list loaded for {} words'.format(len(self.
synonym)))
def set_train(self, train):
self.train = train
def concretize(self, x, A, sign, aux):
assert self.model is not None
x_rep, mask, can_be_replaced = aux
batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2]
dim_out = A.shape[1]
max_num_cand = x_rep.shape[2]
mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32,
device=A.device)
num_pos = int(np.max(np.sum(can_be_replaced, axis=-1)))
update_A = A.shape[-1] > num_pos * dim_word
if update_A:
bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape(
batch_size, -1, 1)).squeeze(-1)
else:
bias = 0.0
A = A.reshape(batch_size, dim_out, -1, dim_word)
A_new, x_new, x_rep_new, mask_new = [], [], [], []
zeros_A = torch.zeros(dim_out, dim_word, device=A.device)
zeros_w = torch.zeros(dim_word, device=A.device)
zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device)
zeros_mask = torch.zeros(max_num_cand, device=A.device)
for t in range(batch_size):
cnt = 0
for i in range(0, length):
if can_be_replaced[t][i]:
if update_A:
A_new.append(A[t, :, i, :])
x_new.append(x[t][i])
x_rep_new.append(x_rep[t][i])
mask_new.append(mask[t][i])
cnt += 1
if update_A:
A_new += [zeros_A] * (num_pos - cnt)
x_new += [zeros_w] * (num_pos - cnt)
x_rep_new += [zeros_rep] * (num_pos - cnt)
mask_new += [zeros_mask] * (num_pos - cnt)
if update_A:
A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word
).transpose(1, 2)
x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word)
x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos,
max_num_cand, dim_word)
mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand)
length = num_pos
A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2)
x = x.reshape(batch_size, length, -1, 1)
if sign == 1:
cmp, init = torch.max, -1e+30
else:
cmp, init = torch.min, 1e+30
init_tensor = torch.ones(batch_size, dim_out) * init
dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1)
]
dp[0][0] = torch.zeros(batch_size, dim_out)
A = A.reshape(batch_size * length, A.shape[2], A.shape[3])
Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x.
shape[3])).reshape(batch_size, length, A.shape[1])
Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length,
max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size,
length, A.shape[1], max_num_cand)
Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2)
Ax_rep_bound = cmp(Ax_rep, dim=-1).values
if self.use_simple and self.train:
return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias
for i in range(1, length + 1):
dp[i][0] = dp[i - 1][0] + Ax[:, i - 1]
for j in range(1, self.budget + 1):
dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1
] + Ax_rep_bound[:, i - 1])
dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1,
batch_size, dim_out)
return cmp(dp, dim=0).values + bias
def init(self, x, aux=None, forward=False):
tokens, batch = aux
self.tokens = tokens
assert len(x.shape) == 3
batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2]
max_pos = 1
can_be_replaced = np.zeros((batch_size, length), dtype=np.bool)
self._build_substitution(batch)
for t in range(batch_size):
cnt = 0
candidates = batch[t]['candidates']
if tokens[t][0] == '[CLS]':
candidates = [[]] + candidates + [[]]
for i in range(len(tokens[t])):
if tokens[t][i] == '[UNK]' or len(candidates[i]
) == 0 or tokens[t][i] != candidates[i][0]:
continue
for w in candidates[i][1:]:
if w in self.model.vocab:
can_be_replaced[t][i] = True
cnt += 1
break
max_pos = max(max_pos, cnt)
dim = max_pos * dim_word
if forward:
eye = torch.eye(dim_word)
lw = torch.zeros(batch_size, dim, length, dim_word)
lb = torch.zeros_like(x)
word_embeddings = self.model.word_embeddings.weight
vocab = self.model.vocab
x_rep = [[[] for i in range(length)] for t in range(batch_size)]
max_num_cand = 1
for t in range(batch_size):
candidates = batch[t]['candidates']
if tokens[t][0] == '[CLS]':
candidates = [[]] + candidates + [[]]
cnt = 0
for i in range(length):
if can_be_replaced[t][i]:
word_embed = word_embeddings[vocab[tokens[t][i]]]
other_embed = x[t, i] - word_embed
if forward:
lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye
lb[t, i, :] = torch.zeros_like(word_embed)
for w in candidates[i][1:]:
if w in self.model.vocab:
x_rep[t][i].append(word_embeddings[self.model.
vocab[w]] + other_embed)
max_num_cand = max(max_num_cand, len(x_rep[t][i]))
cnt += 1
elif forward:
lb[t, i, :] = x[t, i, :]
if forward:
uw, ub = lw, lb
else:
lw = lb = uw = ub = None
zeros = torch.zeros(dim_word, device=x.device)
x_rep_, mask = [], []
for t in range(batch_size):
for i in range(length):
x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep
[t][i]))
mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len(
x_rep[t][i]))
x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand,
dim_word)
mask = torch.tensor(mask, dtype=torch.float32, device=x.device
).reshape(batch_size, length, max_num_cand)
x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps)
inf = 1e+20
lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask).
unsqueeze(-1) * inf, dim=2).values
upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask).
unsqueeze(-1) * -inf, dim=2).values
lower = torch.min(lower, x)
upper = torch.max(upper, x)
return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask,
can_be_replaced)
def _build_substitution(self, batch):
for t, example in enumerate(batch):
if 'candidates' not in example or example['candidates'] is None:
candidates = []
tokens = example['sentence'].strip().lower().split(' ')
for i in range(len(tokens)):
_cand = []
if tokens[i] in self.synonym:
for w in self.synonym[tokens[i]]:
if w in self.model.vocab:
_cand.append(w)
if len(_cand) > 0:
_cand = [tokens[i]] + _cand
candidates.append(_cand)
example['candidates'] = candidates
class Interval(tuple):
def __new__(self, lb=None, ub=None, ptb=None):
if ub is None:
assert isinstance(lb, tuple)
lb, ub = lb
return tuple.__new__(Interval, (lb, ub))
def __init__(self, lb, ub, ptb=None):
if ptb is None:
self.ptb = None
assert lb is ub
elif not isinstance(ptb, Perturbation):
raise ValueError(
'ptb must be a Perturbation object or None. Got type {}'.
format(type(ptb)))
else:
self.ptb = ptb
def __str__(self):
return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb)
def __repr__(self):
return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1],
self.ptb)
"""Checking if the other interval is tuple, keep the perturbation."""
@staticmethod
def make_interval(lb, ub, other):
if isinstance(other, Interval):
return Interval(lb, ub, other.ptb)
else:
return lb, ub
"""Given a tuple or Interval object, returns the norm and eps."""
@staticmethod
def get_perturbation(interval):
if isinstance(interval, Interval):
if isinstance(interval.ptb, PerturbationLpNorm):
return interval.ptb.norm, interval.ptb.eps
elif isinstance(interval.ptb, PerturbationSynonym):
return np.inf, 1.0
elif isinstance(interval.ptb, PerturbationL0Norm):
return 0, interval.ptb.eps, interval.ptb.ratio
elif interval.ptb is None:
raise RuntimeError(
'get_perturbation() encountered an interval that is not perturbed.'
)
else:
raise RuntimeError(
'get_perturbation() does not know how to handle {}'.
format(type(interval.ptb)))
else:
return np.inf, np.nan
"""Checking if a Interval or tuple object has perturbation enabled."""
@staticmethod
def is_perturbed(interval):
if isinstance(interval, Interval) and interval.ptb is None:
return False
else:
return True
class Bound(nn.Module):
def __init__(self, input_name, name, ori_name, attr={}, inputs=[],
output_index=0, options={}, device=None):
super().__init__()
self.output_name = []
(self.input_name, self.name, self.ori_name, self.attr, self.inputs,
self.output_index, self.options, self.device) = (input_name,
name, ori_name, attr, inputs, output_index, options, device)
self.fv = None
self.from_input = False
self.bounded = False
self.IBP_rets = None
self.perturbed = False
if options is not None and 'loss_fusion' in options:
self.loss_fusion = options['loss_fusion']
else:
self.loss_fusion = False
"""Check if the i-th input is with perturbation or not."""
def is_input_perturbed(self, i=0):
return self.inputs[i].perturbed
def forward(self, *x):
raise NotImplementedError
def interval_propagate(self, *v):
assert len(v) == 1
h_L, h_U = v[0]
return Interval.make_interval(self.forward(h_L), self.forward(h_U),
v[0])
def bound_forward(self, dim_in, last):
raise NotImplementedError
def bound_backward(self, last_lA, last_uA):
raise NotImplementedError
def infer_batch_dim(self, batch_size, *x):
None
raise NotImplementedError
def broadcast_backward(self, A, x):
shape = x.default_shape
batch_dim = max(self.batch_dim, 0)
if isinstance(A, torch.Tensor):
if x.batch_dim == -1:
shape = torch.Size([A.shape[batch_dim + 1]] + list(shape))
dims = []
cnt_sum = A.ndim - len(shape) - 1
for i in range(1, A.ndim):
if i != self.batch_dim + 1 and cnt_sum > 0:
dims.append(i)
cnt_sum -= 1
if dims:
A = torch.sum(A, dim=dims)
else:
dims = list(range(1, 1 + A.ndim - 1 - len(shape)))
if dims:
A = torch.sum(A, dim=dims)
dims = []
for i in range(len(shape)):
if shape[i] == 1 and A.shape[i + 1] != 1:
dims.append(i + 1)
if dims:
A = torch.sum(A, dim=dims, keepdim=True)
assert A.shape[1:] == shape
elif type(A) == Patches:
pass
return A
@staticmethod
def broadcast_forward(dim_in, x, shape_res):
lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub
shape_x, shape_res = list(x.lb.shape), list(shape_res)
if lw is None:
lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device)
has_batch_size = False
else:
has_batch_size = True
while len(shape_x) < len(shape_res):
if not has_batch_size:
lw, uw = lw.unsqueeze(0), uw.unsqueeze(0)
lb, ub = lb.unsqueeze(0), ub.unsqueeze(0)
shape_x = [1] + shape_x
has_batch_size = True
else:
lw, uw = lw.unsqueeze(2), uw.unsqueeze(2)
lb, ub = lb.unsqueeze(1), ub.unsqueeze(1)
shape_x = [shape_x[0], 1] + shape_x[1:]
repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))]
lb, ub = lb.repeat(*repeat), ub.repeat(*repeat)
repeat = repeat[:1] + [1] + repeat[1:]
lw, uw = lw.repeat(*repeat), uw.repeat(*repeat)
return lw, lb, uw, ub
def get_bias(self, A, bias):
if A is None:
return 0
assert not isnan(A)
assert not isnan(bias)
if isinstance(A, torch.Tensor):
if torch.norm(A, p=1) < epsilon:
return 0
output_dim = A.shape[0]
if self.batch_dim != -1:
batch_size = A.shape[self.batch_dim + 1]
A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1
]).astype(np.int32), batch_size, np.prod(A.shape[self.
batch_dim + 2:]).astype(np.int32)]
A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size,
output_dim, -1)
bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape(
batch_size, -1, 1)
bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1)
else:
batch_size = A.shape[1]
A = A.view(output_dim, batch_size, -1)
bias_new = A.matmul(bias.view(-1))
if isnan(bias_new):
return 0
else:
return bias_new
elif type(A) == Patches:
if torch.norm(A.patches, p=1) < epsilon:
return 0
if self.batch_dim != -1:
batch_size = bias.shape[0]
bias = F.unfold(bias, kernel_size=A.patches.size(-1),
stride=A.stride, padding=A.padding).transpose(-2, -1
).unsqueeze(-2)
bias.size(1)
patches = A.patches.view(A.patches.size(0), A.patches.size(
1), A.patches.size(-4), A.patches.size(-1) * A.patches.
size(-2) * A.patches.size(-3))
prod = bias * patches
bias_new = prod.sum(-1).transpose(-2, -1)
bias_new = bias_new.view(batch_size, bias_new.size(-2), int
(math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new.
size(-1))))
else:
patches = A.patches
patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias
patches_reshape = patches_reshape.transpose(-1, -2)
return patches_reshape.view(patches_reshape.size(0),
patches_reshape.size(1), int(math.sqrt(patches_reshape.
size(2))), -1).transpose(0, 1)
return bias_new
else:
return NotImplementedError()
class BoundNot(Bound):
def __init__(self, input_name, name, ori_name, attr, inputs,
output_index, options, device):
super().__init__(input_name, name, ori_name, attr, inputs,
output_index, options, device)
def forward(self, x):
return x.logical_not()
def infer_batch_dim(self, batch_size, *x):
return x[0]
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_name': 4, 'name': 4, 'ori_name': 4, 'attr': 4,
'inputs': 4, 'output_index': 4, 'options': _mock_config(loss_fusion
=MSELoss()), 'device': 0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_not_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 != 0
tmp2 = tmp1 == 0
tl.store(out_ptr0 + x0, tmp2, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_not_0[grid(256)](arg0_1, buf0, 256, XBLOCK
=128, num_warps=4, num_stages=1)
del arg0_1
return buf0,
def isnan(x):
if isinstance(x, Patches):
return False
return torch.isnan(x).any()
class Perturbation:
def __init__(self):
pass
def set_eps(self, eps):
self.eps = eps
def concretize(self, x, A, sign=-1, aux=None):
raise NotImplementedError
def init(self, x, aux=None, forward=False):
raise NotImplementedError
class PerturbationL0Norm(Perturbation):
def __init__(self, eps, x_L=None, x_U=None, ratio=1.0):
self.eps = eps
self.x_U = x_U
self.x_L = x_L
self.ratio = ratio
def concretize(self, x, A, sign=-1, aux=None):
if A is None:
return None
eps = math.ceil(self.eps)
x = x.reshape(x.shape[0], -1, 1)
center = A.matmul(x)
x = x.reshape(x.shape[0], 1, -1)
original = A * x.expand(x.shape[0], A.shape[-2], x.shape[2])
neg_mask = A < 0
pos_mask = A >= 0
if sign == 1:
A_diff = torch.zeros_like(A)
A_diff[pos_mask] = A[pos_mask] - original[pos_mask]
A_diff[neg_mask] = -original[neg_mask]
else:
A_diff = torch.zeros_like(A)
A_diff[pos_mask] = original[pos_mask]
A_diff[neg_mask] = original[neg_mask] - A[neg_mask]
A_diff, _ = torch.sort(A_diff, dim=2, descending=True)
bound = center + sign * A_diff[:, :, :eps].sum(dim=2).unsqueeze(2
) * self.ratio
return bound.squeeze(2)
def init(self, x, aux=None, forward=False):
x_L = x
x_U = x
if not forward:
return LinearBound(None, None, None, None, x_L, x_U), x, None
batch_size = x.shape[0]
dim = x.reshape(batch_size, -1).shape[-1]
eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1)
lw = eye.reshape(batch_size, dim, *x.shape[1:])
lb = torch.zeros_like(x)
uw, ub = lw.clone(), lb.clone()
return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None
def __repr__(self):
return 'PerturbationLpNorm(norm=0, eps={})'.format(self.eps)
class PerturbationLpNorm(Perturbation):
def __init__(self, eps, norm=np.inf, x_L=None, x_U=None):
self.eps = eps
self.norm = norm
self.dual_norm = 1 if norm == np.inf else np.float64(1.0) / (1 -
1.0 / self.norm)
self.x_L = x_L
self.x_U = x_U
"""Given an variable x and its bound matrix A, compute worst case bound according to Lp norm."""
def concretize(self, x, A, sign=-1, aux=None):
if A is None:
return None
def concretize_matrix(A):
nonlocal x
if not isinstance(A, eyeC):
A = A.reshape(A.shape[0], A.shape[1], -1)
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
x_ub = x_U.reshape(x_U.shape[0], -1, 1)
x_lb = x_L.reshape(x_L.shape[0], -1, 1)
center = (x_ub + x_lb) / 2.0
diff = (x_ub - x_lb) / 2.0
if not isinstance(A, eyeC):
bound = A.matmul(center) + sign * A.abs().matmul(diff)
else:
bound = center + sign * diff
else:
x = x.reshape(x.shape[0], -1, 1)
if not isinstance(A, eyeC):
deviation = A.norm(self.dual_norm, -1) * self.eps
bound = A.matmul(x) + sign * deviation.unsqueeze(-1)
else:
bound = x + sign * self.eps
bound = bound.squeeze(-1)
return bound
def concretize_patches(A):
nonlocal x
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
center = (x_U + x_L) / 2.0
diff = (x_U - x_L) / 2.0
if not A.identity == 1:
unfold_input = F.unfold(center, kernel_size=A.patches.
size(-1), padding=A.padding, stride=A.stride
).transpose(-2, -1)
unfold_input = unfold_input.view(unfold_input.size(0),
unfold_input.size(1), -1, A.patches.size(-3), A.
patches.size(-2), A.patches.size(-1))
prod = unfold_input * A.patches
prod = prod.sum((-1, -2, -3)).transpose(-2, -1)
bound = prod.view(prod.size(0), prod.size(1), int(math.
sqrt(prod.size(2))), int(math.sqrt(prod.size(2))))
unfold_input = F.unfold(diff, kernel_size=A.patches.
size(-1), padding=A.padding, stride=A.stride
).transpose(-2, -1)
unfold_input = unfold_input.view(unfold_input.size(0),
unfold_input.size(1), -1, A.patches.size(-3), A.
patches.size(-2), A.patches.size(-1))
prod = unfold_input * A.patches.abs()
prod = prod.sum((-1, -2, -3)).transpose(-2, -1)
bound += sign * prod.view(prod.size(0), prod.size(1),
int(math.sqrt(prod.size(2))), int(math.sqrt(prod.
size(2))))
else:
bound = center + sign * diff
return bound
else:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
raise NotImplementedError()
if isinstance(A, eyeC) or isinstance(A, torch.Tensor):
return concretize_matrix(A)
elif isinstance(A, Patches):
return concretize_patches(A)
elif isinstance(A, BoundList):
for b in A.bound_list:
if isinstance(b, eyeC) or isinstance(b, torch.Tensor):
pass
else:
raise NotImplementedError()
def init(self, x, aux=None, forward=False):
if self.norm == np.inf:
x_L = x - self.eps if self.x_L is None else self.x_L
x_U = x + self.eps if self.x_U is None else self.x_U
else:
x_L = x
x_U = x
if not forward:
return LinearBound(None, None, None, None, x_L, x_U), x, None
batch_size = x.shape[0]
dim = x.reshape(batch_size, -1).shape[-1]
eye = torch.eye(dim).unsqueeze(0).repeat(batch_size, 1, 1)
lw = eye.reshape(batch_size, dim, *x.shape[1:])
lb = torch.zeros_like(x)
uw, ub = lw.clone(), lb.clone()
return LinearBound(lw, lb, uw, ub, x_L, x_U), x, None
def __repr__(self):
if self.norm == np.inf:
if self.x_L is None and self.x_U is None:
return 'PerturbationLpNorm(norm=inf, eps={})'.format(self.eps)
else:
return ('PerturbationLpNorm(norm=inf, eps={}, x_L={}, x_U={})'
.format(self.eps, self.x_L, self.x_U))
else:
return 'PerturbationLpNorm(norm={}, eps={})'.format(self.norm,
self.eps)
class PerturbationSynonym(Perturbation):
def __init__(self, budget, eps=1.0, use_simple=False):
super(PerturbationSynonym, self).__init__()
self._load_synonyms()
self.budget = budget
self.eps = eps
self.use_simple = use_simple
self.model = None
self.train = False
def __repr__(self):
return (
'perturbation(Synonym-based word substitution budget={}, eps={})'
.format(self.budget, self.eps))
def _load_synonyms(self, path='data/synonyms.json'):
with open(path) as file:
self.synonym = json.loads(file.read())
logger.info('Synonym list loaded for {} words'.format(len(self.
synonym)))
def set_train(self, train):
self.train = train
def concretize(self, x, A, sign, aux):
assert self.model is not None
x_rep, mask, can_be_replaced = aux
batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2]
dim_out = A.shape[1]
max_num_cand = x_rep.shape[2]
mask_rep = torch.tensor(can_be_replaced, dtype=torch.float32,
device=A.device)
num_pos = int(np.max(np.sum(can_be_replaced, axis=-1)))
update_A = A.shape[-1] > num_pos * dim_word
if update_A:
bias = torch.bmm(A, (x * (1 - mask_rep).unsqueeze(-1)).reshape(
batch_size, -1, 1)).squeeze(-1)
else:
bias = 0.0
A = A.reshape(batch_size, dim_out, -1, dim_word)
A_new, x_new, x_rep_new, mask_new = [], [], [], []
zeros_A = torch.zeros(dim_out, dim_word, device=A.device)
zeros_w = torch.zeros(dim_word, device=A.device)
zeros_rep = torch.zeros(max_num_cand, dim_word, device=A.device)
zeros_mask = torch.zeros(max_num_cand, device=A.device)
for t in range(batch_size):
cnt = 0
for i in range(0, length):
if can_be_replaced[t][i]:
if update_A:
A_new.append(A[t, :, i, :])
x_new.append(x[t][i])
x_rep_new.append(x_rep[t][i])
mask_new.append(mask[t][i])
cnt += 1
if update_A:
A_new += [zeros_A] * (num_pos - cnt)
x_new += [zeros_w] * (num_pos - cnt)
x_rep_new += [zeros_rep] * (num_pos - cnt)
mask_new += [zeros_mask] * (num_pos - cnt)
if update_A:
A = torch.cat(A_new).reshape(batch_size, num_pos, dim_out, dim_word
).transpose(1, 2)
x = torch.cat(x_new).reshape(batch_size, num_pos, dim_word)
x_rep = torch.cat(x_rep_new).reshape(batch_size, num_pos,
max_num_cand, dim_word)
mask = torch.cat(mask_new).reshape(batch_size, num_pos, max_num_cand)
length = num_pos
A = A.reshape(batch_size, A.shape[1], length, -1).transpose(1, 2)
x = x.reshape(batch_size, length, -1, 1)
if sign == 1:
cmp, init = torch.max, -1e+30
else:
cmp, init = torch.min, 1e+30
init_tensor = torch.ones(batch_size, dim_out) * init
dp = [([init_tensor] * (self.budget + 1)) for i in range(0, length + 1)
]
dp[0][0] = torch.zeros(batch_size, dim_out)
A = A.reshape(batch_size * length, A.shape[2], A.shape[3])
Ax = torch.bmm(A, x.reshape(batch_size * length, x.shape[2], x.
shape[3])).reshape(batch_size, length, A.shape[1])
Ax_rep = torch.bmm(A, x_rep.reshape(batch_size * length,
max_num_cand, x.shape[2]).transpose(-1, -2)).reshape(batch_size,
length, A.shape[1], max_num_cand)
Ax_rep = Ax_rep * mask.unsqueeze(2) + init * (1 - mask).unsqueeze(2)
Ax_rep_bound = cmp(Ax_rep, dim=-1).values
if self.use_simple and self.train:
return torch.sum(cmp(Ax, Ax_rep_bound), dim=1) + bias
for i in range(1, length + 1):
dp[i][0] = dp[i - 1][0] + Ax[:, i - 1]
for j in range(1, self.budget + 1):
dp[i][j] = cmp(dp[i - 1][j] + Ax[:, i - 1], dp[i - 1][j - 1
] + Ax_rep_bound[:, i - 1])
dp = torch.cat(dp[length], dim=0).reshape(self.budget + 1,
batch_size, dim_out)
return cmp(dp, dim=0).values + bias
def init(self, x, aux=None, forward=False):
tokens, batch = aux
self.tokens = tokens
assert len(x.shape) == 3
batch_size, length, dim_word = x.shape[0], x.shape[1], x.shape[2]
max_pos = 1
can_be_replaced = np.zeros((batch_size, length), dtype=np.bool)
self._build_substitution(batch)
for t in range(batch_size):
cnt = 0
candidates = batch[t]['candidates']
if tokens[t][0] == '[CLS]':
candidates = [[]] + candidates + [[]]
for i in range(len(tokens[t])):
if tokens[t][i] == '[UNK]' or len(candidates[i]
) == 0 or tokens[t][i] != candidates[i][0]:
continue
for w in candidates[i][1:]:
if w in self.model.vocab:
can_be_replaced[t][i] = True
cnt += 1
break
max_pos = max(max_pos, cnt)
dim = max_pos * dim_word
if forward:
eye = torch.eye(dim_word)
lw = torch.zeros(batch_size, dim, length, dim_word)
lb = torch.zeros_like(x)
word_embeddings = self.model.word_embeddings.weight
vocab = self.model.vocab
x_rep = [[[] for i in range(length)] for t in range(batch_size)]
max_num_cand = 1
for t in range(batch_size):
candidates = batch[t]['candidates']
if tokens[t][0] == '[CLS]':
candidates = [[]] + candidates + [[]]
cnt = 0
for i in range(length):
if can_be_replaced[t][i]:
word_embed = word_embeddings[vocab[tokens[t][i]]]
other_embed = x[t, i] - word_embed
if forward:
lw[t, cnt * dim_word:(cnt + 1) * dim_word, i, :] = eye
lb[t, i, :] = torch.zeros_like(word_embed)
for w in candidates[i][1:]:
if w in self.model.vocab:
x_rep[t][i].append(word_embeddings[self.model.
vocab[w]] + other_embed)
max_num_cand = max(max_num_cand, len(x_rep[t][i]))
cnt += 1
elif forward:
lb[t, i, :] = x[t, i, :]
if forward:
uw, ub = lw, lb
else:
lw = lb = uw = ub = None
zeros = torch.zeros(dim_word, device=x.device)
x_rep_, mask = [], []
for t in range(batch_size):
for i in range(length):
x_rep_ += x_rep[t][i] + [zeros] * (max_num_cand - len(x_rep
[t][i]))
mask += [1] * len(x_rep[t][i]) + [0] * (max_num_cand - len(
x_rep[t][i]))
x_rep_ = torch.cat(x_rep_).reshape(batch_size, length, max_num_cand,
dim_word)
mask = torch.tensor(mask, dtype=torch.float32, device=x.device
).reshape(batch_size, length, max_num_cand)
x_rep_ = x_rep_ * self.eps + x.unsqueeze(2) * (1 - self.eps)
inf = 1e+20
lower = torch.min(mask.unsqueeze(-1) * x_rep_ + (1 - mask).
unsqueeze(-1) * inf, dim=2).values
upper = torch.max(mask.unsqueeze(-1) * x_rep_ + (1 - mask).
unsqueeze(-1) * -inf, dim=2).values
lower = torch.min(lower, x)
upper = torch.max(upper, x)
return LinearBound(lw, lb, uw, ub, lower, upper), x, (x_rep_, mask,
can_be_replaced)
def _build_substitution(self, batch):
for t, example in enumerate(batch):
if 'candidates' not in example or example['candidates'] is None:
candidates = []
tokens = example['sentence'].strip().lower().split(' ')
for i in range(len(tokens)):
_cand = []
if tokens[i] in self.synonym:
for w in self.synonym[tokens[i]]:
if w in self.model.vocab:
_cand.append(w)
if len(_cand) > 0:
_cand = [tokens[i]] + _cand
candidates.append(_cand)
example['candidates'] = candidates
class Interval(tuple):
def __new__(self, lb=None, ub=None, ptb=None):
if ub is None:
assert isinstance(lb, tuple)
lb, ub = lb
return tuple.__new__(Interval, (lb, ub))
def __init__(self, lb, ub, ptb=None):
if ptb is None:
self.ptb = None
assert lb is ub
elif not isinstance(ptb, Perturbation):
raise ValueError(
'ptb must be a Perturbation object or None. Got type {}'.
format(type(ptb)))
else:
self.ptb = ptb
def __str__(self):
return '({}, {}) with ptb={}'.format(self[0], self[1], self.ptb)
def __repr__(self):
return 'Interval(lb={}, ub={}, ptb={})'.format(self[0], self[1],
self.ptb)
"""Checking if the other interval is tuple, keep the perturbation."""
@staticmethod
def make_interval(lb, ub, other):
if isinstance(other, Interval):
return Interval(lb, ub, other.ptb)
else:
return lb, ub
"""Given a tuple or Interval object, returns the norm and eps."""
@staticmethod
def get_perturbation(interval):
if isinstance(interval, Interval):
if isinstance(interval.ptb, PerturbationLpNorm):
return interval.ptb.norm, interval.ptb.eps
elif isinstance(interval.ptb, PerturbationSynonym):
return np.inf, 1.0
elif isinstance(interval.ptb, PerturbationL0Norm):
return 0, interval.ptb.eps, interval.ptb.ratio
elif interval.ptb is None:
raise RuntimeError(
'get_perturbation() encountered an interval that is not perturbed.'
)
else:
raise RuntimeError(
'get_perturbation() does not know how to handle {}'.
format(type(interval.ptb)))
else:
return np.inf, np.nan
"""Checking if a Interval or tuple object has perturbation enabled."""
@staticmethod
def is_perturbed(interval):
if isinstance(interval, Interval) and interval.ptb is None:
return False
else:
return True
class Bound(nn.Module):
def __init__(self, input_name, name, ori_name, attr={}, inputs=[],
output_index=0, options={}, device=None):
super().__init__()
self.output_name = []
(self.input_name, self.name, self.ori_name, self.attr, self.inputs,
self.output_index, self.options, self.device) = (input_name,
name, ori_name, attr, inputs, output_index, options, device)
self.fv = None
self.from_input = False
self.bounded = False
self.IBP_rets = None
self.perturbed = False
if options is not None and 'loss_fusion' in options:
self.loss_fusion = options['loss_fusion']
else:
self.loss_fusion = False
"""Check if the i-th input is with perturbation or not."""
def is_input_perturbed(self, i=0):
return self.inputs[i].perturbed
def forward(self, *x):
raise NotImplementedError
def interval_propagate(self, *v):
assert len(v) == 1
h_L, h_U = v[0]
return Interval.make_interval(self.forward(h_L), self.forward(h_U),
v[0])
def bound_forward(self, dim_in, last):
raise NotImplementedError
def bound_backward(self, last_lA, last_uA):
raise NotImplementedError
def infer_batch_dim(self, batch_size, *x):
None
raise NotImplementedError
def broadcast_backward(self, A, x):
shape = x.default_shape
batch_dim = max(self.batch_dim, 0)
if isinstance(A, torch.Tensor):
if x.batch_dim == -1:
shape = torch.Size([A.shape[batch_dim + 1]] + list(shape))
dims = []
cnt_sum = A.ndim - len(shape) - 1
for i in range(1, A.ndim):
if i != self.batch_dim + 1 and cnt_sum > 0:
dims.append(i)
cnt_sum -= 1
if dims:
A = torch.sum(A, dim=dims)
else:
dims = list(range(1, 1 + A.ndim - 1 - len(shape)))
if dims:
A = torch.sum(A, dim=dims)
dims = []
for i in range(len(shape)):
if shape[i] == 1 and A.shape[i + 1] != 1:
dims.append(i + 1)
if dims:
A = torch.sum(A, dim=dims, keepdim=True)
assert A.shape[1:] == shape
elif type(A) == Patches:
pass
return A
@staticmethod
def broadcast_forward(dim_in, x, shape_res):
lw, lb, uw, ub = x.lw, x.lb, x.uw, x.ub
shape_x, shape_res = list(x.lb.shape), list(shape_res)
if lw is None:
lw = uw = torch.zeros(dim_in, *shape_x, device=lb.device)
has_batch_size = False
else:
has_batch_size = True
while len(shape_x) < len(shape_res):
if not has_batch_size:
lw, uw = lw.unsqueeze(0), uw.unsqueeze(0)
lb, ub = lb.unsqueeze(0), ub.unsqueeze(0)
shape_x = [1] + shape_x
has_batch_size = True
else:
lw, uw = lw.unsqueeze(2), uw.unsqueeze(2)
lb, ub = lb.unsqueeze(1), ub.unsqueeze(1)
shape_x = [shape_x[0], 1] + shape_x[1:]
repeat = [(shape_res[i] // shape_x[i]) for i in range(len(shape_x))]
lb, ub = lb.repeat(*repeat), ub.repeat(*repeat)
repeat = repeat[:1] + [1] + repeat[1:]
lw, uw = lw.repeat(*repeat), uw.repeat(*repeat)
return lw, lb, uw, ub
def get_bias(self, A, bias):
if A is None:
return 0
assert not isnan(A)
assert not isnan(bias)
if isinstance(A, torch.Tensor):
if torch.norm(A, p=1) < epsilon:
return 0
output_dim = A.shape[0]
if self.batch_dim != -1:
batch_size = A.shape[self.batch_dim + 1]
A_shape = [A.shape[0], np.prod(A.shape[1:self.batch_dim + 1
]).astype(np.int32), batch_size, np.prod(A.shape[self.
batch_dim + 2:]).astype(np.int32)]
A = A.reshape(*A_shape).permute(2, 0, 1, 3).reshape(batch_size,
output_dim, -1)
bias = bias.reshape(*A_shape[1:]).transpose(0, 1).reshape(
batch_size, -1, 1)
bias_new = A.matmul(bias).squeeze(-1).transpose(0, 1)
else:
batch_size = A.shape[1]
A = A.view(output_dim, batch_size, -1)
bias_new = A.matmul(bias.view(-1))
if isnan(bias_new):
return 0
else:
return bias_new
elif type(A) == Patches:
if torch.norm(A.patches, p=1) < epsilon:
return 0
if self.batch_dim != -1:
batch_size = bias.shape[0]
bias = F.unfold(bias, kernel_size=A.patches.size(-1),
stride=A.stride, padding=A.padding).transpose(-2, -1
).unsqueeze(-2)
bias.size(1)
patches = A.patches.view(A.patches.size(0), A.patches.size(
1), A.patches.size(-4), A.patches.size(-1) * A.patches.
size(-2) * A.patches.size(-3))
prod = bias * patches
bias_new = prod.sum(-1).transpose(-2, -1)
bias_new = bias_new.view(batch_size, bias_new.size(-2), int
(math.sqrt(bias_new.size(-1))), int(math.sqrt(bias_new.
size(-1))))
else:
patches = A.patches
patches_reshape = torch.sum(patches, dim=(-1, -2, -3)) * bias
patches_reshape = patches_reshape.transpose(-1, -2)
return patches_reshape.view(patches_reshape.size(0),
patches_reshape.size(1), int(math.sqrt(patches_reshape.
size(2))), -1).transpose(0, 1)
return bias_new
else:
return NotImplementedError()
class BoundNotNew(Bound):
def __init__(self, input_name, name, ori_name, attr, inputs,
output_index, options, device):
super().__init__(input_name, name, ori_name, attr, inputs,
output_index, options, device)
def infer_batch_dim(self, batch_size, *x):
return x[0]
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
mnmueller/auto_LiRPA
|
BoundNot
| false | 7,281 |
[
"BSD-3-Clause"
] | 1 |
55cb270b0b99f07b74541d55706c69fbb9daff66
|
https://github.com/mnmueller/auto_LiRPA/tree/55cb270b0b99f07b74541d55706c69fbb9daff66
|
MLP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ix/cixxyusyg44s2hkoufcgbrv3ix5ookwqjl4ia3xkv7bdqi4yrzus.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 400
x2 = xindex % 1600
x3 = (xindex // 1600)
tmp0 = tl.load(in_out_ptr0 + (x4), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x4), tmp4, xmask)
tl.store(out_ptr0 + (x2 + (1664*x3)), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (400, 4), (4, 1))
assert_size_stride(primals_2, (400, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (400, 400), (400, 1))
assert_size_stride(primals_5, (400, ), (1, ))
assert_size_stride(primals_6, (4, 400), (400, 1))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 25600, grid=grid(25600), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(primals_4, (400, 400), (1, 400), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 400), (6400, 1600, 400, 1), 0); del buf2 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf5, 25600, grid=grid(25600), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 4), (1, 400), 0), alpha=1, beta=1, out=buf4)
del primals_7
return (reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 400), (400, 1), 0), reinterpret_tensor(buf3, (64, 400), (400, 1), 0), primals_6, buf5, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((400, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((400, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((400, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 400), (400, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 25600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x4 = xindex
x0 = xindex % 400
x2 = xindex % 1600
x3 = xindex // 1600
tmp0 = tl.load(in_out_ptr0 + x4, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x4, tmp4, xmask)
tl.store(out_ptr0 + (x2 + 1664 * x3), tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (400, 4), (4, 1))
assert_size_stride(primals_2, (400,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (400, 400), (400, 1))
assert_size_stride(primals_5, (400,), (1,))
assert_size_stride(primals_6, (4, 400), (400, 1))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 400), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 400), (6400, 1600, 400, 1), 0
)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf1,
primals_2, buf6, 25600, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 400), (400, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 400), (400, 1), 0),
reinterpret_tensor(primals_4, (400, 400), (1, 400), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 400), (6400, 1600, 400, 1), 0
)
del buf2
buf5 = empty_strided_cuda((4, 4, 4, 400), (6656, 1664, 400, 1),
torch.bool)
triton_poi_fused_relu_threshold_backward_0[grid(25600)](buf3,
primals_5, buf5, 25600, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 400),
(400, 1), 0), reinterpret_tensor(primals_6, (400, 4), (1, 400),
0), alpha=1, beta=1, out=buf4)
del primals_7
return reinterpret_tensor(buf4, (4, 4, 4, 4), (64, 16, 4, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 400), (400, 1), 0
), reinterpret_tensor(buf3, (64, 400), (400, 1), 0
), primals_6, buf5, primals_4, buf6
class MLPNew(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=400):
super(MLPNew, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
f2010126/DL_Labs
|
MLP
| false | 3,484 |
[
"BSD-3-Clause"
] | 0 |
ee81d8aa6027846fc32c98feb9079211c59aa0e9
|
https://github.com/f2010126/DL_Labs/tree/ee81d8aa6027846fc32c98feb9079211c59aa0e9
|
DotProd
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/g4/cg47i4i54od2dvsgh3uclkoullf4wstwmhaavjry6stdeucaycib.py
# Topologically Sorted Source Nodes: [mul, sum_1], Original ATen: [aten.mul, aten.sum]
# Source node to ATen node mapping:
# mul => mul
# sum_1 => sum_1
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %unsqueeze), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [2]), kwargs = {})
triton_poi_fused_mul_sum_0 = async_compile.triton('triton_poi_fused_mul_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16) % 4
x2 = (xindex // 64)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x3), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, sum_1], Original ATen: [aten.mul, aten.sum]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_sum_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (reinterpret_tensor(buf0, (4, 4, 4), (64, 4, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16 % 4
x2 = xindex // 64
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x3, tmp14, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_sum_0[grid(256)](arg0_1, arg1_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return reinterpret_tensor(buf0, (4, 4, 4), (64, 4, 1), 0),
class DotProdNew(nn.Module):
def __init__(self):
nn.Module.__init__(self)
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
mrernst/rl_robotics_research
|
DotProd
| false | 10,612 |
[
"MIT"
] | 0 |
0bc446cfb69591cb4ee3ce8d39815c463090a5f6
|
https://github.com/mrernst/rl_robotics_research/tree/0bc446cfb69591cb4ee3ce8d39815c463090a5f6
|
ViTStemPatchify
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/sr/csrhhqsexdcor6gq6tz4dawxblhadgekinzxxkt33uwojltligp6.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x2), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 16, grid=grid(16), stream=stream0)
del primals_2
return (buf1, primals_1, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch.nn import Module
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16)](buf1, primals_2, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf1, primals_1, primals_3
def patchify2d(w_in, w_out, k, *, bias=True):
"""Helper for building a patchify layer as used by ViT models."""
return nn.Conv2d(w_in, w_out, k, stride=k, padding=0, bias=bias)
def patchify2d_cx(cx, w_in, w_out, k, *, bias=True):
"""Accumulates complexity of patchify2d into cx = (h, w, flops, params, acts)."""
err_str = 'Only kernel sizes divisible by the input size are supported.'
assert cx['h'] % k == 0 and cx['w'] % k == 0, err_str
h, w, flops, params, acts = cx['h'], cx['w'], cx['flops'], cx['params'
], cx['acts']
h, w = h // k, w // k
flops += k * k * w_in * w_out * h * w + (w_out * h * w if bias else 0)
params += k * k * w_in * w_out + (w_out if bias else 0)
acts += w_out * h * w
return {'h': h, 'w': w, 'flops': flops, 'params': params, 'acts': acts}
class ViTStemPatchifyNew(Module):
"""The patchify vision transformer stem as per https://arxiv.org/abs/2010.11929."""
def __init__(self, w_in, w_out, k):
super(ViTStemPatchifyNew, self).__init__()
self.patchify = patchify2d(w_in, w_out, k, bias=True)
@staticmethod
def complexity(cx, w_in, w_out, k):
return patchify2d_cx(cx, w_in, w_out, k, bias=True)
def forward(self, input_0):
primals_1 = self.patchify.weight
primals_2 = self.patchify.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MAC-AutoML/XCompression
|
ViTStemPatchify
| false | 5,567 |
[
"MIT"
] | 1 |
9f76eb3ccfb3057110ecf12aa48dec00a4667a25
|
https://github.com/MAC-AutoML/XCompression/tree/9f76eb3ccfb3057110ecf12aa48dec00a4667a25
|
BertPooler
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/yy/cyya3js6wt64vdji3sfisvrqyfvqxwkwqq5mzg5bqjl2crzjs4t3.py
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# pooled_output => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tl.store(out_ptr0 + (x2), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/2g/c2gw7362i2a6wsfdx2sxyywx4o6ronjg6goebvdn44w6gpjsxpbc.py
# Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh]
# Source node to ATen node mapping:
# pooled_output => add
# pooled_output_1 => tanh
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {})
# %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {})
triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh]
triton_poi_fused_add_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tl.store(out_ptr0 + x2, tmp0, xmask)
@triton.jit
def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1)
del primals_2
buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
triton_poi_fused_add_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK=
64, num_warps=1, num_stages=1)
del primals_3
return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2
class BertPoolerNew(nn.Module):
def __init__(self, config):
super(BertPoolerNew, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, input_0):
primals_2 = self.dense.weight
primals_3 = self.dense.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Adoni/pytorch-pretrained-BERT
|
BertPooler
| false | 3,485 |
[
"Apache-2.0"
] | 0 |
845c33f00e933626dcfc96e0923ecf034295ef75
|
https://github.com/Adoni/pytorch-pretrained-BERT/tree/845c33f00e933626dcfc96e0923ecf034295ef75
|
DilatedBasicBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/hp/chp7woenoxkphczh7osqnw2qzo4iasy3omqbpgltn246hzll6zuq.py
# Topologically Sorted Source Nodes: [out, out_1, out_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
# Source node to ATen node mapping:
# out => convolution
# out_1 => add, rsqrt, var_mean
# out_2 => relu
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_0 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0, in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask)
tl.store(out_ptr3 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/67/c67zh53sqgbrfvwct4426oslqd4pu2uw5oys5tv5ljlykr22jy5u.py
# Topologically Sorted Source Nodes: [out_3, out_4, out_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# out_3 => convolution_1
# out_4 => add_1, rsqrt_1, var_mean_1
# out_6 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%view_3, %primals_4, %primals_5, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {})
# %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {})
# %relu_1 : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%view_8,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view_16, 0), kwargs = {})
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[16, 16],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 16
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (r2 + (16*x3)), xmask, other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tmp5 = tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tmp30 = 0.0
tmp31 = tmp29 <= tmp30
tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask)
tl.store(out_ptr2 + (r2 + (16*x3)), tmp29, xmask)
tl.store(out_ptr3 + (r2 + (16*x3)), tmp31, xmask)
tl.store(out_ptr4 + (x3), tmp24, xmask)
tl.store(out_ptr0 + (x3), tmp12, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out, out_1, out_2], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu]
stream0 = get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0.run(buf1, primals_3, buf2, buf6, buf5, 16, 16, grid=grid(16), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = buf7; del buf7 # reuse
buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [out_3, out_4, out_6], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.relu, aten.threshold_backward]
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1.run(buf8, primals_5, primals_1, buf9, buf13, buf14, buf12, 16, 16, grid=grid(16), stream=stream0)
del primals_5
return (buf13, primals_1, primals_2, primals_4, buf1, reinterpret_tensor(buf5, (16, ), (1, ), 0), buf6, buf8, reinterpret_tensor(buf12, (16, ), (1, ), 0), buf14, reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1, 1), 0), reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_0(in_out_ptr0,
in_ptr0, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr
):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp26 = tl.full([1, 1], 0, tl.int32)
tmp27 = triton_helpers.maximum(tmp26, tmp25)
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask)
tl.store(out_ptr3 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1(
in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr3, out_ptr4,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp26 = tl.load(in_ptr1 + (r2 + 16 * x3), xmask, other=0.0)
tmp2 = tmp0 + tmp1
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK])
tl.where(xmask, tmp3, 0)
tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp8 = tl.where(xmask, tmp6, 0)
tmp9 = tl.sum(tmp8, 1)[:, None]
tmp10 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp11 = tmp10.to(tl.float32)
tmp12 = tmp9 / tmp11
tmp13 = tmp3 - tmp12
tmp14 = tmp13 * tmp13
tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK])
tmp17 = tl.where(xmask, tmp15, 0)
tmp18 = tl.sum(tmp17, 1)[:, None]
tmp19 = tmp2 - tmp12
tmp20 = 16.0
tmp21 = tmp18 / tmp20
tmp22 = 1e-05
tmp23 = tmp21 + tmp22
tmp24 = libdevice.rsqrt(tmp23)
tmp25 = tmp19 * tmp24
tmp27 = tmp25 + tmp26
tmp28 = tl.full([1, 1], 0, tl.int32)
tmp29 = triton_helpers.maximum(tmp28, tmp27)
tmp30 = 0.0
tmp31 = tmp29 <= tmp30
tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask)
tl.store(out_ptr2 + (r2 + 16 * x3), tmp29, xmask)
tl.store(out_ptr3 + (r2 + 16 * x3), tmp31, xmask)
tl.store(out_ptr4 + x3, tmp24, xmask)
tl.store(out_ptr0 + x3, tmp12, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf5 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_convolution_relu_0[grid(16)](
buf1, primals_3, buf2, buf6, buf5, 16, 16, XBLOCK=8, num_warps=
2, num_stages=1)
del primals_3
buf7 = extern_kernels.convolution(buf6, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 4, 4, 4), (64, 16, 4, 1))
buf8 = buf7
del buf7
buf9 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32
)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
buf12 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.
float32)
triton_per_fused__native_batch_norm_legit_convolution_relu_threshold_backward_1[
grid(16)](buf8, primals_5, primals_1, buf9, buf13, buf14, buf12,
16, 16, XBLOCK=8, num_warps=2, num_stages=1)
del primals_5
return buf13, primals_1, primals_2, primals_4, buf1, reinterpret_tensor(
buf5, (16,), (1,), 0), buf6, buf8, reinterpret_tensor(buf12, (16,),
(1,), 0), buf14, reinterpret_tensor(buf9, (1, 16, 1, 1), (16, 1, 1,
1), 0), reinterpret_tensor(buf2, (1, 16, 1, 1), (16, 1, 1, 1), 0)
class DilatedBasicBlockNew(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, dilation=1):
super(DilatedBasicBlockNew, self).__init__()
padding_size = kernel_size + (kernel_size - 1) * (dilation - 1) - 1
assert padding_size % 2 == 0
padding_size = int(padding_size / 2)
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=kernel_size,
stride=1, padding=padding_size, dilation=dilation)
self.in1 = nn.InstanceNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=kernel_size,
stride=1, padding=padding_size, dilation=dilation)
self.in2 = nn.InstanceNorm2d(planes)
if inplanes != planes:
self.conv3 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=1)
self.in3 = nn.InstanceNorm2d(planes)
else:
self.conv3 = None
self.in3 = None
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Galaxies99/alpha-protein
|
DilatedBasicBlock
| false | 17,319 |
[
"MIT"
] | 4 |
db4b77ab48d5905ade5d4a66004f8387773718fa
|
https://github.com/Galaxies99/alpha-protein/tree/db4b77ab48d5905ade5d4a66004f8387773718fa
|
GumbelSoftmax
|
import torch
import torch.utils.data
from torch import nn
from torch.nn import functional as F
class GumbelSoftmax(nn.Module):
def __init__(self, f_dim, c_dim):
super(GumbelSoftmax, self).__init__()
self.logits = nn.Linear(f_dim, c_dim)
self.f_dim = f_dim
self.c_dim = c_dim
def sample_gumbel(self, shape, is_cuda=False, eps=1e-20):
U = torch.rand(shape)
if is_cuda:
U = U
return -torch.log(-torch.log(U + eps) + eps)
def gumbel_softmax_sample(self, logits, temperature):
y = logits + self.sample_gumbel(logits.size(), logits.is_cuda)
return F.softmax(y / temperature, dim=-1)
def gumbel_softmax(self, logits, temperature, hard=False):
"""
ST-gumple-softmax
input: [*, n_class]
return: flatten --> [*, n_class] an one-hot vector
"""
y = self.gumbel_softmax_sample(logits, temperature)
if not hard:
return y
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)
y_hard = (y_hard - y).detach() + y
return y_hard
def forward(self, x, temperature=1.0, hard=False):
logits = self.logits(x).view(-1, self.c_dim)
prob = F.softmax(logits, dim=-1)
y = F.softmax(logits, dim=-1)
return logits, prob, y
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'f_dim': 4, 'c_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
from torch import nn
from torch.nn import functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
buf3 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf1, buf2, buf3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del buf1
return buf0, buf2, buf3, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf2, buf3
class GumbelSoftmaxNew(nn.Module):
def __init__(self, f_dim, c_dim):
super(GumbelSoftmaxNew, self).__init__()
self.logits = nn.Linear(f_dim, c_dim)
self.f_dim = f_dim
self.c_dim = c_dim
def sample_gumbel(self, shape, is_cuda=False, eps=1e-20):
U = torch.rand(shape)
if is_cuda:
U = U
return -torch.log(-torch.log(U + eps) + eps)
def gumbel_softmax_sample(self, logits, temperature):
y = logits + self.sample_gumbel(logits.size(), logits.is_cuda)
return F.softmax(y / temperature, dim=-1)
def gumbel_softmax(self, logits, temperature, hard=False):
"""
ST-gumple-softmax
input: [*, n_class]
return: flatten --> [*, n_class] an one-hot vector
"""
y = self.gumbel_softmax_sample(logits, temperature)
if not hard:
return y
shape = y.size()
_, ind = y.max(dim=-1)
y_hard = torch.zeros_like(y).view(-1, shape[-1])
y_hard.scatter_(1, ind.view(-1, 1), 1)
y_hard = y_hard.view(*shape)
y_hard = (y_hard - y).detach() + y
return y_hard
def forward(self, input_0):
primals_1 = self.logits.weight
primals_2 = self.logits.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0], output[1], output[2]
|
Kaya176/GMVAE
|
GumbelSoftmax
| false | 9,252 |
[
"MIT"
] | 0 |
6369be52dbac796e2f836f51b16aaa5c61247350
|
https://github.com/Kaya176/GMVAE/tree/6369be52dbac796e2f836f51b16aaa5c61247350
|
CausalConv2d
|
import torch
import torch.utils.data
import torch
from torch import nn
class WNConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding=0, bias=True, activation=None):
super().__init__()
self.conv = nn.utils.weight_norm(nn.Conv2d(in_channel, out_channel,
kernel_size, stride=stride, padding=padding, bias=bias))
self.out_channel = out_channel
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
self.kernel_size = kernel_size
self.activation = activation
def forward(self, input):
out = self.conv(input)
if self.activation is not None:
out = self.activation(out)
return out
class CausalConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding='downright', activation=None):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = [kernel_size] * 2
self.kernel_size = kernel_size
if padding == 'downright':
pad = [kernel_size[1] - 1, 0, kernel_size[0] - 1, 0]
elif padding == 'down' or padding == 'causal':
pad = kernel_size[1] // 2
pad = [pad, pad, kernel_size[0] - 1, 0]
self.causal = 0
if padding == 'causal':
self.causal = kernel_size[1] // 2
self.pad = nn.ZeroPad2d(pad)
self.conv = WNConv2d(in_channel, out_channel, kernel_size, stride=
stride, padding=0, activation=activation)
def forward(self, input):
out = self.pad(input)
if self.causal > 0:
self.conv.conv.weight_v.data[:, :, -1, self.causal:].zero_()
out = self.conv(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.utils.data
import torch
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 784
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 7 % 7
x0 = xindex % 7
x2 = xindex // 49
x4 = xindex
tmp0 = -3 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = -3 + x0
tmp4 = tmp3 >= tmp1
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-15 + x0 + 4 * x1 + 16 * x2), tmp5 & xmask,
other=0.0)
tl.store(out_ptr0 + x4, tmp6, xmask)
@triton.jit
def triton_per_fused__weight_norm_interface_1(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 64 * x0), tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 1, 1, 1), (1, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 7, 7), (196, 49, 7, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(784)](primals_1, buf0, 784,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32)
buf2 = reinterpret_tensor(buf1, (4, 1, 1, 1), (1, 1, 1, 1), 0)
del buf1
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_per_fused__weight_norm_interface_1[grid(4)](buf2, primals_3,
primals_2, buf3, 4, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf4 = extern_kernels.convolution(buf0, buf3, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 4, 4), (64, 16, 4, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_2[grid(256)](buf5, primals_4, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_4
return buf5, buf3, primals_2, primals_3, buf0, buf2, buf3
class WNConv2d(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding=0, bias=True, activation=None):
super().__init__()
self.conv = nn.utils.weight_norm(nn.Conv2d(in_channel, out_channel,
kernel_size, stride=stride, padding=padding, bias=bias))
self.out_channel = out_channel
if isinstance(kernel_size, int):
kernel_size = [kernel_size, kernel_size]
self.kernel_size = kernel_size
self.activation = activation
def forward(self, input):
out = self.conv(input)
if self.activation is not None:
out = self.activation(out)
return out
class CausalConv2dNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, stride=1,
padding='downright', activation=None):
super().__init__()
if isinstance(kernel_size, int):
kernel_size = [kernel_size] * 2
self.kernel_size = kernel_size
if padding == 'downright':
pad = [kernel_size[1] - 1, 0, kernel_size[0] - 1, 0]
elif padding == 'down' or padding == 'causal':
pad = kernel_size[1] // 2
pad = [pad, pad, kernel_size[0] - 1, 0]
self.causal = 0
if padding == 'causal':
self.causal = kernel_size[1] // 2
self.pad = nn.ZeroPad2d(pad)
self.conv = WNConv2d(in_channel, out_channel, kernel_size, stride=
stride, padding=0, activation=activation)
def forward(self, input_0):
primals_4 = self.conv.conv.bias
primals_2 = self.conv.conv.weight_g
primals_1 = self.conv.conv.weight_v
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
KouheiFurukawa/vq-vae-2-pytorch
|
CausalConv2d
| false | 9,296 |
[
"MIT"
] | 0 |
ad8a4d8409c2e99e1db790a0e215b346b56b1e1f
|
https://github.com/KouheiFurukawa/vq-vae-2-pytorch/tree/ad8a4d8409c2e99e1db790a0e215b346b56b1e1f
|
ResidualBlock
|
import torch
import torch.utils.data
from torch import nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, hidden, out_channels):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=hidden,
kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=hidden, out_channels=
out_channels, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
def forward(self, x):
out = self.conv1(x)
out = self.relu1(out)
out = self.conv2(out)
return self.relu2(out) + x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'hidden': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_add_convolution_relu_threshold_backward_1(in_ptr0,
in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = tmp4 + tmp5
tmp7 = 0.0
tmp8 = tmp4 <= tmp7
tl.store(out_ptr0 + x3, tmp6, xmask)
tl.store(out_ptr1 + x3, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1))
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_convolution_relu_threshold_backward_1[grid(256)](
buf2, primals_5, primals_3, buf3, buf4, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf2
del primals_5
return buf3, primals_1, primals_3, primals_4, buf1, buf4
class ResidualBlockNew(nn.Module):
def __init__(self, in_channels, hidden, out_channels):
super().__init__()
self.conv1 = nn.Conv2d(in_channels=in_channels, out_channels=hidden,
kernel_size=3, stride=1, padding=1)
self.relu1 = nn.ReLU()
self.conv2 = nn.Conv2d(in_channels=hidden, out_channels=
out_channels, kernel_size=3, stride=1, padding=1)
self.relu2 = nn.ReLU()
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
YigitGunduc/self-driving-car
|
ResidualBlock
| false | 2,978 |
[
"MIT"
] | 0 |
2be31f6473c911cf004236ce0874cb2da8fe8ad1
|
https://github.com/YigitGunduc/self-driving-car/tree/2be31f6473c911cf004236ce0874cb2da8fe8ad1
|
BiInteractionPooling
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/bi/cbi2qodo47qltjis43e7m5he7aydnzfct5wg53dvjlfjgi3wz5zt.py
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, sub, cross_term], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
# Source node to ATen node mapping:
# cross_term => mul_1
# mul => mul
# square_of_sum => pow_1
# sub => sub
# sum_1 => sum_1
# sum_of_square => sum_2
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%arg0_1, [1], True), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg0_1), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%pow_1, %sum_2), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 0.5), kwargs = {})
triton_poi_fused_mul_pow_sub_sum_0 = async_compile.triton('triton_poi_fused_mul_pow_sub_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_pow_sub_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tl.store(out_ptr0 + (x2), tmp17, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sum_1, square_of_sum, mul, sum_of_square, sub, cross_term], Original ATen: [aten.sum, aten.pow, aten.mul, aten.sub]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0.run(arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from sklearn.metrics import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_pow_sub_sum_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp0 * tmp0
tmp9 = tmp1 * tmp1
tmp10 = tmp8 + tmp9
tmp11 = tmp3 * tmp3
tmp12 = tmp10 + tmp11
tmp13 = tmp5 * tmp5
tmp14 = tmp12 + tmp13
tmp15 = tmp7 - tmp14
tmp16 = 0.5
tmp17 = tmp15 * tmp16
tl.store(out_ptr0 + x2, tmp17, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_pow_sub_sum_0[grid(64)](arg0_1, buf0, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class BiInteractionPoolingNew(nn.Module):
"""Bi-Interaction Layer used in Neural FM,compress the
pairwise element-wise product of features into one single vector.
Input shape
- A 3D tensor with shape:``(batch_size,field_size,embedding_size)``.
Output shape
- 3D tensor with shape: ``(batch_size,1,embedding_size)``.
References
- [He X, Chua T S. Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval. ACM, 2017: 355-364.](http://arxiv.org/abs/1708.05027)
"""
def __init__(self):
super(BiInteractionPoolingNew, self).__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Fanxingye/DeepRS
|
BiInteractionPooling
| false | 13,836 |
[
"Apache-2.0"
] | 1,770 |
06b98cf2cb2781656805eafc577fbd088f37d17d
|
https://github.com/Fanxingye/DeepRS/tree/06b98cf2cb2781656805eafc577fbd088f37d17d
|
DWT
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/lg/clgsnl67svqt4ib2oobfi2mssr54u53p7psjxx65a32h2fm6jrhb.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_2, %add_4, %add_6, %add_7], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = (xindex // 4) % 16
x0 = xindex % 2
x1 = (xindex // 2) % 2
x3 = (xindex // 64)
x4 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tmp8 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp8 * tmp6
tmp10 = tmp7 + tmp9
tmp11 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 * tmp6
tmp13 = tmp10 + tmp12
tmp14 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*x2) + (64*x3)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp14 * tmp6
tmp16 = tmp13 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 8, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp23 * tmp6
tmp25 = -tmp24
tmp26 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp27 = tmp26 * tmp6
tmp28 = tmp25 - tmp27
tmp29 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp30 = tmp29 * tmp6
tmp31 = tmp28 + tmp30
tmp32 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-4) + x2)) + (64*x3)), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp32 * tmp6
tmp34 = tmp31 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp22, tmp34, tmp35)
tmp37 = tmp0 >= tmp20
tmp38 = tl.full([1], 12, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp42 = tmp41 * tmp6
tmp43 = -tmp42
tmp44 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp45 = tmp44 * tmp6
tmp46 = tmp43 + tmp45
tmp47 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp48 = tmp47 * tmp6
tmp49 = tmp46 - tmp48
tmp50 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-8) + x2)) + (64*x3)), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp51 = tmp50 * tmp6
tmp52 = tmp49 + tmp51
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp40, tmp52, tmp53)
tmp55 = tmp0 >= tmp38
tmp56 = tl.full([1], 16, tl.int64)
tmp57 = tmp0 < tmp56
tmp58 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp59 = tmp58 * tmp6
tmp60 = tl.load(in_ptr0 + (4 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp61 = tmp60 * tmp6
tmp62 = tmp59 - tmp61
tmp63 = tl.load(in_ptr0 + (1 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tmp63 * tmp6
tmp65 = tmp62 - tmp64
tmp66 = tl.load(in_ptr0 + (5 + (2*x0) + (8*x1) + (16*((-12) + x2)) + (64*x3)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp67 = tmp66 * tmp6
tmp68 = tmp65 + tmp67
tmp69 = tl.full(tmp68.shape, 0.0, tmp68.dtype)
tmp70 = tl.where(tmp55, tmp68, tmp69)
tmp71 = tl.where(tmp40, tmp54, tmp70)
tmp72 = tl.where(tmp22, tmp36, tmp71)
tmp73 = tl.where(tmp4, tmp18, tmp72)
tl.store(out_ptr0 + (x4), tmp73, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.fft
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex // 4 % 16
x0 = xindex % 2
x1 = xindex // 2 % 2
x3 = xindex // 64
x4 = xindex
tmp0 = x2
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2 + 64 * x3), tmp4 &
xmask, eviction_policy='evict_last', other=0.0)
tmp6 = 0.5
tmp7 = tmp5 * tmp6
tmp8 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * x2 + 64 * x3),
tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp9 = tmp8 * tmp6
tmp10 = tmp7 + tmp9
tmp11 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * x2 + 64 * x3),
tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp11 * tmp6
tmp13 = tmp10 + tmp12
tmp14 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * x2 + 64 * x3),
tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp15 = tmp14 * tmp6
tmp16 = tmp13 + tmp15
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 8, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = tmp19 & tmp21
tmp23 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 * x3),
tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp24 = tmp23 * tmp6
tmp25 = -tmp24
tmp26 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 *
x3), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp27 = tmp26 * tmp6
tmp28 = tmp25 - tmp27
tmp29 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 *
x3), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp30 = tmp29 * tmp6
tmp31 = tmp28 + tmp30
tmp32 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-4 + x2) + 64 *
x3), tmp22 & xmask, eviction_policy='evict_last', other=0.0)
tmp33 = tmp32 * tmp6
tmp34 = tmp31 + tmp33
tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype)
tmp36 = tl.where(tmp22, tmp34, tmp35)
tmp37 = tmp0 >= tmp20
tmp38 = tl.full([1], 12, tl.int64)
tmp39 = tmp0 < tmp38
tmp40 = tmp37 & tmp39
tmp41 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 * x3),
tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp42 = tmp41 * tmp6
tmp43 = -tmp42
tmp44 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 *
x3), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp45 = tmp44 * tmp6
tmp46 = tmp43 + tmp45
tmp47 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 *
x3), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp48 = tmp47 * tmp6
tmp49 = tmp46 - tmp48
tmp50 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-8 + x2) + 64 *
x3), tmp40 & xmask, eviction_policy='evict_last', other=0.0)
tmp51 = tmp50 * tmp6
tmp52 = tmp49 + tmp51
tmp53 = tl.full(tmp52.shape, 0.0, tmp52.dtype)
tmp54 = tl.where(tmp40, tmp52, tmp53)
tmp55 = tmp0 >= tmp38
tl.full([1], 16, tl.int64)
tmp58 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 * x3),
tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp59 = tmp58 * tmp6
tmp60 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 *
x3), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp61 = tmp60 * tmp6
tmp62 = tmp59 - tmp61
tmp63 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 *
x3), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tmp63 * tmp6
tmp65 = tmp62 - tmp64
tmp66 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1 + 16 * (-12 + x2) + 64 *
x3), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp67 = tmp66 * tmp6
tmp68 = tmp65 + tmp67
tmp69 = tl.full(tmp68.shape, 0.0, tmp68.dtype)
tmp70 = tl.where(tmp55, tmp68, tmp69)
tmp71 = tl.where(tmp40, tmp54, tmp70)
tmp72 = tl.where(tmp22, tmp36, tmp71)
tmp73 = tl.where(tmp4, tmp18, tmp72)
tl.store(out_ptr0 + x4, tmp73, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16, 2, 2), (64, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class DWTNew(nn.Module):
"""
2D Discrete Wavelet Transform as implemented in [1]_.
References
----------
.. [1] Liu, Pengju, et al. “Multi-Level Wavelet-CNN for Image Restoration.” ArXiv:1805.07071 [Cs], May 2018.
arXiv.org, http://arxiv.org/abs/1805.07071.
"""
def __init__(self):
super().__init__()
self.requires_grad = False
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
directgroup/direct
|
DWT
| false | 15,187 |
[
"Apache-2.0"
] | 55 |
78cdd530b3c93e31c11d8963880e6329f0989243
|
https://github.com/directgroup/direct/tree/78cdd530b3c93e31c11d8963880e6329f0989243
|
RelativeThreshold_RegLoss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/uj/cujzhhrnh77c6uptmjf7irvjxwjfxnc223eitibmbtplp6ndvm6q.py
# Topologically Sorted Source Nodes: [sub, abs_1, add, baseV_1, relativeDist, mask], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.ge]
# Source node to ATen node mapping:
# abs_1 => abs_1
# add => add
# baseV_1 => abs_2
# mask => ge
# relativeDist => div
# sub => sub
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {})
# %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, 1e-07), kwargs = {})
# %abs_2 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%view, %abs_2), kwargs = {})
# %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%div, 4), kwargs = {})
triton_poi_fused_abs_add_div_ge_sub_0 = async_compile.triton('triton_poi_fused_abs_add_div_ge_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_add_div_ge_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_abs_add_div_ge_sub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr1 + (x0), xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1e-07
tmp5 = tmp1 + tmp4
tmp6 = tl_math.abs(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = 4.0
tmp9 = tmp7 >= tmp8
tl.store(out_ptr0 + (x0), tmp3, xmask)
tl.store(out_ptr1 + (x0), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((256, ), (1, ), torch.bool)
# Topologically Sorted Source Nodes: [sub, abs_1, add, baseV_1, relativeDist, mask], Original ATen: [aten.sub, aten.abs, aten.add, aten.div, aten.ge]
stream0 = get_raw_stream(0)
triton_poi_fused_abs_add_div_ge_sub_0.run(arg1_1, arg0_1, buf0, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
del arg1_1
return (reinterpret_tensor(buf0, (256, ), (1, ), 0), buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
import torch.nn.init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_abs_add_div_ge_sub_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1e-07
tmp5 = tmp1 + tmp4
tmp6 = tl_math.abs(tmp5)
tmp7 = tmp3 / tmp6
tmp8 = 4.0
tmp9 = tmp7 >= tmp8
tl.store(out_ptr0 + x0, tmp3, xmask)
tl.store(out_ptr1 + x0, tmp9, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((256,), (1,), torch.bool)
get_raw_stream(0)
triton_poi_fused_abs_add_div_ge_sub_0[grid(256)](arg1_1, arg0_1,
buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return reinterpret_tensor(buf0, (256,), (1,), 0), buf1
class RelativeThreshold_RegLossNew(nn.Module):
def __init__(self, threshold, size_average=True):
super(RelativeThreshold_RegLossNew, self).__init__()
self.size_average = size_average
self.eps = 1e-07
self.threshold = threshold
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
andry900/NN-Project
|
RelativeThreshold_RegLoss
| false | 1,453 |
[
"MIT"
] | 0 |
e04a83029f5990d9b65216ab0648a8826a8ebca7
|
https://github.com/andry900/NN-Project/tree/e04a83029f5990d9b65216ab0648a8826a8ebca7
|
Beta2
|
import torch
import numpy as np
import torch.nn as nn
class BoundedBeta(torch.distributions.Beta):
def log_prob(self, x):
return super().log_prob((x + 1) / 2)
class Beta2(nn.Module):
def __init__(self, action_dim, init_std=0.25, learn_std=False):
super(Beta2, self).__init__()
assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5'
self.action_dim = action_dim
self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log(
init_std), requires_grad=learn_std)
self.learn_std = learn_std
def forward(self, x):
mean = torch.sigmoid(x)
var = self.logstd.exp().pow(2)
"""
alpha = ((1 - mu) / sigma^2 - 1 / mu) * mu^2
beta = alpha * (1 / mu - 1)
Implemented slightly differently for numerical stability.
"""
alpha = (1 - mean) / var * mean.pow(2) - mean
beta = (1 - mean) / var * mean - 1 - alpha
return alpha, beta
def sample(self, x, deterministic):
if deterministic is False:
action = self.evaluate(x).sample()
else:
return self.evaluate(x).mean
return 2 * action - 1
def evaluate(self, x):
alpha, beta = self(x)
return BoundedBeta(alpha, beta)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'action_dim': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0(in_ptr0, in_ptr1,
out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp4 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.sigmoid(tmp0)
tmp2 = 1.0
tmp3 = tmp2 - tmp1
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp5 * tmp5
tmp7 = tmp3 / tmp6
tmp8 = tmp1 * tmp1
tmp9 = tmp7 * tmp8
tmp10 = tmp9 - tmp1
tmp11 = tmp7 * tmp1
tmp12 = tmp11 - tmp2
tmp13 = tmp12 - tmp10
tl.store(out_ptr0 + x2, tmp10, xmask)
tl.store(out_ptr1 + x2, tmp13, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (1, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_exp_mul_pow_rsub_sigmoid_sub_0[grid(256)](arg0_1,
arg1_1, buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0, buf1
class BoundedBeta(torch.distributions.Beta):
def log_prob(self, x):
return super().log_prob((x + 1) / 2)
class Beta2New(nn.Module):
def __init__(self, action_dim, init_std=0.25, learn_std=False):
super(Beta2New, self).__init__()
assert init_std < 0.5, 'Beta distribution has a max std dev of 0.5'
self.action_dim = action_dim
self.logstd = nn.Parameter(torch.ones(1, action_dim) * np.log(
init_std), requires_grad=learn_std)
self.learn_std = learn_std
def sample(self, x, deterministic):
if deterministic is False:
action = self.evaluate(x).sample()
else:
return self.evaluate(x).mean
return 2 * action - 1
def evaluate(self, x):
alpha, beta = self(x)
return BoundedBeta(alpha, beta)
def forward(self, input_0):
arg1_1 = self.logstd
arg0_1 = input_0
output = call([arg0_1, arg1_1])
return output[0], output[1]
|
RohanPankaj/apex
|
Beta2
| false | 998 |
[
"MIT"
] | 0 |
74e96386bf9446d1179106d6d65ea0368c1b5b27
|
https://github.com/RohanPankaj/apex/tree/74e96386bf9446d1179106d6d65ea0368c1b5b27
|
ConvLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/um/cum65j23qchrjf5dndblqgbw6zomhgwfj2obfidtgy7b5j3zwklm.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%primals_1, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/wk/cwk2wao7opapqbjj7klnqrd6tgist3ts3nc5veryzhzstwpx7d4l.py
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/7c/c7cntq6q7d55mwfa7fa3fpnxvxrol7akfutqaf26t2swga7xx3mx.py
# Topologically Sorted Source Nodes: [softmax, mul, edges], Original ATen: [aten._softmax, aten.mul, aten.sum]
# Source node to ATen node mapping:
# edges => sum_2
# mul => mul
# softmax => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
triton_poi_fused__softmax_mul_sum_2 = async_compile.triton('triton_poi_fused__softmax_mul_sum_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_mul_sum_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = (xindex // 16)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + (64*x1)), xmask)
tmp4 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x0 + (64*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + (64*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + (x2), tmp14, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
# Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf0, buf1, 16, grid=grid(16), stream=stream0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [softmax, mul, edges], Original ATen: [aten._softmax, aten.mul, aten.sum]
triton_poi_fused__softmax_mul_sum_2.run(primals_2, buf1, buf2, 64, grid=grid(64), stream=stream0)
del buf1
return (buf2, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from typing import *
import torch.utils.data
import torch.nn as nn
import torch.onnx.operators
import torch.optim
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused__softmax_mul_sum_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask)
tmp4 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 * tmp1
tmp5 = tmp3 * tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 * tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 * tmp12
tmp14 = tmp10 + tmp13
tl.store(out_ptr0 + x2, tmp14, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](primals_1, buf0, 16, XBLOCK=
16, num_warps=1, num_stages=1)
buf1 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_mul_sum_2[grid(64)](primals_2, buf1, buf2,
64, XBLOCK=64, num_warps=1, num_stages=1)
del buf1
return buf2, primals_1, primals_2
class ConvLayerNew(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvLayerNew, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels,
1, 1))
nn.init.constant_(self.weight, 0.1)
def extra_repr(self) ->str:
return 'ConV {}'.format(self.weight.size())
def forward(self, input_0):
primals_1 = self.weight
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
code-backdoor/code-backdoor
|
ConvLayer
| false | 15,055 |
[
"MIT"
] | 71 |
1eeb3d79aa8a54c8f08e8d0156b569de5edd974e
|
https://github.com/code-backdoor/code-backdoor/tree/1eeb3d79aa8a54c8f08e8d0156b569de5edd974e
|
SeqFC1
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class SeqFC1(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(SeqFC1, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size, out_features=16)
self.fc2 = nn.Linear(in_features=16, out_features=2)
def forward(self, coord):
x = coord.float().view(coord.size(0), -1)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 16
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16,), (1,))
assert_size_stride(primals_4, (2, 16), (16, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 16), (16, 1), torch.float32)
extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 16),
(1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(64)](buf1, primals_3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4,
(16, 2), (1, 16), 0), alpha=1, beta=1, out=buf2)
del primals_5
return buf2, primals_1, buf1, primals_4
class SeqFC1New(nn.Module):
""" Neural network definition
"""
def __init__(self, size):
super(SeqFC1New, self).__init__()
self.size = size
self.fc1 = nn.Linear(in_features=self.size, out_features=16)
self.fc2 = nn.Linear(in_features=16, out_features=2)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
Thibaud-Ardoin/Dial-a-Ride
|
SeqFC1
| false | 5,873 |
[
"MIT"
] | 1 |
7d9b3cd904d3194dccad31fec2533e2cf58cad0c
|
https://github.com/Thibaud-Ardoin/Dial-a-Ride/tree/7d9b3cd904d3194dccad31fec2533e2cf58cad0c
|
DQN_mlp
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/uo/cuonlkee6lwp3qp7rladyo6dbupkbuqsevpwixgdnuw3abtogndk.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_1 => relu
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 1000
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/6s/c6svj4zsne55u5j52wbilkqvusndsnvhqojmjmopcimitemaecei.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_2 => relu_1
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = (xindex // 2000)
tmp0 = tl.load(in_out_ptr0 + (x0 + (2016*x1)), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x0 + (2016*x1)), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1000, 16), (16, 1))
assert_size_stride(primals_3, (1000, ), (1, ))
assert_size_stride(primals_4, (2000, 1000), (1000, 1))
assert_size_stride(primals_5, (2000, ), (1, ))
assert_size_stride(primals_6, (2000, 2000), (2000, 1))
assert_size_stride(primals_7, (2000, ), (1, ))
assert_size_stride(primals_8, (4, 2000), (2000, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), reinterpret_tensor(primals_2, (16, 1000), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 4000, grid=grid(4000), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (1000, 2000), (1, 1000), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf3, primals_5, 8000, grid=grid(8000), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2000, 2000), (1, 2000), 0), out=buf4)
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.relu]
triton_poi_fused_relu_1.run(buf5, primals_7, 8000, grid=grid(8000), stream=stream0)
del primals_7
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8, (2000, 4), (1, 2000), 0), alpha=1, beta=1, out=buf6)
del primals_9
return (buf6, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0), buf1, buf3, buf5, primals_8, primals_6, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1000, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2000, 1000), (1000, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((2000, 2000), (2000, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((2000, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 2000), (2000, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 4000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 1000
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2000
x1 = xindex // 2000
tmp0 = tl.load(in_out_ptr0 + (x0 + 2016 * x1), xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x0 + 2016 * x1), tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (1000, 16), (16, 1))
assert_size_stride(primals_3, (1000,), (1,))
assert_size_stride(primals_4, (2000, 1000), (1000, 1))
assert_size_stride(primals_5, (2000,), (1,))
assert_size_stride(primals_6, (2000, 2000), (2000, 1))
assert_size_stride(primals_7, (2000,), (1,))
assert_size_stride(primals_8, (4, 2000), (2000, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1000), (1000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), reinterpret_tensor(primals_2, (16, 1000), (1, 16), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(4000)](buf1, primals_3, 4000, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (1000, 2000),
(1, 1000), 0), out=buf2)
buf3 = buf2
del buf2
triton_poi_fused_relu_1[grid(8000)](buf3, primals_5, 8000, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 2000), (2016, 1), torch.float32)
extern_kernels.mm(buf3, reinterpret_tensor(primals_6, (2000, 2000),
(1, 2000), 0), out=buf4)
buf5 = buf4
del buf4
triton_poi_fused_relu_1[grid(8000)](buf5, primals_7, 8000, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_7
buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_9, buf5, reinterpret_tensor(primals_8,
(2000, 4), (1, 2000), 0), alpha=1, beta=1, out=buf6)
del primals_9
return buf6, reinterpret_tensor(primals_1, (4, 16), (16, 1), 0
), buf1, buf3, buf5, primals_8, primals_6, primals_4
class DQN_mlpNew(nn.Module):
"""Layers for a Deep Q Network, based on a simple MLP."""
def __init__(self, m, n, num_actions, num_hidden1=1000, num_hidden2=2000):
super(DQN_mlpNew, self).__init__()
self.m = m
self.n = n
self.num_hidden1 = num_hidden1
self.num_hidden2 = num_hidden2
self.fc1 = nn.Linear(m * n, num_hidden1)
self.fc2 = nn.Linear(num_hidden1, num_hidden2)
self.fc3 = nn.Linear(num_hidden2, num_hidden2)
self.fc4 = nn.Linear(num_hidden2, num_actions)
def forward(self, input_0):
primals_2 = self.fc1.weight
primals_3 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_8 = self.fc4.weight
primals_9 = self.fc4.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
CoAxLab/azad
|
DQN_mlp
| false | 17,194 |
[
"MIT"
] | 6 |
d1498069dd8856e93ae077b34dd7c9f1c7ce80e6
|
https://github.com/CoAxLab/azad/tree/d1498069dd8856e93ae077b34dd7c9f1c7ce80e6
|
MultiheadAttention
|
import math
import torch
import torch.nn as nn
import torch as t
class MultiheadAttention(nn.Module):
"""
Multihead attention mechanism (dot attention)
"""
def __init__(self, num_hidden_k):
"""
:param num_hidden_k: dimension of hidden
"""
super(MultiheadAttention, self).__init__()
self.num_hidden_k = num_hidden_k
self.attn_dropout = nn.Dropout(p=0.1)
def forward(self, key, value, query, mask=None, query_mask=None):
attn = t.bmm(query, key.transpose(1, 2))
attn = attn / math.sqrt(self.num_hidden_k)
if mask is not None:
attn = attn.masked_fill(mask, -2 ** 32 + 1)
attn = t.softmax(attn, dim=-1)
else:
attn = t.softmax(attn, dim=-1)
if query_mask is not None:
attn = attn * query_mask
result = t.bmm(attn, value)
return result, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {'num_hidden_k': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
return buf3, buf2
class MultiheadAttentionNew(nn.Module):
"""
Multihead attention mechanism (dot attention)
"""
def __init__(self, num_hidden_k):
"""
:param num_hidden_k: dimension of hidden
"""
super(MultiheadAttentionNew, self).__init__()
self.num_hidden_k = num_hidden_k
self.attn_dropout = nn.Dropout(p=0.1)
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0], output[1]
|
Munna-Manoj/Team7_TTS
|
MultiheadAttention
| false | 11,733 |
[
"MIT"
] | 0 |
5e2d473a2afe429023876bcc51c2ac966a4938b8
|
https://github.com/Munna-Manoj/Team7_TTS/tree/5e2d473a2afe429023876bcc51c2ac966a4938b8
|
SVM
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/4w/c4w3qjo5ignni66fjxe2qbiwiluy2kt3ru45stogsoyxgzsx7fbu.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
# Source node to ATen node mapping:
# y => sigmoid
# Graph fragment:
# %sigmoid : [num_users=3] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %sigmoid), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %sub), kwargs = {})
triton_poi_fused_sigmoid_sigmoid_backward_0 = async_compile.triton('triton_poi_fused_sigmoid_sigmoid_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_sigmoid_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tmp7 = tmp4 * tmp6
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
tl.store(out_ptr0 + (x0), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.sigmoid, aten.sigmoid_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_sigmoid_sigmoid_backward_0.run(buf1, primals_2, buf2, 64, grid=grid(64), stream=stream0)
del primals_2
return (reinterpret_tensor(buf1, (64, ), (1, ), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((1, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_sigmoid_sigmoid_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tmp7 = tmp4 * tmp6
tl.store(in_out_ptr0 + x0, tmp4, xmask)
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (1, 4), (4, 1))
assert_size_stride(primals_2, (1,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 1), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sigmoid_sigmoid_backward_0[grid(64)](buf1,
primals_2, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_2
return reinterpret_tensor(buf1, (64,), (1,), 0), reinterpret_tensor(
primals_3, (64, 4), (4, 1), 0), buf2
class SVMNew(nn.Module):
def __init__(self, hidden_size):
super(SVMNew, self).__init__()
self.linear1 = nn.Linear(hidden_size, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.linear1.weight
primals_2 = self.linear1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
XIAOYEJIAYOU/GSAN
|
SVM
| false | 18,076 |
[
"MIT"
] | 6 |
8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196
|
https://github.com/XIAOYEJIAYOU/GSAN/tree/8ca4fdf4c3d615af9cc10e1f9f22ceb7e27fe196
|
GroupedLinearLayer
|
import torch
from torch import nn
import torch.utils.checkpoint
class GroupedLinearLayer(nn.Module):
def __init__(self, input_size, output_size, num_groups):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.num_groups = num_groups
self.group_in_dim = self.input_size // self.num_groups
self.group_out_dim = self.output_size // self.num_groups
self.weight = nn.Parameter(torch.empty(self.num_groups, self.
group_in_dim, self.group_out_dim))
self.bias = nn.Parameter(torch.empty(output_size))
def forward(self, hidden_states):
batch_size = list(hidden_states.size())[0]
x = torch.reshape(hidden_states, [-1, self.num_groups, self.
group_in_dim])
x = x.permute(1, 0, 2)
x = torch.matmul(x, self.weight)
x = x.permute(1, 0, 2)
x = torch.reshape(x, [batch_size, -1, self.output_size])
x = x + self.bias
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_size': 4, 'output_size': 4, 'num_groups': 1}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (1, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 64, 4), (256, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(primals_1, (1, 64, 4), (4, 4,
1), 0), primals_2, out=buf0)
del primals_2
buf1 = reinterpret_tensor(buf0, (4, 16, 4), (64, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_3
return buf1, reinterpret_tensor(primals_1, (1, 4, 64), (4, 1, 4), 0)
class GroupedLinearLayerNew(nn.Module):
def __init__(self, input_size, output_size, num_groups):
super().__init__()
self.input_size = input_size
self.output_size = output_size
self.num_groups = num_groups
self.group_in_dim = self.input_size // self.num_groups
self.group_out_dim = self.output_size // self.num_groups
self.weight = nn.Parameter(torch.empty(self.num_groups, self.
group_in_dim, self.group_out_dim))
self.bias = nn.Parameter(torch.empty(output_size))
def forward(self, input_0):
primals_2 = self.weight
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Clemens123/transformers
|
GroupedLinearLayer
| false | 11,498 |
[
"Apache-2.0"
] | 0 |
22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
|
https://github.com/Clemens123/transformers/tree/22abe7bbc587c16ec30f9d1aa549dcbeba6e9e26
|
Policy
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/md/cmd3ewacyhu5w5hausgbjbmtnt5rr66cgczh4ibdypq7dz6p4v7g.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 8192
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, None)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/vh/cvhowampoosezwy5zm5vfkdmhzrvsn2u2gxpn4cchngk4b74ympu.py
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# action_prob => amax, div, exp, sub, sum_1
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 2)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (2*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (2*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + (x2), tmp11, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2, ), (1, ))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0); del buf0 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf6, 8192, grid=grid(8192), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [action_prob], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0)
del buf2
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [state_values], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128), (128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128), 0), alpha=1, beta=1, out=buf5)
del primals_7
return (buf3, reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 128), (128, 1), 0), buf3, primals_6, primals_4, buf6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((128, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 128), (128, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 2
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 2 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 2 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 - tmp3
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp2 - tmp3
tmp9 = tl_math.exp(tmp8)
tmp10 = tmp7 + tmp9
tmp11 = tmp5 / tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (128, 4), (4, 1))
assert_size_stride(primals_2, (128,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 128), (128, 1))
assert_size_stride(primals_5, (2,), (1,))
assert_size_stride(primals_6, (1, 128), (128, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 128), (128, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 128), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 128), (2048, 512, 128, 1), 0)
del buf0
buf6 = empty_strided_cuda((4, 4, 4, 128), (2048, 512, 128, 1),
torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(8192)](buf1,
primals_2, buf6, 8192, XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_4, (128, 2), (1, 128),
0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__softmax_1[grid(128)](buf2, buf3, 128, XBLOCK=128,
num_warps=4, num_stages=1)
del buf2
buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_7, reinterpret_tensor(buf1, (64, 128),
(128, 1), 0), reinterpret_tensor(primals_6, (128, 1), (1, 128),
0), alpha=1, beta=1, out=buf5)
del primals_7
return buf3, reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0
), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 128), (128, 1), 0
), buf3, primals_6, primals_4, buf6
class PolicyNew(nn.Module):
"""
implements both actor and critic in one model
"""
def __init__(self):
super(PolicyNew, self).__init__()
self.affine1 = nn.Linear(4, 128)
self.action_head = nn.Linear(128, 2)
self.value_head = nn.Linear(128, 1)
self.saved_actions = []
self.rewards = []
def forward(self, input_0):
primals_1 = self.affine1.weight
primals_2 = self.affine1.bias
primals_4 = self.action_head.weight
primals_5 = self.action_head.bias
primals_6 = self.value_head.weight
primals_7 = self.value_head.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0], output[1]
|
caimingxue/Reinforcement-Learning
|
Policy
| false | 6,376 |
[
"MIT"
] | 1 |
5ccb8a6a25b41526f4d6195e69964245abc46d38
|
https://github.com/caimingxue/Reinforcement-Learning/tree/5ccb8a6a25b41526f4d6195e69964245abc46d38
|
MultiHeadAttention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ez/cezmv74yrhrunjwqrletcmzzbnanma4ylsle3v7w345t7kxp622s.py
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
# Source node to ATen node mapping:
# contiguous => clone
# Graph fragment:
# %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_2,), kwargs = {memory_format: torch.contiguous_format})
triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/sp/cspqqt75qs7ffrb3lysy45iuc7wyhwgdjk7rscety2hozovgu3iw.py
# Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_2 => exp
# Graph fragment:
# %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%bmm, 1), kwargs = {})
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {})
# %mul_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_tensor, 1.0), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%mul_tensor_1,), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/jo/cjooyf2taupk6b3rhpvd4u5im6tyfn25cyirn5yix7vtprzujjxg.py
# Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_2 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_2 = async_compile.triton('triton_poi_fused__softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/ii/ciibxqsyzwu4mgbmyht7liy2wshsevl3nzbgoqgw33bbcrrvlnxj.py
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# output_3 => add, rsqrt, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_15, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
triton_poi_fused_native_layer_norm_3 = async_compile.triton('triton_poi_fused_native_layer_norm_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + (x0), tmp8, xmask)
tl.store(out_ptr1 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/yd/cydu4qjvgfymhhpyhhqxb3snu5mgfygbkhn2nemqx5nozidar6fc.py
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm]
# Source node to ATen node mapping:
# output_3 => add, add_1, mul_1, mul_2, rsqrt, sub_1, var_mean
# Graph fragment:
# %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_15, [3]), kwargs = {correction: 0, keepdim: True})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {})
# %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_15, %getitem_1), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %rsqrt), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul_1, %primals_8), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %primals_9), kwargs = {})
triton_poi_fused_native_layer_norm_4 = async_compile.triton('triton_poi_fused_native_layer_norm_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_native_layer_norm_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone]
stream0 = get_raw_stream(0)
triton_poi_fused_clone_0.run(buf0, buf2, 64, 4, grid=grid(64, 4), stream=stream0)
buf3 = reinterpret_tensor(buf0, (16, 4, 4, 1), (16, 4, 1, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [contiguous_1], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf1, buf3, 64, 4, grid=grid(64, 4), stream=stream0)
buf4 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm]
extern_kernels.bmm(reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 0, 1), 0), out=buf4)
buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf4, buf5, 1024, grid=grid(1024), stream=stream0)
buf6 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [attention_2], Original ATen: [aten._softmax]
triton_poi_fused__softmax_2.run(buf5, buf6, 1024, grid=grid(1024), stream=stream0)
del buf5
buf7 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.mm]
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7)
del primals_5
buf8 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_2], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf7, buf8, 64, 4, grid=grid(64, 4), stream=stream0)
buf9 = reinterpret_tensor(buf7, (64, 4, 1), (4, 1, 1), 0); del buf7 # reuse
# Topologically Sorted Source Nodes: [bmm_1], Original ATen: [aten.bmm]
extern_kernels.bmm(buf6, reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [contiguous_3], Original ATen: [aten.clone]
triton_poi_fused_clone_0.run(buf9, buf10, 64, 4, grid=grid(64, 4), stream=stream0)
buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [output_2], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf11)
del primals_7
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_3.run(buf11, buf12, buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [output_3], Original ATen: [aten.native_layer_norm]
triton_poi_fused_native_layer_norm_4.run(buf11, buf12, buf13, primals_8, primals_9, buf14, 256, grid=grid(256), stream=stream0)
del buf12
del buf13
del primals_9
return (buf14, reinterpret_tensor(buf6, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), primals_8, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), buf6, reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf11, primals_6, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf2, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 1), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 64
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = tmp14 * tmp1
tmp16 = tl_math.exp(tmp15)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-05
tmp22 = tmp20 + tmp21
tmp23 = libdevice.rsqrt(tmp22)
tl.store(out_ptr0 + x0, tmp8, xmask)
tl.store(out_ptr1 + x0, tmp23, xmask)
@triton.jit
def triton_poi_fused_native_layer_norm_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 - tmp1
tmp4 = tmp2 * tmp3
tmp6 = tmp4 * tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (4, 4), (4, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64, 4)](buf0, buf2, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf3 = reinterpret_tensor(buf0, (16, 4, 4, 1), (16, 4, 1, 1), 0)
del buf0
triton_poi_fused_clone_0[grid(64, 4)](buf1, buf3, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf3, (64, 1, 4), (4, 0, 1), 0), out=buf4)
buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(1024)](buf4, buf5, 1024, XBLOCK=
128, num_warps=4, num_stages=1)
buf6 = buf4
del buf4
triton_poi_fused__softmax_2[grid(1024)](buf5, buf6, 1024, XBLOCK=
256, num_warps=4, num_stages=1)
del buf5
buf7 = buf1
del buf1
extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf7)
del primals_5
buf8 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(64, 4)](buf7, buf8, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf7, (64, 4, 1), (4, 1, 1), 0)
del buf7
extern_kernels.bmm(buf6, reinterpret_tensor(buf8, (64, 4, 1), (4, 1,
0), 0), out=buf9)
buf10 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_0[grid(64, 4)](buf9, buf10, 64, 4, XBLOCK=4,
YBLOCK=32, num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0)
del buf9
extern_kernels.addmm(primals_7, reinterpret_tensor(buf10, (64, 4),
(4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0),
alpha=1, beta=1, out=buf11)
del primals_7
buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
triton_poi_fused_native_layer_norm_3[grid(64)](buf11, buf12, buf13,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_native_layer_norm_4[grid(256)](buf11, buf12, buf13,
primals_8, primals_9, buf14, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf12
del buf13
del primals_9
return buf14, reinterpret_tensor(buf6, (4, 4, 4, 4, 4), (256, 64, 16, 4,
1), 0), primals_8, reinterpret_tensor(primals_2, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_4, (64, 4), (4, 1), 0
), buf6, reinterpret_tensor(buf10, (64, 4), (4, 1), 0
), buf11, primals_6, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf2, (64, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 1), 0)
class MultiHeadAttentionNew(nn.Module):
def __init__(self, in_dim, out_dim, out_heads, relation_dim=0, residual
=False, projection=True, layer_norm=True):
super().__init__()
self.in_dim = in_dim
self.out_dim = out_dim
self.out_heads = out_heads
self.relation_dim = relation_dim
assert self.out_dim % self.out_heads == 0
self.query_layer = nn.Linear(self.in_dim + self.relation_dim, self.
out_dim, bias=False)
self.key_layer = nn.Linear(self.in_dim + self.relation_dim, self.
out_dim, bias=False)
self.value_layer = nn.Linear(self.in_dim, self.out_dim, bias=False)
self.residual = residual
self.projection = projection
if self.projection:
self.proj_layer = nn.Linear(self.out_dim, self.out_dim)
self.layer_norm = layer_norm
if self.layer_norm:
self.ln = nn.LayerNorm(self.out_dim)
self.reset_parameters()
def reset_parameters(self):
nn.init.uniform_(self.query_layer.weight, -0.1, 0.1)
nn.init.uniform_(self.key_layer.weight, -0.1, 0.1)
nn.init.uniform_(self.value_layer.weight, -0.1, 0.1)
if self.projection:
nn.init.uniform_(self.proj_layer.weight, -0.1, 0.1)
def forward(self, input_0, input_1):
primals_1 = self.query_layer.weight
primals_3 = self.key_layer.weight
primals_5 = self.value_layer.weight
primals_6 = self.proj_layer.weight
primals_7 = self.proj_layer.bias
primals_8 = self.ln.weight
primals_9 = self.ln.bias
primals_2 = input_0
primals_4 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0], output[1]
|
Hcnaeg/DI-engine
|
MultiHeadAttention
| false | 2,402 |
[
"Apache-2.0"
] | 0 |
aba0c629f87649854091e9e59d948f83962e3e1e
|
https://github.com/Hcnaeg/DI-engine/tree/aba0c629f87649854091e9e59d948f83962e3e1e
|
MAB
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_1/inductor_cache/ws/cwsctbxsx2vwfkwjphvvrdznu7qzncvanwzsrffv3d3em6s5rv74.py
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# Q_ => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem, %getitem_1, %getitem_2, %getitem_3],), kwargs = {})
# %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%cat, 0.7071067811865476), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16)
x0 = xindex % 16
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (64*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (64*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (64*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tl.store(out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/6l/c6li5zanhkk7jmwd2nwwyi2zotnky5syjbtlxuwiom5pahbxwmio.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {})
# %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {})
# %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {})
triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/47/c47ymkjzyrspdcdavibimgxnnqdryec2ghrrzfbdt2db7anmrxal.py
# Topologically Sorted Source Nodes: [], Original ATen: []
# Source node to ATen node mapping:
# Graph fragment:
# %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {})
# %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {})
# %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {})
# %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {})
# %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {})
# %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {})
# %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([16, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default_1, %div_tensor), kwargs = {})
triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr1 + (x2), xmask)
tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp1 = float("-inf")
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = (tmp4 != 0)
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = (tmp9 != 0)
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = (tmp15 != 0)
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = (tmp21 != 0)
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + (x2), tmp35, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/jv/cjvdbmomfmnbomnmidojaaechko75o6yluwthfsoalruufb6khr2.py
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# V_ => cat_2
# Graph fragment:
# %cat_2 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_8, %getitem_9, %getitem_10, %getitem_11],), kwargs = {})
triton_poi_fused_cat_3 = async_compile.triton('triton_poi_fused_cat_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16)
x0 = xindex % 16
x2 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x0) + (64*x1)), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + (4*x0) + (64*((-4) + x1))), tmp9 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (64*((-8) + x1))), tmp14 & xmask, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 16, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tl.load(in_ptr0 + (3 + (4*x0) + (64*((-12) + x1))), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + (x2), tmp22, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/zd/czdfa7lcw5zozmvsmlplaom2xa3noegvkz2nwfvox3dxxgu4jd2c.py
# Topologically Sorted Source Nodes: [attn, O], Original ATen: [aten.cat, aten.add]
# Source node to ATen node mapping:
# O => add
# attn => cat_3
# Graph fragment:
# %cat_3 : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%getitem_12, %getitem_13, %getitem_14, %getitem_15], -1), kwargs = {})
# %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %cat_3), kwargs = {})
triton_poi_fused_add_cat_4 = async_compile.triton('triton_poi_fused_add_cat_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_cat_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_cat_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = (xindex // 4)
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = x0
tmp2 = tl.full([1], 0, tl.int64)
tmp3 = tmp1 >= tmp2
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr0 + (x1), tmp5 & xmask, eviction_policy='evict_last', other=0.0)
tmp7 = tmp1 >= tmp4
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tmp1 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tl.load(in_ptr0 + (64 + x1), tmp10 & xmask, eviction_policy='evict_last', other=0.0)
tmp12 = tmp1 >= tmp8
tmp13 = tl.full([1], 3, tl.int64)
tmp14 = tmp1 < tmp13
tmp15 = tmp12 & tmp14
tmp16 = tl.load(in_ptr0 + (128 + x1), tmp15 & xmask, eviction_policy='evict_last', other=0.0)
tmp17 = tmp1 >= tmp13
tmp18 = tl.full([1], 4, tl.int64)
tmp19 = tmp1 < tmp18
tmp20 = tl.load(in_ptr0 + (192 + x1), tmp17 & xmask, eviction_policy='evict_last', other=0.0)
tmp21 = tl.where(tmp15, tmp16, tmp20)
tmp22 = tl.where(tmp10, tmp11, tmp21)
tmp23 = tl.where(tmp5, tmp6, tmp22)
tmp24 = tmp0 + tmp23
tl.store(in_out_ptr0 + (x2), tmp24, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_1/inductor_cache/os/cosy3cyjr2lvyozax5cmwieljjgd635shkjenauahbvvs5gpkzid.py
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
# Source node to ATen node mapping:
# O_1 => add_1
# relu => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_13,), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %relu), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_add_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_add_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + (x2), tmp6, xmask)
tl.store(out_ptr1 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [K], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [V], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [Q_], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(buf0, buf3, 256, grid=grid(256), stream=stream0)
buf4 = empty_strided_cuda((16, 4, 1, 4), (16, 4, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_cat_0.run(buf1, buf4, 256, grid=grid(256), stream=stream0)
buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (64, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_1.run(buf5, buf6, 1024, grid=grid(1024), stream=stream0)
buf7 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
triton_poi_fused_2.run(buf5, buf6, buf7, 1024, grid=grid(1024), stream=stream0)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (16, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse
# Topologically Sorted Source Nodes: [V_], Original ATen: [aten.cat]
triton_poi_fused_cat_3.run(buf2, buf8, 256, grid=grid(256), stream=stream0)
buf9 = reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [attn, O], Original ATen: [aten.cat, aten.add]
triton_poi_fused_add_cat_4.run(buf10, buf9, 256, grid=grid(256), stream=stream0)
buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0); del buf9 # reuse
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf10, (64, 4), (4, 1), 0), reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [relu, O_1], Original ATen: [aten.relu, aten.add, aten.threshold_backward]
triton_poi_fused_add_relu_threshold_backward_5.run(buf10, buf11, primals_10, buf12, buf13, 256, grid=grid(256), stream=stream0)
del buf11
del primals_10
return (buf12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0), buf7, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (64, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf13, primals_9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16
x0 = xindex % 16
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 64 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tmp23 = 0.7071067811865476
tmp24 = tmp22 * tmp23
tl.store(out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 1024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_cat_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16
x0 = xindex % 16
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x0 + 64 * x1), tmp4 & xmask,
eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * (-4 + x1)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * (-8 + x1)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp19 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * (-12 + x1)), tmp16 & xmask,
eviction_policy='evict_last', other=0.0)
tmp20 = tl.where(tmp14, tmp15, tmp19)
tmp21 = tl.where(tmp9, tmp10, tmp20)
tmp22 = tl.where(tmp4, tmp5, tmp21)
tl.store(out_ptr0 + x2, tmp22, xmask)
@triton.jit
def triton_poi_fused_add_cat_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
x1 = xindex // 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = x0
tl.full([1], 0, tl.int64)
tmp4 = tl.full([1], 1, tl.int64)
tmp5 = tmp1 < tmp4
tmp6 = tl.load(in_ptr0 + x1, tmp5 & xmask, eviction_policy='evict_last',
other=0.0)
tmp7 = tmp1 >= tmp4
tmp8 = tl.full([1], 2, tl.int64)
tmp9 = tmp1 < tmp8
tmp10 = tmp7 & tmp9
tmp11 = tl.load(in_ptr0 + (64 + x1), tmp10 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp1 >= tmp8
tmp13 = tl.full([1], 3, tl.int64)
tmp14 = tmp1 < tmp13
tmp15 = tmp12 & tmp14
tmp16 = tl.load(in_ptr0 + (128 + x1), tmp15 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp17 = tmp1 >= tmp13
tl.full([1], 4, tl.int64)
tmp20 = tl.load(in_ptr0 + (192 + x1), tmp17 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp21 = tl.where(tmp15, tmp16, tmp20)
tmp22 = tl.where(tmp10, tmp11, tmp21)
tmp23 = tl.where(tmp5, tmp6, tmp22)
tmp24 = tmp0 + tmp23
tl.store(in_out_ptr0 + x2, tmp24, xmask)
@triton.jit
def triton_poi_fused_add_relu_threshold_backward_5(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tl.full([1], 0, tl.int32)
tmp5 = triton_helpers.maximum(tmp4, tmp3)
tmp6 = tmp0 + tmp5
tmp7 = 0.0
tmp8 = tmp5 <= tmp7
tl.store(out_ptr0 + x2, tmp6, xmask)
tl.store(out_ptr1 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 4), (4, 1))
assert_size_stride(primals_10, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64,
4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf1)
del primals_4
del primals_5
buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, reinterpret_tensor(primals_6, (64,
4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf2)
del primals_7
del primals_8
buf3 = empty_strided_cuda((16, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(256)](buf0, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = empty_strided_cuda((16, 4, 1, 4), (16, 4, 4, 1), torch.float32)
triton_poi_fused_cat_0[grid(256)](buf1, buf4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf5 = empty_strided_cuda((64, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (64, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (64, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(1024)](buf5, buf6, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((16, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(1024)](buf5, buf6, buf7, 1024, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (16, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_cat_3[grid(256)](buf2, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (64, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (64, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (64, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
triton_poi_fused_add_cat_4[grid(256)](buf10, buf9, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf11 = reinterpret_tensor(buf9, (64, 4), (4, 1), 0)
del buf9
extern_kernels.mm(reinterpret_tensor(buf10, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_9, (4, 4), (1, 4), 0), out=buf11)
buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_add_relu_threshold_backward_5[grid(256)](buf10,
buf11, primals_10, buf12, buf13, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del buf11
del primals_10
return buf12, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (64, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (64, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (64, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (64, 4, 1), (4, 1, 4), 0
), reinterpret_tensor(buf10, (64, 4), (4, 1), 0), buf13, primals_9
class MABNew(nn.Module):
def __init__(self, dim_X, dim_Y, dim, num_heads=4, ln=False, p=None):
super().__init__()
self.num_heads = num_heads
self.fc_q = nn.Linear(dim_X, dim)
self.fc_k = nn.Linear(dim_Y, dim)
self.fc_v = nn.Linear(dim_Y, dim)
self.fc_o = nn.Linear(dim, dim)
self.ln1 = nn.LayerNorm(dim) if ln else nn.Identity()
self.ln2 = nn.LayerNorm(dim) if ln else nn.Identity()
self.dropout1 = nn.Dropout(p=p) if p is not None else nn.Identity()
self.dropout2 = nn.Dropout(p=p) if p is not None else nn.Identity()
def forward(self, input_0, input_1):
primals_1 = self.fc_q.weight
primals_2 = self.fc_q.bias
primals_4 = self.fc_k.weight
primals_5 = self.fc_k.bias
primals_7 = self.fc_v.weight
primals_8 = self.fc_v.bias
primals_9 = self.fc_o.weight
primals_10 = self.fc_o.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
OpenXAIProject/dac
|
MAB
| false | 8,647 |
[
"MIT"
] | 17 |
652776e21b56dcb68839363bb077d5c5ea28d81e
|
https://github.com/OpenXAIProject/dac/tree/652776e21b56dcb68839363bb077d5c5ea28d81e
|
UpBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/ta/cta3qfkas5srst7l4ccnpj7oz7hel5h53n7tjqwjnpk4uswjkepy.py
# Topologically Sorted Source Nodes: [out, h0], Original ATen: [aten.convolution, aten._prelu_kernel]
# Source node to ATen node mapping:
# h0 => gt, mul, where
# out => convolution
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %convolution), kwargs = {})
# %where : [num_users=3] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_0 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp8, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/v2/cv2gefdciotml3zwtkzv4ghtu2a4dbeoas7q3ue7dcfa4f2mizfk.py
# Topologically Sorted Source Nodes: [out_1, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
# Source node to ATen node mapping:
# l0 => gt_1, mul_1, where_1
# out_1 => convolution_1
# sub => sub
# Graph fragment:
# %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%where, %primals_5, %primals_6, [4, 4], [2, 2], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt_1 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %convolution_1), kwargs = {})
# %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %primals_3), kwargs = {})
triton_poi_fused__prelu_kernel_convolution_sub_1 = async_compile.triton('triton_poi_fused__prelu_kernel_convolution_sub_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_convolution_sub_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vz/cvznbzzyrmqjqwdtg4sdvku7chdpvxprj52fd6jpud4fhhmvo2pr.py
# Topologically Sorted Source Nodes: [out_2, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
# Source node to ATen node mapping:
# add => add
# h1 => gt_2, mul_2, where_2
# out_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%sub, %primals_8, %primals_9, [4, 4], [2, 2], [1, 1], True, [0, 0], 1), kwargs = {})
# %gt_2 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, %convolution_2), kwargs = {})
# %where_2 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%where_2, %where), kwargs = {})
triton_poi_fused__prelu_kernel_add_convolution_2 = async_compile.triton('triton_poi_fused__prelu_kernel_add_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__prelu_kernel_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 256) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (0))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + (x3), None)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + (x3), tmp2, None)
tl.store(out_ptr0 + (x3), tmp10, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, ), (1, ))
assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (1, ), (1, ))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (4, ), (1, ))
assert_size_stride(primals_10, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out, h0], Original ATen: [aten.convolution, aten._prelu_kernel]
stream0 = get_raw_stream(0)
triton_poi_fused__prelu_kernel_convolution_0.run(buf1, primals_2, primals_4, buf2, 4096, grid=grid(4096), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1, l0, sub], Original ATen: [aten.convolution, aten._prelu_kernel, aten.sub]
triton_poi_fused__prelu_kernel_convolution_sub_1.run(buf4, primals_6, primals_7, primals_3, buf5, 256, grid=grid(256), stream=stream0)
del primals_6
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 16, 16), (1024, 256, 16, 1))
buf7 = buf6; del buf6 # reuse
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_2, h1, add], Original ATen: [aten.convolution, aten._prelu_kernel, aten.add]
triton_poi_fused__prelu_kernel_add_convolution_2.run(buf7, primals_9, primals_10, buf2, buf8, 4096, grid=grid(4096), stream=stream0)
del primals_9
return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7, primals_8, primals_10, buf1, buf2, buf4, buf5, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torchvision.transforms import *
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_0(in_out_ptr0, in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp8, None)
@triton.jit
def triton_poi_fused__prelu_kernel_convolution_sub_1(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, xmask)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 - tmp9
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp10, xmask)
@triton.jit
def triton_poi_fused__prelu_kernel_add_convolution_2(in_out_ptr0, in_ptr0,
in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + 0)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr2 + x3, None)
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp7 = tmp6 * tmp2
tmp8 = tl.where(tmp4, tmp2, tmp7)
tmp10 = tmp8 + tmp9
tl.store(in_out_ptr0 + x3, tmp2, None)
tl.store(out_ptr0 + x3, tmp10, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (4, 4, 8, 8), (256, 64, 8, 1))
assert_size_stride(primals_9, (4,), (1,))
assert_size_stride(primals_10, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 16, 16), (1024, 256, 16, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
get_raw_stream(0)
triton_poi_fused__prelu_kernel_convolution_0[grid(4096)](buf1,
primals_2, primals_4, buf2, 4096, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_5, stride=(4, 4),
padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused__prelu_kernel_convolution_sub_1[grid(256)](buf4,
primals_6, primals_7, primals_3, buf5, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_6
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(4, 4),
padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 16, 16), (1024, 256, 16, 1))
buf7 = buf6
del buf6
buf8 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch
.float32)
triton_poi_fused__prelu_kernel_add_convolution_2[grid(4096)](buf7,
primals_9, primals_10, buf2, buf8, 4096, XBLOCK=128, num_warps=
4, num_stages=1)
del primals_9
return (buf8, primals_1, primals_3, primals_4, primals_5, primals_7,
primals_8, primals_10, buf1, buf2, buf4, buf5, buf7)
class ConvBlock(torch.nn.Module):
def __init__(self, input_size, output_size, kernel_size=3, stride=1,
padding=1, bias=True, activation='prelu', norm=None):
super(ConvBlock, self).__init__()
self.conv = torch.nn.Conv2d(input_size, output_size, kernel_size,
stride, padding, bias=bias)
self.norm = norm
if self.norm == 'batch':
self.bn = torch.nn.BatchNorm2d(output_size)
elif self.norm == 'instance':
self.bn = torch.nn.InstanceNorm2d(output_size)
self.activation = activation
if self.activation == 'relu':
self.act = torch.nn.ReLU(True)
elif self.activation == 'prelu':
self.act = torch.nn.PReLU()
elif self.activation == 'lrelu':
self.act = torch.nn.LeakyReLU(0.2, True)
elif self.activation == 'tanh':
self.act = torch.nn.Tanh()
elif self.activation == 'sigmoid':
self.act = torch.nn.Sigmoid()
def forward(self, x):
if self.norm is not None:
out = self.bn(self.conv(x))
else:
out = self.conv(x)
if self.activation is not None:
return self.act(out)
else:
return out
class DeconvBlock(torch.nn.Module):
def __init__(self, input_size, output_size, kernel_size=4, stride=2,
padding=1, bias=True, activation='prelu', norm=None):
super(DeconvBlock, self).__init__()
self.deconv = torch.nn.ConvTranspose2d(input_size, output_size,
kernel_size, stride, padding, bias=bias)
self.norm = norm
if self.norm == 'batch':
self.bn = torch.nn.BatchNorm2d(output_size)
elif self.norm == 'instance':
self.bn = torch.nn.InstanceNorm2d(output_size)
self.activation = activation
if self.activation == 'relu':
self.act = torch.nn.ReLU(True)
elif self.activation == 'prelu':
self.act = torch.nn.PReLU()
elif self.activation == 'lrelu':
self.act = torch.nn.LeakyReLU(0.2, True)
elif self.activation == 'tanh':
self.act = torch.nn.Tanh()
elif self.activation == 'sigmoid':
self.act = torch.nn.Sigmoid()
def forward(self, x):
if self.norm is not None:
out = self.bn(self.deconv(x))
else:
out = self.deconv(x)
if self.activation is not None:
return self.act(out)
else:
return out
class UpBlockNew(torch.nn.Module):
def __init__(self, num_filter, kernel_size=8, stride=4, padding=2, bias
=True, activation='prelu', norm=None):
super(UpBlockNew, self).__init__()
self.up_conv1 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation, norm=None)
self.up_conv2 = ConvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation, norm=None)
self.up_conv3 = DeconvBlock(num_filter, num_filter, kernel_size,
stride, padding, activation, norm=None)
def forward(self, input_0):
primals_1 = self.up_conv1.deconv.weight
primals_2 = self.up_conv1.deconv.bias
primals_4 = self.up_conv1.act.weight
primals_5 = self.up_conv2.conv.weight
primals_6 = self.up_conv2.conv.bias
primals_7 = self.up_conv2.act.weight
primals_8 = self.up_conv3.deconv.weight
primals_9 = self.up_conv3.deconv.bias
primals_10 = self.up_conv3.act.weight
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9, primals_10])
return output[0]
|
EvgeneyZ/RBPN
|
UpBlock
| false | 9,561 |
[
"MIT"
] | 0 |
acfe636cc48a4fbfea78f934a251c32e53367659
|
https://github.com/EvgeneyZ/RBPN/tree/acfe636cc48a4fbfea78f934a251c32e53367659
|
Scaled_Dot_Product_Attention
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Scaled_Dot_Product_Attention(nn.Module):
"""Scaled Dot-Product Attention """
def __init__(self):
super(Scaled_Dot_Product_Attention, self).__init__()
def forward(self, Q, K, V, scale=None):
"""
Args:
Q: [batch_size, len_Q, dim_Q]
K: [batch_size, len_K, dim_K]
V: [batch_size, len_V, dim_V]
scale: 缩放因子 论文为根号dim_K
Return:
self-attention后的张量,以及attention张量
"""
attention = torch.matmul(Q, K.permute(0, 2, 1))
if scale:
attention = attention * scale
attention = F.softmax(attention, dim=-1)
context = torch.matmul(attention, V)
return context
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4])
]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
del buf2
return buf3,
class Scaled_Dot_Product_AttentionNew(nn.Module):
"""Scaled Dot-Product Attention """
def __init__(self):
super(Scaled_Dot_Product_AttentionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
tianjiansmile/Chinese-Text-Classification-Pytorch
|
Scaled_Dot_Product_Attention
| false | 10,875 |
[
"MIT"
] | 0 |
05cc211b161f61e6bb32ab185dadcffec2f5b5de
|
https://github.com/tianjiansmile/Chinese-Text-Classification-Pytorch/tree/05cc211b161f61e6bb32ab185dadcffec2f5b5de
|
ZeroCenter
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/wq/cwqbv34bbuhhwqixqqy22qjvbskqx7bhoe7duzgenp46ms2gungm.py
# Topologically Sorted Source Nodes: [mean, sub_], Original ATen: [aten.mean, aten.sub]
# Source node to ATen node mapping:
# mean => mean
# sub_ => sub
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %unsqueeze_1), kwargs = {})
# %copy_ : [num_users=1] = call_function[target=torch.ops.aten.copy_.default](args = (%arg0_1, %sub), kwargs = {})
triton_per_fused_mean_sub_0 = async_compile.triton('triton_per_fused_mean_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mean_sub_0', 'mutated_arg_names': ['in_ptr0', 'out_ptr2'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_mean_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tmp7 = tmp0 - tmp6
tl.store(out_ptr2 + (r1 + (64*x0)), tmp7, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [mean, sub_], Original ATen: [aten.mean, aten.sub]
stream0 = get_raw_stream(0)
triton_per_fused_mean_sub_0.run(arg0_1, arg0_1, 4, 64, grid=grid(4), stream=stream0)
return (arg0_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_per_fused_mean_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = tl.where(xmask, tmp1, 0)
tmp4 = tl.sum(tmp3, 1)[:, None]
tmp5 = 64.0
tmp6 = tmp4 / tmp5
tmp7 = tmp0 - tmp6
tl.store(out_ptr2 + (r1 + 64 * x0), tmp7, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_per_fused_mean_sub_0[grid(4)](arg0_1, arg0_1, 4, 64, XBLOCK=
1, num_warps=2, num_stages=1)
return arg0_1,
class ZeroCenterNew(nn.Module):
def __init__(self):
super().__init__()
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
vinnamkim/segmentation_models.pytorch
|
ZeroCenter
| false | 4,486 |
[
"MIT"
] | 0 |
f967ded34df6fb536e8e8cba9b6491ae63b939f5
|
https://github.com/vinnamkim/segmentation_models.pytorch/tree/f967ded34df6fb536e8e8cba9b6491ae63b939f5
|
VAE
|
import torch
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
class Decoder(nn.Module):
""" VAE decoder """
def __init__(self, img_channels, latent_size):
super(Decoder, self).__init__()
self.latent_size = latent_size
self.img_channels = img_channels
self.fc1 = nn.Linear(latent_size, 1024)
self.deconv1 = nn.ConvTranspose2d(1024, 128, 5, stride=2)
self.deconv2 = nn.ConvTranspose2d(128, 64, 5, stride=2)
self.deconv3 = nn.ConvTranspose2d(64, 32, 6, stride=2)
self.deconv4 = nn.ConvTranspose2d(32, img_channels, 6, stride=2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = x.unsqueeze(-1).unsqueeze(-1)
x = F.relu(self.deconv1(x))
x = F.relu(self.deconv2(x))
x = F.relu(self.deconv3(x))
reconstruction = torch.sigmoid(self.deconv4(x))
return reconstruction
class Encoder(nn.Module):
""" VAE encoder """
def __init__(self, img_channels, latent_size):
super(Encoder, self).__init__()
self.latent_size = latent_size
self.img_channels = img_channels
self.conv1 = nn.Conv2d(img_channels, 32, 4, stride=2)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 128, 4, stride=2)
self.conv4 = nn.Conv2d(128, 256, 4, stride=2)
self.fc_mu = nn.Linear(2 * 2 * 256, latent_size)
self.fc_logsigma = nn.Linear(2 * 2 * 256, latent_size)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
logsigma = self.fc_logsigma(x)
return mu, logsigma
class VAE(nn.Module):
""" Variational Autoencoder """
def __init__(self, img_channels, latent_size):
super(VAE, self).__init__()
self.encoder = Encoder(img_channels, latent_size)
self.decoder = Decoder(img_channels, latent_size)
def forward(self, x):
mu, logsigma = self.encoder(x)
sigma = logsigma.exp()
eps = torch.randn_like(sigma)
z = eps.mul(sigma).add_(mu)
recon_x = self.decoder(z)
return recon_x, mu, logsigma
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'img_channels': 4, 'latent_size': 4}]
|
import torch
from torch import device
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.utils.data
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 64 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 16384 * y1), tmp0, ymask)
@triton.jit
def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 32 * x2 + 512 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 1024 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 16 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 128 * x2 + 2048 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)
) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 128
y1 = yindex // 128
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 128 * x2 + 3200 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_6(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 25
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 64
y1 = yindex // 64
tmp0 = tl.load(in_ptr0 + (x2 + 25 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 64 * x2 + 1600 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_7(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 32
y1 = yindex // 32
tmp0 = tl.load(in_ptr0 + (x2 + 36 * y3), xmask, eviction_policy=
'evict_last')
tl.store(out_ptr0 + (y0 + 32 * x2 + 1152 * y1), tmp0, xmask)
@triton.jit
def triton_poi_fused_8(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 128
xnumel = 36
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 36 * y3), xmask & ymask, eviction_policy
='evict_last')
tl.store(out_ptr0 + (y0 + 4 * x2 + 144 * y1), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 123008
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 50176
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_11(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_12(in_ptr0,
in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 256
y1 = yindex // 256
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 256 * x2 + 1024 * y1), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1, 1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask)
tl.store(out_ptr1 + (y0 + 256 * x2 + 1024 * y1), tmp6, xmask)
@triton.jit
def triton_poi_fused_add_exp_mul_13(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp2 = tl_math.exp(tmp1)
tmp3 = tmp0 * tmp2
tmp5 = tmp3 + tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_14(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 1024
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, None)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 12800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 43264
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 115200
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 32
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_sigmoid_18(in_ptr0, in_ptr1, out_ptr0,
ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, YBLOCK], True, tl.int1)
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16384 * y1), ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(out_ptr0 + (x2 + 4096 * y3), tmp3, ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22, primals_23
) = args
args.clear()
assert_size_stride(primals_1, (32, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (32,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (256, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_9, (256,), (1,))
assert_size_stride(primals_10, (4, 1024), (1024, 1))
assert_size_stride(primals_11, (4,), (1,))
assert_size_stride(primals_12, (4, 1024), (1024, 1))
assert_size_stride(primals_13, (4,), (1,))
assert_size_stride(primals_14, (1024, 4), (4, 1))
assert_size_stride(primals_15, (1024,), (1,))
assert_size_stride(primals_16, (1024, 128, 5, 5), (3200, 25, 5, 1))
assert_size_stride(primals_17, (128,), (1,))
assert_size_stride(primals_18, (128, 64, 5, 5), (1600, 25, 5, 1))
assert_size_stride(primals_19, (64,), (1,))
assert_size_stride(primals_20, (64, 32, 6, 6), (1152, 36, 6, 1))
assert_size_stride(primals_21, (32,), (1,))
assert_size_stride(primals_22, (32, 4, 6, 6), (144, 36, 6, 1))
assert_size_stride(primals_23, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((32, 4, 4, 4), (64, 1, 16, 4), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(128, 16)](primals_1, buf0, 128, 16, XBLOCK=
16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 64, 64), (16384, 1, 256, 4), torch
.float32)
triton_poi_fused_1[grid(16, 4096)](primals_3, buf1, 16, 4096,
XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 32, 4, 4), (512, 1, 128, 32), torch.
float32)
triton_poi_fused_2[grid(2048, 16)](primals_4, buf2, 2048, 16,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_4
buf3 = empty_strided_cuda((128, 64, 4, 4), (1024, 1, 256, 64),
torch.float32)
triton_poi_fused_3[grid(8192, 16)](primals_6, buf3, 8192, 16,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_6
buf4 = empty_strided_cuda((256, 128, 4, 4), (2048, 1, 512, 128),
torch.float32)
triton_poi_fused_4[grid(32768, 16)](primals_8, buf4, 32768, 16,
XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1)
del primals_8
buf5 = empty_strided_cuda((1024, 128, 5, 5), (3200, 1, 640, 128),
torch.float32)
triton_poi_fused_5[grid(131072, 25)](primals_16, buf5, 131072, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_16
buf6 = empty_strided_cuda((128, 64, 5, 5), (1600, 1, 320, 64),
torch.float32)
triton_poi_fused_6[grid(8192, 25)](primals_18, buf6, 8192, 25,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_18
buf7 = empty_strided_cuda((64, 32, 6, 6), (1152, 1, 192, 32), torch
.float32)
triton_poi_fused_7[grid(2048, 36)](primals_20, buf7, 2048, 36,
XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_20
buf8 = empty_strided_cuda((32, 4, 6, 6), (144, 1, 24, 4), torch.float32
)
triton_poi_fused_8[grid(128, 36)](primals_22, buf8, 128, 36, XBLOCK
=32, YBLOCK=32, num_warps=4, num_stages=1)
del primals_22
buf9 = extern_kernels.convolution(buf1, buf0, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf9, (4, 32, 31, 31), (30752, 1, 992, 32))
buf10 = buf9
del buf9
triton_poi_fused_convolution_relu_9[grid(123008)](buf10, primals_2,
123008, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf11 = extern_kernels.convolution(buf10, buf2, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf11, (4, 64, 14, 14), (12544, 1, 896, 64))
buf12 = buf11
del buf11
triton_poi_fused_convolution_relu_10[grid(50176)](buf12, primals_5,
50176, XBLOCK=512, num_warps=4, num_stages=1)
del primals_5
buf13 = extern_kernels.convolution(buf12, buf3, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf13, (4, 128, 6, 6), (4608, 1, 768, 128))
buf14 = buf13
del buf13
triton_poi_fused_convolution_relu_11[grid(18432)](buf14, primals_7,
18432, XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf15 = extern_kernels.convolution(buf14, buf4, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf15, (4, 256, 2, 2), (1024, 1, 512, 256))
buf16 = empty_strided_cuda((4, 256, 2, 2), (1024, 4, 2, 1), torch.
float32)
buf33 = empty_strided_cuda((4, 256, 2, 2), (1024, 1, 512, 256),
torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_12[grid(1024, 4)](
buf15, primals_9, buf16, buf33, 1024, 4, XBLOCK=4, YBLOCK=64,
num_warps=4, num_stages=1)
del primals_9
buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_11, reinterpret_tensor(buf16, (4, 1024
), (1024, 1), 0), reinterpret_tensor(primals_10, (1024, 4), (1,
1024), 0), alpha=1, beta=1, out=buf17)
del primals_11
buf18 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_13, reinterpret_tensor(buf16, (4, 1024
), (1024, 1), 0), reinterpret_tensor(primals_12, (1024, 4), (1,
1024), 0), alpha=1, beta=1, out=buf18)
del primals_13
buf19 = torch.ops.aten.randn.default([4, 4], dtype=torch.float32,
device=device(type='cuda', index=0), pin_memory=False)
buf20 = buf19
del buf19
buf21 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused_add_exp_mul_13[grid(16)](buf20, buf18, buf17,
buf21, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf22 = reinterpret_tensor(buf15, (4, 1024), (1024, 1), 0)
del buf15
extern_kernels.mm(buf21, reinterpret_tensor(primals_14, (4, 1024),
(1, 4), 0), out=buf22)
buf23 = buf22
del buf22
buf32 = empty_strided_cuda((4, 1024), (1024, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_14[grid(4096)](buf23,
primals_15, buf32, 4096, XBLOCK=128, num_warps=4, num_stages=1)
del primals_15
buf24 = extern_kernels.convolution(reinterpret_tensor(buf23, (4,
1024, 1, 1), (1024, 1, 0, 0), 0), buf5, stride=(2, 2), padding=
(0, 0), dilation=(1, 1), transposed=True, output_padding=(0, 0),
groups=1, bias=None)
assert_size_stride(buf24, (4, 128, 5, 5), (3200, 1, 640, 128))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_15[grid(12800)](buf25, primals_17,
12800, XBLOCK=256, num_warps=4, num_stages=1)
del primals_17
buf26 = extern_kernels.convolution(buf25, buf6, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 64, 13, 13), (10816, 1, 832, 64))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_16[grid(43264)](buf27, primals_19,
43264, XBLOCK=512, num_warps=4, num_stages=1)
del primals_19
buf28 = extern_kernels.convolution(buf27, buf7, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 32, 30, 30), (28800, 1, 960, 32))
buf29 = buf28
del buf28
triton_poi_fused_convolution_relu_17[grid(115200)](buf29,
primals_21, 115200, XBLOCK=512, num_warps=8, num_stages=1)
del primals_21
buf30 = extern_kernels.convolution(buf29, buf8, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=True,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf30, (4, 4, 64, 64), (16384, 1, 256, 4))
buf31 = empty_strided_cuda((4, 4, 64, 64), (16384, 4096, 64, 1),
torch.float32)
triton_poi_fused_convolution_sigmoid_18[grid(16, 4096)](buf30,
primals_23, buf31, 16, 4096, XBLOCK=64, YBLOCK=16, num_warps=4,
num_stages=1)
del buf30
del primals_23
return (buf31, buf17, buf18, buf0, buf1, buf2, buf3, buf4, buf5, buf6,
buf7, buf8, buf10, buf12, buf14, reinterpret_tensor(buf16, (4, 1024
), (1024, 1), 0), buf18, buf20, buf21, reinterpret_tensor(buf23, (4,
1024, 1, 1), (1024, 1, 1, 1), 0), buf25, buf27, buf29, buf31, buf32,
primals_14, primals_12, primals_10, buf33)
class Decoder(nn.Module):
""" VAE decoder """
def __init__(self, img_channels, latent_size):
super(Decoder, self).__init__()
self.latent_size = latent_size
self.img_channels = img_channels
self.fc1 = nn.Linear(latent_size, 1024)
self.deconv1 = nn.ConvTranspose2d(1024, 128, 5, stride=2)
self.deconv2 = nn.ConvTranspose2d(128, 64, 5, stride=2)
self.deconv3 = nn.ConvTranspose2d(64, 32, 6, stride=2)
self.deconv4 = nn.ConvTranspose2d(32, img_channels, 6, stride=2)
def forward(self, x):
x = F.relu(self.fc1(x))
x = x.unsqueeze(-1).unsqueeze(-1)
x = F.relu(self.deconv1(x))
x = F.relu(self.deconv2(x))
x = F.relu(self.deconv3(x))
reconstruction = torch.sigmoid(self.deconv4(x))
return reconstruction
class Encoder(nn.Module):
""" VAE encoder """
def __init__(self, img_channels, latent_size):
super(Encoder, self).__init__()
self.latent_size = latent_size
self.img_channels = img_channels
self.conv1 = nn.Conv2d(img_channels, 32, 4, stride=2)
self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
self.conv3 = nn.Conv2d(64, 128, 4, stride=2)
self.conv4 = nn.Conv2d(128, 256, 4, stride=2)
self.fc_mu = nn.Linear(2 * 2 * 256, latent_size)
self.fc_logsigma = nn.Linear(2 * 2 * 256, latent_size)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = x.view(x.size(0), -1)
mu = self.fc_mu(x)
logsigma = self.fc_logsigma(x)
return mu, logsigma
class VAENew(nn.Module):
""" Variational Autoencoder """
def __init__(self, img_channels, latent_size):
super(VAENew, self).__init__()
self.encoder = Encoder(img_channels, latent_size)
self.decoder = Decoder(img_channels, latent_size)
def forward(self, input_0):
primals_1 = self.encoder.conv1.weight
primals_2 = self.encoder.conv1.bias
primals_4 = self.encoder.conv2.weight
primals_5 = self.encoder.conv2.bias
primals_6 = self.encoder.conv3.weight
primals_7 = self.encoder.conv3.bias
primals_8 = self.encoder.conv4.weight
primals_9 = self.encoder.conv4.bias
primals_10 = self.encoder.fc_mu.weight
primals_11 = self.encoder.fc_mu.bias
primals_12 = self.encoder.fc_logsigma.weight
primals_13 = self.encoder.fc_logsigma.bias
primals_14 = self.decoder.fc1.weight
primals_15 = self.decoder.fc1.bias
primals_16 = self.decoder.deconv1.weight
primals_17 = self.decoder.deconv1.bias
primals_18 = self.decoder.deconv2.weight
primals_19 = self.decoder.deconv2.bias
primals_20 = self.decoder.deconv3.weight
primals_21 = self.decoder.deconv3.bias
primals_22 = self.decoder.deconv4.weight
primals_23 = self.decoder.deconv4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23])
return output[0], output[1], output[2]
|
susanwe/world-models
|
VAE
| false | 10,907 |
[
"MIT"
] | 0 |
0f246a430683e6ab741726df0a97f35830044356
|
https://github.com/susanwe/world-models/tree/0f246a430683e6ab741726df0a97f35830044356
|
Scaled_Dot_Product_Attention
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/wz/cwzlgmghy6nxuchbiog4puo46i4tq7yhd3qu6ftkgjf3gwib6hxn.py
# Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%bmm, [-1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%bmm, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/yh/cyhf6bhaqimi2pucos5fnrpvhrt4vuaetbxnooyr5pvgjt7s6fgo.py
# Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention], Original ATen: [aten.bmm]
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax]
stream0 = get_raw_stream(0)
triton_poi_fused__softmax_0.run(buf0, buf1, 64, grid=grid(64), stream=stream0)
buf2 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [attention_1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_1.run(buf1, buf2, 64, grid=grid(64), stream=stream0)
buf3 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [attention_1, context], Original ATen: [aten._softmax, aten.bmm]
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
del buf2
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
arg2_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1, arg2_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(arg1_1, reinterpret_tensor(arg0_1, (4, 4, 4), (
16, 1, 4), 0), out=buf0)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = buf0
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = buf1
del buf1
extern_kernels.bmm(buf2, arg2_1, out=buf3)
del arg2_1
del buf2
return buf3,
class Scaled_Dot_Product_AttentionNew(nn.Module):
"""Scaled Dot-Product Attention """
def __init__(self):
super(Scaled_Dot_Product_AttentionNew, self).__init__()
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
Ch4ndelier/Transformer_Zero_Velocity_classification
|
Scaled_Dot_Product_Attention
| false | 17,076 |
[
"MIT"
] | 6 |
857efb66189c503e983c11bd7dde16ad19c51ada
|
https://github.com/Ch4ndelier/Transformer_Zero_Velocity_classification/tree/857efb66189c503e983c11bd7dde16ad19c51ada
|
PolicyNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/e2/ce2yxxjo54y4qc7iadejpu7zysyx24kmyt42uywkia3l5sxwc3hz.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x => relu
# Graph fragment:
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/ku/ckuj434kfqusjp5hofp6wsenj5l4g67pg75jcm6xtkiqv4c74ngs.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_1 => relu_1
# Graph fragment:
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 36
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/2j/c2jp642zvr4ghkjr4dtqfs6gtucat44jwfzo45rsswlx3dgp5sxw.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_2 => sigmoid
# Graph fragment:
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_5,), kwargs = {})
triton_poi_fused_sigmoid_2 = async_compile.triton('triton_poi_fused_sigmoid_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + (x0), xmask)
tmp1 = tl.load(in_ptr0 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (36, 24), (24, 1))
assert_size_stride(primals_5, (36, ), (1, ))
assert_size_stride(primals_6, (1, 36), (36, 1))
assert_size_stride(primals_7, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0); del buf0 # reuse
buf7 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.relu, aten.threshold_backward]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf7, 1536, grid=grid(1536), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 36), (36, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(primals_4, (24, 36), (1, 24), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 36), (576, 144, 36, 1), 0); del buf2 # reuse
buf6 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf6, 2304, grid=grid(2304), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf3, (64, 36), (36, 1), 0), reinterpret_tensor(primals_6, (36, 1), (1, 36), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf4 # reuse
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_2.run(buf5, primals_7, 64, grid=grid(64), stream=stream0)
del primals_7
return (buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(buf3, (64, 36), (36, 1), 0), buf5, primals_6, buf6, primals_4, buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((24, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((24, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((36, 24), (24, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((36, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((1, 36), (36, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 1536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 24
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 36
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_sigmoid_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp4 = tl.sigmoid(tmp3)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (24, 4), (4, 1))
assert_size_stride(primals_2, (24,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (36, 24), (24, 1))
assert_size_stride(primals_5, (36,), (1,))
assert_size_stride(primals_6, (1, 36), (36, 1))
assert_size_stride(primals_7, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 24), (24, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 24), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 24), (384, 96, 24, 1), 0)
del buf0
buf7 = empty_strided_cuda((4, 4, 4, 24), (384, 96, 24, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_relu_threshold_backward_0[grid(1536)](buf1,
primals_2, buf7, 1536, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 36), (36, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf1, (64, 24), (24, 1), 0),
reinterpret_tensor(primals_4, (24, 36), (1, 24), 0), out=buf2)
buf3 = reinterpret_tensor(buf2, (4, 4, 4, 36), (576, 144, 36, 1), 0)
del buf2
buf6 = empty_strided_cuda((4, 4, 4, 36), (576, 144, 36, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(2304)](buf3,
primals_5, buf6, 2304, XBLOCK=128, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf3, (64, 36), (36, 1), 0),
reinterpret_tensor(primals_6, (36, 1), (1, 36), 0), out=buf4)
buf5 = reinterpret_tensor(buf4, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf4
triton_poi_fused_sigmoid_2[grid(64)](buf5, primals_7, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_7
return buf5, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), reinterpret_tensor(buf1, (64, 24), (24, 1), 0), reinterpret_tensor(
buf3, (64, 36), (36, 1), 0), buf5, primals_6, buf6, primals_4, buf7
class PolicyNetNew(nn.Module):
def __init__(self):
super(PolicyNetNew, self).__init__()
self.fc1 = nn.Linear(4, 24)
self.fc2 = nn.Linear(24, 36)
self.fc3 = nn.Linear(36, 1)
def forward(self, input_0):
primals_1 = self.fc1.weight
primals_2 = self.fc1.bias
primals_4 = self.fc2.weight
primals_5 = self.fc2.bias
primals_6 = self.fc3.weight
primals_7 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
Alfo5123/ConcreteDropout
|
PolicyNet
| false | 16,878 |
[
"MIT"
] | 7 |
c442871553e20a2de078c0fbac7fa52302d50abf
|
https://github.com/Alfo5123/ConcreteDropout/tree/c442871553e20a2de078c0fbac7fa52302d50abf
|
M1Criterion
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class M1Criterion(nn.Module):
def __init__(self, x_sigma=1, bce_reconstruction=True):
super(M1Criterion, self).__init__()
self.x_sigma = x_sigma
self.bce_reconstruction = bce_reconstruction
def forward(self, x, x_reconstructed, M1_mean, M1_log_sigma):
batch_size = x.size(0)
if self.bce_reconstruction:
reconstruct_loss = F.binary_cross_entropy_with_logits(
x_reconstructed, x, reduction='sum') / batch_size
else:
reconstruct_loss = F.mse_loss(torch.sigmoid(x_reconstructed), x,
reduction='sum') / (2 * batch_size * self.x_sigma ** 2)
M1_mean_sq = M1_mean * M1_mean
M1_log_sigma_sq = 2 * M1_log_sigma
M1_sigma_sq = torch.exp(M1_log_sigma_sq)
M1_continuous_kl_loss = 0.5 * torch.sum(M1_mean_sq + M1_sigma_sq -
M1_log_sigma_sq - 1) / batch_size
return reconstruct_loss, M1_continuous_kl_loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand(
[4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_binary_cross_entropy_with_logits_div_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp3 = tl.load(in_ptr1 + r0, None)
tmp1 = 1.0
tmp2 = tmp1 - tmp0
tmp4 = tmp2 * tmp3
tmp5 = 0.0
tmp6 = triton_helpers.minimum(tmp5, tmp3)
tmp7 = tl_math.abs(tmp3)
tmp8 = -tmp7
tmp9 = tl_math.exp(tmp8)
tmp10 = libdevice.log1p(tmp9)
tmp11 = tmp6 - tmp10
tmp12 = tmp4 - tmp11
tmp13 = tl.broadcast_to(tmp12, [RBLOCK])
tmp15 = triton_helpers.promote_to_tensor(tl.sum(tmp13, 0))
tmp16 = 0.25
tmp17 = tmp15 * tmp16
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
@triton.jit
def triton_per_fused_add_div_exp_mul_sub_sum_1(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp2 = tl.load(in_ptr1 + r0, None)
tmp1 = tmp0 * tmp0
tmp3 = 2.0
tmp4 = tmp2 * tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tmp1 + tmp5
tmp7 = tmp6 - tmp4
tmp8 = 1.0
tmp9 = tmp7 - tmp8
tmp10 = tl.broadcast_to(tmp9, [RBLOCK])
tmp12 = triton_helpers.promote_to_tensor(tl.sum(tmp10, 0))
tmp13 = 0.5
tmp14 = tmp12 * tmp13
tmp15 = 0.25
tmp16 = tmp14 * tmp15
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp16, None)
def call(args):
arg0_1, arg1_1, arg2_1, arg3_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf2 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_binary_cross_entropy_with_logits_div_0[grid(1)](buf2,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
buf1 = empty_strided_cuda((), (), torch.float32)
buf3 = buf1
del buf1
triton_per_fused_add_div_exp_mul_sub_sum_1[grid(1)](buf3, arg2_1,
arg3_1, 1, 256, num_warps=2, num_stages=1)
del arg2_1
del arg3_1
return buf2, buf3
class M1CriterionNew(nn.Module):
def __init__(self, x_sigma=1, bce_reconstruction=True):
super(M1CriterionNew, self).__init__()
self.x_sigma = x_sigma
self.bce_reconstruction = bce_reconstruction
def forward(self, input_0, input_1, input_2, input_3):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
arg3_1 = input_3
output = call([arg0_1, arg1_1, arg2_1, arg3_1])
return output[0], output[1]
|
PaperCodeSubmission/ICML2020-697
|
M1Criterion
| false | 8,658 |
[
"MIT"
] | 12 |
00f7732c236b9c6234e76a47dfebe5de314d5c01
|
https://github.com/PaperCodeSubmission/ICML2020-697/tree/00f7732c236b9c6234e76a47dfebe5de314d5c01
|
Rot180
|
import torch
import torch.nn as nn
def rot180(input: 'torch.Tensor') ->torch.Tensor:
"""Rotate a tensor image or a batch of tensor images
180 degrees. Input must be a tensor of shape (C, H, W)
or a batch of tensors :math:`(*, C, H, W)`.
Args:
input (torch.Tensor): input tensor
Returns:
torch.Tensor: The rotated image tensor
"""
return torch.flip(input, [-2, -1])
class Rot180(nn.Module):
"""Rotate a tensor image or a batch of tensor images
180 degrees. Input must be a tensor of shape (C, H, W)
or a batch of tensors :math:`(*, C, H, W)`.
Args:
input (torch.Tensor): input tensor
Examples:
>>> input = torch.tensor([[[
[0., 0., 0.],
[0., 0., 0.],
[0., 1., 1.]]]])
>>> kornia.rot180(input)
tensor([[[1, 1, 0],
[0, 0, 0],
[0, 0, 0]]])
"""
def __init__(self) ->None:
super(Rot180, self).__init__()
def forward(self, input: 'torch.Tensor') ->torch.Tensor:
return rot180(input)
def __repr__(self):
return self.__class__.__name__
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_flip_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * x0 + 16 * x1), xmask,
eviction_policy='evict_last')
tl.store(out_ptr0 + x2, tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_flip_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
def rot180(input: 'torch.Tensor') ->torch.Tensor:
"""Rotate a tensor image or a batch of tensor images
180 degrees. Input must be a tensor of shape (C, H, W)
or a batch of tensors :math:`(*, C, H, W)`.
Args:
input (torch.Tensor): input tensor
Returns:
torch.Tensor: The rotated image tensor
"""
return torch.flip(input, [-2, -1])
class Rot180New(nn.Module):
"""Rotate a tensor image or a batch of tensor images
180 degrees. Input must be a tensor of shape (C, H, W)
or a batch of tensors :math:`(*, C, H, W)`.
Args:
input (torch.Tensor): input tensor
Examples:
>>> input = torch.tensor([[[
[0., 0., 0.],
[0., 0., 0.],
[0., 1., 1.]]]])
>>> kornia.rot180(input)
tensor([[[1, 1, 0],
[0, 0, 0],
[0, 0, 0]]])
"""
def __init__(self) ->None:
super(Rot180New, self).__init__()
def __repr__(self):
return self.__class__.__name__
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
IEM-Computer-Vision/kornia
|
Rot180
| false | 9,255 |
[
"ECL-2.0",
"Apache-2.0"
] | 0 |
f98bd9a2158a6e59cda076d55d476acf13f4e0af
|
https://github.com/IEM-Computer-Vision/kornia/tree/f98bd9a2158a6e59cda076d55d476acf13f4e0af
|
ConfidentMSELoss
|
from torch.nn import Module
import torch
class ConfidentMSELoss(Module):
def __init__(self, threshold=0.96):
self.threshold = threshold
super().__init__()
def forward(self, input, target):
n = input.size(0)
conf_mask = torch.gt(target, self.threshold).float()
input_flat = input.view(n, -1)
target_flat = target.view(n, -1)
conf_mask_flat = conf_mask.view(n, -1)
diff = (input_flat - target_flat) ** 2
diff_conf = diff * conf_mask_flat
loss = diff_conf.mean()
return loss
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp4 = 0.96
tmp5 = tmp1 > tmp4
tmp6 = tmp5.to(tl.float32)
tmp7 = tmp3 * tmp6
tmp8 = tl.broadcast_to(tmp7, [RBLOCK])
tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0))
tmp11 = 256.0
tmp12 = tmp10 / tmp11
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1,
1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class ConfidentMSELossNew(Module):
def __init__(self, threshold=0.96):
self.threshold = threshold
super().__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
neuropoly/medicaltorch
|
ConfidentMSELoss
| false | 7,327 |
[
"Apache-2.0"
] | 1 |
ac129fe894cb1906285dfe380ba4f0aa3bdec787
|
https://github.com/neuropoly/medicaltorch/tree/ac129fe894cb1906285dfe380ba4f0aa3bdec787
|
rec_attention
|
from _paritybench_helpers import _mock_config
import torch
import torch.nn as nn
def batch_product(iput, mat2):
result = None
for i in range(iput.size()[0]):
op = torch.mm(iput[i], mat2)
op = op.unsqueeze(0)
if result is None:
result = op
else:
result = torch.cat((result, op), 0)
return result.squeeze(2)
class rec_attention(nn.Module):
def __init__(self, hm, args):
super(rec_attention, self).__init__()
self.num_directions = 2 if args.bidirectional else 1
if hm is False:
self.bin_rep_size = args.bin_rnn_size * self.num_directions
else:
self.bin_rep_size = args.bin_rnn_size
self.bin_context_vector = nn.Parameter(torch.Tensor(self.
bin_rep_size, 1), requires_grad=True)
self.softmax = nn.Softmax(dim=1)
self.bin_context_vector.data.uniform_(-0.1, 0.1)
def forward(self, iput):
alpha = self.softmax(batch_product(iput, self.bin_context_vector))
[batch_size, source_length, _bin_rep_size2] = iput.size()
repres = torch.bmm(alpha.unsqueeze(2).view(batch_size, -1,
source_length), iput)
return repres, alpha
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'hm': 4, 'args': _mock_config(bidirectional=4,
bin_rnn_size=4)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x0 = xindex % 4
x2 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 3, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.full([1], 2, tl.int64)
tmp6 = tmp0 < tmp5
tmp7 = tmp6 & tmp4
tmp8 = tl.full([1], 1, tl.int64)
tmp9 = tmp0 < tmp8
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + x0, tmp10 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp12 = tmp0 >= tmp8
tmp13 = tmp12 & tmp7
tmp14 = tl.load(in_ptr1 + x0, tmp13 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp15 = tl.where(tmp9, tmp11, tmp14)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp7, tmp15, tmp16)
tmp18 = tmp0 >= tmp5
tmp19 = tmp18 & tmp4
tmp20 = tl.load(in_ptr2 + x0, tmp19 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp21 = tl.where(tmp6, tmp17, tmp20)
tmp22 = tl.full(tmp21.shape, 0.0, tmp21.dtype)
tmp23 = tl.where(tmp4, tmp21, tmp22)
tmp24 = tmp0 >= tmp3
tl.full([1], 4, tl.int64)
tmp27 = tl.load(in_ptr3 + x0, tmp24 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp28 = tl.where(tmp4, tmp23, tmp27)
tl.store(out_ptr0 + x2, tmp28, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 1), (1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 0),
primals_1, out=buf0)
buf1 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 16),
primals_1, out=buf1)
buf2 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 32),
primals_1, out=buf2)
buf3 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_2, (4, 4), (4, 1), 48),
primals_1, out=buf3)
del primals_1
buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(16)](buf0, buf1, buf2, buf3, buf4, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del buf0
del buf1
del buf2
del buf3
buf5 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf4, buf5, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf6 = reinterpret_tensor(buf4, (4, 4), (4, 1), 0)
del buf4
triton_poi_fused__softmax_2[grid(16)](buf5, buf6, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf7 = reinterpret_tensor(buf5, (4, 1, 4), (4, 4, 1), 0)
del buf5
extern_kernels.bmm(reinterpret_tensor(buf6, (4, 1, 4), (4, 4, 1), 0
), primals_2, out=buf7)
return buf7, buf6, buf6, reinterpret_tensor(primals_2, (4, 4, 4), (16,
1, 4), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 48
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 32
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 16
), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0)
def batch_product(iput, mat2):
result = None
for i in range(iput.size()[0]):
op = torch.mm(iput[i], mat2)
op = op.unsqueeze(0)
if result is None:
result = op
else:
result = torch.cat((result, op), 0)
return result.squeeze(2)
class rec_attentionNew(nn.Module):
def __init__(self, hm, args):
super(rec_attentionNew, self).__init__()
self.num_directions = 2 if args.bidirectional else 1
if hm is False:
self.bin_rep_size = args.bin_rnn_size * self.num_directions
else:
self.bin_rep_size = args.bin_rnn_size
self.bin_context_vector = nn.Parameter(torch.Tensor(self.
bin_rep_size, 1), requires_grad=True)
self.softmax = nn.Softmax(dim=1)
self.bin_context_vector.data.uniform_(-0.1, 0.1)
def forward(self, input_0):
primals_1 = self.bin_context_vector
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0], output[1]
|
Luma-1994/lama
|
rec_attention
| false | 14,405 |
[
"MIT"
] | 137 |
60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
https://github.com/Luma-1994/lama/tree/60d802e2e4cce789f03eea11b038212ba5f7fd1b
|
Conv3x3
|
import torch
import torch.nn as nn
class Conv3x3(nn.Module):
"""Layer to pad and convolve input
"""
def __init__(self, in_channels, out_channels, use_refl=True):
super(Conv3x3, self).__init__()
if use_refl:
self.pad = nn.ReflectionPad2d(1)
else:
self.pad = nn.ZeroPad2d(1)
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
def forward(self, x):
out = self.pad(x)
out = self.conv(out)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_reflection_pad2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 6
x1 = xindex // 6 % 6
x2 = xindex // 36
x3 = xindex
tmp0 = tl.load(in_ptr0 + (15 + -1 * tl_math.abs(-3 + tl_math.abs(-1 +
x0)) + -4 * tl_math.abs(-3 + tl_math.abs(-1 + x1)) + 16 * x2),
xmask, eviction_policy='evict_last')
tl.store(out_ptr0 + x3, tmp0, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_reflection_pad2d_0[grid(576)](primals_1, buf0, 576,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_1[grid(256)](buf2, primals_3, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf2, primals_2, buf0
class Conv3x3New(nn.Module):
"""Layer to pad and convolve input
"""
def __init__(self, in_channels, out_channels, use_refl=True):
super(Conv3x3New, self).__init__()
if use_refl:
self.pad = nn.ReflectionPad2d(1)
else:
self.pad = nn.ZeroPad2d(1)
self.conv = nn.Conv2d(int(in_channels), int(out_channels), 3)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
aliasghar53/packnet-sfm
|
Conv3x3
| false | 9,778 |
[
"MIT"
] | 0 |
d07dcbf026194b618a2bd9fc05b599563611f9a3
|
https://github.com/aliasghar53/packnet-sfm/tree/d07dcbf026194b618a2bd9fc05b599563611f9a3
|
AconC
|
import torch
import torch.nn as nn
class AconC(nn.Module):
""" ACON activation (activate or not).
# AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
# according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, width):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, width, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, width, 1, 1))
self.beta = nn.Parameter(torch.ones(1, width, 1, 1))
def forward(self, x):
return (self.p1 * x - self.p2 * x) * torch.sigmoid(self.beta * (
self.p1 * x - self.p2 * x)) + self.p2 * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'width': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_sigmoid_sub_0(in_ptr0, in_ptr1, in_ptr2,
in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 - tmp4
tmp7 = tmp6 * tmp5
tmp8 = tl.sigmoid(tmp7)
tmp9 = tmp5 * tmp8
tmp10 = tmp9 + tmp4
tl.store(out_ptr0 + x3, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_sigmoid_sub_0[grid(256)](primals_1,
primals_2, primals_3, primals_4, buf0, 256, XBLOCK=256,
num_warps=4, num_stages=1)
return buf0, primals_1, primals_2, primals_3, primals_4
class AconCNew(nn.Module):
""" ACON activation (activate or not).
# AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
# according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, width):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, width, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, width, 1, 1))
self.beta = nn.Parameter(torch.ones(1, width, 1, 1))
def forward(self, input_0):
primals_1 = self.p1
primals_3 = self.p2
primals_4 = self.beta
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
nmaac/acon
|
AconC
| false | 16,178 |
[
"MIT"
] | 163 |
99fd67928a6ffb0543b54614303caada96c756f5
|
https://github.com/nmaac/acon/tree/99fd67928a6ffb0543b54614303caada96c756f5
|
OfstMapL1Loss
|
import torch
import torch.nn as nn
class OfstMapL1Loss(nn.Module):
def __init__(self, eps=1e-05):
super().__init__()
self.eps = eps
def forward(self, rgb_labels, pred, gt, normalize=True, reduce=True):
wgt = (rgb_labels > 1e-08).float()
bs, n_kpts, c, h, w = pred.size()
wgt = wgt.view(bs, 1, 1, h, w).repeat(1, n_kpts, c, 1, 1).contiguous()
diff = pred - gt
abs_diff = torch.abs(diff)
abs_diff = wgt * abs_diff
in_loss = abs_diff
if normalize:
in_loss = torch.sum(in_loss.view(bs, n_kpts, -1), 2) / (torch.
sum(wgt.view(bs, n_kpts, -1), 2) + 0.001)
if reduce:
in_loss = torch.mean(in_loss)
return in_loss
def get_inputs():
return [torch.rand([4, 1, 1, 4, 4]), torch.rand([4, 4, 4, 4, 4]), torch
.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 16
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r2 = rindex
x1 = xindex // 4
x3 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (16 * x1 + r2 % 16), xmask, eviction_policy=
'evict_last', other=0.0)
tmp4 = tl.load(in_ptr1 + (r2 + 64 * x3), xmask, other=0.0)
tmp5 = tl.load(in_ptr2 + (r2 + 64 * x0), xmask, eviction_policy=
'evict_last', other=0.0)
tmp1 = 1e-08
tmp2 = tmp0 > tmp1
tmp3 = tmp2.to(tl.float32)
tmp6 = tmp4 - tmp5
tmp7 = tl_math.abs(tmp6)
tmp8 = tmp3 * tmp7
tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK])
tmp11 = tl.where(xmask, tmp9, 0)
tmp12 = tl.sum(tmp11, 1)[:, None]
tmp13 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp15 = tl.where(xmask, tmp13, 0)
tmp16 = tl.sum(tmp15, 1)[:, None]
tl.store(out_ptr0 + x3, tmp12, xmask)
tl.store(out_ptr1 + x3, tmp16, xmask)
@triton.jit
def triton_per_fused_add_div_mean_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel,
rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = 0.001
tmp3 = tmp1 + tmp2
tmp4 = tmp0 / tmp3
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tmp7 = tl.sum(tmp5, 1)[:, None]
tmp8 = 16.0
tmp9 = tmp7 / tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1, arg2_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 1, 1, 4, 4), (16, 16, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1))
assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused_sum_0[grid(16)](arg0_1, arg1_1, arg2_1, buf0, buf1,
16, 64, XBLOCK=8, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
del arg2_1
buf2 = empty_strided_cuda((), (), torch.float32)
buf3 = buf2
del buf2
triton_per_fused_add_div_mean_1[grid(1)](buf3, buf0, buf1, 1, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del buf0
del buf1
return buf3,
class OfstMapL1LossNew(nn.Module):
def __init__(self, eps=1e-05):
super().__init__()
self.eps = eps
def forward(self, input_0, input_1, input_2):
arg0_1 = input_0
arg1_1 = input_1
arg2_1 = input_2
output = call([arg0_1, arg1_1, arg2_1])
return output[0]
|
StannisZhou/FFB6D
|
OfstMapL1Loss
| false | 11,898 |
[
"MIT"
] | 0 |
5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
|
https://github.com/StannisZhou/FFB6D/tree/5e7534805cd2e397427886d9a2a8ecfbb4f6cdfe
|
ConvSwishInplace
|
import torch
from torch import nn
import torch.cuda
import torch.backends.cudnn
import torch.backends.mkl
import torch.backends.cuda
import torch.backends.quantized
class ConvSwishInplace(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, image_size):
super(ConvSwishInplace, self).__init__()
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
image_size)
def forward(self, x):
a = self.conv2d(x)
b = torch.sigmoid(a)
res = a.mul_(b)
return res
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4,
'image_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
import torch.cuda
import torch.backends.cudnn
import torch.backends.mkl
import torch.backends.cuda
import torch.backends.quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x2, tmp2, xmask)
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(4,
4), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_mul_sigmoid_0[grid(16)](buf1,
primals_2, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1)
del primals_2
return buf2, primals_1, primals_3, buf1
class ConvSwishInplaceNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, image_size):
super(ConvSwishInplaceNew, self).__init__()
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
image_size)
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_2 = self.conv2d.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Observer007/intel-extension-for-pytorch
|
ConvSwishInplace
| false | 5,662 |
[
"Apache-2.0"
] | 1 |
f8ab25c305c89d5aaf06190a4fec0727aeb4dcd7
|
https://github.com/Observer007/intel-extension-for-pytorch/tree/f8ab25c305c89d5aaf06190a4fec0727aeb4dcd7
|
DiceLoss
|
import functools
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch._C
import torch.serialization
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Average factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def get_class_weight(class_weight):
"""Get class weight for loss function.
Args:
class_weight (list[float] | str | None): If class_weight is a str,
take it as a file name and read from it.
"""
if isinstance(class_weight, str):
if class_weight.endswith('.npy'):
class_weight = np.load(class_weight)
else:
class_weight = mmcv.load(class_weight)
return class_weight
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def binary_dice_loss(pred, target, valid_mask, smooth=1, exponent=2, **kwards):
assert pred.shape[0] == target.shape[0]
pred = pred.reshape(pred.shape[0], -1)
target = target.reshape(target.shape[0], -1)
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1)
num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth
den = torch.sum(pred.pow(exponent) + target.pow(exponent), dim=1) + smooth
return 1 - num / den
@weighted_loss
def dice_loss(pred, target, valid_mask, smooth=1, exponent=2, class_weight=
None, ignore_index=255):
assert pred.shape[0] == target.shape[0]
total_loss = 0
num_classes = pred.shape[1]
for i in range(num_classes):
if i != ignore_index:
dice_loss = binary_dice_loss(pred[:, i], target[..., i],
valid_mask=valid_mask, smooth=smooth, exponent=exponent)
if class_weight is not None:
dice_loss *= class_weight[i]
total_loss += dice_loss
return total_loss / num_classes
class DiceLoss(nn.Module):
"""DiceLoss.
This loss is proposed in `V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_.
Args:
loss_type (str, optional): Binary or multi-class loss.
Default: 'multi_class'. Options are "binary" and "multi_class".
smooth (float): A float number to smooth loss, and avoid NaN error.
Default: 1
exponent (float): An float number to calculate denominator
value: \\sum{x^exponent} + \\sum{y^exponent}. Default: 2.
reduction (str, optional): The method used to reduce the loss. Options
are "none", "mean" and "sum". This parameter only works when
per_image is True. Default: 'mean'.
class_weight (list[float] | str, optional): Weight of each class. If in
str format, read them from a file. Defaults to None.
loss_weight (float, optional): Weight of the loss. Default to 1.0.
ignore_index (int | None): The label index to be ignored. Default: 255.
loss_name (str, optional): Name of the loss item. If you want this loss
item to be included into the backward graph, `loss_` must be the
prefix of the name. Defaults to 'loss_dice'.
"""
def __init__(self, smooth=1, exponent=2, reduction='mean', class_weight
=None, loss_weight=1.0, ignore_index=255, loss_name='loss_dice', **
kwards):
super(DiceLoss, self).__init__()
self.smooth = smooth
self.exponent = exponent
self.reduction = reduction
self.class_weight = get_class_weight(class_weight)
self.loss_weight = loss_weight
self.ignore_index = ignore_index
self._loss_name = loss_name
def forward(self, pred, target, avg_factor=None, reduction_override=
None, **kwards):
assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (reduction_override if reduction_override else self.
reduction)
if self.class_weight is not None:
class_weight = pred.new_tensor(self.class_weight)
else:
class_weight = None
pred = F.softmax(pred, dim=1)
num_classes = pred.shape[1]
one_hot_target = F.one_hot(torch.clamp(target.long(), 0,
num_classes - 1), num_classes=num_classes)
valid_mask = (target != self.ignore_index).long()
loss = self.loss_weight * dice_loss(pred, one_hot_target,
valid_mask=valid_mask, reduction=reduction, avg_factor=
avg_factor, smooth=self.smooth, exponent=self.exponent,
class_weight=class_weight, ignore_index=self.ignore_index)
return loss
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name
def get_inputs():
return [torch.rand([4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch._C
import torch.serialization
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_per_fused__to_copy_add_div_mean_mul_ne_pow_rsub_sum_view_2(
in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last')
tmp16 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last')
tmp42 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last')
tmp112 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last'
)
tmp153 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last'
)
tmp2 = tmp1.to(tl.int64)
tmp3 = tl.full([1, 1], 0, tl.int64)
tmp4 = triton_helpers.maximum(tmp2, tmp3)
tmp5 = tl.full([1, 1], 3, tl.int64)
tmp6 = triton_helpers.minimum(tmp4, tmp5)
tmp7 = tmp6 == tmp3
tmp8 = tmp7.to(tl.int64)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp0 * tmp9
tmp11 = 255.0
tmp12 = tmp1 != tmp11
tmp13 = tmp12.to(tl.int64)
tmp14 = tmp13.to(tl.float32)
tmp15 = tmp10 * tmp14
tmp17 = tmp16.to(tl.int64)
tmp18 = triton_helpers.maximum(tmp17, tmp3)
tmp19 = triton_helpers.minimum(tmp18, tmp5)
tmp20 = tmp19 == tmp3
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp0 * tmp22
tmp24 = tmp16 != tmp11
tmp25 = tmp24.to(tl.int64)
tmp26 = tmp25.to(tl.float32)
tmp27 = tmp23 * tmp26
tmp28 = tmp15 + tmp27
tmp30 = tmp29.to(tl.int64)
tmp31 = triton_helpers.maximum(tmp30, tmp3)
tmp32 = triton_helpers.minimum(tmp31, tmp5)
tmp33 = tmp32 == tmp3
tmp34 = tmp33.to(tl.int64)
tmp35 = tmp34.to(tl.float32)
tmp36 = tmp0 * tmp35
tmp37 = tmp29 != tmp11
tmp38 = tmp37.to(tl.int64)
tmp39 = tmp38.to(tl.float32)
tmp40 = tmp36 * tmp39
tmp41 = tmp28 + tmp40
tmp43 = tmp42.to(tl.int64)
tmp44 = triton_helpers.maximum(tmp43, tmp3)
tmp45 = triton_helpers.minimum(tmp44, tmp5)
tmp46 = tmp45 == tmp3
tmp47 = tmp46.to(tl.int64)
tmp48 = tmp47.to(tl.float32)
tmp49 = tmp0 * tmp48
tmp50 = tmp42 != tmp11
tmp51 = tmp50.to(tl.int64)
tmp52 = tmp51.to(tl.float32)
tmp53 = tmp49 * tmp52
tmp54 = tmp41 + tmp53
tmp55 = tmp0 * tmp0
tmp56 = tmp8 * tmp8
tmp57 = tmp56.to(tl.float32)
tmp58 = tmp55 + tmp57
tmp59 = tmp21 * tmp21
tmp60 = tmp59.to(tl.float32)
tmp61 = tmp55 + tmp60
tmp62 = tmp58 + tmp61
tmp63 = tmp34 * tmp34
tmp64 = tmp63.to(tl.float32)
tmp65 = tmp55 + tmp64
tmp66 = tmp62 + tmp65
tmp67 = tmp47 * tmp47
tmp68 = tmp67.to(tl.float32)
tmp69 = tmp55 + tmp68
tmp70 = tmp66 + tmp69
tmp72 = tl.full([1, 1], 1, tl.int64)
tmp73 = tmp6 == tmp72
tmp74 = tmp73.to(tl.int64)
tmp75 = tmp74.to(tl.float32)
tmp76 = tmp71 * tmp75
tmp77 = tmp76 * tmp14
tmp78 = tmp19 == tmp72
tmp79 = tmp78.to(tl.int64)
tmp80 = tmp79.to(tl.float32)
tmp81 = tmp71 * tmp80
tmp82 = tmp81 * tmp26
tmp83 = tmp77 + tmp82
tmp84 = tmp32 == tmp72
tmp85 = tmp84.to(tl.int64)
tmp86 = tmp85.to(tl.float32)
tmp87 = tmp71 * tmp86
tmp88 = tmp87 * tmp39
tmp89 = tmp83 + tmp88
tmp90 = tmp45 == tmp72
tmp91 = tmp90.to(tl.int64)
tmp92 = tmp91.to(tl.float32)
tmp93 = tmp71 * tmp92
tmp94 = tmp93 * tmp52
tmp95 = tmp89 + tmp94
tmp96 = tmp71 * tmp71
tmp97 = tmp74 * tmp74
tmp98 = tmp97.to(tl.float32)
tmp99 = tmp96 + tmp98
tmp100 = tmp79 * tmp79
tmp101 = tmp100.to(tl.float32)
tmp102 = tmp96 + tmp101
tmp103 = tmp99 + tmp102
tmp104 = tmp85 * tmp85
tmp105 = tmp104.to(tl.float32)
tmp106 = tmp96 + tmp105
tmp107 = tmp103 + tmp106
tmp108 = tmp91 * tmp91
tmp109 = tmp108.to(tl.float32)
tmp110 = tmp96 + tmp109
tmp111 = tmp107 + tmp110
tmp113 = tl.full([1, 1], 2, tl.int64)
tmp114 = tmp6 == tmp113
tmp115 = tmp114.to(tl.int64)
tmp116 = tmp115.to(tl.float32)
tmp117 = tmp112 * tmp116
tmp118 = tmp117 * tmp14
tmp119 = tmp19 == tmp113
tmp120 = tmp119.to(tl.int64)
tmp121 = tmp120.to(tl.float32)
tmp122 = tmp112 * tmp121
tmp123 = tmp122 * tmp26
tmp124 = tmp118 + tmp123
tmp125 = tmp32 == tmp113
tmp126 = tmp125.to(tl.int64)
tmp127 = tmp126.to(tl.float32)
tmp128 = tmp112 * tmp127
tmp129 = tmp128 * tmp39
tmp130 = tmp124 + tmp129
tmp131 = tmp45 == tmp113
tmp132 = tmp131.to(tl.int64)
tmp133 = tmp132.to(tl.float32)
tmp134 = tmp112 * tmp133
tmp135 = tmp134 * tmp52
tmp136 = tmp130 + tmp135
tmp137 = tmp112 * tmp112
tmp138 = tmp115 * tmp115
tmp139 = tmp138.to(tl.float32)
tmp140 = tmp137 + tmp139
tmp141 = tmp120 * tmp120
tmp142 = tmp141.to(tl.float32)
tmp143 = tmp137 + tmp142
tmp144 = tmp140 + tmp143
tmp145 = tmp126 * tmp126
tmp146 = tmp145.to(tl.float32)
tmp147 = tmp137 + tmp146
tmp148 = tmp144 + tmp147
tmp149 = tmp132 * tmp132
tmp150 = tmp149.to(tl.float32)
tmp151 = tmp137 + tmp150
tmp152 = tmp148 + tmp151
tmp154 = tmp6 == tmp5
tmp155 = tmp154.to(tl.int64)
tmp156 = tmp155.to(tl.float32)
tmp157 = tmp153 * tmp156
tmp158 = tmp157 * tmp14
tmp159 = tmp19 == tmp5
tmp160 = tmp159.to(tl.int64)
tmp161 = tmp160.to(tl.float32)
tmp162 = tmp153 * tmp161
tmp163 = tmp162 * tmp26
tmp164 = tmp158 + tmp163
tmp165 = tmp32 == tmp5
tmp166 = tmp165.to(tl.int64)
tmp167 = tmp166.to(tl.float32)
tmp168 = tmp153 * tmp167
tmp169 = tmp168 * tmp39
tmp170 = tmp164 + tmp169
tmp171 = tmp45 == tmp5
tmp172 = tmp171.to(tl.int64)
tmp173 = tmp172.to(tl.float32)
tmp174 = tmp153 * tmp173
tmp175 = tmp174 * tmp52
tmp176 = tmp170 + tmp175
tmp177 = tmp153 * tmp153
tmp178 = tmp155 * tmp155
tmp179 = tmp178.to(tl.float32)
tmp180 = tmp177 + tmp179
tmp181 = tmp160 * tmp160
tmp182 = tmp181.to(tl.float32)
tmp183 = tmp177 + tmp182
tmp184 = tmp180 + tmp183
tmp185 = tmp166 * tmp166
tmp186 = tmp185.to(tl.float32)
tmp187 = tmp177 + tmp186
tmp188 = tmp184 + tmp187
tmp189 = tmp172 * tmp172
tmp190 = tmp189.to(tl.float32)
tmp191 = tmp177 + tmp190
tmp192 = tmp188 + tmp191
tmp193 = 2.0
tmp194 = tmp54 * tmp193
tmp195 = 1.0
tmp196 = tmp194 + tmp195
tmp197 = tmp70 + tmp195
tmp198 = tmp196 / tmp197
tmp199 = tmp195 - tmp198
tmp200 = tl.broadcast_to(tmp199, [XBLOCK, RBLOCK])
tmp202 = tl.sum(tmp200, 1)[:, None]
tmp203 = tmp95 * tmp193
tmp204 = tmp203 + tmp195
tmp205 = tmp111 + tmp195
tmp206 = tmp204 / tmp205
tmp207 = tmp195 - tmp206
tmp208 = tl.broadcast_to(tmp207, [XBLOCK, RBLOCK])
tmp210 = tl.sum(tmp208, 1)[:, None]
tmp211 = tmp136 * tmp193
tmp212 = tmp211 + tmp195
tmp213 = tmp152 + tmp195
tmp214 = tmp212 / tmp213
tmp215 = tmp195 - tmp214
tmp216 = tl.broadcast_to(tmp215, [XBLOCK, RBLOCK])
tmp218 = tl.sum(tmp216, 1)[:, None]
tmp219 = tmp176 * tmp193
tmp220 = tmp219 + tmp195
tmp221 = tmp192 + tmp195
tmp222 = tmp220 / tmp221
tmp223 = tmp195 - tmp222
tmp224 = tl.broadcast_to(tmp223, [XBLOCK, RBLOCK])
tmp226 = tl.sum(tmp224, 1)[:, None]
tmp227 = 4.0
tmp228 = tmp202 / tmp227
tmp229 = 0.0
tmp230 = tmp228 + tmp229
tmp231 = tmp210 / tmp227
tmp232 = tmp230 + tmp231
tmp233 = tmp218 / tmp227
tmp234 = tmp232 + tmp233
tmp235 = tmp226 / tmp227
tmp236 = tmp234 + tmp235
tmp237 = 0.25
tmp238 = tmp236 * tmp237
tmp239 = tmp238 / tmp195
tmp240 = tmp239 * tmp195
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp240, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4), (4, 1))
assert_size_stride(arg1_1, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(16)](arg0_1, buf0, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del arg0_1
buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(16)](buf0, buf1, 16, XBLOCK=16,
num_warps=1, num_stages=1)
del buf0
buf10 = empty_strided_cuda((), (), torch.float32)
buf14 = buf10
del buf10
triton_per_fused__to_copy_add_div_mean_mul_ne_pow_rsub_sum_view_2[grid
(1)](buf14, buf1, arg1_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1
)
del arg1_1
del buf1
return buf14,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Average factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
assert weight.dim() == loss.dim()
if weight.dim() > 1:
assert weight.size(1) == 1 or weight.size(1) == loss.size(1)
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def get_class_weight(class_weight):
"""Get class weight for loss function.
Args:
class_weight (list[float] | str | None): If class_weight is a str,
take it as a file name and read from it.
"""
if isinstance(class_weight, str):
if class_weight.endswith('.npy'):
class_weight = np.load(class_weight)
else:
class_weight = mmcv.load(class_weight)
return class_weight
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def binary_dice_loss(pred, target, valid_mask, smooth=1, exponent=2, **kwards):
assert pred.shape[0] == target.shape[0]
pred = pred.reshape(pred.shape[0], -1)
target = target.reshape(target.shape[0], -1)
valid_mask = valid_mask.reshape(valid_mask.shape[0], -1)
num = torch.sum(torch.mul(pred, target) * valid_mask, dim=1) * 2 + smooth
den = torch.sum(pred.pow(exponent) + target.pow(exponent), dim=1) + smooth
return 1 - num / den
@weighted_loss
def dice_loss(pred, target, valid_mask, smooth=1, exponent=2, class_weight=
None, ignore_index=255):
assert pred.shape[0] == target.shape[0]
total_loss = 0
num_classes = pred.shape[1]
for i in range(num_classes):
if i != ignore_index:
dice_loss = binary_dice_loss(pred[:, i], target[..., i],
valid_mask=valid_mask, smooth=smooth, exponent=exponent)
if class_weight is not None:
dice_loss *= class_weight[i]
total_loss += dice_loss
return total_loss / num_classes
class DiceLossNew(nn.Module):
"""DiceLoss.
This loss is proposed in `V-Net: Fully Convolutional Neural Networks for
Volumetric Medical Image Segmentation <https://arxiv.org/abs/1606.04797>`_.
Args:
loss_type (str, optional): Binary or multi-class loss.
Default: 'multi_class'. Options are "binary" and "multi_class".
smooth (float): A float number to smooth loss, and avoid NaN error.
Default: 1
exponent (float): An float number to calculate denominator
value: \\sum{x^exponent} + \\sum{y^exponent}. Default: 2.
reduction (str, optional): The method used to reduce the loss. Options
are "none", "mean" and "sum". This parameter only works when
per_image is True. Default: 'mean'.
class_weight (list[float] | str, optional): Weight of each class. If in
str format, read them from a file. Defaults to None.
loss_weight (float, optional): Weight of the loss. Default to 1.0.
ignore_index (int | None): The label index to be ignored. Default: 255.
loss_name (str, optional): Name of the loss item. If you want this loss
item to be included into the backward graph, `loss_` must be the
prefix of the name. Defaults to 'loss_dice'.
"""
def __init__(self, smooth=1, exponent=2, reduction='mean', class_weight
=None, loss_weight=1.0, ignore_index=255, loss_name='loss_dice', **
kwards):
super(DiceLossNew, self).__init__()
self.smooth = smooth
self.exponent = exponent
self.reduction = reduction
self.class_weight = get_class_weight(class_weight)
self.loss_weight = loss_weight
self.ignore_index = ignore_index
self._loss_name = loss_name
@property
def loss_name(self):
"""Loss Name.
This function must be implemented and will return the name of this
loss function. This name will be used to combine different loss items
by simple sum operation. In addition, if you want this loss item to be
included into the backward graph, `loss_` must be the prefix of the
name.
Returns:
str: The name of this loss item.
"""
return self._loss_name
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
CarnoZhao/mmsegmentation
|
DiceLoss
| false | 7,860 |
[
"Apache-2.0"
] | 18 |
bdaf3d93c4d33c3f0c15f95879fdd7ab78290c1c
|
https://github.com/CarnoZhao/mmsegmentation/tree/bdaf3d93c4d33c3f0c15f95879fdd7ab78290c1c
|
Attention
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/4n/c4nqpqrkqtv2c5ffrkecrmkabe25txkbprcacrmvb4yojiniyowg.py
# Topologically Sorted Source Nodes: [repeat, expanded_pu, pow_1, add, sum_1, query_norm, pow_2, add_1, sum_2, doc_norm, mul, prod, norm_prod, cos_sim_raw], Original ATen: [aten.repeat, aten.view, aten.pow, aten.add, aten.sum, aten.sqrt, aten.mul, aten.div]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# cos_sim_raw => div
# doc_norm => sqrt_1
# expanded_pu => view
# mul => mul
# norm_prod => mul_1
# pow_1 => pow_1
# pow_2 => pow_2
# prod => sum_3
# query_norm => sqrt
# repeat => repeat
# sum_1 => sum_1
# sum_2 => sum_2
# Graph fragment:
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%primals_1, [1, 4]), kwargs = {})
# %view : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%repeat, [4, -1]), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%view, 2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_1, 1e-05), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add, [1]), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_1,), kwargs = {})
# %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%primals_2, 2), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-05), kwargs = {})
# %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%add_1, [1]), kwargs = {})
# %sqrt_1 : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%sum_2,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %primals_2), kwargs = {})
# %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sqrt, %sqrt_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %mul_1), kwargs = {})
triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0 = async_compile.triton('triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[4, 16],
reduction_hint=ReductionHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 4
rnumel = 16
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + ((4*x0) + (r1 % 4)), xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (r1 + (16*x0)), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = 1e-05
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp8 * tmp8
tmp10 = tmp9 + tmp2
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp0 * tmp8
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(xmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = libdevice.sqrt(tmp7)
tmp21 = libdevice.sqrt(tmp14)
tmp22 = tmp20 * tmp21
tmp23 = tmp19 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + (x0), tmp23, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vm/cvmz5zb5hklcqpb7jp3aicaos5mk3fnzhheoduici43zwr4y2zyd.py
# Topologically Sorted Source Nodes: [attention_values], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# attention_values => amax, div_1, exp, sub, sum_4
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_2, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_2, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [0], True), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_4), kwargs = {})
triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 4],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 4
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp5 / tmp8
tl.store(out_ptr2 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp9, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, ), (1, ), torch.float32)
buf3 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [repeat, expanded_pu, pow_1, add, sum_1, query_norm, pow_2, add_1, sum_2, doc_norm, mul, prod, norm_prod, cos_sim_raw], Original ATen: [aten.repeat, aten.view, aten.pow, aten.add, aten.sum, aten.sqrt, aten.mul, aten.div]
stream0 = get_raw_stream(0)
triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0.run(buf3, primals_1, primals_2, 4, 16, grid=grid(4), stream=stream0)
del primals_1
del primals_2
buf4 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [fc_layers], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (1, 4), (0, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf4)
del primals_3
del primals_4
buf7 = empty_strided_cuda((4, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [attention_values], Original ATen: [aten._softmax]
triton_per_fused__softmax_1.run(buf4, buf7, 1, 4, grid=grid(1), stream=stream0)
del buf4
return (buf7, reinterpret_tensor(buf3, (1, 4), (4, 1), 0), buf7, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 16), (16, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0(in_out_ptr0,
in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + r1 % 4), xmask, other=0.0)
tmp8 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0)
tmp1 = tmp0 * tmp0
tmp2 = 1e-05
tmp3 = tmp1 + tmp2
tmp4 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK])
tmp6 = tl.where(xmask, tmp4, 0)
tmp7 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp8 * tmp8
tmp10 = tmp9 + tmp2
tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK])
tmp13 = tl.where(xmask, tmp11, 0)
tmp14 = tl.sum(tmp13, 1)[:, None]
tmp15 = tmp0 * tmp8
tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK])
tmp18 = tl.where(xmask, tmp16, 0)
tmp19 = tl.sum(tmp18, 1)[:, None]
tmp20 = libdevice.sqrt(tmp7)
tmp21 = libdevice.sqrt(tmp14)
tmp22 = tmp20 * tmp21
tmp23 = tmp19 / tmp22
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp23, xmask)
@triton.jit
def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK:
tl.constexpr):
RBLOCK: tl.constexpr = 4
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK])
tmp3 = triton_helpers.max2(tmp1, 1)[:, None]
tmp4 = tmp0 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp8 = tl.sum(tmp6, 1)[:, None]
tmp9 = tmp5 / tmp8
tl.store(out_ptr2 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp9, None)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, 16), (16, 1))
assert_size_stride(primals_3, (4, 4), (4, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_mul_pow_repeat_sqrt_sum_view_0[grid(4)](buf3,
primals_1, primals_2, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
del primals_1
del primals_2
buf4 = empty_strided_cuda((1, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_4, reinterpret_tensor(buf3, (1, 4), (0,
1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), alpha
=1, beta=1, out=buf4)
del primals_3
del primals_4
buf7 = empty_strided_cuda((4,), (1,), torch.float32)
triton_per_fused__softmax_1[grid(1)](buf4, buf7, 1, 4, XBLOCK=1,
num_warps=2, num_stages=1)
del buf4
return buf7, reinterpret_tensor(buf3, (1, 4), (4, 1), 0), buf7
def activation_func(name):
name = name.lower()
if name == 'sigmoid':
return torch.nn.Sigmoid()
elif name == 'tanh':
return torch.nn.Tanh()
elif name == 'relu':
return torch.nn.ReLU()
elif name == 'softmax':
return torch.nn.Softmax()
elif name == 'leaky_relu':
return torch.nn.LeakyReLU(0.1)
else:
return torch.nn.Sequential()
def cosine_similarity(input1, input2):
query_norm = torch.sqrt(torch.sum(input1 ** 2 + 1e-05, 1))
doc_norm = torch.sqrt(torch.sum(input2 ** 2 + 1e-05, 1))
prod = torch.sum(torch.mul(input1, input2), 1)
norm_prod = torch.mul(query_norm, doc_norm)
cos_sim_raw = torch.div(prod, norm_prod)
return cos_sim_raw
class AttentionNew(torch.nn.Module):
def __init__(self, n_k, activation='relu'):
super(AttentionNew, self).__init__()
self.n_k = n_k
self.fc_layer = torch.nn.Linear(self.n_k, self.n_k, activation_func
(activation))
self.soft_max_layer = torch.nn.Softmax()
def forward(self, input_0, input_1):
primals_1 = self.fc_layer.weight
primals_4 = self.fc_layer.bias
primals_3 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
xu94-nlp/Code-for-MAMO
|
Attention
| false | 11,029 |
[
"Apache-2.0"
] | 0 |
d9c6655e0660976c90c07fa096a1f5dc8328a60b
|
https://github.com/xu94-nlp/Code-for-MAMO/tree/d9c6655e0660976c90c07fa096a1f5dc8328a60b
|
AveragePooling
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/4d/c4dx5dtglp5hpi3omo5xmukglcgv7f2ug2u4gm65rtchytndj27z.py
# Topologically Sorted Source Nodes: [masked_fill_, x_sum, x_num_1, truediv], Original ATen: [aten.masked_fill, aten.sum, aten.clamp, aten.div]
# Source node to ATen node mapping:
# masked_fill_ => full_default, where
# truediv => div
# x_num_1 => clamp_min
# x_sum => sum_1
# Graph fragment:
# %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%expand, %full_default, %arg0_1), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%where, [1]), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%expand_1, 1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %clamp_min), kwargs = {})
triton_poi_fused_clamp_div_masked_fill_sum_0 = async_compile.triton('triton_poi_fused_clamp_div_masked_fill_sum_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_masked_fill_sum_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_clamp_div_masked_fill_sum_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = (xindex // 16)
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x3 + (64*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (4 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (16 + x3 + (64*x2)), xmask)
tmp10 = tl.load(in_ptr0 + (8 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr1 + (32 + x3 + (64*x2)), xmask)
tmp15 = tl.load(in_ptr0 + (12 + x0 + (16*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr1 + (48 + x3 + (64*x2)), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = tl.where(tmp2, tmp1, tmp3)
tmp6 = tmp5 == tmp1
tmp8 = tl.where(tmp6, tmp1, tmp7)
tmp9 = tmp4 + tmp8
tmp11 = tmp10 == tmp1
tmp13 = tl.where(tmp11, tmp1, tmp12)
tmp14 = tmp9 + tmp13
tmp16 = tmp15 == tmp1
tmp18 = tl.where(tmp16, tmp1, tmp17)
tmp19 = tmp14 + tmp18
tmp20 = 1.0
tmp21 = tmp0 == tmp20
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp5 == tmp20
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp22 + tmp24
tmp26 = tmp10 == tmp20
tmp27 = tmp26.to(tl.float32)
tmp28 = tmp25 + tmp27
tmp29 = tmp15 == tmp20
tmp30 = tmp29.to(tl.float32)
tmp31 = tmp28 + tmp30
tmp32 = triton_helpers.maximum(tmp31, tmp20)
tmp33 = tmp19 / tmp32
tl.store(out_ptr0 + (x4), tmp33, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [masked_fill_, x_sum, x_num_1, truediv], Original ATen: [aten.masked_fill, aten.sum, aten.clamp, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_clamp_div_masked_fill_sum_0.run(arg1_1, arg0_1, buf0, 64, grid=grid(64), stream=stream0)
del arg0_1
del arg1_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_masked_fill_sum_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex % 16
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr1 + (x3 + 64 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (4 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr1 + (16 + x3 + 64 * x2), xmask)
tmp10 = tl.load(in_ptr0 + (8 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp12 = tl.load(in_ptr1 + (32 + x3 + 64 * x2), xmask)
tmp15 = tl.load(in_ptr0 + (12 + x0 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp17 = tl.load(in_ptr1 + (48 + x3 + 64 * x2), xmask)
tmp1 = 0.0
tmp2 = tmp0 == tmp1
tmp4 = tl.where(tmp2, tmp1, tmp3)
tmp6 = tmp5 == tmp1
tmp8 = tl.where(tmp6, tmp1, tmp7)
tmp9 = tmp4 + tmp8
tmp11 = tmp10 == tmp1
tmp13 = tl.where(tmp11, tmp1, tmp12)
tmp14 = tmp9 + tmp13
tmp16 = tmp15 == tmp1
tmp18 = tl.where(tmp16, tmp1, tmp17)
tmp19 = tmp14 + tmp18
tmp20 = 1.0
tmp21 = tmp0 == tmp20
tmp22 = tmp21.to(tl.float32)
tmp23 = tmp5 == tmp20
tmp24 = tmp23.to(tl.float32)
tmp25 = tmp22 + tmp24
tmp26 = tmp10 == tmp20
tmp27 = tmp26.to(tl.float32)
tmp28 = tmp25 + tmp27
tmp29 = tmp15 == tmp20
tmp30 = tmp29.to(tl.float32)
tmp31 = tmp28 + tmp30
tmp32 = triton_helpers.maximum(tmp31, tmp20)
tmp33 = tmp19 / tmp32
tl.store(out_ptr0 + x4, tmp33, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4), (16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_masked_fill_sum_0[grid(64)](arg1_1,
arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class AveragePoolingNew(nn.Module):
def __init__(self):
super(AveragePoolingNew, self).__init__()
"""
(item, subitem) can be (word, characters), or (sentence, words)
x: num_items x max_subitem_size x input_size
x_mask: num_items x max_subitem_size
return num_items x input_size
"""
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
GingerNg/SDNet
|
AveragePooling
| false | 13,728 |
[
"MIT"
] | 112 |
48ad8cc57c9a02aaad10e34d0c91a174ac68f056
|
https://github.com/GingerNg/SDNet/tree/48ad8cc57c9a02aaad10e34d0c91a174ac68f056
|
ConvLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/5v/c5v7wabpbwevjm6yvut3g2fo5ffi7es7i6f733j6xjrzrnhfheet.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd]
# Source node to ATen node mapping:
# x_1 => constant_pad_nd
# Graph fragment:
# %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute, [3, 3], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 16], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 10
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = (-3) + x2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + ((-12) + y0 + (4*x2) + (16*y1)), tmp5 & xmask & ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x2 + (10*y3)), tmp6, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ee/ceel7gqb6bxxi6v5akykl67eptfcm6duyq2mtmqrub2kloaw7htp.py
# Topologically Sorted Source Nodes: [conv1d, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv1d => convolution
# x_2 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 7), (28, 7, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 10, grid=grid(16, 10), stream=stream0)
del primals_1
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv1d, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf2, primals_3, buf3, 64, grid=grid(64), stream=stream0)
del primals_3
return (reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0), primals_2, buf0, buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 7), (28, 7, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 10
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = -3 + x2
tmp1 = tl.full([1, 1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1, 1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = tl.load(in_ptr0 + (-12 + y0 + 4 * x2 + 16 * y1), tmp5 & xmask &
ymask, eviction_policy='evict_last', other=0.0)
tl.store(out_ptr0 + (x2 + 10 * y3), tmp6, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 7), (28, 7, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 10), (40, 10, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_0[grid(16, 10)](primals_1, buf0,
16, 10, XBLOCK=16, YBLOCK=16, num_warps=4, num_stages=1)
del primals_1
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
buf3 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(64)](buf2,
primals_3, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf2, (4, 4, 4), (16, 1, 4), 0
), primals_2, buf0, buf3
class ConvLayerNew(nn.Module):
"""1-D Convolution layer to extract high-level features of each time-series input
:param n_features: Number of input features/nodes
:param window_size: length of the input sequence
:param kernel_size: size of kernel to use in the convolution operation
"""
def __init__(self, n_features, kernel_size=7):
super(ConvLayerNew, self).__init__()
self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
self.conv = nn.Conv1d(in_channels=n_features, out_channels=
n_features, kernel_size=kernel_size)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
kj21choi/LATAD
|
ConvLayer
| false | 7,037 |
[
"MIT"
] | 1 |
80d91e0f251ad0225342ee30e2461a39fa9cca97
|
https://github.com/kj21choi/LATAD/tree/80d91e0f251ad0225342ee30e2461a39fa9cca97
|
Norm
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/tc/ctcoccnojrifwsjhb4gqgfu5kxpt6dvdpv4qwca7cbgn27ktptbk.py
# Topologically Sorted Source Nodes: [x_mean, x_variance, sub, add, normalized_x, mul, y], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# mul => mul
# normalized_x => div
# sub => sub
# x_mean => mean
# x_variance => sqrt, var
# y => add_1
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [-1]), kwargs = {correction: 1.0, keepdim: True})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%var,), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sqrt, 1e-06), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %div), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %primals_3), kwargs = {})
triton_poi_fused_add_div_mean_mul_std_sub_0 = async_compile.triton('triton_poi_fused_add_div_mean_mul_std_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mean_mul_std_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + (x2), tmp31, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_mean, x_variance, sub, add, normalized_x, mul, y], Original ATen: [aten.mean, aten.std, aten.sub, aten.add, aten.div, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0)
del primals_2
del primals_3
return (buf0, primals_1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mean_mul_std_sub_0(in_ptr0, in_ptr1, in_ptr2,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = libdevice.sqrt(tmp24)
tmp26 = 1e-06
tmp27 = tmp25 + tmp26
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_std_sub_0[grid(256)](primals_2,
primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4,
num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class NormNew(nn.Module):
def __init__(self, d_model, eps=1e-06):
super().__init__()
self.size = d_model
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, input_0):
primals_2 = self.alpha
primals_3 = self.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
msank00/miniTransformer
|
Norm
| false | 12,802 |
[
"MIT"
] | 0 |
a264f30982d9e2dbf8c796d495f7a237c0dd53ef
|
https://github.com/msank00/miniTransformer/tree/a264f30982d9e2dbf8c796d495f7a237c0dd53ef
|
Net
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 16 * 16, 8000)
self.fc2 = nn.Linear(8000, 500)
self.fc3 = nn.Linear(500, 2)
self.dropout = nn.Dropout(0.25)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = self.pool(F.relu(self.conv3(x)))
x = x.view(-1, 64 * 16 * 16)
x = self.dropout(x)
x = F.relu(self.fc1(x))
x = self.dropout(x)
x = F.relu(self.fc2(x))
x = self.dropout(x)
x = torch.sigmoid(self.fc3(x))
return x
def get_inputs():
return [torch.rand([4, 3, 64, 64])]
def get_init_inputs():
return [[], {}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 16
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 1024 % 32
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 64 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (32 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (33 + 2 * x0 + 64 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 256 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 32 * x1), None, eviction_policy=
'evict_last')
tmp7 = tl.load(in_ptr0 + (16 + 2 * x0 + 32 * x1), None, eviction_policy
='evict_last')
tmp12 = tl.load(in_ptr0 + (17 + 2 * x0 + 32 * x1), None,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + x2, tmp15, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 8000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 500
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x0, tmp4, xmask)
@triton.jit
def triton_poi_fused_sigmoid_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 2
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x0, tmp3, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (16, 3, 3, 3), (27, 9, 3, 1))
assert_size_stride(primals_2, (16,), (1,))
assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_4, (32, 16, 3, 3), (144, 9, 3, 1))
assert_size_stride(primals_5, (32,), (1,))
assert_size_stride(primals_6, (64, 32, 3, 3), (288, 9, 3, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (8000, 16384), (16384, 1))
assert_size_stride(primals_9, (8000,), (1,))
assert_size_stride(primals_10, (500, 8000), (8000, 1))
assert_size_stride(primals_11, (500,), (1,))
assert_size_stride(primals_12, (2, 500), (500, 1))
assert_size_stride(primals_13, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 16, 64, 64), (65536, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(262144)](buf1, primals_2,
262144, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 16, 32, 32), (16384, 1024, 32, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(65536)](buf1, buf2,
buf3, 65536, XBLOCK=512, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 32, 32, 32), (32768, 1024, 32, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_relu_2[grid(131072)](buf5, primals_5,
131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf6 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.float32)
buf7 = empty_strided_cuda((4, 32, 16, 16), (8192, 256, 16, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_3[grid(32768)](buf5, buf6,
buf7, 32768, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = extern_kernels.convolution(buf6, primals_6, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 64, 16, 16), (16384, 256, 16, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(65536)](buf9, primals_7,
65536, XBLOCK=512, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.int8)
buf11 = empty_strided_cuda((4, 64, 8, 8), (4096, 64, 8, 1), torch.
float32)
triton_poi_fused_max_pool2d_with_indices_5[grid(16384)](buf9, buf10,
buf11, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf12 = empty_strided_cuda((1, 8000), (8000, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf11, (1, 16384), (0, 1), 0),
reinterpret_tensor(primals_8, (16384, 8000), (1, 16384), 0),
out=buf12)
buf13 = buf12
del buf12
triton_poi_fused_relu_6[grid(8000)](buf13, primals_9, 8000, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_9
buf14 = empty_strided_cuda((1, 500), (500, 1), torch.float32)
extern_kernels.mm(buf13, reinterpret_tensor(primals_10, (8000, 500),
(1, 8000), 0), out=buf14)
buf15 = buf14
del buf14
triton_poi_fused_relu_7[grid(500)](buf15, primals_11, 500, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_11
buf16 = empty_strided_cuda((1, 2), (2, 1), torch.float32)
extern_kernels.mm(buf15, reinterpret_tensor(primals_12, (500, 2), (
1, 500), 0), out=buf16)
buf17 = buf16
del buf16
triton_poi_fused_sigmoid_8[grid(2)](buf17, primals_13, 2, XBLOCK=2,
num_warps=1, num_stages=1)
del primals_13
return (buf17, primals_1, primals_3, primals_4, primals_6, buf1, buf2,
buf3, buf5, buf6, buf7, buf9, buf10, reinterpret_tensor(buf11, (1,
16384), (16384, 1), 0), buf13, buf15, buf17, primals_12, primals_10,
primals_8)
class NetNew(nn.Module):
def __init__(self):
super(NetNew, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, padding=1)
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
self.pool = nn.MaxPool2d(2, 2)
self.fc1 = nn.Linear(64 * 16 * 16, 8000)
self.fc2 = nn.Linear(8000, 500)
self.fc3 = nn.Linear(500, 2)
self.dropout = nn.Dropout(0.25)
def forward(self, input_0):
primals_1 = self.conv1.weight
primals_2 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.fc1.weight
primals_9 = self.fc1.bias
primals_10 = self.fc2.weight
primals_11 = self.fc2.bias
primals_12 = self.fc3.weight
primals_13 = self.fc3.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
LSaldyt/laser-dog
|
Net
| false | 9,516 |
[
"MIT"
] | 0 |
168c8bfea95dcd27a499f00f191232d67ae63c1c
|
https://github.com/LSaldyt/laser-dog/tree/168c8bfea95dcd27a499f00f191232d67ae63c1c
|
Minibatch_stddev_layer
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/kd/ckdiefxtppglvtsgjgaajhzhyzrxhhjcgisaniawn5rbjhy5zgvd.py
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5, y_6], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
# Source node to ATen node mapping:
# add => add
# mean => mean
# pow_1 => pow_1
# y_1 => sub
# y_2 => mean_1
# y_3 => sqrt
# y_4 => mean_2
# y_5 => mean_3
# y_6 => repeat
# Graph fragment:
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%view, [0], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %mean), kwargs = {})
# %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sub, 2), kwargs = {})
# %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%pow_1, [0]), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mean_1, 1e-08), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%sqrt, [2, 3, 4], True), kwargs = {})
# %mean_3 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_2, [2]), kwargs = {})
# %repeat : [num_users=1] = call_function[target=torch.ops.aten.repeat.default](args = (%mean_3, [4, 1, 4, 4]), kwargs = {})
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0 = async_compile.triton('triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 64],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=(2,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_pow_repeat_sqrt_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr):
xnumel = 1
rnumel = 64
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
roffset = 0
rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = (rindex // 16)
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tmp29 = 1.0
tmp30 = tmp28 / tmp29
tl.store(out_ptr1 + (tl.broadcast_to(r1 + (80*r2), [XBLOCK, RBLOCK])), tmp30, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/yi/cyidf2yj3fms5jdxlfe7fdijzfj6p5a5q2qxo4llkuxnpqh6fj5o.py
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# cat => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%arg0_1, %repeat], 1), kwargs = {})
triton_poi_fused_cat_1 = async_compile.triton('triton_poi_fused_cat_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = (xindex // 64)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tl.store(out_ptr0 + (x0 + (80*x1)), tmp0, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64) # alias
# Topologically Sorted Source Nodes: [mean, y_1, pow_1, y_2, add, y_3, y_4, y_5, y_6], Original ATen: [aten.mean, aten.sub, aten.pow, aten.add, aten.sqrt, aten.repeat]
stream0 = get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0.run(arg0_1, buf2, 1, 64, grid=grid(1), stream=stream0)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0) # alias
# Topologically Sorted Source Nodes: [cat], Original ATen: [aten.cat]
triton_poi_fused_cat_1.run(arg0_1, buf1, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused_add_mean_pow_repeat_sqrt_sub_0(in_ptr0, out_ptr1,
xnumel, rnumel, XBLOCK: tl.constexpr):
RBLOCK: tl.constexpr = 64
xoffset = tl.program_id(0) * XBLOCK
xoffset + tl.arange(0, XBLOCK)[:, None]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r0 = rindex
r1 = rindex % 16
r2 = rindex // 16
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr0 + (64 + r0), None)
tmp3 = tl.load(in_ptr0 + (128 + r0), None)
tmp5 = tl.load(in_ptr0 + (192 + r0), None)
tmp2 = tmp0 + tmp1
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp7 = 4.0
tmp8 = tmp6 / tmp7
tmp9 = tmp0 - tmp8
tmp10 = tmp9 * tmp9
tmp11 = tmp1 - tmp8
tmp12 = tmp11 * tmp11
tmp13 = tmp10 + tmp12
tmp14 = tmp3 - tmp8
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp8
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp19 / tmp7
tmp21 = 1e-08
tmp22 = tmp20 + tmp21
tmp23 = libdevice.sqrt(tmp22)
tmp24 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK])
tmp26 = tl.sum(tmp24, 1)[:, None]
tmp27 = 64.0
tmp28 = tmp26 / tmp27
tmp29 = 1.0
tmp30 = tmp28 / tmp29
tl.store(out_ptr1 + tl.broadcast_to(r1 + 80 * r2, [XBLOCK, RBLOCK]),
tmp30, None)
@triton.jit
def triton_poi_fused_cat_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 64
x1 = xindex // 64
tmp0 = tl.load(in_ptr0 + x2, xmask)
tl.store(out_ptr0 + (x0 + 80 * x1), tmp0, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf3 = empty_strided_cuda((4, 5, 4, 4), (80, 16, 4, 1), torch.float32)
buf2 = reinterpret_tensor(buf3, (4, 1, 4, 4), (80, 16, 4, 1), 64)
get_raw_stream(0)
triton_per_fused_add_mean_pow_repeat_sqrt_sub_0[grid(1)](arg0_1,
buf2, 1, 64, XBLOCK=1, num_warps=2, num_stages=1)
buf1 = reinterpret_tensor(buf3, (4, 4, 4, 4), (80, 16, 4, 1), 0)
triton_poi_fused_cat_1[grid(256)](arg0_1, buf1, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf3,
class Minibatch_stddev_layerNew(nn.Module):
"""
Minibatch standard deviation layer. (D_stylegan2)
"""
def __init__(self, group_size=4, num_new_features=1):
super().__init__()
self.group_size = group_size
self.num_new_features = num_new_features
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Iceland-Leo/StyleGAN2_PyTorch
|
Minibatch_stddev_layer
| false | 5,322 |
[
"MIT"
] | 1 |
3621f5e4ba1c7fde7e2fae1f4700d050656a0b02
|
https://github.com/Iceland-Leo/StyleGAN2_PyTorch/tree/3621f5e4ba1c7fde7e2fae1f4700d050656a0b02
|
NTM
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/73/c73dfvvwnsel4knqrcweibmutqlsocw2adin6ttrejza5e3sylp5.py
# Topologically Sorted Source Nodes: [e1], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# e1 => relu
# Graph fragment:
# %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {})
triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/jz/cjzinezasvhkdapb4loejpgey7kmckbefzwmpql73yeknocwxue2.py
# Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# e1_1 => relu_1
# Graph fragment:
# %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
tl.store(out_ptr0 + (x2), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/ns/cnszijuiz432ctw37rqktvk3syr2vugzeuatmva3neoizic6f3sq.py
# Topologically Sorted Source Nodes: [g1], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# g1 => tanh
# Graph fragment:
# %add_tensor_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_2, %primals_12), kwargs = {})
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%add_tensor_2,), kwargs = {})
triton_poi_fused_tanh_2 = async_compile.triton('triton_poi_fused_tanh_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/e3/ce3awwui6azorvya5mylijhwq6pxpyh7wddzrdkjd5loisybpcql.py
# Topologically Sorted Source Nodes: [g1_3, g1_4], Original ATen: [aten.tanh, aten.add]
# Source node to ATen node mapping:
# g1_3 => tanh_3
# g1_4 => add_1
# Graph fragment:
# %tanh_3 : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%addmm_7,), kwargs = {})
# %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%tanh_3, %addmm_2), kwargs = {})
triton_poi_fused_add_tanh_3 = async_compile.triton('triton_poi_fused_add_tanh_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_tanh_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp2 = tl.load(in_ptr1 + (x0), xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tmp1 + tmp2
tl.store(out_ptr0 + (x0), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/iv/civdgwzpphyda4rs4fr3g6w25bprv7bn4anqgivrgzavi7xr5pdl.py
# Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# d1 => amax, exp, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_8, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_8, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
triton_poi_fused__softmax_4 = async_compile.triton('triton_poi_fused__softmax_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/a4/ca4u6hbohfqkgchihihlu5hrf3vuqm27r2ncsg7xb6g4ikttl2at.py
# Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax]
# Source node to ATen node mapping:
# d1 => div, sum_1
# Graph fragment:
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = (xindex // 4)
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (500, 4), (4, 1))
assert_size_stride(primals_3, (500, ), (1, ))
assert_size_stride(primals_4, (500, 500), (500, 1))
assert_size_stride(primals_5, (500, ), (1, ))
assert_size_stride(primals_6, (500, 4), (4, 1))
assert_size_stride(primals_7, (4, 500), (500, 1))
assert_size_stride(primals_8, (4, ), (1, ))
assert_size_stride(primals_9, (4, 500), (500, 1))
assert_size_stride(primals_10, (4, ), (1, ))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4, ), (1, ))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4, ), (1, ))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4, ), (1, ))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4, ), (1, ))
assert_size_stride(primals_19, (4, 4), (4, 1))
assert_size_stride(primals_20, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 500), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [e1], Original ATen: [aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_relu_0.run(buf1, primals_3, 32000, grid=grid(32000), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 500), (1, 500), 0), out=buf2)
buf3 = buf2; del buf2 # reuse
buf18 = empty_strided_cuda((64, 500), (500, 1), torch.bool)
# Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu, aten.threshold_backward]
triton_poi_fused_relu_threshold_backward_1.run(buf3, primals_5, buf18, 32000, grid=grid(32000), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [e1_1], Original ATen: [aten.relu]
extern_kernels.addmm(buf3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 500), (1, 4), 0), alpha=1, beta=1, out=buf4)
del buf3
del primals_6
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9, (500, 4), (1, 500), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf5, reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf7)
buf8 = buf7; del buf7 # reuse
# Topologically Sorted Source Nodes: [g1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf8, primals_12, 256, grid=grid(256), stream=stream0)
del primals_12
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf8, reinterpret_tensor(primals_13, (4, 4), (1, 4), 0), out=buf9)
buf10 = buf9; del buf9 # reuse
# Topologically Sorted Source Nodes: [g1_1], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf10, primals_14, 256, grid=grid(256), stream=stream0)
del primals_14
buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf10, reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), out=buf11)
buf12 = buf11; del buf11 # reuse
# Topologically Sorted Source Nodes: [g1_2], Original ATen: [aten.tanh]
triton_poi_fused_tanh_2.run(buf12, primals_16, 256, grid=grid(256), stream=stream0)
del primals_16
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_8], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_18, buf12, reinterpret_tensor(primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_18
buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [g1_3, g1_4], Original ATen: [aten.tanh, aten.add]
triton_poi_fused_add_tanh_3.run(buf13, buf5, buf14, 256, grid=grid(256), stream=stream0)
buf15 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [linear_9], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_20, buf14, reinterpret_tensor(primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_20
buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_4.run(buf15, buf16, 256, grid=grid(256), stream=stream0)
buf17 = buf15; del buf15 # reuse
# Topologically Sorted Source Nodes: [d1], Original ATen: [aten._softmax]
triton_poi_fused__softmax_5.run(buf16, buf17, 256, grid=grid(256), stream=stream0)
del buf16
return (buf5, buf14, buf17, buf6, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf1, buf4, buf5, buf8, buf10, buf12, buf13, buf14, buf17, primals_19, primals_17, primals_15, primals_13, primals_11, primals_9, primals_7, buf18, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((500, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((500, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import logging
import numpy as np
from torch.nn import functional as F
import torch.multiprocessing
from torch import nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_1(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 32000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
@triton.jit
def triton_poi_fused_tanh_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused_add_tanh_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = libdevice.tanh(tmp0)
tmp3 = tmp1 + tmp2
tl.store(out_ptr0 + x0, tmp3, xmask)
@triton.jit
def triton_poi_fused__softmax_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (500, 4), (4, 1))
assert_size_stride(primals_3, (500,), (1,))
assert_size_stride(primals_4, (500, 500), (500, 1))
assert_size_stride(primals_5, (500,), (1,))
assert_size_stride(primals_6, (500, 4), (4, 1))
assert_size_stride(primals_7, (4, 500), (500, 1))
assert_size_stride(primals_8, (4,), (1,))
assert_size_stride(primals_9, (4, 500), (500, 1))
assert_size_stride(primals_10, (4,), (1,))
assert_size_stride(primals_11, (4, 4), (4, 1))
assert_size_stride(primals_12, (4,), (1,))
assert_size_stride(primals_13, (4, 4), (4, 1))
assert_size_stride(primals_14, (4,), (1,))
assert_size_stride(primals_15, (4, 4), (4, 1))
assert_size_stride(primals_16, (4,), (1,))
assert_size_stride(primals_17, (4, 4), (4, 1))
assert_size_stride(primals_18, (4,), (1,))
assert_size_stride(primals_19, (4, 4), (4, 1))
assert_size_stride(primals_20, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 500), (1, 4), 0), out=buf0)
del primals_2
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_relu_0[grid(32000)](buf1, primals_3, 32000, XBLOCK
=256, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 500), (
1, 500), 0), out=buf2)
buf3 = buf2
del buf2
buf18 = empty_strided_cuda((64, 500), (500, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_1[grid(32000)](buf3,
primals_5, buf18, 32000, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((64, 500), (500, 1), torch.float32)
extern_kernels.addmm(buf3, reinterpret_tensor(primals_1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_6, (4, 500), (1, 4), 0),
alpha=1, beta=1, out=buf4)
del buf3
del primals_6
buf5 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_8, buf4, reinterpret_tensor(primals_7,
(500, 4), (1, 500), 0), alpha=1, beta=1, out=buf5)
del primals_8
buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_10, buf4, reinterpret_tensor(primals_9,
(500, 4), (1, 500), 0), alpha=1, beta=1, out=buf6)
del primals_10
buf7 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf5, reinterpret_tensor(primals_11, (4, 4), (1,
4), 0), out=buf7)
buf8 = buf7
del buf7
triton_poi_fused_tanh_2[grid(256)](buf8, primals_12, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_12
buf9 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf8, reinterpret_tensor(primals_13, (4, 4), (1,
4), 0), out=buf9)
buf10 = buf9
del buf9
triton_poi_fused_tanh_2[grid(256)](buf10, primals_14, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_14
buf11 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(buf10, reinterpret_tensor(primals_15, (4, 4), (1,
4), 0), out=buf11)
buf12 = buf11
del buf11
triton_poi_fused_tanh_2[grid(256)](buf12, primals_16, 256, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_16
buf13 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_18, buf12, reinterpret_tensor(
primals_17, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf13)
del primals_18
buf14 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused_add_tanh_3[grid(256)](buf13, buf5, buf14, 256,
XBLOCK=256, num_warps=4, num_stages=1)
buf15 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_20, buf14, reinterpret_tensor(
primals_19, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf15)
del primals_20
buf16 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
triton_poi_fused__softmax_4[grid(256)](buf15, buf16, 256, XBLOCK=
256, num_warps=4, num_stages=1)
buf17 = buf15
del buf15
triton_poi_fused__softmax_5[grid(256)](buf16, buf17, 256, XBLOCK=
256, num_warps=4, num_stages=1)
del buf16
return (buf5, buf14, buf17, buf6, reinterpret_tensor(primals_1, (64, 4),
(4, 1), 0), buf1, buf4, buf5, buf8, buf10, buf12, buf13, buf14,
buf17, primals_19, primals_17, primals_15, primals_13, primals_11,
primals_9, primals_7, buf18, primals_4)
class NTMNew(nn.Module):
def __init__(self, opt, hidden_dim=500, l1_strength=0.001):
super(NTMNew, self).__init__()
self.input_dim = opt.bow_vocab_size
self.topic_num = opt.topic_num
topic_num = opt.topic_num
self.fc11 = nn.Linear(self.input_dim, hidden_dim)
self.fc12 = nn.Linear(hidden_dim, hidden_dim)
self.fc21 = nn.Linear(hidden_dim, topic_num)
self.fc22 = nn.Linear(hidden_dim, topic_num)
self.fcs = nn.Linear(self.input_dim, hidden_dim, bias=False)
self.fcg1 = nn.Linear(topic_num, topic_num)
self.fcg2 = nn.Linear(topic_num, topic_num)
self.fcg3 = nn.Linear(topic_num, topic_num)
self.fcg4 = nn.Linear(topic_num, topic_num)
self.fcd1 = nn.Linear(topic_num, self.input_dim)
self.l1_strength = torch.FloatTensor([l1_strength])
def encode(self, x):
e1 = F.relu(self.fc11(x))
e1 = F.relu(self.fc12(e1))
e1 = e1.add(self.fcs(x))
return self.fc21(e1), self.fc22(e1)
def reparameterize(self, mu, logvar):
if self.training:
std = torch.exp(0.5 * logvar)
eps = torch.randn_like(std)
return eps.mul(std).add_(mu)
else:
return mu
def generate(self, h):
g1 = torch.tanh(self.fcg1(h))
g1 = torch.tanh(self.fcg2(g1))
g1 = torch.tanh(self.fcg3(g1))
g1 = torch.tanh(self.fcg4(g1))
g1 = g1.add(h)
return g1
def decode(self, z):
d1 = F.softmax(self.fcd1(z), dim=1)
return d1
def print_topic_words(self, vocab_dic, fn, n_top_words=10):
beta_exp = self.fcd1.weight.data.cpu().numpy().T
logging.info('Writing to %s' % fn)
fw = open(fn, 'w')
for k, beta_k in enumerate(beta_exp):
topic_words = [vocab_dic[w_id] for w_id in np.argsort(beta_k)[:
-n_top_words - 1:-1]]
None
fw.write('{}\n'.format(' '.join(topic_words)))
fw.close()
def get_topic_words(self):
return self.fcd1.weight.T
def forward(self, input_0):
primals_2 = self.fc11.weight
primals_3 = self.fc11.bias
primals_4 = self.fc12.weight
primals_5 = self.fc12.bias
primals_7 = self.fc21.weight
primals_8 = self.fc21.bias
primals_9 = self.fc22.weight
primals_10 = self.fc22.bias
primals_6 = self.fcs.weight
primals_11 = self.fcg1.weight
primals_12 = self.fcg1.bias
primals_13 = self.fcg2.weight
primals_14 = self.fcg2.bias
primals_15 = self.fcg3.weight
primals_16 = self.fcg3.bias
primals_17 = self.fcg4.weight
primals_18 = self.fcg4.bias
primals_19 = self.fcd1.weight
primals_20 = self.fcd1.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20])
return output[0], output[1], output[2], output[3], output[4]
|
WuDiDaBinGe/TAKG
|
NTM
| false | 1,899 |
[
"MIT"
] | 0 |
83e608e677a4ee74722d18cb5ef430f4f6c6ad31
|
https://github.com/WuDiDaBinGe/TAKG/tree/83e608e677a4ee74722d18cb5ef430f4f6c6ad31
|
CompositeActivation
|
import torch
class CompositeActivation(torch.nn.Module):
def forward(self, x):
x = torch.atan(x)
return torch.cat([x / 0.67, x * x / 0.6], 1)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = libdevice.atan(tmp5)
tmp7 = 1.4925373134328357
tmp8 = tmp6 * tmp7
tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype)
tmp10 = tl.where(tmp4, tmp8, tmp9)
tmp11 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp14 = tl.load(in_ptr0 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp11 &
xmask, other=0.0)
tmp15 = libdevice.atan(tmp14)
tmp16 = tmp15 * tmp15
tmp17 = 1.6666666666666667
tmp18 = tmp16 * tmp17
tmp19 = tl.full(tmp18.shape, 0.0, tmp18.dtype)
tmp20 = tl.where(tmp11, tmp18, tmp19)
tmp21 = tl.where(tmp4, tmp10, tmp20)
tl.store(out_ptr0 + x3, tmp21, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](arg0_1, buf0, 512, XBLOCK=128,
num_warps=4, num_stages=1)
del arg0_1
return buf0,
class CompositeActivationNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ndey96/lucent
|
CompositeActivation
| false | 10,602 |
[
"Apache-2.0"
] | 0 |
d868d8ca52520bd245c1e5fcf3b026782f77e561
|
https://github.com/ndey96/lucent/tree/d868d8ca52520bd245c1e5fcf3b026782f77e561
|
MaxPoolPad
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/jf/cjf7zenaxtvwhbfrvvghsyyrrhxyrlvtj5rotfw7n2nqtvscv3l7.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x => constant_pad_nd
# x_1 => _low_memory_max_pool2d_with_offsets
# Graph fragment:
# %constant_pad_nd : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%arg0_1, [1, 0, 1, 0], 0.0), kwargs = {})
# %_low_memory_max_pool2d_with_offsets : [num_users=1] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%constant_pad_nd, [3, 3], [2, 2], [1, 1], [1, 1], False), kwargs = {})
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 3) % 3
x0 = xindex % 3
x2 = (xindex // 9)
x4 = xindex
tmp0 = (-1) + (2*x1)
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = (-1) + (2*x0)
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = (-2) + (2*x1)
tmp12 = tmp11 >= tmp1
tmp13 = (-2) + (2*x0)
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + ((-10) + (2*x0) + (8*x1) + (16*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, float("-inf"), tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2*x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + ((-9) + (2*x0) + (8*x1) + (16*x2)), tmp26 & xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, float("-inf"), tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp19)
tmp31 = 1 + (2*x0)
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + ((-8) + (2*x0) + (8*x1) + (16*x2)), tmp37 & xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, float("-inf"), tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp40, tmp30)
tmp42 = 2*x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + ((-6) + (2*x0) + (8*x1) + (16*x2)), tmp48 & xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, float("-inf"), tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = triton_helpers.maximum(tmp51, tmp41)
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + ((-5) + (2*x0) + (8*x1) + (16*x2)), tmp55 & xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, float("-inf"), tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = triton_helpers.maximum(tmp58, tmp52)
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + ((-4) + (2*x0) + (8*x1) + (16*x2)), tmp62 & xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, float("-inf"), tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = triton_helpers.maximum(tmp65, tmp59)
tmp67 = 1 + (2*x1)
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + ((-2) + (2*x0) + (8*x1) + (16*x2)), tmp73 & xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, float("-inf"), tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = triton_helpers.maximum(tmp76, tmp66)
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + ((-1) + (2*x0) + (8*x1) + (16*x2)), tmp80 & xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, float("-inf"), tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + ((2*x0) + (8*x1) + (16*x2)), tmp87 & xmask, eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, float("-inf"), tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = triton_helpers.maximum(tmp90, tmp84)
tl.store(out_ptr0 + (x4), tmp91, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.constant_pad_nd, aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0.run(arg0_1, buf0, 144, grid=grid(144), stream=stream0)
del arg0_1
return (reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.utils.data
import torch.nn as nn
from torch import optim as optim
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0(in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 3 % 3
x0 = xindex % 3
x2 = xindex // 9
x4 = xindex
tmp0 = -1 + 2 * x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 5, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tmp2 & tmp4
tmp6 = -1 + 2 * x0
tmp7 = tmp6 >= tmp1
tmp8 = tmp6 < tmp3
tmp9 = tmp7 & tmp8
tmp10 = tmp5 & tmp9
tmp11 = -2 + 2 * x1
tmp12 = tmp11 >= tmp1
tmp13 = -2 + 2 * x0
tmp14 = tmp13 >= tmp1
tmp15 = tmp12 & tmp14
tmp16 = tmp15 & tmp10
tmp17 = tl.load(in_ptr0 + (-10 + 2 * x0 + 8 * x1 + 16 * x2), tmp16 &
xmask, eviction_policy='evict_last', other=0.0)
tmp18 = tl.full(tmp17.shape, float('-inf'), tmp17.dtype)
tmp19 = tl.where(tmp10, tmp17, tmp18)
tmp20 = 2 * x0
tmp21 = tmp20 >= tmp1
tmp22 = tmp20 < tmp3
tmp23 = tmp21 & tmp22
tmp24 = tmp5 & tmp23
tmp25 = tmp12 & tmp7
tmp26 = tmp25 & tmp24
tmp27 = tl.load(in_ptr0 + (-9 + 2 * x0 + 8 * x1 + 16 * x2), tmp26 &
xmask, eviction_policy='evict_last', other=0.0)
tmp28 = tl.full(tmp27.shape, float('-inf'), tmp27.dtype)
tmp29 = tl.where(tmp24, tmp27, tmp28)
tmp30 = triton_helpers.maximum(tmp29, tmp19)
tmp31 = 1 + 2 * x0
tmp32 = tmp31 >= tmp1
tmp33 = tmp31 < tmp3
tmp34 = tmp32 & tmp33
tmp35 = tmp5 & tmp34
tmp36 = tmp12 & tmp21
tmp37 = tmp36 & tmp35
tmp38 = tl.load(in_ptr0 + (-8 + 2 * x0 + 8 * x1 + 16 * x2), tmp37 &
xmask, eviction_policy='evict_last', other=0.0)
tmp39 = tl.full(tmp38.shape, float('-inf'), tmp38.dtype)
tmp40 = tl.where(tmp35, tmp38, tmp39)
tmp41 = triton_helpers.maximum(tmp40, tmp30)
tmp42 = 2 * x1
tmp43 = tmp42 >= tmp1
tmp44 = tmp42 < tmp3
tmp45 = tmp43 & tmp44
tmp46 = tmp45 & tmp9
tmp47 = tmp2 & tmp14
tmp48 = tmp47 & tmp46
tmp49 = tl.load(in_ptr0 + (-6 + 2 * x0 + 8 * x1 + 16 * x2), tmp48 &
xmask, eviction_policy='evict_last', other=0.0)
tmp50 = tl.full(tmp49.shape, float('-inf'), tmp49.dtype)
tmp51 = tl.where(tmp46, tmp49, tmp50)
tmp52 = triton_helpers.maximum(tmp51, tmp41)
tmp53 = tmp45 & tmp23
tmp54 = tmp2 & tmp7
tmp55 = tmp54 & tmp53
tmp56 = tl.load(in_ptr0 + (-5 + 2 * x0 + 8 * x1 + 16 * x2), tmp55 &
xmask, eviction_policy='evict_last', other=0.0)
tmp57 = tl.full(tmp56.shape, float('-inf'), tmp56.dtype)
tmp58 = tl.where(tmp53, tmp56, tmp57)
tmp59 = triton_helpers.maximum(tmp58, tmp52)
tmp60 = tmp45 & tmp34
tmp61 = tmp2 & tmp21
tmp62 = tmp61 & tmp60
tmp63 = tl.load(in_ptr0 + (-4 + 2 * x0 + 8 * x1 + 16 * x2), tmp62 &
xmask, eviction_policy='evict_last', other=0.0)
tmp64 = tl.full(tmp63.shape, float('-inf'), tmp63.dtype)
tmp65 = tl.where(tmp60, tmp63, tmp64)
tmp66 = triton_helpers.maximum(tmp65, tmp59)
tmp67 = 1 + 2 * x1
tmp68 = tmp67 >= tmp1
tmp69 = tmp67 < tmp3
tmp70 = tmp68 & tmp69
tmp71 = tmp70 & tmp9
tmp72 = tmp43 & tmp14
tmp73 = tmp72 & tmp71
tmp74 = tl.load(in_ptr0 + (-2 + 2 * x0 + 8 * x1 + 16 * x2), tmp73 &
xmask, eviction_policy='evict_last', other=0.0)
tmp75 = tl.full(tmp74.shape, float('-inf'), tmp74.dtype)
tmp76 = tl.where(tmp71, tmp74, tmp75)
tmp77 = triton_helpers.maximum(tmp76, tmp66)
tmp78 = tmp70 & tmp23
tmp79 = tmp43 & tmp7
tmp80 = tmp79 & tmp78
tmp81 = tl.load(in_ptr0 + (-1 + 2 * x0 + 8 * x1 + 16 * x2), tmp80 &
xmask, eviction_policy='evict_last', other=0.0)
tmp82 = tl.full(tmp81.shape, float('-inf'), tmp81.dtype)
tmp83 = tl.where(tmp78, tmp81, tmp82)
tmp84 = triton_helpers.maximum(tmp83, tmp77)
tmp85 = tmp70 & tmp34
tmp86 = tmp43 & tmp21
tmp87 = tmp86 & tmp85
tmp88 = tl.load(in_ptr0 + (2 * x0 + 8 * x1 + 16 * x2), tmp87 & xmask,
eviction_policy='evict_last', other=0.0)
tmp89 = tl.full(tmp88.shape, float('-inf'), tmp88.dtype)
tmp90 = tl.where(tmp85, tmp88, tmp89)
tmp91 = triton_helpers.maximum(tmp90, tmp84)
tl.store(out_ptr0 + x4, tmp91, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_constant_pad_nd_max_pool2d_with_indices_0[grid(144)](
arg0_1, buf0, 144, XBLOCK=128, num_warps=4, num_stages=1)
del arg0_1
return reinterpret_tensor(buf0, (4, 4, 2, 2), (36, 9, 3, 1), 4),
class MaxPoolPadNew(nn.Module):
def __init__(self):
super(MaxPoolPadNew, self).__init__()
self.pad = nn.ZeroPad2d((1, 0, 1, 0))
self.pool = nn.MaxPool2d(3, stride=2, padding=1)
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
Exir-lxr/crldr-prune-pytorch
|
MaxPoolPad
| false | 2,286 |
[
"Apache-2.0"
] | 0 |
adeb5e0b24ce66ff9531d4d947f72412c1b5c033
|
https://github.com/Exir-lxr/crldr-prune-pytorch/tree/adeb5e0b24ce66ff9531d4d947f72412c1b5c033
|
SmoothL1Loss
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/t7/ct7n4vk2rjfplrvzzjcijiow2tdczppexhay5gcikb3dfjajcdzu.py
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
# Source node to ATen node mapping:
# diff => abs_1
# loss => where
# loss_1 => mean
# loss_bbox => mul_2
# lt => lt
# mul => mul
# mul_1 => mul_1
# sub => sub
# sub_1 => sub_1
# truediv => div
# Graph fragment:
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {})
# %abs_1 : [num_users=4] = call_function[target=torch.ops.aten.abs.default](args = (%sub,), kwargs = {})
# %lt : [num_users=1] = call_function[target=torch.ops.aten.lt.Scalar](args = (%abs_1, 1.0), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %abs_1), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%abs_1, 0.5), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%lt, %div, %sub_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%where,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1.0), kwargs = {})
triton_per_fused_abs_div_lt_mean_mul_sub_where_0 = async_compile.triton('triton_per_fused_abs_div_lt_mean_mul_sub_where_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.persistent_reduction(
size_hints=[1, 256],
reduction_hint=ReductionHint.INNER,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_abs_div_lt_mean_mul_sub_where_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}
)
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel):
xnumel = 1
XBLOCK: tl.constexpr = 1
rnumel = 256
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = tl.full([1], xoffset, tl.int32)
xmask = tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
roffset = 0
rmask = tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + (r0), None)
tmp1 = tl.load(in_ptr1 + (r0), None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp17, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [sub, diff, lt, mul, mul_1, truediv, sub_1, loss, loss_1, loss_bbox], Original ATen: [aten.sub, aten.abs, aten.lt, aten.mul, aten.div, aten.where, aten.mean]
stream0 = get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0.run(buf1, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0)
del arg0_1
del arg1_1
return (buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1, arg1_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import functools
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_abs_div_lt_mean_mul_sub_where_0(in_out_ptr0, in_ptr0,
in_ptr1, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = tmp0 - tmp1
tmp3 = tl_math.abs(tmp2)
tmp4 = 1.0
tmp5 = tmp3 < tmp4
tmp6 = 0.5
tmp7 = tmp3 * tmp6
tmp8 = tmp7 * tmp3
tmp9 = tmp8 * tmp4
tmp10 = tmp3 - tmp6
tmp11 = tl.where(tmp5, tmp9, tmp10)
tmp12 = tl.broadcast_to(tmp11, [RBLOCK])
tmp14 = triton_helpers.promote_to_tensor(tl.sum(tmp12, 0))
tmp15 = 256.0
tmp16 = tmp14 / tmp15
tmp17 = tmp16 * tmp4
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp17, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_abs_div_lt_mean_mul_sub_where_0[grid(1)](buf1,
arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
def reduce_loss(loss, reduction):
"""Reduce loss as specified.
Args:
loss (Tensor): Elementwise loss tensor.
reduction (str): Options are "none", "mean" and "sum".
Return:
Tensor: Reduced loss tensor.
"""
reduction_enum = F._Reduction.get_enum(reduction)
if reduction_enum == 0:
return loss
elif reduction_enum == 1:
return loss.mean()
elif reduction_enum == 2:
return loss.sum()
def weight_reduce_loss(loss, weight=None, reduction='mean', avg_factor=None):
"""Apply element-wise weight and reduce loss.
Args:
loss (Tensor): Element-wise loss.
weight (Tensor): Element-wise weights.
reduction (str): Same as built-in losses of PyTorch.
avg_factor (float): Avarage factor when computing the mean of losses.
Returns:
Tensor: Processed loss values.
"""
if weight is not None:
loss = loss * weight
if avg_factor is None:
loss = reduce_loss(loss, reduction)
elif reduction == 'mean':
loss = loss.sum() / avg_factor
elif reduction != 'none':
raise ValueError('avg_factor can not be used with reduction="sum"')
return loss
def weighted_loss(loss_func):
"""Create a weighted version of a given loss function.
To use this decorator, the loss function must have the signature like
`loss_func(pred, target, **kwargs)`. The function only needs to compute
element-wise loss without any reduction. This decorator will add weight
and reduction arguments to the function. The decorated function will have
the signature like `loss_func(pred, target, weight=None, reduction='mean',
avg_factor=None, **kwargs)`.
:Example:
>>> import torch
>>> @weighted_loss
>>> def l1_loss(pred, target):
>>> return (pred - target).abs()
>>> pred = torch.Tensor([0, 2, 3])
>>> target = torch.Tensor([1, 1, 1])
>>> weight = torch.Tensor([1, 0, 1])
>>> l1_loss(pred, target)
tensor(1.3333)
>>> l1_loss(pred, target, weight)
tensor(1.)
>>> l1_loss(pred, target, reduction='none')
tensor([1., 1., 2.])
>>> l1_loss(pred, target, weight, avg_factor=2)
tensor(1.5000)
"""
@functools.wraps(loss_func)
def wrapper(pred, target, weight=None, reduction='mean', avg_factor=
None, **kwargs):
loss = loss_func(pred, target, **kwargs)
loss = weight_reduce_loss(loss, weight, reduction, avg_factor)
return loss
return wrapper
@weighted_loss
def smooth_l1_loss(pred, target, beta=1.0):
assert beta > 0
assert pred.size() == target.size() and target.numel() > 0
diff = torch.abs(pred - target)
loss = torch.where(diff < beta, 0.5 * diff * diff / beta, diff - 0.5 * beta
)
return loss
class SmoothL1LossNew(nn.Module):
def __init__(self, beta=1.0, reduction='mean', loss_weight=1.0):
super(SmoothL1LossNew, self).__init__()
self.beta = beta
self.reduction = reduction
self.loss_weight = loss_weight
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
BUPT-PRIV/BalancedGroupSoftmax
|
SmoothL1Loss
| false | 13,374 |
[
"Apache-2.0"
] | 333 |
90e04fd8ccecd2bc61bbe6053a741ae708da2794
|
https://github.com/BUPT-PRIV/BalancedGroupSoftmax/tree/90e04fd8ccecd2bc61bbe6053a741ae708da2794
|
CustomBatchNormAutograd
|
import torch
import torch.nn as nn
class CustomBatchNormAutograd(nn.Module):
"""
This nn.module implements a custom version of the batch norm operation for MLPs.
The operations called in self.forward track the history if the input tensors have the
flag requires_grad set to True. The backward pass does not need to be implemented, it
is dealt with by the automatic differentiation provided by PyTorch.
"""
def __init__(self, n_neurons, eps=1e-05):
"""
Initializes CustomBatchNormAutograd object.
Args:
n_neurons: int specifying the number of neurons
eps: small float to be added to the variance for stability
TODO:
Save parameters for the number of neurons and eps.
Initialize parameters gamma and beta via nn.Parameter
"""
super(CustomBatchNormAutograd, self).__init__()
self.gamma = nn.Parameter(torch.ones(n_neurons))
self.beta = nn.Parameter(torch.zeros(n_neurons))
self.eps = eps
def forward(self, input):
"""
Compute the batch normalization
Args:
input: input tensor of shape (n_batch, n_neurons)
Returns:
out: batch-normalized tensor
TODO:
Check for the correctness of the shape of the input tensor.
Implement batch normalization forward pass as given in the assignment.
For the case that you make use of torch.var be aware that the flag unbiased=False should be set.
"""
shape = input.shape
if len(shape) == 1:
input = input.unsqueeze(0)
shape = input.shape
elif len(shape) > 2:
raise ValueError(
f'Expected 2D input. Instead, got {len(shape)}D input with shape of {shape}.'
)
elif shape[1] != self.gamma.shape[0]:
raise ValueError(
f'Expected input of shape batch_size x {self.gamma.shape[0]}. Instead, got input withshape of {shape}.'
)
mean = input.mean(0)
var = input.var(0)
x_hat = (input - mean) / torch.sqrt(var + self.eps)
out = self.gamma * x_hat + self.beta
return out
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'n_neurons': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0(in_ptr0, in_ptr1,
in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (4 + x0), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (8 + x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (12 + x0), xmask, eviction_policy='evict_last')
tmp30 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp4 = tmp2 + tmp3
tmp6 = tmp4 + tmp5
tmp8 = tmp6 + tmp7
tmp9 = 4.0
tmp10 = tmp8 / tmp9
tmp11 = tmp1 - tmp10
tmp12 = tmp2 - tmp10
tmp13 = tmp12 * tmp12
tmp14 = tmp3 - tmp10
tmp15 = tmp14 * tmp14
tmp16 = tmp13 + tmp15
tmp17 = tmp5 - tmp10
tmp18 = tmp17 * tmp17
tmp19 = tmp16 + tmp18
tmp20 = tmp7 - tmp10
tmp21 = tmp20 * tmp20
tmp22 = tmp19 + tmp21
tmp23 = 3.0
tmp24 = tmp22 / tmp23
tmp25 = 1e-05
tmp26 = tmp24 + tmp25
tmp27 = libdevice.sqrt(tmp26)
tmp28 = tmp11 / tmp27
tmp29 = tmp0 * tmp28
tmp31 = tmp29 + tmp30
tl.store(out_ptr0 + x2, tmp31, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mean_mul_sqrt_sub_var_0[grid(16)](primals_2,
primals_1, primals_3, buf0, 16, XBLOCK=16, num_warps=1,
num_stages=1)
del primals_2
del primals_3
return buf0, primals_1
class CustomBatchNormAutogradNew(nn.Module):
"""
This nn.module implements a custom version of the batch norm operation for MLPs.
The operations called in self.forward track the history if the input tensors have the
flag requires_grad set to True. The backward pass does not need to be implemented, it
is dealt with by the automatic differentiation provided by PyTorch.
"""
def __init__(self, n_neurons, eps=1e-05):
"""
Initializes CustomBatchNormAutograd object.
Args:
n_neurons: int specifying the number of neurons
eps: small float to be added to the variance for stability
TODO:
Save parameters for the number of neurons and eps.
Initialize parameters gamma and beta via nn.Parameter
"""
super(CustomBatchNormAutogradNew, self).__init__()
self.gamma = nn.Parameter(torch.ones(n_neurons))
self.beta = nn.Parameter(torch.zeros(n_neurons))
self.eps = eps
def forward(self, input_0):
primals_2 = self.gamma
primals_3 = self.beta
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
askliar/deep_learning
|
CustomBatchNormAutograd
| false | 1,488 |
[
"MIT"
] | 0 |
e61b2391a3258d18719bf12d9ed1404620ce6c02
|
https://github.com/askliar/deep_learning/tree/e61b2391a3258d18719bf12d9ed1404620ce6c02
|
UNet
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/oi/coi4geilgwlqjngeai6hg4iruvpzcrvvpmho77vuyz3ppbade2sa.py
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16516096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 64516) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7o/c7ohemjzrjpmo5tghcbldpg3s3xexqjehsqi5j3see7mnjgihu4y.py
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_2 => convolution_1
# x_3 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16257024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 63504) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xi/cxil7wfmjnrkoslosnjnwmoqebyussbsklzthwtzwxz2o74l47gs.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_2 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 4064256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 126
x3 = (xindex // 126)
x2 = (xindex // 15876)
x4 = xindex % 15876
tmp0 = tl.load(in_ptr0 + ((2*x0) + (504*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (504*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (252 + (2*x0) + (504*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (253 + (2*x0) + (504*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (15904*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (16000*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/mo/cmozurfjru5huadwzrh5yjoitgoxelkjngdyjsgtehbyvs24isqk.py
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_4 => convolution_2
# x_5 => relu_2
# Graph fragment:
# %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {})
triton_poi_fused_convolution_relu_3 = async_compile.triton('triton_poi_fused_convolution_relu_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7872512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 15376) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7z/c7zdlcnndhik4fhrd3ma2afaitw5ju2jqj5dhl26ipgwz2hgiher.py
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_6 => convolution_3
# x_7 => relu_3
# Graph fragment:
# %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_3 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {})
triton_poi_fused_convolution_relu_4 = async_compile.triton('triton_poi_fused_convolution_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7620608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 14884) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bb/cbbeqfykl2wgg3c65cet5cy67zimq7orfpepzs3vr2rlhu74t6er.py
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_1 => getitem_2, getitem_3
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_5 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 1905152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 61
x3 = (xindex // 61)
x2 = (xindex // 3721)
x4 = xindex % 3721
tmp0 = tl.load(in_ptr0 + ((2*x0) + (244*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (244*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (122 + (2*x0) + (244*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (123 + (2*x0) + (244*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (3744*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (3840*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/al/cale6iof6zxwoy6xmrfdcnforqmwzzvzi3cb4g6s4jjxqw3hb7np.py
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_8 => convolution_4
# x_9 => relu_4
# Graph fragment:
# %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {})
triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3564544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3481) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/o2/co2av5pccpjevh6yky7hhdrsglymtzut2q3artudzrezlirfrzcg.py
# Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_10 => convolution_5
# x_11 => relu_5
# Graph fragment:
# %convolution_5 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_4, %primals_12, %primals_13, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_5 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_5,), kwargs = {})
triton_poi_fused_convolution_relu_7 = async_compile.triton('triton_poi_fused_convolution_relu_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_7', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3326976
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3249) % 256
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kt/cktc65bbrriywtquenbdrltvs6witq3gtcn3rvhoj2hholh5ihhi.py
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_2 => getitem_4, getitem_5
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
# %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 802816
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 28
x1 = (xindex // 28) % 28
x2 = (xindex // 784)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (114*x1) + (3249*x2)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (114*x1) + (3249*x2)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (57 + (2*x0) + (114*x1) + (3249*x2)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (58 + (2*x0) + (114*x1) + (3249*x2)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x3), tmp6, None)
tl.store(out_ptr1 + (x3), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/hi/chiqbenmv4ahnhr5zzytacsmj2bam534skwucufjcoevmj65liid.py
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_12 => convolution_6
# x_13 => relu_6
# Graph fragment:
# %convolution_6 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_14, %primals_15, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_6 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_6,), kwargs = {})
triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1384448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 676) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4n/c4ng7b3xlqdmz4wf6padqdaqd63cmlob5sujzf4en6rjcglhiane.py
# Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_14 => convolution_7
# x_15 => relu_7
# Graph fragment:
# %convolution_7 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_6, %primals_16, %primals_17, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_7 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_7,), kwargs = {})
triton_poi_fused_convolution_relu_10 = async_compile.triton('triton_poi_fused_convolution_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1179648
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 576) % 512
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/35/c356cd7zgpicezkybpa4roi4bdkpka2o2mqfytmksv4niqhdjpg5.py
# Topologically Sorted Source Nodes: [max_pool2d_3], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_3 => getitem_6, getitem_7
# Graph fragment:
# %getitem_6 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 0), kwargs = {})
# %getitem_7 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_3, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_11 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 294912
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 12
x1 = (xindex // 12)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (24 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (25 + (2*x0) + (48*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x2), tmp6, None)
tl.store(out_ptr1 + (x2), tmp16, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/h4/ch4ssn455dn4jzxavkj54g5nkxgb7fualnfv6kxozp5tbwrysclf.py
# Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_16 => convolution_8
# x_17 => relu_8
# Graph fragment:
# %convolution_8 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_18, %primals_19, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_8 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_8,), kwargs = {})
triton_poi_fused_convolution_relu_12 = async_compile.triton('triton_poi_fused_convolution_relu_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_12', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 409600
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 100) % 1024
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ym/cymeve4n2tfhbdp57kl6vbua7sg3rraw7fbbupi7awglsnzhjnth.py
# Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# x_18 => convolution_9
# x_19 => relu_9
# Graph fragment:
# %convolution_9 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_8, %primals_20, %primals_21, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_9 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_9,), kwargs = {})
triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 262144
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 64) % 1024
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/g2/cg2m4cjaoijmslxcqpdriumxex3jthbggayhwvzgr2fp4jr2xoct.py
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# up_1 => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_14 = async_compile.triton('triton_poi_fused__to_copy_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/kj/ckjtbjd57qolhrmtahgjvgra32ws3y6k2py4qtzmi63emr64mpos.py
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# up_1 => add, clamp_max
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add, 7), kwargs = {})
triton_poi_fused_add_clamp_15 = async_compile.triton('triton_poi_fused_add_clamp_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 7, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bw/cbwtnrcuwwmine5iorv4m5uhjwildqcnmybfugynwzc3tslmxdgi.py
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# up_1 => clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (16,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.4666666666666667), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_16 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_16(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/am/camdbf62qsjodxp4vui7qdhsz63wpevku7c42zr5voumc5pfamz7.py
# Topologically Sorted Source Nodes: [up, up_1], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# up => convolution_10
# up_1 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, mul_2, mul_3, mul_4, sub_1, sub_2, sub_4
# Graph fragment:
# %convolution_10 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_9, %primals_22, %primals_23, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_10, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_10, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_10, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_10, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {})
# %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {})
# %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_17 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_17', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[524288],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_17(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 524288
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 16) % 16
x0 = xindex % 16
x5 = (xindex // 256)
x2 = (xindex // 256) % 512
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + (8*tmp4) + (64*x5)), None, eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + (8*tmp25) + (64*x5)), None, eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + (8*tmp25) + (64*x5)), None, eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x6), tmp21, None)
tl.store(out_ptr1 + (x6), tmp35, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/j6/cj6fumma62jtj7xlgosx37oeojvmvcdogde4lgj4lvmprc3nh554.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# y => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%constant_pad_nd, %constant_pad_nd_1], 1), kwargs = {})
triton_poi_fused_cat_18 = async_compile.triton('triton_poi_fused_cat_18', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 3211264
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 784) % 1024
x1 = (xindex // 28) % 28
x0 = xindex % 28
x3 = (xindex // 802816)
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-2) + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 24, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = (-2) + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + ((-50) + x0 + (24*x1) + (576*x2) + (294912*x3)), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 1024, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = (-6) + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 16, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = (-6) + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + ((-102) + x0 + (16*x1) + (256*((-512) + x2)) + (131072*x3)), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + ((-102) + x0 + (16*x1) + (256*((-512) + x2)) + (131072*x3)), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + (x6), tmp40, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ah/cahkyn4sw4pzflccaqi67oh5664xbvsh66vbfhzz4nap6xhmcfos.py
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# up_4 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_19 = async_compile.triton('triton_poi_fused__to_copy_19', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_19', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_19(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/xi/cxic34thfzspjsgyjqxbmh6gaz7ugvp6vs6yh4uu7btyupxzd5gq.py
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# up_4 => add_5, clamp_max_4
# Graph fragment:
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_5, 23), kwargs = {})
triton_poi_fused_add_clamp_20 = async_compile.triton('triton_poi_fused_add_clamp_20', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_20', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_20(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 23, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6n/c6nncmrqx3j26y4ejymrtfgrv7csnxfnx56qobcwcgwyo5naliaq.py
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# up_4 => clamp_max_6, clamp_min_4, clamp_min_6, convert_element_type_4, iota_2, mul_5, sub_5
# Graph fragment:
# %iota_2 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (48,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_4 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_2, torch.float32), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_4, 0.48936170212765956), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_5, 0.0), kwargs = {})
# %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_21 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_21', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_21', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_21(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/eq/ceqkdehpwy5snfrf4qpyyo7ez6zfnl764nr5dgnig7rrv5yycnab.py
# Topologically Sorted Source Nodes: [up_3, up_4], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# up_3 => convolution_13
# up_4 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_7, add_8, mul_7, mul_8, mul_9, sub_6, sub_7, sub_9
# Graph fragment:
# %convolution_13 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_11, %primals_28, %primals_29, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_13, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_13, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_13, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_13, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_6), kwargs = {})
# %add_7 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_7, %clamp_max_6), kwargs = {})
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_8, %add_7), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_9, %clamp_max_7), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_22 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_22', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4194304],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_22', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_22(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 2359296
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 48) % 48
x0 = xindex % 48
x5 = (xindex // 2304)
x2 = (xindex // 2304) % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 24, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (24*tmp4) + (576*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + (24*tmp4) + (576*x5)), None, eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + (24*tmp25) + (576*x5)), None, eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + (24*tmp25) + (576*x5)), None, eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x6), tmp21, None)
tl.store(out_ptr1 + (x6), tmp35, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5c/c5cn4aq74h5b35fn34e465tlgyvgb7m5rhrqhufqy67vjucpt2lq.py
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# y_1 => cat_1
# Graph fragment:
# %cat_1 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%constant_pad_nd_2, %constant_pad_nd_3], 1), kwargs = {})
triton_poi_fused_cat_23 = async_compile.triton('triton_poi_fused_cat_23', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_23', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7620608
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 3721) % 512
x1 = (xindex // 61) % 61
x0 = xindex % 61
x3 = (xindex // 1905152)
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-2) + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 57, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = (-2) + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + ((-116) + x0 + (57*x1) + (3249*x2) + (831744*x3)), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 512, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = (-6) + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 48, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = (-6) + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + ((-294) + x0 + (48*x1) + (2304*((-256) + x2)) + (589824*x3)), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + ((-294) + x0 + (48*x1) + (2304*((-256) + x2)) + (589824*x3)), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + (x6), tmp40, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ud/cudr7becxwrhayxvgy4twmtw36dur2yzlr2n6im7t3vh6obigpeo.py
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# up_7 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_24 = async_compile.triton('triton_poi_fused__to_copy_24', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_24', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/ho/chocq4mxa2jyfkljxpgz7j66aolecixsnpic7djgbbj23te3emvz.py
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# up_7 => add_10, clamp_max_8
# Graph fragment:
# %add_10 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_10, 56), kwargs = {})
triton_poi_fused_add_clamp_25 = async_compile.triton('triton_poi_fused_add_clamp_25', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_25', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 56, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/3g/c3gvi6pzhytun7e2pobs6u22haytd6jdugrt6e3g3zsm2il6ypwa.py
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# up_7 => clamp_max_10, clamp_min_10, clamp_min_8, convert_element_type_8, iota_4, mul_10, sub_10
# Graph fragment:
# %iota_4 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (114,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_8 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_4, torch.float32), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_8, 0.49557522123893805), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_10, 0.0), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_10, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_26 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_26', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_26', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/bb/cbbr4a2f45w2kckcum3bwlu3oyqntc7lt52o6que35wlr57fr53f.py
# Topologically Sorted Source Nodes: [up_6, up_7], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# up_6 => convolution_16
# up_7 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_12, add_13, mul_12, mul_13, mul_14, sub_11, sub_12, sub_14
# Graph fragment:
# %convolution_16 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_13, %primals_34, %primals_35, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_16, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_16, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_16, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_16, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_10), kwargs = {})
# %add_12 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_12), kwargs = {})
# %sub_12 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_12, %clamp_max_10), kwargs = {})
# %add_13 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_13), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_13, %add_12), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_14, %clamp_max_11), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_27 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_27', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8388608],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_27', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_27(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 6653952
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 114) % 114
x0 = xindex % 114
x5 = (xindex // 12996)
x2 = (xindex // 12996) % 128
x4 = xindex % 12996
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 57, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (57*tmp4) + (3249*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + (57*tmp4) + (3249*x5)), None, eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + (57*tmp25) + (3249*x5)), None, eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + (57*tmp25) + (3249*x5)), None, eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x4 + (13024*x5)), tmp21, None)
tl.store(out_ptr1 + (x4 + (13024*x5)), tmp35, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cf/ccf6zb432yqegq3mo33rlgwbrjbposwbqnzspijr3uqwwnrohtuk.py
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# y_2 => cat_2
# Graph fragment:
# %cat_2 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%constant_pad_nd_4, %constant_pad_nd_5], 1), kwargs = {})
triton_poi_fused_cat_28 = async_compile.triton('triton_poi_fused_cat_28', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_28', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_28(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16257024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 15876) % 256
x1 = (xindex // 126) % 126
x0 = xindex % 126
x3 = (xindex // 4064256)
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-2) + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 122, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = (-2) + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + ((-246) + x0 + (122*x1) + (14884*x2) + (1905152*x3)), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 256, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = (-6) + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 114, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = (-6) + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + ((-690) + x0 + (114*x1) + (13024*((-128) + x2)) + (1667072*x3)), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + ((-690) + x0 + (114*x1) + (13024*((-128) + x2)) + (1667072*x3)), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + (x6), tmp40, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6b/c6bmihke4kvjmmonimin5iqf2l5owtisnfmxujwn66euncqmopwp.py
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# up_10 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_29 = async_compile.triton('triton_poi_fused__to_copy_29', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_29', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_29(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/f3/cf3mmi6ihum72e7m3cgzwt4plrw6fkozmpvnsinv42hinztv4g4e.py
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# up_10 => add_15, clamp_max_12
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 121), kwargs = {})
triton_poi_fused_add_clamp_30 = async_compile.triton('triton_poi_fused_add_clamp_30', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_30', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_30(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 121, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + (x0), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/6q/c6qs74ukxhcr335sstfbzfcipfclkqsrfjds7rsaqceos2ks56sc.py
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
# Source node to ATen node mapping:
# up_10 => clamp_max_14, clamp_min_12, clamp_min_14, convert_element_type_12, iota_6, mul_15, sub_15
# Graph fragment:
# %iota_6 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (244,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type_12 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_6, torch.float32), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type_12, 0.49794238683127573), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul_15, 0.0), kwargs = {})
# %sub_15 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_15, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_arange_clamp_mul_sub_31 = async_compile.triton('triton_poi_fused__to_copy_arange_clamp_mul_sub_31', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0,), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_arange_clamp_mul_sub_31', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_31(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + (x0), tmp11, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/26/c26l3cuzpdj6e65ngbevraq3jvcmshya5rauf2acqpfu7stjo463.py
# Topologically Sorted Source Nodes: [up_9, up_10], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# up_10 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_17, add_18, mul_17, mul_18, mul_19, sub_16, sub_17, sub_19
# up_9 => convolution_19
# Graph fragment:
# %convolution_19 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_15, %primals_40, %primals_41, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_19, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_19, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_19, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_19, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_16, %clamp_max_14), kwargs = {})
# %add_17 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_17), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_14), kwargs = {})
# %add_18 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_18), kwargs = {})
# %sub_19 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_18, %add_17), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_19, %clamp_max_15), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_32 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_32', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: '*i64', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*fp32', 6: '*i64', 7: '*fp32', 8: '*fp32', 9: '*fp32', 10: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_32', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_32(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 15241216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 244) % 244
x0 = xindex % 244
x5 = (xindex // 59536)
x2 = (xindex // 59536) % 64
x4 = xindex % 59536
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (x2), None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 122, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (122*tmp4) + (14884*x5)), None, eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + (122*tmp4) + (14884*x5)), None, eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + (122*tmp25) + (14884*x5)), None, eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + (122*tmp25) + (14884*x5)), None, eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x4 + (59552*x5)), tmp21, None)
tl.store(out_ptr1 + (x4 + (59552*x5)), tmp35, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/65/c65rs5r3w3a6ubiwogqsdxqagoviy5beimxot6eqavdlbw6ctaq7.py
# Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# y_3 => cat_3
# Graph fragment:
# %cat_3 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%constant_pad_nd_6, %constant_pad_nd_7], 1), kwargs = {})
triton_poi_fused_cat_33 = async_compile.triton('triton_poi_fused_cat_33', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[33554432],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_33', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_33(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 33554432
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = (xindex // 65536) % 128
x1 = (xindex // 256) % 256
x0 = xindex % 256
x3 = (xindex // 8388608)
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-2) + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 252, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = (-2) + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + ((-506) + x0 + (252*x1) + (63504*x2) + (4064256*x3)), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tmp20 = tl.full([1], 128, tl.int64)
tmp21 = tmp0 < tmp20
tmp22 = (-6) + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 244, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = (-6) + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + ((-1470) + x0 + (244*x1) + (59552*((-64) + x2)) + (3811328*x3)), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + ((-1470) + x0 + (244*x1) + (59552*((-64) + x2)) + (3811328*x3)), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + (x6), tmp40, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/cx/ccxkslerd5uympqutx2sq3qawltualucrkshks5e4i3jvdocgsfb.py
# Topologically Sorted Source Nodes: [x_34, x_35, x_36], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd]
# Source node to ATen node mapping:
# x_34 => convolution_21
# x_35 => relu_17
# x_36 => constant_pad_nd_8
# Graph fragment:
# %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_16, %primals_44, %primals_45, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_17 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_21,), kwargs = {})
# %constant_pad_nd_8 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu_17, [2, 2, 2, 2], 0.0), kwargs = {})
triton_poi_fused_constant_pad_nd_convolution_relu_34 = async_compile.triton('triton_poi_fused_constant_pad_nd_convolution_relu_34', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_convolution_relu_34', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_relu_34(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16777216
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 256) % 256
x0 = xindex % 256
x4 = (xindex // 65536)
x2 = (xindex // 65536) % 64
x6 = xindex
tmp0 = (-2) + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 252, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = (-2) + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + ((-506) + x0 + (252*x1) + (63504*x4)), tmp10, other=0.0)
tmp12 = tl.load(in_ptr1 + (x2), tmp10, eviction_policy='evict_last', other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tl.store(out_ptr0 + (x6), tmp17, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/vi/cvi4dkwbyi6tdqqb6cbkh72tumog2lpckmntmcyjprawkjtaan3l.py
# Topologically Sorted Source Nodes: [x_37], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# x_37 => convolution_22
# Graph fragment:
# %convolution_22 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_8, %primals_46, %primals_47, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_35 = async_compile.triton('triton_poi_fused_convolution_35', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_35', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_35(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1048576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 65536) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/r2/cr2guae7qgv2b5k5c63deh3xw6trpnrebttcw3ysc43mp3xobt77.py
# Topologically Sorted Source Nodes: [x_34, x_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# x_34 => convolution_21
# x_35 => relu_17
# Graph fragment:
# %convolution_21 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_16, %primals_44, %primals_45, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_17 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_21,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_17, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_36 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_36', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16777216],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_36', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_36(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16257024
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 63504) % 64
x0 = xindex % 63504
x4 = (xindex // 63504)
tmp0 = tl.load(in_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr1 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + (63616*x4)), tmp6, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47 = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64, ), (1, ))
assert_size_stride(primals_3, (4, 4, 256, 256), (262144, 65536, 256, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64, ), (1, ))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128, ), (1, ))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128, ), (1, ))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256, ), (1, ))
assert_size_stride(primals_14, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (512, ), (1, ))
assert_size_stride(primals_16, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_17, (512, ), (1, ))
assert_size_stride(primals_18, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (1024, ), (1, ))
assert_size_stride(primals_20, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_21, (1024, ), (1, ))
assert_size_stride(primals_22, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_23, (512, ), (1, ))
assert_size_stride(primals_24, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_25, (512, ), (1, ))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512, ), (1, ))
assert_size_stride(primals_28, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (256, ), (1, ))
assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_31, (256, ), (1, ))
assert_size_stride(primals_32, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_33, (256, ), (1, ))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128, ), (1, ))
assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (128, ), (1, ))
assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (128, ), (1, ))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64, ), (1, ))
assert_size_stride(primals_42, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_43, (64, ), (1, ))
assert_size_stride(primals_44, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_45, (64, ), (1, ))
assert_size_stride(primals_46, (4, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_47, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 254, 254), (4129024, 64516, 254, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 16516096, grid=grid(16516096), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 252, 252), (4064256, 63504, 252, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf3, primals_5, 16257024, grid=grid(16257024), stream=stream0)
del primals_5
buf4 = empty_strided_cuda((4, 64, 126, 126), (1017856, 15904, 126, 1), torch.float32)
buf5 = empty_strided_cuda((4, 64, 126, 126), (1024000, 16000, 126, 1), torch.int8)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_2.run(buf3, buf4, buf5, 4064256, grid=grid(4064256), stream=stream0)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 124, 124), (1968128, 15376, 124, 1))
buf7 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [x_4, x_5], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf7, primals_7, 7872512, grid=grid(7872512), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 122, 122), (1905152, 14884, 122, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6, x_7], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf9, primals_9, 7620608, grid=grid(7620608), stream=stream0)
del primals_9
buf10 = empty_strided_cuda((4, 128, 61, 61), (479232, 3744, 61, 1), torch.float32)
buf11 = empty_strided_cuda((4, 128, 61, 61), (491520, 3840, 61, 1), torch.int8)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_5.run(buf9, buf10, buf11, 1905152, grid=grid(1905152), stream=stream0)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 59, 59), (891136, 3481, 59, 1))
buf13 = buf12; del buf12 # reuse
# Topologically Sorted Source Nodes: [x_8, x_9], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf13, primals_11, 3564544, grid=grid(3564544), stream=stream0)
del primals_11
# Topologically Sorted Source Nodes: [x_10], Original ATen: [aten.convolution]
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 256, 57, 57), (831744, 3249, 57, 1))
buf15 = buf14; del buf14 # reuse
# Topologically Sorted Source Nodes: [x_10, x_11], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf15, primals_13, 3326976, grid=grid(3326976), stream=stream0)
del primals_13
buf16 = empty_strided_cuda((4, 256, 28, 28), (200704, 784, 28, 1), torch.float32)
buf17 = empty_strided_cuda((4, 256, 28, 28), (200704, 784, 28, 1), torch.int8)
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_8.run(buf15, buf16, buf17, 802816, grid=grid(802816), stream=stream0)
# Topologically Sorted Source Nodes: [x_12], Original ATen: [aten.convolution]
buf18 = extern_kernels.convolution(buf16, primals_14, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 512, 26, 26), (346112, 676, 26, 1))
buf19 = buf18; del buf18 # reuse
# Topologically Sorted Source Nodes: [x_12, x_13], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf19, primals_15, 1384448, grid=grid(1384448), stream=stream0)
del primals_15
# Topologically Sorted Source Nodes: [x_14], Original ATen: [aten.convolution]
buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 512, 24, 24), (294912, 576, 24, 1))
buf21 = buf20; del buf20 # reuse
# Topologically Sorted Source Nodes: [x_14, x_15], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf21, primals_17, 1179648, grid=grid(1179648), stream=stream0)
del primals_17
buf22 = empty_strided_cuda((4, 512, 12, 12), (73728, 144, 12, 1), torch.float32)
buf23 = empty_strided_cuda((4, 512, 12, 12), (73728, 144, 12, 1), torch.int8)
# Topologically Sorted Source Nodes: [max_pool2d_3], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_11.run(buf21, buf22, buf23, 294912, grid=grid(294912), stream=stream0)
# Topologically Sorted Source Nodes: [x_16], Original ATen: [aten.convolution]
buf24 = extern_kernels.convolution(buf22, primals_18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1024, 10, 10), (102400, 100, 10, 1))
buf25 = buf24; del buf24 # reuse
# Topologically Sorted Source Nodes: [x_16, x_17], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_12.run(buf25, primals_19, 409600, grid=grid(409600), stream=stream0)
del primals_19
# Topologically Sorted Source Nodes: [x_18], Original ATen: [aten.convolution]
buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 1024, 8, 8), (65536, 64, 8, 1))
buf27 = buf26; del buf26 # reuse
# Topologically Sorted Source Nodes: [x_18, x_19], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_13.run(buf27, primals_21, 262144, grid=grid(262144), stream=stream0)
del primals_21
# Topologically Sorted Source Nodes: [up], Original ATen: [aten.convolution]
buf28 = extern_kernels.convolution(buf27, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 512, 8, 8), (32768, 64, 8, 1))
buf29 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_14.run(buf29, 16, grid=grid(16), stream=stream0)
buf30 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf30, 16, grid=grid(16), stream=stream0)
buf31 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_14.run(buf31, 16, grid=grid(16), stream=stream0)
buf32 = empty_strided_cuda((16, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_15.run(buf32, 16, grid=grid(16), stream=stream0)
buf33 = empty_strided_cuda((16, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_16.run(buf33, 16, grid=grid(16), stream=stream0)
buf35 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_1], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_16.run(buf35, 16, grid=grid(16), stream=stream0)
buf34 = empty_strided_cuda((4, 512, 16, 16), (131072, 256, 16, 1), torch.float32)
buf36 = empty_strided_cuda((4, 512, 16, 16), (131072, 256, 16, 1), torch.float32)
# Topologically Sorted Source Nodes: [up, up_1], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_17.run(buf29, buf31, buf28, primals_23, buf32, buf33, buf30, buf35, buf34, buf36, 524288, grid=grid(524288), stream=stream0)
del buf28
del primals_23
buf37 = empty_strided_cuda((4, 1024, 28, 28), (802816, 784, 28, 1), torch.float32)
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.cat]
triton_poi_fused_cat_18.run(buf21, buf34, buf36, buf37, 3211264, grid=grid(3211264), stream=stream0)
del buf34
del buf36
# Topologically Sorted Source Nodes: [x_20], Original ATen: [aten.convolution]
buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 26, 26), (346112, 676, 26, 1))
buf39 = buf38; del buf38 # reuse
# Topologically Sorted Source Nodes: [x_20, x_21], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_9.run(buf39, primals_25, 1384448, grid=grid(1384448), stream=stream0)
del primals_25
# Topologically Sorted Source Nodes: [x_22], Original ATen: [aten.convolution]
buf40 = extern_kernels.convolution(buf39, primals_26, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 512, 24, 24), (294912, 576, 24, 1))
buf41 = buf40; del buf40 # reuse
# Topologically Sorted Source Nodes: [x_22, x_23], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_10.run(buf41, primals_27, 1179648, grid=grid(1179648), stream=stream0)
del primals_27
# Topologically Sorted Source Nodes: [up_3], Original ATen: [aten.convolution]
buf42 = extern_kernels.convolution(buf41, primals_28, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 256, 24, 24), (147456, 576, 24, 1))
buf43 = empty_strided_cuda((48, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_19.run(buf43, 48, grid=grid(48), stream=stream0)
buf44 = empty_strided_cuda((48, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_20.run(buf44, 48, grid=grid(48), stream=stream0)
buf45 = empty_strided_cuda((48, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_19.run(buf45, 48, grid=grid(48), stream=stream0)
buf46 = empty_strided_cuda((48, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_20.run(buf46, 48, grid=grid(48), stream=stream0)
buf47 = empty_strided_cuda((48, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_21.run(buf47, 48, grid=grid(48), stream=stream0)
buf49 = empty_strided_cuda((48, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_4], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_21.run(buf49, 48, grid=grid(48), stream=stream0)
buf48 = empty_strided_cuda((4, 256, 48, 48), (589824, 2304, 48, 1), torch.float32)
buf50 = empty_strided_cuda((4, 256, 48, 48), (589824, 2304, 48, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_3, up_4], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_22.run(buf43, buf45, buf42, primals_29, buf46, buf47, buf44, buf49, buf48, buf50, 2359296, grid=grid(2359296), stream=stream0)
del buf42
del primals_29
buf51 = empty_strided_cuda((4, 512, 61, 61), (1905152, 3721, 61, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.cat]
triton_poi_fused_cat_23.run(buf15, buf48, buf50, buf51, 7620608, grid=grid(7620608), stream=stream0)
del buf48
del buf50
# Topologically Sorted Source Nodes: [x_24], Original ATen: [aten.convolution]
buf52 = extern_kernels.convolution(buf51, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf52, (4, 256, 59, 59), (891136, 3481, 59, 1))
buf53 = buf52; del buf52 # reuse
# Topologically Sorted Source Nodes: [x_24, x_25], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_6.run(buf53, primals_31, 3564544, grid=grid(3564544), stream=stream0)
del primals_31
# Topologically Sorted Source Nodes: [x_26], Original ATen: [aten.convolution]
buf54 = extern_kernels.convolution(buf53, primals_32, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 256, 57, 57), (831744, 3249, 57, 1))
buf55 = buf54; del buf54 # reuse
# Topologically Sorted Source Nodes: [x_26, x_27], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_7.run(buf55, primals_33, 3326976, grid=grid(3326976), stream=stream0)
del primals_33
# Topologically Sorted Source Nodes: [up_6], Original ATen: [aten.convolution]
buf56 = extern_kernels.convolution(buf55, primals_34, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 128, 57, 57), (415872, 3249, 57, 1))
buf57 = empty_strided_cuda((114, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_24.run(buf57, 114, grid=grid(114), stream=stream0)
buf58 = empty_strided_cuda((114, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_25.run(buf58, 114, grid=grid(114), stream=stream0)
buf59 = empty_strided_cuda((114, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_24.run(buf59, 114, grid=grid(114), stream=stream0)
buf60 = empty_strided_cuda((114, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_25.run(buf60, 114, grid=grid(114), stream=stream0)
buf61 = empty_strided_cuda((114, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf61, 114, grid=grid(114), stream=stream0)
buf63 = empty_strided_cuda((114, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_7], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_26.run(buf63, 114, grid=grid(114), stream=stream0)
buf62 = empty_strided_cuda((4, 128, 114, 114), (1667072, 13024, 114, 1), torch.float32)
buf64 = empty_strided_cuda((4, 128, 114, 114), (1667072, 13024, 114, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_6, up_7], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_27.run(buf57, buf59, buf56, primals_35, buf60, buf61, buf58, buf63, buf62, buf64, 6653952, grid=grid(6653952), stream=stream0)
del buf56
del primals_35
buf65 = empty_strided_cuda((4, 256, 126, 126), (4064256, 15876, 126, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_2], Original ATen: [aten.cat]
triton_poi_fused_cat_28.run(buf9, buf62, buf64, buf65, 16257024, grid=grid(16257024), stream=stream0)
del buf62
del buf64
# Topologically Sorted Source Nodes: [x_28], Original ATen: [aten.convolution]
buf66 = extern_kernels.convolution(buf65, primals_36, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf66, (4, 128, 124, 124), (1968128, 15376, 124, 1))
buf67 = buf66; del buf66 # reuse
# Topologically Sorted Source Nodes: [x_28, x_29], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_3.run(buf67, primals_37, 7872512, grid=grid(7872512), stream=stream0)
del primals_37
# Topologically Sorted Source Nodes: [x_30], Original ATen: [aten.convolution]
buf68 = extern_kernels.convolution(buf67, primals_38, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf68, (4, 128, 122, 122), (1905152, 14884, 122, 1))
buf69 = buf68; del buf68 # reuse
# Topologically Sorted Source Nodes: [x_30, x_31], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_4.run(buf69, primals_39, 7620608, grid=grid(7620608), stream=stream0)
del primals_39
# Topologically Sorted Source Nodes: [up_9], Original ATen: [aten.convolution]
buf70 = extern_kernels.convolution(buf69, primals_40, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 64, 122, 122), (952576, 14884, 122, 1))
buf71 = empty_strided_cuda((244, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_29.run(buf71, 244, grid=grid(244), stream=stream0)
buf72 = empty_strided_cuda((244, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_30.run(buf72, 244, grid=grid(244), stream=stream0)
buf73 = empty_strided_cuda((244, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp]
triton_poi_fused__to_copy_29.run(buf73, 244, grid=grid(244), stream=stream0)
buf74 = empty_strided_cuda((244, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_30.run(buf74, 244, grid=grid(244), stream=stream0)
buf75 = empty_strided_cuda((244, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten.sub]
triton_poi_fused__to_copy_arange_clamp_mul_sub_31.run(buf75, 244, grid=grid(244), stream=stream0)
buf77 = empty_strided_cuda((244, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_10], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_arange_clamp_mul_sub_31.run(buf77, 244, grid=grid(244), stream=stream0)
buf76 = empty_strided_cuda((4, 64, 244, 244), (3811328, 59552, 244, 1), torch.float32)
buf78 = empty_strided_cuda((4, 64, 244, 244), (3811328, 59552, 244, 1), torch.float32)
# Topologically Sorted Source Nodes: [up_9, up_10], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_32.run(buf71, buf73, buf70, primals_41, buf74, buf75, buf72, buf77, buf76, buf78, 15241216, grid=grid(15241216), stream=stream0)
del buf70
del primals_41
buf79 = empty_strided_cuda((4, 128, 256, 256), (8388608, 65536, 256, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_3], Original ATen: [aten.cat]
triton_poi_fused_cat_33.run(buf3, buf76, buf78, buf79, 33554432, grid=grid(33554432), stream=stream0)
del buf76
del buf78
# Topologically Sorted Source Nodes: [x_32], Original ATen: [aten.convolution]
buf80 = extern_kernels.convolution(buf79, primals_42, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf80, (4, 64, 254, 254), (4129024, 64516, 254, 1))
buf81 = buf80; del buf80 # reuse
# Topologically Sorted Source Nodes: [x_32, x_33], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_0.run(buf81, primals_43, 16516096, grid=grid(16516096), stream=stream0)
del primals_43
# Topologically Sorted Source Nodes: [x_34], Original ATen: [aten.convolution]
buf82 = extern_kernels.convolution(buf81, primals_44, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf82, (4, 64, 252, 252), (4064256, 63504, 252, 1))
buf83 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_34, x_35, x_36], Original ATen: [aten.convolution, aten.relu, aten.constant_pad_nd]
triton_poi_fused_constant_pad_nd_convolution_relu_34.run(buf82, primals_45, buf83, 16777216, grid=grid(16777216), stream=stream0)
# Topologically Sorted Source Nodes: [x_37], Original ATen: [aten.convolution]
buf84 = extern_kernels.convolution(buf83, primals_46, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 4, 256, 256), (262144, 65536, 256, 1))
buf85 = buf84; del buf84 # reuse
# Topologically Sorted Source Nodes: [x_37], Original ATen: [aten.convolution]
triton_poi_fused_convolution_35.run(buf85, primals_47, 1048576, grid=grid(1048576), stream=stream0)
del primals_47
buf86 = empty_strided_cuda((4, 64, 252, 252), (4071424, 63616, 252, 1), torch.bool)
# Topologically Sorted Source Nodes: [x_34, x_35], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_36.run(buf82, primals_45, buf86, 16257024, grid=grid(16257024), stream=stream0)
del buf82
del primals_45
return (buf85, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_34, primals_36, primals_38, primals_40, primals_42, primals_44, primals_46, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf16, buf17, buf19, buf21, buf22, buf23, buf25, buf27, buf29, buf30, buf31, buf32, buf33, buf35, buf37, buf39, buf41, buf43, buf44, buf45, buf46, buf47, buf49, buf51, buf53, buf55, buf57, buf58, buf59, buf60, buf61, buf63, buf65, buf67, buf69, buf71, buf72, buf73, buf74, buf75, buf77, buf79, buf81, buf83, buf86, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((64, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 256, 256), (262144, 65536, 256, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_14 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_15 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_16 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_17 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_18 = rand_strided((1024, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_19 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_20 = rand_strided((1024, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_21 = rand_strided((1024, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_22 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_23 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_24 = rand_strided((512, 1024, 3, 3), (9216, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_25 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_26 = rand_strided((512, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_27 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_28 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_29 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_30 = rand_strided((256, 512, 3, 3), (4608, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_31 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_32 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_33 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_34 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_35 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_36 = rand_strided((128, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_37 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_38 = rand_strided((128, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_39 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_40 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_41 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_42 = rand_strided((64, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_43 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_44 = rand_strided((64, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_45 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_46 = rand_strided((4, 64, 1, 1), (64, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_47 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16516096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 64516 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 63504 % 64
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_2(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 4064256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 126
x3 = xindex // 126
x2 = xindex // 15876
x4 = xindex % 15876
tmp0 = tl.load(in_ptr0 + (2 * x0 + 504 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 504 * x3), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (252 + 2 * x0 + 504 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (253 + 2 * x0 + 504 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 15904 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 16000 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_3(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 15376 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 14884 % 128
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 1905152
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 61
x3 = xindex // 61
x2 = xindex // 3721
x4 = xindex % 3721
tmp0 = tl.load(in_ptr0 + (2 * x0 + 244 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 244 * x3), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (122 + 2 * x0 + 244 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (123 + 2 * x0 + 244 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 3744 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 3840 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 3564544
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3481 % 256
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_7(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 3326976
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3249 % 256
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 28
x1 = xindex // 28 % 28
x2 = xindex // 784
x3 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 114 * x1 + 3249 * x2), None,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 114 * x1 + 3249 * x2), None,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (57 + 2 * x0 + 114 * x1 + 3249 * x2), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (58 + 2 * x0 + 114 * x1 + 3249 * x2), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x3, tmp6, None)
tl.store(out_ptr1 + x3, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 676 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 576 % 512
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_11(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 48 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 48 * x1), None, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (24 + 2 * x0 + 48 * x1), None, eviction_policy
='evict_last')
tmp5 = tl.load(in_ptr0 + (25 + 2 * x0 + 48 * x1), None, eviction_policy
='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + x2, tmp6, None)
tl.store(out_ptr1 + x2, tmp16, None)
@triton.jit
def triton_poi_fused_convolution_relu_12(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 100 % 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 64 % 1024
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, None)
@triton.jit
def triton_poi_fused__to_copy_14(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_15(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 7, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_16(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.4666666666666667
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_17(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 16 % 16
x0 = xindex % 16
x5 = xindex // 256
x2 = xindex // 256 % 512
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 8, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 8 * tmp4 + 64 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + 8 * tmp4 + 64 * x5), None,
eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + 8 * tmp25 + 64 * x5), None,
eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + 8 * tmp25 + 64 * x5), None,
eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + x6, tmp21, None)
tl.store(out_ptr1 + x6, tmp35, None)
@triton.jit
def triton_poi_fused_cat_18(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 784 % 1024
x1 = xindex // 28 % 28
x0 = xindex % 28
x3 = xindex // 802816
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 512, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -2 + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 24, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = -2 + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + (-50 + x0 + 24 * x1 + 576 * x2 + 294912 * x3),
tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tl.full([1], 1024, tl.int64)
tmp22 = -6 + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 16, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = -6 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + (-102 + x0 + 16 * x1 + 256 * (-512 + x2) +
131072 * x3), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + (-102 + x0 + 16 * x1 + 256 * (-512 + x2) +
131072 * x3), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + x6, tmp40, None)
@triton.jit
def triton_poi_fused__to_copy_19(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_20(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 23, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_21(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.48936170212765956
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_22(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 48 % 48
x0 = xindex % 48
x5 = xindex // 2304
x2 = xindex // 2304 % 256
x6 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 24, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 24 * tmp4 + 576 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + 24 * tmp4 + 576 * x5), None,
eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + 24 * tmp25 + 576 * x5), None,
eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + 24 * tmp25 + 576 * x5), None,
eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + x6, tmp21, None)
tl.store(out_ptr1 + x6, tmp35, None)
@triton.jit
def triton_poi_fused_cat_23(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 3721 % 512
x1 = xindex // 61 % 61
x0 = xindex % 61
x3 = xindex // 1905152
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 256, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -2 + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 57, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = -2 + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + (-116 + x0 + 57 * x1 + 3249 * x2 + 831744 *
x3), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tl.full([1], 512, tl.int64)
tmp22 = -6 + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 48, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = -6 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + (-294 + x0 + 48 * x1 + 2304 * (-256 + x2) +
589824 * x3), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + (-294 + x0 + 48 * x1 + 2304 * (-256 + x2) +
589824 * x3), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + x6, tmp40, None)
@triton.jit
def triton_poi_fused__to_copy_24(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_25(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 56, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_26(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 114
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49557522123893805
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_27(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 114 % 114
x0 = xindex % 114
x5 = xindex // 12996
x2 = xindex // 12996 % 128
x4 = xindex % 12996
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 57, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 57 * tmp4 + 3249 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + 57 * tmp4 + 3249 * x5), None,
eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + 57 * tmp25 + 3249 * x5), None,
eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + 57 * tmp25 + 3249 * x5), None,
eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x4 + 13024 * x5), tmp21, None)
tl.store(out_ptr1 + (x4 + 13024 * x5), tmp35, None)
@triton.jit
def triton_poi_fused_cat_28(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 15876 % 256
x1 = xindex // 126 % 126
x0 = xindex % 126
x3 = xindex // 4064256
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 128, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -2 + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 122, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = -2 + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + (-246 + x0 + 122 * x1 + 14884 * x2 + 1905152 *
x3), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tl.full([1], 256, tl.int64)
tmp22 = -6 + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 114, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = -6 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + (-690 + x0 + 114 * x1 + 13024 * (-128 + x2) +
1667072 * x3), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + (-690 + x0 + 114 * x1 + 13024 * (-128 + x2) +
1667072 * x3), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + x6, tmp40, None)
@triton.jit
def triton_poi_fused__to_copy_29(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tl.store(out_ptr0 + x0, tmp6, xmask)
@triton.jit
def triton_poi_fused_add_clamp_30(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tl.full([1], 1, tl.int64)
tmp8 = tmp6 + tmp7
tmp9 = tl.full([1], 121, tl.int64)
tmp10 = triton_helpers.minimum(tmp8, tmp9)
tl.store(out_ptr0 + x0, tmp10, xmask)
@triton.jit
def triton_poi_fused__to_copy_arange_clamp_mul_sub_31(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 244
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.49794238683127573
tmp3 = tmp1 * tmp2
tmp4 = 0.0
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp6 = tmp5.to(tl.int32)
tmp7 = tmp6.to(tl.float32)
tmp8 = tmp5 - tmp7
tmp9 = triton_helpers.maximum(tmp8, tmp4)
tmp10 = 1.0
tmp11 = triton_helpers.minimum(tmp9, tmp10)
tl.store(out_ptr0 + x0, tmp11, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_32(in_ptr0,
in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 244 % 244
x0 = xindex % 244
x5 = xindex // 59536
x2 = xindex // 59536 % 64
x4 = xindex % 59536
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + x2, None, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp22 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp34 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 122, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 122 * tmp4 + 14884 * x5), None,
eviction_policy='evict_last')
tmp11 = tmp9 + tmp10
tmp13 = tmp12 + tmp1
tmp14 = tmp12 < 0
tmp15 = tl.where(tmp14, tmp13, tmp12)
tmp16 = tl.load(in_ptr2 + (tmp15 + 122 * tmp4 + 14884 * x5), None,
eviction_policy='evict_last')
tmp17 = tmp16 + tmp10
tmp18 = tmp17 - tmp11
tmp20 = tmp18 * tmp19
tmp21 = tmp11 + tmp20
tmp23 = tmp22 + tmp1
tmp24 = tmp22 < 0
tmp25 = tl.where(tmp24, tmp23, tmp22)
tmp26 = tl.load(in_ptr2 + (tmp8 + 122 * tmp25 + 14884 * x5), None,
eviction_policy='evict_last')
tmp27 = tmp26 + tmp10
tmp28 = tl.load(in_ptr2 + (tmp15 + 122 * tmp25 + 14884 * x5), None,
eviction_policy='evict_last')
tmp29 = tmp28 + tmp10
tmp30 = tmp29 - tmp27
tmp31 = tmp30 * tmp19
tmp32 = tmp27 + tmp31
tmp33 = tmp32 - tmp21
tmp35 = tmp33 * tmp34
tl.store(out_ptr0 + (x4 + 59552 * x5), tmp21, None)
tl.store(out_ptr1 + (x4 + 59552 * x5), tmp35, None)
@triton.jit
def triton_poi_fused_cat_33(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex // 65536 % 128
x1 = xindex // 256 % 256
x0 = xindex % 256
x3 = xindex // 8388608
x6 = xindex
tmp0 = x2
tmp1 = tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 64, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -2 + x1
tmp6 = tmp5 >= tmp1
tmp7 = tl.full([1], 252, tl.int64)
tmp8 = tmp5 < tmp7
tmp9 = -2 + x0
tmp10 = tmp9 >= tmp1
tmp11 = tmp9 < tmp7
tmp12 = tmp6 & tmp8
tmp13 = tmp12 & tmp10
tmp14 = tmp13 & tmp11
tmp15 = tmp14 & tmp4
tmp16 = tl.load(in_ptr0 + (-506 + x0 + 252 * x1 + 63504 * x2 + 4064256 *
x3), tmp15, other=0.0)
tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype)
tmp18 = tl.where(tmp4, tmp16, tmp17)
tmp19 = tmp0 >= tmp3
tl.full([1], 128, tl.int64)
tmp22 = -6 + x1
tmp23 = tmp22 >= tmp1
tmp24 = tl.full([1], 244, tl.int64)
tmp25 = tmp22 < tmp24
tmp26 = -6 + x0
tmp27 = tmp26 >= tmp1
tmp28 = tmp26 < tmp24
tmp29 = tmp23 & tmp25
tmp30 = tmp29 & tmp27
tmp31 = tmp30 & tmp28
tmp32 = tmp31 & tmp19
tmp33 = tl.load(in_ptr1 + (-1470 + x0 + 244 * x1 + 59552 * (-64 + x2) +
3811328 * x3), tmp32, other=0.0)
tmp34 = tl.load(in_ptr2 + (-1470 + x0 + 244 * x1 + 59552 * (-64 + x2) +
3811328 * x3), tmp32, other=0.0)
tmp35 = tmp33 + tmp34
tmp36 = tl.full(tmp35.shape, 0.0, tmp35.dtype)
tmp37 = tl.where(tmp32, tmp35, tmp36)
tmp38 = tl.full(tmp37.shape, 0.0, tmp37.dtype)
tmp39 = tl.where(tmp19, tmp37, tmp38)
tmp40 = tl.where(tmp4, tmp18, tmp39)
tl.store(out_ptr0 + x6, tmp40, None)
@triton.jit
def triton_poi_fused_constant_pad_nd_convolution_relu_34(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 256 % 256
x0 = xindex % 256
x4 = xindex // 65536
x2 = xindex // 65536 % 64
x6 = xindex
tmp0 = -2 + x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 252, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = -2 + x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (-506 + x0 + 252 * x1 + 63504 * x4), tmp10,
other=0.0)
tmp12 = tl.load(in_ptr1 + x2, tmp10, eviction_policy='evict_last',
other=0.0)
tmp13 = tmp11 + tmp12
tmp14 = tl.full([1], 0, tl.int32)
tmp15 = triton_helpers.maximum(tmp14, tmp13)
tmp16 = tl.full(tmp15.shape, 0.0, tmp15.dtype)
tmp17 = tl.where(tmp10, tmp15, tmp16)
tl.store(out_ptr0 + x6, tmp17, None)
@triton.jit
def triton_poi_fused_convolution_35(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 65536 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_36(in_ptr0,
in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 63504 % 64
x0 = xindex % 63504
x4 = xindex // 63504
tmp0 = tl.load(in_ptr0 + x3, None)
tmp1 = tl.load(in_ptr1 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x0 + 63616 * x4), tmp6, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13, primals_14, primals_15, primals_16, primals_17,
primals_18, primals_19, primals_20, primals_21, primals_22,
primals_23, primals_24, primals_25, primals_26, primals_27,
primals_28, primals_29, primals_30, primals_31, primals_32,
primals_33, primals_34, primals_35, primals_36, primals_37,
primals_38, primals_39, primals_40, primals_41, primals_42,
primals_43, primals_44, primals_45, primals_46, primals_47) = args
args.clear()
assert_size_stride(primals_1, (64, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (64,), (1,))
assert_size_stride(primals_3, (4, 4, 256, 256), (262144, 65536, 256, 1))
assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_5, (64,), (1,))
assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_7, (128,), (1,))
assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_9, (128,), (1,))
assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_13, (256,), (1,))
assert_size_stride(primals_14, (512, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_15, (512,), (1,))
assert_size_stride(primals_16, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_17, (512,), (1,))
assert_size_stride(primals_18, (1024, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_19, (1024,), (1,))
assert_size_stride(primals_20, (1024, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_21, (1024,), (1,))
assert_size_stride(primals_22, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_23, (512,), (1,))
assert_size_stride(primals_24, (512, 1024, 3, 3), (9216, 9, 3, 1))
assert_size_stride(primals_25, (512,), (1,))
assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_27, (512,), (1,))
assert_size_stride(primals_28, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_29, (256,), (1,))
assert_size_stride(primals_30, (256, 512, 3, 3), (4608, 9, 3, 1))
assert_size_stride(primals_31, (256,), (1,))
assert_size_stride(primals_32, (256, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_33, (256,), (1,))
assert_size_stride(primals_34, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_35, (128,), (1,))
assert_size_stride(primals_36, (128, 256, 3, 3), (2304, 9, 3, 1))
assert_size_stride(primals_37, (128,), (1,))
assert_size_stride(primals_38, (128, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_39, (128,), (1,))
assert_size_stride(primals_40, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_41, (64,), (1,))
assert_size_stride(primals_42, (64, 128, 3, 3), (1152, 9, 3, 1))
assert_size_stride(primals_43, (64,), (1,))
assert_size_stride(primals_44, (64, 64, 3, 3), (576, 9, 3, 1))
assert_size_stride(primals_45, (64,), (1,))
assert_size_stride(primals_46, (4, 64, 1, 1), (64, 1, 1, 1))
assert_size_stride(primals_47, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 254, 254), (4129024, 64516, 254, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(16516096)](buf1, primals_2,
16516096, XBLOCK=512, num_warps=8, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 64, 252, 252), (4064256, 63504, 252, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_relu_1[grid(16257024)](buf3, primals_5,
16257024, XBLOCK=512, num_warps=8, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 64, 126, 126), (1017856, 15904, 126,
1), torch.float32)
buf5 = empty_strided_cuda((4, 64, 126, 126), (1024000, 16000, 126,
1), torch.int8)
triton_poi_fused_max_pool2d_with_indices_2[grid(4064256)](buf3,
buf4, buf5, 4064256, XBLOCK=512, num_warps=8, num_stages=1)
buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 128, 124, 124), (1968128, 15376, 124, 1))
buf7 = buf6
del buf6
triton_poi_fused_convolution_relu_3[grid(7872512)](buf7, primals_7,
7872512, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_7
buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 122, 122), (1905152, 14884, 122, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_relu_4[grid(7620608)](buf9, primals_9,
7620608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf10 = empty_strided_cuda((4, 128, 61, 61), (479232, 3744, 61, 1),
torch.float32)
buf11 = empty_strided_cuda((4, 128, 61, 61), (491520, 3840, 61, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_5[grid(1905152)](buf9,
buf10, buf11, 1905152, XBLOCK=512, num_warps=8, num_stages=1)
buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 256, 59, 59), (891136, 3481, 59, 1))
buf13 = buf12
del buf12
triton_poi_fused_convolution_relu_6[grid(3564544)](buf13,
primals_11, 3564544, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_11
buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 256, 57, 57), (831744, 3249, 57, 1))
buf15 = buf14
del buf14
triton_poi_fused_convolution_relu_7[grid(3326976)](buf15,
primals_13, 3326976, XBLOCK=512, num_warps=8, num_stages=1)
del primals_13
buf16 = empty_strided_cuda((4, 256, 28, 28), (200704, 784, 28, 1),
torch.float32)
buf17 = empty_strided_cuda((4, 256, 28, 28), (200704, 784, 28, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_8[grid(802816)](buf15,
buf16, buf17, 802816, XBLOCK=512, num_warps=8, num_stages=1)
buf18 = extern_kernels.convolution(buf16, primals_14, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf18, (4, 512, 26, 26), (346112, 676, 26, 1))
buf19 = buf18
del buf18
triton_poi_fused_convolution_relu_9[grid(1384448)](buf19,
primals_15, 1384448, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_15
buf20 = extern_kernels.convolution(buf19, primals_16, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf20, (4, 512, 24, 24), (294912, 576, 24, 1))
buf21 = buf20
del buf20
triton_poi_fused_convolution_relu_10[grid(1179648)](buf21,
primals_17, 1179648, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_17
buf22 = empty_strided_cuda((4, 512, 12, 12), (73728, 144, 12, 1),
torch.float32)
buf23 = empty_strided_cuda((4, 512, 12, 12), (73728, 144, 12, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_11[grid(294912)](buf21,
buf22, buf23, 294912, XBLOCK=512, num_warps=8, num_stages=1)
buf24 = extern_kernels.convolution(buf22, primals_18, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf24, (4, 1024, 10, 10), (102400, 100, 10, 1))
buf25 = buf24
del buf24
triton_poi_fused_convolution_relu_12[grid(409600)](buf25,
primals_19, 409600, XBLOCK=512, num_warps=8, num_stages=1)
del primals_19
buf26 = extern_kernels.convolution(buf25, primals_20, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf26, (4, 1024, 8, 8), (65536, 64, 8, 1))
buf27 = buf26
del buf26
triton_poi_fused_convolution_relu_13[grid(262144)](buf27,
primals_21, 262144, XBLOCK=512, num_warps=8, num_stages=1)
del primals_21
buf28 = extern_kernels.convolution(buf27, primals_22, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf28, (4, 512, 8, 8), (32768, 64, 8, 1))
buf29 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_14[grid(16)](buf29, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf30 = empty_strided_cuda((16, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_15[grid(16)](buf30, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf31 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused__to_copy_14[grid(16)](buf31, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf32 = empty_strided_cuda((16,), (1,), torch.int64)
triton_poi_fused_add_clamp_15[grid(16)](buf32, 16, XBLOCK=16,
num_warps=1, num_stages=1)
buf33 = empty_strided_cuda((16,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_16[grid(16)](buf33,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf35 = empty_strided_cuda((16, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_16[grid(16)](buf35,
16, XBLOCK=16, num_warps=1, num_stages=1)
buf34 = empty_strided_cuda((4, 512, 16, 16), (131072, 256, 16, 1),
torch.float32)
buf36 = empty_strided_cuda((4, 512, 16, 16), (131072, 256, 16, 1),
torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_sub_17[grid(524288)
](buf29, buf31, buf28, primals_23, buf32, buf33, buf30, buf35,
buf34, buf36, 524288, XBLOCK=1024, num_warps=4, num_stages=1)
del buf28
del primals_23
buf37 = empty_strided_cuda((4, 1024, 28, 28), (802816, 784, 28, 1),
torch.float32)
triton_poi_fused_cat_18[grid(3211264)](buf21, buf34, buf36, buf37,
3211264, XBLOCK=512, num_warps=8, num_stages=1)
del buf34
del buf36
buf38 = extern_kernels.convolution(buf37, primals_24, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf38, (4, 512, 26, 26), (346112, 676, 26, 1))
buf39 = buf38
del buf38
triton_poi_fused_convolution_relu_9[grid(1384448)](buf39,
primals_25, 1384448, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_25
buf40 = extern_kernels.convolution(buf39, primals_26, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf40, (4, 512, 24, 24), (294912, 576, 24, 1))
buf41 = buf40
del buf40
triton_poi_fused_convolution_relu_10[grid(1179648)](buf41,
primals_27, 1179648, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_27
buf42 = extern_kernels.convolution(buf41, primals_28, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf42, (4, 256, 24, 24), (147456, 576, 24, 1))
buf43 = empty_strided_cuda((48, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_19[grid(48)](buf43, 48, XBLOCK=64,
num_warps=1, num_stages=1)
buf44 = empty_strided_cuda((48, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_20[grid(48)](buf44, 48, XBLOCK=64,
num_warps=1, num_stages=1)
buf45 = empty_strided_cuda((48,), (1,), torch.int64)
triton_poi_fused__to_copy_19[grid(48)](buf45, 48, XBLOCK=64,
num_warps=1, num_stages=1)
buf46 = empty_strided_cuda((48,), (1,), torch.int64)
triton_poi_fused_add_clamp_20[grid(48)](buf46, 48, XBLOCK=64,
num_warps=1, num_stages=1)
buf47 = empty_strided_cuda((48,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_21[grid(48)](buf47,
48, XBLOCK=64, num_warps=1, num_stages=1)
buf49 = empty_strided_cuda((48, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_21[grid(48)](buf49,
48, XBLOCK=64, num_warps=1, num_stages=1)
buf48 = empty_strided_cuda((4, 256, 48, 48), (589824, 2304, 48, 1),
torch.float32)
buf50 = empty_strided_cuda((4, 256, 48, 48), (589824, 2304, 48, 1),
torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_sub_22[grid(2359296)
](buf43, buf45, buf42, primals_29, buf46, buf47, buf44, buf49,
buf48, buf50, 2359296, XBLOCK=512, num_warps=8, num_stages=1)
del buf42
del primals_29
buf51 = empty_strided_cuda((4, 512, 61, 61), (1905152, 3721, 61, 1),
torch.float32)
triton_poi_fused_cat_23[grid(7620608)](buf15, buf48, buf50, buf51,
7620608, XBLOCK=1024, num_warps=4, num_stages=1)
del buf48
del buf50
buf52 = extern_kernels.convolution(buf51, primals_30, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf52, (4, 256, 59, 59), (891136, 3481, 59, 1))
buf53 = buf52
del buf52
triton_poi_fused_convolution_relu_6[grid(3564544)](buf53,
primals_31, 3564544, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_31
buf54 = extern_kernels.convolution(buf53, primals_32, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf54, (4, 256, 57, 57), (831744, 3249, 57, 1))
buf55 = buf54
del buf54
triton_poi_fused_convolution_relu_7[grid(3326976)](buf55,
primals_33, 3326976, XBLOCK=512, num_warps=8, num_stages=1)
del primals_33
buf56 = extern_kernels.convolution(buf55, primals_34, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf56, (4, 128, 57, 57), (415872, 3249, 57, 1))
buf57 = empty_strided_cuda((114, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_24[grid(114)](buf57, 114, XBLOCK=128,
num_warps=4, num_stages=1)
buf58 = empty_strided_cuda((114, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_25[grid(114)](buf58, 114, XBLOCK=128,
num_warps=4, num_stages=1)
buf59 = empty_strided_cuda((114,), (1,), torch.int64)
triton_poi_fused__to_copy_24[grid(114)](buf59, 114, XBLOCK=128,
num_warps=4, num_stages=1)
buf60 = empty_strided_cuda((114,), (1,), torch.int64)
triton_poi_fused_add_clamp_25[grid(114)](buf60, 114, XBLOCK=128,
num_warps=4, num_stages=1)
buf61 = empty_strided_cuda((114,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(114)](buf61,
114, XBLOCK=128, num_warps=4, num_stages=1)
buf63 = empty_strided_cuda((114, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_26[grid(114)](buf63,
114, XBLOCK=128, num_warps=4, num_stages=1)
buf62 = empty_strided_cuda((4, 128, 114, 114), (1667072, 13024, 114,
1), torch.float32)
buf64 = empty_strided_cuda((4, 128, 114, 114), (1667072, 13024, 114,
1), torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_sub_27[grid(6653952)
](buf57, buf59, buf56, primals_35, buf60, buf61, buf58, buf63,
buf62, buf64, 6653952, XBLOCK=512, num_warps=8, num_stages=1)
del buf56
del primals_35
buf65 = empty_strided_cuda((4, 256, 126, 126), (4064256, 15876, 126,
1), torch.float32)
triton_poi_fused_cat_28[grid(16257024)](buf9, buf62, buf64, buf65,
16257024, XBLOCK=1024, num_warps=4, num_stages=1)
del buf62
del buf64
buf66 = extern_kernels.convolution(buf65, primals_36, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf66, (4, 128, 124, 124), (1968128, 15376, 124, 1))
buf67 = buf66
del buf66
triton_poi_fused_convolution_relu_3[grid(7872512)](buf67,
primals_37, 7872512, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_37
buf68 = extern_kernels.convolution(buf67, primals_38, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf68, (4, 128, 122, 122), (1905152, 14884, 122, 1))
buf69 = buf68
del buf68
triton_poi_fused_convolution_relu_4[grid(7620608)](buf69,
primals_39, 7620608, XBLOCK=512, num_warps=8, num_stages=1)
del primals_39
buf70 = extern_kernels.convolution(buf69, primals_40, stride=(1, 1),
padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf70, (4, 64, 122, 122), (952576, 14884, 122, 1))
buf71 = empty_strided_cuda((244, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_29[grid(244)](buf71, 244, XBLOCK=128,
num_warps=4, num_stages=1)
buf72 = empty_strided_cuda((244, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_30[grid(244)](buf72, 244, XBLOCK=128,
num_warps=4, num_stages=1)
buf73 = empty_strided_cuda((244,), (1,), torch.int64)
triton_poi_fused__to_copy_29[grid(244)](buf73, 244, XBLOCK=128,
num_warps=4, num_stages=1)
buf74 = empty_strided_cuda((244,), (1,), torch.int64)
triton_poi_fused_add_clamp_30[grid(244)](buf74, 244, XBLOCK=128,
num_warps=4, num_stages=1)
buf75 = empty_strided_cuda((244,), (1,), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_31[grid(244)](buf75,
244, XBLOCK=256, num_warps=4, num_stages=1)
buf77 = empty_strided_cuda((244, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_arange_clamp_mul_sub_31[grid(244)](buf77,
244, XBLOCK=256, num_warps=4, num_stages=1)
buf76 = empty_strided_cuda((4, 64, 244, 244), (3811328, 59552, 244,
1), torch.float32)
buf78 = empty_strided_cuda((4, 64, 244, 244), (3811328, 59552, 244,
1), torch.float32)
triton_poi_fused__unsafe_index_add_convolution_mul_sub_32[grid(
15241216)](buf71, buf73, buf70, primals_41, buf74, buf75, buf72,
buf77, buf76, buf78, 15241216, XBLOCK=512, num_warps=8,
num_stages=1)
del buf70
del primals_41
buf79 = empty_strided_cuda((4, 128, 256, 256), (8388608, 65536, 256,
1), torch.float32)
triton_poi_fused_cat_33[grid(33554432)](buf3, buf76, buf78, buf79,
33554432, XBLOCK=1024, num_warps=4, num_stages=1)
del buf76
del buf78
buf80 = extern_kernels.convolution(buf79, primals_42, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf80, (4, 64, 254, 254), (4129024, 64516, 254, 1))
buf81 = buf80
del buf80
triton_poi_fused_convolution_relu_0[grid(16516096)](buf81,
primals_43, 16516096, XBLOCK=512, num_warps=8, num_stages=1)
del primals_43
buf82 = extern_kernels.convolution(buf81, primals_44, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf82, (4, 64, 252, 252), (4064256, 63504, 252, 1))
buf83 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256,
1), torch.float32)
triton_poi_fused_constant_pad_nd_convolution_relu_34[grid(16777216)](
buf82, primals_45, buf83, 16777216, XBLOCK=1024, num_warps=4,
num_stages=1)
buf84 = extern_kernels.convolution(buf83, primals_46, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf84, (4, 4, 256, 256), (262144, 65536, 256, 1))
buf85 = buf84
del buf84
triton_poi_fused_convolution_35[grid(1048576)](buf85, primals_47,
1048576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_47
buf86 = empty_strided_cuda((4, 64, 252, 252), (4071424, 63616, 252,
1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_36[grid(16257024)
](buf82, primals_45, buf86, 16257024, XBLOCK=1024, num_warps=4,
num_stages=1)
del buf82
del primals_45
return (buf85, primals_1, primals_3, primals_4, primals_6, primals_8,
primals_10, primals_12, primals_14, primals_16, primals_18,
primals_20, primals_22, primals_24, primals_26, primals_28,
primals_30, primals_32, primals_34, primals_36, primals_38,
primals_40, primals_42, primals_44, primals_46, buf1, buf3, buf4,
buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf16, buf17, buf19,
buf21, buf22, buf23, buf25, buf27, buf29, buf30, buf31, buf32,
buf33, buf35, buf37, buf39, buf41, buf43, buf44, buf45, buf46,
buf47, buf49, buf51, buf53, buf55, buf57, buf58, buf59, buf60,
buf61, buf63, buf65, buf67, buf69, buf71, buf72, buf73, buf74,
buf75, buf77, buf79, buf81, buf83, buf86)
class DoubleConv(nn.Module):
"""
Double 3x3 conv + relu
"""
def __init__(self, in_channels, out_channels):
super(DoubleConv, self).__init__()
self.conv_1 = nn.Conv2d(in_channels, out_channels, 3)
self.conv_2 = nn.Conv2d(out_channels, out_channels, 3)
self.relu = nn.ReLU()
def forward(self, x):
x = self.conv_1(x)
x = self.relu(x)
x = self.conv_2(x)
x = self.relu(x)
return x
class UpsampleCat(nn.Module):
"""
Unsample input and concat with contracting tensor
"""
def __init__(self, ch):
super(UpsampleCat, self).__init__()
self.up_conv = nn.Conv2d(ch, ch // 2, 3, padding=1)
self.up = nn.Upsample(scale_factor=2, mode='bilinear',
align_corners=True)
def forward(self, up, down):
up = self.up_conv(up)
up = self.up(up)
up_w, up_h = up.size()[2:4]
down_w, down_h = down.size()[2:4]
dw = down_w + 4 - up_w
dh = down_h + 4 - up_h
down = F.pad(down, (2, 2, 2, 2))
up = F.pad(up, (dw // 2, dw - dw // 2, dh // 2, dh - dh // 2))
y = torch.cat([down, up], dim=1)
return y
class UNetNew(nn.Module):
"""
UNet model
"""
def __init__(self, in_channels, out_channels):
super(UNetNew, self).__init__()
self.conv_1 = DoubleConv(in_channels, 64)
self.conv_2 = DoubleConv(64, 128)
self.conv_3 = DoubleConv(128, 256)
self.conv_4 = DoubleConv(256, 512)
self.conv_5 = DoubleConv(512, 1024)
self.down = nn.MaxPool2d(2)
self.up_1 = UpsampleCat(1024)
self.up_2 = UpsampleCat(512)
self.up_3 = UpsampleCat(256)
self.up_4 = UpsampleCat(128)
self.conv_6 = DoubleConv(1024, 512)
self.conv_7 = DoubleConv(512, 256)
self.conv_8 = DoubleConv(256, 128)
self.conv_9 = DoubleConv(128, 64)
self.out_conv = nn.Conv2d(64, out_channels, 1)
def forward(self, input_0):
primals_1 = self.conv_1.conv_1.weight
primals_2 = self.conv_1.conv_1.bias
primals_4 = self.conv_1.conv_2.weight
primals_5 = self.conv_1.conv_2.bias
primals_6 = self.conv_2.conv_1.weight
primals_7 = self.conv_2.conv_1.bias
primals_8 = self.conv_2.conv_2.weight
primals_9 = self.conv_2.conv_2.bias
primals_10 = self.conv_3.conv_1.weight
primals_11 = self.conv_3.conv_1.bias
primals_12 = self.conv_3.conv_2.weight
primals_13 = self.conv_3.conv_2.bias
primals_14 = self.conv_4.conv_1.weight
primals_15 = self.conv_4.conv_1.bias
primals_16 = self.conv_4.conv_2.weight
primals_17 = self.conv_4.conv_2.bias
primals_18 = self.conv_5.conv_1.weight
primals_19 = self.conv_5.conv_1.bias
primals_20 = self.conv_5.conv_2.weight
primals_21 = self.conv_5.conv_2.bias
primals_22 = self.up_1.up_conv.weight
primals_23 = self.up_1.up_conv.bias
primals_28 = self.up_2.up_conv.weight
primals_29 = self.up_2.up_conv.bias
primals_34 = self.up_3.up_conv.weight
primals_35 = self.up_3.up_conv.bias
primals_40 = self.up_4.up_conv.weight
primals_41 = self.up_4.up_conv.bias
primals_24 = self.conv_6.conv_1.weight
primals_25 = self.conv_6.conv_1.bias
primals_26 = self.conv_6.conv_2.weight
primals_27 = self.conv_6.conv_2.bias
primals_30 = self.conv_7.conv_1.weight
primals_31 = self.conv_7.conv_1.bias
primals_32 = self.conv_7.conv_2.weight
primals_33 = self.conv_7.conv_2.bias
primals_36 = self.conv_8.conv_1.weight
primals_37 = self.conv_8.conv_1.bias
primals_38 = self.conv_8.conv_2.weight
primals_39 = self.conv_8.conv_2.bias
primals_42 = self.conv_9.conv_1.weight
primals_43 = self.conv_9.conv_1.bias
primals_44 = self.conv_9.conv_2.weight
primals_45 = self.conv_9.conv_2.bias
primals_46 = self.out_conv.weight
primals_47 = self.out_conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13, primals_14,
primals_15, primals_16, primals_17, primals_18, primals_19,
primals_20, primals_21, primals_22, primals_23, primals_24,
primals_25, primals_26, primals_27, primals_28, primals_29,
primals_30, primals_31, primals_32, primals_33, primals_34,
primals_35, primals_36, primals_37, primals_38, primals_39,
primals_40, primals_41, primals_42, primals_43, primals_44,
primals_45, primals_46, primals_47])
return output[0]
|
Aoi-hosizora/UNet-pytorch
|
UNet
| false | 9,244 |
[
"MIT"
] | 0 |
96951d5d1fdc6c6266a11e1bd97fbf72010bc87d
|
https://github.com/Aoi-hosizora/UNet-pytorch/tree/96951d5d1fdc6c6266a11e1bd97fbf72010bc87d
|
SelfAttention
|
import torch
import torch.nn.functional as F
from torch import nn
class SelfAttention(nn.Module):
def __init__(self, embedding_dimension, num_heads):
super().__init__()
assert embedding_dimension % num_heads == 0, f'embedding dimension must be divisible by number of heads, got embedding_dimension={embedding_dimension!r}, num_heads={num_heads!r}'
self.num_heads = num_heads
k = embedding_dimension
self.to_keys = nn.Linear(k, k * num_heads, bias=False)
self.to_queries = nn.Linear(k, k * num_heads, bias=False)
self.to_values = nn.Linear(k, k * num_heads, bias=False)
self.unify_heads = nn.Linear(num_heads * k, k)
def forward(self, x):
b, t, k = x.size()
h = self.num_heads
keys = self.to_keys(x).view(b, t, h, k)
queries = self.to_queries(x).view(b, t, h, k)
values = self.to_values(x).view(b, t, h, k)
keys = keys.transpose(1, 2).contiguous().view(b * h, t, k)
queries = queries.transpose(1, 2).contiguous().view(b * h, t, k)
values = values.transpose(1, 2).contiguous().view(b * h, t, k)
dot = torch.bmm(queries, keys.transpose(1, 2))
dot = dot / k ** (1 / 2)
dot = F.softmax(dot, dim=2)
out = torch.bmm(dot, values).view(b, h, t, k)
out = out.transpose(1, 2).contiguous().view(b, t, h * k)
return self.unify_heads(out)
def get_inputs():
return [torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'embedding_dimension': 4, 'num_heads': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4 % 4
x2 = xindex // 16 % 4
x3 = xindex // 64
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2 + 16 * x1 + 64 * x3), xmask)
tl.store(out_ptr0 + x4, tmp0, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp6 = tmp5 * tmp1
tmp7 = triton_helpers.maximum(tmp4, tmp6)
tmp9 = tmp8 * tmp1
tmp10 = triton_helpers.maximum(tmp7, tmp9)
tmp12 = tmp11 * tmp1
tmp13 = triton_helpers.maximum(tmp10, tmp12)
tmp14 = tmp2 - tmp13
tmp15 = 0.5
tmp16 = tmp14 * tmp15
tmp17 = tl_math.exp(tmp16)
tl.store(out_ptr0 + x2, tmp17, xmask)
@triton.jit
def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (16, 4), (4, 1))
assert_size_stride(primals_3, (16, 4), (4, 1))
assert_size_stride(primals_4, (16, 4), (4, 1))
assert_size_stride(primals_5, (4, 16), (16, 1))
assert_size_stride(primals_6, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_2, (4, 16), (1, 4), 0), out=buf0)
del primals_2
buf1 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_3, (4, 16), (1, 4), 0), out=buf1)
del primals_3
buf2 = empty_strided_cuda((16, 16), (16, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 16), (1, 4), 0), out=buf2)
del primals_4
buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_clone_0[grid(256)](buf1, buf3, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf1
triton_poi_fused_clone_0[grid(256)](buf0, buf4, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf5 = reinterpret_tensor(buf0, (16, 4, 4), (16, 4, 1), 0)
del buf0
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf4, (16, 4, 4), (16, 1, 4), 0), out=buf5)
buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = buf5
del buf5
triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf8 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf6
triton_poi_fused_clone_0[grid(256)](buf2, buf8, 256, XBLOCK=128,
num_warps=4, num_stages=1)
buf9 = reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0)
del buf2
extern_kernels.bmm(buf7, reinterpret_tensor(buf8, (16, 4, 4), (16,
4, 1), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clone_0[grid(256)](buf9, buf10, 256, XBLOCK=128,
num_warps=4, num_stages=1)
del buf9
buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_6, reinterpret_tensor(buf10, (16, 16),
(16, 1), 0), reinterpret_tensor(primals_5, (16, 4), (1, 16), 0),
alpha=1, beta=1, out=buf11)
del primals_6
return reinterpret_tensor(buf11, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf10, (16, 16), (16, 1), 0
), primals_5, reinterpret_tensor(buf8, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf3, (16, 4, 4), (16, 1, 4), 0
), reinterpret_tensor(buf4, (16, 4, 4), (16, 4, 1), 0)
class SelfAttentionNew(nn.Module):
def __init__(self, embedding_dimension, num_heads):
super().__init__()
assert embedding_dimension % num_heads == 0, f'embedding dimension must be divisible by number of heads, got embedding_dimension={embedding_dimension!r}, num_heads={num_heads!r}'
self.num_heads = num_heads
k = embedding_dimension
self.to_keys = nn.Linear(k, k * num_heads, bias=False)
self.to_queries = nn.Linear(k, k * num_heads, bias=False)
self.to_values = nn.Linear(k, k * num_heads, bias=False)
self.unify_heads = nn.Linear(num_heads * k, k)
def forward(self, input_0):
primals_2 = self.to_keys.weight
primals_3 = self.to_queries.weight
primals_4 = self.to_values.weight
primals_5 = self.unify_heads.weight
primals_6 = self.unify_heads.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6])
return output[0]
|
dimitrios-ebi/gene_symbol_classifier
|
SelfAttention
| false | 12,289 |
[
"Apache-2.0"
] | 0 |
fe415f719fda4619041b9fe0639996c92e0f12a8
|
https://github.com/dimitrios-ebi/gene_symbol_classifier/tree/fe415f719fda4619041b9fe0639996c92e0f12a8
|
SAModule_Head
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class BasicConv(nn.Module):
def __init__(self, in_channels, out_channels, use_bn=False, **kwargs):
super(BasicConv, self).__init__()
self.use_bn = use_bn
self.conv = nn.Conv2d(in_channels, out_channels, bias=not self.
use_bn, **kwargs)
self.bn = nn.InstanceNorm2d(out_channels, affine=True
) if self.use_bn else None
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
return F.relu(x, inplace=True)
class SAModule_Head(nn.Module):
def __init__(self, in_channels, out_channels, use_bn):
super(SAModule_Head, self).__init__()
branch_out = out_channels // 4
self.branch1x1 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=1)
self.branch3x3 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=3, padding=1)
self.branch5x5 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=5, padding=2)
self.branch7x7 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=7, padding=3)
def forward(self, x):
branch1x1 = self.branch1x1(x)
branch3x3 = self.branch3x3(x)
branch5x5 = self.branch5x5(x)
branch7x7 = self.branch7x7(x)
out = torch.cat([branch1x1, branch3x3, branch5x5, branch7x7], 1)
return out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'use_bn': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__native_batch_norm_legit_cat_repeat_0(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, 1])
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, 1])
tmp4 = tl.load(in_ptr2 + (r1 + 16 * x0), xmask, other=0.0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tl.where(xmask, tmp5, 0)
tmp8 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp13 = tmp12.to(tl.float32)
tmp14 = tmp11 / tmp13
tmp15 = tmp5 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.rsqrt(tmp24)
tmp26 = tmp4 - tmp14
tmp27 = tmp26 * tmp25
tmp28 = tmp27 * tmp1
tmp29 = tmp28 + tmp3
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(out_ptr0 + x0, tmp1, xmask)
tl.store(out_ptr1 + x0, tmp3, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp25, xmask)
tl.store(out_ptr3 + (4 * r1 + 64 * x0), tmp31, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_per_fused__native_batch_norm_legit_cat_repeat_1(in_out_ptr0,
in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, out_ptr2, out_ptr3,
xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
x0 = xindex
r1 = rindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK, 1])
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK, 1])
tmp4 = tl.load(in_ptr2 + (r1 + 16 * x0), xmask, other=0.0)
tmp5 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK])
tl.where(xmask, tmp5, 0)
tmp8 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK])
tmp10 = tl.where(xmask, tmp8, 0)
tmp11 = tl.sum(tmp10, 1)[:, None]
tmp12 = tl.full([XBLOCK, 1], 16, tl.int32)
tmp13 = tmp12.to(tl.float32)
tmp14 = tmp11 / tmp13
tmp15 = tmp5 - tmp14
tmp16 = tmp15 * tmp15
tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK])
tmp19 = tl.where(xmask, tmp17, 0)
tmp20 = tl.sum(tmp19, 1)[:, None]
tmp21 = 16.0
tmp22 = tmp20 / tmp21
tmp23 = 1e-05
tmp24 = tmp22 + tmp23
tmp25 = libdevice.rsqrt(tmp24)
tmp26 = tmp4 - tmp14
tmp27 = tmp26 * tmp25
tmp28 = tmp27 * tmp1
tmp29 = tmp28 + tmp3
tmp30 = tl.full([1, 1], 0, tl.int32)
tmp31 = triton_helpers.maximum(tmp30, tmp29)
tl.store(out_ptr0 + x0, tmp1, xmask)
tl.store(out_ptr1 + x0, tmp3, xmask)
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp25, xmask)
tl.store(out_ptr3 + (4 * r1 + 64 * x0), tmp31, xmask)
tl.store(out_ptr2 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 16
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask)
tl.store(out_ptr0 + (x2 + 16 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (1,), (1,))
assert_size_stride(primals_4, (1,), (1,))
assert_size_stride(primals_5, (1, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_6, (1,), (1,))
assert_size_stride(primals_7, (1,), (1,))
assert_size_stride(primals_8, (1, 4, 5, 5), (100, 25, 5, 1))
assert_size_stride(primals_9, (1,), (1,))
assert_size_stride(primals_10, (1,), (1,))
assert_size_stride(primals_11, (1, 4, 7, 7), (196, 49, 7, 1))
assert_size_stride(primals_12, (1,), (1,))
assert_size_stride(primals_13, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 1, 4, 4), (16, 16, 4, 1))
buf1 = empty_strided_cuda((4,), (1,), torch.float32)
buf2 = empty_strided_cuda((4,), (1,), torch.float32)
buf3 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf4 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf6 = reinterpret_tensor(buf4, (1, 4, 1, 1), (4, 1, 1, 1), 0)
del buf4
buf32 = empty_strided_cuda((4, 4, 4, 4), (64, 1, 16, 4), torch.float32)
buf28 = reinterpret_tensor(buf32, (4, 1, 4, 4), (64, 1, 16, 4), 0)
get_raw_stream(0)
triton_per_fused__native_batch_norm_legit_cat_repeat_0[grid(4)](buf6,
primals_3, primals_4, buf0, buf1, buf2, buf3, buf28, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_3
del primals_4
buf7 = extern_kernels.convolution(primals_2, primals_5, stride=(1,
1), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf7, (4, 1, 4, 4), (16, 16, 4, 1))
buf8 = empty_strided_cuda((4,), (1,), torch.float32)
buf9 = empty_strided_cuda((4,), (1,), torch.float32)
buf10 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf11 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf13 = reinterpret_tensor(buf11, (1, 4, 1, 1), (4, 1, 1, 1), 0)
del buf11
buf29 = reinterpret_tensor(buf32, (4, 1, 4, 4), (64, 1, 16, 4), 1)
triton_per_fused__native_batch_norm_legit_cat_repeat_1[grid(4)](buf13,
primals_6, primals_7, buf7, buf8, buf9, buf10, buf29, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_6
del primals_7
buf14 = extern_kernels.convolution(primals_2, primals_8, stride=(1,
1), padding=(2, 2), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf14, (4, 1, 4, 4), (16, 16, 4, 1))
buf15 = empty_strided_cuda((4,), (1,), torch.float32)
buf16 = empty_strided_cuda((4,), (1,), torch.float32)
buf17 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf18 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf20 = reinterpret_tensor(buf18, (1, 4, 1, 1), (4, 1, 1, 1), 0)
del buf18
buf30 = reinterpret_tensor(buf32, (4, 1, 4, 4), (64, 1, 16, 4), 2)
triton_per_fused__native_batch_norm_legit_cat_repeat_1[grid(4)](buf20,
primals_9, primals_10, buf14, buf15, buf16, buf17, buf30, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del primals_10
del primals_9
buf21 = extern_kernels.convolution(primals_2, primals_11, stride=(1,
1), padding=(3, 3), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf21, (4, 1, 4, 4), (16, 16, 4, 1))
buf22 = empty_strided_cuda((4,), (1,), torch.float32)
buf23 = empty_strided_cuda((4,), (1,), torch.float32)
buf24 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
buf25 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 4, 4), torch.float32)
buf27 = reinterpret_tensor(buf25, (1, 4, 1, 1), (4, 1, 1, 1), 0)
del buf25
buf31 = reinterpret_tensor(buf32, (4, 1, 4, 4), (64, 1, 16, 4), 3)
triton_per_fused__native_batch_norm_legit_cat_repeat_1[grid(4)](buf27,
primals_12, primals_13, buf21, buf22, buf23, buf24, buf31, 4,
16, XBLOCK=1, num_warps=2, num_stages=1)
del primals_12
del primals_13
buf33 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_cat_2[grid(16, 16)](buf32, buf33, 16, 16, XBLOCK=
16, YBLOCK=16, num_warps=4, num_stages=1)
del buf28
del buf29
del buf30
del buf31
del buf32
return (buf33, primals_1, primals_2, primals_5, primals_8, primals_11,
buf0, buf1, buf2, buf3, buf6, buf7, buf8, buf9, buf10, buf13, buf14,
buf15, buf16, buf17, buf20, buf21, buf22, buf23, buf24, buf27)
class BasicConv(nn.Module):
def __init__(self, in_channels, out_channels, use_bn=False, **kwargs):
super(BasicConv, self).__init__()
self.use_bn = use_bn
self.conv = nn.Conv2d(in_channels, out_channels, bias=not self.
use_bn, **kwargs)
self.bn = nn.InstanceNorm2d(out_channels, affine=True
) if self.use_bn else None
def forward(self, x):
x = self.conv(x)
if self.use_bn:
x = self.bn(x)
return F.relu(x, inplace=True)
class SAModule_HeadNew(nn.Module):
def __init__(self, in_channels, out_channels, use_bn):
super(SAModule_HeadNew, self).__init__()
branch_out = out_channels // 4
self.branch1x1 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=1)
self.branch3x3 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=3, padding=1)
self.branch5x5 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=5, padding=2)
self.branch7x7 = BasicConv(in_channels, branch_out, use_bn=use_bn,
kernel_size=7, padding=3)
def forward(self, input_0):
primals_1 = self.branch1x1.conv.weight
primals_3 = self.branch1x1.bn.weight
primals_4 = self.branch1x1.bn.bias
primals_5 = self.branch3x3.conv.weight
primals_6 = self.branch3x3.bn.weight
primals_7 = self.branch3x3.bn.bias
primals_8 = self.branch5x5.conv.weight
primals_9 = self.branch5x5.bn.weight
primals_10 = self.branch5x5.bn.bias
primals_11 = self.branch7x7.conv.weight
primals_12 = self.branch7x7.bn.weight
primals_13 = self.branch7x7.bn.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
vghost2008/C-3-Framework
|
SAModule_Head
| false | 11,100 |
[
"MIT"
] | 0 |
dc6f1f67e403aff4dbb60f8ed06461c843407501
|
https://github.com/vghost2008/C-3-Framework/tree/dc6f1f67e403aff4dbb60f8ed06461c843407501
|
InverseSqrt
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/at/cato32233qv3tqtf6htbqu3dr22uwifzkajkou5ew6uihfue6mhe.py
# Topologically Sorted Source Nodes: [mul, mul_1, add, sqrt, truediv], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.div]
# Source node to ATen node mapping:
# add => add
# mul => mul
# mul_1 => mul_1
# sqrt => sqrt
# truediv => div
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 1.0), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %arg0_1), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {})
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %sqrt), kwargs = {})
triton_poi_fused_add_div_mul_sqrt_0 = async_compile.triton('triton_poi_fused_add_div_mul_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp0
tmp4 = tmp3 + tmp1
tmp5 = libdevice.sqrt(tmp4)
tmp6 = tmp0 / tmp5
tl.store(out_ptr0 + (x0), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, mul_1, add, sqrt, truediv], Original ATen: [aten.mul, aten.add, aten.sqrt, aten.div]
stream0 = get_raw_stream(0)
triton_poi_fused_add_div_mul_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_mul_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 1.0
tmp2 = tmp0 * tmp1
tmp3 = tmp2 * tmp0
tmp4 = tmp3 + tmp1
tmp5 = libdevice.sqrt(tmp4)
tmp6 = tmp0 / tmp5
tl.store(out_ptr0 + x0, tmp6, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_div_mul_sqrt_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class InverseSqrtNew(nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
awlange/pysurvival
|
InverseSqrt
| false | 14,917 |
[
"Apache-2.0"
] | 242 |
841b9bc6ce700ba8898d2a1488aa9cd25ee7a8e6
|
https://github.com/awlange/pysurvival/tree/841b9bc6ce700ba8898d2a1488aa9cd25ee7a8e6
|
Embedder
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_4/inductor_cache/7p/c7pwxf56d2hkkgnvgzzrs2qvt53cs64ryf4taqzjeu5lh5kz3mmv.py
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 952576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3721) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/jl/cjl6dwxrffvlkgggii27cxcanagq3wstn3z6xrualv3tjbmvwrdx.py
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.bernoulli]
# Source node to ATen node mapping:
# x_1 => bernoulli
# Graph fragment:
# %bernoulli : [num_users=2] = call_function[target=torch.ops.aten.bernoulli.p](args = (%empty, 0.5), kwargs = {})
triton_poi_fused_bernoulli_1 = async_compile.triton('triton_poi_fused_bernoulli_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bernoulli_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bernoulli_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float("nan")
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/nh/cnhec2zmuvcsvny2nncaltcm5a42fmwin2l7dj3ma2bz7ig2pdsj.py
# Topologically Sorted Source Nodes: [max_pool2d, x, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.div, aten.mul, aten.threshold_backward]
# Source node to ATen node mapping:
# max_pool2d => _low_memory_max_pool2d_with_offsets, getitem_1
# x => relu
# x_1 => div, mul
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution, [4, 4], [1, 1], [0, 0], [1, 1], False), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%bernoulli, 0.5), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %div), kwargs = {})
# %le_4 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2 = async_compile.triton('triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2(in_ptr0, in_ptr1, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 861184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 58
x1 = (xindex // 58) % 58
x2 = (xindex // 3364)
x3 = xindex % 3364
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (61*x1) + (3721*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (61*x1) + (3721*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + (61*x1) + (3721*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (3 + x0 + (61*x1) + (3721*x2)), xmask)
tmp7 = tl.load(in_ptr0 + (61 + x0 + (61*x1) + (3721*x2)), xmask)
tmp9 = tl.load(in_ptr0 + (62 + x0 + (61*x1) + (3721*x2)), xmask)
tmp11 = tl.load(in_ptr0 + (63 + x0 + (61*x1) + (3721*x2)), xmask)
tmp13 = tl.load(in_ptr0 + (64 + x0 + (61*x1) + (3721*x2)), xmask)
tmp15 = tl.load(in_ptr0 + (122 + x0 + (61*x1) + (3721*x2)), xmask)
tmp17 = tl.load(in_ptr0 + (123 + x0 + (61*x1) + (3721*x2)), xmask)
tmp19 = tl.load(in_ptr0 + (124 + x0 + (61*x1) + (3721*x2)), xmask)
tmp21 = tl.load(in_ptr0 + (125 + x0 + (61*x1) + (3721*x2)), xmask)
tmp23 = tl.load(in_ptr0 + (183 + x0 + (61*x1) + (3721*x2)), xmask)
tmp25 = tl.load(in_ptr0 + (184 + x0 + (61*x1) + (3721*x2)), xmask)
tmp27 = tl.load(in_ptr0 + (185 + x0 + (61*x1) + (3721*x2)), xmask)
tmp29 = tl.load(in_ptr0 + (186 + x0 + (61*x1) + (3721*x2)), xmask)
tmp79 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp30)
tmp80 = 2.0
tmp81 = tmp79 * tmp80
tmp82 = tmp78 * tmp81
tmp83 = 0.0
tmp84 = tmp78 <= tmp83
tl.store(out_ptr1 + (x3 + (3456*x2)), tmp76, xmask)
tl.store(out_ptr2 + (x4), tmp82, xmask)
tl.store(out_ptr3 + (x3 + (3456*x2)), tmp84, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/vb/cvbrjpmxxhjhkj64pt3j3gyja7ep7mslmmxwykci7y3izu36im3d.py
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_3 = async_compile.triton('triton_poi_fused_convolution_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 1548800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 3025) % 128
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/ht/chtnebfwoh5bwjbfyltkvba6l626ornsdteusxke5my5hvlqhz4l.py
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.bernoulli]
# Source node to ATen node mapping:
# x_3 => bernoulli_1
# Graph fragment:
# %bernoulli_1 : [num_users=2] = call_function[target=torch.ops.aten.bernoulli.p](args = (%empty_1, 0.8), kwargs = {})
triton_poi_fused_bernoulli_4 = async_compile.triton('triton_poi_fused_bernoulli_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_bernoulli_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_bernoulli_4(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float("nan")
tl.store(out_ptr0 + (x0), tmp0, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/bw/cbwb2zqdgsw5gembbwepx73ba4re4jyvkqfgbe57ohs5sxalcbmg.py
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2, x_3], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.div, aten.mul, aten.threshold_backward]
# Source node to ATen node mapping:
# max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# x_2 => relu_1
# x_3 => div_1, mul_1
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%convolution_1, [4, 4], [1, 1], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%getitem_2,), kwargs = {})
# %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%bernoulli_1, 0.8), kwargs = {})
# %mul_1 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu_1, %div_1), kwargs = {})
# %le_3 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {})
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5 = async_compile.triton('triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2097152],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: '*fp32', 4: '*i1', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5(in_ptr0, in_ptr1, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK : tl.constexpr):
xnumel = 1384448
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 52
x1 = (xindex // 52) % 52
x2 = (xindex // 2704)
x3 = xindex % 2704
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (55*x1) + (3025*x2)), None)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (55*x1) + (3025*x2)), None)
tmp3 = tl.load(in_ptr0 + (2 + x0 + (55*x1) + (3025*x2)), None)
tmp5 = tl.load(in_ptr0 + (3 + x0 + (55*x1) + (3025*x2)), None)
tmp7 = tl.load(in_ptr0 + (55 + x0 + (55*x1) + (3025*x2)), None)
tmp9 = tl.load(in_ptr0 + (56 + x0 + (55*x1) + (3025*x2)), None)
tmp11 = tl.load(in_ptr0 + (57 + x0 + (55*x1) + (3025*x2)), None)
tmp13 = tl.load(in_ptr0 + (58 + x0 + (55*x1) + (3025*x2)), None)
tmp15 = tl.load(in_ptr0 + (110 + x0 + (55*x1) + (3025*x2)), None)
tmp17 = tl.load(in_ptr0 + (111 + x0 + (55*x1) + (3025*x2)), None)
tmp19 = tl.load(in_ptr0 + (112 + x0 + (55*x1) + (3025*x2)), None)
tmp21 = tl.load(in_ptr0 + (113 + x0 + (55*x1) + (3025*x2)), None)
tmp23 = tl.load(in_ptr0 + (165 + x0 + (55*x1) + (3025*x2)), None)
tmp25 = tl.load(in_ptr0 + (166 + x0 + (55*x1) + (3025*x2)), None)
tmp27 = tl.load(in_ptr0 + (167 + x0 + (55*x1) + (3025*x2)), None)
tmp29 = tl.load(in_ptr0 + (168 + x0 + (55*x1) + (3025*x2)), None)
tmp79 = tl.load(in_ptr1 + (x2), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp30)
tmp80 = 1.25
tmp81 = tmp79 * tmp80
tmp82 = tmp78 * tmp81
tmp83 = 0.0
tmp84 = tmp78 <= tmp83
tl.store(out_ptr1 + (x3 + (2816*x2)), tmp76, None)
tl.store(out_ptr2 + (x4), tmp82, None)
tl.store(out_ptr3 + (x3 + (2816*x2)), tmp84, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/px/cpx7b5kbi2az6idrqrqye3gbzcsofkxgkadgqq7l4h5uzsqhgjwr.py
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_2 => convolution_2
# Graph fragment:
# %convolution_2 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_6 = async_compile.triton('triton_poi_fused_convolution_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 614656
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 2401) % 64
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/gb/cgbjfl3uoarkxaduyjy7chioeckc4igywl4k2a7ocatzisatny44.py
# Topologically Sorted Source Nodes: [avg_pool2d, x_4, x_5], Original ATen: [aten.avg_pool2d, aten.relu, aten.div, aten.mul, aten.threshold_backward]
# Source node to ATen node mapping:
# avg_pool2d => avg_pool2d
# x_4 => relu_2
# x_5 => div_2, mul_2
# Graph fragment:
# %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%convolution_2, [4, 4], [1, 1]), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%avg_pool2d,), kwargs = {})
# %div_2 : [num_users=1] = call_function[target=torch.ops.aten.div.Scalar](args = (%bernoulli_2, 0.9), kwargs = {})
# %mul_2 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu_2, %div_2), kwargs = {})
# %le_2 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {})
triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7 = async_compile.triton('triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1048576],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7(in_ptr0, in_ptr1, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 541696
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 46
x1 = (xindex // 46) % 46
x2 = (xindex // 2116)
x3 = xindex % 2116
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (49*x1) + (2401*x2)), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (49*x1) + (2401*x2)), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + (49*x1) + (2401*x2)), xmask)
tmp5 = tl.load(in_ptr0 + (3 + x0 + (49*x1) + (2401*x2)), xmask)
tmp7 = tl.load(in_ptr0 + (49 + x0 + (49*x1) + (2401*x2)), xmask)
tmp9 = tl.load(in_ptr0 + (50 + x0 + (49*x1) + (2401*x2)), xmask)
tmp11 = tl.load(in_ptr0 + (51 + x0 + (49*x1) + (2401*x2)), xmask)
tmp13 = tl.load(in_ptr0 + (52 + x0 + (49*x1) + (2401*x2)), xmask)
tmp15 = tl.load(in_ptr0 + (98 + x0 + (49*x1) + (2401*x2)), xmask)
tmp17 = tl.load(in_ptr0 + (99 + x0 + (49*x1) + (2401*x2)), xmask)
tmp19 = tl.load(in_ptr0 + (100 + x0 + (49*x1) + (2401*x2)), xmask)
tmp21 = tl.load(in_ptr0 + (101 + x0 + (49*x1) + (2401*x2)), xmask)
tmp23 = tl.load(in_ptr0 + (147 + x0 + (49*x1) + (2401*x2)), xmask)
tmp25 = tl.load(in_ptr0 + (148 + x0 + (49*x1) + (2401*x2)), xmask)
tmp27 = tl.load(in_ptr0 + (149 + x0 + (49*x1) + (2401*x2)), xmask)
tmp29 = tl.load(in_ptr0 + (150 + x0 + (49*x1) + (2401*x2)), xmask)
tmp35 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = tl.full([1], 0, tl.int32)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = 1.1111111111111112
tmp37 = tmp35 * tmp36
tmp38 = tmp34 * tmp37
tmp39 = 0.0
tmp40 = tmp34 <= tmp39
tl.store(out_ptr1 + (x4), tmp38, xmask)
tl.store(out_ptr2 + (x3 + (2176*x2)), tmp40, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/6f/c6fnjlbcou2s22iusn7thngj72lkjna5hlpio3j3hstnmk6h3eki.py
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv2d_3 => convolution_3
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%mul_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_8 = async_compile.triton('triton_poi_fused_convolution_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_8', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 236672
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 1849) % 32
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/mw/cmwamdxl3cynqtvmli6qboba4clt7cnclvtmgabto6teyfiz5jte.py
# Topologically Sorted Source Nodes: [avg_pool2d_1, x_6], Original ATen: [aten.avg_pool2d, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# avg_pool2d_1 => avg_pool2d_1
# x_6 => relu_3
# Graph fragment:
# %avg_pool2d_1 : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%convolution_3, [4, 4], [1, 1]), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%avg_pool2d_1,), kwargs = {})
# %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_3, 0), kwargs = {})
triton_poi_fused_avg_pool2d_relu_threshold_backward_9 = async_compile.triton('triton_poi_fused_avg_pool2d_relu_threshold_backward_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[262144],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_avg_pool2d_relu_threshold_backward_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_avg_pool2d_relu_threshold_backward_9(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 204800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 40
x1 = (xindex // 40) % 40
x2 = (xindex // 1600)
x3 = xindex
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + (x0 + (43*x1) + (1849*x2)), None)
tmp1 = tl.load(in_ptr0 + (1 + x0 + (43*x1) + (1849*x2)), None)
tmp3 = tl.load(in_ptr0 + (2 + x0 + (43*x1) + (1849*x2)), None)
tmp5 = tl.load(in_ptr0 + (3 + x0 + (43*x1) + (1849*x2)), None)
tmp7 = tl.load(in_ptr0 + (43 + x0 + (43*x1) + (1849*x2)), None)
tmp9 = tl.load(in_ptr0 + (44 + x0 + (43*x1) + (1849*x2)), None)
tmp11 = tl.load(in_ptr0 + (45 + x0 + (43*x1) + (1849*x2)), None)
tmp13 = tl.load(in_ptr0 + (46 + x0 + (43*x1) + (1849*x2)), None)
tmp15 = tl.load(in_ptr0 + (86 + x0 + (43*x1) + (1849*x2)), None)
tmp17 = tl.load(in_ptr0 + (87 + x0 + (43*x1) + (1849*x2)), None)
tmp19 = tl.load(in_ptr0 + (88 + x0 + (43*x1) + (1849*x2)), None)
tmp21 = tl.load(in_ptr0 + (89 + x0 + (43*x1) + (1849*x2)), None)
tmp23 = tl.load(in_ptr0 + (129 + x0 + (43*x1) + (1849*x2)), None)
tmp25 = tl.load(in_ptr0 + (130 + x0 + (43*x1) + (1849*x2)), None)
tmp27 = tl.load(in_ptr0 + (131 + x0 + (43*x1) + (1849*x2)), None)
tmp29 = tl.load(in_ptr0 + (132 + x0 + (43*x1) + (1849*x2)), None)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = tl.full([1], 0, tl.int32)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp35 = 0.0
tmp36 = tmp34 <= tmp35
tl.store(in_out_ptr0 + (x3), tmp34, None)
tl.store(out_ptr0 + (x4 + (1664*x2)), tmp36, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/b7/cb7b4xxsrgsflzk7wy3g23vpuvdyzzdaxzvboxb36pe4pxxbzfyl.py
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_8 => relu_4
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_11), kwargs = {})
# %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_10 = async_compile.triton('triton_poi_fused_relu_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_10', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 4096
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, None)
''', device_str='cuda')
# kernel path: runs/run_shard_4/inductor_cache/c6/cc6k2tzcobacndv5pxyl2svet2jkaujhgohdb4me3hv6wqaw6mi7.py
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.sigmoid]
# Source node to ATen node mapping:
# x_9 => sigmoid
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_13), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_sigmoid_11 = async_compile.triton('triton_poi_fused_sigmoid_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_11', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_sigmoid_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2048
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + (x2), None)
tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_3, (64, ), (1, ))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128, ), (1, ))
assert_size_stride(primals_6, (64, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (64, ), (1, ))
assert_size_stride(primals_8, (32, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_9, (32, ), (1, ))
assert_size_stride(primals_10, (256, 12800), (12800, 1))
assert_size_stride(primals_11, (256, ), (1, ))
assert_size_stride(primals_12, (128, 256), (256, 1))
assert_size_stride(primals_13, (128, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 61, 61), (238144, 3721, 61, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_3, 952576, grid=grid(952576), stream=stream0)
del primals_3
buf5 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.bernoulli]
triton_poi_fused_bernoulli_1.run(buf5, 256, grid=grid(256), stream=stream0)
torch.ops.aten.bernoulli_.float(buf5, 0.5)
buf3 = empty_strided_cuda((4, 64, 58, 58), (221184, 3456, 58, 1), torch.int8)
buf7 = empty_strided_cuda((4, 64, 58, 58), (215296, 3364, 58, 1), torch.float32)
buf34 = empty_strided_cuda((4, 64, 58, 58), (221184, 3456, 58, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_pool2d, x, x_1], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.div, aten.mul, aten.threshold_backward]
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2.run(buf1, buf5, buf3, buf7, buf34, 861184, grid=grid(861184), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf8 = extern_kernels.convolution(buf7, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 55, 55), (387200, 3025, 55, 1))
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_3.run(buf9, primals_5, 1548800, grid=grid(1548800), stream=stream0)
del primals_5
buf13 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.bernoulli]
triton_poi_fused_bernoulli_4.run(buf13, 512, grid=grid(512), stream=stream0)
torch.ops.aten.bernoulli_.float(buf13, 0.8)
buf11 = empty_strided_cuda((4, 128, 52, 52), (360448, 2816, 52, 1), torch.int8)
buf15 = empty_strided_cuda((4, 128, 52, 52), (346112, 2704, 52, 1), torch.float32)
buf33 = empty_strided_cuda((4, 128, 52, 52), (360448, 2816, 52, 1), torch.bool)
# Topologically Sorted Source Nodes: [max_pool2d_1, x_2, x_3], Original ATen: [aten.max_pool2d_with_indices, aten.relu, aten.div, aten.mul, aten.threshold_backward]
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5.run(buf9, buf13, buf11, buf15, buf33, 1384448, grid=grid(1384448), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf16 = extern_kernels.convolution(buf15, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 64, 49, 49), (153664, 2401, 49, 1))
buf17 = buf16; del buf16 # reuse
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_6.run(buf17, primals_7, 614656, grid=grid(614656), stream=stream0)
del primals_7
buf20 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_5], Original ATen: [aten.bernoulli]
triton_poi_fused_bernoulli_1.run(buf20, 256, grid=grid(256), stream=stream0)
torch.ops.aten.bernoulli_.float(buf20, 0.9)
buf22 = empty_strided_cuda((4, 64, 46, 46), (135424, 2116, 46, 1), torch.float32)
buf32 = empty_strided_cuda((4, 64, 46, 46), (139264, 2176, 46, 1), torch.bool)
# Topologically Sorted Source Nodes: [avg_pool2d, x_4, x_5], Original ATen: [aten.avg_pool2d, aten.relu, aten.div, aten.mul, aten.threshold_backward]
triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7.run(buf17, buf20, buf22, buf32, 541696, grid=grid(541696), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 32, 43, 43), (59168, 1849, 43, 1))
buf24 = buf23; del buf23 # reuse
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
triton_poi_fused_convolution_8.run(buf24, primals_9, 236672, grid=grid(236672), stream=stream0)
del primals_9
buf25 = empty_strided_cuda((4, 32, 40, 40), (51200, 1600, 40, 1), torch.float32)
buf26 = buf25; del buf25 # reuse
buf31 = empty_strided_cuda((4, 32, 40, 40), (53248, 1664, 40, 1), torch.bool)
# Topologically Sorted Source Nodes: [avg_pool2d_1, x_6], Original ATen: [aten.avg_pool2d, aten.relu, aten.threshold_backward]
triton_poi_fused_avg_pool2d_relu_threshold_backward_9.run(buf26, buf24, buf31, 204800, grid=grid(204800), stream=stream0)
buf27 = empty_strided_cuda((16, 256), (256, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf26, (16, 12800), (12800, 1), 0), reinterpret_tensor(primals_10, (12800, 256), (1, 12800), 0), out=buf27)
buf28 = buf27; del buf27 # reuse
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.relu]
triton_poi_fused_relu_10.run(buf28, primals_11, 4096, grid=grid(4096), stream=stream0)
del primals_11
buf29 = empty_strided_cuda((16, 128), (128, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf28, reinterpret_tensor(primals_12, (256, 128), (1, 256), 0), out=buf29)
buf30 = buf29; del buf29 # reuse
# Topologically Sorted Source Nodes: [x_9], Original ATen: [aten.sigmoid]
triton_poi_fused_sigmoid_11.run(buf30, primals_13, 2048, grid=grid(2048), stream=stream0)
del primals_13
return (buf30, primals_1, primals_2, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf20, buf22, buf24, reinterpret_tensor(buf26, (16, 12800), (12800, 1), 0), buf28, buf30, primals_12, primals_10, buf31, buf32, buf33, buf34, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((64, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((64, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((32, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((256, 12800), (12800, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_12 = rand_strided((128, 256), (256, 1), device='cuda:0', dtype=torch.float32)
primals_13 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch.nn import Module
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 952576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3721 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_bernoulli_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float('nan')
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2(
in_ptr0, in_ptr1, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.
constexpr):
xnumel = 861184
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 58
x1 = xindex // 58 % 58
x2 = xindex // 3364
x3 = xindex % 3364
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 61 * x1 + 3721 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (3 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (61 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp9 = tl.load(in_ptr0 + (62 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp11 = tl.load(in_ptr0 + (63 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp13 = tl.load(in_ptr0 + (64 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp15 = tl.load(in_ptr0 + (122 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp17 = tl.load(in_ptr0 + (123 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp19 = tl.load(in_ptr0 + (124 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp21 = tl.load(in_ptr0 + (125 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp23 = tl.load(in_ptr0 + (183 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp25 = tl.load(in_ptr0 + (184 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp27 = tl.load(in_ptr0 + (185 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp29 = tl.load(in_ptr0 + (186 + x0 + 61 * x1 + 3721 * x2), xmask)
tmp79 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp30)
tmp80 = 2.0
tmp81 = tmp79 * tmp80
tmp82 = tmp78 * tmp81
tmp83 = 0.0
tmp84 = tmp78 <= tmp83
tl.store(out_ptr1 + (x3 + 3456 * x2), tmp76, xmask)
tl.store(out_ptr2 + x4, tmp82, xmask)
tl.store(out_ptr3 + (x3 + 3456 * x2), tmp84, xmask)
@triton.jit
def triton_poi_fused_convolution_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 1548800
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 3025 % 128
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_bernoulli_4(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = float('nan')
tl.store(out_ptr0 + x0, tmp0, xmask)
@triton.jit
def triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5(
in_ptr0, in_ptr1, out_ptr1, out_ptr2, out_ptr3, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 52
x1 = xindex // 52 % 52
x2 = xindex // 2704
x3 = xindex % 2704
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 55 * x1 + 3025 * x2), None)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 55 * x1 + 3025 * x2), None)
tmp3 = tl.load(in_ptr0 + (2 + x0 + 55 * x1 + 3025 * x2), None)
tmp5 = tl.load(in_ptr0 + (3 + x0 + 55 * x1 + 3025 * x2), None)
tmp7 = tl.load(in_ptr0 + (55 + x0 + 55 * x1 + 3025 * x2), None)
tmp9 = tl.load(in_ptr0 + (56 + x0 + 55 * x1 + 3025 * x2), None)
tmp11 = tl.load(in_ptr0 + (57 + x0 + 55 * x1 + 3025 * x2), None)
tmp13 = tl.load(in_ptr0 + (58 + x0 + 55 * x1 + 3025 * x2), None)
tmp15 = tl.load(in_ptr0 + (110 + x0 + 55 * x1 + 3025 * x2), None)
tmp17 = tl.load(in_ptr0 + (111 + x0 + 55 * x1 + 3025 * x2), None)
tmp19 = tl.load(in_ptr0 + (112 + x0 + 55 * x1 + 3025 * x2), None)
tmp21 = tl.load(in_ptr0 + (113 + x0 + 55 * x1 + 3025 * x2), None)
tmp23 = tl.load(in_ptr0 + (165 + x0 + 55 * x1 + 3025 * x2), None)
tmp25 = tl.load(in_ptr0 + (166 + x0 + 55 * x1 + 3025 * x2), None)
tmp27 = tl.load(in_ptr0 + (167 + x0 + 55 * x1 + 3025 * x2), None)
tmp29 = tl.load(in_ptr0 + (168 + x0 + 55 * x1 + 3025 * x2), None)
tmp79 = tl.load(in_ptr1 + x2, None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp31 = tmp1 > tmp0
tmp32 = tl.full([1], 1, tl.int8)
tmp33 = tl.full([1], 0, tl.int8)
tmp34 = tl.where(tmp31, tmp32, tmp33)
tmp35 = tmp3 > tmp2
tmp36 = tl.full([1], 2, tl.int8)
tmp37 = tl.where(tmp35, tmp36, tmp34)
tmp38 = tmp5 > tmp4
tmp39 = tl.full([1], 3, tl.int8)
tmp40 = tl.where(tmp38, tmp39, tmp37)
tmp41 = tmp7 > tmp6
tmp42 = tl.full([1], 4, tl.int8)
tmp43 = tl.where(tmp41, tmp42, tmp40)
tmp44 = tmp9 > tmp8
tmp45 = tl.full([1], 5, tl.int8)
tmp46 = tl.where(tmp44, tmp45, tmp43)
tmp47 = tmp11 > tmp10
tmp48 = tl.full([1], 6, tl.int8)
tmp49 = tl.where(tmp47, tmp48, tmp46)
tmp50 = tmp13 > tmp12
tmp51 = tl.full([1], 7, tl.int8)
tmp52 = tl.where(tmp50, tmp51, tmp49)
tmp53 = tmp15 > tmp14
tmp54 = tl.full([1], 8, tl.int8)
tmp55 = tl.where(tmp53, tmp54, tmp52)
tmp56 = tmp17 > tmp16
tmp57 = tl.full([1], 9, tl.int8)
tmp58 = tl.where(tmp56, tmp57, tmp55)
tmp59 = tmp19 > tmp18
tmp60 = tl.full([1], 10, tl.int8)
tmp61 = tl.where(tmp59, tmp60, tmp58)
tmp62 = tmp21 > tmp20
tmp63 = tl.full([1], 11, tl.int8)
tmp64 = tl.where(tmp62, tmp63, tmp61)
tmp65 = tmp23 > tmp22
tmp66 = tl.full([1], 12, tl.int8)
tmp67 = tl.where(tmp65, tmp66, tmp64)
tmp68 = tmp25 > tmp24
tmp69 = tl.full([1], 13, tl.int8)
tmp70 = tl.where(tmp68, tmp69, tmp67)
tmp71 = tmp27 > tmp26
tmp72 = tl.full([1], 14, tl.int8)
tmp73 = tl.where(tmp71, tmp72, tmp70)
tmp74 = tmp29 > tmp28
tmp75 = tl.full([1], 15, tl.int8)
tmp76 = tl.where(tmp74, tmp75, tmp73)
tmp77 = tl.full([1], 0, tl.int32)
tmp78 = triton_helpers.maximum(tmp77, tmp30)
tmp80 = 1.25
tmp81 = tmp79 * tmp80
tmp82 = tmp78 * tmp81
tmp83 = 0.0
tmp84 = tmp78 <= tmp83
tl.store(out_ptr1 + (x3 + 2816 * x2), tmp76, None)
tl.store(out_ptr2 + x4, tmp82, None)
tl.store(out_ptr3 + (x3 + 2816 * x2), tmp84, None)
@triton.jit
def triton_poi_fused_convolution_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 614656
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 2401 % 64
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7(in_ptr0,
in_ptr1, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 541696
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 46
x1 = xindex // 46 % 46
x2 = xindex // 2116
x3 = xindex % 2116
x4 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 49 * x1 + 2401 * x2), xmask)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp3 = tl.load(in_ptr0 + (2 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp5 = tl.load(in_ptr0 + (3 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp7 = tl.load(in_ptr0 + (49 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp9 = tl.load(in_ptr0 + (50 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp11 = tl.load(in_ptr0 + (51 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp13 = tl.load(in_ptr0 + (52 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp15 = tl.load(in_ptr0 + (98 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp17 = tl.load(in_ptr0 + (99 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp19 = tl.load(in_ptr0 + (100 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp21 = tl.load(in_ptr0 + (101 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp23 = tl.load(in_ptr0 + (147 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp25 = tl.load(in_ptr0 + (148 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp27 = tl.load(in_ptr0 + (149 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp29 = tl.load(in_ptr0 + (150 + x0 + 49 * x1 + 2401 * x2), xmask)
tmp35 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last')
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = tl.full([1], 0, tl.int32)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = 1.1111111111111112
tmp37 = tmp35 * tmp36
tmp38 = tmp34 * tmp37
tmp39 = 0.0
tmp40 = tmp34 <= tmp39
tl.store(out_ptr1 + x4, tmp38, xmask)
tl.store(out_ptr2 + (x3 + 2176 * x2), tmp40, xmask)
@triton.jit
def triton_poi_fused_convolution_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 236672
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 1849 % 32
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_avg_pool2d_relu_threshold_backward_9(in_out_ptr0,
in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 40
x1 = xindex // 40 % 40
x2 = xindex // 1600
x3 = xindex
x4 = xindex % 1600
tmp0 = tl.load(in_ptr0 + (x0 + 43 * x1 + 1849 * x2), None)
tmp1 = tl.load(in_ptr0 + (1 + x0 + 43 * x1 + 1849 * x2), None)
tmp3 = tl.load(in_ptr0 + (2 + x0 + 43 * x1 + 1849 * x2), None)
tmp5 = tl.load(in_ptr0 + (3 + x0 + 43 * x1 + 1849 * x2), None)
tmp7 = tl.load(in_ptr0 + (43 + x0 + 43 * x1 + 1849 * x2), None)
tmp9 = tl.load(in_ptr0 + (44 + x0 + 43 * x1 + 1849 * x2), None)
tmp11 = tl.load(in_ptr0 + (45 + x0 + 43 * x1 + 1849 * x2), None)
tmp13 = tl.load(in_ptr0 + (46 + x0 + 43 * x1 + 1849 * x2), None)
tmp15 = tl.load(in_ptr0 + (86 + x0 + 43 * x1 + 1849 * x2), None)
tmp17 = tl.load(in_ptr0 + (87 + x0 + 43 * x1 + 1849 * x2), None)
tmp19 = tl.load(in_ptr0 + (88 + x0 + 43 * x1 + 1849 * x2), None)
tmp21 = tl.load(in_ptr0 + (89 + x0 + 43 * x1 + 1849 * x2), None)
tmp23 = tl.load(in_ptr0 + (129 + x0 + 43 * x1 + 1849 * x2), None)
tmp25 = tl.load(in_ptr0 + (130 + x0 + 43 * x1 + 1849 * x2), None)
tmp27 = tl.load(in_ptr0 + (131 + x0 + 43 * x1 + 1849 * x2), None)
tmp29 = tl.load(in_ptr0 + (132 + x0 + 43 * x1 + 1849 * x2), None)
tmp2 = tmp1 + tmp0
tmp4 = tmp3 + tmp2
tmp6 = tmp5 + tmp4
tmp8 = tmp7 + tmp6
tmp10 = tmp9 + tmp8
tmp12 = tmp11 + tmp10
tmp14 = tmp13 + tmp12
tmp16 = tmp15 + tmp14
tmp18 = tmp17 + tmp16
tmp20 = tmp19 + tmp18
tmp22 = tmp21 + tmp20
tmp24 = tmp23 + tmp22
tmp26 = tmp25 + tmp24
tmp28 = tmp27 + tmp26
tmp30 = tmp29 + tmp28
tmp31 = 0.0625
tmp32 = tmp30 * tmp31
tmp33 = tl.full([1], 0, tl.int32)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp35 = 0.0
tmp36 = tmp34 <= tmp35
tl.store(in_out_ptr0 + x3, tmp34, None)
tl.store(out_ptr0 + (x4 + 1664 * x2), tmp36, None)
@triton.jit
def triton_poi_fused_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 256
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, None)
@triton.jit
def triton_poi_fused_sigmoid_11(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x2 = xindex
x0 = xindex % 128
tmp0 = tl.load(in_out_ptr0 + x2, None)
tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11, primals_12,
primals_13) = args
args.clear()
assert_size_stride(primals_1, (4, 3, 64, 64), (12288, 4096, 64, 1))
assert_size_stride(primals_2, (64, 3, 4, 4), (48, 16, 4, 1))
assert_size_stride(primals_3, (64,), (1,))
assert_size_stride(primals_4, (128, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_5, (128,), (1,))
assert_size_stride(primals_6, (64, 128, 4, 4), (2048, 16, 4, 1))
assert_size_stride(primals_7, (64,), (1,))
assert_size_stride(primals_8, (32, 64, 4, 4), (1024, 16, 4, 1))
assert_size_stride(primals_9, (32,), (1,))
assert_size_stride(primals_10, (256, 12800), (12800, 1))
assert_size_stride(primals_11, (256,), (1,))
assert_size_stride(primals_12, (128, 256), (256, 1))
assert_size_stride(primals_13, (128,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 64, 61, 61), (238144, 3721, 61, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(952576)](buf1, primals_3,
952576, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_3
buf5 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.float32)
triton_poi_fused_bernoulli_1[grid(256)](buf5, 256, XBLOCK=128,
num_warps=4, num_stages=1)
torch.ops.aten.bernoulli_.float(buf5, 0.5)
buf3 = empty_strided_cuda((4, 64, 58, 58), (221184, 3456, 58, 1),
torch.int8)
buf7 = empty_strided_cuda((4, 64, 58, 58), (215296, 3364, 58, 1),
torch.float32)
buf34 = empty_strided_cuda((4, 64, 58, 58), (221184, 3456, 58, 1),
torch.bool)
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_2[
grid(861184)](buf1, buf5, buf3, buf7, buf34, 861184, XBLOCK=512,
num_warps=8, num_stages=1)
buf8 = extern_kernels.convolution(buf7, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf8, (4, 128, 55, 55), (387200, 3025, 55, 1))
buf9 = buf8
del buf8
triton_poi_fused_convolution_3[grid(1548800)](buf9, primals_5,
1548800, XBLOCK=1024, num_warps=4, num_stages=1)
del primals_5
buf13 = empty_strided_cuda((4, 128, 1, 1), (128, 1, 1, 1), torch.
float32)
triton_poi_fused_bernoulli_4[grid(512)](buf13, 512, XBLOCK=128,
num_warps=4, num_stages=1)
torch.ops.aten.bernoulli_.float(buf13, 0.8)
buf11 = empty_strided_cuda((4, 128, 52, 52), (360448, 2816, 52, 1),
torch.int8)
buf15 = empty_strided_cuda((4, 128, 52, 52), (346112, 2704, 52, 1),
torch.float32)
buf33 = empty_strided_cuda((4, 128, 52, 52), (360448, 2816, 52, 1),
torch.bool)
triton_poi_fused_div_max_pool2d_with_indices_mul_relu_threshold_backward_5[
grid(1384448)](buf9, buf13, buf11, buf15, buf33, 1384448,
XBLOCK=512, num_warps=8, num_stages=1)
buf16 = extern_kernels.convolution(buf15, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf16, (4, 64, 49, 49), (153664, 2401, 49, 1))
buf17 = buf16
del buf16
triton_poi_fused_convolution_6[grid(614656)](buf17, primals_7,
614656, XBLOCK=512, num_warps=8, num_stages=1)
del primals_7
buf20 = empty_strided_cuda((4, 64, 1, 1), (64, 1, 1, 1), torch.float32)
triton_poi_fused_bernoulli_1[grid(256)](buf20, 256, XBLOCK=128,
num_warps=4, num_stages=1)
torch.ops.aten.bernoulli_.float(buf20, 0.9)
buf22 = empty_strided_cuda((4, 64, 46, 46), (135424, 2116, 46, 1),
torch.float32)
buf32 = empty_strided_cuda((4, 64, 46, 46), (139264, 2176, 46, 1),
torch.bool)
triton_poi_fused_avg_pool2d_div_mul_relu_threshold_backward_7[grid(
541696)](buf17, buf20, buf22, buf32, 541696, XBLOCK=512,
num_warps=8, num_stages=1)
buf23 = extern_kernels.convolution(buf22, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 32, 43, 43), (59168, 1849, 43, 1))
buf24 = buf23
del buf23
triton_poi_fused_convolution_8[grid(236672)](buf24, primals_9,
236672, XBLOCK=512, num_warps=8, num_stages=1)
del primals_9
buf25 = empty_strided_cuda((4, 32, 40, 40), (51200, 1600, 40, 1),
torch.float32)
buf26 = buf25
del buf25
buf31 = empty_strided_cuda((4, 32, 40, 40), (53248, 1664, 40, 1),
torch.bool)
triton_poi_fused_avg_pool2d_relu_threshold_backward_9[grid(204800)](
buf26, buf24, buf31, 204800, XBLOCK=512, num_warps=8, num_stages=1)
buf27 = empty_strided_cuda((16, 256), (256, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf26, (16, 12800), (12800, 1),
0), reinterpret_tensor(primals_10, (12800, 256), (1, 12800), 0),
out=buf27)
buf28 = buf27
del buf27
triton_poi_fused_relu_10[grid(4096)](buf28, primals_11, 4096,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_11
buf29 = empty_strided_cuda((16, 128), (128, 1), torch.float32)
extern_kernels.mm(buf28, reinterpret_tensor(primals_12, (256, 128),
(1, 256), 0), out=buf29)
buf30 = buf29
del buf29
triton_poi_fused_sigmoid_11[grid(2048)](buf30, primals_13, 2048,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_13
return (buf30, primals_1, primals_2, primals_4, primals_6, primals_8,
buf1, buf3, buf5, buf7, buf9, buf11, buf13, buf15, buf17, buf20,
buf22, buf24, reinterpret_tensor(buf26, (16, 12800), (12800, 1), 0),
buf28, buf30, primals_12, primals_10, buf31, buf32, buf33, buf34)
class EmbedderNew(Module):
def __init__(self, input_size, kernel_sizes):
super().__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=kernel_sizes[0])
self.pool1 = nn.MaxPool2d(kernel_size=kernel_sizes[1], stride=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=kernel_sizes[2])
self.pool2 = nn.MaxPool2d(kernel_size=kernel_sizes[3], stride=1)
self.conv3 = nn.Conv2d(128, 64, kernel_size=kernel_sizes[4])
self.pool3 = nn.AvgPool2d(kernel_size=kernel_sizes[5], stride=1)
self.conv4 = nn.Conv2d(64, 32, kernel_size=kernel_sizes[6])
self.pool4 = nn.AvgPool2d(kernel_size=kernel_sizes[7], stride=1)
size_reduction = sum(kernel_sizes) - len(kernel_sizes)
self.fc_input_dimension = (input_size[0] - size_reduction) * (
input_size[1] - size_reduction) * 32
self.fc1 = nn.Linear(self.fc_input_dimension, 256)
self.fc2 = nn.Linear(256, 128)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.conv3.weight
primals_7 = self.conv3.bias
primals_8 = self.conv4.weight
primals_9 = self.conv4.bias
primals_10 = self.fc1.weight
primals_11 = self.fc1.bias
primals_12 = self.fc2.weight
primals_13 = self.fc2.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11, primals_12, primals_13])
return output[0]
|
Zonglin-Li6565/FaceKoob
|
Embedder
| false | 6,066 |
[
"MIT"
] | 1 |
d72da10330ec313308a16116b7d2abd8ecfcdbcf
|
https://github.com/Zonglin-Li6565/FaceKoob/tree/d72da10330ec313308a16116b7d2abd8ecfcdbcf
|
ClassifierEnd
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/us/cush2deuepzzqxyfpmbtogrhowyvqzk2ekvx54pwfgv7oeu3qbz2.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# out => convolution
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/oa/coawpuahr4h2dt2mlmvzhttydsibmceg5rndrm3o3ay3nqjzkdpn.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten._softmax]
# Source node to ATen node mapping:
# out_3 => convolution_3
# out_4 => amax, exp, sub, sum_1
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
triton_poi_fused__softmax_convolution_1 = async_compile.triton('triton_poi_fused__softmax_convolution_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_convolution_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4096
x1 = (xindex // 4096)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16384*x1)), None)
tmp1 = tl.load(in_ptr1 + (0))
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (4096 + x0 + (16384*x1)), None)
tmp5 = tl.load(in_ptr1 + (1))
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (8192 + x0 + (16384*x1)), None)
tmp10 = tl.load(in_ptr1 + (2))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (12288 + x0 + (16384*x1)), None)
tmp15 = tl.load(in_ptr1 + (3))
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = triton_helpers.maximum(tmp3, tmp7)
tmp12 = tmp9 + tmp11
tmp13 = triton_helpers.maximum(tmp8, tmp12)
tmp17 = tmp14 + tmp16
tmp18 = triton_helpers.maximum(tmp13, tmp17)
tmp19 = tmp3 - tmp18
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp7 - tmp18
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp12 - tmp18
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tmp27 = tmp17 - tmp18
tmp28 = tl_math.exp(tmp27)
tmp29 = tmp26 + tmp28
tl.store(out_ptr0 + (x2), tmp18, None)
tl.store(out_ptr1 + (x2), tmp29, None)
''', device_str='cuda')
# kernel path: runs/run_shard_2/inductor_cache/sz/cszfly5na7eqc62wu7fv5gwwzzpe2rxuohb7rzzbxu4uluxbqdot.py
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten._softmax]
# Source node to ATen node mapping:
# out_3 => convolution_3
# out_4 => amax, div, exp, sub
# Graph fragment:
# %convolution_3 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%convolution_2, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%convolution_3, [1], True), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%convolution_3, %amax), kwargs = {})
# %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {})
triton_poi_fused__softmax_convolution_2 = async_compile.triton('triton_poi_fused__softmax_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__softmax_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr):
xnumel = 65536
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = (xindex // 4096) % 4
x0 = xindex % 4096
x2 = (xindex // 16384)
tmp0 = tl.load(in_out_ptr0 + (x3), None)
tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + (4096*x2)), None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + (x3), tmp7, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args
args.clear()
assert_size_stride(primals_1, (4, 21, 1, 1), (21, 1, 1, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 21, 64, 64), (86016, 4096, 64, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4, ), (1, ))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(buf1, primals_2, 65536, grid=grid(65536), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf3 = buf2; del buf2 # reuse
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf3, primals_5, 65536, grid=grid(65536), stream=stream0)
del primals_5
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf5 = buf4; del buf4 # reuse
# Topologically Sorted Source Nodes: [out_2], Original ATen: [aten.convolution]
triton_poi_fused_convolution_0.run(buf5, primals_7, 65536, grid=grid(65536), stream=stream0)
del primals_7
# Topologically Sorted Source Nodes: [out_3], Original ATen: [aten.convolution]
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf8 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten._softmax]
triton_poi_fused__softmax_convolution_1.run(buf6, primals_9, buf7, buf8, 16384, grid=grid(16384), stream=stream0)
buf9 = buf6; del buf6 # reuse
# Topologically Sorted Source Nodes: [out_3, out_4], Original ATen: [aten.convolution, aten._softmax]
triton_poi_fused__softmax_convolution_2.run(buf9, primals_9, buf7, buf8, 65536, grid=grid(65536), stream=stream0)
del buf7
del buf8
del primals_9
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8, buf1, buf3, buf5, buf9, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 21, 1, 1), (21, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 21, 64, 64), (86016, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, None)
@triton.jit
def triton_poi_fused__softmax_convolution_1(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 4096
x1 = xindex // 4096
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16384 * x1), None)
tmp1 = tl.load(in_ptr1 + 0)
tmp2 = tl.broadcast_to(tmp1, [XBLOCK])
tmp4 = tl.load(in_ptr0 + (4096 + x0 + 16384 * x1), None)
tmp5 = tl.load(in_ptr1 + 1)
tmp6 = tl.broadcast_to(tmp5, [XBLOCK])
tmp9 = tl.load(in_ptr0 + (8192 + x0 + 16384 * x1), None)
tmp10 = tl.load(in_ptr1 + 2)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp14 = tl.load(in_ptr0 + (12288 + x0 + 16384 * x1), None)
tmp15 = tl.load(in_ptr1 + 3)
tmp16 = tl.broadcast_to(tmp15, [XBLOCK])
tmp3 = tmp0 + tmp2
tmp7 = tmp4 + tmp6
tmp8 = triton_helpers.maximum(tmp3, tmp7)
tmp12 = tmp9 + tmp11
tmp13 = triton_helpers.maximum(tmp8, tmp12)
tmp17 = tmp14 + tmp16
tmp18 = triton_helpers.maximum(tmp13, tmp17)
tmp19 = tmp3 - tmp18
tmp20 = tl_math.exp(tmp19)
tmp21 = tmp7 - tmp18
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp12 - tmp18
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tmp27 = tmp17 - tmp18
tmp28 = tl_math.exp(tmp27)
tmp29 = tmp26 + tmp28
tl.store(out_ptr0 + x2, tmp18, None)
tl.store(out_ptr1 + x2, tmp29, None)
@triton.jit
def triton_poi_fused__softmax_convolution_2(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x3 = xindex
x1 = xindex // 4096 % 4
x0 = xindex % 4096
x2 = xindex // 16384
tmp0 = tl.load(in_out_ptr0 + x3, None)
tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr2 + (x0 + 4096 * x2), None, eviction_policy=
'evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp5 = tl_math.exp(tmp4)
tmp7 = tmp5 / tmp6
tl.store(in_out_ptr0 + x3, tmp7, None)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9) = args
args.clear()
assert_size_stride(primals_1, (4, 21, 1, 1), (21, 1, 1, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 21, 64, 64), (86016, 4096, 64, 1))
assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_7, (4,), (1,))
assert_size_stride(primals_8, (4, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_9, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(65536)](buf1, primals_2, 65536,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_0[grid(65536)](buf3, primals_5, 65536,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
buf4 = extern_kernels.convolution(buf3, primals_6, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf5 = buf4
del buf4
triton_poi_fused_convolution_0[grid(65536)](buf5, primals_7, 65536,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_7
buf6 = extern_kernels.convolution(buf5, primals_8, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf6, (4, 4, 64, 64), (16384, 4096, 64, 1))
buf7 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf8 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
triton_poi_fused__softmax_convolution_1[grid(16384)](buf6,
primals_9, buf7, buf8, 16384, XBLOCK=256, num_warps=4, num_stages=1
)
buf9 = buf6
del buf6
triton_poi_fused__softmax_convolution_2[grid(65536)](buf9,
primals_9, buf7, buf8, 65536, XBLOCK=256, num_warps=4, num_stages=1
)
del buf7
del buf8
del primals_9
return (buf9, primals_1, primals_3, primals_4, primals_6, primals_8,
buf1, buf3, buf5, buf9)
class ClassifierEndNew(nn.Module):
def __init__(self, num_classes: 'int'):
super(ClassifierEndNew, self).__init__()
self.num_classes = num_classes
self.fc_net1 = nn.Conv2d(21, self.num_classes, kernel_size=1, stride=1)
self.fc_net2 = nn.Conv2d(self.num_classes, self.num_classes,
kernel_size=1, stride=1)
self.fc_net3 = nn.Conv2d(self.num_classes, self.num_classes,
kernel_size=1, stride=1)
self.fc_net4 = nn.Conv2d(self.num_classes, self.num_classes,
kernel_size=1, stride=1)
assert self.num_classes > 0, 'The number of classes must be a positive integer.'
if self.num_classes > 1:
self.final = nn.Softmax()
else:
self.final = nn.Sigmoid()
def forward(self, input_0):
primals_1 = self.fc_net1.weight
primals_2 = self.fc_net1.bias
primals_4 = self.fc_net2.weight
primals_5 = self.fc_net2.bias
primals_6 = self.fc_net3.weight
primals_7 = self.fc_net3.bias
primals_8 = self.fc_net4.weight
primals_9 = self.fc_net4.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9])
return output[0]
|
EadCat/Road-Extraction
|
ClassifierEnd
| false | 17,246 |
[
"MIT"
] | 4 |
9d4831b6c3a5ef07676cbe1c79b03045fda427ea
|
https://github.com/EadCat/Road-Extraction/tree/9d4831b6c3a5ef07676cbe1c79b03045fda427ea
|
OnnxHardSigmoid
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/up/cupcnt2ednegkxpkhimpev2wbxmbkkih7j53vbxggg2ozvitm6ob.py
# Topologically Sorted Source Nodes: [mul, add, clip], Original ATen: [aten.mul, aten.add, aten.clamp]
# Source node to ATen node mapping:
# add => add
# clip => clamp_max, clamp_min
# mul => mul
# Graph fragment:
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 0.2), kwargs = {})
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 0.5), kwargs = {})
# %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%add, 0.0), kwargs = {})
# %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {})
triton_poi_fused_add_clamp_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = 0.2
tmp2 = tmp0 * tmp1
tmp3 = 0.5
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [mul, add, clip], Original ATen: [aten.mul, aten.add, aten.clamp]
stream0 = get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_clamp_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 0.2
tmp2 = tmp0 * tmp1
tmp3 = 0.5
tmp4 = tmp2 + tmp3
tmp5 = 0.0
tmp6 = triton_helpers.maximum(tmp4, tmp5)
tmp7 = 1.0
tmp8 = triton_helpers.minimum(tmp6, tmp7)
tl.store(out_ptr0 + x0, tmp8, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_clamp_mul_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class OnnxToTorchModule:
"""
Marker class for onnx2torch modules.
"""
pass
class OnnxHardSigmoidNew(nn.Module, OnnxToTorchModule):
def __init__(self, alpha: 'float'=0.2, beta: 'float'=0.5):
super().__init__()
self.alpha = alpha
self.beta = beta
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
ENOT-AutoDL/onnx2torch
|
OnnxHardSigmoid
| false | 13,617 |
[
"Apache-2.0"
] | 144 |
2391987b3349bed1670ac3c1bc9062a37323abe3
|
https://github.com/ENOT-AutoDL/onnx2torch/tree/2391987b3349bed1670ac3c1bc9062a37323abe3
|
Affine
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_2/inductor_cache/b2/cb2e4cxvjdvph5xryr3vszm6kfhoxfdqx3zw3rs6ssx2ryplqit3.py
# Topologically Sorted Source Nodes: [add, out], Original ATen: [aten.add, aten.mul]
# Source node to ATen node mapping:
# add => add
# out => mul
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%primals_3, %primals_2), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_1, %add), kwargs = {})
triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (x2), xmask)
tmp2 = tl.load(in_ptr2 + (x0), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [add, out], Original ATen: [aten.add, aten.mul]
stream0 = get_raw_stream(0)
triton_poi_fused_add_mul_0.run(primals_1, primals_3, primals_2, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, primals_3, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import math
from torch import nn
import torch.autograd
from torch.nn import init
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 64
x2 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x2, xmask)
tmp2 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp4 = tmp0 * tmp3
tl.store(out_ptr0 + x2, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_0[grid(256)](primals_1, primals_3,
primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2, primals_3
class AffineNew(nn.Module):
"""
This module implements the affine parameters gamma and beta seen in
Eq. 10 in Pezeshki et al. (2016). It differs from the way affine
is used in batchnorm out of the box of PyTorch.
Pytorch affine : y = bn(x)*gamma + beta
Rasmus et al. (2015): y = gamma * (bn(x) + beta)
"""
def __init__(self, n_channels, map_size):
super(AffineNew, self).__init__()
self.map_size = map_size
self.n_channels = n_channels
self.gamma = nn.Parameter(torch.Tensor(self.n_channels, self.
map_size, self.map_size))
self.beta = nn.Parameter(torch.Tensor(self.n_channels, self.
map_size, self.map_size))
def reset_parameters(self) ->None:
init.kaiming_uniform_(self.gamma, a=math.sqrt(5))
init.kaiming_uniform_(self.beta, a=math.sqrt(5))
def forward(self, input_0):
primals_1 = self.gamma
primals_2 = self.beta
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
Goschjann/ssltsc
|
Affine
| false | 17,309 |
[
"MIT"
] | 5 |
08d6b1bf711bb1c8f19f9bfb66a98d4e423e932e
|
https://github.com/Goschjann/ssltsc/tree/08d6b1bf711bb1c8f19f9bfb66a98d4e423e932e
|
DeConv2dBlock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_0/inductor_cache/yb/cybpjmzbifjzzgcvo732lai5metqpn6lv5qgv2usa3v2ykeb3mq7.py
# Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.convolution, aten.silu]
# Source node to ATen node mapping:
# x => convolution
# x_2 => mul, sigmoid
# Graph fragment:
# %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [2, 2], [2, 2], [1, 1], True, [1, 1], 1), kwargs = {})
# %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {})
triton_poi_fused_convolution_silu_0 = async_compile.triton('triton_poi_fused_convolution_silu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[1024],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_silu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_silu_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 36) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_0/inductor_cache/4f/c4f4mu3fy43wvkdpljn3idkt2qjt7pkweg7fpd4ialsrbzpnr46o.py
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.silu]
# Source node to ATen node mapping:
# x_3 => convolution_1
# x_4 => mul_1, sigmoid_1
# Graph fragment:
# %convolution_1 : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%mul, %primals_4, %primals_5, [2, 2], [1, 1], [1, 1], True, [1, 1], 1), kwargs = {})
# %sigmoid_1 : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, %sigmoid_1), kwargs = {})
triton_poi_fused_convolution_silu_1 = async_compile.triton('triton_poi_fused_convolution_silu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_silu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_silu_1(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 144) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
tl.store(out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6, 6), (144, 36, 6, 1))
buf1 = buf0; del buf0 # reuse
buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
# Topologically Sorted Source Nodes: [x, x_2], Original ATen: [aten.convolution, aten.silu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_silu_0.run(buf1, primals_2, buf2, 576, grid=grid(576), stream=stream0)
del primals_2
# Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=True, output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 12, 12), (576, 144, 12, 1))
buf4 = buf3; del buf3 # reuse
buf5 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_3, x_4], Original ATen: [aten.convolution, aten.silu]
triton_poi_fused_convolution_silu_1.run(buf4, primals_5, buf5, 2304, grid=grid(2304), stream=stream0)
del primals_5
return (buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_silu_0(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 576
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 36 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_silu_1(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 144 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.sigmoid(tmp2)
tmp4 = tmp2 * tmp3
tl.store(in_out_ptr0 + x3, tmp2, xmask)
tl.store(out_ptr0 + x3, tmp4, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_5, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(2, 2), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 6, 6), (144, 36, 6, 1))
buf1 = buf0
del buf0
buf2 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_silu_0[grid(576)](buf1, primals_2,
buf2, 576, XBLOCK=128, num_warps=4, num_stages=1)
del primals_2
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2),
padding=(1, 1), dilation=(1, 1), transposed=True,
output_padding=(1, 1), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 12, 12), (576, 144, 12, 1))
buf4 = buf3
del buf3
buf5 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.
float32)
triton_poi_fused_convolution_silu_1[grid(2304)](buf4, primals_5,
buf5, 2304, XBLOCK=256, num_warps=4, num_stages=1)
del primals_5
return buf5, primals_1, primals_3, primals_4, buf1, buf2, buf4
class DeConv2dBlockNew(nn.Module):
"""
Similar to a LeNet block
4x upsampling, dimension hard-coded
"""
def __init__(self, in_dim: 'int', hidden_dim: 'int', out_dim: 'int',
stride: 'int'=2, kernel_size: 'int'=3, padding: 'int'=2,
output_padding: 'int'=1, dropout=0.1, activation_type='silu', debug
=False):
super(DeConv2dBlockNew, self).__init__()
padding1 = padding // 2 if padding // 2 >= 1 else 1
self.deconv0 = nn.ConvTranspose2d(in_channels=in_dim, out_channels=
hidden_dim, kernel_size=kernel_size, stride=stride,
output_padding=output_padding, padding=padding)
self.deconv1 = nn.ConvTranspose2d(in_channels=hidden_dim,
out_channels=out_dim, kernel_size=kernel_size, stride=stride,
output_padding=output_padding, padding=padding1)
self.activation = nn.SiLU() if activation_type == 'silu' else nn.ReLU()
self.dropout = nn.Dropout(dropout)
self.debug = debug
def forward(self, input_0):
primals_1 = self.deconv0.weight
primals_2 = self.deconv0.bias
primals_4 = self.deconv1.weight
primals_5 = self.deconv1.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
scaomath/galerkin-transformer
|
DeConv2dBlock
| false | 16,370 |
[
"MIT"
] | 106 |
a9c2dc4427bfaba051d7e0154f110e460050c1df
|
https://github.com/scaomath/galerkin-transformer/tree/a9c2dc4427bfaba051d7e0154f110e460050c1df
|
SPPblock
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/hs/chsgbajkvlzt23dbj5auzazquzfdbhbhjrpqoczeg3opck4yocad.py
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d => getitem
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_0 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = (xindex // 32)
x2 = xindex
tmp0 = tl.load(in_ptr0 + ((2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + (2*x0) + (128*x1)), None, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + (x2), tmp6, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/dj/cdjpvf45m2gmwdpxqghwy3n7o5canbnu4ks6bxkuaf6ogy4u6mcz.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample => convert_element_type_1
# Graph fragment:
# %convert_element_type_1 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {})
triton_poi_fused__to_copy_1 = async_compile.triton('triton_poi_fused__to_copy_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ek/cektoo3xtedaewlh5uggdyf55krfjuty35h3vjq6vtyduxqrlkz4.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample => add_1, clamp_max
# Graph fragment:
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_1, 1), kwargs = {})
# %clamp_max : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_1, 31), kwargs = {})
triton_poi_fused_add_clamp_2 = async_compile.triton('triton_poi_fused_add_clamp_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + (x0), tmp12, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/a3/ca3np32wv5647cru4u4cskmo7z65jffrdabbplzceq4wcduwuwh7.py
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, clamp_max_2, clamp_min, clamp_min_2, convert_element_type, iota, mul, sub, sub_2
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.5), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, 0.5), kwargs = {})
# %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {})
# %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {})
# %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {})
# %clamp_max_2 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3i/c3i4svp5bjn25m4h4mozovf2gf77ztkp3ps4iaw6wj2bfxlz77ne.py
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_1 => getitem_2
# Graph fragment:
# %getitem_2 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_4 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = (xindex // 21) % 21
x4 = (xindex // 441)
x3 = (xindex // 1764)
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + ((3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + (3*x0) + (192*x1) + (4096*x4)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + (1792*x3)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/f4/cf4oomz2jxs2jmynidcxgsi4hc5a5g5w6e6mfoejtiygvx2ktoxm.py
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_1 => convert_element_type_5
# Graph fragment:
# %convert_element_type_5 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_2, torch.int64), kwargs = {})
triton_poi_fused__to_copy_5 = async_compile.triton('triton_poi_fused__to_copy_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/kb/ckbhvrchwnfddqo5mj7oyddllrqzc7dajgqmaztjfb4t45pz54ma.py
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_1 => add_8, clamp_max_4
# Graph fragment:
# %add_8 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_5, 1), kwargs = {})
# %clamp_max_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_8, 20), kwargs = {})
triton_poi_fused_add_clamp_6 = async_compile.triton('triton_poi_fused_add_clamp_6', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 20, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/3b/c3b5xlygn2w35ktaemwgswb2qexnj6ytxz2jxvf3c4hb3qpx6hv4.py
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_1 => clamp_max_6, clamp_min_4, clamp_min_6, mul_5, sub_7, sub_9
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.328125), kwargs = {})
# %sub_7 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_5, 0.5), kwargs = {})
# %clamp_min_4 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_7, 0.0), kwargs = {})
# %sub_9 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_4, %convert_element_type_7), kwargs = {})
# %clamp_min_6 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_9, 0.0), kwargs = {})
# %clamp_max_6 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_6, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/pf/cpfwuo7tucoqpsuoxs3ocdrmbokrprhchayywaz5gswuopkfmgsd.py
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# max_pool2d_2 => getitem_4
# Graph fragment:
# %getitem_4 : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 0), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_8', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[4096],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = (xindex // 12) % 12
x2 = (xindex // 144)
x3 = xindex
tmp0 = tl.load(in_ptr0 + ((5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + (5*x0) + (320*x1) + (4096*x2)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + (x3), tmp48, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/l7/cl7p22pvafpcrmefx45kyqbanh4ld76op7eq5grjd2zzx2zlpwi3.py
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_2 => convert_element_type_9
# Graph fragment:
# %convert_element_type_9 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_4, torch.int64), kwargs = {})
triton_poi_fused__to_copy_9 = async_compile.triton('triton_poi_fused__to_copy_9', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_9', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qe/cqewu77x72ovzvlhbycbd53cqjkbyy7zdjjvtqgely7c6xo647u2.py
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_2 => add_15, clamp_max_8
# Graph fragment:
# %add_15 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_9, 1), kwargs = {})
# %clamp_max_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_15, 11), kwargs = {})
triton_poi_fused_add_clamp_10 = async_compile.triton('triton_poi_fused_add_clamp_10', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 11, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/eh/ceh56lg3zkvoclsk7od77ns5p3v4jnvm5zcvn2233nis5q7wkit7.py
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_2 => clamp_max_10, clamp_min_10, clamp_min_8, mul_10, sub_14, sub_16
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.1875), kwargs = {})
# %sub_14 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_10, 0.5), kwargs = {})
# %clamp_min_8 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_14, 0.0), kwargs = {})
# %sub_16 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_8, %convert_element_type_11), kwargs = {})
# %clamp_min_10 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_16, 0.0), kwargs = {})
# %clamp_max_10 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_10, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/jt/cjtnt6hjamm3vgjkpwzorbvktkzw6jrtwkljjwmzihzeqhu6sgk7.py
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten._to_copy]
# Source node to ATen node mapping:
# upsample_3 => convert_element_type_13
# Graph fragment:
# %convert_element_type_13 : [num_users=5] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_6, torch.int64), kwargs = {})
triton_poi_fused__to_copy_12 = async_compile.triton('triton_poi_fused__to_copy_12', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + (x0), tmp9, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ww/cwwsqvnexaz5z4zaqrm4l3223xywmpmnz3nd4sw3jgy7pqet5ewn.py
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
# Source node to ATen node mapping:
# upsample_3 => add_22, clamp_max_12
# Graph fragment:
# %add_22 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_13, 1), kwargs = {})
# %clamp_max_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%add_22, 9), kwargs = {})
triton_poi_fused_add_clamp_13 = async_compile.triton('triton_poi_fused_add_clamp_13', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*i64', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_13', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + (x0), tmp13, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/4d/c4dnqp23qes54gwuldfae6pd5dtfswfwyytxtquobu74catwihxm.py
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
# Source node to ATen node mapping:
# upsample => add, convert_element_type, iota
# upsample_3 => clamp_max_14, clamp_min_12, clamp_min_14, mul_15, sub_21, sub_23
# Graph fragment:
# %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (64,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False})
# %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {})
# %add : [num_users=4] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type, 0.5), kwargs = {})
# %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add, 0.15625), kwargs = {})
# %sub_21 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_15, 0.5), kwargs = {})
# %clamp_min_12 : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_21, 0.0), kwargs = {})
# %sub_23 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_12, %convert_element_type_15), kwargs = {})
# %clamp_min_14 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_23, 0.0), kwargs = {})
# %clamp_max_14 : [num_users=3] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_14, 1.0), kwargs = {})
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14 = async_compile.triton('triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + (x0), tmp14, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/c4/cc4gbby2j4xsnyg53hb2ubfdlif6prlt7fohlcbiudyuu2bhws6j.py
# Topologically Sorted Source Nodes: [conv2d, upsample, conv2d_1, upsample_1, conv2d_2, upsample_2, conv2d_3, upsample_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
# Source node to ATen node mapping:
# conv2d => convolution
# conv2d_1 => convolution_1
# conv2d_2 => convolution_2
# conv2d_3 => convolution_3
# upsample => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_4, add_5, add_6, mul_2, mul_3, mul_4, sub_3, sub_4, sub_6
# upsample_1 => _unsafe_index_4, _unsafe_index_5, _unsafe_index_6, _unsafe_index_7, add_11, add_12, add_13, mul_7, mul_8, mul_9, sub_10, sub_11, sub_13
# upsample_2 => _unsafe_index_10, _unsafe_index_11, _unsafe_index_8, _unsafe_index_9, add_18, add_19, add_20, mul_12, mul_13, mul_14, sub_17, sub_18, sub_20
# upsample_3 => _unsafe_index_12, _unsafe_index_13, _unsafe_index_14, _unsafe_index_15, add_25, add_26, add_27, mul_17, mul_18, mul_19, sub_24, sub_25, sub_27
# Graph fragment:
# %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {})
# %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {})
# %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution, [None, None, %clamp_max, %clamp_max_1]), kwargs = {})
# %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {})
# %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {})
# %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {})
# %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {})
# %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {})
# %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {})
# %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {})
# %add_6 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {})
# %convolution_1 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_2, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_4 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_5 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %convert_element_type_5, %clamp_max_5]), kwargs = {})
# %_unsafe_index_6 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %convert_element_type_7]), kwargs = {})
# %_unsafe_index_7 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_1, [None, None, %clamp_max_4, %clamp_max_5]), kwargs = {})
# %sub_10 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_5, %_unsafe_index_4), kwargs = {})
# %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_10, %clamp_max_6), kwargs = {})
# %add_11 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_4, %mul_7), kwargs = {})
# %sub_11 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_7, %_unsafe_index_6), kwargs = {})
# %mul_8 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_11, %clamp_max_6), kwargs = {})
# %add_12 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_6, %mul_8), kwargs = {})
# %sub_13 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_12, %add_11), kwargs = {})
# %mul_9 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_13, %clamp_max_7), kwargs = {})
# %add_13 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_11, %mul_9), kwargs = {})
# %convolution_2 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_4, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_8 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %convert_element_type_9, %clamp_max_9]), kwargs = {})
# %_unsafe_index_10 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %convert_element_type_11]), kwargs = {})
# %_unsafe_index_11 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_2, [None, None, %clamp_max_8, %clamp_max_9]), kwargs = {})
# %sub_17 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_9, %_unsafe_index_8), kwargs = {})
# %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_17, %clamp_max_10), kwargs = {})
# %add_18 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_8, %mul_12), kwargs = {})
# %sub_18 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_11, %_unsafe_index_10), kwargs = {})
# %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_18, %clamp_max_10), kwargs = {})
# %add_19 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_10, %mul_13), kwargs = {})
# %sub_20 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_19, %add_18), kwargs = {})
# %mul_14 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_20, %clamp_max_11), kwargs = {})
# %add_20 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_18, %mul_14), kwargs = {})
# %convolution_3 : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem_6, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %_unsafe_index_12 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_13 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %convert_element_type_13, %clamp_max_13]), kwargs = {})
# %_unsafe_index_14 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %convert_element_type_15]), kwargs = {})
# %_unsafe_index_15 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%convolution_3, [None, None, %clamp_max_12, %clamp_max_13]), kwargs = {})
# %sub_24 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_13, %_unsafe_index_12), kwargs = {})
# %mul_17 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_24, %clamp_max_14), kwargs = {})
# %add_25 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_12, %mul_17), kwargs = {})
# %sub_25 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_15, %_unsafe_index_14), kwargs = {})
# %mul_18 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_25, %clamp_max_14), kwargs = {})
# %add_26 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_14, %mul_18), kwargs = {})
# %sub_27 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_26, %add_25), kwargs = {})
# %mul_19 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_27, %clamp_max_15), kwargs = {})
# %add_27 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_25, %mul_19), kwargs = {})
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15 = async_compile.triton('triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i64', 5: '*i64', 6: '*fp32', 7: '*fp32', 8: '*i64', 9: '*fp32', 10: '*i64', 11: '*fp32', 12: '*i64', 13: '*i64', 14: '*fp32', 15: '*i64', 16: '*fp32', 17: '*i64', 18: '*fp32', 19: '*i64', 20: '*i64', 21: '*fp32', 22: '*i64', 23: '*fp32', 24: '*i64', 25: '*fp32', 26: '*i64', 27: '*i64', 28: '*fp32', 29: '*i64', 30: '*fp32', 31: '*i64', 32: '*fp32', 33: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_add_convolution_mul_sub_15', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 25, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17, in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24, in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK : tl.constexpr):
xnumel = 16384
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 64) % 64
x0 = xindex % 64
x2 = (xindex // 4096)
x3 = xindex
tmp0 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + (0))
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + (x0), None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + (x0), None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + (x1), None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + (x1), None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + (x1), None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + (x0), None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + (x0), None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + (x0), None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + (x1), None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + (x1), None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + (x1), None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + (x0), None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + (x0), None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + (x0), None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + (x1), None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + (x1), None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + (x1), None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + (x0), None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + (x0), None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + (x0), None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + (x1), None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + (x1), None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + (32*tmp4) + (1024*x2)), None, eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + (32*tmp26) + (1024*x2)), None, eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + (21*tmp42) + (441*x2)), None, eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + (21*tmp62) + (441*x2)), None, eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + (12*tmp78) + (144*x2)), None, eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + (12*tmp98) + (144*x2)), None, eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + (10*tmp114) + (100*x2)), None, eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + (10*tmp134) + (100*x2)), None, eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + (x3), tmp37, None)
tl.store(in_out_ptr1 + (x3), tmp73, None)
tl.store(in_out_ptr2 + (x3), tmp109, None)
tl.store(in_out_ptr3 + (x3), tmp145, None)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ld/cld3befcx6mrznygcnfhl7k57tcgfua7ztzqqou5wkquttfw6ztp.py
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%add_6, %add_13, %add_20, %add_27, %primals_1], 1), kwargs = {})
triton_poi_fused_cat_16 = async_compile.triton('triton_poi_fused_cat_16', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[131072],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 131072
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = tl.full([XBLOCK], True, tl.int1)
x1 = (xindex // 4096) % 8
x0 = xindex % 4096
x2 = (xindex // 32768)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (4096*x2)), tmp4, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + (4096*x2)), tmp9, eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + (4096*x2)), tmp14, eviction_policy='evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + (4096*x2)), tmp19, eviction_policy='evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tmp22 = tl.full([1], 8, tl.int64)
tmp23 = tmp0 < tmp22
tmp24 = tl.load(in_ptr4 + (x0 + (4096*((-4) + x1)) + (16384*x2)), tmp21, other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + (x3), tmp28, None)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices]
stream0 = get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0.run(primals_1, buf0, 16384, grid=grid(16384), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_1.run(buf2, 64, grid=grid(64), stream=stream0)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf3, 64, grid=grid(64), stream=stream0)
buf4 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_1.run(buf4, 64, grid=grid(64), stream=stream0)
buf5 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_2.run(buf5, 64, grid=grid(64), stream=stream0)
buf6 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf6, 64, grid=grid(64), stream=stream0)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_4.run(primals_1, buf11, 7056, grid=grid(7056), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_5.run(buf13, 64, grid=grid(64), stream=stream0)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf14, 64, grid=grid(64), stream=stream0)
buf15 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_5.run(buf15, 64, grid=grid(64), stream=stream0)
buf16 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_6.run(buf16, 64, grid=grid(64), stream=stream0)
buf17 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_1], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf17, 64, grid=grid(64), stream=stream0)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_1], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7.run(buf19, 64, grid=grid(64), stream=stream0)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch.float32)
# Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_8.run(primals_1, buf22, 2304, grid=grid(2304), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution]
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_9.run(buf24, 64, grid=grid(64), stream=stream0)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf25, 64, grid=grid(64), stream=stream0)
buf26 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_9.run(buf26, 64, grid=grid(64), stream=stream0)
buf27 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_10.run(buf27, 64, grid=grid(64), stream=stream0)
buf28 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_2], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11.run(buf28, 64, grid=grid(64), stream=stream0)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_2], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11.run(buf30, 64, grid=grid(64), stream=stream0)
# Topologically Sorted Source Nodes: [max_pool2d_3], Original ATen: [aten.max_pool2d_with_indices]
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [6, 6], [6, 6])
buf34 = buf33[0]
del buf33
# Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution]
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten._to_copy]
triton_poi_fused__to_copy_12.run(buf37, 64, grid=grid(64), stream=stream0)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf38, 64, grid=grid(64), stream=stream0)
buf39 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_12.run(buf39, 64, grid=grid(64), stream=stream0)
buf40 = empty_strided_cuda((64, ), (1, ), torch.int64)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.add, aten.clamp]
triton_poi_fused_add_clamp_13.run(buf40, 64, grid=grid(64), stream=stream0)
buf41 = empty_strided_cuda((64, ), (1, ), torch.float32)
# Topologically Sorted Source Nodes: [upsample, upsample_3], Original ATen: [aten.arange, aten._to_copy, aten.add, aten.mul, aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf41, 64, grid=grid(64), stream=stream0)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample_3], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14.run(buf43, 64, grid=grid(64), stream=stream0)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [upsample], Original ATen: [aten.sub, aten.clamp]
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3.run(buf8, 64, grid=grid(64), stream=stream0)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf9 # reuse
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf20 # reuse
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf31 # reuse
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64, 1), 0); del buf44 # reuse
# Topologically Sorted Source Nodes: [conv2d, upsample, conv2d_1, upsample_1, conv2d_2, upsample_2, conv2d_3, upsample_3], Original ATen: [aten.convolution, aten._unsafe_index, aten.sub, aten.mul, aten.add]
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15.run(buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5, buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14, buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37, buf39, buf36, buf40, buf41, buf38, buf43, 16384, grid=grid(16384), stream=stream0)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1), torch.float32)
# Topologically Sorted Source Nodes: [out], Original ATen: [aten.cat]
triton_poi_fused_cat_16.run(buf10, buf21, buf32, buf45, primals_1, buf46, 131072, grid=grid(131072), stream=stream0)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3, buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17, buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34, buf37, buf38, buf39, buf40, buf41, buf43, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 64, 64), (16384, 4096, 64, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x0 = xindex % 32
x1 = xindex // 32
x2 = xindex
tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tl.store(out_ptr0 + x2, tmp6, None)
@triton.jit
def triton_poi_fused__to_copy_1(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tl.store(out_ptr0 + x0, tmp8, xmask)
@triton.jit
def triton_poi_fused_add_clamp_2(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tl.full([1], 1, tl.int64)
tmp10 = tmp8 + tmp9
tmp11 = tl.full([1], 31, tl.int64)
tmp12 = triton_helpers.minimum(tmp10, tmp11)
tl.store(out_ptr0 + x0, tmp12, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = tmp3 * tmp2
tmp5 = tmp4 - tmp2
tmp6 = 0.0
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp7.to(tl.int32)
tmp9 = tmp8.to(tl.float32)
tmp10 = tmp7 - tmp9
tmp11 = triton_helpers.maximum(tmp10, tmp6)
tmp12 = 1.0
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_4(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 7056
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 21
x1 = xindex // 21 % 21
x4 = xindex // 441
x3 = xindex // 1764
x5 = xindex % 1764
tmp0 = tl.load(in_ptr0 + (3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (64 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (65 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (66 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (128 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (129 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (130 + 3 * x0 + 192 * x1 + 4096 * x4), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tl.store(out_ptr0 + (x5 + 1792 * x3), tmp16, xmask)
@triton.jit
def triton_poi_fused__to_copy_5(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_6(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 20, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.328125
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_8(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 2304
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12 % 12
x2 = xindex // 144
x3 = xindex
tmp0 = tl.load(in_ptr0 + (5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (2 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (3 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (64 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (65 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp13 = tl.load(in_ptr0 + (66 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (67 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (68 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (128 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp21 = tl.load(in_ptr0 + (129 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (130 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (131 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (132 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (192 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp31 = tl.load(in_ptr0 + (193 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp33 = tl.load(in_ptr0 + (194 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp35 = tl.load(in_ptr0 + (195 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp37 = tl.load(in_ptr0 + (196 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp39 = tl.load(in_ptr0 + (256 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp41 = tl.load(in_ptr0 + (257 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp43 = tl.load(in_ptr0 + (258 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp45 = tl.load(in_ptr0 + (259 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp47 = tl.load(in_ptr0 + (260 + 5 * x0 + 320 * x1 + 4096 * x2), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tmp32 = triton_helpers.maximum(tmp31, tmp30)
tmp34 = triton_helpers.maximum(tmp33, tmp32)
tmp36 = triton_helpers.maximum(tmp35, tmp34)
tmp38 = triton_helpers.maximum(tmp37, tmp36)
tmp40 = triton_helpers.maximum(tmp39, tmp38)
tmp42 = triton_helpers.maximum(tmp41, tmp40)
tmp44 = triton_helpers.maximum(tmp43, tmp42)
tmp46 = triton_helpers.maximum(tmp45, tmp44)
tmp48 = triton_helpers.maximum(tmp47, tmp46)
tl.store(out_ptr0 + x3, tmp48, xmask)
@triton.jit
def triton_poi_fused__to_copy_9(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_10(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 11, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.1875
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__to_copy_12(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tl.store(out_ptr0 + x0, tmp9, xmask)
@triton.jit
def triton_poi_fused_add_clamp_13(out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tl.full([1], 1, tl.int64)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 9, tl.int64)
tmp13 = triton_helpers.minimum(tmp11, tmp12)
tl.store(out_ptr0 + x0, tmp13, xmask)
@triton.jit
def triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14(out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = x0
tmp1 = tmp0.to(tl.float32)
tmp2 = 0.5
tmp3 = tmp1 + tmp2
tmp4 = 0.15625
tmp5 = tmp3 * tmp4
tmp6 = tmp5 - tmp2
tmp7 = 0.0
tmp8 = triton_helpers.maximum(tmp6, tmp7)
tmp9 = tmp8.to(tl.int32)
tmp10 = tmp9.to(tl.float32)
tmp11 = tmp8 - tmp10
tmp12 = triton_helpers.maximum(tmp11, tmp7)
tmp13 = 1.0
tmp14 = triton_helpers.minimum(tmp12, tmp13)
tl.store(out_ptr0 + x0, tmp14, xmask)
@triton.jit
def triton_poi_fused__unsafe_index_add_convolution_mul_sub_15(in_out_ptr0,
in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2,
in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10,
in_ptr11, in_ptr12, in_ptr13, in_ptr14, in_ptr15, in_ptr16, in_ptr17,
in_ptr18, in_ptr19, in_ptr20, in_ptr21, in_ptr22, in_ptr23, in_ptr24,
in_ptr25, in_ptr26, in_ptr27, in_ptr28, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 64 % 64
x0 = xindex % 64
x2 = xindex // 4096
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr3 + 0)
tmp11 = tl.broadcast_to(tmp10, [XBLOCK])
tmp13 = tl.load(in_ptr4 + x0, None, eviction_policy='evict_last')
tmp20 = tl.load(in_ptr5 + x0, None, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr6 + x1, None, eviction_policy='evict_last')
tmp35 = tl.load(in_ptr7 + x1, None, eviction_policy='evict_last')
tmp38 = tl.load(in_ptr8 + x1, None, eviction_policy='evict_last')
tmp43 = tl.load(in_ptr9 + x0, None, eviction_policy='evict_last')
tmp49 = tl.load(in_ptr11 + x0, None, eviction_policy='evict_last')
tmp56 = tl.load(in_ptr12 + x0, None, eviction_policy='evict_last')
tmp59 = tl.load(in_ptr13 + x1, None, eviction_policy='evict_last')
tmp71 = tl.load(in_ptr14 + x1, None, eviction_policy='evict_last')
tmp74 = tl.load(in_ptr15 + x1, None, eviction_policy='evict_last')
tmp79 = tl.load(in_ptr16 + x0, None, eviction_policy='evict_last')
tmp85 = tl.load(in_ptr18 + x0, None, eviction_policy='evict_last')
tmp92 = tl.load(in_ptr19 + x0, None, eviction_policy='evict_last')
tmp95 = tl.load(in_ptr20 + x1, None, eviction_policy='evict_last')
tmp107 = tl.load(in_ptr21 + x1, None, eviction_policy='evict_last')
tmp110 = tl.load(in_ptr22 + x1, None, eviction_policy='evict_last')
tmp115 = tl.load(in_ptr23 + x0, None, eviction_policy='evict_last')
tmp121 = tl.load(in_ptr25 + x0, None, eviction_policy='evict_last')
tmp128 = tl.load(in_ptr26 + x0, None, eviction_policy='evict_last')
tmp131 = tl.load(in_ptr27 + x1, None, eviction_policy='evict_last')
tmp143 = tl.load(in_ptr28 + x1, None, eviction_policy='evict_last')
tmp1 = tl.full([XBLOCK], 32, tl.int32)
tmp2 = tmp0 + tmp1
tmp3 = tmp0 < 0
tmp4 = tl.where(tmp3, tmp2, tmp0)
tmp6 = tmp5 + tmp1
tmp7 = tmp5 < 0
tmp8 = tl.where(tmp7, tmp6, tmp5)
tmp9 = tl.load(in_ptr2 + (tmp8 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp12 = tmp9 + tmp11
tmp14 = tmp13 + tmp1
tmp15 = tmp13 < 0
tmp16 = tl.where(tmp15, tmp14, tmp13)
tmp17 = tl.load(in_ptr2 + (tmp16 + 32 * tmp4 + 1024 * x2), None,
eviction_policy='evict_last')
tmp18 = tmp17 + tmp11
tmp19 = tmp18 - tmp12
tmp21 = tmp19 * tmp20
tmp22 = tmp12 + tmp21
tmp24 = tmp23 + tmp1
tmp25 = tmp23 < 0
tmp26 = tl.where(tmp25, tmp24, tmp23)
tmp27 = tl.load(in_ptr2 + (tmp8 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp28 = tmp27 + tmp11
tmp29 = tl.load(in_ptr2 + (tmp16 + 32 * tmp26 + 1024 * x2), None,
eviction_policy='evict_last')
tmp30 = tmp29 + tmp11
tmp31 = tmp30 - tmp28
tmp32 = tmp31 * tmp20
tmp33 = tmp28 + tmp32
tmp34 = tmp33 - tmp22
tmp36 = tmp34 * tmp35
tmp37 = tmp22 + tmp36
tmp39 = tl.full([XBLOCK], 21, tl.int32)
tmp40 = tmp38 + tmp39
tmp41 = tmp38 < 0
tmp42 = tl.where(tmp41, tmp40, tmp38)
tmp44 = tmp43 + tmp39
tmp45 = tmp43 < 0
tmp46 = tl.where(tmp45, tmp44, tmp43)
tmp47 = tl.load(in_ptr10 + (tmp46 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp48 = tmp47 + tmp11
tmp50 = tmp49 + tmp39
tmp51 = tmp49 < 0
tmp52 = tl.where(tmp51, tmp50, tmp49)
tmp53 = tl.load(in_ptr10 + (tmp52 + 21 * tmp42 + 441 * x2), None,
eviction_policy='evict_last')
tmp54 = tmp53 + tmp11
tmp55 = tmp54 - tmp48
tmp57 = tmp55 * tmp56
tmp58 = tmp48 + tmp57
tmp60 = tmp59 + tmp39
tmp61 = tmp59 < 0
tmp62 = tl.where(tmp61, tmp60, tmp59)
tmp63 = tl.load(in_ptr10 + (tmp46 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp64 = tmp63 + tmp11
tmp65 = tl.load(in_ptr10 + (tmp52 + 21 * tmp62 + 441 * x2), None,
eviction_policy='evict_last')
tmp66 = tmp65 + tmp11
tmp67 = tmp66 - tmp64
tmp68 = tmp67 * tmp56
tmp69 = tmp64 + tmp68
tmp70 = tmp69 - tmp58
tmp72 = tmp70 * tmp71
tmp73 = tmp58 + tmp72
tmp75 = tl.full([XBLOCK], 12, tl.int32)
tmp76 = tmp74 + tmp75
tmp77 = tmp74 < 0
tmp78 = tl.where(tmp77, tmp76, tmp74)
tmp80 = tmp79 + tmp75
tmp81 = tmp79 < 0
tmp82 = tl.where(tmp81, tmp80, tmp79)
tmp83 = tl.load(in_ptr17 + (tmp82 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp84 = tmp83 + tmp11
tmp86 = tmp85 + tmp75
tmp87 = tmp85 < 0
tmp88 = tl.where(tmp87, tmp86, tmp85)
tmp89 = tl.load(in_ptr17 + (tmp88 + 12 * tmp78 + 144 * x2), None,
eviction_policy='evict_last')
tmp90 = tmp89 + tmp11
tmp91 = tmp90 - tmp84
tmp93 = tmp91 * tmp92
tmp94 = tmp84 + tmp93
tmp96 = tmp95 + tmp75
tmp97 = tmp95 < 0
tmp98 = tl.where(tmp97, tmp96, tmp95)
tmp99 = tl.load(in_ptr17 + (tmp82 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp100 = tmp99 + tmp11
tmp101 = tl.load(in_ptr17 + (tmp88 + 12 * tmp98 + 144 * x2), None,
eviction_policy='evict_last')
tmp102 = tmp101 + tmp11
tmp103 = tmp102 - tmp100
tmp104 = tmp103 * tmp92
tmp105 = tmp100 + tmp104
tmp106 = tmp105 - tmp94
tmp108 = tmp106 * tmp107
tmp109 = tmp94 + tmp108
tmp111 = tl.full([XBLOCK], 10, tl.int32)
tmp112 = tmp110 + tmp111
tmp113 = tmp110 < 0
tmp114 = tl.where(tmp113, tmp112, tmp110)
tmp116 = tmp115 + tmp111
tmp117 = tmp115 < 0
tmp118 = tl.where(tmp117, tmp116, tmp115)
tmp119 = tl.load(in_ptr24 + (tmp118 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp120 = tmp119 + tmp11
tmp122 = tmp121 + tmp111
tmp123 = tmp121 < 0
tmp124 = tl.where(tmp123, tmp122, tmp121)
tmp125 = tl.load(in_ptr24 + (tmp124 + 10 * tmp114 + 100 * x2), None,
eviction_policy='evict_last')
tmp126 = tmp125 + tmp11
tmp127 = tmp126 - tmp120
tmp129 = tmp127 * tmp128
tmp130 = tmp120 + tmp129
tmp132 = tmp131 + tmp111
tmp133 = tmp131 < 0
tmp134 = tl.where(tmp133, tmp132, tmp131)
tmp135 = tl.load(in_ptr24 + (tmp118 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp136 = tmp135 + tmp11
tmp137 = tl.load(in_ptr24 + (tmp124 + 10 * tmp134 + 100 * x2), None,
eviction_policy='evict_last')
tmp138 = tmp137 + tmp11
tmp139 = tmp138 - tmp136
tmp140 = tmp139 * tmp128
tmp141 = tmp136 + tmp140
tmp142 = tmp141 - tmp130
tmp144 = tmp142 * tmp143
tmp145 = tmp130 + tmp144
tl.store(in_out_ptr0 + x3, tmp37, None)
tl.store(in_out_ptr1 + x3, tmp73, None)
tl.store(in_out_ptr2 + x3, tmp109, None)
tl.store(in_out_ptr3 + x3, tmp145, None)
@triton.jit
def triton_poi_fused_cat_16(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
tl.full([XBLOCK], True, tl.int1)
x1 = xindex // 4096 % 8
x0 = xindex % 4096
x2 = xindex // 32768
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 1, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x2), tmp4, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 2, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp9, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 3, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr2 + (x0 + 4096 * x2), tmp14, eviction_policy=
'evict_last', other=0.0)
tmp16 = tmp0 >= tmp12
tmp17 = tl.full([1], 4, tl.int64)
tmp18 = tmp0 < tmp17
tmp19 = tmp16 & tmp18
tmp20 = tl.load(in_ptr3 + (x0 + 4096 * x2), tmp19, eviction_policy=
'evict_last', other=0.0)
tmp21 = tmp0 >= tmp17
tl.full([1], 8, tl.int64)
tmp24 = tl.load(in_ptr4 + (x0 + 4096 * (-4 + x1) + 16384 * x2), tmp21,
other=0.0)
tmp25 = tl.where(tmp19, tmp20, tmp24)
tmp26 = tl.where(tmp14, tmp15, tmp25)
tmp27 = tl.where(tmp9, tmp10, tmp26)
tmp28 = tl.where(tmp4, tmp5, tmp27)
tl.store(out_ptr0 + x3, tmp28, None)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 64, 64), (16384, 4096, 64, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 32, 32), (4096, 1024, 32, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(16384)](primals_1,
buf0, 16384, XBLOCK=128, num_warps=4, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf1, (4, 1, 32, 32), (1024, 1024, 32, 1))
buf2 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf3, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf4 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_1[grid(64)](buf4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf5 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_2[grid(64)](buf5, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf6 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(64)](buf6,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf11 = empty_strided_cuda((4, 4, 21, 21), (1792, 441, 21, 1),
torch.float32)
triton_poi_fused_max_pool2d_with_indices_4[grid(7056)](primals_1,
buf11, 7056, XBLOCK=256, num_warps=4, num_stages=1)
buf12 = extern_kernels.convolution(buf11, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf12, (4, 1, 21, 21), (441, 441, 21, 1))
buf13 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf13, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf14 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf14, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf15 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_5[grid(64)](buf15, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf16 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_6[grid(64)](buf16, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf17 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(64)](buf17,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf19 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_7[grid(64)](buf19,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf22 = empty_strided_cuda((4, 4, 12, 12), (576, 144, 12, 1), torch
.float32)
triton_poi_fused_max_pool2d_with_indices_8[grid(2304)](primals_1,
buf22, 2304, XBLOCK=128, num_warps=4, num_stages=1)
buf23 = extern_kernels.convolution(buf22, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf23, (4, 1, 12, 12), (144, 144, 12, 1))
buf24 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf24, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf25 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf25, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf26 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_9[grid(64)](buf26, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf27 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_10[grid(64)](buf27, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf28 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11[grid(64)](buf28,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf30 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_11[grid(64)](buf30,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf33 = torch.ops.aten.max_pool2d_with_indices.default(primals_1, [
6, 6], [6, 6])
buf34 = buf33[0]
del buf33
buf36 = extern_kernels.convolution(buf34, primals_2, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf36, (4, 1, 10, 10), (100, 100, 10, 1))
buf37 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf37, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf38 = empty_strided_cuda((64, 1), (1, 1), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf38, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf39 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused__to_copy_12[grid(64)](buf39, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf40 = empty_strided_cuda((64,), (1,), torch.int64)
triton_poi_fused_add_clamp_13[grid(64)](buf40, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf41 = empty_strided_cuda((64,), (1,), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf41,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf43 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_14[grid(64)](buf43,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf8 = empty_strided_cuda((64, 1), (1, 1), torch.float32)
triton_poi_fused__to_copy_add_arange_clamp_mul_sub_3[grid(64)](buf8,
64, XBLOCK=64, num_warps=1, num_stages=1)
buf9 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf10 = reinterpret_tensor(buf9, (4, 1, 64, 64), (4096, 4096, 64, 1), 0
)
del buf9
buf20 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf21 = reinterpret_tensor(buf20, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf20
buf31 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf32 = reinterpret_tensor(buf31, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf31
buf44 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1),
torch.float32)
buf45 = reinterpret_tensor(buf44, (4, 1, 64, 64), (4096, 4096, 64,
1), 0)
del buf44
triton_poi_fused__unsafe_index_add_convolution_mul_sub_15[grid(16384)](
buf10, buf21, buf32, buf45, buf2, buf4, buf1, primals_3, buf5,
buf6, buf3, buf8, buf13, buf15, buf12, buf16, buf17, buf14,
buf19, buf24, buf26, buf23, buf27, buf28, buf25, buf30, buf37,
buf39, buf36, buf40, buf41, buf38, buf43, 16384, XBLOCK=128,
num_warps=4, num_stages=1)
del buf1
del buf12
del buf23
del buf36
del primals_3
buf46 = empty_strided_cuda((4, 8, 64, 64), (32768, 4096, 64, 1),
torch.float32)
triton_poi_fused_cat_16[grid(131072)](buf10, buf21, buf32, buf45,
primals_1, buf46, 131072, XBLOCK=512, num_warps=8, num_stages=1)
del primals_1
return (buf46, buf45, buf32, buf21, buf10, primals_2, buf0, buf2, buf3,
buf4, buf5, buf6, buf8, buf11, buf13, buf14, buf15, buf16, buf17,
buf19, buf22, buf24, buf25, buf26, buf27, buf28, buf30, buf34,
buf37, buf38, buf39, buf40, buf41, buf43)
class SPPblockNew(nn.Module):
def __init__(self, in_channels):
super(SPPblockNew, self).__init__()
self.pool1 = nn.MaxPool2d(kernel_size=[2, 2], stride=2)
self.pool2 = nn.MaxPool2d(kernel_size=[3, 3], stride=3)
self.pool3 = nn.MaxPool2d(kernel_size=[5, 5], stride=5)
self.pool4 = nn.MaxPool2d(kernel_size=[6, 6], stride=6)
self.conv = nn.Conv2d(in_channels=in_channels, out_channels=1,
kernel_size=1, padding=0)
def forward(self, input_0):
primals_2 = self.conv.weight
primals_3 = self.conv.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
zxg3017/CUSE-Net
|
SPPblock
| false | 13,207 |
[
"MIT"
] | 0 |
ea1d07027f89130a8a40465de94528f23eb9f5d1
|
https://github.com/zxg3017/CUSE-Net/tree/ea1d07027f89130a8a40465de94528f23eb9f5d1
|
PerfectProd
|
import torch
import torch.utils.data
from torch import nn
class PerfectProd(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
def reset_parameters(self):
pass
def forward(self, x):
return torch.prod(2 * x[:, :-1], dim=-1, keepdim=True)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'in_features': 4, 'out_features': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.utils.data
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_prod_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 48
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 12
x1 = xindex // 12
x2 = xindex
tmp0 = tl.load(in_ptr0 + (4 * x0 + 64 * x1), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (1 + 4 * x0 + 64 * x1), xmask, eviction_policy
='evict_last')
tmp6 = tl.load(in_ptr0 + (2 + 4 * x0 + 64 * x1), xmask, eviction_policy
='evict_last')
tmp9 = tl.load(in_ptr0 + (3 + 4 * x0 + 64 * x1), xmask, eviction_policy
='evict_last')
tmp1 = 2.0
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp1
tmp5 = tmp2 * tmp4
tmp7 = tmp6 * tmp1
tmp8 = tmp5 * tmp7
tmp10 = tmp9 * tmp1
tmp11 = tmp8 * tmp10
tl.store(out_ptr0 + x2, tmp11, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 3, 4, 1), (12, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_prod_0[grid(48)](arg0_1, buf0, 48, XBLOCK=64,
num_warps=1, num_stages=1)
del arg0_1
return buf0,
class PerfectProdNew(nn.Module):
def __init__(self, in_features, out_features):
super().__init__()
def reset_parameters(self):
pass
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
hoedt/stable-nalu
|
PerfectProd
| false | 3,597 |
[
"MIT"
] | 0 |
64b3d240db8bff4da857d955f213ef3c7e38e035
|
https://github.com/hoedt/stable-nalu/tree/64b3d240db8bff4da857d955f213ef3c7e38e035
|
TracedModule
|
# AOT ID: ['0_inference']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/yx/cyxpk7a4eq5vq4bzeif2nk6cwpcgf7ixzqxdcgvbuuwnhguxpc26.py
# Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor]
# Source node to ATen node mapping:
# floor => floor
# sqrt => sqrt
# truediv => div
# Graph fragment:
# %sqrt : [num_users=1] = call_function[target=torch.ops.aten.sqrt.default](args = (%arg0_1,), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sqrt, 5.0), kwargs = {})
# %floor : [num_users=1] = call_function[target=torch.ops.aten.floor.default](args = (%div,), kwargs = {})
triton_poi_fused_div_floor_sqrt_0 = async_compile.triton('triton_poi_fused_div_floor_sqrt_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_floor_sqrt_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + (x0), xmask)
tmp1 = libdevice.sqrt(tmp0)
tmp2 = 0.2
tmp3 = tmp1 * tmp2
tmp4 = libdevice.floor(tmp3)
tl.store(out_ptr0 + (x0), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [sqrt, truediv, floor], Original ATen: [aten.sqrt, aten.div, aten.floor]
stream0 = get_raw_stream(0)
triton_poi_fused_div_floor_sqrt_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0)
del arg0_1
return (buf0, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([arg0_1])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.quantization
import torch.onnx
import torch.nn.parallel
import torch.utils.data
import torch.fx
import torch.nn
import torch.optim
import torch.profiler
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_div_floor_sqrt_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = libdevice.sqrt(tmp0)
tmp2 = 0.2
tmp3 = tmp1 * tmp2
tmp4 = libdevice.floor(tmp3)
tl.store(out_ptr0 + x0, tmp4, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_div_floor_sqrt_0[grid(256)](arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
return buf0,
class TracedModuleNew(torch.nn.Module):
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
MartinRenaudin/tutorials
|
TracedModule
| false | 2,755 |
[
"BSD-3-Clause"
] | 0 |
035d6827d77c52fed2a927f105e39fd73516f093
|
https://github.com/MartinRenaudin/tutorials/tree/035d6827d77c52fed2a927f105e39fd73516f093
|
ConvBlock
|
import torch
import torch.nn as nn
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class ConvBlock(Block, nn.Module):
def __init__(self, num_in_channels, num_out_channels, stride=1):
"""Initialise function for the higher level convolution block
:param in_channels:
:param out_channels:
:param stride:
:param padding:
:returns:
:rtype:
"""
super(Block, self).__init__()
self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2)
self.lrelu = nn.LeakyReLU()
def forward(self, x):
""" Forward function for the higher level convolution block
:param x: Tensor representing the input BxCxWxH, where B is the batch size, C is the number of channels, W and H are the width and image height
:returns: Tensor representing the output of the block
:rtype: Tensor
"""
img_out = self.lrelu(self.conv(x))
return img_out
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'num_in_channels': 4, 'num_out_channels': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_convolution_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 0.01
tmp6 = tmp2 * tmp5
tmp7 = tl.where(tmp4, tmp2, tmp6)
tl.store(out_ptr0 + x3, tmp4, xmask)
tl.store(out_ptr1 + x3, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2,
2), padding=(1, 1), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1))
buf1 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.bool)
buf2 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_leaky_relu_0[grid(64)](buf0, primals_2,
buf1, buf2, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf0
del primals_2
return buf2, primals_1, primals_3, buf1
class Block(nn.Module):
def __init__(self):
"""Initialisation for a lower-level DeepLPF conv block
:returns: N/A
:rtype: N/A
"""
super(Block, self).__init__()
def conv3x3(self, in_channels, out_channels, stride=1):
"""Represents a convolution of shape 3x3
:param in_channels: number of input channels
:param out_channels: number of output channels
:param stride: the convolution stride
:returns: convolution function with the specified parameterisation
:rtype: function
"""
return nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=
stride, padding=1, bias=True)
class ConvBlockNew(Block, nn.Module):
def __init__(self, num_in_channels, num_out_channels, stride=1):
"""Initialise function for the higher level convolution block
:param in_channels:
:param out_channels:
:param stride:
:param padding:
:returns:
:rtype:
"""
super(Block, self).__init__()
self.conv = self.conv3x3(num_in_channels, num_out_channels, stride=2)
self.lrelu = nn.LeakyReLU()
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
ZombaSY/DeepLPF
|
ConvBlock
| false | 1,325 |
[
"BSD-3-Clause"
] | 0 |
adce64ae01bc9e32f465a354cb1f6534f0d13597
|
https://github.com/ZombaSY/DeepLPF/tree/adce64ae01bc9e32f465a354cb1f6534f0d13597
|
MaxPoolStride1
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class MaxPoolStride1(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, x):
padded_x = F.pad(x, (0, self.pad, 0, self.pad), mode='replicate')
pooled_x = nn.MaxPool2d(self.kernel_size, self.pad)(padded_x)
return pooled_x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'kernel_size': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_0(in_ptr0, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 2
x1 = xindex // 2 % 2
x2 = xindex // 4
x4 = xindex
tmp0 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 < 3))), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) * (1 + 3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 < 3
)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) * (2 + 3 * x0 <
3))), xmask)
tmp5 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 3 * x1) + 3 * x1 * (3 * x1 <
3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) * (
1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) * (
1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) *
(1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1) *
(1 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) *
(2 + 3 * x0 < 3))), xmask)
tmp13 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 1 + 3 * x1) + (1 + 3 * x1
) * (1 + 3 * x1 < 3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp15 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 * (3 * x0 <
3))), xmask, eviction_policy='evict_last')
tmp17 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 + 3 * x0) *
(1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp19 = tl.load(in_ptr0 + (4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1) *
(2 + 3 * x1 < 3)) + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 + 3 * x0) *
(2 + 3 * x0 < 3))), xmask)
tmp21 = tl.load(in_ptr0 + (3 + 4 * (3 * (3 <= 2 + 3 * x1) + (2 + 3 * x1
) * (2 + 3 * x1 < 3)) + 16 * x2), xmask, eviction_policy='evict_last')
tmp23 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 3 * x0) + 3 * x0 *
(3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp25 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 1 + 3 * x0) + (1 +
3 * x0) * (1 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr0 + (12 + 16 * x2 + (3 * (3 <= 2 + 3 * x0) + (2 +
3 * x0) * (2 + 3 * x0 < 3))), xmask, eviction_policy='evict_last')
tmp29 = tl.load(in_ptr0 + (15 + 16 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp8 = triton_helpers.maximum(tmp7, tmp6)
tmp10 = triton_helpers.maximum(tmp9, tmp8)
tmp12 = triton_helpers.maximum(tmp11, tmp10)
tmp14 = triton_helpers.maximum(tmp13, tmp12)
tmp16 = triton_helpers.maximum(tmp15, tmp14)
tmp18 = triton_helpers.maximum(tmp17, tmp16)
tmp20 = triton_helpers.maximum(tmp19, tmp18)
tmp22 = triton_helpers.maximum(tmp21, tmp20)
tmp24 = triton_helpers.maximum(tmp23, tmp22)
tmp26 = triton_helpers.maximum(tmp25, tmp24)
tmp28 = triton_helpers.maximum(tmp27, tmp26)
tmp30 = triton_helpers.maximum(tmp29, tmp28)
tl.store(out_ptr0 + x4, tmp30, xmask)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_max_pool2d_with_indices_0[grid(64)](arg0_1, buf0,
64, XBLOCK=64, num_warps=1, num_stages=1)
del arg0_1
return buf0,
class MaxPoolStride1New(nn.Module):
def __init__(self, kernel_size):
super(MaxPoolStride1New, self).__init__()
self.kernel_size = kernel_size
self.pad = kernel_size - 1
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
HongBeenKim/pams-skku
|
MaxPoolStride1
| false | 17,376 |
[
"MIT"
] | 8 |
0a12b132e4bf42570b000f60b9a1fc2c65382174
|
https://github.com/HongBeenKim/pams-skku/tree/0a12b132e4bf42570b000f60b9a1fc2c65382174
|
MatchModule
|
import torch
import torch.nn.functional as F
from torch import nn
class MatchModule(nn.Module):
"""
Computing the match representation for Match LSTM.
:param hidden_size: Size of hidden vectors.
:param dropout_rate: Dropout rate of the projection layer. Defaults to 0.
Examples:
>>> import torch
>>> attention = MatchModule(hidden_size=10)
>>> v1 = torch.randn(4, 5, 10)
>>> v1.shape
torch.Size([4, 5, 10])
>>> v2 = torch.randn(4, 5, 10)
>>> v2_mask = torch.ones(4, 5).to(dtype=torch.uint8)
>>> attention(v1, v2, v2_mask).shape
torch.Size([4, 5, 20])
"""
def __init__(self, hidden_size, dropout_rate=0):
"""Init."""
super().__init__()
self.v2_proj = nn.Linear(hidden_size, hidden_size)
self.proj = nn.Linear(hidden_size * 4, hidden_size * 2)
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, v1, v2, v2_mask):
"""Computing attention vectors and projection vectors."""
proj_v2 = self.v2_proj(v2)
similarity_matrix = v1.bmm(proj_v2.transpose(2, 1).contiguous())
v1_v2_attn = F.softmax(similarity_matrix.masked_fill(v2_mask.
unsqueeze(1).bool(), -1e-07), dim=2)
v2_wsum = v1_v2_attn.bmm(v2)
fusion = torch.cat([v1, v2_wsum, v1 - v2_wsum, v1 * v2_wsum], dim=2)
match = self.dropout(F.relu(self.proj(fusion)))
return match
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4])]
def get_init_inputs():
return [[], {'hidden_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_clone_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x2, tmp2, xmask)
@triton.jit
def triton_poi_fused__to_copy_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tmp0 != 0
tl.store(out_ptr0 + x0, tmp1, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_2(in_ptr0, in_ptr1, out_ptr0,
out_ptr1, xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last').to(tl
.int1)
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp5 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp9 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp13 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = -1.0000000116860974e-07
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp6 = tl.where(tmp4, tmp2, tmp5)
tmp7 = triton_helpers.maximum(tmp3, tmp6)
tmp10 = tl.where(tmp8, tmp2, tmp9)
tmp11 = triton_helpers.maximum(tmp7, tmp10)
tmp14 = tl.where(tmp12, tmp2, tmp13)
tmp15 = triton_helpers.maximum(tmp11, tmp14)
tmp16 = tmp3 - tmp15
tmp17 = tl_math.exp(tmp16)
tmp18 = tmp6 - tmp15
tmp19 = tl_math.exp(tmp18)
tmp20 = tmp17 + tmp19
tmp21 = tmp10 - tmp15
tmp22 = tl_math.exp(tmp21)
tmp23 = tmp20 + tmp22
tmp24 = tmp14 - tmp15
tmp25 = tl_math.exp(tmp24)
tmp26 = tmp23 + tmp25
tl.store(out_ptr0 + x2, tmp15, xmask)
tl.store(out_ptr1 + x2, tmp26, xmask)
@triton.jit
def triton_poi_fused__softmax_masked_fill_3(in_out_ptr0, in_ptr0, in_ptr1,
in_ptr2, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x2 = xindex // 16
x3 = xindex
x4 = xindex // 4
tmp0 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
).to(tl.int1)
tmp1 = tl.load(in_out_ptr0 + x3, xmask)
tmp4 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last')
tmp2 = -1.0000000116860974e-07
tmp3 = tl.where(tmp0, tmp2, tmp1)
tmp5 = tmp3 - tmp4
tmp6 = tl_math.exp(tmp5)
tmp8 = tmp6 / tmp7
tl.store(in_out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 16
x1 = xindex // 16
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tmp6 & tmp8
tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask,
eviction_policy='evict_last', other=0.0)
tmp11 = tmp0 >= tmp7
tmp12 = tl.full([1], 12, tl.int64)
tmp13 = tmp0 < tmp12
tmp14 = tmp11 & tmp13
tmp15 = tl.load(in_ptr0 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp16 = tl.load(in_ptr1 + (4 * x1 + (-8 + x0)), tmp14 & xmask,
eviction_policy='evict_last', other=0.0)
tmp17 = tmp15 - tmp16
tmp18 = tl.full(tmp17.shape, 0.0, tmp17.dtype)
tmp19 = tl.where(tmp14, tmp17, tmp18)
tmp20 = tmp0 >= tmp12
tl.full([1], 16, tl.int64)
tmp23 = tl.load(in_ptr0 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp24 = tl.load(in_ptr1 + (4 * x1 + (-12 + x0)), tmp20 & xmask,
eviction_policy='evict_last', other=0.0)
tmp25 = tmp23 * tmp24
tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype)
tmp27 = tl.where(tmp20, tmp25, tmp26)
tmp28 = tl.where(tmp14, tmp19, tmp27)
tmp29 = tl.where(tmp9, tmp10, tmp28)
tmp30 = tl.where(tmp4, tmp5, tmp29)
tl.store(out_ptr0 + x2, tmp30, xmask)
@triton.jit
def triton_poi_fused_relu_threshold_backward_5(in_out_ptr0, in_ptr0,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 8
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(in_out_ptr0 + x2, tmp4, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_5, (4, 4), (4, 1))
assert_size_stride(primals_6, (8, 16), (16, 1))
assert_size_stride(primals_7, (8,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_clone_0[grid(64)](buf1, primals_2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_4, buf1, out=buf2)
buf3 = empty_strided_cuda((4, 1, 4), (4, 4, 1), torch.bool)
triton_poi_fused__to_copy_1[grid(16)](primals_5, buf3, 16, XBLOCK=
16, num_warps=1, num_stages=1)
del primals_5
buf4 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused__softmax_masked_fill_2[grid(16)](buf3, buf2, buf4,
buf5, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf6 = buf2
del buf2
triton_poi_fused__softmax_masked_fill_3[grid(64)](buf6, buf3, buf4,
buf5, 64, XBLOCK=64, num_warps=1, num_stages=1)
del buf4
del buf5
buf7 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(buf6, primals_3, out=buf7)
buf8 = empty_strided_cuda((4, 4, 16), (64, 16, 1), torch.float32)
triton_poi_fused_cat_4[grid(256)](primals_4, buf7, buf8, 256,
XBLOCK=128, num_warps=4, num_stages=1)
del buf7
buf9 = empty_strided_cuda((16, 8), (8, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf8, (16, 16), (16, 1), 0),
reinterpret_tensor(primals_6, (16, 8), (1, 16), 0), out=buf9)
buf10 = reinterpret_tensor(buf9, (4, 4, 8), (32, 8, 1), 0)
del buf9
buf11 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.bool)
triton_poi_fused_relu_threshold_backward_5[grid(128)](buf10,
primals_7, buf11, 128, XBLOCK=128, num_warps=4, num_stages=1)
del primals_7
return buf10, primals_3, primals_4, buf3, buf6, reinterpret_tensor(buf8,
(16, 16), (16, 1), 0), buf11, primals_6
class MatchModuleNew(nn.Module):
"""
Computing the match representation for Match LSTM.
:param hidden_size: Size of hidden vectors.
:param dropout_rate: Dropout rate of the projection layer. Defaults to 0.
Examples:
>>> import torch
>>> attention = MatchModule(hidden_size=10)
>>> v1 = torch.randn(4, 5, 10)
>>> v1.shape
torch.Size([4, 5, 10])
>>> v2 = torch.randn(4, 5, 10)
>>> v2_mask = torch.ones(4, 5).to(dtype=torch.uint8)
>>> attention(v1, v2, v2_mask).shape
torch.Size([4, 5, 20])
"""
def __init__(self, hidden_size, dropout_rate=0):
"""Init."""
super().__init__()
self.v2_proj = nn.Linear(hidden_size, hidden_size)
self.proj = nn.Linear(hidden_size * 4, hidden_size * 2)
self.dropout = nn.Dropout(p=dropout_rate)
def forward(self, input_0, input_1, input_2):
primals_1 = self.v2_proj.weight
primals_2 = self.v2_proj.bias
primals_6 = self.proj.weight
primals_7 = self.proj.bias
primals_3 = input_0
primals_4 = input_1
primals_5 = input_2
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
amberhuang01/LearningFromFactCheckers
|
MatchModule
| false | 18,319 |
[
"MIT"
] | 9 |
3c21684709bf5e331c4585c7d62596960dd44732
|
https://github.com/amberhuang01/LearningFromFactCheckers/tree/3c21684709bf5e331c4585c7d62596960dd44732
|
ScaleNorm
|
import math
import torch
import torch.nn as nn
import torch.nn.parallel
class ScaleNorm(nn.Module):
"""Apply Scale Normalization to input.
The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor.
The norm value is calculated as `sqrt(scale) / matrix norm`.
Finally, the result is returned as `input_tensor * norm value`.
This layer can be used instead of LayerNorm when a scaled version of the norm is required.
Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.
References
----------
.. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264
Examples
--------
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
"""
def __init__(self, scale: 'float', eps: 'float'=1e-05):
"""Initialize a ScaleNorm layer.
Parameters
----------
scale: float
Scale magnitude.
eps: float
Epsilon value. Default = 1e-5.
"""
super(ScaleNorm, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = 1e-05
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = tmp1 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(64)](primals_1,
primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_1[grid(256)](
primals_2, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
return buf1, primals_2
class ScaleNormNew(nn.Module):
"""Apply Scale Normalization to input.
The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor.
The norm value is calculated as `sqrt(scale) / matrix norm`.
Finally, the result is returned as `input_tensor * norm value`.
This layer can be used instead of LayerNorm when a scaled version of the norm is required.
Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.
References
----------
.. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264
Examples
--------
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
"""
def __init__(self, scale: 'float', eps: 'float'=1e-05):
"""Initialize a ScaleNorm layer.
Parameters
----------
scale: float
Scale magnitude.
eps: float
Epsilon value. Default = 1e-5.
"""
super(ScaleNormNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
JoseAntonioSiguenza/deepchem
|
ScaleNorm
| false | 9,206 |
[
"MIT"
] | 0 |
05fe1b186ec154e18de9aa1b110e9258dc484e21
|
https://github.com/JoseAntonioSiguenza/deepchem/tree/05fe1b186ec154e18de9aa1b110e9258dc484e21
|
AconC
|
import torch
import torch.nn as nn
class AconC(nn.Module):
""" ACON activation (activate or not).
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, c1):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
def forward(self, x):
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'c1': 4}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 - tmp1
tl.store(out_ptr0 + x0, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 4
x3 = xindex
tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + x3, xmask)
tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tmp4 = tmp3 * tmp2
tmp5 = tl.sigmoid(tmp4)
tmp6 = tmp2 * tmp5
tmp8 = tmp7 * tmp1
tmp9 = tmp6 + tmp8
tl.store(out_ptr0 + x3, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_sub_0[grid(4)](primals_1, primals_2, buf0, 4,
XBLOCK=4, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_add_mul_sigmoid_1[grid(256)](buf0, primals_3,
primals_4, primals_2, buf1, 256, XBLOCK=256, num_warps=4,
num_stages=1)
del primals_2
return buf1, primals_3, primals_4, buf0
class AconCNew(nn.Module):
""" ACON activation (activate or not).
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, c1):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
def forward(self, input_0):
primals_1 = self.p1
primals_2 = self.p2
primals_4 = self.beta
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
IanVzs/labelImg
|
AconC
| false | 11,505 |
[
"MIT"
] | 0 |
3d3dfbf9cf385f38c60376826fdce1f178f563a6
|
https://github.com/IanVzs/labelImg/tree/3d3dfbf9cf385f38c60376826fdce1f178f563a6
|
Conv2dLayer
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/ue/cuecegnhgafe2dsjwb2idu7ooicbmsi2pwlqk5kxrayxsv6nzpux.py
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu]
# Source node to ATen node mapping:
# x_1 => convolution
# x_2 => expm1, gt, mul, mul_2, where
# Graph fragment:
# %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {})
# %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {})
# %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.0), kwargs = {})
# %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {})
triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + (x2), tmp9, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [x_1, x_2], Original ATen: [aten.convolution, aten.elu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_elu_0.run(buf1, primals_3, 16, grid=grid(16), stream=stream0)
del primals_3
return (buf1, primals_1, primals_2, buf1, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
from torch.nn import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 0.0
tmp4 = tmp2 > tmp3
tmp5 = 1.0
tmp6 = tmp2 * tmp5
tmp7 = libdevice.expm1(tmp6)
tmp8 = tmp7 * tmp5
tmp9 = tl.where(tmp4, tmp6, tmp8)
tl.store(in_out_ptr0 + x2, tmp9, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 1, 1), (4, 1, 1, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_elu_0[grid(16)](buf1, primals_3, 16,
XBLOCK=16, num_warps=1, num_stages=1)
del primals_3
return buf1, primals_1, primals_2, buf1
def l2normalize(v, eps=1e-12):
return v / (v.norm() + eps)
class LayerNorm(nn.Module):
def __init__(self, num_features, eps=1e-08, affine=True):
super(LayerNorm, self).__init__()
self.num_features = num_features
self.affine = affine
self.eps = eps
if self.affine:
self.gamma = Parameter(torch.Tensor(num_features).uniform_())
self.beta = Parameter(torch.zeros(num_features))
def forward(self, x):
shape = [-1] + [1] * (x.dim() - 1)
if x.size(0) == 1:
mean = x.view(-1).mean().view(*shape)
std = x.view(-1).std().view(*shape)
else:
mean = x.view(x.size(0), -1).mean(1).view(*shape)
std = x.view(x.size(0), -1).std(1).view(*shape)
x = (x - mean) / (std + self.eps)
if self.affine:
shape = [1, -1] + [1] * (x.dim() - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class SpectralNorm(nn.Module):
def __init__(self, module, name='weight', power_iterations=1):
super(SpectralNorm, self).__init__()
self.module = module
self.name = name
self.power_iterations = power_iterations
if not self._made_params():
self._make_params()
def _update_u_v(self):
u = getattr(self.module, self.name + '_u')
v = getattr(self.module, self.name + '_v')
w = getattr(self.module, self.name + '_bar')
height = w.data.shape[0]
for _ in range(self.power_iterations):
v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data),
u.data))
u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data))
sigma = u.dot(w.view(height, -1).mv(v))
setattr(self.module, self.name, w / sigma.expand_as(w))
def _made_params(self):
try:
getattr(self.module, self.name + '_u')
getattr(self.module, self.name + '_v')
getattr(self.module, self.name + '_bar')
return True
except AttributeError:
return False
def _make_params(self):
w = getattr(self.module, self.name)
height = w.data.shape[0]
width = w.view(height, -1).data.shape[1]
u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False)
v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False)
u.data = l2normalize(u.data)
v.data = l2normalize(v.data)
w_bar = Parameter(w.data)
del self.module._parameters[self.name]
self.module.register_parameter(self.name + '_u', u)
self.module.register_parameter(self.name + '_v', v)
self.module.register_parameter(self.name + '_bar', w_bar)
def forward(self, *args):
self._update_u_v()
return self.module.forward(*args)
class Conv2dLayerNew(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, pad_type='zero', activation='elu', norm=
'none', sn=False):
super(Conv2dLayerNew, self).__init__()
if pad_type == 'reflect':
self.pad = nn.ReflectionPad2d(padding)
elif pad_type == 'replicate':
self.pad = nn.ReplicationPad2d(padding)
elif pad_type == 'zero':
self.pad = nn.ZeroPad2d(padding)
else:
assert 0, 'Unsupported padding type: {}'.format(pad_type)
if norm == 'bn':
self.norm = nn.BatchNorm2d(out_channels)
elif norm == 'in':
self.norm = nn.InstanceNorm2d(out_channels)
elif norm == 'ln':
self.norm = LayerNorm(out_channels)
elif norm == 'none':
self.norm = None
else:
assert 0, 'Unsupported normalization: {}'.format(norm)
if activation == 'relu':
self.activation = nn.ReLU(inplace=True)
elif activation == 'lrelu':
self.activation = nn.LeakyReLU(0.2, inplace=True)
elif activation == 'elu':
self.activation = nn.ELU(inplace=True)
elif activation == 'selu':
self.activation = nn.SELU(inplace=True)
elif activation == 'tanh':
self.activation = nn.Tanh()
elif activation == 'sigmoid':
self.activation = nn.Sigmoid()
elif activation == 'none':
self.activation = None
else:
assert 0, 'Unsupported activation: {}'.format(activation)
if sn:
self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding=0, dilation=dilation))
else:
self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size,
stride, padding=0, dilation=dilation)
def forward(self, input_0):
primals_1 = self.conv2d.weight
primals_3 = self.conv2d.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
autocomic/https-github.com-autocomic-DeepFillv2_Pytorch
|
Conv2dLayer
| false | 3,149 |
[
"MIT"
] | 0 |
7f6712a9b42dfd827879271f13856f1da5d6a032
|
https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032
|
SinglePITF_Loss
|
import torch
import torch as t
import torch.nn as nn
class SinglePITF_Loss(nn.Module):
"""
定义PITF的loss function
"""
def __init__(self):
super(SinglePITF_Loss, self).__init__()
None
def forward(self, r):
return t.sum(-t.log(t.sigmoid(r)))
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_log_neg_sigmoid_sum_0(in_ptr0, out_ptr0, xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.sigmoid(tmp0)
tmp2 = tl_math.log(tmp1)
tmp3 = -tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp6, None)
def call(args):
arg0_1, = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
get_raw_stream(0)
triton_per_fused_log_neg_sigmoid_sum_0[grid(1)](arg0_1, buf0, 1,
256, num_warps=2, num_stages=1)
del arg0_1
return buf0,
class SinglePITF_LossNew(nn.Module):
"""
定义PITF的loss function
"""
def __init__(self):
super(SinglePITF_LossNew, self).__init__()
None
def forward(self, input_0):
arg0_1 = input_0
output = call([arg0_1])
return output[0]
|
SamHaoYuan/pitf
|
SinglePITF_Loss
| false | 1,007 |
[
"MIT"
] | 0 |
5fdebc3b44c6462126876101b052a3980804da79
|
https://github.com/SamHaoYuan/pitf/tree/5fdebc3b44c6462126876101b052a3980804da79
|
ScaleNorm
|
import math
import torch
import torch.nn as nn
import torch.nn.parallel
class ScaleNorm(nn.Module):
"""Apply Scale Normalization to input.
The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor.
The norm value is calculated as `sqrt(scale) / matrix norm`.
Finally, the result is returned as `input_tensor * norm value`.
This layer can be used instead of LayerNorm when a scaled version of the norm is required.
Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.
References
----------
.. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264
Examples
--------
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
"""
def __init__(self, scale: 'float', eps: 'float'=1e-05):
"""Initialize a ScaleNorm layer.
Parameters
----------
scale: float
Scale magnitude.
eps: float
Epsilon value. Default = 1e-5.
"""
super(ScaleNorm, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, x: 'torch.Tensor') ->torch.Tensor:
norm = self.scale / torch.norm(x, dim=-1, keepdim=True).clamp(min=
self.eps)
return x * norm
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'scale': 1.0}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
import math
import torch.nn as nn
import torch.nn.parallel
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_0(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last'
)
tmp3 = tmp2 * tmp2
tmp5 = tmp4 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp7 * tmp7
tmp9 = tmp6 + tmp8
tmp11 = tmp10 * tmp10
tmp12 = tmp9 + tmp11
tmp13 = libdevice.sqrt(tmp12)
tmp14 = 1e-05
tmp15 = triton_helpers.maximum(tmp13, tmp14)
tmp16 = tmp1 / tmp15
tl.store(out_ptr0 + x0, tmp16, xmask)
@triton.jit
def triton_poi_fused_clamp_div_linalg_vector_norm_mul_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 * tmp1
tl.store(out_ptr0 + x2, tmp2, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32)
get_raw_stream(0)
triton_poi_fused_clamp_div_linalg_vector_norm_0[grid(64)](primals_1,
primals_2, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_1
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_clamp_div_linalg_vector_norm_mul_1[grid(256)](
primals_2, buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
return buf1, primals_2
class ScaleNormNew(nn.Module):
"""Apply Scale Normalization to input.
The ScaleNorm layer first computes the square root of the scale, then computes the matrix/vector norm of the input tensor.
The norm value is calculated as `sqrt(scale) / matrix norm`.
Finally, the result is returned as `input_tensor * norm value`.
This layer can be used instead of LayerNorm when a scaled version of the norm is required.
Instead of performing the scaling operation (`scale / norm`) in a lambda-like layer, we are defining it within this layer to make prototyping more efficient.
References
----------
.. [1] Lukasz Maziarka et al. "Molecule Attention Transformer" Graph Representation Learning workshop and Machine Learning and the Physical Sciences workshop at NeurIPS 2019. 2020. https://arxiv.org/abs/2002.08264
Examples
--------
>>> from deepchem.models.torch_models.layers import ScaleNorm
>>> scale = 0.35
>>> layer = ScaleNorm(scale)
>>> input_tensor = torch.tensor([[1.269, 39.36], [0.00918, -9.12]])
>>> output_tensor = layer(input_tensor)
"""
def __init__(self, scale: 'float', eps: 'float'=1e-05):
"""Initialize a ScaleNorm layer.
Parameters
----------
scale: float
Scale magnitude.
eps: float
Epsilon value. Default = 1e-5.
"""
super(ScaleNormNew, self).__init__()
self.scale = nn.Parameter(torch.tensor(math.sqrt(scale)))
self.eps = eps
def forward(self, input_0):
primals_1 = self.scale
primals_2 = input_0
output = call([primals_1, primals_2])
return output[0]
|
Chahalprincy/deepchem
|
ScaleNorm
| false | 228 |
[
"MIT"
] | 0 |
9d1a6a879cc74b065694b3ddb763d52151d57b7a
|
https://github.com/Chahalprincy/deepchem/tree/9d1a6a879cc74b065694b3ddb763d52151d57b7a
|
MLP
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/nc/cncwsucylpsg2zmlivjfxu6vbd64ztxjndlsix2ysjtby3xohgk4.py
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.tanh]
# Source node to ATen node mapping:
# y => tanh
# Graph fragment:
# %tanh : [num_users=2] = call_function[target=torch.ops.aten.tanh.default](args = (%view_1,), kwargs = {})
triton_poi_fused_tanh_0 = async_compile.triton('triton_poi_fused_tanh_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_tanh_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + (x2), tmp3, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/ck/cckjpdpmic6qnntoa6ulx74zb7id2talmefx53xv5wytcnhcttdk.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => amax, sub
# Graph fragment:
# %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_3, [1], True), kwargs = {})
# %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_3, %amax), kwargs = {})
triton_poi_fused__log_softmax_1 = async_compile.triton('triton_poi_fused__log_softmax_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + (x3), tmp8, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/i2/ci2fsntgecheeii2vwti37e4qsnphahnfkhn7dbemm24wvvcucdb.py
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
# Source node to ATen node mapping:
# log_softmax => exp, log, sub_1, sum_1
# Graph fragment:
# %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {})
# %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {})
# %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sum_1,), kwargs = {})
# %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%sub, %log), kwargs = {})
triton_poi_fused__log_softmax_2 = async_compile.triton('triton_poi_fused__log_softmax_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__log_softmax_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = (xindex // 32)
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (8 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (16 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp9 = tl.load(in_ptr0 + (24 + x0 + (32*x2)), xmask, eviction_policy='evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + (x3), tmp13, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [y], Original ATen: [aten.tanh]
stream0 = get_raw_stream(0)
triton_poi_fused_tanh_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
# Topologically Sorted Source Nodes: [y_1], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0), alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_1.run(buf2, buf3, 128, grid=grid(128), stream=stream0)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0); del buf2 # reuse
# Topologically Sorted Source Nodes: [log_softmax], Original ATen: [aten._log_softmax]
triton_poi_fused__log_softmax_2.run(buf3, buf4, 128, grid=grid(128), stream=stream0)
del buf3
return (buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, buf4, primals_4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((2, 4), (4, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((2, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import random
import numpy as np
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_tanh_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tl.store(in_out_ptr0 + x2, tmp3, xmask)
@triton.jit
def triton_poi_fused__log_softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp4 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tl.store(out_ptr0 + x3, tmp8, xmask)
@triton.jit
def triton_poi_fused__log_softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 8
x2 = xindex // 32
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp3 = tl.load(in_ptr0 + (8 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp6 = tl.load(in_ptr0 + (16 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp9 = tl.load(in_ptr0 + (24 + x0 + 32 * x2), xmask, eviction_policy=
'evict_last')
tmp2 = tl_math.exp(tmp1)
tmp4 = tl_math.exp(tmp3)
tmp5 = tmp2 + tmp4
tmp7 = tl_math.exp(tmp6)
tmp8 = tmp5 + tmp7
tmp10 = tl_math.exp(tmp9)
tmp11 = tmp8 + tmp10
tmp12 = tl_math.log(tmp11)
tmp13 = tmp0 - tmp12
tl.store(out_ptr0 + x3, tmp13, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5 = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (2, 4), (4, 1))
assert_size_stride(primals_5, (2,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0)
del buf0
get_raw_stream(0)
triton_poi_fused_tanh_0[grid(256)](buf1, primals_2, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del primals_2
buf2 = empty_strided_cuda((64, 2), (2, 1), torch.float32)
extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (
4, 1), 0), reinterpret_tensor(primals_4, (4, 2), (1, 4), 0),
alpha=1, beta=1, out=buf2)
del primals_5
buf3 = empty_strided_cuda((4, 4, 4, 2), (32, 8, 2, 1), torch.float32)
triton_poi_fused__log_softmax_1[grid(128)](buf2, buf3, 128, XBLOCK=
128, num_warps=4, num_stages=1)
buf4 = reinterpret_tensor(buf2, (4, 4, 4, 2), (32, 8, 2, 1), 0)
del buf2
triton_poi_fused__log_softmax_2[grid(128)](buf3, buf4, 128, XBLOCK=
128, num_warps=4, num_stages=1)
del buf3
return buf4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0
), buf1, buf4, primals_4
class MLPNew(nn.Module):
def __init__(self, kernels, num_features, num_hiddens, normalize=True,
num_updates=3000, batch_size=128, weight_decay=0.0001, soft_preds=False
):
super().__init__()
self.kernels = kernels
num_kernels = len(kernels)
self.linear_1 = nn.Linear(num_features, num_hiddens)
self.act = nn.Tanh()
self.linear_2 = nn.Linear(num_hiddens, num_kernels)
self.softmax = nn.LogSoftmax(dim=1)
self.mean = None
self.std = None
self._normalize = normalize
self.num_updates = num_updates
self.batch_size = batch_size
self.soft_preds = soft_preds
self.weight_decay = weight_decay
def normalize(self, X):
if self._normalize:
return (X - self.mean) / self.std
return X
def predict_proba(self, x):
x = self.normalize(x)
tx = torch.from_numpy(x).float()
y = self.forward(tx)
return np.exp(y.detach().numpy())
def predict(self, x):
y = self.predict_proba(x)
return y.argmax(axis=1)
def fit(self, X, y):
if self._normalize:
self.mean = X.mean(axis=0, keepdims=True)
self.std = X.std(axis=0, keepdims=True)
self.std[self.std < 0.0001] = 0.0001
X = self.normalize(X)
updates = 0
optimizer = torch.optim.AdamW(self.parameters(), lr=0.001,
weight_decay=self.weight_decay)
loss = torch.nn.KLDivLoss(reduction='batchmean'
) if self.soft_preds else torch.nn.NLLLoss()
indices = list(range(X.shape[0]))
num_batches = len(indices) // self.batch_size
prev_loss = None
num_iter_no_impr = 0
while updates < self.num_updates:
random.shuffle(indices)
total_loss = 0
batches_seen = 0
for bnum in range(num_batches):
bb = self.batch_size * bnum
be = bb + self.batch_size
Xb = X[indices[bb:be]]
yb = y[indices[bb:be]]
tx = torch.from_numpy(Xb).float()
if self.soft_preds:
ty = torch.from_numpy(yb).float()
else:
ty = torch.from_numpy(yb).long()
optimizer.zero_grad()
z = self.forward(tx)
loss_val = loss(z, ty)
loss_val.backward()
optimizer.step()
sloss = loss_val.detach().numpy()
total_loss += sloss
updates += 1
batches_seen += 1
if updates > self.num_updates:
break
total_loss /= batches_seen
if prev_loss is not None:
impr = (prev_loss - total_loss) / prev_loss
if impr < 0.0001:
num_iter_no_impr += 1
else:
num_iter_no_impr = 0
prev_loss = total_loss
if num_iter_no_impr > 4:
break
def forward(self, input_0):
primals_1 = self.linear_1.weight
primals_2 = self.linear_1.bias
primals_4 = self.linear_2.weight
primals_5 = self.linear_2.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4, primals_5])
return output[0]
|
openmynet/tract
|
MLP
| false | 12,860 |
[
"ECL-2.0",
"Apache-2.0",
"MIT-0",
"MIT"
] | 0 |
a9aba6edcfeacd34f781f08717ae374bfbaba80e
|
https://github.com/openmynet/tract/tree/a9aba6edcfeacd34f781f08717ae374bfbaba80e
|
Attention
|
import torch
import torch.nn as nn
import torch.nn.functional as F
class Attention(nn.Module):
"""
Applies an attention mechanism on the output features from the decoder.
.. math::
\\begin{array}{ll}
x = context*output \\\\
attn = exp(x_i) / sum_j exp(x_j) \\\\
output = \\tanh(w * (attn * context) + b * output)
\\end{array}
Args:
dim(int): The number of expected features in the output
Inputs: output, context
- **output** (batch, output_len, dimensions): tensor containing the output features from the decoder.
- **context** (batch, input_len, dimensions): tensor containing features of the encoded input sequence.
Outputs: output, attn
- **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder.
- **attn** (batch, output_len, input_len): tensor containing attention weights.
Attributes:
linear_out (torch.nn.Linear): applies a linear transformation to the incoming data: :math:`y = Ax + b`.
mask (torch.Tensor, optional): applies a :math:`-inf` to the indices specified in the `Tensor`.
Examples::
>>> attention = seq2seq.models.Attention(256)
>>> context = Variable(torch.randn(5, 3, 256))
>>> output = Variable(torch.randn(5, 5, 256))
>>> output, attn = attention(output, context)
"""
def __init__(self, dim):
super(Attention, self).__init__()
self.linear_out = nn.Linear(dim * 2, dim)
self.mask = None
def set_mask(self, mask):
"""
Sets indices to be masked
Args:
mask (torch.Tensor): tensor containing indices to be masked
"""
self.mask = mask
def forward(self, output, context):
batch_size = output.size(0)
hidden_size = output.size(2)
input_size = context.size(1)
attn = torch.bmm(output, context.transpose(1, 2))
if self.mask is not None:
attn.data.masked_fill_(self.mask, -float('inf'))
attn = F.softmax(attn.view(-1, input_size), dim=1).view(batch_size,
-1, input_size)
mix = torch.bmm(attn, context)
combined = torch.cat((mix, output), dim=2)
output = torch.tanh(self.linear_out(combined.view(-1, 2 * hidden_size))
).view(batch_size, -1, hidden_size)
return output, attn
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = tmp1 + tmp2
tmp5 = tmp3 + tmp4
tmp7 = tmp5 + tmp6
tmp8 = tmp0 / tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
@triton.jit
def triton_poi_fused_cat_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_tanh_tanh_backward_3(in_out_ptr0, in_ptr0, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = libdevice.tanh(tmp2)
tmp4 = tmp3 * tmp3
tmp5 = 1.0
tmp6 = tmp5 - tmp4
tl.store(in_out_ptr0 + x2, tmp3, xmask)
tl.store(out_ptr0 + x2, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8), (8, 1))
assert_size_stride(primals_4, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(primals_1, reinterpret_tensor(primals_2, (4, 4,
4), (16, 1, 4), 0), out=buf0)
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused__softmax_0[grid(64)](buf0, buf1, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf2 = reinterpret_tensor(buf0, (16, 4), (4, 1), 0)
del buf0
triton_poi_fused__softmax_1[grid(64)](buf1, buf2, 64, XBLOCK=64,
num_warps=1, num_stages=1)
buf3 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0)
del buf1
extern_kernels.bmm(reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1),
0), primals_2, out=buf3)
del primals_2
buf4 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
triton_poi_fused_cat_2[grid(128)](buf3, primals_1, buf4, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
buf5 = reinterpret_tensor(buf3, (16, 4), (4, 1), 0)
del buf3
extern_kernels.mm(reinterpret_tensor(buf4, (16, 8), (8, 1), 0),
reinterpret_tensor(primals_3, (8, 4), (1, 8), 0), out=buf5)
del primals_3
buf6 = buf5
del buf5
buf7 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
triton_poi_fused_tanh_tanh_backward_3[grid(64)](buf6, primals_4,
buf7, 64, XBLOCK=64, num_warps=1, num_stages=1)
del primals_4
return reinterpret_tensor(buf6, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf2, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(buf4, (16, 8), (8, 1), 0), buf7
class AttentionNew(nn.Module):
"""
Applies an attention mechanism on the output features from the decoder.
.. math::
\\begin{array}{ll}
x = context*output \\\\
attn = exp(x_i) / sum_j exp(x_j) \\\\
output = \\tanh(w * (attn * context) + b * output)
\\end{array}
Args:
dim(int): The number of expected features in the output
Inputs: output, context
- **output** (batch, output_len, dimensions): tensor containing the output features from the decoder.
- **context** (batch, input_len, dimensions): tensor containing features of the encoded input sequence.
Outputs: output, attn
- **output** (batch, output_len, dimensions): tensor containing the attended output features from the decoder.
- **attn** (batch, output_len, input_len): tensor containing attention weights.
Attributes:
linear_out (torch.nn.Linear): applies a linear transformation to the incoming data: :math:`y = Ax + b`.
mask (torch.Tensor, optional): applies a :math:`-inf` to the indices specified in the `Tensor`.
Examples::
>>> attention = seq2seq.models.Attention(256)
>>> context = Variable(torch.randn(5, 3, 256))
>>> output = Variable(torch.randn(5, 5, 256))
>>> output, attn = attention(output, context)
"""
def __init__(self, dim):
super(AttentionNew, self).__init__()
self.linear_out = nn.Linear(dim * 2, dim)
self.mask = None
def set_mask(self, mask):
"""
Sets indices to be masked
Args:
mask (torch.Tensor): tensor containing indices to be masked
"""
self.mask = mask
def forward(self, input_0, input_1):
primals_3 = self.linear_out.weight
primals_4 = self.linear_out.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0], output[1]
|
JunhoKim94/speech_hackathon_2019
|
Attention
| false | 687 |
[
"Apache-2.0"
] | 0 |
1cb8de873d48e94f58bd1103c32b977a27d34951
|
https://github.com/JunhoKim94/speech_hackathon_2019/tree/1cb8de873d48e94f58bd1103c32b977a27d34951
|
EnsembleModel
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_9/inductor_cache/3l/c3lo77c7wjxasxrhtr6wesb72ods2d2rxnxhbfieun7j2wukm3wn.py
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# x => cat
# Graph fragment:
# %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_1, %primals_2], 2), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[128],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = (xindex // 8)
x2 = xindex
tmp0 = x0
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + (x2), tmp10, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_9/inductor_cache/qt/cqty7ixgnj6ymsefadavis3iwxnitomsuz2twh2sgj6lfymhccbj.py
# Topologically Sorted Source Nodes: [nn1_output], Original ATen: [aten.add]
# Source node to ATen node mapping:
# nn1_output => add
# Graph fragment:
# %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%bmm, %unsqueeze), kwargs = {})
triton_poi_fused_add_1 = async_compile.triton('triton_poi_fused_add_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = (xindex // 16)
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x0 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8, 4), (32, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
# Topologically Sorted Source Nodes: [x], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_1, primals_2, buf0, 128, grid=grid(128), stream=stream0)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [w_times_x], Original ATen: [aten.bmm]
extern_kernels.bmm(buf0, primals_3, out=buf1)
del primals_3
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [nn1_output], Original ATen: [aten.add]
triton_poi_fused_add_1.run(buf2, primals_4, 64, grid=grid(64), stream=stream0)
del primals_4
return (buf2, reinterpret_tensor(buf0, (4, 8, 4), (32, 1, 8), 0), )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 8, 4), (32, 4, 1), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
import torch.nn.functional as F
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 128
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 8
x1 = xindex // 8
x2 = xindex
tmp0 = x0
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask,
eviction_policy='evict_last', other=0.0)
tmp10 = tl.where(tmp4, tmp5, tmp9)
tl.store(out_ptr0 + x2, tmp10, xmask)
@triton.jit
def triton_poi_fused_add_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x0 = xindex % 4
x2 = xindex // 16
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + (x0 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4, 8, 4), (32, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(128)](primals_1, primals_2, buf0, 128,
XBLOCK=128, num_warps=4, num_stages=1)
del primals_1
del primals_2
buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(buf0, primals_3, out=buf1)
del primals_3
buf2 = buf1
del buf1
triton_poi_fused_add_1[grid(64)](buf2, primals_4, 64, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_4
return buf2, reinterpret_tensor(buf0, (4, 8, 4), (32, 1, 8), 0)
def weights_init_(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d) or isinstance(m,
nn.ConvTranspose2d):
torch.nn.init.xavier_uniform_(m.weight, gain=1)
torch.nn.init.constant_(m.bias, 0)
class Swish(nn.Module):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
x = x * F.sigmoid(x)
return x
class EnsembleFC(nn.Module):
def __init__(self, in_features: 'int', out_features: 'int',
ensemble_size: 'int', weight_decay: 'float'=0.0, bias: 'bool'=True
) ->None:
super(EnsembleFC, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.ensemble_size = ensemble_size
self.weight = nn.Parameter(torch.Tensor(ensemble_size, in_features,
out_features))
self.weight_decay = weight_decay
if bias:
self.bias = nn.Parameter(torch.Tensor(ensemble_size, out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()
def reset_parameters(self) ->None:
pass
def forward(self, input: 'torch.Tensor') ->torch.Tensor:
w_times_x = torch.bmm(input, self.weight)
return torch.add(w_times_x, self.bias[:, None, :])
def extra_repr(self) ->str:
return 'in_features={}, out_features={}, bias={}'.format(self.
in_features, self.out_features, self.bias is not None)
class EnsembleModelNew(nn.Module):
def __init__(self, feature_size, ensemble_size, use_decay=False):
super(EnsembleModelNew, self).__init__()
self.nn1 = EnsembleFC(feature_size + feature_size, feature_size,
ensemble_size, weight_decay=2.5e-05)
self.use_decay = use_decay
self.apply(weights_init_)
self.swish = Swish()
def get_decay_loss(self):
decay_loss = 0.0
for m in self.children():
if isinstance(m, EnsembleFC):
decay_loss += m.weight_decay * torch.sum(torch.square(m.weight)
) / 2.0
return decay_loss
def loss(self, mean, labels):
"""
mean, logvar: Ensemble_size x N x dim
labels: N x dim
"""
assert len(mean.shape) == len(labels.shape) == 3
mse_loss = torch.mean(torch.pow(mean - labels, 2), dim=(1, 2))
total_loss = torch.sum(mse_loss)
return total_loss, mse_loss
def forward(self, input_0, input_1):
primals_3 = self.nn1.weight
primals_4 = self.nn1.bias
primals_1 = input_0
primals_2 = input_1
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
si0wang/transfer_dmc
|
EnsembleModel
| false | 12,988 |
[
"MIT"
] | 0 |
6bda773244e0b709b3c13add2597f5f1cd01bfd7
|
https://github.com/si0wang/transfer_dmc/tree/6bda773244e0b709b3c13add2597f5f1cd01bfd7
|
PositionwiseFeedForward
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_7/inductor_cache/iu/ciuxern2omgit5ovksuiwlddxkww6e3pkid4q2h3sauzn5rbd35z.py
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d => convolution
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.SQUARE,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = (yindex // 4)
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/i3/ci3nuuurbsrmcufle642yc7udhwn4itsu6aptfssij5nzrnylpne.py
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv1d => convolution
# output => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%permute, %primals_2, %primals_3, [1], [0], [1], False, [0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/lf/clf7hs52i4bd5d3e73uio27ntyjfqmszkbsw6dta3r6rzgeftva3.py
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
# Source node to ATen node mapping:
# conv1d_1 => convolution_1
# Graph fragment:
# %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1], [0], [1], False, [0], 1), kwargs = {})
triton_poi_fused_convolution_2 = async_compile.triton('triton_poi_fused_convolution_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 4) % 4
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + (x3), tmp2, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/in/ciniyjn7eyz6kfao5xoph2rbugonh4ujhobeqsni3egmy2cyb6jq.py
# Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std]
# Source node to ATen node mapping:
# add => add
# mu => mean
# sigma => var
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {})
# %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%add, [-1], True), kwargs = {})
# %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%add, [-1]), kwargs = {correction: 1.0, keepdim: True})
triton_poi_fused_add_mean_std_3 = async_compile.triton('triton_poi_fused_add_mean_std_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_std_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = (xindex // 4)
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + (16*x1)), xmask)
tmp1 = tl.load(in_ptr1 + (4*x2), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + (16*x1)), xmask)
tmp4 = tl.load(in_ptr1 + (1 + (4*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + (16*x1)), xmask)
tmp8 = tl.load(in_ptr1 + (2 + (4*x2)), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + (16*x1)), xmask)
tmp12 = tl.load(in_ptr1 + (3 + (4*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + (x2), tmp29, xmask)
tl.store(out_ptr0 + (x2), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_7/inductor_cache/3p/c3pxygonyvwt7htiobzn7yqzmectxzeqvh7ezkgsvmrrsjmztpuc.py
# Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul]
# Source node to ATen node mapping:
# add => add
# add_1 => add_1
# ln_out => div
# ln_out_1 => add_2
# mul => mul
# sub => sub
# Graph fragment:
# %add : [num_users=3] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %primals_1), kwargs = {})
# %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add, %expand), kwargs = {})
# %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%expand_1, 0.001), kwargs = {})
# %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %add_1), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, %expand_2), kwargs = {})
# %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %expand_3), kwargs = {})
triton_poi_fused_add_div_mul_sub_4 = async_compile.triton('triton_poi_fused_add_div_mul_sub_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16, 4], tile_hint=TileHint.DEFAULT,
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = (yindex // 4)
tmp0 = tl.load(in_ptr0 + (x2 + (4*y3)), xmask & ymask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr3 + (x2 + (4*y1)), xmask & ymask, eviction_policy='evict_last')
tmp10 = tl.load(in_ptr4 + (y0), ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + (y0), ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.001
tmp8 = tmp6 + tmp7
tmp9 = tmp4 / tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2 + (4*y3)), tmp13, xmask & ymask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4, ), (1, ))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4, ), (1, ))
assert_size_stride(primals_6, (4, ), (1, ))
assert_size_stride(primals_7, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_0.run(primals_1, buf0, 16, 4, grid=grid(16, 4), stream=stream0)
# Topologically Sorted Source Nodes: [conv1d], Original ATen: [aten.convolution]
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1; del buf1 # reuse
# Topologically Sorted Source Nodes: [conv1d, output], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0)
del primals_3
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3; del buf3 # reuse
# Topologically Sorted Source Nodes: [conv1d_1], Original ATen: [aten.convolution]
triton_poi_fused_convolution_2.run(buf4, primals_5, 64, grid=grid(64), stream=stream0)
del primals_5
buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf6 = buf5; del buf5 # reuse
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
# Topologically Sorted Source Nodes: [add, mu, sigma], Original ATen: [aten.add, aten.mean, aten.std]
triton_poi_fused_add_mean_std_3.run(buf6, buf4, primals_1, buf7, 16, grid=grid(16), stream=stream0)
buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0); del buf0 # reuse
# Topologically Sorted Source Nodes: [add, sub, add_1, ln_out, mul, ln_out_1], Original ATen: [aten.add, aten.sub, aten.div, aten.mul]
triton_poi_fused_add_div_mul_sub_4.run(buf4, primals_1, buf7, buf6, primals_6, primals_7, buf8, 16, 4, grid=grid(16, 4), stream=stream0)
del buf6
del buf7
del primals_7
return (buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import libdevice
from torch import nn
from torchvision import models as models
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torch.onnx
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel,
YBLOCK: tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
@triton.jit
def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 64
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 4 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
@triton.jit
def triton_poi_fused_add_mean_std_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 4
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + (x0 + 16 * x1), xmask)
tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (4 + x0 + 16 * x1), xmask)
tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (8 + x0 + 16 * x1), xmask)
tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last')
tmp11 = tl.load(in_ptr0 + (12 + x0 + 16 * x1), xmask)
tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last'
)
tmp2 = tmp0 + tmp1
tmp5 = tmp3 + tmp4
tmp6 = tmp2 + tmp5
tmp9 = tmp7 + tmp8
tmp10 = tmp6 + tmp9
tmp13 = tmp11 + tmp12
tmp14 = tmp10 + tmp13
tmp15 = 4.0
tmp16 = tmp14 / tmp15
tmp17 = tmp2 - tmp16
tmp18 = tmp17 * tmp17
tmp19 = tmp5 - tmp16
tmp20 = tmp19 * tmp19
tmp21 = tmp18 + tmp20
tmp22 = tmp9 - tmp16
tmp23 = tmp22 * tmp22
tmp24 = tmp21 + tmp23
tmp25 = tmp13 - tmp16
tmp26 = tmp25 * tmp25
tmp27 = tmp24 + tmp26
tmp28 = 3.0
tmp29 = tmp27 / tmp28
tl.store(in_out_ptr0 + x2, tmp29, xmask)
tl.store(out_ptr0 + x2, tmp16, xmask)
@triton.jit
def triton_poi_fused_add_div_mul_sub_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
in_ptr4, in_ptr5, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr,
XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y3 = yindex
y0 = yindex % 4
y1 = yindex // 4
tmp0 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr1 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp3 = tl.load(in_ptr2 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp5 = tl.load(in_ptr3 + (x2 + 4 * y1), xmask & ymask, eviction_policy=
'evict_last')
tmp10 = tl.load(in_ptr4 + y0, ymask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr5 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp4 = tmp2 - tmp3
tmp6 = libdevice.sqrt(tmp5)
tmp7 = 0.001
tmp8 = tmp6 + tmp7
tmp9 = tmp4 / tmp8
tmp11 = tmp9 * tmp10
tmp13 = tmp11 + tmp12
tl.store(out_ptr0 + (x2 + 4 * y3), tmp13, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7) = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4,), (1,))
assert_size_stride(primals_7, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_convolution_0[grid(16, 4)](primals_1, buf0, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf1, (4, 4, 4), (16, 4, 1))
buf2 = buf1
del buf1
triton_poi_fused_convolution_relu_1[grid(64)](buf2, primals_3, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_3
buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1,),
padding=(0,), dilation=(1,), transposed=False, output_padding=(
0,), groups=1, bias=None)
assert_size_stride(buf3, (4, 4, 4), (16, 4, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_2[grid(64)](buf4, primals_5, 64,
XBLOCK=64, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
buf6 = buf5
del buf5
buf7 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32)
triton_poi_fused_add_mean_std_3[grid(16)](buf6, buf4, primals_1,
buf7, 16, XBLOCK=16, num_warps=1, num_stages=1)
buf8 = reinterpret_tensor(buf0, (4, 4, 4), (16, 1, 4), 0)
del buf0
triton_poi_fused_add_div_mul_sub_4[grid(16, 4)](buf4, primals_1,
buf7, buf6, primals_6, primals_7, buf8, 16, 4, XBLOCK=4, YBLOCK
=16, num_warps=1, num_stages=1)
del buf6
del buf7
del primals_7
return buf8, primals_1, primals_2, primals_4, primals_6, buf2, buf4
class Identity(nn.Module):
def forward(self, input_):
return input_
class LayerNormalization(nn.Module):
""" Layer normalization module """
def __init__(self, d_hid, eps=0.001):
super(LayerNormalization, self).__init__()
self.eps = eps
self.a_2 = nn.Parameter(torch.ones(d_hid), requires_grad=True)
self.b_2 = nn.Parameter(torch.zeros(d_hid), requires_grad=True)
def forward(self, z):
if z.size(1) == 1:
return z
mu = torch.mean(z, keepdim=True, dim=-1)
sigma = torch.std(z, keepdim=True, dim=-1)
ln_out = (z - mu.expand_as(z)) / (sigma.expand_as(z) + self.eps)
ln_out = ln_out * self.a_2.expand_as(ln_out) + self.b_2.expand_as(
ln_out)
return ln_out
class PositionwiseFeedForwardNew(nn.Module):
""" A two-feed-forward-layer module """
def __init__(self, d_hid, d_inner_hid, dropout=0.1, layer_norm=True):
super(PositionwiseFeedForwardNew, self).__init__()
self.w_1 = nn.Conv1d(d_hid, d_inner_hid, 1)
self.w_2 = nn.Conv1d(d_inner_hid, d_hid, 1)
self.layer_norm = LayerNormalization(d_hid
) if layer_norm else Identity()
self.dropout = nn.Dropout(dropout)
self.relu = nn.ReLU()
def forward(self, input_0):
primals_2 = self.w_1.weight
primals_3 = self.w_1.bias
primals_4 = self.w_2.weight
primals_5 = self.w_2.bias
primals_6 = self.layer_norm.a_2
primals_7 = self.layer_norm.b_2
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7])
return output[0]
|
JinYAnGHe/openvino_training_extensions
|
PositionwiseFeedForward
| false | 2,724 |
[
"Apache-2.0"
] | 0 |
a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
|
https://github.com/JinYAnGHe/openvino_training_extensions/tree/a0b4456a3c9fe6c1b7eabc9d5eb4e74d01453dee
|
Value
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/5e/c5envgfxbi5empoowogb3vo4fdj6f4fsyqewhvop4uksap44zcmc.py
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d => convolution
# x_1 => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[65536],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 62720
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 784) % 20
tmp0 = tl.load(in_out_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x3), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/uq/cuqpgnsthkkgujvarn4o2l4aaeotcllsgyuk6zwnpcl7ws6djdn4.py
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_2 => getitem, getitem_1
# Graph fragment:
# %getitem : [num_users=2] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 0), kwargs = {})
# %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_1 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[16384],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 15680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = (xindex // 14)
x2 = (xindex // 3920)
x4 = xindex % 3920
tmp0 = tl.load(in_ptr0 + ((2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + (2*x0) + (56*x3)), xmask, eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + (3936*x2)), tmp6, xmask)
tl.store(out_ptr1 + (x4 + (3968*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5e/c5enndaynbqkwwej2orjwjwzfhdam22j47qrwlomedi3ongxsfwd.py
# Topologically Sorted Source Nodes: [conv2d_1, x_3], Original ATen: [aten.convolution, aten.relu]
# Source node to ATen node mapping:
# conv2d_1 => convolution_1
# x_3 => relu_1
# Graph fragment:
# %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%getitem, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {})
# %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {})
triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[32768],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 20000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 100) % 50
x2 = (xindex // 5000)
x4 = xindex % 5000
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x4 + (5024*x2)), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/7g/c7gfh6x4k7yrennbculqcdxiyampnnfp6cicr23uuzodqpv75mnx.py
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices]
# Source node to ATen node mapping:
# x_4 => _low_memory_max_pool2d_with_offsets_1, getitem_3
# Graph fragment:
# %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], False), kwargs = {})
# %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {})
triton_poi_fused_max_pool2d_with_indices_3 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_3', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[8192],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr):
xnumel = 5000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = (xindex // 5) % 250
x2 = (xindex // 1250)
x3 = xindex % 1250
tmp0 = tl.load(in_ptr0 + ((2*x0) + (20*x1) + (5024*x2)), xmask, eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + (2*x0) + (20*x1) + (5024*x2)), xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + (2*x0) + (20*x1) + (5024*x2)), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + (2*x0) + (20*x1) + (5024*x2)), xmask, eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x3 + (1280*x2)), tmp15, xmask)
tl.store(out_ptr1 + (x3 + (1280*x2)), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/5v/c5v4jargh4hx6d66b56ackpaushbefm47j65o3s4gzgmum4og2yg.py
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_6 => relu_2
# Graph fragment:
# %add_tensor_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_1, %primals_7), kwargs = {})
# %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_1,), kwargs = {})
triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[2048],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_8/inductor_cache/4t/c4thk34fatjoz7vahlz3pzzotz6jgrj74jt24zo6zdqxo4hiltt7.py
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
# Source node to ATen node mapping:
# x_7 => relu_3
# Graph fragment:
# %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {})
# %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {})
triton_poi_fused_relu_5 = async_compile.triton('triton_poi_fused_relu_5', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[64],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + (x2), xmask)
tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + (x2), tmp4, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_2, (20, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (20, ), (1, ))
assert_size_stride(primals_4, (50, 20, 5, 5), (500, 25, 5, 1))
assert_size_stride(primals_5, (50, ), (1, ))
assert_size_stride(primals_6, (500, 1250), (1250, 1))
assert_size_stride(primals_7, (500, ), (1, ))
assert_size_stride(primals_8, (10, 500), (500, 1))
assert_size_stride(primals_9, (10, ), (1, ))
assert_size_stride(primals_10, (1, 10), (10, 1))
assert_size_stride(primals_11, (1, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 20, 28, 28), (15680, 784, 28, 1))
buf1 = buf0; del buf0 # reuse
# Topologically Sorted Source Nodes: [conv2d, x_1], Original ATen: [aten.convolution, aten.relu]
stream0 = get_raw_stream(0)
triton_poi_fused_convolution_relu_0.run(buf1, primals_3, 62720, grid=grid(62720), stream=stream0)
del primals_3
buf2 = empty_strided_cuda((4, 20, 14, 14), (3936, 196, 14, 1), torch.float32)
buf3 = empty_strided_cuda((4, 20, 14, 14), (3968, 196, 14, 1), torch.int8)
# Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_1.run(buf1, buf2, buf3, 15680, grid=grid(15680), stream=stream0)
# Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution]
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 50, 10, 10), (5000, 100, 10, 1))
buf5 = empty_strided_cuda((4, 50, 10, 10), (5024, 100, 10, 1), torch.float32)
# Topologically Sorted Source Nodes: [conv2d_1, x_3], Original ATen: [aten.convolution, aten.relu]
triton_poi_fused_convolution_relu_2.run(buf4, primals_5, buf5, 20000, grid=grid(20000), stream=stream0)
del buf4
del primals_5
buf6 = empty_strided_cuda((4, 50, 5, 5), (1280, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 50, 5, 5), (1280, 25, 5, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.max_pool2d_with_indices]
triton_poi_fused_max_pool2d_with_indices_3.run(buf5, buf6, buf7, 5000, grid=grid(5000), stream=stream0)
buf8 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(reinterpret_tensor(buf7, (4, 1250), (1280, 1), 0), reinterpret_tensor(primals_6, (1250, 500), (1, 1250), 0), out=buf8)
buf9 = buf8; del buf8 # reuse
# Topologically Sorted Source Nodes: [x_6], Original ATen: [aten.relu]
triton_poi_fused_relu_4.run(buf9, primals_7, 2000, grid=grid(2000), stream=stream0)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
# Topologically Sorted Source Nodes: [], Original ATen: []
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (500, 10), (1, 500), 0), out=buf10)
buf11 = buf10; del buf10 # reuse
# Topologically Sorted Source Nodes: [x_7], Original ATen: [aten.relu]
triton_poi_fused_relu_5.run(buf11, primals_9, 40, grid=grid(40), stream=stream0)
del primals_9
buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
# Topologically Sorted Source Nodes: [x_8], Original ATen: [aten.addmm]
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(primals_10, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf13)
del primals_11
return (buf13, primals_2, primals_4, primals_1, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 1250), (1280, 1), 0), buf9, buf11, primals_10, primals_8, primals_6, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 1, 32, 32), (1024, 1024, 32, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((20, 1, 5, 5), (25, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((20, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_4 = rand_strided((50, 20, 5, 5), (500, 25, 5, 1), device='cuda:0', dtype=torch.float32)
primals_5 = rand_strided((50, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_6 = rand_strided((500, 1250), (1250, 1), device='cuda:0', dtype=torch.float32)
primals_7 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_8 = rand_strided((10, 500), (500, 1), device='cuda:0', dtype=torch.float32)
primals_9 = rand_strided((10, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_10 = rand_strided((1, 10), (10, 1), device='cuda:0', dtype=torch.float32)
primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 62720
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 784 % 20
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x3, tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 15680
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 14
x3 = xindex // 14
x2 = xindex // 3920
x4 = xindex % 3920
tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy=
'evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy
='evict_last')
tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask,
eviction_policy='evict_last')
tmp2 = triton_helpers.maximum(tmp1, tmp0)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp6 = triton_helpers.maximum(tmp5, tmp4)
tmp7 = tmp1 > tmp0
tmp8 = tl.full([1], 1, tl.int8)
tmp9 = tl.full([1], 0, tl.int8)
tmp10 = tl.where(tmp7, tmp8, tmp9)
tmp11 = tmp3 > tmp2
tmp12 = tl.full([1], 2, tl.int8)
tmp13 = tl.where(tmp11, tmp12, tmp10)
tmp14 = tmp5 > tmp4
tmp15 = tl.full([1], 3, tl.int8)
tmp16 = tl.where(tmp14, tmp15, tmp13)
tl.store(out_ptr0 + (x4 + 3936 * x2), tmp6, xmask)
tl.store(out_ptr1 + (x4 + 3968 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_2(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 20000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 100 % 50
x2 = xindex // 5000
x4 = xindex % 5000
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(out_ptr0 + (x4 + 5024 * x2), tmp4, xmask)
@triton.jit
def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1,
xnumel, XBLOCK: tl.constexpr):
xnumel = 5000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex % 5
x1 = xindex // 5 % 250
x2 = xindex // 1250
x3 = xindex % 1250
tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1 + 5024 * x2), xmask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1 + 5024 * x2), xmask,
eviction_policy='evict_last')
tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1 + 5024 * x2), xmask,
eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1 + 5024 * x2), xmask,
eviction_policy='evict_last')
tmp2 = tmp1 > tmp0
tmp3 = tl.full([1], 1, tl.int8)
tmp4 = tl.full([1], 0, tl.int8)
tmp5 = tl.where(tmp2, tmp3, tmp4)
tmp6 = triton_helpers.maximum(tmp1, tmp0)
tmp8 = tmp7 > tmp6
tmp9 = tl.full([1], 2, tl.int8)
tmp10 = tl.where(tmp8, tmp9, tmp5)
tmp11 = triton_helpers.maximum(tmp7, tmp6)
tmp13 = tmp12 > tmp11
tmp14 = tl.full([1], 3, tl.int8)
tmp15 = tl.where(tmp13, tmp14, tmp10)
tmp16 = triton_helpers.maximum(tmp12, tmp11)
tl.store(out_ptr0 + (x3 + 1280 * x2), tmp15, xmask)
tl.store(out_ptr1 + (x3 + 1280 * x2), tmp16, xmask)
@triton.jit
def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 2000
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 500
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
@triton.jit
def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 40
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 10
tmp0 = tl.load(in_out_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tl.store(in_out_ptr0 + x2, tmp4, xmask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8, primals_9, primals_10, primals_11) = args
args.clear()
assert_size_stride(primals_1, (4, 1, 32, 32), (1024, 1024, 32, 1))
assert_size_stride(primals_2, (20, 1, 5, 5), (25, 25, 5, 1))
assert_size_stride(primals_3, (20,), (1,))
assert_size_stride(primals_4, (50, 20, 5, 5), (500, 25, 5, 1))
assert_size_stride(primals_5, (50,), (1,))
assert_size_stride(primals_6, (500, 1250), (1250, 1))
assert_size_stride(primals_7, (500,), (1,))
assert_size_stride(primals_8, (10, 500), (500, 1))
assert_size_stride(primals_9, (10,), (1,))
assert_size_stride(primals_10, (1, 10), (10, 1))
assert_size_stride(primals_11, (1,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1,
1), padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 20, 28, 28), (15680, 784, 28, 1))
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_convolution_relu_0[grid(62720)](buf1, primals_3,
62720, XBLOCK=512, num_warps=4, num_stages=1)
del primals_3
buf2 = empty_strided_cuda((4, 20, 14, 14), (3936, 196, 14, 1),
torch.float32)
buf3 = empty_strided_cuda((4, 20, 14, 14), (3968, 196, 14, 1),
torch.int8)
triton_poi_fused_max_pool2d_with_indices_1[grid(15680)](buf1, buf2,
buf3, 15680, XBLOCK=128, num_warps=4, num_stages=1)
buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf4, (4, 50, 10, 10), (5000, 100, 10, 1))
buf5 = empty_strided_cuda((4, 50, 10, 10), (5024, 100, 10, 1),
torch.float32)
triton_poi_fused_convolution_relu_2[grid(20000)](buf4, primals_5,
buf5, 20000, XBLOCK=128, num_warps=4, num_stages=1)
del buf4
del primals_5
buf6 = empty_strided_cuda((4, 50, 5, 5), (1280, 25, 5, 1), torch.int8)
buf7 = empty_strided_cuda((4, 50, 5, 5), (1280, 25, 5, 1), torch.
float32)
triton_poi_fused_max_pool2d_with_indices_3[grid(5000)](buf5, buf6,
buf7, 5000, XBLOCK=256, num_warps=4, num_stages=1)
buf8 = empty_strided_cuda((4, 500), (500, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(buf7, (4, 1250), (1280, 1), 0),
reinterpret_tensor(primals_6, (1250, 500), (1, 1250), 0), out=buf8)
buf9 = buf8
del buf8
triton_poi_fused_relu_4[grid(2000)](buf9, primals_7, 2000, XBLOCK=
256, num_warps=4, num_stages=1)
del primals_7
buf10 = empty_strided_cuda((4, 10), (10, 1), torch.float32)
extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (500, 10), (1,
500), 0), out=buf10)
buf11 = buf10
del buf10
triton_poi_fused_relu_5[grid(40)](buf11, primals_9, 40, XBLOCK=64,
num_warps=1, num_stages=1)
del primals_9
buf13 = empty_strided_cuda((4, 1), (1, 1), torch.float32)
extern_kernels.addmm(primals_11, buf11, reinterpret_tensor(
primals_10, (10, 1), (1, 10), 0), alpha=1, beta=1, out=buf13)
del primals_11
return (buf13, primals_2, primals_4, primals_1, buf1, buf2, buf3, buf5,
buf6, reinterpret_tensor(buf7, (4, 1250), (1280, 1), 0), buf9,
buf11, primals_10, primals_8, primals_6)
class ValueNew(nn.Module):
def __init__(self, state_size, fcs1_units=400, fc2_units=300):
super(ValueNew, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(5 * 5 * 50, 500)
self.fc2 = nn.Linear(500, 10)
self.fc3 = nn.Linear(10, 1)
def forward(self, input_0):
primals_2 = self.conv1.weight
primals_3 = self.conv1.bias
primals_4 = self.conv2.weight
primals_5 = self.conv2.bias
primals_6 = self.fc1.weight
primals_7 = self.fc1.bias
primals_8 = self.fc2.weight
primals_9 = self.fc2.bias
primals_10 = self.fc3.weight
primals_11 = self.fc3.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8, primals_9,
primals_10, primals_11])
return output[0]
|
zwc662/disentangling-vae
|
Value
| false | 11,085 |
[
"MIT"
] | 0 |
7eeace2a30f8034e222be6a906f53748b3b2bb6e
|
https://github.com/zwc662/disentangling-vae/tree/7eeace2a30f8034e222be6a906f53748b3b2bb6e
|
AdaptiveCos
|
import torch
from torch.nn.parameter import Parameter
class AdaptiveCos(torch.nn.Module):
"""
Implementation of soft exponential activation.
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- See related paper:
https://arxiv.org/pdf/1602.01321.pdf
Examples:
>>> a1 = soft_exponential(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(self, alpha=None):
"""
Initialization.
INPUT:
- in_features: shape of the input
- aplha: trainable parameter
aplha is initialized with zero value by default
"""
super(AdaptiveCos, self).__init__()
if alpha is None:
self.alpha = Parameter(torch.tensor(1.0))
else:
self.alpha = Parameter(torch.tensor(alpha))
self.alpha.requiresGrad = True
self.scale = Parameter(torch.tensor(1.0))
self.scale.requiresGrad = True
self.translate = Parameter(torch.tensor(0.0))
self.translate.requiresGrad = True
def forward(self, x):
"""
Forward pass of the function.
Applies the function to the input elementwise.
"""
return self.scale * torch.cos(self.alpha * x + self.translate)
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch.nn.parameter import Parameter
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_cos_mul_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + 0)
tmp1 = tl.broadcast_to(tmp0, [XBLOCK])
tmp2 = tl.load(in_ptr1 + 0)
tmp3 = tl.broadcast_to(tmp2, [XBLOCK])
tmp4 = tl.load(in_ptr2 + x0, xmask)
tmp6 = tl.load(in_ptr3 + 0)
tmp7 = tl.broadcast_to(tmp6, [XBLOCK])
tmp5 = tmp3 * tmp4
tmp8 = tmp5 + tmp7
tmp9 = tl_math.cos(tmp8)
tmp10 = tmp1 * tmp9
tl.store(out_ptr0 + x0, tmp10, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (), ())
assert_size_stride(primals_2, (), ())
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_4, (), ())
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_cos_mul_0[grid(256)](primals_1, primals_2,
primals_3, primals_4, buf0, 256, XBLOCK=256, num_warps=4,
num_stages=1)
return buf0, primals_1, primals_2, primals_3, primals_4
class AdaptiveCosNew(torch.nn.Module):
"""
Implementation of soft exponential activation.
Shape:
- Input: (N, *) where * means, any number of additional
dimensions
- Output: (N, *), same shape as the input
Parameters:
- alpha - trainable parameter
References:
- See related paper:
https://arxiv.org/pdf/1602.01321.pdf
Examples:
>>> a1 = soft_exponential(256)
>>> x = torch.randn(256)
>>> x = a1(x)
"""
def __init__(self, alpha=None):
"""
Initialization.
INPUT:
- in_features: shape of the input
- aplha: trainable parameter
aplha is initialized with zero value by default
"""
super(AdaptiveCosNew, self).__init__()
if alpha is None:
self.alpha = Parameter(torch.tensor(1.0))
else:
self.alpha = Parameter(torch.tensor(alpha))
self.alpha.requiresGrad = True
self.scale = Parameter(torch.tensor(1.0))
self.scale.requiresGrad = True
self.translate = Parameter(torch.tensor(0.0))
self.translate.requiresGrad = True
def forward(self, input_0):
primals_1 = self.alpha
primals_2 = self.scale
primals_4 = self.translate
primals_3 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
ndem0/PINA
|
AdaptiveCos
| false | 10,717 |
[
"MIT"
] | 0 |
1812ddb8d96a9c8aeb80ce35002dbd115e7d7931
|
https://github.com/ndem0/PINA/tree/1812ddb8d96a9c8aeb80ce35002dbd115e7d7931
|
IDiv
|
import torch
class IDiv(torch.nn.Module):
def __init__(self):
super(IDiv, self).__init__()
def forward(self, x, y):
x /= y
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
@triton.jit
def triton_poi_fused_div_0(in_ptr0, in_ptr1, out_ptr1, xnumel, XBLOCK: tl.
constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask)
tmp2 = tmp0 / tmp1
tl.store(out_ptr1 + x0, tmp2, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
get_raw_stream(0)
triton_poi_fused_div_0[grid(256)](arg0_1, arg1_1, arg0_1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg1_1
return arg0_1,
class IDivNew(torch.nn.Module):
def __init__(self):
super(IDivNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
NVIDIA-AI-IOT-private/torch2trt
|
IDiv
| false | 10,512 |
[
"MIT"
] | 0 |
953d60039e0c81e90eea467c3df2e6e3f7040242
|
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
|
EpeLoss
|
import torch
import torch.nn as nn
class EpeLoss(nn.Module):
def __init__(self, eps=0):
super(EpeLoss, self).__init__()
self.eps = eps
def forward(self, pred, label):
loss = ((pred - label).pow(2).sum(1) + self.eps).sqrt()
return loss.view(loss.shape[0], -1).mean(1)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel,
XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0)
tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0)
tmp4 = tl.load(in_ptr0 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp5 = tl.load(in_ptr1 + (16 + r1 + 64 * x0), xmask, other=0.0)
tmp9 = tl.load(in_ptr0 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp10 = tl.load(in_ptr1 + (32 + r1 + 64 * x0), xmask, other=0.0)
tmp14 = tl.load(in_ptr0 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp15 = tl.load(in_ptr1 + (48 + r1 + 64 * x0), xmask, other=0.0)
tmp2 = tmp0 - tmp1
tmp3 = tmp2 * tmp2
tmp6 = tmp4 - tmp5
tmp7 = tmp6 * tmp6
tmp8 = tmp3 + tmp7
tmp11 = tmp9 - tmp10
tmp12 = tmp11 * tmp11
tmp13 = tmp8 + tmp12
tmp16 = tmp14 - tmp15
tmp17 = tmp16 * tmp16
tmp18 = tmp13 + tmp17
tmp19 = 0.0
tmp20 = tmp18 + tmp19
tmp21 = libdevice.sqrt(tmp20)
tmp22 = tl.broadcast_to(tmp21, [XBLOCK, RBLOCK])
tmp24 = tl.where(xmask, tmp22, 0)
tmp25 = tl.sum(tmp24, 1)[:, None]
tmp26 = 16.0
tmp27 = tmp25 / tmp26
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp27, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4,), (1,), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_mean_0[grid(4)](buf1, arg0_1, arg1_1, 4, 16,
XBLOCK=1, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class EpeLossNew(nn.Module):
def __init__(self, eps=0):
super(EpeLossNew, self).__init__()
self.eps = eps
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
brightvioletlight/MaskFlownet-Pytorch
|
EpeLoss
| false | 14,977 |
[
"MIT"
] | 75 |
4158bac3b2fe50bfdf4216b4890ce24a8011227a
|
https://github.com/brightvioletlight/MaskFlownet-Pytorch/tree/4158bac3b2fe50bfdf4216b4890ce24a8011227a
|
SimpleAndModule
|
import torch
import torch.jit
import torch.onnx
import torch.nn
class SimpleAndModule(torch.nn.Module):
def __init__(self):
super(SimpleAndModule, self).__init__()
def forward(self, a, b):
c = torch.logical_and(a, b)
return torch.logical_and(c, c)
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.jit
import torch.onnx
import torch.nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_logical_and_0(in_ptr0, in_ptr1, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tl.load(in_ptr1 + x0, xmask)
tmp1 = tmp0 != 0
tmp3 = tmp2 != 0
tmp4 = tmp1 & tmp3
tmp5 = tmp4 & tmp4
tl.store(out_ptr0 + x0, tmp5, xmask)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
get_raw_stream(0)
triton_poi_fused_logical_and_0[grid(256)](arg1_1, arg0_1, buf0, 256,
XBLOCK=256, num_warps=4, num_stages=1)
del arg0_1
del arg1_1
return buf0,
class SimpleAndModuleNew(torch.nn.Module):
def __init__(self):
super(SimpleAndModuleNew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
opti-mix/glow
|
SimpleAndModule
| false | 7,389 |
[
"Apache-2.0"
] | 1 |
4ba074df5da9822986a23a6679ab592c22660f6d
|
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
|
SIMSE
|
import torch
import torch.nn as nn
import torch.utils.checkpoint
class SIMSE(nn.Module):
def __init__(self):
super(SIMSE, self).__init__()
def forward(self, pred, real):
diffs = torch.add(real, -pred)
n = torch.numel(diffs.data)
simse = torch.sum(diffs).pow(2) / n ** 2
return simse
def get_inputs():
return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.checkpoint
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_per_fused_add_div_neg_pow_sum_0(in_out_ptr0, in_ptr0, in_ptr1,
xnumel, rnumel):
XBLOCK: tl.constexpr = 1
RBLOCK: tl.constexpr = 256
xoffset = tl.program_id(0) * XBLOCK
tl.full([1], xoffset, tl.int32)
tl.full([RBLOCK], True, tl.int1)
rindex = tl.arange(0, RBLOCK)[:]
tl.full([RBLOCK], True, tl.int1)
r0 = rindex
tmp0 = tl.load(in_ptr0 + r0, None)
tmp1 = tl.load(in_ptr1 + r0, None)
tmp2 = -tmp1
tmp3 = tmp0 + tmp2
tmp4 = tl.broadcast_to(tmp3, [RBLOCK])
tmp6 = triton_helpers.promote_to_tensor(tl.sum(tmp4, 0))
tmp7 = tmp6 * tmp6
tmp8 = 1.52587890625e-05
tmp9 = tmp7 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp9, None)
def call(args):
arg0_1, arg1_1 = args
args.clear()
assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((), (), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_per_fused_add_div_neg_pow_sum_0[grid(1)](buf1, arg1_1,
arg0_1, 1, 256, num_warps=2, num_stages=1)
del arg0_1
del arg1_1
return buf1,
class SIMSENew(nn.Module):
def __init__(self):
super(SIMSENew, self).__init__()
def forward(self, input_0, input_1):
arg0_1 = input_0
arg1_1 = input_1
output = call([arg0_1, arg1_1])
return output[0]
|
byamao1/MMSA
|
SIMSE
| false | 14,986 |
[
"MIT"
] | 198 |
1a894d042144c9ac75b3465d38871ce8c2987251
|
https://github.com/byamao1/MMSA/tree/1a894d042144c9ac75b3465d38871ce8c2987251
|
FCLayer
|
import torch
from torch import nn
class FCLayer(nn.Module):
def __init__(self, input_dim, output_dim, dropout_rate=0.1, is_active=
True, is_dropout=True, active_type='mish'):
"""
FC-Layer, mostly last output of model
args:
input_dim: input dimension, 输入维度, eg. 768
output_dim: output dimension, 输出维度, eg. 32
dropout_rate: dropout rate, 随机失活, eg. 0.1
is_dropout: use dropout or not, 是否使用随机失活dropout, eg. True
is_active: use activation or not, 是否使用激活函数如tanh, eg. True
active_type: type of activate function, 激活函数类型, eg. "tanh", "relu"
Returns:
Tensor of batch.
"""
super(FCLayer, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(dropout_rate)
self.is_dropout = is_dropout
self.active_type = active_type
self.is_active = is_active
self.softmax = nn.Softmax(1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
self.tanh = nn.Tanh()
self.gelu = nn.GELU()
def forward(self, x):
if self.is_dropout:
x = self.dropout(x)
x = self.linear(x)
if self.is_active:
if self.active_type.upper() == 'MISH':
x = x * torch.tanh(nn.functional.softplus(x))
elif self.active_type.upper() == 'SWISH':
x = x * torch.sigmoid(x)
elif self.active_type.upper() == 'TANH':
x = self.tanh(x)
elif self.active_type.upper() == 'GELU':
x = self.gelu(x)
elif self.active_type.upper() == 'RELU':
x = self.relu(x)
else:
x = self.relu(x)
return x
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'input_dim': 4, 'output_dim': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_mul_softplus_tanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK:
tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_ptr0 + x0, xmask)
tmp1 = 20.0
tmp2 = tmp0 > tmp1
tmp3 = tl_math.exp(tmp0)
tmp4 = libdevice.log1p(tmp3)
tmp5 = tl.where(tmp2, tmp0, tmp4)
tmp6 = libdevice.tanh(tmp5)
tmp7 = tmp0 * tmp6
tl.store(out_ptr0 + x0, tmp7, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, 4), (4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32)
extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64,
4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0
), alpha=1, beta=1, out=buf0)
del primals_2
del primals_3
buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_softplus_tanh_0[grid(256)](buf0, buf1, 256,
XBLOCK=256, num_warps=4, num_stages=1)
return buf1, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), buf0
class FCLayerNew(nn.Module):
def __init__(self, input_dim, output_dim, dropout_rate=0.1, is_active=
True, is_dropout=True, active_type='mish'):
"""
FC-Layer, mostly last output of model
args:
input_dim: input dimension, 输入维度, eg. 768
output_dim: output dimension, 输出维度, eg. 32
dropout_rate: dropout rate, 随机失活, eg. 0.1
is_dropout: use dropout or not, 是否使用随机失活dropout, eg. True
is_active: use activation or not, 是否使用激活函数如tanh, eg. True
active_type: type of activate function, 激活函数类型, eg. "tanh", "relu"
Returns:
Tensor of batch.
"""
super(FCLayerNew, self).__init__()
self.linear = nn.Linear(input_dim, output_dim)
self.dropout = nn.Dropout(dropout_rate)
self.is_dropout = is_dropout
self.active_type = active_type
self.is_active = is_active
self.softmax = nn.Softmax(1)
self.sigmoid = nn.Sigmoid()
self.relu = nn.ReLU(inplace=True)
self.tanh = nn.Tanh()
self.gelu = nn.GELU()
def forward(self, input_0):
primals_2 = self.linear.weight
primals_3 = self.linear.bias
primals_1 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
dumpmemory/Pytorch-NLU
|
FCLayer
| false | 15,260 |
[
"Apache-2.0"
] | 115 |
864fb9acc7751fc51abd3d05d24b5a9a7eab7110
|
https://github.com/dumpmemory/Pytorch-NLU/tree/864fb9acc7751fc51abd3d05d24b5a9a7eab7110
|
GaussianGenerator
|
import torch
import numpy as np
import torch.nn as nn
class GaussianGenerator(nn.Module):
def __init__(self, dims):
super(GaussianGenerator, self).__init__()
self.z_dim = dims[0]
self.linear_var = nn.Parameter(1.0 * torch.ones([self.z_dim]))
self.bias = nn.Parameter(torch.zeros([self.z_dim]))
self.lmbda = 0.001
self.dist = None
def forward(self, z):
out = z * self.linear_var ** 2
out = out + self.lmbda * z + self.bias
return out
def log_density(self, x):
Sigma = self.linear_var ** 2 + self.lmbda
Sigma = Sigma ** 2
location = x - self.bias
quad = torch.einsum('nd,nd,d->n', location, location, 1.0 / Sigma)
quad = quad.unsqueeze(-1)
value = -0.5 * quad - 0.5 * torch.log(2.0 * np.pi * Sigma).sum()
return value
def get_inputs():
return [torch.rand([4, 4, 4, 4])]
def get_init_inputs():
return [[], {'dims': [4, 4]}]
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import numpy as np
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_mul_pow_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp7 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last')
tmp2 = tmp1 * tmp1
tmp3 = tmp0 * tmp2
tmp4 = 0.001
tmp5 = tmp0 * tmp4
tmp6 = tmp3 + tmp5
tmp8 = tmp6 + tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4,), (1,))
assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_add_mul_pow_0[grid(256)](primals_2, primals_1,
primals_3, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1)
del primals_3
return buf0, primals_1, primals_2
class GaussianGeneratorNew(nn.Module):
def __init__(self, dims):
super(GaussianGeneratorNew, self).__init__()
self.z_dim = dims[0]
self.linear_var = nn.Parameter(1.0 * torch.ones([self.z_dim]))
self.bias = nn.Parameter(torch.zeros([self.z_dim]))
self.lmbda = 0.001
self.dist = None
def log_density(self, x):
Sigma = self.linear_var ** 2 + self.lmbda
Sigma = Sigma ** 2
location = x - self.bias
quad = torch.einsum('nd,nd,d->n', location, location, 1.0 / Sigma)
quad = quad.unsqueeze(-1)
value = -0.5 * quad - 0.5 * torch.log(2.0 * np.pi * Sigma).sum()
return value
def forward(self, input_0):
primals_1 = self.linear_var
primals_3 = self.bias
primals_2 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
MichaelArbel/GeneralizedEBM
|
GaussianGenerator
| false | 8,560 |
[
"BSD-3-Clause"
] | 40 |
b2fb244bacef23a7347aecc0e8ff4863153f94f0
|
https://github.com/MichaelArbel/GeneralizedEBM/tree/b2fb244bacef23a7347aecc0e8ff4863153f94f0
|
BertSelfAttention
|
from _paritybench_helpers import _mock_config
import math
import torch
from torch import nn
class BertSelfAttention(nn.Module):
def __init__(self, model_config):
super().__init__()
if model_config.hidden_size % model_config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (model_config.hidden_size, model_config.num_attention_heads)
)
self.num_attention_heads = model_config.num_attention_heads
self.attention_head_size = int(model_config.hidden_size /
model_config.num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(model_config.hidden_size, self.all_head_size)
self.key = nn.Linear(model_config.hidden_size, self.all_head_size)
self.value = nn.Linear(model_config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(model_config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None):
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(context))
value_layer = self.transpose_for_scores(self.value(context))
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1,
-2))
attention_scores = attention_scores / math.sqrt(self.
attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
attention_probs = nn.Softmax(dim=-1)(attention_scores)
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.
all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer
def get_inputs():
return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])]
def get_init_inputs():
return [[], {'model_config': _mock_config(hidden_size=4,
num_attention_heads=4, attention_probs_dropout_prob=0.5)}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
from torch._inductor.runtime.triton_helpers import math as tl_math
from torch import nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_poi_fused_0(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = 1.0
tmp4 = tmp2 * tmp3
tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask)
@triton.jit
def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x1 = xindex // 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last')
tmp3 = triton_helpers.maximum(tmp1, tmp2)
tmp5 = triton_helpers.maximum(tmp3, tmp4)
tmp7 = triton_helpers.maximum(tmp5, tmp6)
tmp8 = tmp0 - tmp7
tmp9 = tl_math.exp(tmp8)
tl.store(out_ptr0 + x2, tmp9, xmask)
@triton.jit
def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr
):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 4
x2 = xindex
tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last')
tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last')
tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp25 = tl.load(in_ptr1 + x2, xmask)
tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last')
tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last'
)
tmp1 = float('-inf')
tmp2 = tmp0 == tmp1
tmp3 = tmp2 == 0
tmp4 = tmp3.to(tl.int64)
tmp5 = tmp4 != 0
tmp7 = tmp6 == tmp1
tmp8 = tmp7 == 0
tmp9 = tmp8.to(tl.int64)
tmp10 = tmp9 != 0
tmp11 = tmp5 | tmp10
tmp13 = tmp12 == tmp1
tmp14 = tmp13 == 0
tmp15 = tmp14.to(tl.int64)
tmp16 = tmp15 != 0
tmp17 = tmp11 | tmp16
tmp19 = tmp18 == tmp1
tmp20 = tmp19 == 0
tmp21 = tmp20.to(tl.int64)
tmp22 = tmp21 != 0
tmp23 = tmp17 | tmp22
tmp24 = tmp23 == 0
tmp28 = tmp26 + tmp27
tmp30 = tmp28 + tmp29
tmp32 = tmp30 + tmp31
tmp33 = tmp25 / tmp32
tmp34 = 0.0
tmp35 = tl.where(tmp24, tmp34, tmp33)
tl.store(out_ptr0 + x2, tmp35, xmask)
@triton.jit
def triton_poi_fused_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK:
tl.constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask)
@triton.jit
def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.
constexpr, XBLOCK: tl.constexpr):
ynumel = 16
xnumel = 4
yoffset = tl.program_id(1) * YBLOCK
yindex = yoffset + tl.arange(0, YBLOCK)[None, :]
ymask = yindex < ynumel
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
x2 = xindex
y0 = yindex % 4
y1 = yindex // 4
y3 = yindex
tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask,
eviction_policy='evict_last')
tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask)
def call(args):
(primals_1, primals_2, primals_3, primals_4, primals_5, primals_6,
primals_7, primals_8) = args
args.clear()
assert_size_stride(primals_1, (4, 4), (4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_4, (4, 4), (4, 1))
assert_size_stride(primals_5, (4,), (1,))
assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_7, (4, 4), (4, 1))
assert_size_stride(primals_8, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0)
del primals_1
buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1)
del primals_4
buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32)
extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0),
reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2)
del primals_7
buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_0[grid(16, 4)](buf0, primals_2, buf3, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_2
buf4 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0)
del buf0
triton_poi_fused_0[grid(16, 4)](buf1, primals_5, buf4, 16, 4,
XBLOCK=2, YBLOCK=16, num_warps=1, num_stages=1)
del primals_5
buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32)
extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0),
0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5)
buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=256,
num_warps=4, num_stages=1)
buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32)
triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256,
num_warps=4, num_stages=1)
del buf5
del buf6
buf8 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0)
del buf1
triton_poi_fused_3[grid(16, 4)](buf2, primals_8, buf8, 16, 4,
XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1)
del primals_8
buf9 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0)
del buf2
extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1),
0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9)
buf10 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32)
triton_poi_fused_clone_4[grid(16, 4)](buf9, buf10, 16, 4, XBLOCK=4,
YBLOCK=16, num_warps=1, num_stages=1)
del buf9
return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0
), reinterpret_tensor(primals_3, (16, 4), (4, 1), 0
), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0
), buf7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0
), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0)
class BertSelfAttentionNew(nn.Module):
def __init__(self, model_config):
super().__init__()
if model_config.hidden_size % model_config.num_attention_heads != 0:
raise ValueError(
'The hidden size (%d) is not a multiple of the number of attention heads (%d)'
% (model_config.hidden_size, model_config.num_attention_heads)
)
self.num_attention_heads = model_config.num_attention_heads
self.attention_head_size = int(model_config.hidden_size /
model_config.num_attention_heads)
self.all_head_size = (self.num_attention_heads * self.
attention_head_size)
self.query = nn.Linear(model_config.hidden_size, self.all_head_size)
self.key = nn.Linear(model_config.hidden_size, self.all_head_size)
self.value = nn.Linear(model_config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(model_config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.
attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, input_0, input_1):
primals_1 = self.query.weight
primals_2 = self.query.bias
primals_4 = self.key.weight
primals_5 = self.key.bias
primals_7 = self.value.weight
primals_8 = self.value.bias
primals_3 = input_0
primals_6 = input_1
output = call([primals_1, primals_2, primals_3, primals_4,
primals_5, primals_6, primals_7, primals_8])
return output[0]
|
HS-YN/PanoAVQA
|
BertSelfAttention
| false | 18,376 |
[
"MIT"
] | 3 |
657b83421ce64ea18b3e79fb580afc7034403ccc
|
https://github.com/HS-YN/PanoAVQA/tree/657b83421ce64ea18b3e79fb580afc7034403ccc
|
FusedDownsample
|
import torch
import torch.nn as nn
import torch.nn.functional as F
from math import sqrt
class FusedDownsample(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(out_channel, in_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input):
weight = F.pad(self.weight * self.multiplier, [1, 1, 1, 1])
weight = (weight[:, :, 1:, 1:] + weight[:, :, :-1, 1:] + weight[:,
:, 1:, :-1] + weight[:, :, :-1, :-1]) / 4
out = F.conv2d(input, weight, self.bias, stride=2, padding=self.pad)
return out
def get_inputs():
return [torch.rand([4, 4, 64, 64])]
def get_init_inputs():
return [[], {'in_channel': 4, 'out_channel': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
import torch.nn as nn
from math import sqrt
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_add_div_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.
constexpr):
xnumel = 400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 5 % 5
x0 = xindex % 5
x2 = xindex // 25
x4 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = x0
tmp6 = tmp5 >= tmp1
tmp7 = tmp5 < tmp3
tmp8 = tmp2 & tmp4
tmp9 = tmp8 & tmp6
tmp10 = tmp9 & tmp7
tmp11 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0
)
tmp12 = 0.1767766952966369
tmp13 = tmp11 * tmp12
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp10, tmp13, tmp14)
tmp16 = -1 + x1
tmp17 = tmp16 >= tmp1
tmp18 = tmp16 < tmp3
tmp19 = tmp17 & tmp18
tmp20 = tmp19 & tmp6
tmp21 = tmp20 & tmp7
tmp22 = tl.load(in_ptr0 + (-4 + x0 + 4 * x1 + 16 * x2), tmp21 & xmask,
other=0.0)
tmp23 = tmp22 * tmp12
tmp24 = tl.full(tmp23.shape, 0.0, tmp23.dtype)
tmp25 = tl.where(tmp21, tmp23, tmp24)
tmp26 = tmp15 + tmp25
tmp27 = -1 + x0
tmp28 = tmp27 >= tmp1
tmp29 = tmp27 < tmp3
tmp30 = tmp8 & tmp28
tmp31 = tmp30 & tmp29
tmp32 = tl.load(in_ptr0 + (-1 + x0 + 4 * x1 + 16 * x2), tmp31 & xmask,
other=0.0)
tmp33 = tmp32 * tmp12
tmp34 = tl.full(tmp33.shape, 0.0, tmp33.dtype)
tmp35 = tl.where(tmp31, tmp33, tmp34)
tmp36 = tmp26 + tmp35
tmp37 = tmp19 & tmp28
tmp38 = tmp37 & tmp29
tmp39 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp38 & xmask,
other=0.0)
tmp40 = tmp39 * tmp12
tmp41 = tl.full(tmp40.shape, 0.0, tmp40.dtype)
tmp42 = tl.where(tmp38, tmp40, tmp41)
tmp43 = tmp36 + tmp42
tmp44 = 0.25
tmp45 = tmp43 * tmp44
tl.store(in_out_ptr0 + x4, tmp45, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 14400
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 900 % 4
tmp0 = tl.load(in_out_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x3, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 64, 64), (16384, 4096, 64, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32)
buf1 = buf0
del buf0
get_raw_stream(0)
triton_poi_fused_add_div_0[grid(400)](buf1, primals_1, 400, XBLOCK=
128, num_warps=4, num_stages=1)
del primals_1
buf2 = extern_kernels.convolution(primals_3, buf1, stride=(2, 2),
padding=(0, 0), dilation=(1, 1), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf2, (4, 4, 30, 30), (3600, 900, 30, 1))
buf3 = buf2
del buf2
triton_poi_fused_convolution_1[grid(14400)](buf3, primals_2, 14400,
XBLOCK=256, num_warps=4, num_stages=1)
del primals_2
return buf3, primals_3, buf1
class FusedDownsampleNew(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, padding=0):
super().__init__()
weight = torch.randn(out_channel, in_channel, kernel_size, kernel_size)
bias = torch.zeros(out_channel)
fan_in = in_channel * kernel_size * kernel_size
self.multiplier = sqrt(2 / fan_in)
self.weight = nn.Parameter(weight)
self.bias = nn.Parameter(bias)
self.pad = padding
def forward(self, input_0):
primals_1 = self.weight
primals_2 = self.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
KwonGihyun/DiagonalGAN
|
FusedDownsample
| false | 8,443 |
[
"MIT"
] | 13 |
9e401c00e741d700f85df2c715ee11c1e66e1d1c
|
https://github.com/KwonGihyun/DiagonalGAN/tree/9e401c00e741d700f85df2c715ee11c1e66e1d1c
|
Conv1dWeightNorm
|
import torch
import torch.nn as nn
class Conv1dWeightNorm(nn.Module):
"""
Conv1d with weight normalization
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv1dWeightNorm, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.conv.weight, mean=0.0, std=0.05)
if self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
self.conv = nn.utils.weight_norm(self.conv)
def init(self, x, init_scale=1.0):
with torch.no_grad():
out = self(x)
n_channels = out.size(1)
out = out.transpose(0, 1).contiguous().view(n_channels, -1)
mean = out.mean(dim=1)
std = out.std(dim=1)
inv_stdv = init_scale / (std + 1e-06)
self.conv.weight_g.mul_(inv_stdv.view(n_channels, 1, 1))
if self.conv.bias is not None:
self.conv.bias.add_(-mean).mul_(inv_stdv)
return self(x)
def forward(self, input):
return self.conv(input)
def extra_repr(self):
return self.conv.extra_repr()
def get_inputs():
return [torch.rand([4, 4])]
def get_init_inputs():
return [[], {'in_channels': 4, 'out_channels': 4, 'kernel_size': 4}]
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import libdevice
import torch.nn as nn
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
@triton.jit
def triton_per_fused__weight_norm_interface_0(in_out_ptr0, in_ptr0, in_ptr1,
out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr):
xnumel = 4
RBLOCK: tl.constexpr = 16
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:, None]
xmask = xindex < xnumel
rindex = tl.arange(0, RBLOCK)[None, :]
tl.full([XBLOCK, RBLOCK], True, tl.int1)
r1 = rindex
x0 = xindex
tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0)
tmp7 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tmp0 * tmp0
tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK])
tmp4 = tl.where(xmask, tmp2, 0)
tmp5 = tl.sum(tmp4, 1)[:, None]
tmp6 = libdevice.sqrt(tmp5)
tmp8 = tmp7 / tmp6
tmp9 = tmp0 * tmp8
tl.debug_barrier()
tl.store(in_out_ptr0 + x0, tmp6, xmask)
tl.store(out_ptr0 + (r1 + 16 * x0), tmp9, xmask)
@triton.jit
def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl
.constexpr):
xnumel = 4
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x0 = xindex
tmp0 = tl.load(in_out_ptr0 + x0, xmask)
tmp1 = tl.load(in_ptr0 + x0, xmask)
tmp2 = tmp0 + tmp1
tl.store(in_out_ptr0 + x0, tmp2, xmask)
def call(args):
primals_1, primals_2, primals_3, primals_4 = args
args.clear()
assert_size_stride(primals_1, (4, 1, 1), (1, 1, 1))
assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1))
assert_size_stride(primals_3, (4,), (1,))
assert_size_stride(primals_4, (4, 4), (4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 1), (1, 4, 4), torch.float32)
buf1 = reinterpret_tensor(buf0, (4, 1, 1), (1, 1, 1), 0)
del buf0
buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32)
get_raw_stream(0)
triton_per_fused__weight_norm_interface_0[grid(4)](buf1, primals_2,
primals_1, buf2, 4, 16, XBLOCK=1, num_warps=2, num_stages=1)
buf3 = extern_kernels.convolution(reinterpret_tensor(primals_4, (1,
4, 4), (16, 4, 1), 0), buf2, stride=(1,), padding=(0,),
dilation=(1,), transposed=False, output_padding=(0,), groups=1,
bias=None)
assert_size_stride(buf3, (1, 4, 1), (4, 1, 1))
buf4 = buf3
del buf3
triton_poi_fused_convolution_1[grid(4)](buf4, primals_3, 4, XBLOCK=
4, num_warps=1, num_stages=1)
del primals_3
return reinterpret_tensor(buf4, (4, 1), (1, 1), 0
), buf2, primals_1, primals_2, buf1, buf2, reinterpret_tensor(primals_4
, (1, 4, 4), (16, 4, 1), 0)
class Conv1dWeightNormNew(nn.Module):
"""
Conv1d with weight normalization
"""
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(Conv1dWeightNormNew, self).__init__()
self.conv = nn.Conv1d(in_channels, out_channels, kernel_size,
stride=stride, padding=padding, dilation=dilation, groups=
groups, bias=bias)
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.conv.weight, mean=0.0, std=0.05)
if self.conv.bias is not None:
nn.init.constant_(self.conv.bias, 0)
self.conv = nn.utils.weight_norm(self.conv)
def init(self, x, init_scale=1.0):
with torch.no_grad():
out = self(x)
n_channels = out.size(1)
out = out.transpose(0, 1).contiguous().view(n_channels, -1)
mean = out.mean(dim=1)
std = out.std(dim=1)
inv_stdv = init_scale / (std + 1e-06)
self.conv.weight_g.mul_(inv_stdv.view(n_channels, 1, 1))
if self.conv.bias is not None:
self.conv.bias.add_(-mean).mul_(inv_stdv)
return self(x)
def extra_repr(self):
return self.conv.extra_repr()
def forward(self, input_0):
primals_3 = self.conv.bias
primals_1 = self.conv.weight_g
primals_2 = self.conv.weight_v
primals_4 = input_0
output = call([primals_1, primals_2, primals_3, primals_4])
return output[0]
|
juheeuu/flowseq
|
Conv1dWeightNorm
| false | 12,657 |
[
"Apache-2.0"
] | 0 |
e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb
|
https://github.com/juheeuu/flowseq/tree/e6e50406656335ff7a2f9ed4bd81d7cc7d1195fb
|
make_dilation_dense
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_6/inductor_cache/yc/cyc22ofksedv27pfbzelnb4w34yylhyqovnpjyfto4qrzov2wriv.py
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.cat]
# Source node to ATen node mapping:
# out_1 => cat
# Graph fragment:
# %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%primals_3, %relu], 1), kwargs = {})
triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[512],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = (xindex // 16) % 8
x0 = xindex % 16
x2 = (xindex // 128)
x3 = xindex
tmp0 = x1
tmp1 = tl.full([1], 0, tl.int64)
tmp2 = tmp0 >= tmp1
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + (16*x1) + (64*x2)), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tmp7 = tl.full([1], 8, tl.int64)
tmp8 = tmp0 < tmp7
tmp9 = tl.load(in_ptr1 + (x0 + (16*((-4) + x1)) + (64*x2)), tmp6 & xmask, other=0.0)
tmp10 = tl.load(in_ptr2 + ((-4) + x1), tmp6 & xmask, eviction_policy='evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + (x3), tmp16, xmask)
''', device_str='cuda')
# kernel path: runs/run_shard_6/inductor_cache/as/casawnq4v3qkxvanufkeovwbmhrlvnzi55imfmscbraafjzufzyj.py
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
# Source node to ATen node mapping:
# conv2d => convolution
# out => relu
# Graph fragment:
# %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [2, 2], [2, 2], False, [0, 0], 1), kwargs = {})
# %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {})
# %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {})
triton_poi_fused_convolution_relu_threshold_backward_1 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_1', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = (xindex // 16) % 4
tmp0 = tl.load(in_ptr0 + (x3), xmask)
tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + (x3), tmp6, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4, ), (1, ))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
# Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution]
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(2, 2), dilation=(2, 2), transposed=False, output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [out_1], Original ATen: [aten.cat]
stream0 = get_raw_stream(0)
triton_poi_fused_cat_0.run(primals_3, buf0, primals_2, buf1, 512, grid=grid(512), stream=stream0)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
# Topologically Sorted Source Nodes: [conv2d, out], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward]
triton_poi_fused_convolution_relu_threshold_backward_1.run(buf0, primals_2, buf2, 256, grid=grid(256), stream=stream0)
del buf0
del primals_2
return (buf1, primals_1, primals_3, buf2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2, primals_3])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
from torch._inductor.select_algorithm import extern_kernels
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime import triton_helpers
import torch.nn as nn
import torch.utils.data
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel,
XBLOCK: tl.constexpr):
xnumel = 512
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x1 = xindex // 16 % 8
x0 = xindex % 16
x2 = xindex // 128
x3 = xindex
tmp0 = x1
tl.full([1], 0, tl.int64)
tmp3 = tl.full([1], 4, tl.int64)
tmp4 = tmp0 < tmp3
tmp5 = tl.load(in_ptr0 + (x0 + 16 * x1 + 64 * x2), tmp4 & xmask, other=0.0)
tmp6 = tmp0 >= tmp3
tl.full([1], 8, tl.int64)
tmp9 = tl.load(in_ptr1 + (x0 + 16 * (-4 + x1) + 64 * x2), tmp6 & xmask,
other=0.0)
tmp10 = tl.load(in_ptr2 + (-4 + x1), tmp6 & xmask, eviction_policy=
'evict_last', other=0.0)
tmp11 = tmp9 + tmp10
tmp12 = tl.full([1], 0, tl.int32)
tmp13 = triton_helpers.maximum(tmp12, tmp11)
tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype)
tmp15 = tl.where(tmp6, tmp13, tmp14)
tmp16 = tl.where(tmp4, tmp5, tmp15)
tl.store(out_ptr0 + x3, tmp16, xmask)
@triton.jit
def triton_poi_fused_convolution_relu_threshold_backward_1(in_ptr0, in_ptr1,
out_ptr0, xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x3 = xindex
x1 = xindex // 16 % 4
tmp0 = tl.load(in_ptr0 + x3, xmask)
tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last')
tmp2 = tmp0 + tmp1
tmp3 = tl.full([1], 0, tl.int32)
tmp4 = triton_helpers.maximum(tmp3, tmp2)
tmp5 = 0.0
tmp6 = tmp4 <= tmp5
tl.store(out_ptr0 + x3, tmp6, xmask)
def call(args):
primals_1, primals_2, primals_3 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1))
assert_size_stride(primals_2, (4,), (1,))
assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1,
1), padding=(2, 2), dilation=(2, 2), transposed=False,
output_padding=(0, 0), groups=1, bias=None)
assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1))
buf1 = empty_strided_cuda((4, 8, 4, 4), (128, 16, 4, 1), torch.float32)
get_raw_stream(0)
triton_poi_fused_cat_0[grid(512)](primals_3, buf0, primals_2, buf1,
512, XBLOCK=128, num_warps=4, num_stages=1)
buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool)
triton_poi_fused_convolution_relu_threshold_backward_1[grid(256)](buf0,
primals_2, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1)
del buf0
del primals_2
return buf1, primals_1, primals_3, buf2
class make_dilation_denseNew(nn.Module):
def __init__(self, nChannels, growthRate, kernel_size=3):
super(make_dilation_denseNew, self).__init__()
self.conv = nn.Conv2d(nChannels, growthRate, kernel_size=
kernel_size, padding=(kernel_size - 1) // 2 + 1, bias=True,
dilation=2)
def forward(self, input_0):
primals_1 = self.conv.weight
primals_2 = self.conv.bias
primals_3 = input_0
output = call([primals_1, primals_2, primals_3])
return output[0]
|
cestcedric/TSSR-GAN
|
make_dilation_dense
| false | 1,661 |
[
"BSD-2-Clause",
"MIT"
] | 0 |
d6e1b50409e0f0591660552993e6d5b70d41e766
|
https://github.com/cestcedric/TSSR-GAN/tree/d6e1b50409e0f0591660552993e6d5b70d41e766
|
SphericalBesselBasis
|
# AOT ID: ['0_forward']
from ctypes import c_void_p, c_long, c_int
import torch
import math
import random
import os
import tempfile
from math import inf, nan
from torch._inductor.hooks import run_intermediate_hooks
from torch._inductor.utils import maybe_profile
from torch._inductor.codegen.memory_planning import _align as align
from torch import device, empty_strided
from torch._inductor.async_compile import AsyncCompile
from torch._inductor.select_algorithm import extern_kernels
from torch._inductor.codegen.multi_kernel import MultiKernelCall
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
aten = torch.ops.aten
inductor_ops = torch.ops.inductor
_quantized = torch.ops._quantized
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu
reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor
alloc_from_pool = torch.ops.inductor._alloc_from_pool
async_compile = AsyncCompile()
# kernel path: runs/run_shard_8/inductor_cache/mh/cmhudqgyaffvfgzwidcjby2k4225p53z7fnky2nqvz37ykelzacp.py
# Topologically Sorted Source Nodes: [truediv, mul, sin, mul_1], Original ATen: [aten.reciprocal, aten.mul, aten.sin]
# Source node to ATen node mapping:
# mul => mul_1
# mul_1 => mul_2
# sin => sin
# truediv => mul, reciprocal
# Graph fragment:
# %reciprocal : [num_users=1] = call_function[target=torch.ops.aten.reciprocal.default](args = (%unsqueeze,), kwargs = {})
# %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%reciprocal, 0.1767766952966369), kwargs = {})
# %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %unsqueeze), kwargs = {})
# %sin : [num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mul_1,), kwargs = {})
# %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sin), kwargs = {})
triton_poi_fused_mul_reciprocal_sin_0 = async_compile.triton('triton_poi_fused_mul_reciprocal_sin_0', '''
import triton
import triton.language as tl
from triton.compiler.compiler import AttrsDescriptor
from torch._inductor.runtime import triton_helpers, triton_heuristics
from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math
from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties
@triton_heuristics.pointwise(
size_hints=[256],
filename=__file__,
triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]},
inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_reciprocal_sin_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False},
min_elem_per_thread=0
)
@triton.jit
def triton_poi_fused_mul_reciprocal_sin_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + (x2), xmask)
tmp5 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp1 / tmp0
tmp3 = 0.1767766952966369
tmp4 = tmp2 * tmp3
tmp6 = tmp5 * tmp0
tmp7 = tl_math.sin(tmp6)
tmp8 = tmp4 * tmp7
tl.store(out_ptr0 + (x2), tmp8, xmask)
''', device_str='cuda')
async_compile.wait(globals())
del async_compile
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4, ), (1, ))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1), torch.float32)
# Topologically Sorted Source Nodes: [truediv, mul, sin, mul_1], Original ATen: [aten.reciprocal, aten.mul, aten.sin]
stream0 = get_raw_stream(0)
triton_poi_fused_mul_reciprocal_sin_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0)
return (buf0, primals_1, primals_2, )
def benchmark_compiled_module(times=10, repeat=10):
from torch._dynamo.testing import rand_strided
from torch._inductor.utils import print_performance
primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32)
primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32)
fn = lambda: call([primals_1, primals_2])
return print_performance(fn, times=times, repeat=repeat)
if __name__ == "__main__":
from torch._inductor.wrapper_benchmark import compiled_module_main
compiled_module_main('None', benchmark_compiled_module)
|
import torch
import triton
import triton.language as tl
from torch._inductor.runtime.triton_heuristics import grid
from torch._C import _cuda_getCurrentRawStream as get_raw_stream
from torch._inductor.runtime.triton_helpers import math as tl_math
import math
import numpy as np
assert_size_stride = torch._C._dynamo.guards.assert_size_stride
empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda
@triton.jit
def triton_poi_fused_mul_reciprocal_sin_0(in_ptr0, in_ptr1, out_ptr0,
xnumel, XBLOCK: tl.constexpr):
xnumel = 256
xoffset = tl.program_id(0) * XBLOCK
xindex = xoffset + tl.arange(0, XBLOCK)[:]
xmask = xindex < xnumel
x2 = xindex
x0 = xindex % 4
tmp0 = tl.load(in_ptr0 + x2, xmask)
tmp5 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last')
tmp1 = tl.full([1], 1, tl.int32)
tmp2 = tmp1 / tmp0
tmp3 = 0.1767766952966369
tmp4 = tmp2 * tmp3
tmp6 = tmp5 * tmp0
tmp7 = tl_math.sin(tmp6)
tmp8 = tmp4 * tmp7
tl.store(out_ptr0 + x2, tmp8, xmask)
def call(args):
primals_1, primals_2 = args
args.clear()
assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1))
assert_size_stride(primals_2, (4,), (1,))
with torch.cuda._DeviceGuard(0):
torch.cuda.set_device(0)
buf0 = empty_strided_cuda((4, 1, 4, 4, 4), (64, 64, 16, 4, 1),
torch.float32)
get_raw_stream(0)
triton_poi_fused_mul_reciprocal_sin_0[grid(256)](primals_1,
primals_2, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1)
return buf0, primals_1, primals_2
class SphericalBesselBasisNew(torch.nn.Module):
"""
1D spherical Bessel basis
Parameters
----------
num_radial: int
Controls maximum frequency.
cutoff: float
Cutoff distance in Angstrom.
"""
def __init__(self, num_radial: 'int', cutoff: 'float'):
super().__init__()
self.norm_const = math.sqrt(2 / cutoff ** 3)
self.frequencies = torch.nn.Parameter(data=torch.tensor(np.pi * np.
arange(1, num_radial + 1, dtype=np.float32)), requires_grad=True)
def forward(self, input_0):
primals_2 = self.frequencies
primals_1 = input_0
output = call([primals_1, primals_2])
return output[0]
|
krylea/ocp
|
SphericalBesselBasis
| false | 10,497 |
[
"MIT"
] | 0 |
00fc1df29731d70ff1b5cf8e9323d1d2f1f8e540
|
https://github.com/krylea/ocp/tree/00fc1df29731d70ff1b5cf8e9323d1d2f1f8e540
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.