entry_point
stringlengths
1
65
original_triton_python_code
stringlengths
208
619k
optimised_triton_code
stringlengths
1.15k
275k
repo_name
stringlengths
7
115
module_name
stringlengths
1
65
synthetic
bool
1 class
uuid
int64
0
18.5k
licenses
listlengths
1
6
stars
int64
0
19.8k
sha
stringlengths
40
40
repo_link
stringlengths
72
180
Attention
import math import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.data class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class MultiheadAttention(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k, dropout_p=0.1): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttention, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=dropout_p) def forward(self, key, value, query, mask=None): attn = torch.matmul(query, key.transpose(2, 3)) attn = attn / math.sqrt(self.num_hidden_k) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = torch.softmax(attn, dim=-1) attn = self.attn_dropout(attn) result = torch.matmul(attn, value) return result, attn class Attention(nn.Module): """ Attention Layer used in Tranformer """ def __init__(self, num_hidden, h=4): """ :param num_hidden: dimension of hidden :param h: num of heads """ super(Attention, self).__init__() self.num_hidden = num_hidden self.num_hidden_per_attn = num_hidden // h self.h = h self.key = Linear(num_hidden, num_hidden, bias=False) self.value = Linear(num_hidden, num_hidden, bias=False) self.query = Linear(num_hidden, num_hidden, bias=False) self.multihead = MultiheadAttention(self.num_hidden_per_attn) self.residual_dropout = nn.Dropout(p=0.1) self.final_linear = Linear(num_hidden * 2, num_hidden) self.layer_norm = nn.LayerNorm(num_hidden) def forward(self, key, value, query, mask=None): batch_size = key.size(0) seq_k = key.size(1) seq_q = query.size(1) seq_v = value.size(1) residual = value key = self.key(key).view(batch_size, seq_k, self.h, self. num_hidden_per_attn) value = self.value(value).view(batch_size, seq_v, self.h, self. num_hidden_per_attn) query = self.query(query).view(batch_size, seq_q, self.h, self. num_hidden_per_attn) query, key, value = query.transpose(1, 2), key.transpose(1, 2 ), value.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1).unsqueeze(1) result, attns = self.multihead(key, value, query, mask=mask) result = result.transpose(1, 2).contiguous().view(batch_size, seq_k, -1 ) result = torch.cat([residual, result], dim=-1) result = F.relu(self.final_linear(result)) result = self.residual_dropout(result) result = result + residual result = self.layer_norm(result) return result, attns def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4]), torch.rand([4, 4, 4]) ] def get_init_inputs(): return [[], {'num_hidden': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = tmp14 * tmp1 tmp16 = tl_math.exp(tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused__softmax_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x3 = xindex // 8 x1 = xindex // 8 % 4 x2 = xindex // 32 x4 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x3 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (x1 + 4 * (-4 + x0) + 16 * x2), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x4, tmp10, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_relu_4(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 + tmp3 tmp6 = triton_helpers.maximum(tmp1, tmp5) tmp8 = tmp6 + tmp7 tmp9 = tmp4 + tmp8 tmp11 = triton_helpers.maximum(tmp1, tmp10) tmp13 = tmp11 + tmp12 tmp14 = tmp9 + tmp13 tmp16 = triton_helpers.maximum(tmp1, tmp15) tmp18 = tmp16 + tmp17 tmp19 = tmp14 + tmp18 tmp20 = 4.0 tmp21 = tmp19 / tmp20 tmp22 = tmp4 - tmp21 tmp23 = tmp22 * tmp22 tmp24 = tmp8 - tmp21 tmp25 = tmp24 * tmp24 tmp26 = tmp23 + tmp25 tmp27 = tmp13 - tmp21 tmp28 = tmp27 * tmp27 tmp29 = tmp26 + tmp28 tmp30 = tmp18 - tmp21 tmp31 = tmp30 * tmp30 tmp32 = tmp29 + tmp31 tmp33 = tmp32 / tmp20 tl.store(out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + x0, tmp33, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_relu_5(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp1 = tl.full([1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = tmp2 + tmp3 tmp6 = tmp4 - tmp5 tmp8 = 1e-05 tmp9 = tmp7 + tmp8 tmp10 = libdevice.rsqrt(tmp9) tmp11 = tmp6 * tmp10 tmp13 = tmp11 * tmp12 tmp15 = tmp13 + tmp14 tl.store(out_ptr0 + x2, tmp15, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4, 8), (8, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) assert_size_stride(primals_10, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf0) del primals_4 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (16, 4), (4, 1), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), out=buf1) del primals_5 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf2) del primals_6 buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf2, buf3, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf2 triton_poi_fused_clone_0[grid(16, 4)](buf0, buf4, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf5, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) buf7 = reinterpret_tensor(buf5, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf5 triton_poi_fused__softmax_2[grid(256)](buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf6 buf8 = reinterpret_tensor(buf0, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf0 triton_poi_fused_clone_0[grid(16, 4)](buf1, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf1, (16, 4, 1), (4, 1, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 0), 0), out=buf9) buf10 = empty_strided_cuda((4, 4, 8), (32, 8, 1), torch.float32) triton_poi_fused_cat_3[grid(128)](primals_3, buf9, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) buf11 = reinterpret_tensor(buf9, (16, 4), (4, 1), 0) del buf9 extern_kernels.addmm(primals_8, reinterpret_tensor(buf10, (16, 8), (8, 1), 0), reinterpret_tensor(primals_7, (8, 4), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_8 buf12 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf13 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) triton_poi_fused_add_native_layer_norm_relu_4[grid(16)](buf11, primals_3, buf12, buf13, 16, XBLOCK=16, num_warps=1, num_stages=1) buf14 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_relu_5[grid(64)](buf11, primals_3, buf12, buf13, primals_9, primals_10, buf14, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 del buf13 del primals_10 return buf14, buf7, primals_3, primals_9, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (16, 4), (4, 1), 0 ), buf7, reinterpret_tensor(buf10, (16, 8), (8, 1), 0 ), buf11, primals_7, reinterpret_tensor(buf8, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0) class Linear(nn.Module): """ Linear Module """ def __init__(self, in_dim, out_dim, bias=True, w_init='linear'): """ :param in_dim: dimension of input :param out_dim: dimension of output :param bias: boolean. if True, bias is included. :param w_init: str. weight inits with xavier initialization. """ super(Linear, self).__init__() self.linear_layer = nn.Linear(in_dim, out_dim, bias=bias) nn.init.xavier_uniform_(self.linear_layer.weight, gain=nn.init. calculate_gain(w_init)) def forward(self, x): return self.linear_layer(x) class MultiheadAttention(nn.Module): """ Multihead attention mechanism (dot attention) """ def __init__(self, num_hidden_k, dropout_p=0.1): """ :param num_hidden_k: dimension of hidden """ super(MultiheadAttention, self).__init__() self.num_hidden_k = num_hidden_k self.attn_dropout = nn.Dropout(p=dropout_p) def forward(self, key, value, query, mask=None): attn = torch.matmul(query, key.transpose(2, 3)) attn = attn / math.sqrt(self.num_hidden_k) if mask is not None: attn = attn.masked_fill(mask == 0, -1000000000.0) attn = torch.softmax(attn, dim=-1) attn = self.attn_dropout(attn) result = torch.matmul(attn, value) return result, attn class AttentionNew(nn.Module): """ Attention Layer used in Tranformer """ def __init__(self, num_hidden, h=4): """ :param num_hidden: dimension of hidden :param h: num of heads """ super(AttentionNew, self).__init__() self.num_hidden = num_hidden self.num_hidden_per_attn = num_hidden // h self.h = h self.key = Linear(num_hidden, num_hidden, bias=False) self.value = Linear(num_hidden, num_hidden, bias=False) self.query = Linear(num_hidden, num_hidden, bias=False) self.multihead = MultiheadAttention(self.num_hidden_per_attn) self.residual_dropout = nn.Dropout(p=0.1) self.final_linear = Linear(num_hidden * 2, num_hidden) self.layer_norm = nn.LayerNorm(num_hidden) def forward(self, input_0, input_1, input_2): primals_4 = self.key.linear_layer.weight primals_5 = self.value.linear_layer.weight primals_6 = self.query.linear_layer.weight primals_7 = self.final_linear.linear_layer.weight primals_8 = self.final_linear.linear_layer.bias primals_9 = self.layer_norm.weight primals_10 = self.layer_norm.bias primals_1 = input_0 primals_2 = input_1 primals_3 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10]) return output[0], output[1]
Francois-Aubet/AHGP
Attention
false
8,123
[ "MIT" ]
19
3ecdd01d138f013ae8da196fbf3a71632aa2cd88
https://github.com/Francois-Aubet/AHGP/tree/3ecdd01d138f013ae8da196fbf3a71632aa2cd88
HeatedUpScalar
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/e4/ce4h2z2vthjeez5cqvrjtnep5b7t7jnbbufxqxbrvyhke72ruy4y.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, 4.0), kwargs = {}) triton_poi_fused_mul_0 = async_compile.triton('triton_poi_fused_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_mul_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class HeatedUpScalarNew(nn.Module): def __init__(self, first_value, last_value, nb_steps, scope='task', ** kwargs): super().__init__() self.scope = scope self.first_value = first_value self.step = (max(first_value, last_value) - min(first_value, last_value)) / (nb_steps - 1) if first_value > last_value: self._factor = -1 else: self._factor = 1 self._increment = 0 None def on_task_end(self): if self.scope == 'task': self._increment += 1 None def on_epoch_end(self): if self.scope == 'epoch': self._increment += 1 @property def factor(self): return self.first_value + self._factor * self._increment * self.step def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
billpsomas/incremental_learning.pytorch
HeatedUpScalar
false
14,951
[ "MIT" ]
277
a401a6609fc61c74698739cf937c0ece1c10913f
https://github.com/billpsomas/incremental_learning.pytorch/tree/a401a6609fc61c74698739cf937c0ece1c10913f
PopulationColourRGBTransforms
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/3i/c3isf4ke3rahvwor7smmcgchuksnbyt3bx5jdpztvbwijjqerzt5.py # Topologically Sorted Source Nodes: [colours], Original ATen: [aten.cat] # Source node to ATen node mapping: # colours => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%clamp_max, %clamp_max_1, %clamp_max_2, %primals_5, %clamp_max_3], 2), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 5 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + (0)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp16 = tl.load(in_ptr1 + (0)) tmp17 = tl.broadcast_to(tmp16, [XBLOCK]) tmp26 = tl.load(in_ptr2 + (0)) tmp27 = tl.broadcast_to(tmp26, [XBLOCK]) tmp36 = tl.load(in_ptr3 + (0)) tmp37 = tl.broadcast_to(tmp36, [XBLOCK]) tmp41 = tl.load(in_ptr4 + (0)) tmp42 = tl.broadcast_to(tmp41, [XBLOCK]) tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = 4.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 2, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp18 = triton_helpers.maximum(tmp17, tmp7) tmp19 = triton_helpers.minimum(tmp18, tmp7) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 3, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = triton_helpers.minimum(tmp28, tmp7) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 4, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tmp32 & tmp34 tmp38 = tmp0 >= tmp33 tmp39 = tl.full([1], 5, tl.int64) tmp40 = tmp0 < tmp39 tmp43 = 0.0 tmp44 = triton_helpers.maximum(tmp42, tmp43) tmp45 = 1.0 tmp46 = triton_helpers.minimum(tmp44, tmp45) tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp38, tmp46, tmp47) tmp49 = tl.where(tmp35, tmp37, tmp48) tmp50 = tl.where(tmp25, tmp31, tmp49) tmp51 = tl.where(tmp15, tmp21, tmp50) tmp52 = tl.where(tmp4, tmp11, tmp51) tl.store(out_ptr0 + (x0), tmp52, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/tk/ctklu7t74uopguzhx7pa32u4nabukme7bhcngvxjsuhvqkydni7u.py # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] # Source node to ATen node mapping: # mul => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%cat, %primals_6), kwargs = {}) triton_poi_fused_mul_1 = async_compile.triton('triton_poi_fused_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/bj/cbjynfyokuqclbxjmxut6f7u3t3ll57y6okui2tpwi4mr2auvdsd.py # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp => clamp_max, clamp_min # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_1, 4), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 4), kwargs = {}) triton_poi_fused_clamp_2 = async_compile.triton('triton_poi_fused_clamp_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 4.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = triton_helpers.minimum(tmp3, tmp2) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/2v/c2vgtvaym45qwxivowsz56rkt3ads3abj4fug33bfefg6yqbatw7.py # Topologically Sorted Source Nodes: [clamp_3], Original ATen: [aten.clamp] # Source node to ATen node mapping: # clamp_3 => clamp_max_3, clamp_min_3 # Graph fragment: # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%primals_4, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) triton_poi_fused_clamp_3 = async_compile.triton('triton_poi_fused_clamp_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tl.store(out_ptr0 + (tl.full([XBLOCK], 0, tl.int32)), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_2, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_3, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_4, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_5, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 5, 1, 1), (5, 5, 1, 5, 5), torch.float32) # Topologically Sorted Source Nodes: [colours], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, primals_2, primals_3, primals_5, primals_4, buf0, 5, grid=grid(5), stream=stream0) del primals_5 buf1 = empty_strided_cuda((1, 1, 5, 4, 4), (80, 80, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mul], Original ATen: [aten.mul] triton_poi_fused_mul_1.run(buf0, primals_6, buf1, 80, grid=grid(80), stream=stream0) buf2 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] triton_poi_fused_clamp_2.run(primals_1, buf2, 1, grid=grid(1), stream=stream0) # Topologically Sorted Source Nodes: [clamp], Original ATen: [aten.clamp] buf3 = torch.ops.aten.set_.source_Tensor(primals_1, buf2) assert_size_stride(buf3, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_1 buf7 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp] triton_poi_fused_clamp_2.run(primals_2, buf7, 1, grid=grid(1), stream=stream0) # Topologically Sorted Source Nodes: [clamp_1], Original ATen: [aten.clamp] buf8 = torch.ops.aten.set_.source_Tensor(primals_2, buf7) assert_size_stride(buf8, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_2 buf12 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp] triton_poi_fused_clamp_2.run(primals_3, buf12, 1, grid=grid(1), stream=stream0) # Topologically Sorted Source Nodes: [clamp_2], Original ATen: [aten.clamp] buf13 = torch.ops.aten.set_.source_Tensor(primals_3, buf12) assert_size_stride(buf13, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_3 buf17 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp_3], Original ATen: [aten.clamp] triton_poi_fused_clamp_3.run(primals_4, buf17, 1, grid=grid(1), stream=stream0) # Topologically Sorted Source Nodes: [clamp_3], Original ATen: [aten.clamp] buf18 = torch.ops.aten.set_.source_Tensor(primals_4, buf17) assert_size_stride(buf18, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del buf0 del primals_4 return (buf1, primals_6, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 5 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp5 = tl.load(in_ptr0 + 0) tmp6 = tl.broadcast_to(tmp5, [XBLOCK]) tmp16 = tl.load(in_ptr1 + 0) tmp17 = tl.broadcast_to(tmp16, [XBLOCK]) tmp26 = tl.load(in_ptr2 + 0) tmp27 = tl.broadcast_to(tmp26, [XBLOCK]) tmp36 = tl.load(in_ptr3 + 0) tmp37 = tl.broadcast_to(tmp36, [XBLOCK]) tmp41 = tl.load(in_ptr4 + 0) tmp42 = tl.broadcast_to(tmp41, [XBLOCK]) tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp7 = 4.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl.full(tmp9.shape, 0.0, tmp9.dtype) tmp11 = tl.where(tmp4, tmp9, tmp10) tmp12 = tmp0 >= tmp3 tmp13 = tl.full([1], 2, tl.int64) tmp14 = tmp0 < tmp13 tmp15 = tmp12 & tmp14 tmp18 = triton_helpers.maximum(tmp17, tmp7) tmp19 = triton_helpers.minimum(tmp18, tmp7) tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp15, tmp19, tmp20) tmp22 = tmp0 >= tmp13 tmp23 = tl.full([1], 3, tl.int64) tmp24 = tmp0 < tmp23 tmp25 = tmp22 & tmp24 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = triton_helpers.minimum(tmp28, tmp7) tmp30 = tl.full(tmp29.shape, 0.0, tmp29.dtype) tmp31 = tl.where(tmp25, tmp29, tmp30) tmp32 = tmp0 >= tmp23 tmp33 = tl.full([1], 4, tl.int64) tmp34 = tmp0 < tmp33 tmp35 = tmp32 & tmp34 tmp38 = tmp0 >= tmp33 tl.full([1], 5, tl.int64) tmp43 = 0.0 tmp44 = triton_helpers.maximum(tmp42, tmp43) tmp45 = 1.0 tmp46 = triton_helpers.minimum(tmp44, tmp45) tmp47 = tl.full(tmp46.shape, 0.0, tmp46.dtype) tmp48 = tl.where(tmp38, tmp46, tmp47) tmp49 = tl.where(tmp35, tmp37, tmp48) tmp50 = tl.where(tmp25, tmp31, tmp49) tmp51 = tl.where(tmp15, tmp21, tmp50) tmp52 = tl.where(tmp4, tmp11, tmp51) tl.store(out_ptr0 + x0, tmp52, xmask) @triton.jit def triton_poi_fused_mul_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 80 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 x0 = xindex % 16 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x2, tmp2, xmask) @triton.jit def triton_poi_fused_clamp_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 4.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = triton_helpers.minimum(tmp3, tmp2) tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp4, None) @triton.jit def triton_poi_fused_clamp_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = 0.0 tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp4 = 1.0 tmp5 = triton_helpers.minimum(tmp3, tmp4) tl.store(out_ptr0 + tl.full([XBLOCK], 0, tl.int32), tmp5, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_2, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_3, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_4, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_5, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) assert_size_stride(primals_6, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 1, 5, 1, 1), (5, 5, 1, 5, 5), torch. float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(5)](primals_1, primals_2, primals_3, primals_5, primals_4, buf0, 5, XBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf1 = empty_strided_cuda((1, 1, 5, 4, 4), (80, 80, 16, 4, 1), torch.float32) triton_poi_fused_mul_1[grid(80)](buf0, primals_6, buf1, 80, XBLOCK= 128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch. float32) triton_poi_fused_clamp_2[grid(1)](primals_1, buf2, 1, XBLOCK=1, num_warps=1, num_stages=1) buf3 = torch.ops.aten.set_.source_Tensor(primals_1, buf2) assert_size_stride(buf3, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_1 buf7 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch. float32) triton_poi_fused_clamp_2[grid(1)](primals_2, buf7, 1, XBLOCK=1, num_warps=1, num_stages=1) buf8 = torch.ops.aten.set_.source_Tensor(primals_2, buf7) assert_size_stride(buf8, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_2 buf12 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch. float32) triton_poi_fused_clamp_2[grid(1)](primals_3, buf12, 1, XBLOCK=1, num_warps=1, num_stages=1) buf13 = torch.ops.aten.set_.source_Tensor(primals_3, buf12) assert_size_stride(buf13, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del primals_3 buf17 = empty_strided_cuda((1, 1, 1, 1, 1), (1, 1, 1, 1, 1), torch. float32) triton_poi_fused_clamp_3[grid(1)](primals_4, buf17, 1, XBLOCK=1, num_warps=1, num_stages=1) buf18 = torch.ops.aten.set_.source_Tensor(primals_4, buf17) assert_size_stride(buf18, (1, 1, 1, 1, 1), (1, 1, 1, 1, 1)) del buf0 del primals_4 return buf1, primals_6 class PopulationColourRGBTransformsNew(torch.nn.Module): """RGB color transforms and ordering of patches.""" def __init__(self, config, device, num_patches=1, pop_size=1, requires_grad=True): super(PopulationColourRGBTransformsNew, self).__init__() self.config = config self.device = device None self._pop_size = pop_size None rgb_init_range = self.config['initial_max_rgb'] - self.config[ 'initial_min_rgb'] population_reds = np.random.rand(pop_size, num_patches, 1, 1, 1 ) * rgb_init_range + self.config['initial_min_rgb'] population_greens = np.random.rand(pop_size, num_patches, 1, 1, 1 ) * rgb_init_range + self.config['initial_min_rgb'] population_blues = np.random.rand(pop_size, num_patches, 1, 1, 1 ) * rgb_init_range + self.config['initial_min_rgb'] population_zeros = np.ones((pop_size, num_patches, 1, 1, 1)) population_orders = np.random.rand(pop_size, num_patches, 1, 1, 1) self.reds = torch.nn.Parameter(torch.tensor(population_reds, dtype= torch.float), requires_grad=requires_grad) self.greens = torch.nn.Parameter(torch.tensor(population_greens, dtype=torch.float), requires_grad=requires_grad) self.blues = torch.nn.Parameter(torch.tensor(population_blues, dtype=torch.float), requires_grad=requires_grad) self._zeros = torch.nn.Parameter(torch.tensor(population_zeros, dtype=torch.float), requires_grad=False) self.orders = torch.nn.Parameter(torch.tensor(population_orders, dtype=torch.float), requires_grad=requires_grad) def _clamp(self): self.reds.data = self.reds.data.clamp(min=self.config['min_rgb'], max=self.config['max_rgb']) self.greens.data = self.greens.data.clamp(min=self.config['min_rgb' ], max=self.config['max_rgb']) self.blues.data = self.blues.data.clamp(min=self.config['min_rgb'], max=self.config['max_rgb']) self.orders.data = self.orders.data.clamp(min=0.0, max=1.0) def copy_and_mutate_s(self, parent, child): with torch.no_grad(): self.reds[child, ...] = self.reds[parent, ...] + self.config[ 'colour_mutation_scale'] * torch.randn(self.reds[child, ... ].shape) self.greens[child, ...] = self.greens[parent, ...] + self.config[ 'colour_mutation_scale'] * torch.randn(self.greens[child, ...].shape) self.blues[child, ...] = self.blues[parent, ...] + self.config[ 'colour_mutation_scale'] * torch.randn(self.blues[child, ...].shape) self.orders[child, ...] = self.orders[parent, ...] def copy_from(self, other, idx_to, idx_from): """Copy parameters from other colour transform, for selected indices.""" assert idx_to < self._pop_size with torch.no_grad(): self.reds[idx_to, ...] = other.reds[idx_from, ...] self.greens[idx_to, ...] = other.greens[idx_from, ...] self.blues[idx_to, ...] = other.blues[idx_from, ...] self.orders[idx_to, ...] = other.orders[idx_from, ...] def tensor_to(self, device): self.reds = self.reds self.greens = self.greens self.blues = self.blues self.orders = self.orders self._zeros = self._zeros def forward(self, input_0): primals_1 = self.reds primals_2 = self.greens primals_3 = self.blues primals_4 = self._zeros primals_5 = self.orders primals_6 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
deepmind/arnheim
PopulationColourRGBTransforms
false
15,174
[ "Apache-2.0" ]
186
cc9d2dd12391faa460b58bff1cc5be82145a5965
https://github.com/deepmind/arnheim/tree/cc9d2dd12391faa460b58bff1cc5be82145a5965
Quantization
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/od/codpy52rvc5askcobcgimowe6roz5jcvkndhmvmghsacnld6obn2.py # Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div] # Source node to ATen node mapping: # input_1 => clamp_max, clamp_min # mul => mul # output => div # round_1 => round_1 # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, 255.0), kwargs = {}) # %round_1 : [num_users=1] = call_function[target=torch.ops.aten.round.default](args = (%mul,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%round_1, 255.0), kwargs = {}) triton_poi_fused_clamp_div_mul_round_0 = async_compile.triton('triton_poi_fused_clamp_div_mul_round_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clamp_div_mul_round_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = 255.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = 0.00392156862745098 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [input_1, mul, round_1, output], Original ATen: [aten.clamp, aten.mul, aten.round, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_clamp_div_mul_round_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_div_mul_round_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = 1.0 tmp4 = triton_helpers.minimum(tmp2, tmp3) tmp5 = 255.0 tmp6 = tmp4 * tmp5 tmp7 = libdevice.nearbyint(tmp6) tmp8 = 0.00392156862745098 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_div_mul_round_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class Quant(torch.autograd.Function): @staticmethod def forward(ctx, input): input = torch.clamp(input, 0, 1) output = (input * 255.0).round() / 255.0 return output @staticmethod def backward(ctx, grad_output): return grad_output class QuantizationNew(nn.Module): def __init__(self): super(QuantizationNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
skipper17/Invertible-Image-Rescaling
Quantization
false
12,989
[ "Apache-2.0" ]
0
4755f21faa5f7c4599dfb971a875ecee86bc35a1
https://github.com/skipper17/Invertible-Image-Rescaling/tree/4755f21faa5f7c4599dfb971a875ecee86bc35a1
SoftDiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/so/csoxzltek5j7gfukslhmbppf53tvyjqk7hs7p7hq4p7vg6t7wyrv.py # Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn], Original ATen: [aten.mul, aten.rsub] # Source node to ATen node mapping: # fn => mul_2 # fp => mul_1 # sub => sub # sub_1 => sub_1 # tp => mul # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %sub), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %arg0_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %arg1_1), kwargs = {}) triton_poi_fused_mul_rsub_0 = async_compile.triton('triton_poi_fused_mul_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = tmp0 * tmp4 tmp6 = tmp3 - tmp0 tmp7 = tmp6 * tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) tl.store(out_ptr2 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [tp, sub, fp, sub_1, fn], Original ATen: [aten.mul, aten.rsub] stream0 = get_raw_stream(0) triton_poi_fused_mul_rsub_0.run(arg0_1, arg1_1, buf0, buf1, buf2, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, buf1, buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import numpy as np from torch import nn import torch.nn.functional assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp3 - tmp1 tmp5 = tmp0 * tmp4 tmp6 = tmp3 - tmp0 tmp7 = tmp6 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) tl.store(out_ptr2 + x0, tmp7, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_rsub_0[grid(256)](arg0_1, arg1_1, buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, buf1, buf2 def sum_tensor(inp, axes, keepdim=False): axes = np.unique(axes).astype(int) if keepdim: for ax in axes: inp = inp.sum(int(ax), keepdim=True) else: for ax in sorted(axes, reverse=True): inp = inp.sum(int(ax)) return inp def get_tp_fp_fn(net_output, gt, axes=None, mask=None, square=False): """ net_output must be (b, c, x, y(, z))) gt must be a label map (shape (b, 1, x, y(, z)) OR shape (b, x, y(, z))) or one hot encoding (b, c, x, y(, z)) if mask is provided it must have shape (b, 1, x, y(, z))) :param net_output: :param gt: :param axes: :param mask: mask must be 1 for valid pixels and 0 for invalid pixels :param square: if True then fp, tp and fn will be squared before summation :return: """ if axes is None: axes = tuple(range(2, len(net_output.size()))) shp_x = net_output.shape shp_y = gt.shape with torch.no_grad(): if len(shp_x) != len(shp_y): gt = gt.view((shp_y[0], 1, *shp_y[1:])) if all([(i == j) for i, j in zip(net_output.shape, gt.shape)]): y_onehot = gt else: gt = gt.long() y_onehot = torch.zeros(shp_x) if net_output.device.type == 'cuda': y_onehot = y_onehot y_onehot.scatter_(1, gt, 1) tp = net_output * y_onehot fp = net_output * (1 - y_onehot) fn = (1 - net_output) * y_onehot if mask is not None: tp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(tp, dim=1)), dim=1) fp = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fp, dim=1)), dim=1) fn = torch.stack(tuple(x_i * mask[:, 0] for x_i in torch.unbind(fn, dim=1)), dim=1) if square: tp = tp ** 2 fp = fp ** 2 fn = fn ** 2 tp = sum_tensor(tp, axes, keepdim=False) fp = sum_tensor(fp, axes, keepdim=False) fn = sum_tensor(fn, axes, keepdim=False) return tp, fp, fn class SoftDiceLossNew(nn.Module): def __init__(self, apply_nonlin=None, batch_dice=False, do_bg=True, smooth=1.0, square=False): """ """ super(SoftDiceLossNew, self).__init__() self.square = square self.do_bg = do_bg self.batch_dice = batch_dice self.apply_nonlin = apply_nonlin self.smooth = smooth def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Ramsha04/kits19_cnn
SoftDiceLoss
false
8,708
[ "Apache-2.0" ]
15
0c1c861ca1a211a840a77e52895548e8d8033470
https://github.com/Ramsha04/kits19_cnn/tree/0c1c861ca1a211a840a77e52895548e8d8033470
SimpleCeilModule
import torch import torch.jit import torch.onnx import torch.nn class SimpleCeilModule(torch.nn.Module): def forward(self, a, b): c = a + b return torch.ceil(c) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.jit import torch.onnx import torch.nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_ceil_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 + tmp1 tmp3 = libdevice.ceil(tmp2) tl.store(out_ptr0 + x0, tmp3, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_ceil_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class SimpleCeilModuleNew(torch.nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
opti-mix/glow
SimpleCeilModule
false
7,385
[ "Apache-2.0" ]
1
4ba074df5da9822986a23a6679ab592c22660f6d
https://github.com/opti-mix/glow/tree/4ba074df5da9822986a23a6679ab592c22660f6d
eSEModule
import torch from torch import nn import torch.nn.functional as F import torch.nn.parallel class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class eSEModule(nn.Module): def __init__(self, channel, reduction=4): super(eSEModule, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, x): input = x x = self.avg_pool(x) x = self.fc(x) x = self.hsigmoid(x) return input * x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'channel': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.nn.functional as F import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_mean_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 16.0 tmp6 = tmp4 / tmp5 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp6, xmask) @triton.jit def triton_poi_fused_add_convolution_div_hardtanh_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x4 = xindex // 16 x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x4, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 3.0 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = 6.0 tmp9 = triton_helpers.minimum(tmp7, tmp8) tmp10 = 0.16666666666666666 tmp11 = tmp9 * tmp10 tmp12 = tmp0 * tmp11 tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_hardtanh_backward_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 3.0 tmp4 = tmp2 + tmp3 tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tmp7 = 6.0 tmp8 = tmp4 >= tmp7 tmp9 = tmp6 | tmp8 tl.store(out_ptr0 + x2, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 get_raw_stream(0) triton_per_fused_mean_0[grid(16)](buf1, primals_1, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_convolution_div_hardtanh_mul_1[grid(256)]( primals_1, buf2, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) buf4 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.bool) triton_poi_fused_add_convolution_hardtanh_backward_2[grid(16)](buf2, primals_3, buf4, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf2 del primals_3 return buf3, primals_1, primals_2, buf1, buf4 class Hsigmoid(nn.Module): def __init__(self, inplace=True): super(Hsigmoid, self).__init__() self.inplace = inplace def forward(self, x): return F.relu6(x + 3.0, inplace=self.inplace) / 6.0 class eSEModuleNew(nn.Module): def __init__(self, channel, reduction=4): super(eSEModuleNew, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Conv2d(channel, channel, kernel_size=1, padding=0) self.hsigmoid = Hsigmoid() def forward(self, input_0): primals_2 = self.fc.weight primals_3 = self.fc.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
XDong18/AdelaiDet
eSEModule
false
12,052
[ "BSD-2-Clause" ]
0
837cd1078923892fe6e84ac29fd0963f1b2c474f
https://github.com/XDong18/AdelaiDet/tree/837cd1078923892fe6e84ac29fd0963f1b2c474f
BoundaryEntDiscriminator
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/x5/cx5x3ctvlxfngzqxjhckinfe5o47op62tt3oe6cizqbvhu2jadcg.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x => gt, mul, where # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul), kwargs = {}) triton_poi_fused_leaky_relu_0 = async_compile.triton('triton_poi_fused_leaky_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j6/cj6preby6v25qpri36zdc64okaiku4g3n2g3ntdegoyuutlffwkx.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_1 => gt_1, mul_1, where_1 # Graph fragment: # %gt_1 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_1, 0), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_1, 0.2), kwargs = {}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %convolution_1, %mul_1), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/24/c24d6loxuicc53yfdbmizoqhkrh5m2bpnt3a4ffeuex7f6y3vnth.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_2 => gt_2, mul_2, where_2 # Graph fragment: # %gt_2 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_2, 0), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_2, 0.2), kwargs = {}) # %where_2 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_2, %convolution_2, %mul_2), kwargs = {}) triton_poi_fused_leaky_relu_2 = async_compile.triton('triton_poi_fused_leaky_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, xmask) tl.store(out_ptr1 + (x0), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/f7/cf7lcprivgof4fqsrblqrk334iqoref57wus34pdpmrc65sotzf7.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # x_3 => gt_3, mul_3, where_3 # Graph fragment: # %gt_3 : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution_3, 0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution_3, 0.2), kwargs = {}) # %where_3 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %convolution_3, %mul_3), kwargs = {}) triton_poi_fused_leaky_relu_3 = async_compile.triton('triton_poi_fused_leaky_relu_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 51200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + (x0), tmp2, None) tl.store(out_ptr1 + (x0), tmp5, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.leaky_relu] stream0 = get_raw_stream(0) triton_poi_fused_leaky_relu_0.run(buf0, buf1, buf2, 278784, grid=grid(278784), stream=stream0) del buf0 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf3, buf4, buf5, 147968, grid=grid(147968), stream=stream0) del buf3 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_2.run(buf6, buf7, buf8, 82944, grid=grid(82944), stream=stream0) del buf6 # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_3.run(buf9, buf10, buf11, 51200, grid=grid(51200), stream=stream0) del buf9 # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.convolution] buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 4, 4), (48, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((128, 64, 4, 4), (1024, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((256, 128, 4, 4), (2048, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((512, 256, 4, 4), (4096, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((1, 512, 4, 4), (8192, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 147968 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 82944 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, xmask) tl.store(out_ptr1 + x0, tmp5, xmask) @triton.jit def triton_poi_fused_leaky_relu_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 0.2 tmp4 = tmp0 * tmp3 tmp5 = tl.where(tmp2, tmp0, tmp4) tl.store(out_ptr0 + x0, tmp2, None) tl.store(out_ptr1 + x0, tmp5, None) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6 = args args.clear() assert_size_stride(primals_1, (64, 3, 4, 4), (48, 16, 4, 1)) assert_size_stride(primals_2, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_3, (128, 64, 4, 4), (1024, 16, 4, 1)) assert_size_stride(primals_4, (256, 128, 4, 4), (2048, 16, 4, 1)) assert_size_stride(primals_5, (512, 256, 4, 4), (4096, 16, 4, 1)) assert_size_stride(primals_6, (1, 512, 4, 4), (8192, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_2, primals_1, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 33, 33), (69696, 1089, 33, 1)) buf1 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.bool) buf2 = empty_strided_cuda((4, 64, 33, 33), (69696, 1089, 33, 1), torch.float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(278784)](buf0, buf1, buf2, 278784, XBLOCK=512, num_warps=8, num_stages=1) del buf0 buf3 = extern_kernels.convolution(buf2, primals_3, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 17, 17), (36992, 289, 17, 1)) buf4 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.bool) buf5 = empty_strided_cuda((4, 128, 17, 17), (36992, 289, 17, 1), torch.float32) triton_poi_fused_leaky_relu_1[grid(147968)](buf3, buf4, buf5, 147968, XBLOCK=512, num_warps=8, num_stages=1) del buf3 buf6 = extern_kernels.convolution(buf5, primals_4, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 256, 9, 9), (20736, 81, 9, 1)) buf7 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch.bool ) buf8 = empty_strided_cuda((4, 256, 9, 9), (20736, 81, 9, 1), torch. float32) triton_poi_fused_leaky_relu_2[grid(82944)](buf6, buf7, buf8, 82944, XBLOCK=512, num_warps=8, num_stages=1) del buf6 buf9 = extern_kernels.convolution(buf8, primals_5, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 512, 5, 5), (12800, 25, 5, 1)) buf10 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .bool) buf11 = empty_strided_cuda((4, 512, 5, 5), (12800, 25, 5, 1), torch .float32) triton_poi_fused_leaky_relu_3[grid(51200)](buf9, buf10, buf11, 51200, XBLOCK=256, num_warps=4, num_stages=1) del buf9 buf12 = extern_kernels.convolution(buf11, primals_6, stride=(2, 2), padding=(2, 2), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 1, 3, 3), (9, 9, 3, 1)) return (buf12, primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, buf1, buf2, buf4, buf5, buf7, buf8, buf10, buf11) class BoundaryEntDiscriminatorNew(nn.Module): def __init__(self): super(BoundaryEntDiscriminatorNew, self).__init__() filter_num_list = [64, 128, 256, 512, 1] self.conv1 = nn.Conv2d(3, filter_num_list[0], kernel_size=4, stride =2, padding=2, bias=False) self.conv2 = nn.Conv2d(filter_num_list[0], filter_num_list[1], kernel_size=4, stride=2, padding=2, bias=False) self.conv3 = nn.Conv2d(filter_num_list[1], filter_num_list[2], kernel_size=4, stride=2, padding=2, bias=False) self.conv4 = nn.Conv2d(filter_num_list[2], filter_num_list[3], kernel_size=4, stride=2, padding=2, bias=False) self.conv5 = nn.Conv2d(filter_num_list[3], filter_num_list[4], kernel_size=4, stride=2, padding=2, bias=False) self.leakyrelu = nn.LeakyReLU(negative_slope=0.2) self._initialize_weights() def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, 0.02) if m.bias is not None: m.bias.data.zero_() def forward(self, input_0): primals_1 = self.conv1.weight primals_3 = self.conv2.weight primals_4 = self.conv3.weight primals_5 = self.conv4.weight primals_6 = self.conv5.weight primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6]) return output[0]
EmmaW8/BEAL
BoundaryEntDiscriminator
false
13,694
[ "MIT" ]
95
945cad38a354605b8bca5bc01ae1b65848d605e1
https://github.com/EmmaW8/BEAL/tree/945cad38a354605b8bca5bc01ae1b65848d605e1
HardSigmoid
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/px/cpxnjr3oxhvztr3xn7rc3hd3d7r7cisxrgkuuzatigaz3cuwbvn5.py # Topologically Sorted Source Nodes: [add, x, clamp_], Original ATen: [aten.add, aten.div, aten.clamp] # Source node to ATen node mapping: # add => add # clamp_ => clamp_max, clamp_min # x => div # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, 1.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, 2.0), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%div, 0.0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) triton_poi_fused_add_clamp_div_0 = async_compile.triton('triton_poi_fused_add_clamp_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = triton_helpers.minimum(tmp6, tmp1) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add, x, clamp_], Original ATen: [aten.add, aten.div, aten.clamp] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_div_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = triton_helpers.maximum(tmp4, tmp5) tmp7 = triton_helpers.minimum(tmp6, tmp1) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_div_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardSigmoidNew(nn.Module): def __init__(self, bias=1.0, divisor=2.0, min_value=0.0, max_value=1.0): super(HardSigmoidNew, self).__init__() assert divisor != 0, 'divisor is not allowed to be equal to zero' self.bias = bias self.divisor = divisor self.min_value = min_value self.max_value = max_value """forward""" def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
SegmentationBLWX/sssegmentation
HardSigmoid
false
14,383
[ "MIT" ]
411
0b2e3ff5abd7b97e15ac8daf63ea214688c26541
https://github.com/SegmentationBLWX/sssegmentation/tree/0b2e3ff5abd7b97e15ac8daf63ea214688c26541
PinballLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/q5/cq54cjvbodafzsrjzrrzxv24p7p76obzqnm7t4pgo54zq7kodr7e.py # Topologically Sorted Source Nodes: [error, lower, upper, losses, sum_1, loss], Original ATen: [aten.sub, aten.mul, aten.maximum, aten.sum, aten.mean] # Source node to ATen node mapping: # error => sub # loss => mean # losses => maximum # lower => mul_1 # sum_1 => sum_1 # upper => mul # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 3), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, 4), kwargs = {}) # %maximum : [num_users=1] = call_function[target=torch.ops.aten.maximum.default](args = (%mul_1, %mul), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%maximum, [1]), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%sum_1,), kwargs = {}) triton_per_fused_maximum_mean_mul_sub_sum_0 = async_compile.triton('triton_per_fused_maximum_mean_mul_sub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_maximum_mean_mul_sub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_maximum_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = (rindex // 16) tmp0 = tl.load(in_ptr0 + (r0 + (64*r1)), None) tmp1 = tl.load(in_ptr1 + (r0 + (64*r1)), None) tmp8 = tl.load(in_ptr0 + (16 + r0 + (64*r1)), None) tmp9 = tl.load(in_ptr1 + (16 + r0 + (64*r1)), None) tmp15 = tl.load(in_ptr0 + (32 + r0 + (64*r1)), None) tmp16 = tl.load(in_ptr1 + (32 + r0 + (64*r1)), None) tmp22 = tl.load(in_ptr0 + (48 + r0 + (64*r1)), None) tmp23 = tl.load(in_ptr1 + (48 + r0 + (64*r1)), None) tmp2 = tmp0 - tmp1 tmp3 = 3.0 tmp4 = tmp2 * tmp3 tmp5 = 4.0 tmp6 = tmp2 * tmp5 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp3 tmp12 = tmp10 * tmp5 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp7 + tmp13 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp3 tmp19 = tmp17 * tmp5 tmp20 = triton_helpers.maximum(tmp18, tmp19) tmp21 = tmp14 + tmp20 tmp24 = tmp22 - tmp23 tmp25 = tmp24 * tmp3 tmp26 = tmp24 * tmp5 tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp28 = tmp21 + tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 64.0 tmp33 = tmp31 / tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp33, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [error, lower, upper, losses, sum_1, loss], Original ATen: [aten.sub, aten.mul, aten.maximum, aten.sum, aten.mean] stream0 = get_raw_stream(0) triton_per_fused_maximum_mean_mul_sub_sum_0.run(buf1, arg0_1, arg1_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_maximum_mean_mul_sub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex % 16 r1 = rindex // 16 tmp0 = tl.load(in_ptr0 + (r0 + 64 * r1), None) tmp1 = tl.load(in_ptr1 + (r0 + 64 * r1), None) tmp8 = tl.load(in_ptr0 + (16 + r0 + 64 * r1), None) tmp9 = tl.load(in_ptr1 + (16 + r0 + 64 * r1), None) tmp15 = tl.load(in_ptr0 + (32 + r0 + 64 * r1), None) tmp16 = tl.load(in_ptr1 + (32 + r0 + 64 * r1), None) tmp22 = tl.load(in_ptr0 + (48 + r0 + 64 * r1), None) tmp23 = tl.load(in_ptr1 + (48 + r0 + 64 * r1), None) tmp2 = tmp0 - tmp1 tmp3 = 3.0 tmp4 = tmp2 * tmp3 tmp5 = 4.0 tmp6 = tmp2 * tmp5 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp10 = tmp8 - tmp9 tmp11 = tmp10 * tmp3 tmp12 = tmp10 * tmp5 tmp13 = triton_helpers.maximum(tmp11, tmp12) tmp14 = tmp7 + tmp13 tmp17 = tmp15 - tmp16 tmp18 = tmp17 * tmp3 tmp19 = tmp17 * tmp5 tmp20 = triton_helpers.maximum(tmp18, tmp19) tmp21 = tmp14 + tmp20 tmp24 = tmp22 - tmp23 tmp25 = tmp24 * tmp3 tmp26 = tmp24 * tmp5 tmp27 = triton_helpers.maximum(tmp25, tmp26) tmp28 = tmp21 + tmp27 tmp29 = tl.broadcast_to(tmp28, [XBLOCK, RBLOCK]) tmp31 = tl.sum(tmp29, 1)[:, None] tmp32 = 64.0 tmp33 = tmp31 / tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp33, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_maximum_mean_mul_sub_sum_0[grid(1)](buf1, arg0_1, arg1_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class PinballLossNew(nn.Module): """ Calculates the quantile loss function. Attributes ---------- self.pred : torch.tensor Predictions. self.target : torch.tensor Target to predict. self.quantiles : torch.tensor """ def __init__(self, quantiles): super(PinballLossNew, self).__init__() self.pred = None self.targes = None self.quantiles = quantiles def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Javicadserres/wind-production-forecast
PinballLoss
false
621
[ "MIT" ]
0
903fbf53d2ea34dc1a63e89cee252e76d6c25876
https://github.com/Javicadserres/wind-production-forecast/tree/903fbf53d2ea34dc1a63e89cee252e76d6c25876
LinearFeedforward
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/r3/cr3febcwm3t44fuoitsx3ou2p6xg4sk4f7unagmmrvffasxf47te.py # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # relu => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [relu], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_3, buf3, 256, grid=grid(256), stream=stream0) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_1], Original ATen: [aten.addmm] extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf3 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_3, buf3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_1, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), primals_4, buf3 class Linear(nn.Linear): def forward(self, x): size = x.size() return super().forward(x.contiguous().view(-1, size[-1])).view(* size[:-1], -1) class Feedforward(nn.Module): def __init__(self, d_in, d_out, activation=None, bias=True, dropout=0.2): super().__init__() if activation is not None: self.activation = getattr(torch, activation) else: self.activation = lambda x: x self.linear = Linear(d_in, d_out, bias=bias) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.activation(self.linear(self.dropout(x))) class LinearFeedforwardNew(nn.Module): def __init__(self, d_in, d_hid, d_out, activation='relu', dropout=0.2): super().__init__() self.feedforward = Feedforward(d_in, d_hid, activation=activation) self.linear = Linear(d_hid, d_out) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.feedforward.linear.weight primals_3 = self.feedforward.linear.bias primals_4 = self.linear.weight primals_5 = self.linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
harmdevries89/genienlp
LinearFeedforward
false
3,576
[ "BSD-3-Clause" ]
0
adf163c63a43adaddecb4b3645635f6ba92772f2
https://github.com/harmdevries89/genienlp/tree/adf163c63a43adaddecb4b3645635f6ba92772f2
SpatialAttentionLayer
import torch import torch.nn as nn import torch.utils.model_zoo class BasicConv(nn.Module): def __init__(self, in_feature, out_feature, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False): super(BasicConv, self).__init__() self.conv = nn.Conv2d(in_feature, out_feature, kernel_size= kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = BatchNorm2d(out_feature, eps=1e-05, momentum=0.01, affine =True) if bn else None self.relu = nn.ReLU() if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class ChannelPool(nn.Module): def forward(self, x): return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1) .unsqueeze(1)), dim=1) class SpatialAttentionLayer(nn.Module): def __init__(self, kernel_size=3): super(SpatialAttentionLayer, self).__init__() self.compress = ChannelPool() self.spatial = BasicConv(2, 1, kernel_size, padding=kernel_size // 2, relu=False) def forward(self, x): x_compress = self.compress(x) x_out = self.spatial(x_compress) scale = torch.sigmoid(x_out) return x * scale def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.model_zoo assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = triton_helpers.maximum(tmp7, tmp8) tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = triton_helpers.maximum(tmp9, tmp10) tmp12 = tl.full(tmp11.shape, 0.0, tmp11.dtype) tmp13 = tl.where(tmp4, tmp11, tmp12) tmp14 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp17 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp18 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp19 = tmp17 + tmp18 tmp20 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = tmp19 + tmp20 tmp22 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp14 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tmp21 + tmp22 tmp24 = 4.0 tmp25 = tmp23 / tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp14, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp13, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](primals_1, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class BasicConv(nn.Module): def __init__(self, in_feature, out_feature, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=False, bias=False): super(BasicConv, self).__init__() self.conv = nn.Conv2d(in_feature, out_feature, kernel_size= kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) self.bn = BatchNorm2d(out_feature, eps=1e-05, momentum=0.01, affine =True) if bn else None self.relu = nn.ReLU() if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class ChannelPool(nn.Module): def forward(self, x): return torch.cat((torch.max(x, 1)[0].unsqueeze(1), torch.mean(x, 1) .unsqueeze(1)), dim=1) class SpatialAttentionLayerNew(nn.Module): def __init__(self, kernel_size=3): super(SpatialAttentionLayerNew, self).__init__() self.compress = ChannelPool() self.spatial = BasicConv(2, 1, kernel_size, padding=kernel_size // 2, relu=False) def forward(self, input_0): primals_2 = self.spatial.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
agusgun/EDSR-PyTorch
SpatialAttentionLayer
false
18,244
[ "MIT" ]
6
38ff657e2c4e2f148d38b8792bacdf8d81f8bf9f
https://github.com/agusgun/EDSR-PyTorch/tree/38ff657e2c4e2f148d38b8792bacdf8d81f8bf9f
Rescale
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/hy/chya2q4ib6ftrindfajd37rkm7puvcupvuze6gvif7ul5xvugkxz.py # Topologically Sorted Source Nodes: [sub, truediv, mul, x], Original ATen: [aten.sub, aten.div, aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # sub => sub # truediv => div # x => add # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg0_1, 4), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div, 0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 4), kwargs = {}) triton_poi_fused_add_div_mul_sub_0 = async_compile.triton('triton_poi_fused_add_div_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 4.0 tmp2 = tmp0 - tmp1 tmp3 = float("inf") tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp1 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, truediv, mul, x], Original ATen: [aten.sub, aten.div, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_mul_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 - tmp1 tmp3 = float('inf') tmp4 = tmp2 * tmp3 tmp5 = 0.0 tmp6 = tmp4 * tmp5 tmp7 = tmp6 + tmp1 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_mul_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RescaleNew(torch.nn.Module): def __init__(self, old_min, old_max, new_min, new_max): super(RescaleNew, self).__init__() self.old_min = old_min self.old_max = old_max self.new_min = new_min self.new_max = new_max def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Filco306/WASP-GANs
Rescale
false
472
[ "Apache-2.0" ]
0
e50cf096a5e3eb26d33a3cbf164d728b9789e41b
https://github.com/Filco306/WASP-GANs/tree/e50cf096a5e3eb26d33a3cbf164d728b9789e41b
ShuffleBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/gw/cgwdpgga273kbgckl4ktpapeoqzxt3hxizku32xe6lttaxs23rvq.py # Topologically Sorted Source Nodes: [reshape], Original ATen: [aten.clone] # Source node to ATen node mapping: # reshape => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) % 2 x2 = (xindex // 32) % 2 x3 = (xindex // 64) x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2) + (32*x1) + (64*x3)), xmask) tl.store(out_ptr0 + (x4), tmp0, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 2, 4, 4), (64, 32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [reshape], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 % 2 x2 = xindex // 32 % 2 x3 = xindex // 64 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2 + 32 * x1 + 64 * x3), xmask) tl.store(out_ptr0 + x4, tmp0, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 2, 4, 4), (64, 32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0), class ShuffleBlockNew(nn.Module): def __init__(self, groups=2): super(ShuffleBlockNew, self).__init__() self.groups = groups def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
AlexHoffman9/HAET-2021-competition-baseline-code
ShuffleBlock
false
11,164
[ "MIT" ]
0
1d71c94c68c9903854eceda6caf07442930caa44
https://github.com/AlexHoffman9/HAET-2021-competition-baseline-code/tree/1d71c94c68c9903854eceda6caf07442930caa44
MultiHeadAttention
import torch from torch import nn class MultiHeadAttention(nn.Module): def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.0): super().__init__() self.num_heads = num_heads head_dim = dim_self // num_heads self.scale = head_dim ** -0.5 self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) self.project = nn.Linear(dim_self, dim_self) self.dropout = nn.Dropout(dropout) def forward(self, x, y=None, mask=None): y = y if y is not None else x b, n, c = x.shape _, m, _d = y.shape queries = self.to_queries(x).reshape(b, n, self.num_heads, c // self.num_heads) keys_values = self.to_keys_values(y).reshape(b, m, 2, self. num_heads, c // self.num_heads) keys, values = keys_values[:, :, 0], keys_values[:, :, 1] attention = torch.einsum('bnhd,bmhd->bnmh', queries, keys) * self.scale if mask is not None: if mask.dim() == 2: mask = mask.unsqueeze(1) attention = attention.masked_fill(mask.unsqueeze(3), float('-inf')) attention = attention.softmax(dim=2) out = torch.einsum('bnmh,bmhd->bnhd', attention, values).reshape(b, n, c) out = self.project(out) return out, attention def get_inputs(): return [torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'dim_self': 4, 'dim_ref': 4, 'num_heads': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 4 x2 = xindex // 16 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + (x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (8 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (16 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr1 + (24 + x0 + 32 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp0 * tmp5 tmp7 = tmp6 * tmp3 tmp8 = triton_helpers.maximum(tmp4, tmp7) tmp10 = tmp0 * tmp9 tmp11 = tmp10 * tmp3 tmp12 = triton_helpers.maximum(tmp8, tmp11) tmp14 = tmp0 * tmp13 tmp15 = tmp14 * tmp3 tmp16 = triton_helpers.maximum(tmp12, tmp15) tmp17 = tmp4 - tmp16 tmp18 = tmp17 * tmp3 tmp19 = tl_math.exp(tmp18) tmp20 = tmp7 - tmp16 tmp21 = tmp20 * tmp3 tmp22 = tl_math.exp(tmp21) tmp23 = tmp19 + tmp22 tmp24 = tmp11 - tmp16 tmp25 = tmp24 * tmp3 tmp26 = tl_math.exp(tmp25) tmp27 = tmp23 + tmp26 tmp28 = tmp15 - tmp16 tmp29 = tmp28 * tmp3 tmp30 = tl_math.exp(tmp29) tmp31 = tmp27 + tmp30 tl.store(out_ptr0 + x3, tmp16, xmask) tl.store(out_ptr1 + x3, tmp31, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x4 = xindex // 16 x1 = xindex // 4 % 4 x3 = xindex // 64 x5 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp1 = tl.load(in_ptr1 + (x0 + 8 * x1 + 32 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr2 + (x0 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp9 = tl.load(in_ptr3 + (x0 + 4 * x4), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp3 = 1.0 tmp4 = tmp2 * tmp3 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp3 tmp8 = tl_math.exp(tmp7) tmp10 = tmp8 / tmp9 tl.store(out_ptr0 + x5, tmp10, xmask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 64 * y1), xmask & ymask) tl.store(out_ptr0 + (x2 + 16 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (4 + y0 + 8 * x2 + 32 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_clone_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_add_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (8, 4), (4, 1)) assert_size_stride(primals_5, (8,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 8), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 4), (16, 4, 64, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(64)](buf0, buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_1[grid(256)](buf0, buf1, buf2, buf3, buf4, 256, XBLOCK=256, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 4, 1), (64, 16, 4, 1, 1), torch .float32) triton_poi_fused_clone_2[grid(16, 16)](buf4, buf5, 16, 16, XBLOCK= 16, YBLOCK=16, num_warps=4, num_stages=1) buf6 = reinterpret_tensor(buf3, (4, 4, 4, 1, 1), (16, 4, 1, 1, 1), 0) del buf3 triton_poi_fused_clone_3[grid(16, 4)](buf1, buf6, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf5, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf6, (16, 4, 1), (4, 1, 0), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_4[grid(16, 4)](buf7, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = reinterpret_tensor(buf7, (16, 4), (4, 1), 0) del buf7 extern_kernels.mm(reinterpret_tensor(buf8, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (4, 4), (1, 4), 0), out=buf9) buf10 = reinterpret_tensor(buf9, (4, 4, 4), (16, 4, 1), 0) del buf9 triton_poi_fused_add_5[grid(64)](buf10, primals_7, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_7 return buf10, buf4, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf1, (4, 1, 4, 4, 1), (32, 1, 8, 1, 1), 0 ), buf4, reinterpret_tensor(buf8, (16, 4), (4, 1), 0 ), primals_6, reinterpret_tensor(buf5, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf6, (16, 1, 4), (4, 1, 1), 0) class MultiHeadAttentionNew(nn.Module): def __init__(self, dim_self, dim_ref, num_heads, bias=True, dropout=0.0): super().__init__() self.num_heads = num_heads head_dim = dim_self // num_heads self.scale = head_dim ** -0.5 self.to_queries = nn.Linear(dim_self, dim_self, bias=bias) self.to_keys_values = nn.Linear(dim_ref, dim_self * 2, bias=bias) self.project = nn.Linear(dim_self, dim_self) self.dropout = nn.Dropout(dropout) def forward(self, input_0): primals_2 = self.to_queries.weight primals_3 = self.to_queries.bias primals_4 = self.to_keys_values.weight primals_5 = self.to_keys_values.bias primals_6 = self.project.weight primals_7 = self.project.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1]
bpiyush/CLIP_prefix_caption-video
MultiHeadAttention
false
12,192
[ "MIT" ]
0
3f6a4b8c841189e20b82fd4de127681424311599
https://github.com/bpiyush/CLIP_prefix_caption-video/tree/3f6a4b8c841189e20b82fd4de127681424311599
Symmetric
import torch import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler class Symmetric(nn.Module): def forward(self, X): return X.triu() + X.triu(1).transpose(-1, -2) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.quantization import torch.onnx import torch.nn.parallel import torch.utils.data import torch.fx import torch.nn import torch.optim import torch.profiler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_triu_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y3 = yindex y1 = yindex // 4 tmp3 = tl.load(in_ptr0 + (x2 + 4 * y3), xmask & ymask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp0 = x2 + -1 * y0 tmp1 = tl.full([1, 1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = y0 + -1 * x2 tmp7 = tl.full([1, 1], 1, tl.int64) tmp8 = tmp6 >= tmp7 tmp10 = tl.where(tmp8, tmp9, tmp4) tmp11 = tmp5 + tmp10 tl.store(out_ptr0 + (x2 + 4 * y3), tmp11, xmask & ymask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_triu_0[grid(64, 4)](arg0_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) del arg0_1 return buf0, class SymmetricNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
LeeSHa00/PyTorch-tutorials-kr
Symmetric
false
11,903
[ "BSD-3-Clause" ]
0
6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
https://github.com/LeeSHa00/PyTorch-tutorials-kr/tree/6a25b48b1a6cc96ea4edebeede2e419ef73b96fc
NoiseBlock
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/47/c47n7z52wznlmedggtkaq27juvunlebcrvxevegru5fnjrn4zu7v.py # Topologically Sorted Source Nodes: [mul, out], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul => mul # out => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, 4), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%arg0_1, %mul), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_out_ptr0 + (x0), xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + (x0), tmp4, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [randn_like], Original ATen: [aten.randn_like] buf0 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [mul, out], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(buf2, arg0_1, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import device import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.jit assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_out_ptr0 + x0, xmask) tmp2 = 4.0 tmp3 = tmp1 * tmp2 tmp4 = tmp0 + tmp3 tl.store(in_out_ptr0 + x0, tmp4, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = torch.ops.aten.randn.default([4, 4, 4, 4], dtype=torch. float32, device=device(type='cuda', index=0), pin_memory=False) buf1 = buf0 del buf0 buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_add_mul_0[grid(256)](buf2, arg0_1, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf2, class NoiseBlockNew(nn.Module): def __init__(self, sigma): super(NoiseBlockNew, self).__init__() self.sigma = sigma def set_sigma(self, x): self.sigma = x return 1 def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
shuj1234/Hopfield-ODE
NoiseBlock
false
10,816
[ "MIT" ]
0
2b770c0141082174f394b189df725088308d8bdd
https://github.com/shuj1234/Hopfield-ODE/tree/2b770c0141082174f394b189df725088308d8bdd
LeNet
import torch from torch import nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(3, 16, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(16, 32, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(32 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = x.view(-1, 32 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 50176 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 12544 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x1 = xindex // 14 x4 = xindex x3 = xindex // 3136 x5 = xindex % 3136 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x1), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x1), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x4, tmp6, xmask) tl.store(out_ptr1 + (x5 + 3200 * x3), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 3200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (16, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (32, 16, 5, 5), (400, 25, 5, 1)) assert_size_stride(primals_5, (32,), (1,)) assert_size_stride(primals_6, (120, 800), (800, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 16, 28, 28), (12544, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(50176)](buf1, primals_2, 50176, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 16, 14, 14), (3136, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 16, 14, 14), (3200, 196, 14, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(12544)](buf1, buf2, buf3, 12544, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 32, 10, 10), (3200, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(12800)](buf5, primals_5, 12800, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 32, 5, 5), (800, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(3200)](buf5, buf6, buf7, 3200, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 800), (800, 1), 0), reinterpret_tensor(primals_6, (800, 120), (1, 800), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 800), (800, 1), 0), buf9, buf11, primals_10, primals_8, primals_6) class LeNetNew(nn.Module): def __init__(self): super(LeNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 16, 5) self.pool1 = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(16, 32, 5) self.pool2 = nn.MaxPool2d(2, 2) self.fc1 = nn.Linear(32 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
AluminiumOxide/pytorch_base_-tutorial
LeNet
false
1,946
[ "Apache-2.0" ]
0
a6d3bea6070c7c774dcd7c55d94b0a1441548c8b
https://github.com/AluminiumOxide/pytorch_base_-tutorial/tree/a6d3bea6070c7c774dcd7c55d94b0a1441548c8b
LRN
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/5u/c5u7jgtbilvlp5oee3xzrm3bmkras7mb3t7afiv32pyh7z4mtdml.py # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # div => pow_1 # div_1 => avg_pool2d # div_2 => pow_2 # mul => mul # x => div # Graph fragment: # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%arg0_1, 2), kwargs = {}) # %avg_pool2d : [num_users=1] = call_function[target=torch.ops.aten.avg_pool2d.default](args = (%pow_1, [1, 1], [1, 1]), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%avg_pool2d, 1.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1.0), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 0.75), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%arg0_1, %pow_2), kwargs = {}) triton_poi_fused_add_avg_pool2d_div_mul_pow_0 = async_compile.triton('triton_poi_fused_add_avg_pool2d_div_mul_pow_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_avg_pool2d_div_mul_pow_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x0), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [div, div_1, mul, add, div_2, x], Original ATen: [aten.pow, aten.avg_pool2d, aten.mul, aten.add, aten.div] stream0 = get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_avg_pool2d_div_mul_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tmp0 * tmp0 tmp2 = 1.0 tmp3 = tmp1 * tmp2 tmp4 = tmp3 * tmp2 tmp5 = tmp4 + tmp2 tmp6 = 0.75 tmp7 = libdevice.pow(tmp5, tmp6) tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_avg_pool2d_div_mul_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class LRNNew(nn.Module): def __init__(self, local_size=1, alpha=1.0, beta=0.75, ACROSS_CHANNELS= False): super(LRNNew, self).__init__() self.ACROSS_CHANNELS = ACROSS_CHANNELS if self.ACROSS_CHANNELS: self.average = nn.AvgPool3d(kernel_size=(local_size, 1, 1), stride=1, padding=(int((local_size - 1.0) / 2), 0, 0)) else: self.average = nn.AvgPool2d(kernel_size=local_size, stride=1, padding=int((local_size - 1.0) / 2)) self.alpha = alpha self.beta = beta def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
zenghui9977/AFL
LRN
false
13,165
[ "MIT" ]
0
769d78be94ce8f80d376aceb2de9dc5a9d20a807
https://github.com/zenghui9977/AFL/tree/769d78be94ce8f80d376aceb2de9dc5a9d20a807
VAE_genes
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/g3/cg3el2gn3jo2uczn6kvxebxonhlsgf4gykdxpouwhsyjf55b5gdg.py # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] # Source node to ATen node mapping: # h1 => relu # Graph fragment: # %add_tensor_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_4, %primals_3), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_4,), kwargs = {}) triton_poi_fused_relu_0 = async_compile.triton('triton_poi_fused_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/d7/cd7rilnjd42cirsc5dhnnwlficmjz5omrtsdfojgouhplcpynn4n.py # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu] # Source node to ATen node mapping: # h2 => relu_1 # Graph fragment: # %add_tensor_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default_3, %primals_5), kwargs = {}) # %relu_1 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor_3,), kwargs = {}) triton_poi_fused_relu_1 = async_compile.triton('triton_poi_fused_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/ex/cexwuc6up4cv5uxb46cafc3eelvzsyfhdhsot7lgpz5xv7tenoc2.py # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # std => exp # z => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%addmm_3, 0.5), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%randn, %exp), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %addmm_2), kwargs = {}) triton_poi_fused_add_exp_mul_2 = async_compile.triton('triton_poi_fused_add_exp_mul_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp6 = tl.load(in_ptr2 + (x0), xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/vi/cvil5wapkv4i6x23roc23ppu6hrxwtoanlup7tzw5srvw23sealm.py # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # sigmoid => sigmoid # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_15), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_sigmoid_3 = async_compile.triton('triton_poi_fused_sigmoid_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3628 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 907 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15 = args args.clear() assert_size_stride(primals_1, (4, 907), (907, 1)) assert_size_stride(primals_2, (500, 907), (907, 1)) assert_size_stride(primals_3, (500, ), (1, )) assert_size_stride(primals_4, (100, 500), (500, 1)) assert_size_stride(primals_5, (100, ), (1, )) assert_size_stride(primals_6, (5, 100), (100, 1)) assert_size_stride(primals_7, (5, ), (1, )) assert_size_stride(primals_8, (5, 100), (100, 1)) assert_size_stride(primals_9, (5, ), (1, )) assert_size_stride(primals_10, (100, 5), (5, 1)) assert_size_stride(primals_11, (100, ), (1, )) assert_size_stride(primals_12, (500, 100), (100, 1)) assert_size_stride(primals_13, (500, ), (1, )) assert_size_stride(primals_14, (907, 500), (500, 1)) assert_size_stride(primals_15, (907, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (907, 500), (1, 907), 0), out=buf0) del primals_2 buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [h1], Original ATen: [aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_0.run(buf1, primals_3, 2000, grid=grid(2000), stream=stream0) del primals_3 buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 100), (1, 500), 0), out=buf2) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [h2], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf3, primals_5, 400, grid=grid(400), stream=stream0) del primals_5 buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [mu], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [logvar], Original ATen: [aten.addmm] extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5) del primals_9 # Topologically Sorted Source Nodes: [eps], Original ATen: [aten.randn_like] buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32) # Topologically Sorted Source Nodes: [mul, std, mul_1, z], Original ATen: [aten.mul, aten.exp, aten.add] triton_poi_fused_add_exp_mul_2.run(buf7, buf5, buf4, buf8, 20, grid=grid(20), stream=stream0) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1, 5), 0), out=buf9) buf10 = buf9; del buf9 # reuse # Topologically Sorted Source Nodes: [h3], Original ATen: [aten.relu] triton_poi_fused_relu_1.run(buf10, primals_11, 400, grid=grid(400), stream=stream0) del primals_11 buf11 = empty_strided_cuda((4, 500), (500, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 500), (1, 100), 0), out=buf11) buf12 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [h4], Original ATen: [aten.relu] triton_poi_fused_relu_0.run(buf12, primals_13, 2000, grid=grid(2000), stream=stream0) del primals_13 buf13 = empty_strided_cuda((4, 907), (907, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (500, 907), (1, 500), 0), out=buf13) buf14 = buf13; del buf13 # reuse # Topologically Sorted Source Nodes: [sigmoid], Original ATen: [aten.sigmoid] triton_poi_fused_sigmoid_3.run(buf14, primals_15, 3628, grid=grid(3628), stream=stream0) del primals_15 return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8, buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 907), (907, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((500, 907), (907, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((100, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((5, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((5, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((100, 5), (5, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((100, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((500, 100), (100, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((500, ), (1, ), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((907, 500), (500, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((907, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch import device from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data from torch import nn from torch.nn import functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 2000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 100 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_add_exp_mul_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 20 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp6 = tl.load(in_ptr2 + x0, xmask) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tmp7 = tmp5 + tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_sigmoid_3(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 3628 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 907 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15) = args args.clear() assert_size_stride(primals_1, (4, 907), (907, 1)) assert_size_stride(primals_2, (500, 907), (907, 1)) assert_size_stride(primals_3, (500,), (1,)) assert_size_stride(primals_4, (100, 500), (500, 1)) assert_size_stride(primals_5, (100,), (1,)) assert_size_stride(primals_6, (5, 100), (100, 1)) assert_size_stride(primals_7, (5,), (1,)) assert_size_stride(primals_8, (5, 100), (100, 1)) assert_size_stride(primals_9, (5,), (1,)) assert_size_stride(primals_10, (100, 5), (5, 1)) assert_size_stride(primals_11, (100,), (1,)) assert_size_stride(primals_12, (500, 100), (100, 1)) assert_size_stride(primals_13, (500,), (1,)) assert_size_stride(primals_14, (907, 500), (500, 1)) assert_size_stride(primals_15, (907,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (907, 500), (1, 907), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(2000)](buf1, primals_3, 2000, XBLOCK= 128, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(primals_4, (500, 100), ( 1, 500), 0), out=buf2) buf3 = buf2 del buf2 triton_poi_fused_relu_1[grid(400)](buf3, primals_5, 400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 5), (5, 1), torch.float32) extern_kernels.addmm(primals_7, buf3, reinterpret_tensor(primals_6, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 5), (5, 1), torch.float32) extern_kernels.addmm(primals_9, buf3, reinterpret_tensor(primals_8, (100, 5), (1, 100), 0), alpha=1, beta=1, out=buf5) del primals_9 buf6 = torch.ops.aten.randn.default([4, 5], dtype=torch.float32, device=device(type='cuda', index=0), pin_memory=False) buf7 = buf6 del buf6 buf8 = empty_strided_cuda((4, 5), (5, 1), torch.float32) triton_poi_fused_add_exp_mul_2[grid(20)](buf7, buf5, buf4, buf8, 20, XBLOCK=32, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((4, 100), (100, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_10, (5, 100), (1, 5), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_relu_1[grid(400)](buf10, primals_11, 400, XBLOCK= 256, num_warps=4, num_stages=1) del primals_11 buf11 = empty_strided_cuda((4, 500), (500, 1), torch.float32) extern_kernels.mm(buf10, reinterpret_tensor(primals_12, (100, 500), (1, 100), 0), out=buf11) buf12 = buf11 del buf11 triton_poi_fused_relu_0[grid(2000)](buf12, primals_13, 2000, XBLOCK =128, num_warps=4, num_stages=1) del primals_13 buf13 = empty_strided_cuda((4, 907), (907, 1), torch.float32) extern_kernels.mm(buf12, reinterpret_tensor(primals_14, (500, 907), (1, 500), 0), out=buf13) buf14 = buf13 del buf13 triton_poi_fused_sigmoid_3[grid(3628)](buf14, primals_15, 3628, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 return (buf14, buf4, buf5, primals_1, buf1, buf3, buf5, buf7, buf8, buf10, buf12, buf14, primals_14, primals_12, primals_10, primals_8, primals_6, primals_4) class VAE_genesNew(nn.Module): def __init__(self): super(VAE_genesNew, self).__init__() self.input_linear = nn.Linear(907, 500) self.enc_middle = nn.Linear(500, 100) self.enc_1 = nn.Linear(100, 5) self.enc_2 = nn.Linear(100, 5) self.dec_0 = nn.Linear(5, 100) self.dec_middle = nn.Linear(100, 500) self.output_linear = nn.Linear(500, 907) def encode(self, x): h1 = F.relu(self.input_linear(x)) h2 = F.relu(self.enc_middle(h1)) return self.enc_1(h2), self.enc_2(h2) def reparameterize(self, mu, logvar): std = torch.exp(0.5 * logvar) eps = torch.randn_like(std) return eps.mul(std).add_(mu) def decode(self, z): h3 = F.relu(self.dec_0(z)) h4 = F.relu(self.dec_middle(h3)) return torch.sigmoid(self.output_linear(h4)) def forward(self, input_0): primals_2 = self.input_linear.weight primals_3 = self.input_linear.bias primals_4 = self.enc_middle.weight primals_5 = self.enc_middle.bias primals_6 = self.enc_1.weight primals_7 = self.enc_1.bias primals_8 = self.enc_2.weight primals_9 = self.enc_2.bias primals_10 = self.dec_0.weight primals_11 = self.dec_0.bias primals_12 = self.dec_middle.weight primals_13 = self.dec_middle.bias primals_14 = self.output_linear.weight primals_15 = self.output_linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15]) return output[0], output[1], output[2]
helenaandres/adversarial-generation-of-gene-expression-data
VAE_genes
false
10,217
[ "MIT" ]
0
9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
https://github.com/helenaandres/adversarial-generation-of-gene-expression-data/tree/9a10f0c364b7daa789ae75ab5b51ed5c7cbcbeb1
adaLIN
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/um/cumfxxnuff67646tii7qigo5xu4wp3dwgamqagptzcoe6havnpgp.py # Topologically Sorted Source Nodes: [ln_mean, ln_var, add_1, sqrt_1], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] # Source node to ATen node mapping: # add_1 => add_1 # ln_mean => mean_1 # ln_var => var_1 # sqrt_1 => sqrt_1 # Graph fragment: # %mean_1 : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1, 2, 3], True), kwargs = {}) # %var_1 : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1, 2, 3]), kwargs = {correction: 1, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var_1, 1e-05), kwargs = {}) # %sqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add_1,), kwargs = {}) triton_per_fused_add_mean_sqrt_var_0 = async_compile.triton('triton_per_fused_add_mean_sqrt_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_sqrt_var_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp25, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/3n/c3ndqo7nij3t5k6ubr2vtyqzix6kntc5ziep6mlsj6ad5b7y77jj.py # Topologically Sorted Source Nodes: [in_mean, in_var, sub, add, sqrt, out_in, sub_1, out_ln, mul, sub_2, mul_1, out], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul, aten.rsub] # Source node to ATen node mapping: # add => add # in_mean => mean # in_var => var # mul => mul # mul_1 => mul_1 # out => add_2 # out_in => div # out_ln => div_1 # sqrt => sqrt # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %mean : [num_users=2] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [2, 3], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [2, 3]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 1e-05), kwargs = {}) # %sqrt : [num_users=2] = call_function[target=torch.ops.aten.sqrt.default](args = (%add,), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %div), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %expand), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %div_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1 = async_compile.triton('triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: '*fp32', 7: 'i32', 8: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (r1 + (16*x0)), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + (x2), xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + (x3), xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr3 + (x3), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp27 = tmp0 - tmp20 tmp28 = tmp27 / tmp25 tmp29 = tmp26 * tmp28 tmp30 = 1.0 tmp31 = tmp30 - tmp26 tmp33 = tmp0 - tmp32 tmp35 = tmp33 / tmp34 tmp36 = tmp31 * tmp35 tmp37 = tmp29 + tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x0), tmp25, xmask) tl.store(out_ptr0 + (r1 + (16*x0)), tmp37, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/bh/cbhkkkfowmcaigx6sts2oovquwlb7qm6qdlrdzh26rfoghoreml6.py # Topologically Sorted Source Nodes: [sub, out_in, sub_1, out_ln, mul, sub_2, mul_1, out, mul_2, out_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # out => add_2 # out_1 => add_3 # out_in => div # out_ln => div_1 # sub => sub # sub_1 => sub_1 # sub_2 => sub_2 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub, %sqrt), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean_1), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_1, %sqrt_1), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expand, %div), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %expand), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %div_1), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, %unsqueeze_1), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_3), kwargs = {}) triton_poi_fused_add_div_mul_rsub_sub_2 = async_compile.triton('triton_poi_fused_add_div_mul_rsub_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_rsub_sub_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_rsub_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4096 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex % 256 x0 = xindex % 16 x2 = (xindex // 256) x4 = xindex tmp0 = tl.load(in_ptr0 + (x3), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + (16*x2)), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (x0 + (16*x2)), None, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf7 = reinterpret_tensor(buf6, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf6 # reuse buf11 = reinterpret_tensor(buf9, (4, 1, 1, 1), (1, 1, 1, 1), 0); del buf9 # reuse # Topologically Sorted Source Nodes: [ln_mean, ln_var, add_1, sqrt_1], Original ATen: [aten.mean, aten.var, aten.add, aten.sqrt] stream0 = get_raw_stream(0) triton_per_fused_add_mean_sqrt_var_0.run(buf7, buf11, primals_1, 4, 64, grid=grid(4), stream=stream0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf0 # reuse buf5 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0); del buf3 # reuse buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [in_mean, in_var, sub, add, sqrt, out_in, sub_1, out_ln, mul, sub_2, mul_1, out], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.sqrt, aten.div, aten.mul, aten.rsub] triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1.run(buf1, buf5, primals_1, primals_2, buf7, buf11, buf12, 16, 16, grid=grid(16), stream=stream0) del primals_2 buf13 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, out_in, sub_1, out_ln, mul, sub_2, mul_1, out, mul_2, out_1], Original ATen: [aten.sub, aten.div, aten.mul, aten.rsub, aten.add] triton_poi_fused_add_div_mul_rsub_sub_2.run(buf12, primals_3, primals_4, buf13, 4096, grid=grid(4096), stream=stream0) del buf12 del primals_4 return (buf13, primals_1, primals_3, buf1, buf5, buf7, buf11, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_mean_sqrt_var_0(in_out_ptr0, in_out_ptr1, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 64, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 64.0 tmp20 = tmp4 / tmp19 tmp21 = 63.0 tmp22 = tmp18 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp26 = tl.load(in_ptr1 + x2, xmask, eviction_policy='evict_last') tmp32 = tl.load(in_ptr2 + x3, xmask, eviction_policy='evict_last') tmp34 = tl.load(in_ptr3 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp6 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp4 / tmp19 tmp21 = 15.0 tmp22 = tmp18 / tmp21 tmp23 = 1e-05 tmp24 = tmp22 + tmp23 tmp25 = libdevice.sqrt(tmp24) tmp27 = tmp0 - tmp20 tmp28 = tmp27 / tmp25 tmp29 = tmp26 * tmp28 tmp30 = 1.0 tmp31 = tmp30 - tmp26 tmp33 = tmp0 - tmp32 tmp35 = tmp33 / tmp34 tmp36 = tmp31 * tmp35 tmp37 = tmp29 + tmp36 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, xmask) tl.store(out_ptr0 + (r1 + 16 * x0), tmp37, xmask) @triton.jit def triton_poi_fused_add_div_mul_rsub_sub_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex % 256 x0 = xindex % 16 x2 = xindex // 256 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), None, eviction_policy='evict_last' ) tmp3 = tl.load(in_ptr2 + (x0 + 16 * x2), None, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp4 = tmp2 + tmp3 tl.store(out_ptr0 + x4, tmp4, None) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf6 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf9 = empty_strided_cuda((4, 1, 1, 1), (1, 4, 4, 4), torch.float32) buf7 = reinterpret_tensor(buf6, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf6 buf11 = reinterpret_tensor(buf9, (4, 1, 1, 1), (1, 1, 1, 1), 0) del buf9 get_raw_stream(0) triton_per_fused_add_mean_sqrt_var_0[grid(4)](buf7, buf11, primals_1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf0 buf5 = reinterpret_tensor(buf3, (4, 4, 1, 1), (4, 1, 1, 1), 0) del buf3 buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused_add_div_mean_mul_rsub_sqrt_sub_var_1[grid(16)](buf1, buf5, primals_1, primals_2, buf7, buf11, buf12, 16, 16, XBLOCK= 8, num_warps=2, num_stages=1) del primals_2 buf13 = empty_strided_cuda((4, 4, 4, 4, 4, 4), (1024, 256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_rsub_sub_2[grid(4096)](buf12, primals_3, primals_4, buf13, 4096, XBLOCK=256, num_warps=4, num_stages=1) del buf12 del primals_4 return buf13, primals_1, primals_3, buf1, buf5, buf7, buf11 class adaLINNew(nn.Module): def __init__(self, num_features, eps=1e-05): super(adaLINNew, self).__init__() self.eps = eps self.rho = Parameter(torch.Tensor(1, num_features, 1, 1)) self.rho.data.fill_(0.9) def forward(self, input_0, input_1, input_2): primals_2 = self.rho primals_1 = input_0 primals_3 = input_1 primals_4 = input_2 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Gxx-5/MyPhoto2Cartoon
adaLIN
false
11,462
[ "MIT" ]
0
aa05dfa8b7d6c507c33026a2e8b299d5779357be
https://github.com/Gxx-5/MyPhoto2Cartoon/tree/aa05dfa8b7d6c507c33026a2e8b299d5779357be
GatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/2i/c2ilmeltgywrrf2za3m5xiqgu5n7kdin6vcqumkfaeomlhw5wgz4.py # Topologically Sorted Source Nodes: [h, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # g => sigmoid # h => convolution # mul => mul # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_4, %primals_5, [1, 1], [4, 4], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, %sigmoid), kwargs = {}) triton_poi_fused_convolution_mul_sigmoid_0 = async_compile.triton('triton_poi_fused_convolution_mul_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_mul_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 81) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [h], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0; del buf0 # reuse buf3 = buf2; del buf2 # reuse buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [h, conv2d_1, g, mul], Original ATen: [aten.convolution, aten.sigmoid, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0.run(buf1, buf3, primals_2, primals_5, buf4, 1296, grid=grid(1296), stream=stream0) del primals_2 del primals_5 return (buf4, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_mul_sigmoid_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 81 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tl.sigmoid(tmp5) tmp7 = tmp2 * tmp6 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp7, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 9, 9), (324, 81, 9, 1)) buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(4, 4), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 9, 9), (324, 81, 9, 1)) buf1 = buf0 del buf0 buf3 = buf2 del buf2 buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_mul_sigmoid_0[grid(1296)](buf1, buf3, primals_2, primals_5, buf4, 1296, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_5 return buf4, primals_1, primals_3, primals_4, buf1, buf3 class GatedConv2dNew(nn.Module): def __init__(self, input_channels, output_channels, kernel_size, stride, padding, dilation=1, activation=None): super(GatedConv2dNew, self).__init__() self.activation = activation self.sigmoid = nn.Sigmoid() self.h = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) self.g = nn.Conv2d(input_channels, output_channels, kernel_size, stride, padding, dilation) def forward(self, input_0): primals_1 = self.h.weight primals_2 = self.h.bias primals_3 = self.g.weight primals_5 = self.g.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
Daulbaev/IRDM
GatedConv2d
false
17,201
[ "MIT" ]
10
4bb60191ac0072e4349ca47092675d06b39a979a
https://github.com/Daulbaev/IRDM/tree/4bb60191ac0072e4349ca47092675d06b39a979a
Upsample
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/cj/ccjwhzrjpovo2dm2l2dp7owcqvxz4tygdgqlonl3ej4up2jxespf.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] # Source node to ATen node mapping: # x => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_3, add_4, clamp_max_2, clamp_max_3, clamp_min, clamp_min_2, clamp_min_3, convert_element_type, convert_element_type_1, convert_element_type_3, iota, mul, mul_2, mul_3, mul_4, sub, sub_1, sub_2, sub_3, sub_4 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota, torch.float32), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 0.42857142857142855), kwargs = {}) # %clamp_min : [num_users=3] = call_function[target=torch.ops.aten.clamp_min.default](args = (%mul, 0.0), kwargs = {}) # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view, torch.int64), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min, torch.int64), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_1, %clamp_max_2), kwargs = {}) # %add_2 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_2, %clamp_max_2), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_3, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_3, %add_2), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_3), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + (4*tmp10) + (16*x2)), xmask, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = 1.0 tmp25 = triton_helpers.minimum(tmp23, tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp16 + tmp26 tmp28 = tl.load(in_ptr0 + (tmp15 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (tmp18 + (4*tmp6) + (16*x2)), xmask, eviction_policy='evict_last') tmp30 = tmp29 - tmp28 tmp31 = tmp30 * tmp25 tmp32 = tmp28 + tmp31 tmp33 = tmp27 - tmp32 tmp34 = tmp6.to(tl.float32) tmp35 = tmp5 - tmp34 tmp36 = triton_helpers.maximum(tmp35, tmp4) tmp37 = triton_helpers.minimum(tmp36, tmp24) tmp38 = tmp33 * tmp37 tmp39 = tmp32 + tmp38 tl.store(in_out_ptr0 + (x4), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/fr/cfr26uorpdbqjhhrw25kipixbtj7e3p2iw55hdsrscl44kvrdeyp.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_1 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%add_4, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 64) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.arange, aten._to_copy, aten.mul, aten.clamp, aten._unsafe_index, aten.sub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0.run(buf1, primals_1, 1024, grid=grid(1024), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 8, 8), (256, 64, 8, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_3, 1024, grid=grid(1024), stream=stream0) del primals_3 return (buf3, primals_2, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as M assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.42857142857142855 tmp3 = tmp1 * tmp2 tmp4 = 0.0 tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp6 = tmp5.to(tl.int32) tmp7 = tl.full([1], 1, tl.int64) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 3, tl.int64) tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = x0 tmp12 = tmp11.to(tl.float32) tmp13 = tmp12 * tmp2 tmp14 = triton_helpers.maximum(tmp13, tmp4) tmp15 = tmp14.to(tl.int32) tmp16 = tl.load(in_ptr0 + (tmp15 + 4 * tmp10 + 16 * x2), xmask, eviction_policy='evict_last') tmp17 = tmp15 + tmp7 tmp18 = triton_helpers.minimum(tmp17, tmp9) tmp19 = tl.load(in_ptr0 + (tmp18 + 4 * tmp10 + 16 * x2), xmask, eviction_policy='evict_last') tmp20 = tmp19 - tmp16 tmp21 = tmp15.to(tl.float32) tmp22 = tmp14 - tmp21 tmp23 = triton_helpers.maximum(tmp22, tmp4) tmp24 = 1.0 tmp25 = triton_helpers.minimum(tmp23, tmp24) tmp26 = tmp20 * tmp25 tmp27 = tmp16 + tmp26 tmp28 = tl.load(in_ptr0 + (tmp15 + 4 * tmp6 + 16 * x2), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr0 + (tmp18 + 4 * tmp6 + 16 * x2), xmask, eviction_policy='evict_last') tmp30 = tmp29 - tmp28 tmp31 = tmp30 * tmp25 tmp32 = tmp28 + tmp31 tmp33 = tmp27 - tmp32 tmp34 = tmp6.to(tl.float32) tmp35 = tmp5 - tmp34 tmp36 = triton_helpers.maximum(tmp35, tmp4) tmp37 = triton_helpers.minimum(tmp36, tmp24) tmp38 = tmp33 * tmp37 tmp39 = tmp32 + tmp38 tl.store(in_out_ptr0 + x4, tmp39, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 64 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_0[grid (1024)](buf1, primals_1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf2 = extern_kernels.convolution(buf1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 8, 8), (256, 64, 8, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(1024)](buf3, primals_3, 1024, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf3, primals_2, buf1 class UpsampleNew(M.Module): def __init__(self, in_channels, out_channels): super(UpsampleNew, self).__init__() self.upsample = M.Upsample(scale_factor=2, mode='bilinear', align_corners=True) self.ordinaryConv = M.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=1) def forward(self, input_0): primals_2 = self.ordinaryConv.weight primals_3 = self.ordinaryConv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
SuperbTUM/RAW-image-denoising
Upsample
false
17,972
[ "MIT" ]
4
9f81be8da6a576f641022707d98b8c37f5c599ab
https://github.com/SuperbTUM/RAW-image-denoising/tree/9f81be8da6a576f641022707d98b8c37f5c599ab
_GatedResidualNetwork
import torch import torch.nn as nn import torch.nn.functional as F class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = nn.Dropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size if self.input_size != self.output_size: self.resample = _TimeDistributedInterpolation(self.output_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 output = self.norm(x) return output class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNorm(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, x, skip): output = self.glu(x) output = self.add_norm(output, skip) return output class _GatedResidualNetwork(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int', dropout: 'float'=0.1, context_size: 'int'=None, residual: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.context_size = context_size self.hidden_size = hidden_size self.dropout = dropout self.residual = residual if self.input_size != self.output_size and not self.residual: residual_size = self.input_size else: residual_size = self.output_size if self.output_size != residual_size: self.resample_norm = _ResampleNorm(residual_size, self.output_size) self.fc1 = nn.Linear(self.input_size, self.hidden_size) self.elu = nn.ELU() if self.context_size is not None: self.context = nn.Linear(self.context_size, self.hidden_size, bias=False) self.fc2 = nn.Linear(self.hidden_size, self.hidden_size) self.init_weights() self.gate_norm = _GateAddNorm(input_size=self.hidden_size, skip_size=self.output_size, hidden_size=self.output_size, dropout=self.dropout, trainable_add=False) def init_weights(self): for name, p in self.named_parameters(): if 'bias' in name: torch.nn.init.zeros_(p) elif 'fc1' in name or 'fc2' in name: torch.nn.init.kaiming_normal_(p, a=0, mode='fan_in', nonlinearity='leaky_relu') elif 'context' in name: torch.nn.init.xavier_uniform_(p) def forward(self, x, context=None, residual=None): if residual is None: residual = x if self.input_size != self.output_size and not self.residual: residual = self.resample_norm(residual) x = self.fc1(x) if context is not None: context = self.context(context) x = x + context x = self.elu(x) x = self.fc2(x) x = self.gate_norm(x, residual) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'input_size': 4, 'hidden_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_elu_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) @triton.jit def triton_poi_fused_glu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 8 * x1), xmask) tmp1 = tl.load(in_ptr0 + (4 + x0 + 8 * x1), xmask) tmp2 = tl.sigmoid(tmp1) tmp3 = tmp0 * tmp2 tl.store(out_ptr0 + x2, tmp3, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 + tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 + tmp12 tmp14 = tmp10 + tmp13 tmp15 = 4.0 tmp16 = tmp14 / tmp15 tmp17 = tmp2 - tmp16 tmp18 = tmp17 * tmp17 tmp19 = tmp5 - tmp16 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp22 = tmp9 - tmp16 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp25 = tmp13 - tmp16 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp15 tl.store(out_ptr0 + x0, tmp16, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) @triton.jit def triton_poi_fused_add_native_layer_norm_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x2, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr5 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp6 = 1e-05 tmp7 = tmp5 + tmp6 tmp8 = libdevice.rsqrt(tmp7) tmp9 = tmp4 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 + tmp12 tl.store(out_ptr0 + x2, tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (8, 4), (4, 1)) assert_size_stride(primals_7, (8,), (1,)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_2 del primals_3 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_elu_0[grid(256)](buf0, buf1, 256, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, reinterpret_tensor(buf1, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 buf3 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.addmm(primals_7, buf2, reinterpret_tensor(primals_6, (4, 8), (1, 4), 0), alpha=1, beta=1, out=buf3) del primals_7 buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_glu_1[grid(256)](buf3, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_add_native_layer_norm_2[grid(64)](buf4, primals_1, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_native_layer_norm_3[grid(256)](buf4, primals_1, buf5, buf6, primals_8, primals_9, buf7, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf5 del buf6 del primals_9 return buf7, primals_1, primals_8, buf0, reinterpret_tensor(buf1, (64, 4), (4, 1), 0), buf2, reinterpret_tensor(buf3, (4, 4, 4, 8), (128, 32, 8, 1), 0), buf4, primals_6, primals_4 class _TimeDistributedInterpolation(nn.Module): def __init__(self, output_size: 'int', batch_first: 'bool'=False, trainable: 'bool'=False): super().__init__() self.output_size = output_size self.batch_first = batch_first self.trainable = trainable if self.trainable: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float32)) self.gate = nn.Sigmoid() def interpolate(self, x): upsampled = F.interpolate(x.unsqueeze(1), self.output_size, mode= 'linear', align_corners=True).squeeze(1) if self.trainable: upsampled = upsampled * self.gate(self.mask.unsqueeze(0)) * 2.0 return upsampled def forward(self, x): if len(x.size()) <= 2: return self.interpolate(x) x_reshape = x.contiguous().view(-1, x.size(-1)) y = self.interpolate(x_reshape) if self.batch_first: y = y.contiguous().view(x.size(0), -1, y.size(-1)) else: y = y.view(-1, x.size(1), y.size(-1)) return y class _GatedLinearUnit(nn.Module): """Gated Linear Unit""" def __init__(self, input_size: 'int', hidden_size: 'int'=None, dropout: 'float'=None): super().__init__() if dropout is not None: self.dropout = nn.Dropout(dropout) else: self.dropout = dropout self.hidden_size = hidden_size or input_size self.fc = nn.Linear(input_size, self.hidden_size * 2) self.init_weights() def init_weights(self): for n, p in self.named_parameters(): if 'bias' in n: torch.nn.init.zeros_(p) elif 'fc' in n: torch.nn.init.xavier_uniform_(p) def forward(self, x): if self.dropout is not None: x = self.dropout(x) x = self.fc(x) x = F.glu(x, dim=-1) return x class _ResampleNorm(nn.Module): def __init__(self, input_size: 'int', output_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.output_size = output_size or input_size if self.input_size != self.output_size: self.resample = _TimeDistributedInterpolation(self.output_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.output_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.output_size) def forward(self, x: 'torch.Tensor') ->torch.Tensor: if self.input_size != self.output_size: x = self.resample(x) if self.trainable_add: x = x * self.gate(self.mask) * 2.0 output = self.norm(x) return output class _AddNorm(nn.Module): def __init__(self, input_size: 'int', skip_size: 'int'=None, trainable_add: 'bool'=True): super().__init__() self.input_size = input_size self.trainable_add = trainable_add self.skip_size = skip_size or input_size if self.input_size != self.skip_size: self.resample = _TimeDistributedInterpolation(self.input_size, batch_first=True, trainable=False) if self.trainable_add: self.mask = nn.Parameter(torch.zeros(self.input_size, dtype= torch.float)) self.gate = nn.Sigmoid() self.norm = nn.LayerNorm(self.input_size) def forward(self, x: 'torch.Tensor', skip: 'torch.Tensor'): if self.input_size != self.skip_size: skip = self.resample(skip) if self.trainable_add: skip = skip * self.gate(self.mask) * 2.0 output = self.norm(x + skip) return output class _GateAddNorm(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int'=None, skip_size: 'int'=None, trainable_add: 'bool'=False, dropout: 'float'=None): super().__init__() self.input_size = input_size self.hidden_size = hidden_size or input_size self.skip_size = skip_size or self.hidden_size self.dropout = dropout self.glu = _GatedLinearUnit(self.input_size, hidden_size=self. hidden_size, dropout=self.dropout) self.add_norm = _AddNorm(self.hidden_size, skip_size=self.skip_size, trainable_add=trainable_add) def forward(self, x, skip): output = self.glu(x) output = self.add_norm(output, skip) return output class _GatedResidualNetworkNew(nn.Module): def __init__(self, input_size: 'int', hidden_size: 'int', output_size: 'int', dropout: 'float'=0.1, context_size: 'int'=None, residual: 'bool'=False): super().__init__() self.input_size = input_size self.output_size = output_size self.context_size = context_size self.hidden_size = hidden_size self.dropout = dropout self.residual = residual if self.input_size != self.output_size and not self.residual: residual_size = self.input_size else: residual_size = self.output_size if self.output_size != residual_size: self.resample_norm = _ResampleNorm(residual_size, self.output_size) self.fc1 = nn.Linear(self.input_size, self.hidden_size) self.elu = nn.ELU() if self.context_size is not None: self.context = nn.Linear(self.context_size, self.hidden_size, bias=False) self.fc2 = nn.Linear(self.hidden_size, self.hidden_size) self.init_weights() self.gate_norm = _GateAddNorm(input_size=self.hidden_size, skip_size=self.output_size, hidden_size=self.output_size, dropout=self.dropout, trainable_add=False) def init_weights(self): for name, p in self.named_parameters(): if 'bias' in name: torch.nn.init.zeros_(p) elif 'fc1' in name or 'fc2' in name: torch.nn.init.kaiming_normal_(p, a=0, mode='fan_in', nonlinearity='leaky_relu') elif 'context' in name: torch.nn.init.xavier_uniform_(p) def forward(self, input_0): primals_2 = self.fc1.weight primals_3 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.gate_norm.glu.fc.weight primals_7 = self.gate_norm.glu.fc.bias primals_8 = self.gate_norm.add_norm.norm.weight primals_9 = self.gate_norm.add_norm.norm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
Gian-Wiher/darts
_GatedResidualNetwork
false
5,222
[ "Apache-2.0" ]
1
0d267e08643e2e3f88163a5d955b8be75840c2f6
https://github.com/Gian-Wiher/darts/tree/0d267e08643e2e3f88163a5d955b8be75840c2f6
CPNLoss
import torch import torch.nn.functional as F from torch import nn class CPNLoss(nn.Module): """This is the loss function used for Cascaded Pyramid Net. Note that the original paper (arXiv:1711.07319) uses L2 loss. However the author (Shiyu) who participated in the FashionAI Keypoints competition found that L1 loss gave him a better result. Note that loss function is not used in test time. We simply want the predicted heatmaps generated by CPN. """ def __init__(self): super(CPNLoss, self).__init__() def l1_weighted_loss(self, hm_targets, hm_preds, vis_masks, ohkm=1.0): """ Args: hm_targets (torch.tensor): [batch_size, num_keypoints, h, w] Ground-truth heatmaps hm_preds (torch.tensor): [batch_size, num_keypoints, h, w] Predicted heatmaps vis_masks (torch.tensor): [batch_size, num_keypoints] Masks that indicate whether keypoints exist for each image. ohkm (float): Stands for 'Online Hard Keypoints Mining (OHKM)'. Closely related to 'Online Hard Example Mining (OHEM)'. Read: http://www.erogol.com/online-hard-example-mining-pytorch/ Returns: float: A weighted loss between easy examples and hard examples. """ hm_preds = F.relu(hm_preds, inplace=False) bs, num_kpts, h, w = hm_targets.size() hm_targets = hm_targets.view(bs, num_kpts, -1) hm_preds = hm_preds.view(bs, num_kpts, -1) vis_masks = vis_masks.view(bs, num_kpts, 1).repeat(1, 1, h * w) amplitude = torch.max(hm_targets) threshold = amplitude / 10 easy_ids = ((hm_targets > threshold) & (vis_masks >= 0)).float() hard_ids = ((hm_targets <= threshold) & (vis_masks >= 0)).float() diff = (hm_targets - hm_preds).abs() epsilon = 0.0001 easy_loss = (diff * easy_ids).sum(2).sum(0) / (easy_ids.sum(2).sum( 0) + epsilon) hard_loss = (diff * hard_ids).sum(2).sum(0) / (hard_ids.sum(2).sum( 0) + epsilon) total_loss = 0.5 * easy_loss + 0.5 * hard_loss if ohkm < 1: k = int(total_loss.size(0) * ohkm) total_loss, _ = total_loss.topk(k) return total_loss.mean() def forward(self, hm_targets, hm_global_preds, hm_refine_preds, vis_masks): """ Args: hm_targets (torch.tensor): [batch_size, num_keypoints, h, w] Ground-truth heatmaps hm_global_preds (torch.tensor): [batch_size, num_keypoints, h, w] Predicted heatmaps (i.e. P2 layer) from GlobalNet. hm_refine_preds (torch.tensor): [batch_size, num_keypoints, h, w] Predicted heatmaps (i.e. concat output) from RefineNet. vis_masks (torch.tensor): [batch_size, num_keypoints] Masks that indicate whether keypoints exist for each image. Returns: float: Three different losses. """ global_loss = self.l1_weighted_loss(hm_targets, hm_global_preds, vis_masks) refine_loss = self.l1_weighted_loss(hm_targets, hm_refine_preds, vis_masks, ohkm=0.5) return global_loss + refine_loss, global_loss, refine_loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 1])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn.functional as F from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_max_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = triton_helpers.promote_to_tensor(triton_helpers.max2(tmp1, 0)) tl.store(out_ptr0 + tl.full([1], 0, tl.int32), tmp3, None) tl.store(out_ptr1 + tl.full([1], 0, tl.int32), tmp3, None) @triton.jit def triton_per_fused__to_copy_abs_bitwise_and_div_ge_gt_le_mul_repeat_sub_sum_1( in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 16 * x0), xmask, other=0.0) tmp6 = tl.load(in_ptr2 + 0) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp11 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp37 = tl.load(in_ptr4 + (r1 + 16 * x0), xmask, other=0.0) tmp41 = tl.load(in_ptr5 + 0) tmp42 = tl.broadcast_to(tmp41, [XBLOCK, RBLOCK]) tmp2 = tl.full([1, 1], 0, tl.int32) tmp3 = triton_helpers.maximum(tmp2, tmp1) tmp4 = tmp0 - tmp3 tmp5 = tl_math.abs(tmp4) tmp8 = 0.1 tmp9 = tmp7 * tmp8 tmp10 = tmp0 > tmp9 tmp12 = 0.0 tmp13 = tmp11 >= tmp12 tmp14 = tmp10 & tmp13 tmp15 = tmp14.to(tl.float32) tmp16 = tmp5 * tmp15 tmp17 = tl.broadcast_to(tmp16, [XBLOCK, RBLOCK]) tmp19 = tl.where(xmask, tmp17, 0) tmp20 = tl.sum(tmp19, 1)[:, None] tmp21 = tmp0 <= tmp9 tmp22 = tmp21 & tmp13 tmp23 = tmp22.to(tl.float32) tmp24 = tmp5 * tmp23 tmp25 = tl.broadcast_to(tmp24, [XBLOCK, RBLOCK]) tmp27 = tl.where(xmask, tmp25, 0) tmp28 = tl.sum(tmp27, 1)[:, None] tmp29 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp31 = tl.where(xmask, tmp29, 0) tmp32 = tl.sum(tmp31, 1)[:, None] tmp33 = tl.broadcast_to(tmp23, [XBLOCK, RBLOCK]) tmp35 = tl.where(xmask, tmp33, 0) tmp36 = tl.sum(tmp35, 1)[:, None] tmp38 = triton_helpers.maximum(tmp2, tmp37) tmp39 = tmp0 - tmp38 tmp40 = tl_math.abs(tmp39) tmp43 = tmp42 * tmp8 tmp44 = tmp0 > tmp43 tmp45 = tmp44 & tmp13 tmp46 = tmp45.to(tl.float32) tmp47 = tmp40 * tmp46 tmp48 = tl.broadcast_to(tmp47, [XBLOCK, RBLOCK]) tmp50 = tl.where(xmask, tmp48, 0) tmp51 = tl.sum(tmp50, 1)[:, None] tmp52 = tmp0 <= tmp43 tmp53 = tmp52 & tmp13 tmp54 = tmp53.to(tl.float32) tmp55 = tmp40 * tmp54 tmp56 = tl.broadcast_to(tmp55, [XBLOCK, RBLOCK]) tmp58 = tl.where(xmask, tmp56, 0) tmp59 = tl.sum(tmp58, 1)[:, None] tmp60 = tl.broadcast_to(tmp46, [XBLOCK, RBLOCK]) tmp62 = tl.where(xmask, tmp60, 0) tmp63 = tl.sum(tmp62, 1)[:, None] tmp64 = tl.broadcast_to(tmp54, [XBLOCK, RBLOCK]) tmp66 = tl.where(xmask, tmp64, 0) tmp67 = tl.sum(tmp66, 1)[:, None] tl.store(out_ptr0 + x0, tmp20, xmask) tl.store(out_ptr1 + x0, tmp28, xmask) tl.store(out_ptr2 + x0, tmp32, xmask) tl.store(out_ptr3 + x0, tmp36, xmask) tl.store(out_ptr4 + x0, tmp51, xmask) tl.store(out_ptr5 + x0, tmp59, xmask) tl.store(out_ptr6 + x0, tmp63, xmask) tl.store(out_ptr7 + x0, tmp67, xmask) @triton.jit def triton_poi_fused_add_div_mul_sum_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr0 + (4 + x0), xmask) tmp3 = tl.load(in_ptr0 + (8 + x0), xmask) tmp5 = tl.load(in_ptr0 + (12 + x0), xmask) tmp7 = tl.load(in_ptr1 + x0, xmask) tmp8 = tl.load(in_ptr1 + (4 + x0), xmask) tmp10 = tl.load(in_ptr1 + (8 + x0), xmask) tmp12 = tl.load(in_ptr1 + (12 + x0), xmask) tmp19 = tl.load(in_ptr2 + x0, xmask) tmp20 = tl.load(in_ptr2 + (4 + x0), xmask) tmp22 = tl.load(in_ptr2 + (8 + x0), xmask) tmp24 = tl.load(in_ptr2 + (12 + x0), xmask) tmp26 = tl.load(in_ptr3 + x0, xmask) tmp27 = tl.load(in_ptr3 + (4 + x0), xmask) tmp29 = tl.load(in_ptr3 + (8 + x0), xmask) tmp31 = tl.load(in_ptr3 + (12 + x0), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = 0.0001 tmp15 = tmp13 + tmp14 tmp16 = tmp6 / tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp21 = tmp19 + tmp20 tmp23 = tmp21 + tmp22 tmp25 = tmp23 + tmp24 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp32 + tmp14 tmp34 = tmp25 / tmp33 tmp35 = tmp34 * tmp17 tmp36 = tmp18 + tmp35 tl.store(out_ptr0 + x0, tmp36, xmask) @triton.jit def triton_per_fused_mean_3(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl. constexpr): RBLOCK: tl.constexpr = 2 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp3, None) @triton.jit def triton_per_fused_add_div_mean_mul_sum_4(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr0 + (4 + r0), None) tmp3 = tl.load(in_ptr0 + (8 + r0), None) tmp5 = tl.load(in_ptr0 + (12 + r0), None) tmp7 = tl.load(in_ptr1 + r0, None) tmp8 = tl.load(in_ptr1 + (4 + r0), None) tmp10 = tl.load(in_ptr1 + (8 + r0), None) tmp12 = tl.load(in_ptr1 + (12 + r0), None) tmp19 = tl.load(in_ptr2 + r0, None) tmp20 = tl.load(in_ptr2 + (4 + r0), None) tmp22 = tl.load(in_ptr2 + (8 + r0), None) tmp24 = tl.load(in_ptr2 + (12 + r0), None) tmp26 = tl.load(in_ptr3 + r0, None) tmp27 = tl.load(in_ptr3 + (4 + r0), None) tmp29 = tl.load(in_ptr3 + (8 + r0), None) tmp31 = tl.load(in_ptr3 + (12 + r0), None) tmp42 = tl.load(in_out_ptr1 + 0) tmp43 = tl.broadcast_to(tmp42, [XBLOCK, 1]) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp9 = tmp7 + tmp8 tmp11 = tmp9 + tmp10 tmp13 = tmp11 + tmp12 tmp14 = 0.0001 tmp15 = tmp13 + tmp14 tmp16 = tmp6 / tmp15 tmp17 = 0.5 tmp18 = tmp16 * tmp17 tmp21 = tmp19 + tmp20 tmp23 = tmp21 + tmp22 tmp25 = tmp23 + tmp24 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp32 + tmp14 tmp34 = tmp25 / tmp33 tmp35 = tmp34 * tmp17 tmp36 = tmp18 + tmp35 tmp37 = tl.broadcast_to(tmp36, [XBLOCK, RBLOCK]) tmp39 = tl.sum(tmp37, 1)[:, None] tmp40 = 4.0 tmp41 = tmp39 / tmp40 tmp44 = 2.0 tmp45 = tmp43 / tmp44 tmp46 = tmp41 + tmp45 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp41, None) tl.debug_barrier() tl.store(in_out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp45, None) tl.store(out_ptr1 + tl.full([XBLOCK, 1], 0, tl.int32), tmp46, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 1), (4, 1, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf9 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_max_0[grid(1)](arg1_1, buf0, buf9, 1, 256, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf10 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf11 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_per_fused__to_copy_abs_bitwise_and_div_ge_gt_le_mul_repeat_sub_sum_1[ grid(16)](arg1_1, arg3_1, buf0, arg2_1, arg0_1, buf9, buf1, buf3, buf2, buf4, buf10, buf12, buf11, buf13, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 buf5 = empty_strided_cuda((4,), (1,), torch.float32) triton_poi_fused_add_div_mul_sum_2[grid(4)](buf1, buf2, buf3, buf4, buf5, 4, XBLOCK=4, num_warps=1, num_stages=1) del buf1 del buf2 del buf3 del buf4 buf6 = torch.ops.aten.topk.default(buf5, 2) del buf5 buf7 = buf6[0] del buf6 buf17 = buf9 del buf9 triton_per_fused_mean_3[grid(1)](buf7, buf17, 1, 2, XBLOCK=1, num_warps=2, num_stages=1) del buf7 buf15 = buf0 del buf0 buf16 = buf15 del buf15 buf18 = buf17 del buf17 buf19 = empty_strided_cuda((), (), torch.float32) triton_per_fused_add_div_mean_mul_sum_4[grid(1)](buf16, buf18, buf10, buf11, buf12, buf13, buf19, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf10 del buf11 del buf12 del buf13 return buf19, buf16, buf18 class CPNLossNew(nn.Module): """This is the loss function used for Cascaded Pyramid Net. Note that the original paper (arXiv:1711.07319) uses L2 loss. However the author (Shiyu) who participated in the FashionAI Keypoints competition found that L1 loss gave him a better result. Note that loss function is not used in test time. We simply want the predicted heatmaps generated by CPN. """ def __init__(self): super(CPNLossNew, self).__init__() def l1_weighted_loss(self, hm_targets, hm_preds, vis_masks, ohkm=1.0): """ Args: hm_targets (torch.tensor): [batch_size, num_keypoints, h, w] Ground-truth heatmaps hm_preds (torch.tensor): [batch_size, num_keypoints, h, w] Predicted heatmaps vis_masks (torch.tensor): [batch_size, num_keypoints] Masks that indicate whether keypoints exist for each image. ohkm (float): Stands for 'Online Hard Keypoints Mining (OHKM)'. Closely related to 'Online Hard Example Mining (OHEM)'. Read: http://www.erogol.com/online-hard-example-mining-pytorch/ Returns: float: A weighted loss between easy examples and hard examples. """ hm_preds = F.relu(hm_preds, inplace=False) bs, num_kpts, h, w = hm_targets.size() hm_targets = hm_targets.view(bs, num_kpts, -1) hm_preds = hm_preds.view(bs, num_kpts, -1) vis_masks = vis_masks.view(bs, num_kpts, 1).repeat(1, 1, h * w) amplitude = torch.max(hm_targets) threshold = amplitude / 10 easy_ids = ((hm_targets > threshold) & (vis_masks >= 0)).float() hard_ids = ((hm_targets <= threshold) & (vis_masks >= 0)).float() diff = (hm_targets - hm_preds).abs() epsilon = 0.0001 easy_loss = (diff * easy_ids).sum(2).sum(0) / (easy_ids.sum(2).sum( 0) + epsilon) hard_loss = (diff * hard_ids).sum(2).sum(0) / (hard_ids.sum(2).sum( 0) + epsilon) total_loss = 0.5 * easy_loss + 0.5 * hard_loss if ohkm < 1: k = int(total_loss.size(0) * ohkm) total_loss, _ = total_loss.topk(k) return total_loss.mean() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg3_1 = input_2 arg2_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0], output[1], output[2]
alwc/fashionAI-keypoints-detection-pytorch
CPNLoss
false
18,282
[ "Apache-2.0" ]
7
92061f66d89283e62093990dcb2dbdb03b8fa676
https://github.com/alwc/fashionAI-keypoints-detection-pytorch/tree/92061f66d89283e62093990dcb2dbdb03b8fa676
Upsample2d
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/s5/cs53ve6ff5smmuu5zxn6uwnvgsi32uuuvewmis3iy7oejdcvopvs.py # Topologically Sorted Source Nodes: [y_5], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # y_5 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd_1 : [num_users=1] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view_2, [0, 0, 1, 0, 1, 0, 0, 0], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = (xindex // 72) % 2 x1 = (xindex // 8) % 9 x0 = xindex % 8 x3 = (xindex // 144) x7 = xindex tmp0 = (-1) + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = (-1) + x1 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = (-1) + (((-1) + x1) % 2) tmp7 = tmp6 >= tmp1 tmp8 = (-1) + (x0 % 2) tmp9 = tmp8 >= tmp1 tmp10 = tmp7 & tmp9 tmp11 = tmp10 & tmp5 tmp12 = tl.load(in_ptr0 + ((4*((((-1) + x1) // 2) % 4)) + (16*x3) + (x0 // 2)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp5, tmp12, tmp13) tl.store(out_ptr0 + (x7), tmp14, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/qb/cqbibvks2cjhauc3nur2g3ih7ql3ix5qhuh7srxpiit2lwdgiiiw.py # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution] # Source node to ATen node mapping: # y_9 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view_3, %arg1_1, None, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 128 xnumel = 8 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 8 y1 = (yindex // 8) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (8*x2) + (144*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (8*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zd/czdxbktkc7fglcerxemcjxwvuh5ktql4jw5x5gevz5yr4c7hicmg.py # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] # Source node to ATen node mapping: # y_11 => _unsafe_index, _unsafe_index_1, _unsafe_index_2, _unsafe_index_3, add_2, add_4, add_5, add_6, clamp_max_2, clamp_max_3, clamp_min_1, clamp_min_2, clamp_min_3, convert_element_type_1, convert_element_type_2, convert_element_type_3, iota_1, mul_1, mul_2, mul_3, mul_4, sub_1, sub_2, sub_3, sub_4, sub_5, sub_6 # Graph fragment: # %convert_element_type_1 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%view_5, torch.int64), kwargs = {}) # %iota_1 : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (8,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %convert_element_type_2 : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%iota_1, torch.float32), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convert_element_type_2, 0.5), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%add_2, 0.625), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_1, 0.5), kwargs = {}) # %clamp_min_1 : [num_users=2] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_1, 0.0), kwargs = {}) # %convert_element_type_3 : [num_users=4] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%clamp_min_1, torch.int64), kwargs = {}) # %_unsafe_index_3 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %clamp_max, %clamp_max_1]), kwargs = {}) # %_unsafe_index_2 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %clamp_max, %convert_element_type_3]), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_3, %_unsafe_index_2), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%clamp_min_1, %convert_element_type_3), kwargs = {}) # %clamp_min_2 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_2, 0.0), kwargs = {}) # %clamp_max_2 : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_2, 1.0), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_4, %clamp_max_2), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index_2, %mul_3), kwargs = {}) # %_unsafe_index_1 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %convert_element_type_1, %clamp_max_1]), kwargs = {}) # %_unsafe_index : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%view_4, [None, None, %convert_element_type_1, %convert_element_type_3]), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%_unsafe_index_1, %_unsafe_index), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_3, %clamp_max_2), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%_unsafe_index, %mul_2), kwargs = {}) # %sub_6 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_5, %add_4), kwargs = {}) # %sub_5 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_5, %convert_element_type_1), kwargs = {}) # %clamp_min_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%sub_5, 0.0), kwargs = {}) # %clamp_max_3 : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min_3, 1.0), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub_6, %clamp_max_3), kwargs = {}) # %add_6 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_4, %mul_4), kwargs = {}) triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2 = async_compile.triton('triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x3 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 4, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (tmp22 + (5*tmp13) + (25*x2)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + (5*tmp13) + (25*x2)), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = 1.0 tmp30 = triton_helpers.minimum(tmp28, tmp29) tmp31 = tmp25 * tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + (5*tmp9) + (25*x2)), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + (5*tmp9) + (25*x2)), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp30 tmp36 = tmp32 + tmp35 tmp37 = tmp24 + tmp31 tmp38 = tmp37 - tmp36 tmp39 = tmp9.to(tl.float32) tmp40 = tmp8 - tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp7) tmp42 = triton_helpers.minimum(tmp41, tmp29) tmp43 = tmp38 * tmp42 tmp44 = tmp36 + tmp43 tl.store(in_out_ptr0 + (x3), tmp44, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 4, 4), (16, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 2, 9, 8), (144, 72, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y_5], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(arg0_1, buf0, 2304, grid=grid(2304), stream=stream0) del arg0_1 buf1 = empty_strided_cuda((16, 1, 8, 8), (64, 1, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf0, buf1, 128, 8, grid=grid(128, 8), stream=stream0) del buf0 # Topologically Sorted Source Nodes: [y_9], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (16, 1, 5, 5), (25, 1, 5, 1)) del arg1_1 buf3 = reinterpret_tensor(buf1, (16, 1, 8, 8), (64, 1024, 8, 1), 0); del buf1 # reuse buf5 = buf3; del buf3 # reuse buf6 = reinterpret_tensor(buf5, (16, 1, 8, 8), (64, 1, 8, 1), 0); del buf5 # reuse # Topologically Sorted Source Nodes: [y_11], Original ATen: [aten._to_copy, aten.arange, aten.add, aten.mul, aten.sub, aten.clamp, aten._unsafe_index] triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2.run(buf6, buf2, 1024, grid=grid(1024), stream=stream0) del buf2 return (reinterpret_tensor(buf6, (4, 4, 8, 8), (256, 64, 8, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((1, 1, 4, 4), (16, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import numpy as np import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 2304 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 72 % 2 x1 = xindex // 8 % 9 x0 = xindex % 8 x3 = xindex // 144 x7 = xindex tmp0 = -1 + x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = -1 + x1 tmp4 = tmp3 >= tmp1 tmp5 = tmp2 & tmp4 tmp6 = -1 + (-1 + x1) % 2 tmp7 = tmp6 >= tmp1 tmp8 = -1 + x0 % 2 tmp9 = tmp8 >= tmp1 tmp10 = tmp7 & tmp9 tmp11 = tmp10 & tmp5 tmp12 = tl.load(in_ptr0 + (4 * ((-1 + x1) // 2 % 4) + 16 * x3 + x0 // 2 ), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp5, tmp12, tmp13) tl.store(out_ptr0 + x7, tmp14, xmask) @triton.jit def triton_poi_fused_convolution_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 128 xnumel = 8 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 8 y1 = yindex // 8 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 8 * x2 + 144 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 8 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2( in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x3 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 + tmp2 tmp4 = 0.625 tmp5 = tmp3 * tmp4 tmp6 = tmp5 - tmp2 tmp7 = 0.0 tmp8 = triton_helpers.maximum(tmp6, tmp7) tmp9 = tmp8.to(tl.int32) tmp10 = tl.full([1], 1, tl.int64) tmp11 = tmp9 + tmp10 tmp12 = tl.full([1], 4, tl.int64) tmp13 = triton_helpers.minimum(tmp11, tmp12) tmp14 = x0 tmp15 = tmp14.to(tl.float32) tmp16 = tmp15 + tmp2 tmp17 = tmp16 * tmp4 tmp18 = tmp17 - tmp2 tmp19 = triton_helpers.maximum(tmp18, tmp7) tmp20 = tmp19.to(tl.int32) tmp21 = tmp20 + tmp10 tmp22 = triton_helpers.minimum(tmp21, tmp12) tmp23 = tl.load(in_ptr0 + (tmp22 + 5 * tmp13 + 25 * x2), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr0 + (tmp20 + 5 * tmp13 + 25 * x2), xmask, eviction_policy='evict_last') tmp25 = tmp23 - tmp24 tmp26 = tmp20.to(tl.float32) tmp27 = tmp19 - tmp26 tmp28 = triton_helpers.maximum(tmp27, tmp7) tmp29 = 1.0 tmp30 = triton_helpers.minimum(tmp28, tmp29) tmp31 = tmp25 * tmp30 tmp32 = tl.load(in_ptr0 + (tmp20 + 5 * tmp9 + 25 * x2), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr0 + (tmp22 + 5 * tmp9 + 25 * x2), xmask, eviction_policy='evict_last') tmp34 = tmp33 - tmp32 tmp35 = tmp34 * tmp30 tmp36 = tmp32 + tmp35 tmp37 = tmp24 + tmp31 tmp38 = tmp37 - tmp36 tmp39 = tmp9.to(tl.float32) tmp40 = tmp8 - tmp39 tmp41 = triton_helpers.maximum(tmp40, tmp7) tmp42 = triton_helpers.minimum(tmp41, tmp29) tmp43 = tmp38 * tmp42 tmp44 = tmp36 + tmp43 tl.store(in_out_ptr0 + x3, tmp44, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (1, 1, 4, 4), (16, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 2, 9, 8), (144, 72, 8, 1), torch.float32 ) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(2304)](arg0_1, buf0, 2304, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 buf1 = empty_strided_cuda((16, 1, 8, 8), (64, 1, 8, 1), torch.float32) triton_poi_fused_convolution_1[grid(128, 8)](buf0, buf1, 128, 8, XBLOCK=8, YBLOCK=128, num_warps=4, num_stages=1) del buf0 buf2 = extern_kernels.convolution(buf1, arg1_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (16, 1, 5, 5), (25, 1, 5, 1)) del arg1_1 buf3 = reinterpret_tensor(buf1, (16, 1, 8, 8), (64, 1024, 8, 1), 0) del buf1 buf5 = buf3 del buf3 buf6 = reinterpret_tensor(buf5, (16, 1, 8, 8), (64, 1, 8, 1), 0) del buf5 triton_poi_fused__to_copy__unsafe_index_add_arange_clamp_mul_sub_2[grid (1024)](buf6, buf2, 1024, XBLOCK=256, num_warps=4, num_stages=1) del buf2 return reinterpret_tensor(buf6, (4, 4, 8, 8), (256, 64, 8, 1), 0), def _setup_kernel(k): k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) assert k.ndim == 2 assert k.shape[0] == k.shape[1] return k class Upsample2dNew(nn.Module): def __init__(self, opts, k=[1, 3, 3, 1], factor=2, down=1, gain=1): """ Upsample2d method in G_synthesis_stylegan2. :param k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. :param factor: Integer downsampling factor (default: 2). :param gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` """ super().__init__() assert isinstance(factor, int ) and factor >= 1, 'factor must be larger than 1! (default: 2)' self.gain = gain self.factor = factor self.opts = opts self.k = _setup_kernel(k) * (self.gain * factor ** 2) self.k = torch.FloatTensor(self.k).unsqueeze(0).unsqueeze(0) self.k = torch.flip(self.k, [2, 3]) self.k = nn.Parameter(self.k, requires_grad=False) self.p = self.k.shape[0] - self.factor self.padx0, self.pady0 = (self.p + 1) // 2 + factor - 1, (self.p + 1 ) // 2 + factor - 1 self.padx1, self.pady1 = self.p // 2, self.p // 2 self.kernelH, self.kernelW = self.k.shape[2:] self.down = down def forward(self, input_0): arg1_1 = self.k arg0_1 = input_0 output = call([arg0_1, arg1_1]) return output[0]
tomguluson92/StyleGAN2_PyTorch
Upsample2d
false
16,601
[ "MIT" ]
89
4ab7354c85cb986d2b77f5238c4a18c5efd1db1b
https://github.com/tomguluson92/StyleGAN2_PyTorch/tree/4ab7354c85cb986d2b77f5238c4a18c5efd1db1b
Dice_Loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/qg/cqgejm4wp2tvoab2fpggn6ygzxekamtcj65undyfrstdf2jttwb4.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add_1, sum_2, sum_3, union, add_2, loss, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add_1 => add_1 # add_2 => add_2 # intersection => sum_1 # loss => div # mul => mul # mul_1 => mul_1 # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # union => add # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, 1.0), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_1, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = tmp14 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp19, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add_1, sum_2, sum_3, union, add_2, loss, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg1_1, arg0_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1.0 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = tmp14 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp19, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class Dice_LossNew(torch.nn.Module): """This is a custom Dice Similarity Coefficient loss function that we use to the accuracy of the segmentation. it is defined as ; DSC = 2 * (pred /intersect label) / (pred /union label) for the losss we use 1- DSC so gradient descent leads to better outputs.""" def __init__(self, weight=None, size_average=False): super(Dice_LossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
arjunsbalaji/oct
Dice_Loss
false
1,464
[ "Apache-2.0" ]
0
f21e11f6dda952cd914444512ddadb4141757951
https://github.com/arjunsbalaji/oct/tree/f21e11f6dda952cd914444512ddadb4141757951
orientation_neuron
import torch import torch.nn as nn class orientation_neuron(nn.Module): def __init__(self, weight): super(orientation_neuron, self).__init__() self.w = weight self.nl = nn.Sigmoid() def forward(self, x): return self.nl(self.w * x) * 360.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'weight': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sigmoid_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 4.0 tmp2 = tmp0 * tmp1 tmp3 = tl.sigmoid(tmp2) tmp4 = 360.0 tmp5 = tmp3 * tmp4 tl.store(out_ptr0 + x0, tmp5, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sigmoid_0[grid(256)](arg0_1, buf0, 256, XBLOCK =256, num_warps=4, num_stages=1) del arg0_1 return buf0, class orientation_neuronNew(nn.Module): def __init__(self, weight): super(orientation_neuronNew, self).__init__() self.w = weight self.nl = nn.Sigmoid() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
AgamChopra/simulation-in-a-box
orientation_neuron
false
11,173
[ "MIT" ]
0
2a346a2fc83d79e542b64f1bd45c338d27a1934d
https://github.com/AgamChopra/simulation-in-a-box/tree/2a346a2fc83d79e542b64f1bd45c338d27a1934d
ActNorm2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/mk/cmkfq3mg2sl66skmhudljmlrjckeersi3ye3frqm2bl7felzsn2n.py # Topologically Sorted Source Nodes: [sum_1, mul, logdet], Original ATen: [aten.sum, aten.mul] # Source node to ATen node mapping: # logdet => mul_1 # mul => mul # sum_1 => sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%unsqueeze_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 4), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, 4), kwargs = {}) triton_per_fused_mul_sum_0 = async_compile.triton('triton_per_fused_mul_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_mul_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ok/cok2tne7527mk7p2rdtta5caje65jdloa27vp4xewaco2m24lfgp.py # Topologically Sorted Source Nodes: [exp, mul_2, add], Original ATen: [aten.exp, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # exp => exp # mul_2 => mul_2 # Graph fragment: # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%unsqueeze_2,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %exp), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %unsqueeze_5), kwargs = {}) triton_poi_fused_add_exp_mul_1 = async_compile.triton('triton_poi_fused_add_exp_mul_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_exp_mul_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + (x3), tmp5, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [sum_1, mul, logdet], Original ATen: [aten.sum, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_mul_sum_0.run(buf2, primals_1, 1, 4, grid=grid(1), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [exp, mul_2, add], Original ATen: [aten.exp, aten.mul, aten.add] triton_poi_fused_add_exp_mul_1.run(primals_2, primals_1, primals_3, buf1, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, buf2, primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn from torch.nn import Parameter from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_mul_sum_0(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.sum(tmp1, 1)[:, None] tmp4 = 4.0 tmp5 = tmp3 * tmp4 tmp6 = tmp5 * tmp4 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp6, None) @triton.jit def triton_poi_fused_add_exp_mul_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp2 = tl_math.exp(tmp1) tmp3 = tmp0 * tmp2 tmp5 = tmp3 + tmp4 tl.store(out_ptr0 + x3, tmp5, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf2 = buf0 del buf0 get_raw_stream(0) triton_per_fused_mul_sum_0[grid(1)](buf2, primals_1, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_exp_mul_1[grid(256)](primals_2, primals_1, primals_3, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 return buf1, buf2, primals_1, primals_2 class ActNorm2DNew(nn.Module): def __init__(self, num_channels, eps=1e-05): super(ActNorm2DNew, self).__init__() self.eps = eps self.num_channels = num_channels self._log_scale = Parameter(torch.Tensor(num_channels)) self._shift = Parameter(torch.Tensor(num_channels)) self._init = False def log_scale(self): return self._log_scale[None, :, None, None] def shift(self): return self._shift[None, :, None, None] def inverse(self, x): return (x - self.shift()) * torch.exp(-self.log_scale()) def forward(self, input_0): primals_1 = self._log_scale primals_3 = self._shift primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0], output[1]
david-klindt/invertible-resnet
ActNorm2D
false
3,432
[ "MIT" ]
0
ac6756a7ba5d0dbcb6b4cec43f8b86079318fd89
https://github.com/david-klindt/invertible-resnet/tree/ac6756a7ba5d0dbcb6b4cec43f8b86079318fd89
Relu_Adpt
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/6i/c6irug2zijhsre6i7x7vj3d7ab4lvwwhriahoek2hwnicmn6fkmi.py # Topologically Sorted Source Nodes: [sub, relu], Original ATen: [aten.sub, aten.relu] # Source node to ATen node mapping: # relu => relu # sub => sub # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) triton_poi_fused_relu_sub_0 = async_compile.triton('triton_poi_fused_relu_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = (xindex // 16) x1 = (xindex // 16) % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x3)), xmask) tmp2 = tl.load(in_ptr0 + (16 + x0 + (64*x3)), xmask) tmp5 = tl.load(in_ptr0 + (32 + x0 + (64*x3)), xmask) tmp8 = tl.load(in_ptr0 + (48 + x0 + (64*x3)), xmask) tmp12 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp13 = tmp11 - tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + (x4), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/64/c6454pzbvwqda5hndlwtrahibn3volp4lzkne3vqs2dhgibcj3m3.py # Topologically Sorted Source Nodes: [sub, relu, mul_1, add, x_caps_1], Original ATen: [aten.sub, aten.relu, aten.mul, aten.add, aten.div] # Source node to ATen node mapping: # add => add # mul_1 => mul_1 # relu => relu # sub => sub # x_caps_1 => div # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%unsqueeze, %primals_2), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%sub,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%relu, %primals_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%unsqueeze, 0.0001), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_1, %add), kwargs = {}) triton_poi_fused_add_div_mul_relu_sub_1 = async_compile.triton('triton_poi_fused_add_div_mul_relu_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_div_mul_relu_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 6, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_div_mul_relu_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp3 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 0.0001 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + (x3), tmp17, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 4, 4), (64, 16, 256, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, relu], Original ATen: [aten.sub, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_relu_sub_0.run(primals_1, primals_2, buf0, 256, grid=grid(256), stream=stream0) buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [sub, relu, mul_1, add, x_caps_1], Original ATen: [aten.sub, aten.relu, aten.mul, aten.add, aten.div] triton_poi_fused_add_div_mul_relu_sub_1.run(buf0, primals_1, buf1, 1024, grid=grid(1024), stream=stream0) del buf0 return (reinterpret_tensor(buf1, (4, 16, 4, 4), (256, 16, 4, 1), 0), primals_1, primals_2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1, 1), (4, 1, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.nn.parameter import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x3 = xindex // 16 x1 = xindex // 16 % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x3), xmask) tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x3), xmask) tmp5 = tl.load(in_ptr0 + (32 + x0 + 64 * x3), xmask) tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x3), xmask) tmp12 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp1 = tmp0 * tmp0 tmp3 = tmp2 * tmp2 tmp4 = tmp1 + tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp11 = libdevice.sqrt(tmp10) tmp13 = tmp11 - tmp12 tmp14 = tl.full([1], 0, tl.int32) tmp15 = triton_helpers.maximum(tmp14, tmp13) tl.store(out_ptr0 + x4, tmp15, xmask) @triton.jit def triton_poi_fused_add_div_mul_relu_sub_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp3 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp8 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp11 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp3 tmp6 = tmp5 * tmp5 tmp7 = tmp4 + tmp6 tmp9 = tmp8 * tmp8 tmp10 = tmp7 + tmp9 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = libdevice.sqrt(tmp13) tmp15 = 0.0001 tmp16 = tmp14 + tmp15 tmp17 = tmp2 / tmp16 tl.store(out_ptr0 + x3, tmp17, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1, 1), (4, 1, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 4, 4), (64, 16, 256, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_relu_sub_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_add_div_mul_relu_sub_1[grid(1024)](buf0, primals_1, buf1, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf0 return reinterpret_tensor(buf1, (4, 16, 4, 4), (256, 16, 4, 1), 0 ), primals_1, primals_2 class Relu_AdptNew(nn.Module): def __init__(self, num_C, num_D, eps=0.0001): super(Relu_AdptNew, self).__init__() self.num_C = num_C self.num_D = num_D self.eps = eps self.theta = Parameter(torch.Tensor(1, self.num_C, 1, 1, 1)) self.theta.data.fill_(0.0) def forward(self, input_0): primals_2 = self.theta primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
WdBlink/AugMix-3DOCUNet-Brats2019
Relu_Adpt
false
5,968
[ "MIT" ]
1
125c6c8682b51a550eeac9173d13d0a211576abc
https://github.com/WdBlink/AugMix-3DOCUNet-Brats2019/tree/125c6c8682b51a550eeac9173d13d0a211576abc
Downsampling
from torch.nn import Module import torch from torch.nn import Sequential from torch.nn import Linear class FullyConnected(torch.nn.Module): def __init__(self, in_features, out_features, bias=True, activation=None): super().__init__() self.linear = torch.nn.Linear(in_features, out_features, bias=bias) if activation is None: self.activation = torch.nn.Identity() elif activation == 'relu': self.activation = torch.nn.ReLU() elif activation == 'elu': self.activation = torch.nn.ELU(alpha=1.0) elif activation == 'lrelu': self.activation = torch.nn.LeakyReLU(0.1) else: raise ValueError() def forward(self, x): return self.activation(self.linear(x)) class GPool(Module): def __init__(self, n, dim, use_mlp=False, mlp_activation='relu'): super().__init__() self.use_mlp = use_mlp if use_mlp: self.pre = Sequential(FullyConnected(dim, dim // 2, bias=True, activation=mlp_activation), FullyConnected(dim // 2, dim // 4, bias=True, activation=mlp_activation)) self.p = Linear(dim // 4, 1, bias=True) else: self.p = Linear(dim, 1, bias=True) self.n = n def forward(self, pos, x): batchsize = x.size(0) if self.n < 1: k = int(x.size(1) * self.n) else: k = self.n if self.use_mlp: y = self.pre(x) else: y = x y = (self.p(y) / torch.norm(self.p.weight, p='fro')).squeeze(-1) top_idx = torch.argsort(y, dim=1, descending=True)[:, 0:k] y = torch.gather(y, dim=1, index=top_idx) y = torch.sigmoid(y) pos = torch.gather(pos, dim=1, index=top_idx.unsqueeze(-1).expand( batchsize, k, 3)) x = torch.gather(x, dim=1, index=top_idx.unsqueeze(-1).expand( batchsize, k, x.size(-1))) x = x * y.unsqueeze(-1).expand_as(x) return top_idx, pos, x class Downsampling(Module): def __init__(self, feature_dim, ratio=0.5): super().__init__() self.pool = GPool(ratio, dim=feature_dim) def forward(self, pos, x): """ :param pos: (B, N, 3) :param x: (B, N, d) :return (B, rN, d) """ idx, pos, x = self.pool(pos, x) return idx, pos, x def get_inputs(): return [torch.rand([4, 4, 4]), torch.rand([4, 4, 4])] def get_init_inputs(): return [[], {'feature_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch.nn import Module from torch.nn import Sequential from torch.nn import Linear assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp4, None) @triton.jit def triton_per_fused_sort_1(in_ptr0, in_ptr1, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 4 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp3 = libdevice.sqrt(tmp2) tmp4 = tmp0 / tmp3 tmp5 = r1 tmp6 = tmp5.to(tl.int16) tmp7 = tl.broadcast_to(tmp4, [XBLOCK, RBLOCK]) tmp8 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) _tmp9, tmp10 = triton_helpers.sort_with_index(tmp7, tmp8, None, 1, stable=False, descending=True) tmp11 = tmp10.to(tl.int64) tl.store(out_ptr1 + (r1 + 4 * x0), tmp11, xmask) @triton.jit def triton_poi_fused_gather_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 24 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 3 % 2 x2 = xindex // 6 x0 = xindex % 3 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4 + 16 * x2), xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_gather_mul_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 2 x2 = xindex // 8 x0 = xindex % 4 x4 = xindex tmp0 = tl.load(in_ptr0 + (x1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp8 = tl.load(in_ptr3 + 0) tmp9 = tl.broadcast_to(tmp8, [XBLOCK]) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (x0 + 4 * tmp4 + 16 * x2), xmask) tmp7 = tl.load(in_ptr2 + (tmp4 + 4 * x2), xmask, eviction_policy= 'evict_last') tmp10 = libdevice.sqrt(tmp9) tmp11 = tmp7 / tmp10 tmp12 = tl.sigmoid(tmp11) tmp13 = tmp6 * tmp12 tl.store(out_ptr0 + x4, tmp13, xmask) @triton.jit def triton_poi_fused_gather_sigmoid_sigmoid_backward_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 8 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 4 * x1), xmask) tmp7 = tl.load(in_ptr2 + 0) tmp8 = tl.broadcast_to(tmp7, [XBLOCK]) tmp1 = tl.full([XBLOCK], 4, tl.int32) tmp2 = tmp0 + tmp1 tmp3 = tmp0 < 0 tmp4 = tl.where(tmp3, tmp2, tmp0) tl.device_assert((0 <= tmp4) & (tmp4 < 4) | ~xmask, 'index out of bounds: 0 <= tmp4 < 4') tmp6 = tl.load(in_ptr1 + (tmp4 + 4 * x1), xmask, eviction_policy= 'evict_last') tmp9 = libdevice.sqrt(tmp8) tmp10 = tmp6 / tmp9 tmp11 = tl.sigmoid(tmp10) tmp12 = 1.0 tmp13 = tmp12 - tmp11 tmp14 = tmp11 * tmp13 tl.store(out_ptr0 + x2, tmp14, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (1, 4), (4, 1)) assert_size_stride(primals_3, (1,), (1,)) assert_size_stride(primals_4, (4, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 1), (1, 4), 0 ), alpha=1, beta=1, out=buf1) del primals_3 buf2 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_linalg_vector_norm_0[grid(1)](primals_2, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf5 = empty_strided_cuda((4, 4), (4, 1), torch.int64) triton_per_fused_sort_1[grid(4)](buf1, buf2, buf5, 4, 4, XBLOCK=1, num_warps=2, num_stages=1) buf6 = empty_strided_cuda((4, 2, 3), (6, 3, 1), torch.float32) triton_poi_fused_gather_2[grid(24)](buf5, primals_4, buf6, 24, XBLOCK=32, num_warps=1, num_stages=1) del primals_4 buf7 = empty_strided_cuda((4, 2, 4), (8, 4, 1), torch.float32) triton_poi_fused_gather_mul_3[grid(32)](buf5, primals_1, buf1, buf2, buf7, 32, XBLOCK=32, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 2), (2, 1), torch.float32) triton_poi_fused_gather_sigmoid_sigmoid_backward_4[grid(8)](buf5, buf1, buf2, buf8, 8, XBLOCK=8, num_warps=1, num_stages=1) del buf2 return reinterpret_tensor(buf5, (4, 2), (4, 1), 0 ), buf6, buf7, primals_1, primals_2, buf1, reinterpret_tensor(buf5, (4, 2), (4, 1), 0), buf8 class FullyConnected(torch.nn.Module): def __init__(self, in_features, out_features, bias=True, activation=None): super().__init__() self.linear = torch.nn.Linear(in_features, out_features, bias=bias) if activation is None: self.activation = torch.nn.Identity() elif activation == 'relu': self.activation = torch.nn.ReLU() elif activation == 'elu': self.activation = torch.nn.ELU(alpha=1.0) elif activation == 'lrelu': self.activation = torch.nn.LeakyReLU(0.1) else: raise ValueError() def forward(self, x): return self.activation(self.linear(x)) class GPool(Module): def __init__(self, n, dim, use_mlp=False, mlp_activation='relu'): super().__init__() self.use_mlp = use_mlp if use_mlp: self.pre = Sequential(FullyConnected(dim, dim // 2, bias=True, activation=mlp_activation), FullyConnected(dim // 2, dim // 4, bias=True, activation=mlp_activation)) self.p = Linear(dim // 4, 1, bias=True) else: self.p = Linear(dim, 1, bias=True) self.n = n def forward(self, pos, x): batchsize = x.size(0) if self.n < 1: k = int(x.size(1) * self.n) else: k = self.n if self.use_mlp: y = self.pre(x) else: y = x y = (self.p(y) / torch.norm(self.p.weight, p='fro')).squeeze(-1) top_idx = torch.argsort(y, dim=1, descending=True)[:, 0:k] y = torch.gather(y, dim=1, index=top_idx) y = torch.sigmoid(y) pos = torch.gather(pos, dim=1, index=top_idx.unsqueeze(-1).expand( batchsize, k, 3)) x = torch.gather(x, dim=1, index=top_idx.unsqueeze(-1).expand( batchsize, k, x.size(-1))) x = x * y.unsqueeze(-1).expand_as(x) return top_idx, pos, x class DownsamplingNew(Module): def __init__(self, feature_dim, ratio=0.5): super().__init__() self.pool = GPool(ratio, dim=feature_dim) def forward(self, input_0, input_1): primals_2 = self.pool.p.weight primals_3 = self.pool.p.bias primals_1 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0], output[1], output[2]
RRemixx/DMRDenoise
Downsampling
false
14,280
[ "MIT" ]
79
026d25f9eaf98fdfd85a67caeb9b49cab71148e9
https://github.com/RRemixx/DMRDenoise/tree/026d25f9eaf98fdfd85a67caeb9b49cab71148e9
MLP
import torch import torch.nn as nn from collections import OrderedDict class MLP(nn.Module): def __init__(self, input_dims, n_hiddens, n_class): super(MLP, self).__init__() assert isinstance(input_dims, int), 'Please provide int for input_dims' self.input_dims = input_dims current_dims = input_dims layers = OrderedDict() if isinstance(n_hiddens, int): n_hiddens = [n_hiddens] else: n_hiddens = list(n_hiddens) for i, n_hidden in enumerate(n_hiddens): layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden) layers['relu{}'.format(i + 1)] = nn.ReLU() layers['drop{}'.format(i + 1)] = nn.Dropout(0.2) current_dims = n_hidden layers['out'] = nn.Linear(current_dims, n_class) self.model = nn.Sequential(layers) None def forward(self, input): input = input.view(input.size(0), -1) assert input.size(1) == self.input_dims return self.model.forward(input) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'input_dims': 4, 'n_hiddens': 4, 'n_class': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn from collections import OrderedDict assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_relu_0[grid(16)](buf1, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf1, reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_5 return buf2, primals_1, buf1, primals_4 class MLPNew(nn.Module): def __init__(self, input_dims, n_hiddens, n_class): super(MLPNew, self).__init__() assert isinstance(input_dims, int), 'Please provide int for input_dims' self.input_dims = input_dims current_dims = input_dims layers = OrderedDict() if isinstance(n_hiddens, int): n_hiddens = [n_hiddens] else: n_hiddens = list(n_hiddens) for i, n_hidden in enumerate(n_hiddens): layers['fc{}'.format(i + 1)] = nn.Linear(current_dims, n_hidden) layers['relu{}'.format(i + 1)] = nn.ReLU() layers['drop{}'.format(i + 1)] = nn.Dropout(0.2) current_dims = n_hidden layers['out'] = nn.Linear(current_dims, n_class) self.model = nn.Sequential(layers) None def forward(self, input_0): primals_1 = self.model.fc1.weight primals_3 = self.model.fc1.bias primals_2 = self.model.out.weight primals_5 = self.model.out.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
coreylammie/pytorch-playground
MLP
false
3,316
[ "MIT" ]
0
ff7dd3a6c40481326120895065e120b4fefa1c9e
https://github.com/coreylammie/pytorch-playground/tree/ff7dd3a6c40481326120895065e120b4fefa1c9e
InnerProductDecoder
import torch import torch.nn.functional as F import torch.nn as nn import torch.nn.modules.loss class InnerProductDecoder(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoder, self).__init__() self.dropout = dropout self.act = act def forward(self, z): z = F.dropout(z, self.dropout, training=self.training) adj = self.act(torch.mm(z, z.t())) return adj def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.nn.modules.loss assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = tl.sigmoid(tmp0) tl.store(in_out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(arg0_1, reinterpret_tensor(arg0_1, (4, 4), (1, 4), 0), out=buf0) del arg0_1 buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(16)](buf1, 16, XBLOCK=16, num_warps =1, num_stages=1) return buf1, class InnerProductDecoderNew(nn.Module): """Decoder for using inner product for prediction.""" def __init__(self, dropout, act=torch.sigmoid): super(InnerProductDecoderNew, self).__init__() self.dropout = dropout self.act = act def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
conf20/Egg
InnerProductDecoder
false
6,470
[ "MIT" ]
1
6bd35903d1d7a7430b336545a9ee2b0a7f0e10f3
https://github.com/conf20/Egg/tree/6bd35903d1d7a7430b336545a9ee2b0a7f0e10f3
BahdanauAttention
import math import torch import torch.nn.functional as F import torch.nn as nn import torch.utils.data from typing import * from torch.nn import Parameter import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler class BaseAttention(nn.Module): """Base class for attention layers.""" def __init__(self, query_dim, value_dim, embed_dim=None): super().__init__() self.query_dim = query_dim self.value_dim = value_dim self.embed_dim = embed_dim self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): pass def forward(self, query, value, key_padding_mask=None, state=None): raise NotImplementedError class BahdanauAttention(BaseAttention): """ Bahdanau Attention.""" def __init__(self, query_dim, value_dim, embed_dim, normalize=True): super().__init__(query_dim, value_dim, embed_dim) self.query_proj = nn.Linear(self.query_dim, embed_dim, bias=False) self.value_proj = nn.Linear(self.value_dim, embed_dim, bias=False) self.v = Parameter(torch.Tensor(embed_dim)) self.normalize = normalize if self.normalize: self.b = Parameter(torch.Tensor(embed_dim)) self.g = Parameter(torch.Tensor(1)) self.reset_parameters() def reset_parameters(self): self.query_proj.weight.data.uniform_(-0.1, 0.1) self.value_proj.weight.data.uniform_(-0.1, 0.1) nn.init.uniform_(self.v, -0.1, 0.1) if self.normalize: nn.init.constant_(self.b, 0.0) nn.init.constant_(self.g, math.sqrt(1.0 / self.embed_dim)) def forward(self, query, value, key_padding_mask=None, state=None): projected_query = self.query_proj(query).unsqueeze(0) key = self.value_proj(value) if self.normalize: normed_v = self.g * self.v / torch.norm(self.v) attn_scores = (normed_v * torch.tanh(projected_query + key + self.b)).sum(dim=2) else: attn_scores = self.v * torch.tanh(projected_query + key).sum(dim=2) if key_padding_mask is not None: attn_scores = attn_scores.float().masked_fill_(key_padding_mask, float('-inf')).type_as(attn_scores) attn_scores = F.softmax(attn_scores, dim=0) context = (attn_scores.unsqueeze(2) * value).sum(dim=0) next_state = attn_scores return context, attn_scores, next_state def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'query_dim': 4, 'value_dim': 4, 'embed_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import math import torch.nn as nn import torch.utils.data from typing import * from torch.nn import Parameter import torch.onnx.operators import torch.optim import torch.optim.lr_scheduler assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_linalg_vector_norm_0(in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp4, None) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp5 = libdevice.tanh(tmp4) tl.store(in_out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused__softmax_div_linalg_vector_norm_mul_sum_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x4 = xindex % 16 x3 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + 0) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp8 = tl.load(in_ptr3 + (x4 + 64 * x2), xmask) tmp10 = tl.load(in_ptr3 + (16 + x4 + 64 * x2), xmask) tmp13 = tl.load(in_ptr3 + (32 + x4 + 64 * x2), xmask) tmp16 = tl.load(in_ptr3 + (48 + x4 + 64 * x2), xmask) tmp3 = tmp1 * tmp2 tmp6 = libdevice.sqrt(tmp5) tmp7 = tmp3 / tmp6 tmp9 = tmp7 * tmp8 tmp11 = tmp7 * tmp10 tmp12 = tmp9 + tmp11 tmp14 = tmp7 * tmp13 tmp15 = tmp12 + tmp14 tmp17 = tmp7 * tmp16 tmp18 = tmp15 + tmp17 tmp19 = tmp18 - tmp18 tmp20 = tl_math.exp(tmp19) tmp21 = tmp20 / tmp20 tl.store(in_out_ptr0 + x3, tmp21, xmask) @triton.jit def triton_poi_fused_mul_sum_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (1,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_2, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_4, (64, 4), (4, 1), 0), reinterpret_tensor(primals_3, (4, 4), (1, 4), 0), out=buf1) del primals_3 buf2 = empty_strided_cuda((), (), torch.float32) get_raw_stream(0) triton_per_fused_linalg_vector_norm_0[grid(1)](primals_6, buf2, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf3 = reinterpret_tensor(buf0, (1, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0 ) del buf0 triton_poi_fused_add_tanh_1[grid(256)](buf3, buf1, primals_7, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf4 = empty_strided_cuda((1, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf5 = buf4 del buf4 triton_poi_fused__softmax_div_linalg_vector_norm_mul_sum_2[grid(64)]( buf5, primals_5, primals_6, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 buf6 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 triton_poi_fused_mul_sum_3[grid(256)](buf5, primals_4, buf6, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf6, buf5, primals_4, primals_5, primals_6, reinterpret_tensor( primals_2, (64, 4), (4, 1), 0), buf3, buf5 class BaseAttention(nn.Module): """Base class for attention layers.""" def __init__(self, query_dim, value_dim, embed_dim=None): super().__init__() self.query_dim = query_dim self.value_dim = value_dim self.embed_dim = embed_dim self.onnx_trace = False def prepare_for_onnx_export_(self): self.onnx_trace = True def reset_parameters(self): pass def forward(self, query, value, key_padding_mask=None, state=None): raise NotImplementedError class BahdanauAttentionNew(BaseAttention): """ Bahdanau Attention.""" def __init__(self, query_dim, value_dim, embed_dim, normalize=True): super().__init__(query_dim, value_dim, embed_dim) self.query_proj = nn.Linear(self.query_dim, embed_dim, bias=False) self.value_proj = nn.Linear(self.value_dim, embed_dim, bias=False) self.v = Parameter(torch.Tensor(embed_dim)) self.normalize = normalize if self.normalize: self.b = Parameter(torch.Tensor(embed_dim)) self.g = Parameter(torch.Tensor(1)) self.reset_parameters() def reset_parameters(self): self.query_proj.weight.data.uniform_(-0.1, 0.1) self.value_proj.weight.data.uniform_(-0.1, 0.1) nn.init.uniform_(self.v, -0.1, 0.1) if self.normalize: nn.init.constant_(self.b, 0.0) nn.init.constant_(self.g, math.sqrt(1.0 / self.embed_dim)) def forward(self, input_0, input_1): primals_6 = self.v primals_7 = self.b primals_5 = self.g primals_1 = self.query_proj.weight primals_3 = self.value_proj.weight primals_2 = input_0 primals_4 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0], output[1], output[2]
lahiruts/espresso
BahdanauAttention
false
7,066
[ "MIT" ]
1
940a1bf3c2c3d4a057d543b875c329b0515e6b55
https://github.com/lahiruts/espresso/tree/940a1bf3c2c3d4a057d543b875c329b0515e6b55
InputConv
import torch import torch.nn as nn import torch.nn.functional as F def _get_padding(kernel_size, stride, dilation): padding = (stride - 1 + dilation * (kernel_size - 1)) // 2 return padding class InputConv(nn.Module): def __init__(self, inp, outp, k=3, stride=1, dilation=1): super(InputConv, self).__init__() self.conv = nn.Conv2d(inp, outp, k, stride, padding=_get_padding(k, stride, dilation), dilation=dilation) def forward(self, x): return F.relu6(self.conv(x)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'inp': 4, 'outp': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_hardtanh_hardtanh_backward_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp2 <= tmp3 tmp8 = tmp2 >= tmp5 tmp9 = tmp7 | tmp8 tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_convolution_hardtanh_hardtanh_backward_0[grid(256)]( buf0, primals_2, buf1, buf2, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf0 del primals_2 return buf1, primals_1, primals_3, buf2 def _get_padding(kernel_size, stride, dilation): padding = (stride - 1 + dilation * (kernel_size - 1)) // 2 return padding class InputConvNew(nn.Module): def __init__(self, inp, outp, k=3, stride=1, dilation=1): super(InputConvNew, self).__init__() self.conv = nn.Conv2d(inp, outp, k, stride, padding=_get_padding(k, stride, dilation), dilation=dilation) def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Sanjay-Ganeshan/webcam-mouse
InputConv
false
2,815
[ "Apache-2.0" ]
0
240d1ee00816440e971c8c747bef02c12f3e5d57
https://github.com/Sanjay-Ganeshan/webcam-mouse/tree/240d1ee00816440e971c8c747bef02c12f3e5d57
CustomNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/jq/cjqaq2meov3vkcgfealq7w4w35tw2oemvmhneuxmigeoumva22p7.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] # Source node to ATen node mapping: # x_1 => sigmoid # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%view_1,), kwargs = {}) triton_poi_fused_sigmoid_0 = async_compile.triton('triton_poi_fused_sigmoid_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sigmoid_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.sigmoid] stream0 = get_raw_stream(0) triton_poi_fused_sigmoid_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.sigmoid(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_sigmoid_0[grid(256)](buf1, primals_2, 256, XBLOCK= 128, num_warps=4, num_stages=1) del primals_2 return buf1, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), buf1 class CustomNetNew(nn.Module): """ A network with a fully connected layer followed by a sigmoid layer. This is used for testing customized operation handles. """ def __init__(self, input_dim: 'int', output_dim: 'int') ->None: super(CustomNetNew, self).__init__() self.conv = nn.Linear(input_dim, output_dim) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_1 = self.conv.weight primals_2 = self.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Jennifer-Rigdon/fvcore
CustomNet
false
5,386
[ "Apache-2.0" ]
1
7e800a86f2df93da017e07380543b4060ab88c94
https://github.com/Jennifer-Rigdon/fvcore/tree/7e800a86f2df93da017e07380543b4060ab88c94
MultiLayeredConv1d
import torch class MultiLayeredConv1d(torch.nn.Module): """Multi-layered conv1d for Transformer block. This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, in_chans: 'int', hidden_chans: 'int', kernel_size: 'int', dropout_rate: 'float'): super(MultiLayeredConv1d, self).__init__() self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, x: 'torch.Tensor') ->torch.Tensor: """Calculate forward propagation. Args: x (Tensor): Batch of input tensors (B, *, in_chans). Returns: Tensor: Batch of output tensors (B, *, hidden_chans) """ x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1) return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1) def get_inputs(): return [torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_chans': 4, 'hidden_chans': 4, 'kernel_size': 4, 'dropout_rate': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 3 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 12 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 3 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(reinterpret_tensor(primals_1, (1, 4, 4), (16, 4, 1), 0), primals_2, stride=(1,), padding=(1,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf0, (1, 4, 3), (12, 3, 1)) buf1 = reinterpret_tensor(buf0, (4, 3), (3, 1), 0) del buf0 buf4 = empty_strided_cuda((4, 3), (3, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(12)](buf1, primals_3, buf4, 12, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(reinterpret_tensor(buf1, (1, 4, 3 ), (0, 3, 1), 0), primals_4, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=1, bias=None) assert_size_stride(buf2, (1, 4, 3), (12, 3, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(12)](buf3, primals_5, 12, XBLOCK=16, num_warps=1, num_stages=1) del primals_5 return reinterpret_tensor(buf3, (4, 3), (3, 1), 0 ), primals_2, primals_4, reinterpret_tensor(primals_1, (1, 4, 4), ( 16, 4, 1), 0), reinterpret_tensor(buf1, (1, 4, 3), (12, 3, 1), 0), buf4 class MultiLayeredConv1dNew(torch.nn.Module): """Multi-layered conv1d for Transformer block. This is a module of multi-leyered conv1d designed to replace positionwise feed-forward network in Transforner block, which is introduced in `FastSpeech: Fast, Robust and Controllable Text to Speech`_. Args: in_chans (int): Number of input channels. hidden_chans (int): Number of hidden channels. kernel_size (int): Kernel size of conv1d. dropout_rate (float): Dropout rate. .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: https://arxiv.org/pdf/1905.09263.pdf """ def __init__(self, in_chans: 'int', hidden_chans: 'int', kernel_size: 'int', dropout_rate: 'float'): super(MultiLayeredConv1dNew, self).__init__() self.w_1 = torch.nn.Conv1d(in_chans, hidden_chans, kernel_size, stride=1, padding=(kernel_size - 1) // 2) self.w_2 = torch.nn.Conv1d(hidden_chans, in_chans, 1, stride=1, padding=(1 - 1) // 2) self.dropout = torch.nn.Dropout(dropout_rate) def forward(self, input_0): primals_2 = self.w_1.weight primals_3 = self.w_1.bias primals_4 = self.w_2.weight primals_5 = self.w_2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
karan-deepsync/FastSpeech2
MultiLayeredConv1d
false
15,781
[ "Apache-2.0" ]
148
84ad261db4a865536b2e15dfb8346644c3192704
https://github.com/karan-deepsync/FastSpeech2/tree/84ad261db4a865536b2e15dfb8346644c3192704
Building_Block
import math import torch import torch.nn as nn import torch.nn.functional as F def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1000000000.0) scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v) return output class FeedForward(nn.Module): def __init__(self, d_model, d_ff=2048, dropout=0.1): super().__init__() self.linear_1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.linear_2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.dropout(F.relu(self.linear_1(x))) x = self.linear_2(x) return x class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout=0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) scores = attention(q, k, v, self.d_k, mask, self.dropout) concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model) output = self.out(concat) return output class Norm(nn.Module): def __init__(self, d_model, eps=1e-06): super().__init__() self.size = d_model self.alpha = nn.Parameter(torch.ones(self.size)) self.bias = nn.Parameter(torch.zeros(self.size)) self.eps = eps def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim =-1, keepdim=True) + self.eps) + self.bias return norm class Building_Block(nn.Module): def __init__(self, input_features, hidden_features, num_heads, dropout): super(Building_Block, self).__init__() self.input_features = input_features self.hidden_features = hidden_features self.embed_dim = 100 * self.hidden_features self.attn = MultiHeadAttention(num_heads, self.embed_dim, dropout) self.pos_ffn = FeedForward(self.embed_dim, dropout=dropout) self.norm_1 = Norm(self.embed_dim) self.norm_2 = Norm(self.embed_dim) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) def forward(self, x): x2 = self.norm_1(x) new_x = x + self.dropout_1(self.attn(x2, x2, x2)) x2 = self.norm_2(new_x) new_x = new_x + self.dropout_2(self.pos_ffn(x2)) return new_x def get_inputs(): return [torch.rand([4, 400])] def get_init_inputs(): return [[], {'input_features': 4, 'hidden_features': 4, 'num_heads': 4, 'dropout': 0.5}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused_add_div_mean_mul_std_sub_0(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel): XBLOCK: tl.constexpr = 1 rnumel = 400 RBLOCK: tl.constexpr = 512 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 400 * x0), rmask, other=0.0) tmp26 = tl.load(in_ptr1 + r1, rmask, eviction_policy='evict_last', other=0.0) tmp30 = tl.load(in_ptr2 + r1, rmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.broadcast_to(tmp0, [RBLOCK]) tmp3 = tl.where(rmask, tmp1, 0) tmp4 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp1, [RBLOCK]) tmp8 = tl.where(rmask, tmp6, 0) tmp9 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp10 = tl.full([1], 400, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp1 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [RBLOCK]) tmp17 = tl.where(rmask, tmp15, 0) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp17, 0)) tmp19 = 400.0 tmp20 = tmp4 / tmp19 tmp21 = 399.0 tmp22 = tmp18 / tmp21 tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-06 tmp25 = tmp23 + tmp24 tmp27 = tmp0 - tmp20 tmp28 = tmp26 * tmp27 tmp29 = tmp28 / tmp25 tmp31 = tmp29 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp20, None) tl.debug_barrier() tl.store(in_out_ptr1 + x0, tmp25, None) tl.store(out_ptr0 + (r1 + 400 * x0), tmp31, rmask) @triton.jit def triton_red_fused_add_div_mean_mul_std_sub_1(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): xnumel = 16 rnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4 x1 = xindex // 4 _tmp4 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex tmp6_mean = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp6_m2 = tl.zeros([XBLOCK, RBLOCK], tl.float32) tmp6_weight = tl.zeros([XBLOCK, RBLOCK], tl.float32) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (r2 + 400 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + 400 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = _tmp4 + tmp3 _tmp4 = tl.where(rmask & xmask, tmp5, _tmp4) tmp6_mean_next, tmp6_m2_next, tmp6_weight_next = (triton_helpers. welford_reduce(tmp3, tmp6_mean, tmp6_m2, tmp6_weight, roffset == 0) ) tmp6_mean = tl.where(rmask & xmask, tmp6_mean_next, tmp6_mean) tmp6_m2 = tl.where(rmask & xmask, tmp6_m2_next, tmp6_m2) tmp6_weight = tl.where(rmask & xmask, tmp6_weight_next, tmp6_weight) tmp4 = tl.sum(_tmp4, 1)[:, None] tmp6_tmp, tmp7_tmp, tmp8_tmp = triton_helpers.welford(tmp6_mean, tmp6_m2, tmp6_weight, 1) tmp6_tmp[:, None] tmp7 = tmp7_tmp[:, None] tmp8_tmp[:, None] tmp9 = 400.0 tmp10 = tmp4 / tmp9 tmp11 = 399.0 tmp12 = tmp7 / tmp11 tmp13 = libdevice.sqrt(tmp12) tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp10, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp13, xmask) for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp14 = tl.load(in_ptr2 + r2, rmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.load(in_ptr0 + (r2 + 400 * x0), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tl.load(in_ptr1 + (r2 + 400 * x1), rmask & xmask, eviction_policy='evict_last', other=0.0) tmp23 = tl.load(in_ptr3 + r2, rmask, eviction_policy='evict_last', other=0.0) tmp17 = tmp15 + tmp16 tmp18 = tmp17 - tmp10 tmp19 = tmp14 * tmp18 tmp20 = 1e-06 tmp21 = tmp13 + tmp20 tmp22 = tmp19 / tmp21 tmp24 = tmp22 + tmp23 tl.store(out_ptr0 + (r2 + 400 * x3), tmp24, rmask & xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_2(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 2048 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, None) tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_add_3(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex % 1600 x0 = xindex % 400 x2 = xindex // 1600 x4 = xindex tmp0 = tl.load(in_ptr0 + x3, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x0 + 400 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_out_ptr0 + x4, xmask) tmp4 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x4, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17) = args args.clear() assert_size_stride(primals_1, (400,), (1,)) assert_size_stride(primals_2, (4, 400), (400, 1)) assert_size_stride(primals_3, (400,), (1,)) assert_size_stride(primals_4, (400, 400), (400, 1)) assert_size_stride(primals_5, (400,), (1,)) assert_size_stride(primals_6, (400, 400), (400, 1)) assert_size_stride(primals_7, (400,), (1,)) assert_size_stride(primals_8, (400, 400), (400, 1)) assert_size_stride(primals_9, (400,), (1,)) assert_size_stride(primals_10, (400, 400), (400, 1)) assert_size_stride(primals_11, (400,), (1,)) assert_size_stride(primals_12, (400,), (1,)) assert_size_stride(primals_13, (400,), (1,)) assert_size_stride(primals_14, (2048, 400), (400, 1)) assert_size_stride(primals_15, (2048,), (1,)) assert_size_stride(primals_16, (400, 2048), (2048, 1)) assert_size_stride(primals_17, (400,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf3 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf1 = reinterpret_tensor(buf0, (4, 1), (1, 1), 0) del buf0 buf5 = reinterpret_tensor(buf3, (4, 1), (1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 400), (400, 1), torch.float32) get_raw_stream(0) triton_per_fused_add_div_mean_mul_std_sub_0[grid(4)](buf1, buf5, primals_2, primals_1, primals_3, buf6, 4, 400, num_warps=4, num_stages=1) del primals_1 del primals_3 buf7 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.addmm(primals_5, buf6, reinterpret_tensor(primals_4, (400, 400), (1, 400), 0), alpha=1, beta=1, out=buf7) del primals_5 buf8 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.addmm(primals_7, buf6, reinterpret_tensor(primals_6, (400, 400), (1, 400), 0), alpha=1, beta=1, out=buf8) del primals_7 buf9 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.addmm(primals_9, buf6, reinterpret_tensor(primals_8, (400, 400), (1, 400), 0), alpha=1, beta=1, out=buf9) del primals_9 buf10 = torch.ops.aten._scaled_dot_product_efficient_attention.default( reinterpret_tensor(buf8, (4, 4, 1, 100), (400, 100, 400, 1), 0), reinterpret_tensor(buf7, (4, 4, 1, 100), (400, 100, 400, 1), 0), reinterpret_tensor(buf9, (4, 4, 1, 100), (400, 100, 400, 1), 0), None, True, scale=0.1) buf11 = buf10[0] buf12 = buf10[1] buf13 = buf10[2] buf14 = buf10[3] del buf10 buf15 = empty_strided_cuda((4, 400), (400, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf11, (4, 400), (400, 1), 0), reinterpret_tensor(primals_10, (400, 400), (1, 400), 0), alpha=1, beta=1, out=buf15) del primals_11 buf16 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf19 = empty_strided_cuda((4, 4, 1), (4, 1, 16), torch.float32) buf17 = reinterpret_tensor(buf16, (4, 4, 1), (4, 1, 1), 0) del buf16 buf21 = reinterpret_tensor(buf19, (4, 4, 1), (4, 1, 1), 0) del buf19 buf22 = empty_strided_cuda((4, 4, 400), (1600, 400, 1), torch.float32) triton_red_fused_add_div_mean_mul_std_sub_1[grid(16)](buf17, buf21, primals_2, buf15, primals_12, primals_13, buf22, 16, 400, XBLOCK=1, RBLOCK=512, num_warps=4, num_stages=1) del primals_13 buf23 = empty_strided_cuda((16, 2048), (2048, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf22, (16, 400), (400, 1), 0), reinterpret_tensor(primals_14, (400, 2048), (1, 400), 0), out=buf23 ) buf24 = reinterpret_tensor(buf23, (4, 4, 2048), (8192, 2048, 1), 0) del buf23 buf27 = empty_strided_cuda((4, 4, 2048), (8192, 2048, 1), torch.bool) triton_poi_fused_relu_threshold_backward_2[grid(32768)](buf24, primals_15, buf27, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_15 buf25 = empty_strided_cuda((16, 400), (400, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf24, (16, 2048), (2048, 1), 0), reinterpret_tensor(primals_16, (2048, 400), (1, 2048), 0), out=buf25) buf26 = reinterpret_tensor(buf25, (4, 4, 400), (1600, 400, 1), 0) del buf25 triton_poi_fused_add_3[grid(6400)](buf26, primals_2, buf15, primals_17, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_17 return (buf26, primals_2, primals_12, buf1, buf5, buf6, reinterpret_tensor(buf7, (4, 4, 1, 100), (400, 100, 400, 1), 0), reinterpret_tensor(buf8, (4, 4, 1, 100), (400, 100, 400, 1), 0), reinterpret_tensor(buf9, (4, 4, 1, 100), (400, 100, 400, 1), 0), buf11, buf12, buf13, buf14, buf15, buf17, buf21, reinterpret_tensor (buf22, (16, 400), (400, 1), 0), reinterpret_tensor(buf24, (16, 2048), (2048, 1), 0), primals_16, buf27, primals_14, primals_10, primals_8, primals_6, primals_4) def attention(q, k, v, d_k, mask=None, dropout=None): scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) if mask is not None: mask = mask.unsqueeze(1) scores = scores.masked_fill(mask == 0, -1000000000.0) scores = F.softmax(scores, dim=-1) if dropout is not None: scores = dropout(scores) output = torch.matmul(scores, v) return output class FeedForward(nn.Module): def __init__(self, d_model, d_ff=2048, dropout=0.1): super().__init__() self.linear_1 = nn.Linear(d_model, d_ff) self.dropout = nn.Dropout(dropout) self.linear_2 = nn.Linear(d_ff, d_model) def forward(self, x): x = self.dropout(F.relu(self.linear_1(x))) x = self.linear_2(x) return x class MultiHeadAttention(nn.Module): def __init__(self, heads, d_model, dropout=0.1): super().__init__() self.d_model = d_model self.d_k = d_model // heads self.h = heads self.q_linear = nn.Linear(d_model, d_model) self.v_linear = nn.Linear(d_model, d_model) self.k_linear = nn.Linear(d_model, d_model) self.dropout = nn.Dropout(dropout) self.out = nn.Linear(d_model, d_model) def forward(self, q, k, v, mask=None): bs = q.size(0) k = self.k_linear(k).view(bs, -1, self.h, self.d_k) q = self.q_linear(q).view(bs, -1, self.h, self.d_k) v = self.v_linear(v).view(bs, -1, self.h, self.d_k) k = k.transpose(1, 2) q = q.transpose(1, 2) v = v.transpose(1, 2) scores = attention(q, k, v, self.d_k, mask, self.dropout) concat = scores.transpose(1, 2).contiguous().view(bs, -1, self.d_model) output = self.out(concat) return output class Norm(nn.Module): def __init__(self, d_model, eps=1e-06): super().__init__() self.size = d_model self.alpha = nn.Parameter(torch.ones(self.size)) self.bias = nn.Parameter(torch.zeros(self.size)) self.eps = eps def forward(self, x): norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) / (x.std(dim =-1, keepdim=True) + self.eps) + self.bias return norm class Building_BlockNew(nn.Module): def __init__(self, input_features, hidden_features, num_heads, dropout): super(Building_BlockNew, self).__init__() self.input_features = input_features self.hidden_features = hidden_features self.embed_dim = 100 * self.hidden_features self.attn = MultiHeadAttention(num_heads, self.embed_dim, dropout) self.pos_ffn = FeedForward(self.embed_dim, dropout=dropout) self.norm_1 = Norm(self.embed_dim) self.norm_2 = Norm(self.embed_dim) self.dropout_1 = nn.Dropout(dropout) self.dropout_2 = nn.Dropout(dropout) def forward(self, input_0): primals_4 = self.attn.q_linear.weight primals_1 = self.attn.q_linear.bias primals_6 = self.attn.v_linear.weight primals_3 = self.attn.v_linear.bias primals_8 = self.attn.k_linear.weight primals_5 = self.attn.k_linear.bias primals_10 = self.attn.out.weight primals_7 = self.attn.out.bias primals_14 = self.pos_ffn.linear_1.weight primals_15 = self.pos_ffn.linear_1.bias primals_16 = self.pos_ffn.linear_2.weight primals_9 = self.pos_ffn.linear_2.bias primals_11 = self.norm_1.alpha primals_12 = self.norm_1.bias primals_13 = self.norm_2.alpha primals_17 = self.norm_2.bias primals_2 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17]) return output[0]
and-smith/Vac-Scholar-Curb-GAN
Building_Block
false
6,222
[ "MIT" ]
1
142bd70fdf0f1cbc4a1c20c5e58fa5b6a9dbe742
https://github.com/and-smith/Vac-Scholar-Curb-GAN/tree/142bd70fdf0f1cbc4a1c20c5e58fa5b6a9dbe742
DuelingDeepQNetwork
import torch import torch as T import torch.nn as nn import torch.nn.functional as F import torch.optim as optim class DuelingDeepQNetwork(nn.Module): def __init__(self, lr, input_dim, output_dim, fc1_dim, fc2_dim): super(DuelingDeepQNetwork, self).__init__() self.fc1 = nn.Linear(input_dim, fc1_dim) self.fc2 = nn.Linear(fc1_dim, fc2_dim) self.V = nn.Linear(fc2_dim, 1) self.A = nn.Linear(fc2_dim, output_dim) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self def forward(self, state): flat1 = F.relu(self.fc1(state)) flat2 = F.relu(self.fc2(flat1)) v = self.V(flat2) a = self.A(flat2) return v, a def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'lr': 4, 'input_dim': 4, 'output_dim': 4, 'fc1_dim': 4, 'fc2_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch as T import torch.nn as nn import torch.optim as optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4), (4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf1, primals_2, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf2 buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf3, primals_5, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf5) del primals_7 buf6 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_9, reinterpret_tensor(buf3, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_8, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf6) del primals_9 return reinterpret_tensor(buf5, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 4), (4, 1), 0), reinterpret_tensor( buf3, (64, 4), (4, 1), 0), primals_8, primals_6, buf7, primals_4, buf8 class DuelingDeepQNetworkNew(nn.Module): def __init__(self, lr, input_dim, output_dim, fc1_dim, fc2_dim): super(DuelingDeepQNetworkNew, self).__init__() self.fc1 = nn.Linear(input_dim, fc1_dim) self.fc2 = nn.Linear(fc1_dim, fc2_dim) self.V = nn.Linear(fc2_dim, 1) self.A = nn.Linear(fc2_dim, output_dim) self.optimizer = optim.RMSprop(self.parameters(), lr=lr) self.loss = nn.MSELoss() self.device = T.device('cuda:0' if T.cuda.is_available() else 'cpu') self def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.V.weight primals_7 = self.V.bias primals_8 = self.A.weight primals_9 = self.A.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0], output[1]
MonteyMontey/deep-reinforcement-learning-sandbox
DuelingDeepQNetwork
false
9,953
[ "MIT" ]
0
0e93760a994b6af54f0a665f5bc4f9d5ffd45c0a
https://github.com/MonteyMontey/deep-reinforcement-learning-sandbox/tree/0e93760a994b6af54f0a665f5bc4f9d5ffd45c0a
Lookahead
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ot/cotlbam7p6heo7piftgqwyijop2ofdiyqys2y3divgonrfdk4sje.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # x_1 => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%permute_1, [0, 3], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 8], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = x1 tmp1 = tl.full([1, 1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (y0 + (16*x1)), tmp2 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x1 + (7*y0)), tmp3, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6q/c6qm42g3zbfsci7mr3tyuwyr7usvsq37cu4podaa3ddmb6s6wav4.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone] # Source node to ATen node mapping: # x_3 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (16*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 16, 7, grid=grid(16, 7), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=(0,), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, buf2, 4, 16, grid=grid(4, 16), stream=stream0) del buf1 return (buf2, primals_2, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 7 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = x1 tmp1 = tl.full([1, 1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = tl.load(in_ptr0 + (y0 + 16 * x1), tmp2 & xmask & ymask, eviction_policy='evict_last', other=0.0) tl.store(out_ptr0 + (x1 + 7 * y0), tmp3, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 4 xnumel = 16 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x1), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (x1 + 16 * y0), tmp0, xmask & ymask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 7), (28, 7, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(16, 7)](primals_1, buf0, 16, 7, XBLOCK=8, YBLOCK=16, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(0,), dilation=(1,), transposed=False, output_padding=( 0,), groups=4, bias=None) assert_size_stride(buf1, (4, 4, 4), (16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_clone_1[grid(4, 16)](buf1, buf2, 4, 16, XBLOCK=16, YBLOCK=4, num_warps=1, num_stages=1) del buf1 return buf2, primals_2, buf0 class LookaheadNew(nn.Module): def __init__(self, n_features, context): super(LookaheadNew, self).__init__() assert context > 0 self.context = context self.n_features = n_features self.pad = 0, self.context - 1 self.conv = nn.Conv1d(self.n_features, self.n_features, kernel_size =self.context, stride=1, groups=self.n_features, padding=0, bias=None) def __repr__(self): return self.__class__.__name__ + '(' + 'n_features=' + str(self. n_features) + ', context=' + str(self.context) + ')' def forward(self, input_0): primals_2 = self.conv.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
Anwarvic/RasaChatbot-with-ASR-and-TTS
Lookahead
false
16,903
[ "MIT" ]
7
57009f55d1ac8e4b347e81d9b8e33a08b4fd5618
https://github.com/Anwarvic/RasaChatbot-with-ASR-and-TTS/tree/57009f55d1ac8e4b347e81d9b8e33a08b4fd5618
RelPositionMultiHeadedAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/st/cstdkeotatufdikalo45nsknyfku4ofvhlziami6ybawevy72lal.py # Topologically Sorted Source Nodes: [matrix_ac, matrix_bd], Original ATen: [aten.clone] # Source node to ATen node mapping: # matrix_ac => clone # matrix_bd => clone_2 # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand,), kwargs = {memory_format: torch.contiguous_format}) # %clone_2 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + (y0), ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x2 + (4*y3)), tmp4, xmask & ymask) tl.store(out_ptr1 + (x2 + (4*y3)), tmp6, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/mh/cmhet4vfl4jlxtge4zzaaa2nugvxpr5f4ge7rs72qwe2aow7vxwy.py # Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.clone] # Source node to ATen node mapping: # matrix_ac => clone_1 # Graph fragment: # %clone_1 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_1,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + (4*y3)), tmp2, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/xp/cxp3ouwpdhdlmipppq44wjaey2obmthzec7uqoddmpoigfmupxdx.py # Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.clone] # Source node to ATen node mapping: # matrix_bd => clone_3 # Graph fragment: # %clone_3 : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_3,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_2 = async_compile.triton('triton_poi_fused_clone_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = (yindex // 4) y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (4*x2) + (16*y1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + (4*y3)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/u3/cu3opkmzrgckmrk64elyf7ml2a2gq2grpcbtiejtq54tloftwrmr.py # Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq] # Source node to ATen node mapping: # mask => eq # Graph fragment: # %eq : [num_users=3] = call_function[target=torch.ops.aten.eq.Scalar](args = (%unsqueeze, 0), kwargs = {}) triton_poi_fused_eq_3 = async_compile.triton('triton_poi_fused_eq_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_eq_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_eq_3(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/el/celmnq4cmthcneo2qgxp66qy3keynodxqjqu5pn2ewxs4o4pk4pv.py # Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # add_2 => add_2 # scores => div # scores_1 => full_default, where # softmax => amax, exp, sub, sum_1 # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_14, %view_17), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) triton_poi_fused__softmax_add_div_masked_fill_4 = async_compile.triton('triton_poi_fused__softmax_add_div_masked_fill_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_masked_fill_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_masked_fill_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = (xindex // 16) x3 = xindex tmp0 = tl.load(in_ptr0 + ((4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x3), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (4*x3), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + (4*x3)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp17 = tl.load(in_ptr2 + (2 + (4*x3)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0) + (16*x2)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp24 = tl.load(in_ptr2 + (3 + (4*x3)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = float("-inf") tmp7 = tl.where(tmp0, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = tmp11 * tmp4 tmp13 = tl.where(tmp8, tmp6, tmp12) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp16 + tmp17 tmp19 = tmp18 * tmp4 tmp20 = tl.where(tmp15, tmp6, tmp19) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp23 + tmp24 tmp26 = tmp25 * tmp4 tmp27 = tl.where(tmp22, tmp6, tmp26) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + (x3), tmp28, xmask) tl.store(out_ptr1 + (x3), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_6/inductor_cache/fn/cfnmi7pncqelvz56byxmokejmd37qckxv3wfecynqkl3e6gmjuq3.py # Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax, attn], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax] # Source node to ATen node mapping: # add_2 => add_2 # attn => full_default_1, where_1 # scores => div # scores_1 => full_default, where # softmax => div_1, exp, sub # Graph fragment: # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_14, %view_17), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add_2, 1.0), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], -inf), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default, %div), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %full_default_1 : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%eq, %full_default_1, %div_1), kwargs = {}) triton_poi_fused__softmax_add_div_masked_fill_5 = async_compile.triton('triton_poi_fused__softmax_add_div_masked_fill_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_add_div_masked_fill_5', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_add_div_masked_fill_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = (xindex // 64) x4 = xindex % 16 x5 = xindex x6 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x4 + (16*x3)), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + (x5), xmask) tmp2 = tl.load(in_ptr1 + (x5), xmask) tmp8 = tl.load(in_ptr2 + (x6), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x6), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = float("-inf") tmp7 = tl.where(tmp0, tmp6, tmp5) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp13 = 0.0 tmp14 = tl.where(tmp0, tmp13, tmp12) tl.store(in_out_ptr0 + (x5), tmp12, xmask) tl.store(out_ptr0 + (x5), tmp14, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4, ), (1, )) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, 1), (1, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_3], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf3) del primals_11 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matrix_ac, matrix_bd], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(buf0, primals_3, primals_12, primals_13, buf4, buf7, 16, 4, grid=grid(16, 4), stream=stream0) del primals_12 del primals_13 del primals_3 buf5 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf1, primals_5, buf5, 16, 4, grid=grid(16, 4), stream=stream0) del primals_5 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matrix_ac], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf8 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf3, buf8, 16, 4, grid=grid(16, 4), stream=stream0) buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matrix_bd], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf8, (16, 1, 4), (4, 0, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool) # Topologically Sorted Source Nodes: [mask], Original ATen: [aten.eq] triton_poi_fused_eq_3.run(primals_14, buf10, 64, grid=grid(64), stream=stream0) del primals_14 buf11 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 64), 0); del buf3 # reuse buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) # Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_add_div_masked_fill_4.run(buf10, buf6, buf9, buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf6 # reuse buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [add_2, scores, scores_1, softmax, attn], Original ATen: [aten.add, aten.div, aten.masked_fill, aten._softmax] triton_poi_fused__softmax_add_div_masked_fill_5.run(buf13, buf10, buf9, buf11, buf12, buf14, 256, grid=grid(256), stream=stream0) del buf9 buf15 = reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf12 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(buf2, primals_8, buf15, 16, 4, grid=grid(16, 4), stream=stream0) del primals_8 buf16 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [x], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 0), 0), out=buf16) buf17 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf11 # reuse # Topologically Sorted Source Nodes: [contiguous], Original ATen: [aten.clone] triton_poi_fused_clone_2.run(buf16, buf17, 16, 4, grid=grid(16, 4), stream=stream0) buf18 = reinterpret_tensor(buf16, (16, 4), (4, 1), 0); del buf16 # reuse # Topologically Sorted Source Nodes: [linear_4], Original ATen: [aten.addmm] extern_kernels.addmm(primals_16, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_16 return (reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0), buf10, buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), primals_15, reinterpret_tensor(buf14, (16, 4, 4), (16, 1, 4), 0), reinterpret_tensor(buf15, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_14 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_15 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_16 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from typing import Optional from typing import Tuple from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + y0, ymask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x2 + 4 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (x2 + 4 * y3), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4 * y3), tmp2, xmask & ymask) @triton.jit def triton_poi_fused_clone_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 4 y1 = yindex // 4 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 4 * x2 + 16 * y1), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x2 + 4 * y3), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_eq_3(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 == tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_add_div_masked_fill_4(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (4 * x0 + 16 * x2), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + 4 * x3, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 4 * x3, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0 + 16 * x2), xmask, eviction_policy ='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x3), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp17 = tl.load(in_ptr2 + (2 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0 + 16 * x2), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr2 + (3 + 4 * x3), xmask, eviction_policy='evict_last' ) tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = float('-inf') tmp7 = tl.where(tmp0, tmp6, tmp5) tmp11 = tmp9 + tmp10 tmp12 = tmp11 * tmp4 tmp13 = tl.where(tmp8, tmp6, tmp12) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp16 + tmp17 tmp19 = tmp18 * tmp4 tmp20 = tl.where(tmp15, tmp6, tmp19) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp23 + tmp24 tmp26 = tmp25 * tmp4 tmp27 = tl.where(tmp22, tmp6, tmp26) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + x3, tmp28, xmask) tl.store(out_ptr1 + x3, tmp39, xmask) @triton.jit def triton_poi_fused__softmax_add_div_masked_fill_5(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex // 64 x4 = xindex % 16 x5 = xindex x6 = xindex // 4 tmp0 = tl.load(in_ptr0 + (x4 + 16 * x3), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp1 = tl.load(in_out_ptr0 + x5, xmask) tmp2 = tl.load(in_ptr1 + x5, xmask) tmp8 = tl.load(in_ptr2 + x6, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x6, xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp4 = 1.0 tmp5 = tmp3 * tmp4 tmp6 = float('-inf') tmp7 = tl.where(tmp0, tmp6, tmp5) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp13 = 0.0 tmp14 = tl.where(tmp0, tmp13, tmp12) tl.store(in_out_ptr0 + x5, tmp12, xmask) tl.store(out_ptr0 + x5, tmp14, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16) = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (4,), (1,)) assert_size_stride(primals_9, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_10, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_11, (4, 4), (4, 1)) assert_size_stride(primals_12, (4, 1), (1, 1)) assert_size_stride(primals_13, (4, 1), (1, 1)) assert_size_stride(primals_14, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_15, (4, 4), (4, 1)) assert_size_stride(primals_16, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_1, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_6, (16, 4), (4, 1), 0), reinterpret_tensor(primals_4, (4, 4), (1, 4), 0), out=buf1) del primals_4 buf2 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_9, (16, 4), (4, 1), 0), reinterpret_tensor(primals_7, (4, 4), (1, 4), 0), out=buf2) del primals_7 buf3 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_11, (4, 4), (1, 4), 0), out=buf3) del primals_11 buf4 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) buf7 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(16, 4)](buf0, primals_3, primals_12, primals_13, buf4, buf7, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) del primals_12 del primals_13 del primals_3 buf5 = reinterpret_tensor(buf0, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf0 triton_poi_fused_clone_1[grid(16, 4)](buf1, primals_5, buf5, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_5 buf6 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf5, (16, 1, 4), (4, 0, 1), 0), out=buf6) buf8 = reinterpret_tensor(buf1, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf1 triton_poi_fused_clone_2[grid(16, 4)](buf3, buf8, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf9 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf8, (16, 1, 4), (4, 0, 1), 0), out=buf9) buf10 = empty_strided_cuda((4, 1, 4, 4), (16, 16, 4, 1), torch.bool) triton_poi_fused_eq_3[grid(64)](primals_14, buf10, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_14 buf11 = reinterpret_tensor(buf3, (4, 4, 4, 1), (16, 4, 1, 64), 0) del buf3 buf12 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_div_masked_fill_4[grid(64)](buf10, buf6, buf9, buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = reinterpret_tensor(buf6, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf6 buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused__softmax_add_div_masked_fill_5[grid(256)](buf13, buf10, buf9, buf11, buf12, buf14, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf9 buf15 = reinterpret_tensor(buf12, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf12 triton_poi_fused_clone_1[grid(16, 4)](buf2, primals_8, buf15, 16, 4, XBLOCK=4, YBLOCK=8, num_warps=1, num_stages=1) del primals_8 buf16 = reinterpret_tensor(buf2, (16, 4, 1), (4, 1, 1), 0) del buf2 extern_kernels.bmm(reinterpret_tensor(buf14, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf15, (16, 4, 1), (4, 1, 0), 0), out=buf16) buf17 = reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf11 triton_poi_fused_clone_2[grid(16, 4)](buf16, buf17, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf18 = reinterpret_tensor(buf16, (16, 4), (4, 1), 0) del buf16 extern_kernels.addmm(primals_16, reinterpret_tensor(buf17, (16, 4), (4, 1), 0), reinterpret_tensor(primals_15, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf18) del primals_16 return reinterpret_tensor(buf18, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_1, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_6, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_9, (16, 4), (4, 1), 0 ), reinterpret_tensor(primals_10, (16, 4), (4, 1), 0 ), buf10, buf13, reinterpret_tensor(buf17, (16, 4), (4, 1), 0 ), primals_15, reinterpret_tensor(buf14, (16, 4, 4), (16, 1, 4), 0 ), reinterpret_tensor(buf15, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf7, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf8, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf4, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf5, (16, 4, 1), (4, 1, 4), 0) class MultiHeadedAttention(nn.Module): """Multi-Head Attention layer. Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head: 'int', n_feat: 'int', dropout_rate: 'float'): """Construct an MultiHeadedAttention object.""" super().__init__() assert n_feat % n_head == 0 self.d_k = n_feat // n_head self.h = n_head self.linear_q = nn.Linear(n_feat, n_feat) self.linear_k = nn.Linear(n_feat, n_feat) self.linear_v = nn.Linear(n_feat, n_feat) self.linear_out = nn.Linear(n_feat, n_feat) self.dropout = nn.Dropout(p=dropout_rate) def forward_qkv(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor') ->Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """Transform query, key and value. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). Returns: torch.Tensor: Transformed query tensor, size (#batch, n_head, time1, d_k). torch.Tensor: Transformed key tensor, size (#batch, n_head, time2, d_k). torch.Tensor: Transformed value tensor, size (#batch, n_head, time2, d_k). """ n_batch = query.size(0) q = self.linear_q(query).view(n_batch, -1, self.h, self.d_k) k = self.linear_k(key).view(n_batch, -1, self.h, self.d_k) v = self.linear_v(value).view(n_batch, -1, self.h, self.d_k) q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) return q, k, v def forward_attention(self, value: 'torch.Tensor', scores: 'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor: """Compute attention context vector. Args: value (torch.Tensor): Transformed value, size (#batch, n_head, time2, d_k). scores (torch.Tensor): Attention score, size (#batch, n_head, time1, time2). mask (torch.Tensor): Mask, size (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Transformed value (#batch, time1, d_model) weighted by the attention score (#batch, time1, time2). """ n_batch = value.size(0) if mask is not None: mask = mask.unsqueeze(1).eq(0) scores = scores.masked_fill(mask, -float('inf')) attn = torch.softmax(scores, dim=-1).masked_fill(mask, 0.0) else: attn = torch.softmax(scores, dim=-1) p_attn = self.dropout(attn) x = torch.matmul(p_attn, value) x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.h * self.d_k) return self.linear_out(x) def forward(self, query: 'torch.Tensor', key: 'torch.Tensor', value: 'torch.Tensor', mask: 'Optional[torch.Tensor]') ->torch.Tensor: """Compute scaled dot product attention. Args: query (torch.Tensor): Query tensor (#batch, time1, size). key (torch.Tensor): Key tensor (#batch, time2, size). value (torch.Tensor): Value tensor (#batch, time2, size). mask (torch.Tensor): Mask tensor (#batch, 1, time2) or (#batch, time1, time2). Returns: torch.Tensor: Output tensor (#batch, time1, d_model). """ q, k, v = self.forward_qkv(query, key, value) scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) return self.forward_attention(v, scores, mask) class RelPositionMultiHeadedAttentionNew(MultiHeadedAttention): """Multi-Head Attention layer with relative position encoding. Paper: https://arxiv.org/abs/1901.02860 Args: n_head (int): The number of heads. n_feat (int): The number of features. dropout_rate (float): Dropout rate. """ def __init__(self, n_head, n_feat, dropout_rate): """Construct an RelPositionMultiHeadedAttention object.""" super().__init__(n_head, n_feat, dropout_rate) self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) torch.nn.init.xavier_uniform_(self.pos_bias_u) torch.nn.init.xavier_uniform_(self.pos_bias_v) def rel_shift(self, x, zero_triu: 'bool'=False): """Compute relative positinal encoding. Args: x (torch.Tensor): Input tensor (batch, time, size). zero_triu (bool): If true, return the lower triangular part of the matrix. Returns: torch.Tensor: Output tensor. """ zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), device=x.device, dtype=x.dtype) x_padded = torch.cat([zero_pad, x], dim=-1) x_padded = x_padded.view(x.size()[0], x.size()[1], x.size(3) + 1, x .size(2)) x = x_padded[:, :, 1:].view_as(x) if zero_triu: ones = torch.ones((x.size(2), x.size(3))) x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] return x def forward(self, input_0, input_1, input_2, input_3, input_4): primals_12 = self.pos_bias_u primals_13 = self.pos_bias_v primals_2 = self.linear_q.weight primals_3 = self.linear_q.bias primals_4 = self.linear_k.weight primals_5 = self.linear_k.bias primals_7 = self.linear_v.weight primals_8 = self.linear_v.bias primals_11 = self.linear_out.weight primals_16 = self.linear_out.bias primals_15 = self.linear_pos.weight primals_1 = input_0 primals_6 = input_1 primals_9 = input_2 primals_10 = input_3 primals_14 = input_4 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16]) return output[0]
WenjingXia/wenet
RelPositionMultiHeadedAttention
false
1,248
[ "Apache-2.0" ]
0
9a1fd005cd06be16518a5476076b2ae6af2ec41a
https://github.com/WenjingXia/wenet/tree/9a1fd005cd06be16518a5476076b2ae6af2ec41a
CosineBasisLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/vm/cvmxb4fm3754gb5xbvn445attxbnlnqmgxmnql4g235hqqjxgk4t.py # Topologically Sorted Source Nodes: [arange, i_pi, mul_1, embedding], Original ATen: [aten.arange, aten.mul, aten.cos] # Source node to ATen node mapping: # arange => add, convert_element_type, iota, mul # embedding => cos # i_pi => mul_1 # mul_1 => mul_2 # Graph fragment: # %iota : [num_users=1] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%iota, 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, 1), kwargs = {}) # %convert_element_type : [num_users=1] = call_function[target=torch.ops.prims.convert_element_type.default](args = (%add, torch.float32), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convert_element_type, 3.141592653589793), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%unsqueeze, %mul_1), kwargs = {}) # %cos : [num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%mul_2,), kwargs = {}) triton_poi_fused_arange_cos_mul_0 = async_compile.triton('triton_poi_fused_arange_cos_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_arange_cos_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_arange_cos_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = 1 + x0 tmp2 = tmp1.to(tl.float32) tmp3 = 3.141592653589793 tmp4 = tmp2 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl_math.cos(tmp5) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [arange, i_pi, mul_1, embedding], Original ATen: [aten.arange, aten.mul, aten.cos] stream0 = get_raw_stream(0) triton_poi_fused_arange_cos_mul_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 buf1 = empty_strided_cuda((256, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.addmm] extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (256, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return (reinterpret_tensor(buf1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0), reinterpret_tensor(buf0, (256, 4), (4, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import numpy as np from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_arange_cos_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = 1 + x0 tmp2 = tmp1.to(tl.float32) tmp3 = 3.141592653589793 tmp4 = tmp2 * tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl_math.cos(tmp5) tl.store(out_ptr0 + x2, tmp6, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_arange_cos_mul_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((256, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_3, reinterpret_tensor(buf0, (256, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf1) del primals_2 del primals_3 return reinterpret_tensor(buf1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1), 0 ), reinterpret_tensor(buf0, (256, 4), (4, 1), 0) def cosine_basis_functions(x, n_basis_functions=64): """Cosine basis functions used to embed quantile thresholds. Args: x (torch.Tensor): Input. n_basis_functions (int): Number of cosine basis functions. Returns: ndarray: Embedding with shape of (x.shape + (n_basis_functions,)). """ i_pi = torch.arange(1, n_basis_functions + 1, dtype=torch.float, device =x.device) * np.pi embedding = torch.cos(x[..., None] * i_pi) assert embedding.shape == x.shape + (n_basis_functions,) return embedding class CosineBasisLinearNew(nn.Module): """Linear layer following cosine basis functions. Args: n_basis_functions (int): Number of cosine basis functions. out_size (int): Output size. """ def __init__(self, n_basis_functions, out_size): super().__init__() self.linear = nn.Linear(n_basis_functions, out_size) self.n_basis_functions = n_basis_functions self.out_size = out_size def forward(self, input_0): primals_2 = self.linear.weight primals_3 = self.linear.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
lin826/pfrl
CosineBasisLinear
false
12,722
[ "MIT" ]
0
62d7f13b854f1879211a386fd870a7db982cc8ec
https://github.com/lin826/pfrl/tree/62d7f13b854f1879211a386fd870a7db982cc8ec
FeatBlock
import torch import torch.nn as nn class FeatBlock(nn.Module): def __init__(self, planes=128, out_dim=128): super().__init__() self.conv1 = nn.Conv2d(planes, planes, 3, padding=1) self.conv2 = nn.Conv2d(planes, out_dim, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, x): x = self.relu(self.conv1(self.relu(x))) x = self.conv2(x) return x def get_inputs(): return [torch.rand([4, 128, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_relu_1(in_ptr0, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tmp1 = tl.full([1, 1], 0, tl.int32) tmp2 = triton_helpers.maximum(tmp1, tmp0) tl.store(out_ptr0 + (y0 + 128 * x2 + 524288 * y1), tmp2, ymask) tl.store(out_ptr1 + (x2 + 4096 * y3), tmp2, ymask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_convolution_3(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 512 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 524288 * y1), ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x2 + 4096 * y3), tmp2, ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 128, 64, 64), (524288, 4096, 64, 1)) assert_size_stride(primals_2, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_3, (128,), (1,)) assert_size_stride(primals_4, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_5, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(16384, 9)](primals_2, buf0, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_2 buf1 = empty_strided_cuda((128, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_0[grid(16384, 9)](primals_4, buf1, 16384, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((4, 128, 64, 64), (524288, 1, 8192, 128), torch.float32) triton_poi_fused_relu_1[grid(512, 4096)](primals_1, buf2, primals_1, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del primals_1 buf3 = extern_kernels.convolution(buf2, buf0, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_2[grid(2097152)](buf4, primals_3, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_3 buf5 = extern_kernels.convolution(buf4, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 128, 64, 64), (524288, 1, 8192, 128)) buf6 = empty_strided_cuda((4, 128, 64, 64), (524288, 4096, 64, 1), torch.float32) triton_poi_fused_convolution_3[grid(512, 4096)](buf5, primals_5, buf6, 512, 4096, XBLOCK=32, YBLOCK=32, num_warps=4, num_stages=1) del buf5 del primals_5 return buf6, buf0, buf1, buf2, buf4 class FeatBlockNew(nn.Module): def __init__(self, planes=128, out_dim=128): super().__init__() self.conv1 = nn.Conv2d(planes, planes, 3, padding=1) self.conv2 = nn.Conv2d(planes, out_dim, 3, padding=1) self.relu = nn.ReLU(inplace=True) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
aliyun/dro-sfm
FeatBlock
false
14,804
[ "MIT" ]
147
8707e2e0ef799d7d47418a018060f503ef449fe3
https://github.com/aliyun/dro-sfm/tree/8707e2e0ef799d7d47418a018060f503ef449fe3
TransposeGatedConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/oj/cojl5mb3pzv5jbmfzjkbac5hekbmpvb72kof6ouyyasitrogdd6n.py # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] # Source node to ATen node mapping: # x => _unsafe_index # Graph fragment: # %_unsafe_index : [num_users=3] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%primals_1, [None, None, %unsqueeze, %convert_element_type_1]), kwargs = {}) triton_poi_fused__unsafe_index_0 = async_compile.triton('triton_poi_fused__unsafe_index_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__unsafe_index_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 0, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 8) % 8 x0 = xindex % 8 x2 = (xindex // 64) x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + (4*tmp4) + (16*x2)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (x4), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/ya/cya2grnbhraytq2wzrkx5sd2ottwnbrnd5ohd2xstcxyryneuc25.py # Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] # Source node to ATen node mapping: # add => add_4 # mv => mul_4, sum_1 # norm => pow_1, pow_2, sum_2 # truediv => div # Graph fragment: # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%permute, %primals_2), kwargs = {}) # %sum_1 : [num_users=2] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_4, [1]), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 2), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, None), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %add_4 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_2, 1e-12), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_mv_1 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_mv_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_mv_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (64 + r0), None) tmp5 = tl.load(in_ptr1 + (1)) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (128 + r0), None) tmp10 = tl.load(in_ptr1 + (2)) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (192 + r0), None) tmp15 = tl.load(in_ptr1 + (3)) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = tmp23 + tmp24 tmp26 = tmp18 / tmp25 tl.store(out_ptr0 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp18, None) tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp25, None) tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp26, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qi/cqiozgecuvqtnurxrggbllqpuci3n65ycew5qi5gdqg44ypxzegy.py # Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv] # Source node to ATen node mapping: # mv_1 => mul_5, sum_3 # truediv => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_1, %add_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %div), kwargs = {}) # %sum_3 : [num_users=3] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_5, [1]), kwargs = {}) triton_per_fused_div_mv_2 = async_compile.triton('triton_per_fused_div_mv_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_div_mv_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1), None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + (0)) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4 = tmp1 / tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/qa/cqaed4ios3xqwlv4d3cciikkdz7d73vhwkegurd5cxca3y7htmvg.py # Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] # Source node to ATen node mapping: # add_1 => add_5 # norm_1 => pow_3, pow_4, sum_4 # truediv_1 => div_1 # Graph fragment: # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_3, 2), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_3, None), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_4, 0.5), kwargs = {}) # %add_5 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_4, 1e-12), kwargs = {}) # %div_1 : [num_users=3] = call_function[target=torch.ops.aten.div.Tensor](args = (%sum_3, %add_5), kwargs = {}) triton_per_fused_add_div_linalg_vector_norm_3 = async_compile.triton('triton_per_fused_add_div_linalg_vector_norm_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {2: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=(2,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_linalg_vector_norm_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr1 + (tl.broadcast_to(r0, [XBLOCK, RBLOCK])), tmp8, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/c2/cc2arficwjs4sforhl25gdfmb3uzfg7hkw46gq3mxgv57jy52z32.py # Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot] # Source node to ATen node mapping: # sigma => mul_7, sum_6 # Graph fragment: # %mul_7 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%div_1, %sum_3), kwargs = {}) # %sum_6 : [num_users=2] = call_function[target=torch.ops.aten.sum.default](args = (%mul_7,), kwargs = {}) triton_per_fused_dot_4 = async_compile.triton('triton_per_fused_dot_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 4], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_dot_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 1, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 4 RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp5, None) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/kw/ckwzptlssdpmtxi6pt23ik63xcuqar2giaakuqtgizxlg5weagc7.py # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv_2 => div_2 # Graph fragment: # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_4, %expand), kwargs = {}) triton_poi_fused_div_5 = async_compile.triton('triton_poi_fused_div_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (0)) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + (x0), tmp3, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/2w/c2wlnlirhh2nibaimsmrfiriqyr7m3r6ij6r2vrxypktuy5hni2x.py # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul] # Source node to ATen node mapping: # conv => convolution # conv_1 => gt, mul_12, where # gated_mask => sigmoid # mask => convolution_1 # x_2 => mul_13 # Graph fragment: # %convolution : [num_users=4] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_2, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index, %div_5, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution_1,), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul_12 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 0.2), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %convolution, %mul_12), kwargs = {}) # %mul_13 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%where, %sigmoid), kwargs = {}) triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6 = async_compile.triton('triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 25) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + (x3), xmask) tmp4 = tl.load(in_ptr1 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 0.2 tmp9 = tmp2 * tmp8 tmp10 = tl.where(tmp7, tmp2, tmp9) tmp11 = tl.sigmoid(tmp5) tmp12 = tmp10 * tmp11 tl.store(in_out_ptr0 + (x3), tmp2, xmask) tl.store(in_out_ptr1 + (x3), tmp5, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (64, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, ), (1, )) assert_size_stride(primals_7, (64, ), (1, )) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_9, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) # Topologically Sorted Source Nodes: [x], Original ATen: [aten._unsafe_index] stream0 = get_raw_stream(0) triton_poi_fused__unsafe_index_0.run(primals_1, buf0, 1024, grid=grid(1024), stream=stream0) del primals_1 buf1 = empty_strided_cuda((64, ), (1, ), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2; del buf2 # reuse buf27 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mv, norm, add, truediv], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf3, primals_4, primals_2, buf1, buf27, 1, 64, grid=grid(1), stream=stream0) buf4 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [truediv, mv_1], Original ATen: [aten.div, aten.mv] triton_per_fused_div_mv_2.run(primals_4, buf1, buf3, buf4, 4, 64, grid=grid(4), stream=stream0) buf6 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [norm_1, add_1, truediv_1], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_3.run(buf4, buf6, 1, 4, grid=grid(1), stream=stream0) buf7 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sigma], Original ATen: [aten.dot] triton_per_fused_dot_4.run(buf6, buf4, buf7, 1, 4, grid=grid(1), stream=stream0) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_2], Original ATen: [aten.div] triton_poi_fused_div_5.run(primals_4, buf7, buf8, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [conv], Original ATen: [aten.convolution] buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1)) buf11 = empty_strided_cuda((64, ), (1, ), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12; del buf12 # reuse buf36 = empty_strided_cuda((64, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [mv_3, norm_2, add_2, truediv_3], Original ATen: [aten.mv, aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_mv_1.run(buf13, primals_8, primals_6, buf11, buf36, 1, 64, grid=grid(1), stream=stream0) buf14 = buf4; del buf4 # reuse # Topologically Sorted Source Nodes: [truediv_3, mv_4], Original ATen: [aten.div, aten.mv] triton_per_fused_div_mv_2.run(primals_8, buf11, buf13, buf14, 4, 64, grid=grid(4), stream=stream0) buf16 = empty_strided_cuda((4, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [norm_3, add_3, truediv_4], Original ATen: [aten.linalg_vector_norm, aten.add, aten.div] triton_per_fused_add_div_linalg_vector_norm_3.run(buf14, buf16, 1, 4, grid=grid(1), stream=stream0) buf17 = empty_strided_cuda((), (), torch.float32) # Topologically Sorted Source Nodes: [sigma_1], Original ATen: [aten.dot] triton_per_fused_dot_4.run(buf16, buf14, buf17, 1, 4, grid=grid(1), stream=stream0) del buf14 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv_5], Original ATen: [aten.div] triton_poi_fused_div_5.run(primals_8, buf17, buf18, 256, grid=grid(256), stream=stream0) # Topologically Sorted Source Nodes: [mask], Original ATen: [aten.convolution] buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1)) buf10 = buf9; del buf9 # reuse buf20 = buf19; del buf19 # reuse buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [conv, mask, gated_mask, conv_1, x_2], Original ATen: [aten.convolution, aten.sigmoid, aten.leaky_relu, aten.mul] triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6.run(buf10, buf20, primals_5, primals_9, buf21, 400, grid=grid(400), stream=stream0) del primals_5 del primals_9 # Topologically Sorted Source Nodes: [], Original ATen: [] buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6) assert_size_stride(buf22, (4, ), (1, )) del buf1 # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27) assert_size_stride(buf28, (64, ), (1, )) del primals_3 # Topologically Sorted Source Nodes: [], Original ATen: [] buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16) assert_size_stride(buf31, (4, ), (1, )) del buf11 # Topologically Sorted Source Nodes: [truediv_3], Original ATen: [aten.div] buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36) assert_size_stride(buf37, (64, ), (1, )) del primals_7 return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8, buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__unsafe_index_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 8 % 8 x0 = xindex % 8 x2 = xindex // 64 x4 = xindex tmp0 = x1 tmp1 = tmp0.to(tl.float32) tmp2 = 0.5 tmp3 = tmp1 * tmp2 tmp4 = tmp3.to(tl.int32) tmp5 = x0 tmp6 = tmp5.to(tl.float32) tmp7 = tmp6 * tmp2 tmp8 = tmp7.to(tl.int32) tmp9 = tl.load(in_ptr0 + (tmp8 + 4 * tmp4 + 16 * x2), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + x4, tmp9, xmask) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_mv_1(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.load(in_ptr0 + (64 + r0), None) tmp5 = tl.load(in_ptr1 + 1) tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp9 = tl.load(in_ptr0 + (128 + r0), None) tmp10 = tl.load(in_ptr1 + 2) tmp11 = tl.broadcast_to(tmp10, [XBLOCK, RBLOCK]) tmp14 = tl.load(in_ptr0 + (192 + r0), None) tmp15 = tl.load(in_ptr1 + 3) tmp16 = tl.broadcast_to(tmp15, [XBLOCK, RBLOCK]) tmp3 = tmp0 * tmp2 tmp7 = tmp4 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp9 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp14 * tmp16 tmp18 = tmp13 + tmp17 tmp19 = tmp18 * tmp18 tmp20 = tl.broadcast_to(tmp19, [XBLOCK, RBLOCK]) tmp22 = tl.sum(tmp20, 1)[:, None] tmp23 = libdevice.sqrt(tmp22) tmp24 = 1e-12 tmp25 = tmp23 + tmp24 tmp26 = tmp18 / tmp25 tl.store(out_ptr0 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp18, None) tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp25, None) tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp26, None) @triton.jit def triton_per_fused_div_mv_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + r1, None, eviction_policy='evict_last') tmp2 = tl.load(in_ptr2 + 0) tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp4 = tmp1 / tmp3 tmp5 = tmp0 * tmp4 tmp6 = tl.broadcast_to(tmp5, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tl.store(out_ptr0 + x0, tmp9, xmask) @triton.jit def triton_per_fused_add_div_linalg_vector_norm_3(in_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = tl.sum(tmp2, 1)[:, None] tmp5 = libdevice.sqrt(tmp4) tmp6 = 1e-12 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr1 + tl.broadcast_to(r0, [XBLOCK, RBLOCK]), tmp8, None) @triton.jit def triton_per_fused_dot_4(in_ptr0, in_ptr1, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 4 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.sum(tmp3, 1)[:, None] tl.store(out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp5, None) @triton.jit def triton_poi_fused_div_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 / tmp2 tl.store(out_ptr0 + x0, tmp3, xmask) @triton.jit def triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6(in_out_ptr0, in_out_ptr1, in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 25 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_out_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = 0.0 tmp7 = tmp2 > tmp6 tmp8 = 0.2 tmp9 = tmp2 * tmp8 tmp10 = tl.where(tmp7, tmp2, tmp9) tmp11 = tl.sigmoid(tmp5) tmp12 = tmp10 * tmp11 tl.store(in_out_ptr0 + x3, tmp2, xmask) tl.store(in_out_ptr1 + x3, tmp5, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (64,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4,), (1,)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.float32) get_raw_stream(0) triton_poi_fused__unsafe_index_0[grid(1024)](primals_1, buf0, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((64,), (1,), torch.float32) buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 buf27 = empty_strided_cuda((64,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf3, primals_4, primals_2, buf1, buf27, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) buf4 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_div_mv_2[grid(4)](primals_4, buf1, buf3, buf4, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf6 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf4, buf6, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf7 = empty_strided_cuda((), (), torch.float32) triton_per_fused_dot_4[grid(1)](buf6, buf4, buf7, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf8 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_5[grid(256)](primals_4, buf7, buf8, 256, XBLOCK=256, num_warps=4, num_stages=1) buf9 = extern_kernels.convolution(buf0, buf8, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf9, (4, 4, 5, 5), (100, 25, 5, 1)) buf11 = empty_strided_cuda((64,), (1,), torch.float32) buf12 = empty_strided_cuda((), (), torch.float32) buf13 = buf12 del buf12 buf36 = empty_strided_cuda((64,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_mv_1[grid(1)](buf13, primals_8, primals_6, buf11, buf36, 1, 64, XBLOCK=1, num_warps= 2, num_stages=1) buf14 = buf4 del buf4 triton_per_fused_div_mv_2[grid(4)](primals_8, buf11, buf13, buf14, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) buf16 = empty_strided_cuda((4,), (1,), torch.float32) triton_per_fused_add_div_linalg_vector_norm_3[grid(1)](buf14, buf16, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) buf17 = empty_strided_cuda((), (), torch.float32) triton_per_fused_dot_4[grid(1)](buf16, buf14, buf17, 1, 4, XBLOCK=1, num_warps=2, num_stages=1) del buf14 buf18 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_div_5[grid(256)](primals_8, buf17, buf18, 256, XBLOCK=256, num_warps=4, num_stages=1) buf19 = extern_kernels.convolution(buf0, buf18, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf19, (4, 4, 5, 5), (100, 25, 5, 1)) buf10 = buf9 del buf9 buf20 = buf19 del buf19 buf21 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32 ) triton_poi_fused_convolution_leaky_relu_mul_sigmoid_6[grid(400)](buf10, buf20, primals_5, primals_9, buf21, 400, XBLOCK=128, num_warps= 4, num_stages=1) del primals_5 del primals_9 buf22 = torch.ops.aten.set_.source_Tensor(primals_2, buf6) assert_size_stride(buf22, (4,), (1,)) del buf1 buf28 = torch.ops.aten.set_.source_Tensor(primals_3, buf27) assert_size_stride(buf28, (64,), (1,)) del primals_3 buf31 = torch.ops.aten.set_.source_Tensor(primals_6, buf16) assert_size_stride(buf31, (4,), (1,)) del buf11 buf37 = torch.ops.aten.set_.source_Tensor(primals_7, buf36) assert_size_stride(buf37, (64,), (1,)) del primals_7 return (buf21, buf8, buf18, primals_2, primals_4, primals_6, primals_8, buf0, buf3, buf6, buf7, buf8, buf10, buf13, buf16, buf17, buf18, buf20) def l2normalize(v, eps=1e-12): return v / (v.norm() + eps) class LayerNorm(nn.Module): def __init__(self, num_features, eps=1e-08, affine=True): super(LayerNorm, self).__init__() self.num_features = num_features self.affine = affine self.eps = eps if self.affine: self.gamma = Parameter(torch.Tensor(num_features).uniform_()) self.beta = Parameter(torch.zeros(num_features)) def forward(self, x): shape = [-1] + [1] * (x.dim() - 1) if x.size(0) == 1: mean = x.view(-1).mean().view(*shape) std = x.view(-1).std().view(*shape) else: mean = x.view(x.size(0), -1).mean(1).view(*shape) std = x.view(x.size(0), -1).std(1).view(*shape) x = (x - mean) / (std + self.eps) if self.affine: shape = [1, -1] + [1] * (x.dim() - 2) x = x * self.gamma.view(*shape) + self.beta.view(*shape) return x class SpectralNorm(nn.Module): def __init__(self, module, name='weight', power_iterations=1): super(SpectralNorm, self).__init__() self.module = module self.name = name self.power_iterations = power_iterations if not self._made_params(): self._make_params() def _update_u_v(self): u = getattr(self.module, self.name + '_u') v = getattr(self.module, self.name + '_v') w = getattr(self.module, self.name + '_bar') height = w.data.shape[0] for _ in range(self.power_iterations): v.data = l2normalize(torch.mv(torch.t(w.view(height, -1).data), u.data)) u.data = l2normalize(torch.mv(w.view(height, -1).data, v.data)) sigma = u.dot(w.view(height, -1).mv(v)) setattr(self.module, self.name, w / sigma.expand_as(w)) def _made_params(self): try: getattr(self.module, self.name + '_u') getattr(self.module, self.name + '_v') getattr(self.module, self.name + '_bar') return True except AttributeError: return False def _make_params(self): w = getattr(self.module, self.name) height = w.data.shape[0] width = w.view(height, -1).data.shape[1] u = Parameter(w.data.new(height).normal_(0, 1), requires_grad=False) v = Parameter(w.data.new(width).normal_(0, 1), requires_grad=False) u.data = l2normalize(u.data) v.data = l2normalize(v.data) w_bar = Parameter(w.data) del self.module._parameters[self.name] self.module.register_parameter(self.name + '_u', u) self.module.register_parameter(self.name + '_v', v) self.module.register_parameter(self.name + '_bar', w_bar) def forward(self, *args): self._update_u_v() return self.module.forward(*args) class GatedConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='reflect', activation='elu', norm= 'none', sn=False): super(GatedConv2d, self).__init__() if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) if norm == 'bn': self.norm = nn.BatchNorm2d(out_channels) elif norm == 'in': self.norm = nn.InstanceNorm2d(out_channels) elif norm == 'ln': self.norm = LayerNorm(out_channels) elif norm == 'none': self.norm = None else: assert 0, 'Unsupported normalization: {}'.format(norm) if activation == 'relu': self.activation = nn.ReLU(inplace=True) elif activation == 'lrelu': self.activation = nn.LeakyReLU(0.2, inplace=True) elif activation == 'elu': self.activation = nn.ELU() elif activation == 'selu': self.activation = nn.SELU(inplace=True) elif activation == 'tanh': self.activation = nn.Tanh() elif activation == 'sigmoid': self.activation = nn.Sigmoid() elif activation == 'none': self.activation = None else: assert 0, 'Unsupported activation: {}'.format(activation) if sn: self.conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation)) self.mask_conv2d = SpectralNorm(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation= dilation)) else: self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.mask_conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=0, dilation=dilation) self.sigmoid = torch.nn.Sigmoid() def forward(self, x): x = self.pad(x) conv = self.conv2d(x) mask = self.mask_conv2d(x) gated_mask = self.sigmoid(mask) if self.activation: conv = self.activation(conv) x = conv * gated_mask return x class TransposeGatedConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, pad_type='zero', activation='lrelu', norm= 'none', sn=True, scale_factor=2): super(TransposeGatedConv2dNew, self).__init__() self.scale_factor = scale_factor self.gated_conv2d = GatedConv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, pad_type, activation, norm, sn) def forward(self, input_0): primals_2 = self.gated_conv2d.conv2d.module.bias primals_5 = self.gated_conv2d.conv2d.module.weight_u primals_3 = self.gated_conv2d.conv2d.module.weight_v primals_1 = self.gated_conv2d.conv2d.module.weight_bar primals_6 = self.gated_conv2d.mask_conv2d.module.bias primals_9 = self.gated_conv2d.mask_conv2d.module.weight_u primals_7 = self.gated_conv2d.mask_conv2d.module.weight_v primals_4 = self.gated_conv2d.mask_conv2d.module.weight_bar primals_8 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
autocomic/https-github.com-autocomic-DeepFillv2_Pytorch
TransposeGatedConv2d
false
3,155
[ "MIT" ]
0
7f6712a9b42dfd827879271f13856f1da5d6a032
https://github.com/autocomic/https-github.com-autocomic-DeepFillv2_Pytorch/tree/7f6712a9b42dfd827879271f13856f1da5d6a032
GroupWiseLinear
import math import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed class GroupWiseLinear(nn.Module): def __init__(self, num_class, hidden_dim, bias=True): super().__init__() self.num_class = num_class self.hidden_dim = hidden_dim self.bias = bias self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) if bias: self.b = nn.Parameter(torch.Tensor(1, num_class)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.W.size(2)) for i in range(self.num_class): self.W[0][i].data.uniform_(-stdv, stdv) if self.bias: for i in range(self.num_class): self.b[0][i].data.uniform_(-stdv, stdv) def forward(self, x): x = (self.W * x).sum(-1) if self.bias: x = x + self.b return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_class': 4, 'hidden_dim': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr2 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tmp9 = tmp7 * tmp8 tmp10 = tmp6 + tmp9 tmp13 = tmp11 * tmp12 tmp14 = tmp10 + tmp13 tmp16 = tmp14 + tmp15 tl.store(out_ptr0 + x2, tmp16, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (1, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mul_sum_0[grid(64)](primals_1, primals_2, primals_3, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 del primals_3 return buf0, primals_2 class GroupWiseLinearNew(nn.Module): def __init__(self, num_class, hidden_dim, bias=True): super().__init__() self.num_class = num_class self.hidden_dim = hidden_dim self.bias = bias self.W = nn.Parameter(torch.Tensor(1, num_class, hidden_dim)) if bias: self.b = nn.Parameter(torch.Tensor(1, num_class)) self.reset_parameters() def reset_parameters(self): stdv = 1.0 / math.sqrt(self.W.size(2)) for i in range(self.num_class): self.W[0][i].data.uniform_(-stdv, stdv) if self.bias: for i in range(self.num_class): self.b[0][i].data.uniform_(-stdv, stdv) def forward(self, input_0): primals_1 = self.W primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
davidaderup/query2labels
GroupWiseLinear
false
15,130
[ "MIT" ]
164
5a10c861dda85d94ba01ec6ad4119eef67a9f441
https://github.com/davidaderup/query2labels/tree/5a10c861dda85d94ba01ec6ad4119eef67a9f441
PositionEmbeddingLayer
import torch import torch.nn as nn import torch.utils.data from typing import Dict from typing import Tuple from abc import ABC from abc import abstractmethod class BaseLayer(nn.Module, ABC): """ Base Layer for the torecsys module """ def __init__(self, **kwargs): """ Initializer for BaseLayer Args: **kwargs: kwargs """ super(BaseLayer, self).__init__() @property @abstractmethod def inputs_size(self) ->Dict[str, Tuple[str, ...]]: """ Get inputs size of the layer Returns: Dict[str, Tuple[str, ...]]: dictionary of inputs_size """ raise NotImplementedError('not implemented') @property @abstractmethod def outputs_size(self) ->Dict[str, Tuple[str, ...]]: """ Get outputs size of the layer Returns: Dict[str, Tuple[str, ...]]: dictionary of outputs_size """ raise NotImplementedError('not implemented') class PositionEmbeddingLayer(BaseLayer): """ Layer class of Position Embedding Position Embedding was used in Personalized Re-ranking Model :title:`Changhua Pei et al, 2019`[1], which is to add a trainable tensors per position to the session-based embedding features tensor. :Reference: `Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation <https://arxiv.org/abs/1904.06813>`_. """ @property def inputs_size(self) ->Dict[str, Tuple[str, ...]]: return {'inputs': ('B', 'L', 'E')} @property def outputs_size(self) ->Dict[str, Tuple[str, ...]]: return {'outputs': ('B', 'L', 'E')} def __init__(self, max_num_position: 'int'): """ Initialize PositionEmbedding Args: max_num_position (int): maximum number of position in a sequence """ super().__init__() self.bias = nn.Parameter(torch.Tensor(1, max_num_position, 1)) nn.init.normal_(self.bias) def forward(self, session_embed_inputs: 'torch.Tensor') ->torch.Tensor: """ Forward calculation of PositionEmbedding Args: session_embed_inputs (T), shape = (B, L, E), data_type = torch.float: embedded feature tensors of session Returns: T, shape = (B, L, E), data_type = torch.float: output of PositionEmbedding """ return session_embed_inputs + self.bias def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'max_num_position': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn import torch.utils.data from typing import Dict from typing import Tuple from abc import ABC from abc import abstractmethod assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1, 4, 1), (4, 1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_0[grid(256)](primals_2, primals_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 return buf0, class BaseLayer(nn.Module, ABC): """ Base Layer for the torecsys module """ def __init__(self, **kwargs): """ Initializer for BaseLayer Args: **kwargs: kwargs """ super(BaseLayer, self).__init__() @property @abstractmethod def inputs_size(self) ->Dict[str, Tuple[str, ...]]: """ Get inputs size of the layer Returns: Dict[str, Tuple[str, ...]]: dictionary of inputs_size """ raise NotImplementedError('not implemented') @property @abstractmethod def outputs_size(self) ->Dict[str, Tuple[str, ...]]: """ Get outputs size of the layer Returns: Dict[str, Tuple[str, ...]]: dictionary of outputs_size """ raise NotImplementedError('not implemented') class PositionEmbeddingLayerNew(BaseLayer): """ Layer class of Position Embedding Position Embedding was used in Personalized Re-ranking Model :title:`Changhua Pei et al, 2019`[1], which is to add a trainable tensors per position to the session-based embedding features tensor. :Reference: `Changhua Pei et al, 2019. Personalized Re-ranking for Recommendation <https://arxiv.org/abs/1904.06813>`_. """ @property def inputs_size(self) ->Dict[str, Tuple[str, ...]]: return {'inputs': ('B', 'L', 'E')} @property def outputs_size(self) ->Dict[str, Tuple[str, ...]]: return {'outputs': ('B', 'L', 'E')} def __init__(self, max_num_position: 'int'): """ Initialize PositionEmbedding Args: max_num_position (int): maximum number of position in a sequence """ super().__init__() self.bias = nn.Parameter(torch.Tensor(1, max_num_position, 1)) nn.init.normal_(self.bias) def forward(self, input_0): primals_1 = self.bias primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
p768lwy3/torecsys
PositionEmbeddingLayer
false
16,218
[ "MIT" ]
92
2251366268b4fbe6f8c3ab1628fa72a0db043dcd
https://github.com/p768lwy3/torecsys/tree/2251366268b4fbe6f8c3ab1628fa72a0db043dcd
WeightedBCE
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/5u/c5ujbunjwlnnrn2kep23hksceq3zsdnyg6kx7znk3dwp3qa45d42.py # Topologically Sorted Source Nodes: [log, mul, sub, sub_1, log_1, mul_1, loss], Original ATen: [aten.log, aten.mul, aten.rsub, aten.add] # Source node to ATen node mapping: # log => log # log_1 => log_1 # loss => add # mul => mul # mul_1 => mul_1 # sub => sub # sub_1 => sub_1 # Graph fragment: # %log : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%view,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %log), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view_1), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %view), kwargs = {}) # %log_1 : [num_users=1] = call_function[target=torch.ops.aten.log.default](args = (%sub_1,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %log_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) triton_poi_fused_add_log_mul_rsub_0 = async_compile.triton('triton_poi_fused_add_log_mul_rsub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_log_mul_rsub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_log_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tl_math.log(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp0 tmp6 = tmp4 - tmp1 tmp7 = tl_math.log(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tl.store(out_ptr0 + (x0), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256, ), (1, ), torch.float32) # Topologically Sorted Source Nodes: [log, mul, sub, sub_1, log_1, mul_1, loss], Original ATen: [aten.log, aten.mul, aten.rsub, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_log_mul_rsub_0.run(arg1_1, arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_log_mul_rsub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tl_math.log(tmp1) tmp3 = tmp0 * tmp2 tmp4 = 1.0 tmp5 = tmp4 - tmp0 tmp6 = tmp4 - tmp1 tmp7 = tl_math.log(tmp6) tmp8 = tmp5 * tmp7 tmp9 = tmp3 + tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((256,), (1,), torch.float32) get_raw_stream(0) triton_poi_fused_add_log_mul_rsub_0[grid(256)](arg1_1, arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class WeightedBCENew(nn.Module): def __init__(self, weights=None): super().__init__() self.weights = weights def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
sophmrtn/RectAngle
WeightedBCE
false
10,775
[ "MIT" ]
0
941138fb63bdc3f3cb297a94fa057a16b88b00be
https://github.com/sophmrtn/RectAngle/tree/941138fb63bdc3f3cb297a94fa057a16b88b00be
FusionLayer
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/vz/cvzaqkp26tavrbrlnhbd4ldwxdogtrusfzn7yuq2otx6k2rcsirl.py # Topologically Sorted Source Nodes: [out, mul_1, out_1, mul_2, out_2, mul_3, out_3, mul_4, out_4, mul_5, out_5], Original ATen: [aten.mul, aten.add] # Source node to ATen node mapping: # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # mul_4 => mul_4 # mul_5 => mul_5 # out => mul # out_1 => add # out_2 => add_1 # out_3 => add_2 # out_4 => add_3 # out_5 => add_4 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select, %select_1), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_2, %select_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul, %mul_1), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_4, %select_5), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %mul_2), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_6, %select_7), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, %mul_3), kwargs = {}) # %mul_4 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_8, %select_9), kwargs = {}) # %add_3 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_2, %mul_4), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%select_10, %select_11), kwargs = {}) # %add_4 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_3, %mul_5), kwargs = {}) triton_poi_fused_add_mul_0 = async_compile.triton('triton_poi_fused_add_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (0)) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + (x0), xmask) tmp4 = tl.load(in_ptr0 + (1)) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp6 = tl.load(in_ptr1 + (64 + x0), xmask) tmp9 = tl.load(in_ptr0 + (2)) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp11 = tl.load(in_ptr1 + (128 + x0), xmask) tmp14 = tl.load(in_ptr0 + (3)) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp16 = tl.load(in_ptr1 + (192 + x0), xmask) tmp19 = tl.load(in_ptr0 + (4)) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp21 = tl.load(in_ptr1 + (256 + x0), xmask) tmp24 = tl.load(in_ptr0 + (5)) tmp25 = tl.broadcast_to(tmp24, [XBLOCK]) tmp26 = tl.load(in_ptr1 + (320 + x0), xmask) tmp3 = tmp1 * tmp2 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp10 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp15 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp20 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp25 * tmp26 tmp28 = tmp23 + tmp27 tl.store(in_out_ptr0 + (x0), tmp28, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (6, ), (1, )) assert_size_stride(primals_2, (6, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [out, mul_1, out_1, mul_2, out_2, mul_3, out_3, mul_4, out_4, mul_5, out_5], Original ATen: [aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_mul_0.run(buf1, primals_1, primals_2, 64, grid=grid(64), stream=stream0) del primals_1 return (buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 0), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 256), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 320), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((6, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((6, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn from torch.nn import init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_mul_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x0, xmask) tmp4 = tl.load(in_ptr0 + 1) tmp5 = tl.broadcast_to(tmp4, [XBLOCK]) tmp6 = tl.load(in_ptr1 + (64 + x0), xmask) tmp9 = tl.load(in_ptr0 + 2) tmp10 = tl.broadcast_to(tmp9, [XBLOCK]) tmp11 = tl.load(in_ptr1 + (128 + x0), xmask) tmp14 = tl.load(in_ptr0 + 3) tmp15 = tl.broadcast_to(tmp14, [XBLOCK]) tmp16 = tl.load(in_ptr1 + (192 + x0), xmask) tmp19 = tl.load(in_ptr0 + 4) tmp20 = tl.broadcast_to(tmp19, [XBLOCK]) tmp21 = tl.load(in_ptr1 + (256 + x0), xmask) tmp24 = tl.load(in_ptr0 + 5) tmp25 = tl.broadcast_to(tmp24, [XBLOCK]) tmp26 = tl.load(in_ptr1 + (320 + x0), xmask) tmp3 = tmp1 * tmp2 tmp7 = tmp5 * tmp6 tmp8 = tmp3 + tmp7 tmp12 = tmp10 * tmp11 tmp13 = tmp8 + tmp12 tmp17 = tmp15 * tmp16 tmp18 = tmp13 + tmp17 tmp22 = tmp20 * tmp21 tmp23 = tmp18 + tmp22 tmp27 = tmp25 * tmp26 tmp28 = tmp23 + tmp27 tl.store(in_out_ptr0 + x0, tmp28, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (6,), (1,)) assert_size_stride(primals_2, (6, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_mul_0[grid(64)](buf1, primals_1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 return buf1, reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 0 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 64 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 128 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 192 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 256 ), reinterpret_tensor(primals_2, (4, 4, 4), (16, 4, 1), 320) class FusionLayerNew(nn.Module): def __init__(self, nums=6): super(FusionLayerNew, self).__init__() self.weights = nn.Parameter(torch.randn(nums)) self.nums = nums self._reset_parameters() def _reset_parameters(self): init.constant_(self.weights, 1 / self.nums) def forward(self, input_0): primals_1 = self.weights primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
JasonLin1998/DSS-pytorch
FusionLayer
false
13,886
[ "MIT" ]
188
f249541bf7e5e479e050b562dd6024d6219f36f4
https://github.com/JasonLin1998/DSS-pytorch/tree/f249541bf7e5e479e050b562dd6024d6219f36f4
UNetModule
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/3g/c3guupu3e4x5ddu6pgcr2py4e6r3ttquiqt44s7ze24jvxzikuph.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.elu] # Source node to ATen node mapping: # x => convolution # x_1 => expm1, gt, mul, mul_1, mul_2, where # Graph fragment: # %convolution : [num_users=3] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%convolution, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0507009873554805), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%convolution, 1.0), kwargs = {}) # %expm1 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1, 1.7580993408473766), kwargs = {}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt, %mul, %mul_2), kwargs = {}) triton_poi_fused_convolution_elu_0 = async_compile.triton('triton_poi_fused_convolution_elu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_elu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0507009873554805 tmp6 = tmp2 * tmp5 tmp7 = 1.0 tmp8 = tmp2 * tmp7 tmp9 = libdevice.expm1(tmp8) tmp10 = 1.7580993408473766 tmp11 = tmp9 * tmp10 tmp12 = tl.where(tmp4, tmp6, tmp11) tl.store(in_out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.elu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_elu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_2, x_3], Original ATen: [aten.convolution, aten.elu] triton_poi_fused_convolution_elu_0.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.backends.cudnn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_elu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 1.0507009873554805 tmp6 = tmp2 * tmp5 tmp7 = 1.0 tmp8 = tmp2 * tmp7 tmp9 = libdevice.expm1(tmp8) tmp10 = 1.7580993408473766 tmp11 = tmp9 * tmp10 tmp12 = tl.where(tmp4, tmp6, tmp11) tl.store(in_out_ptr0 + x3, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_elu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_elu_0[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1, buf3 def conv3x3(in_, out): return nn.Conv2d(in_, out, 3, padding=1) class Conv3BN(nn.Module): def __init__(self, in_: 'int', out: 'int', bn=False): super().__init__() self.conv = conv3x3(in_, out) self.bn = nn.BatchNorm2d(out) if bn else None self.activation = nn.SELU(inplace=True) def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) x = self.activation(x) return x class UNetModuleNew(nn.Module): def __init__(self, in_: 'int', out: 'int'): super().__init__() self.l1 = Conv3BN(in_, out) self.l2 = Conv3BN(out, out) def forward(self, input_0): primals_1 = self.l1.conv.weight primals_2 = self.l1.conv.bias primals_4 = self.l2.conv.weight primals_5 = self.l2.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
jayden-chua/image-mask
UNetModule
false
3,705
[ "MIT" ]
0
ce2c6a32bf13df582e7b57e506d58518258be292
https://github.com/jayden-chua/image-mask/tree/ce2c6a32bf13df582e7b57e506d58518258be292
ShiftedSoftplus
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/g6/cg6u4ofsx3lzzsbxca23bt25wgxzmwef3qgpn5xni2lefwxppl2u.py # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] # Source node to ATen node mapping: # softplus => exp, gt, log1p, where # sub => sub # Graph fragment: # %gt : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%arg0_1, 20), kwargs = {}) # %exp : [num_users=1] = call_function[target=torch.ops.aten.exp.default](args = (%arg0_1,), kwargs = {}) # %log1p : [num_users=1] = call_function[target=torch.ops.aten.log1p.default](args = (%exp,), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %arg0_1, %log1p), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where, 0.6931471824645996), kwargs = {}) triton_poi_fused_softplus_sub_0 = async_compile.triton('triton_poi_fused_softplus_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_softplus_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [softplus, sub], Original ATen: [aten.softplus, aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_softplus_sub_0.run(arg0_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.fx import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_softplus_sub_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 20.0 tmp2 = tmp0 > tmp1 tmp3 = tl_math.exp(tmp0) tmp4 = libdevice.log1p(tmp3) tmp5 = tl.where(tmp2, tmp0, tmp4) tmp6 = 0.6931471824645996 tmp7 = tmp5 - tmp6 tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_softplus_sub_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class ShiftedSoftplusNew(torch.nn.Module): def __init__(self): super(ShiftedSoftplusNew, self).__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
JinheonBaek/pytorch_geometric
ShiftedSoftplus
false
17,511
[ "MIT" ]
4
dfd32d08a3d8191d6290e53458d4eda515d04fd6
https://github.com/JinheonBaek/pytorch_geometric/tree/dfd32d08a3d8191d6290e53458d4eda515d04fd6
SpatialAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_7/inductor_cache/46/c46mg7rvdztu6n5oosf5c4if7ziag6obrxhwbn43lcdfibfuom7w.py # Topologically Sorted Source Nodes: [temp_x], Original ATen: [aten.cat] # Source node to ATen node mapping: # temp_x => cat # Graph fragment: # %cat : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%mean, %getitem], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 8, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 2 x0 = xindex % 16 x2 = (xindex // 32) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tmp17 = tl.full([1], 2, tl.int64) tmp18 = tmp0 < tmp17 tmp19 = tl.load(in_ptr0 + (x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + (64*x2)), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + (x3), tmp28, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_7/inductor_cache/my/cmyzznlnv3aykf56hqxijqkl7hycovubzmkxdtihopwgojtdv2p3.py # Topologically Sorted Source Nodes: [attention, x], Original ATen: [aten.sigmoid, aten.mul] # Source node to ATen node mapping: # attention => sigmoid # x => mul # Graph fragment: # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%convolution,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sigmoid, %primals_1), kwargs = {}) triton_poi_fused_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = (xindex // 64) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (16*x2)), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr1 + (x3), xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + (x3), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [temp_x], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(primals_1, buf0, 128, grid=grid(128), stream=stream0) # Topologically Sorted Source Nodes: [temp_x_1], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [attention, x], Original ATen: [aten.sigmoid, aten.mul] triton_poi_fused_mul_sigmoid_1.run(buf1, primals_1, buf2, 256, grid=grid(256), stream=stream0) return (buf2, primals_1, primals_2, buf0, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 2, 3, 3), (18, 9, 3, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 2 x0 = xindex % 16 x2 = xindex // 32 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 1, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp9 = tmp7 + tmp8 tmp10 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp9 + tmp10 tmp12 = 4.0 tmp13 = tmp11 / tmp12 tmp14 = tl.full(tmp13.shape, 0.0, tmp13.dtype) tmp15 = tl.where(tmp4, tmp13, tmp14) tmp16 = tmp0 >= tmp3 tl.full([1], 2, tl.int64) tmp19 = tl.load(in_ptr0 + (x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp21 = triton_helpers.maximum(tmp19, tmp20) tmp22 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp23 = triton_helpers.maximum(tmp21, tmp22) tmp24 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), tmp16 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = triton_helpers.maximum(tmp23, tmp24) tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp16, tmp25, tmp26) tmp28 = tl.where(tmp4, tmp15, tmp27) tl.store(out_ptr0 + x3, tmp28, xmask) @triton.jit def triton_poi_fused_mul_sigmoid_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x2 = xindex // 64 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr1 + x3, xmask) tmp1 = tl.sigmoid(tmp0) tmp3 = tmp1 * tmp2 tl.store(out_ptr0 + x3, tmp3, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 2, 3, 3), (18, 9, 3, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 2, 4, 4), (32, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](primals_1, buf0, 128, XBLOCK=128, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 1, 4, 4), (16, 16, 4, 1)) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_mul_sigmoid_1[grid(256)](buf1, primals_1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) return buf2, primals_1, primals_2, buf0, buf1 class SpatialAttentionNew(nn.Module): def __init__(self): super(SpatialAttentionNew, self).__init__() self.conv1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, padding=1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, input_0): primals_2 = self.conv1.weight primals_1 = input_0 output = call([primals_1, primals_2]) return output[0]
robvincen/robot_gradet
SpatialAttention
false
4,199
[ "BSD-3-Clause" ]
0
a39e3c772c72806dfc99e4d24d8787e0d1bdeef5
https://github.com/robvincen/robot_gradet/tree/a39e3c772c72806dfc99e4d24d8787e0d1bdeef5
ConvMlp
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdybbibnws4d7ukbk3fpn35zkgapxylowdhzwx7vgsllncbdrxa.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # x => convolution # x_1 => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_0 = async_compile.triton('triton_poi_fused_convolution_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/32/c32v7egt4mupqssam3gmac2qgv3ujprjybthsgweflmot256qqw7.py # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_convolution_relu_0.run(buf1, primals_2, 256, grid=grid(256), stream=stream0) del primals_2 # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 return (buf3, primals_1, primals_3, primals_4, buf1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.collect_env assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(256)](buf1, primals_2, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(256)](buf3, primals_5, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 return buf3, primals_1, primals_3, primals_4, buf1 class ConvMlpNew(nn.Module): """ MLP using 1x1 convs that keeps spatial dims """ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU, norm_layer=None, drop=0.0): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=True) self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity( ) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=True) self.drop = nn.Dropout(drop) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
HaotianUpenn/scatterbrain
ConvMlp
false
13,752
[ "Apache-2.0" ]
49
c026128d7362ae627641d11d4e5627bc1f400eb1
https://github.com/HaotianUpenn/scatterbrain/tree/c026128d7362ae627641d11d4e5627bc1f400eb1
SourceContextGate
import torch import torch.nn as nn import torch.cuda import torch.distributed class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGate(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGate, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, prev_emb, dec_state, attn_state): z, source, target = self.context_gate(prev_emb, dec_state, attn_state) return self.tanh(target + z * source) def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'embeddings_size': 4, 'decoder_size': 4, 'attention_size': 4, 'output_size': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.cuda import torch.distributed assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 48 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 12 x1 = xindex // 12 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tmp6 & tmp8 tmp10 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp9 & xmask, eviction_policy='evict_last', other=0.0) tmp11 = tmp0 >= tmp7 tl.full([1], 12, tl.int64) tmp14 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp11 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tl.where(tmp9, tmp10, tmp14) tmp16 = tl.where(tmp4, tmp5, tmp15) tl.store(out_ptr0 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_cat_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_tanh_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + x2, xmask) tmp5 = tl.load(in_ptr2 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tl.sigmoid(tmp3) tmp6 = tmp4 * tmp5 tmp7 = tmp2 + tmp6 tmp8 = libdevice.tanh(tmp7) tl.store(in_out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 12), (12, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4), (4, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (4, 8), (8, 1)) assert_size_stride(primals_9, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 12), (12, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(48)](primals_1, primals_2, primals_3, buf0, 48, XBLOCK=64, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_5, buf0, reinterpret_tensor(primals_4, (12, 4), (1, 12), 0), alpha=1, beta=1, out=buf1) del primals_4 del primals_5 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_7, primals_3, reinterpret_tensor( primals_6, (4, 4), (1, 4), 0), alpha=1, beta=1, out=buf2) del primals_6 del primals_7 buf3 = empty_strided_cuda((4, 8), (8, 1), torch.float32) triton_poi_fused_cat_1[grid(32)](primals_1, primals_2, buf3, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 del primals_2 buf4 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf3, reinterpret_tensor(primals_8, (8, 4), (1, 8 ), 0), out=buf4) del primals_8 buf5 = buf4 del buf4 triton_poi_fused_add_mul_sigmoid_tanh_2[grid(16)](buf5, primals_9, buf1, buf2, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_9 return buf5, primals_3, buf0, buf1, buf2, buf3, buf5 class ContextGate(nn.Module): """ Context gate is a decoder module that takes as input the previous word embedding, the current decoder state and the attention state, and produces a gate. The gate can be used to select the input from the target side context (decoder state), from the source context (attention state) or both. """ def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(ContextGate, self).__init__() input_size = embeddings_size + decoder_size + attention_size self.gate = nn.Linear(input_size, output_size, bias=True) self.sig = nn.Sigmoid() self.source_proj = nn.Linear(attention_size, output_size) self.target_proj = nn.Linear(embeddings_size + decoder_size, output_size) def forward(self, prev_emb, dec_state, attn_state): input_tensor = torch.cat((prev_emb, dec_state, attn_state), dim=1) z = self.sig(self.gate(input_tensor)) proj_source = self.source_proj(attn_state) proj_target = self.target_proj(torch.cat((prev_emb, dec_state), dim=1)) return z, proj_source, proj_target class SourceContextGateNew(nn.Module): """Apply the context gate only to the source context""" def __init__(self, embeddings_size, decoder_size, attention_size, output_size): super(SourceContextGateNew, self).__init__() self.context_gate = ContextGate(embeddings_size, decoder_size, attention_size, output_size) self.tanh = nn.Tanh() def forward(self, input_0, input_1, input_2): primals_4 = self.context_gate.gate.weight primals_5 = self.context_gate.gate.bias primals_1 = self.context_gate.source_proj.weight primals_7 = self.context_gate.source_proj.bias primals_8 = self.context_gate.target_proj.weight primals_9 = self.context_gate.target_proj.bias primals_2 = input_0 primals_3 = input_1 primals_6 = input_2 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
NaomiatLibrary/OpenNMT-kpg-release
SourceContextGate
false
875
[ "MIT" ]
0
1da3468d7dad22529a77f3526abf9b373bd3dc4c
https://github.com/NaomiatLibrary/OpenNMT-kpg-release/tree/1da3468d7dad22529a77f3526abf9b373bd3dc4c
Network
import torch import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel import torch.utils.data class Network(nn.Module): def __init__(self): super(Network, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 16 * 5 * 5) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.nn.parallel import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 18816 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 6 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4704 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 1176 x4 = xindex % 1176 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 1184 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 1280 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 6400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 100 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1600 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 5 x1 = xindex // 5 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 20 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 20 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (10 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (11 + 2 * x0 + 20 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (6, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (6,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (16, 6, 5, 5), (150, 25, 5, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (120, 400), (400, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (2, 84), (84, 1)) assert_size_stride(primals_11, (2,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 6, 28, 28), (4704, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(18816)](buf1, primals_2, 18816, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 6, 14, 14), (1184, 196, 14, 1), torch .float32) buf3 = empty_strided_cuda((4, 6, 14, 14), (1280, 196, 14, 1), torch .int8) triton_poi_fused_max_pool2d_with_indices_1[grid(4704)](buf1, buf2, buf3, 4704, XBLOCK=256, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 16, 10, 10), (1600, 100, 10, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(6400)](buf5, primals_5, 6400, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.int8) buf7 = empty_strided_cuda((4, 16, 5, 5), (400, 25, 5, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(1600)](buf5, buf6, buf7, 1600, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 400), (400, 1), 0), reinterpret_tensor(primals_6, (400, 120), (1, 400), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 2), (2, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 2), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 400), (400, 1), 0), buf9, buf11, primals_10, primals_8, primals_6) class NetworkNew(nn.Module): def __init__(self): super(NetworkNew, self).__init__() self.conv1 = nn.Conv2d(3, 6, 5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(6, 16, 5) self.fc1 = nn.Linear(16 * 5 * 5, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 2) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
Karansutradhar/Convolution-Neural-Network-Objection-Recognition-Dogs-Cats
Network
false
11,614
[ "MIT" ]
0
85dfab2e8758a5cf49368938b03720f197a06b18
https://github.com/Karansutradhar/Convolution-Neural-Network-Objection-Recognition-Dogs-Cats/tree/85dfab2e8758a5cf49368938b03720f197a06b18
WRNInitBlock
import torch import torch.utils.data import torch.nn as nn class WRNConv(nn.Module): """ WRN specific convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. activate : bool Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activate): super(WRNConv, self).__init__() self.activate = activate self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, stride=stride, padding= padding, bias=True) if self.activate: self.activ = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) if self.activate: x = self.activ(x) return x class WRNInitBlock(nn.Module): """ WRN specific initial block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(WRNInitBlock, self).__init__() self.conv = WRNConv(in_channels=in_channels, out_channels= out_channels, kernel_size=7, stride=2, padding=3, activate=True) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, x): x = self.conv(x) x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'out_channels': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.full([1], -1, tl.int64) tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 2, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = tmp5 & tmp5 tmp7 = tl.load(in_ptr0 + (-3 + 4 * x0), tmp6 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp8 = tmp1 >= tmp1 tmp9 = tmp1 < tmp3 tmp10 = tmp8 & tmp9 tmp11 = tmp5 & tmp10 tmp12 = tl.load(in_ptr0 + (-2 + 4 * x0), tmp11 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp13 = triton_helpers.maximum(tmp12, tmp7) tmp14 = tl.full([1], 1, tl.int64) tmp15 = tmp14 >= tmp1 tmp16 = tmp14 < tmp3 tmp17 = tmp15 & tmp16 tmp18 = tmp5 & tmp17 tmp19 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp18 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp20 = triton_helpers.maximum(tmp19, tmp13) tmp21 = tmp10 & tmp5 tmp22 = tl.load(in_ptr0 + (-1 + 4 * x0), tmp21 & xmask, eviction_policy ='evict_last', other=float('-inf')) tmp23 = triton_helpers.maximum(tmp22, tmp20) tmp24 = tmp10 & tmp10 tmp25 = tl.load(in_ptr0 + 4 * x0, tmp24 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp26 = triton_helpers.maximum(tmp25, tmp23) tmp27 = tmp10 & tmp17 tmp28 = tl.load(in_ptr0 + (1 + 4 * x0), tmp27 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp29 = triton_helpers.maximum(tmp28, tmp26) tmp30 = tmp17 & tmp5 tmp31 = tl.load(in_ptr0 + (1 + 4 * x0), tmp30 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp29) tmp33 = tmp17 & tmp10 tmp34 = tl.load(in_ptr0 + (2 + 4 * x0), tmp33 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp17 & tmp17 tmp37 = tl.load(in_ptr0 + (3 + 4 * x0), tmp36 & xmask, eviction_policy= 'evict_last', other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = tmp12 > tmp7 tmp40 = tl.full([1], 1, tl.int8) tmp41 = tl.full([1], 0, tl.int8) tmp42 = tl.where(tmp39, tmp40, tmp41) tmp43 = tmp19 > tmp13 tmp44 = tl.full([1], 2, tl.int8) tmp45 = tl.where(tmp43, tmp44, tmp42) tmp46 = tmp22 > tmp20 tmp47 = tl.full([1], 3, tl.int8) tmp48 = tl.where(tmp46, tmp47, tmp45) tmp49 = tmp25 > tmp23 tmp50 = tl.full([1], 4, tl.int8) tmp51 = tl.where(tmp49, tmp50, tmp48) tmp52 = tmp28 > tmp26 tmp53 = tl.full([1], 5, tl.int8) tmp54 = tl.where(tmp52, tmp53, tmp51) tmp55 = tmp31 > tmp29 tmp56 = tl.full([1], 6, tl.int8) tmp57 = tl.where(tmp55, tmp56, tmp54) tmp58 = tmp34 > tmp32 tmp59 = tl.full([1], 7, tl.int8) tmp60 = tl.where(tmp58, tmp59, tmp57) tmp61 = tmp37 > tmp35 tmp62 = tl.full([1], 8, tl.int8) tmp63 = tl.where(tmp61, tmp62, tmp60) tl.store(out_ptr0 + x0, tmp38, xmask) tl.store(out_ptr1 + x0, tmp63, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 7, 7), (196, 49, 7, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(2, 2), padding=(3, 3), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 2, 2), (16, 4, 2, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(64)](buf1, primals_2, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 1, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(16)](buf1, buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) return buf2, primals_1, primals_3, buf1, buf3 class WRNConv(nn.Module): """ WRN specific convolution block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. kernel_size : int or tuple/list of 2 int Convolution window size. stride : int or tuple/list of 2 int Strides of the convolution. padding : int or tuple/list of 2 int Padding value for convolution layer. activate : bool Whether activate the convolution block. """ def __init__(self, in_channels, out_channels, kernel_size, stride, padding, activate): super(WRNConv, self).__init__() self.activate = activate self.conv = nn.Conv2d(in_channels=in_channels, out_channels= out_channels, kernel_size=kernel_size, stride=stride, padding= padding, bias=True) if self.activate: self.activ = nn.ReLU(inplace=True) def forward(self, x): x = self.conv(x) if self.activate: x = self.activ(x) return x class WRNInitBlockNew(nn.Module): """ WRN specific initial block. Parameters: ---------- in_channels : int Number of input channels. out_channels : int Number of output channels. """ def __init__(self, in_channels, out_channels): super(WRNInitBlockNew, self).__init__() self.conv = WRNConv(in_channels=in_channels, out_channels= out_channels, kernel_size=7, stride=2, padding=3, activate=True) self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def forward(self, input_0): primals_1 = self.conv.conv.weight primals_2 = self.conv.conv.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
HyperGAN/imgclsmob
WRNInitBlock
false
17,692
[ "MIT" ]
9
88b9776a5a927dc9a54e85e31978c4a9ec5ecbf3
https://github.com/HyperGAN/imgclsmob/tree/88b9776a5a927dc9a54e85e31978c4a9ec5ecbf3
GAT
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/gm/cgm5etysa63x5lzpynxjnthlpzhtfd5dibwrlzqlchsymr6n5ony.py # Topologically Sorted Source Nodes: [all_combinations_matrix], Original ATen: [aten.cat] # Source node to ATen node mapping: # all_combinations_matrix => cat # Graph fragment: # %cat : [num_users=1] = call_function[target=torch.ops.aten.cat.default](args = ([%view, %repeat], 1), kwargs = {}) triton_poi_fused_cat_0 = async_compile.triton('triton_poi_fused_cat_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[128], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*(x1 // 4)) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tmp7 = tl.full([1], 8, tl.int64) tmp8 = tmp0 < tmp7 tmp9 = tl.load(in_ptr0 + ((4*(x1 % 4)) + ((-4) + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + (x2), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/4r/c4r7qkyes5rbryciwaphgmxru6ck7iweqdesggebzgrgp5ryzwzx.py # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] # Source node to ATen node mapping: # e => gt # Graph fragment: # %gt : [num_users=2] = call_function[target=torch.ops.aten.gt.Scalar](args = (%squeeze, 0), kwargs = {}) triton_poi_fused_leaky_relu_1 = async_compile.triton('triton_poi_fused_leaky_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_leaky_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/kg/ckgsbli2cqflpwmdemarltfcgvccyfff4hbwg2vkr2e4kg2nfwfz.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => amax, exp, sub, sum_1 # attention_10 => amax_3, exp_3, sub_3, sum_4 # attention_3 => where_4 # attention_4 => amax_1, exp_1, sub_1, sum_2 # attention_6 => where_7 # attention_7 => amax_2, exp_2, sub_2, sum_3 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_1, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %amax_1 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_4, [1], True), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_1, [1], True), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %amax_2 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_7, [1], True), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_2, [1], True), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %amax_3 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_10, [1], True), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %sum_4 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_3, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_2 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*i1', 4: '*fp32', 5: '*i1', 6: '*fp32', 7: '*i1', 8: '*fp32', 9: '*fp32', 10: '*fp32', 11: '*fp32', 12: '*fp32', 13: '*fp32', 14: '*fp32', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 36, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp40 = tl.load(in_ptr3 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp41 = tl.load(in_ptr4 + (4*x0), xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp51 = tl.load(in_ptr3 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp57 = tl.load(in_ptr3 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp74 = tl.load(in_ptr5 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp75 = tl.load(in_ptr6 + (4*x0), xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp85 = tl.load(in_ptr5 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp91 = tl.load(in_ptr5 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp108 = tl.load(in_ptr7 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp109 = tl.load(in_ptr8 + (4*x0), xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp119 = tl.load(in_ptr7 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp125 = tl.load(in_ptr7 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) tl.store(out_ptr2 + (x0), tmp62, xmask) tl.store(out_ptr3 + (x0), tmp73, xmask) tl.store(out_ptr4 + (x0), tmp96, xmask) tl.store(out_ptr5 + (x0), tmp107, xmask) tl.store(out_ptr6 + (x0), tmp130, xmask) tl.store(out_ptr7 + (x0), tmp141, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pv/cpvillqqnrhmtlvupjtc2katvjlr2witoru7t5pjarltgdz5pyra.py # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] # Source node to ATen node mapping: # attention => where_1 # attention_1 => div, exp, sub # attention_10 => div_3, exp_3, sub_3 # attention_3 => where_4 # attention_4 => div_1, exp_1, sub_1 # attention_6 => where_7 # attention_7 => div_2, exp_2, sub_2 # attention_9 => where_10 # e => mul, where # e_1 => mul_5, where_3 # e_2 => mul_10, where_6 # e_3 => mul_15, where_9 # zero_vec => full_default # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze, 4), kwargs = {}) # %where : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt, %squeeze, %mul), kwargs = {}) # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_1 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where, %full_default), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) # %mul_5 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_1, 4), kwargs = {}) # %where_3 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_3, %squeeze_1, %mul_5), kwargs = {}) # %where_4 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_3, %full_default), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_4, %amax_1), kwargs = {}) # %exp_1 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_1,), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_1, %sum_2), kwargs = {}) # %mul_10 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_2, 4), kwargs = {}) # %where_6 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_6, %squeeze_2, %mul_10), kwargs = {}) # %where_7 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_6, %full_default), kwargs = {}) # %sub_2 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_7, %amax_2), kwargs = {}) # %exp_2 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_2,), kwargs = {}) # %div_2 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_2, %sum_3), kwargs = {}) # %mul_15 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_3, 4), kwargs = {}) # %where_9 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_9, %squeeze_3, %mul_15), kwargs = {}) # %where_10 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_9, %full_default), kwargs = {}) # %sub_3 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_10, %amax_3), kwargs = {}) # %exp_3 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_3,), kwargs = {}) # %div_3 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_3, %sum_4), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_3 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*i1', 5: '*i1', 6: '*fp32', 7: '*fp32', 8: '*i1', 9: '*fp32', 10: '*fp32', 11: '*i1', 12: '*fp32', 13: '*fp32', 14: '*i1', 15: '*fp32', 16: '*fp32', 17: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_3', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1', 'in_out_ptr2', 'in_out_ptr3'], 'no_x_dim': False, 'num_load': 17, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + (x2), xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + (x2), xmask) tmp18 = tl.load(in_ptr5 + (x1), xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + (x1), xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + (x2), xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + (x2), xmask) tmp28 = tl.load(in_ptr8 + (x1), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + (x1), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + (x2), xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + (x2), xmask) tmp38 = tl.load(in_ptr11 + (x1), xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + (x2), tmp12, xmask) tl.store(in_out_ptr1 + (x2), tmp22, xmask) tl.store(in_out_ptr2 + (x2), tmp32, xmask) tl.store(in_out_ptr3 + (x2), tmp42, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/hh/chh6w2ghklyzywtaoo3lcd3onberm3miuk3c3djkdig4mqokonfe.py # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] # Source node to ATen node mapping: # x_1 => cat_4 # Graph fragment: # %cat_4 : [num_users=2] = call_function[target=torch.ops.aten.cat.default](args = ([%where_2, %where_5, %where_8, %where_11], 1), kwargs = {}) triton_poi_fused_cat_4 = async_compile.triton('triton_poi_fused_cat_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_cat_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = x0 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + ((4*x1) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + ((4*x1) + ((-4) + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + ((4*x1) + ((-8) + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tmp40 = tl.full([1], 16, tl.int64) tmp41 = tmp0 < tmp40 tmp42 = tl.load(in_ptr3 + ((4*x1) + ((-12) + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + (x2), tmp52, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ls/clsh2ie5vs3nrezepc6wdf5phem3l34645sxafim53m4q6ymeptn.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => amax_4, exp_4, sub_4, sum_5 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %amax_4 : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%where_13, [1], True), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %sum_5 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_4, [1], True), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_5 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*i1', 1: '*i1', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 12, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp1 = tl.load(in_ptr1 + (4*x0), xmask, eviction_policy='evict_last').to(tl.int1) tmp2 = tl.load(in_ptr2 + (4*x0), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + (4*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + (4*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + (4*x0)), xmask, eviction_policy='evict_last').to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + (4*x0)), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + (x0), tmp28, xmask) tl.store(out_ptr1 + (x0), tmp39, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uk/cuks2diyi23xuwjwtsqsucw24cskpggghxl4amhn3lierlyjjg7h.py # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] # Source node to ATen node mapping: # attention_12 => where_13 # attention_13 => div_4, exp_4, sub_4 # e_4 => mul_20, where_12 # zero_vec => full_default # Graph fragment: # %full_default : [num_users=5] = call_function[target=torch.ops.aten.full.default](args = ([4, 4], -8999999815811072.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %mul_20 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%squeeze_4, 4), kwargs = {}) # %where_12 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_12, %squeeze_4, %mul_20), kwargs = {}) # %where_13 : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%gt_1, %where_12, %full_default), kwargs = {}) # %sub_4 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%where_13, %amax_4), kwargs = {}) # %exp_4 : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_4,), kwargs = {}) # %div_4 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_4, %sum_5), kwargs = {}) triton_poi_fused__softmax_leaky_relu_mul_where_6 = async_compile.triton('triton_poi_fused__softmax_leaky_relu_mul_where_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i1', 2: '*i1', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_leaky_relu_mul_where_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + (x2), xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + (x2), xmask) tmp8 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + (x2), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/y4/cy4q6k3x34qlbumrxjyfnwv53krh74c3eepxbtkavm6j27mr4zsq.py # Topologically Sorted Source Nodes: [gat_state], Original ATen: [aten.elu] # Source node to ATen node mapping: # gat_state => expm1_4, gt_14, mul_22, mul_24, where_14 # Graph fragment: # %gt_14 : [num_users=1] = call_function[target=torch.ops.aten.gt.Scalar](args = (%mm_14, 0), kwargs = {}) # %mul_22 : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mm_14, 1.0), kwargs = {}) # %expm1_4 : [num_users=1] = call_function[target=torch.ops.aten.expm1.default](args = (%mul_22,), kwargs = {}) # %mul_24 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%expm1_4, 1.0), kwargs = {}) # %where_14 : [num_users=1] = call_function[target=torch.ops.aten.where.self](args = (%gt_14, %mul_22, %mul_24), kwargs = {}) triton_poi_fused_elu_7 = async_compile.triton('triton_poi_fused_elu_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_elu_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + (x0), tmp7, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [all_combinations_matrix], Original ATen: [aten.cat] stream0 = get_raw_stream(0) triton_poi_fused_cat_0.run(buf0, buf1, 128, grid=grid(128), stream=stream0) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.mm] extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf2, buf3, 16, grid=grid(16), stream=stream0) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [gt], Original ATen: [aten.gt] triton_poi_fused_leaky_relu_1.run(primals_4, buf4, 16, grid=grid(16), stream=stream0) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh_1], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [all_combinations_matrix_1], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf9, buf10, 128, grid=grid(128), stream=stream0) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.mm] extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_1], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf11, buf12, 16, grid=grid(16), stream=stream0) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh_2], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [all_combinations_matrix_2], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf17, buf18, 128, grid=grid(128), stream=stream0) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_4], Original ATen: [aten.mm] extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_2], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf19, buf20, 16, grid=grid(16), stream=stream0) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh_3], Original ATen: [aten.mm] extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [all_combinations_matrix_3], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf25, buf26, 128, grid=grid(128), stream=stream0) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_6], Original ATen: [aten.mm] extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_3], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf27, buf28, 16, grid=grid(16), stream=stream0) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_2.run(buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, grid=grid(4), stream=stream0) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0); del buf2 # reuse buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0); del buf11 # reuse buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0); del buf19 # reuse buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0); del buf27 # reuse # Topologically Sorted Source Nodes: [e, zero_vec, attention, attention_1, e_1, attention_3, attention_4, e_2, attention_6, attention_7, e_3, attention_9, attention_10], Original ATen: [aten.leaky_relu, aten.mul, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_3.run(buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, grid=grid(16), stream=stream0) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime], Original ATen: [aten.mm] extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_1], Original ATen: [aten.mm] extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_2], Original ATen: [aten.mm] extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_3], Original ATen: [aten.mm] extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [x_1], Original ATen: [aten.cat] triton_poi_fused_cat_4.run(buf8, buf16, buf24, buf32, buf33, 64, grid=grid(64), stream=stream0) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [Wh_4], Original ATen: [aten.mm] extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) # Topologically Sorted Source Nodes: [all_combinations_matrix_4], Original ATen: [aten.cat] triton_poi_fused_cat_0.run(buf34, buf35, 128, grid=grid(128), stream=stream0) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_8], Original ATen: [aten.mm] extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) # Topologically Sorted Source Nodes: [e_4], Original ATen: [aten.leaky_relu] triton_poi_fused_leaky_relu_1.run(buf36, buf37, 16, grid=grid(16), stream=stream0) buf38 = buf6; del buf6 # reuse buf39 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_5.run(buf4, buf37, buf36, buf38, buf39, 4, grid=grid(4), stream=stream0) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0); del buf36 # reuse # Topologically Sorted Source Nodes: [zero_vec, e_4, attention_12, attention_13], Original ATen: [aten.mul, aten.leaky_relu, aten.where, aten._softmax] triton_poi_fused__softmax_leaky_relu_mul_where_6.run(buf40, buf4, buf37, buf38, buf39, 16, grid=grid(16), stream=stream0) del buf38 del buf39 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [h_prime_4], Original ATen: [aten.mm] extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [gat_state], Original ATen: [aten.elu] triton_poi_fused_elu_7.run(buf41, buf42, 16, grid=grid(16), stream=stream0) return (buf42, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor(buf35, (8, 16), (1, 8), 0), reinterpret_tensor(primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor(buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor(buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), (1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor(primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((8, 1), (1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_cat_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 128 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * (x1 // 4) + x0), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tmp0 >= tmp3 tl.full([1], 8, tl.int64) tmp9 = tl.load(in_ptr0 + (4 * (x1 % 4) + (-4 + x0)), tmp6 & xmask, eviction_policy='evict_last', other=0.0) tmp10 = tl.where(tmp4, tmp5, tmp9) tl.store(out_ptr0 + x2, tmp10, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, out_ptr0, out_ptr1, out_ptr2, out_ptr3, out_ptr4, out_ptr5, out_ptr6, out_ptr7, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp40 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp41 = tl.load(in_ptr4 + 4 * x0, xmask, eviction_policy='evict_last') tmp45 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp46 = tl.load(in_ptr4 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp51 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp52 = tl.load(in_ptr4 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp57 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp58 = tl.load(in_ptr4 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp74 = tl.load(in_ptr5 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp75 = tl.load(in_ptr6 + 4 * x0, xmask, eviction_policy='evict_last') tmp79 = tl.load(in_ptr5 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp80 = tl.load(in_ptr6 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp85 = tl.load(in_ptr5 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp86 = tl.load(in_ptr6 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp91 = tl.load(in_ptr5 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp92 = tl.load(in_ptr6 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp108 = tl.load(in_ptr7 + 4 * x0, xmask, eviction_policy='evict_last').to( tl.int1) tmp109 = tl.load(in_ptr8 + 4 * x0, xmask, eviction_policy='evict_last') tmp113 = tl.load(in_ptr7 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp114 = tl.load(in_ptr8 + (1 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp119 = tl.load(in_ptr7 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp120 = tl.load(in_ptr8 + (2 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp125 = tl.load(in_ptr7 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last').to(tl.int1) tmp126 = tl.load(in_ptr8 + (3 + 4 * x0), xmask, eviction_policy= 'evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tmp42 = tmp41 * tmp3 tmp43 = tl.where(tmp40, tmp41, tmp42) tmp44 = tl.where(tmp0, tmp43, tmp6) tmp47 = tmp46 * tmp3 tmp48 = tl.where(tmp45, tmp46, tmp47) tmp49 = tl.where(tmp8, tmp48, tmp6) tmp50 = triton_helpers.maximum(tmp44, tmp49) tmp53 = tmp52 * tmp3 tmp54 = tl.where(tmp51, tmp52, tmp53) tmp55 = tl.where(tmp15, tmp54, tmp6) tmp56 = triton_helpers.maximum(tmp50, tmp55) tmp59 = tmp58 * tmp3 tmp60 = tl.where(tmp57, tmp58, tmp59) tmp61 = tl.where(tmp22, tmp60, tmp6) tmp62 = triton_helpers.maximum(tmp56, tmp61) tmp63 = tmp44 - tmp62 tmp64 = tl_math.exp(tmp63) tmp65 = tmp49 - tmp62 tmp66 = tl_math.exp(tmp65) tmp67 = tmp64 + tmp66 tmp68 = tmp55 - tmp62 tmp69 = tl_math.exp(tmp68) tmp70 = tmp67 + tmp69 tmp71 = tmp61 - tmp62 tmp72 = tl_math.exp(tmp71) tmp73 = tmp70 + tmp72 tmp76 = tmp75 * tmp3 tmp77 = tl.where(tmp74, tmp75, tmp76) tmp78 = tl.where(tmp0, tmp77, tmp6) tmp81 = tmp80 * tmp3 tmp82 = tl.where(tmp79, tmp80, tmp81) tmp83 = tl.where(tmp8, tmp82, tmp6) tmp84 = triton_helpers.maximum(tmp78, tmp83) tmp87 = tmp86 * tmp3 tmp88 = tl.where(tmp85, tmp86, tmp87) tmp89 = tl.where(tmp15, tmp88, tmp6) tmp90 = triton_helpers.maximum(tmp84, tmp89) tmp93 = tmp92 * tmp3 tmp94 = tl.where(tmp91, tmp92, tmp93) tmp95 = tl.where(tmp22, tmp94, tmp6) tmp96 = triton_helpers.maximum(tmp90, tmp95) tmp97 = tmp78 - tmp96 tmp98 = tl_math.exp(tmp97) tmp99 = tmp83 - tmp96 tmp100 = tl_math.exp(tmp99) tmp101 = tmp98 + tmp100 tmp102 = tmp89 - tmp96 tmp103 = tl_math.exp(tmp102) tmp104 = tmp101 + tmp103 tmp105 = tmp95 - tmp96 tmp106 = tl_math.exp(tmp105) tmp107 = tmp104 + tmp106 tmp110 = tmp109 * tmp3 tmp111 = tl.where(tmp108, tmp109, tmp110) tmp112 = tl.where(tmp0, tmp111, tmp6) tmp115 = tmp114 * tmp3 tmp116 = tl.where(tmp113, tmp114, tmp115) tmp117 = tl.where(tmp8, tmp116, tmp6) tmp118 = triton_helpers.maximum(tmp112, tmp117) tmp121 = tmp120 * tmp3 tmp122 = tl.where(tmp119, tmp120, tmp121) tmp123 = tl.where(tmp15, tmp122, tmp6) tmp124 = triton_helpers.maximum(tmp118, tmp123) tmp127 = tmp126 * tmp3 tmp128 = tl.where(tmp125, tmp126, tmp127) tmp129 = tl.where(tmp22, tmp128, tmp6) tmp130 = triton_helpers.maximum(tmp124, tmp129) tmp131 = tmp112 - tmp130 tmp132 = tl_math.exp(tmp131) tmp133 = tmp117 - tmp130 tmp134 = tl_math.exp(tmp133) tmp135 = tmp132 + tmp134 tmp136 = tmp123 - tmp130 tmp137 = tl_math.exp(tmp136) tmp138 = tmp135 + tmp137 tmp139 = tmp129 - tmp130 tmp140 = tl_math.exp(tmp139) tmp141 = tmp138 + tmp140 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) tl.store(out_ptr2 + x0, tmp62, xmask) tl.store(out_ptr3 + x0, tmp73, xmask) tl.store(out_ptr4 + x0, tmp96, xmask) tl.store(out_ptr5 + x0, tmp107, xmask) tl.store(out_ptr6 + x0, tmp130, xmask) tl.store(out_ptr7 + x0, tmp141, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_3(in_out_ptr0, in_out_ptr1, in_out_ptr2, in_out_ptr3, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, in_ptr12, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp13 = tl.load(in_ptr4 + x2, xmask).to(tl.int1) tmp14 = tl.load(in_out_ptr1 + x2, xmask) tmp18 = tl.load(in_ptr5 + x1, xmask, eviction_policy='evict_last') tmp21 = tl.load(in_ptr6 + x1, xmask, eviction_policy='evict_last') tmp23 = tl.load(in_ptr7 + x2, xmask).to(tl.int1) tmp24 = tl.load(in_out_ptr2 + x2, xmask) tmp28 = tl.load(in_ptr8 + x1, xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr9 + x1, xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr10 + x2, xmask).to(tl.int1) tmp34 = tl.load(in_out_ptr3 + x2, xmask) tmp38 = tl.load(in_ptr11 + x1, xmask, eviction_policy='evict_last') tmp41 = tl.load(in_ptr12 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tmp15 = tmp14 * tmp3 tmp16 = tl.where(tmp13, tmp14, tmp15) tmp17 = tl.where(tmp0, tmp16, tmp6) tmp19 = tmp17 - tmp18 tmp20 = tl_math.exp(tmp19) tmp22 = tmp20 / tmp21 tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp0, tmp26, tmp6) tmp29 = tmp27 - tmp28 tmp30 = tl_math.exp(tmp29) tmp32 = tmp30 / tmp31 tmp35 = tmp34 * tmp3 tmp36 = tl.where(tmp33, tmp34, tmp35) tmp37 = tl.where(tmp0, tmp36, tmp6) tmp39 = tmp37 - tmp38 tmp40 = tl_math.exp(tmp39) tmp42 = tmp40 / tmp41 tl.store(in_out_ptr0 + x2, tmp12, xmask) tl.store(in_out_ptr1 + x2, tmp22, xmask) tl.store(in_out_ptr2 + x2, tmp32, xmask) tl.store(in_out_ptr3 + x2, tmp42, xmask) @triton.jit def triton_poi_fused_cat_4(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = x0 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4 * x1 + x0), tmp4 & xmask, eviction_policy= 'evict_last', other=0.0) tmp6 = 0.0 tmp7 = tmp5 > tmp6 tmp8 = 1.0 tmp9 = tmp5 * tmp8 tmp10 = libdevice.expm1(tmp9) tmp11 = tmp10 * tmp8 tmp12 = tl.where(tmp7, tmp9, tmp11) tmp13 = tl.full(tmp12.shape, 0.0, tmp12.dtype) tmp14 = tl.where(tmp4, tmp12, tmp13) tmp15 = tmp0 >= tmp3 tmp16 = tl.full([1], 8, tl.int64) tmp17 = tmp0 < tmp16 tmp18 = tmp15 & tmp17 tmp19 = tl.load(in_ptr1 + (4 * x1 + (-4 + x0)), tmp18 & xmask, eviction_policy='evict_last', other=0.0) tmp20 = tmp19 > tmp6 tmp21 = tmp19 * tmp8 tmp22 = libdevice.expm1(tmp21) tmp23 = tmp22 * tmp8 tmp24 = tl.where(tmp20, tmp21, tmp23) tmp25 = tl.full(tmp24.shape, 0.0, tmp24.dtype) tmp26 = tl.where(tmp18, tmp24, tmp25) tmp27 = tmp0 >= tmp16 tmp28 = tl.full([1], 12, tl.int64) tmp29 = tmp0 < tmp28 tmp30 = tmp27 & tmp29 tmp31 = tl.load(in_ptr2 + (4 * x1 + (-8 + x0)), tmp30 & xmask, eviction_policy='evict_last', other=0.0) tmp32 = tmp31 > tmp6 tmp33 = tmp31 * tmp8 tmp34 = libdevice.expm1(tmp33) tmp35 = tmp34 * tmp8 tmp36 = tl.where(tmp32, tmp33, tmp35) tmp37 = tl.full(tmp36.shape, 0.0, tmp36.dtype) tmp38 = tl.where(tmp30, tmp36, tmp37) tmp39 = tmp0 >= tmp28 tl.full([1], 16, tl.int64) tmp42 = tl.load(in_ptr3 + (4 * x1 + (-12 + x0)), tmp39 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp42 > tmp6 tmp44 = tmp42 * tmp8 tmp45 = libdevice.expm1(tmp44) tmp46 = tmp45 * tmp8 tmp47 = tl.where(tmp43, tmp44, tmp46) tmp48 = tl.full(tmp47.shape, 0.0, tmp47.dtype) tmp49 = tl.where(tmp39, tmp47, tmp48) tmp50 = tl.where(tmp30, tmp38, tmp49) tmp51 = tl.where(tmp18, tmp26, tmp50) tmp52 = tl.where(tmp4, tmp14, tmp51) tl.store(out_ptr0 + x2, tmp52, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_5(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last').to(tl .int1) tmp2 = tl.load(in_ptr2 + 4 * x0, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp9 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp10 = tl.load(in_ptr2 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp17 = tl.load(in_ptr2 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp23 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ).to(tl.int1) tmp24 = tl.load(in_ptr2 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp11 = tmp10 * tmp3 tmp12 = tl.where(tmp9, tmp10, tmp11) tmp13 = tl.where(tmp8, tmp12, tmp6) tmp14 = triton_helpers.maximum(tmp7, tmp13) tmp18 = tmp17 * tmp3 tmp19 = tl.where(tmp16, tmp17, tmp18) tmp20 = tl.where(tmp15, tmp19, tmp6) tmp21 = triton_helpers.maximum(tmp14, tmp20) tmp25 = tmp24 * tmp3 tmp26 = tl.where(tmp23, tmp24, tmp25) tmp27 = tl.where(tmp22, tmp26, tmp6) tmp28 = triton_helpers.maximum(tmp21, tmp27) tmp29 = tmp7 - tmp28 tmp30 = tl_math.exp(tmp29) tmp31 = tmp13 - tmp28 tmp32 = tl_math.exp(tmp31) tmp33 = tmp30 + tmp32 tmp34 = tmp20 - tmp28 tmp35 = tl_math.exp(tmp34) tmp36 = tmp33 + tmp35 tmp37 = tmp27 - tmp28 tmp38 = tl_math.exp(tmp37) tmp39 = tmp36 + tmp38 tl.store(out_ptr0 + x0, tmp28, xmask) tl.store(out_ptr1 + x0, tmp39, xmask) @triton.jit def triton_poi_fused__softmax_leaky_relu_mul_where_6(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask).to(tl.int1) tmp1 = tl.load(in_ptr1 + x2, xmask).to(tl.int1) tmp2 = tl.load(in_out_ptr0 + x2, xmask) tmp8 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp3 = 4.0 tmp4 = tmp2 * tmp3 tmp5 = tl.where(tmp1, tmp2, tmp4) tmp6 = -8999999815811072.0 tmp7 = tl.where(tmp0, tmp5, tmp6) tmp9 = tmp7 - tmp8 tmp10 = tl_math.exp(tmp9) tmp12 = tmp10 / tmp11 tl.store(in_out_ptr0 + x2, tmp12, xmask) @triton.jit def triton_poi_fused_elu_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.0 tmp2 = tmp0 > tmp1 tmp3 = 1.0 tmp4 = tmp0 * tmp3 tmp5 = libdevice.expm1(tmp4) tmp6 = tmp5 * tmp3 tmp7 = tl.where(tmp2, tmp4, tmp6) tl.store(out_ptr0 + x0, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12 ) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (8, 1), (1, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4, 4), (4, 1)) assert_size_stride(primals_6, (8, 1), (1, 1)) assert_size_stride(primals_7, (4, 4), (4, 1)) assert_size_stride(primals_8, (8, 1), (1, 1)) assert_size_stride(primals_9, (4, 4), (4, 1)) assert_size_stride(primals_10, (8, 1), (1, 1)) assert_size_stride(primals_11, (16, 4), (4, 1)) assert_size_stride(primals_12, (8, 1), (1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((16, 8), (8, 1), torch.float32) get_raw_stream(0) triton_poi_fused_cat_0[grid(128)](buf0, buf1, 128, XBLOCK=128, num_warps=4, num_stages=1) buf2 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf1, primals_3, out=buf2) buf3 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf2, buf3, 16, XBLOCK=16, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](primals_4, buf4, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_4 buf9 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_5, out=buf9) del primals_5 buf10 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf9, buf10, 128, XBLOCK=128, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf10, primals_6, out=buf11) buf12 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf11, buf12, 16, XBLOCK=16, num_warps=1, num_stages=1) buf17 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_7, out=buf17) del primals_7 buf18 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf17, buf18, 128, XBLOCK=128, num_warps=4, num_stages=1) buf19 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf18, primals_8, out=buf19) buf20 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf19, buf20, 16, XBLOCK=16, num_warps=1, num_stages=1) buf25 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(primals_1, primals_9, out=buf25) del primals_9 buf26 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf25, buf26, 128, XBLOCK=128, num_warps=4, num_stages=1) buf27 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf26, primals_10, out=buf27) buf28 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf27, buf28, 16, XBLOCK=16, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf6 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf13 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf14 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf21 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf22 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf29 = empty_strided_cuda((4, 1), (1, 4), torch.float32) buf30 = empty_strided_cuda((4, 1), (1, 4), torch.float32) triton_poi_fused__softmax_leaky_relu_mul_where_2[grid(4)](buf4, buf3, buf2, buf12, buf11, buf20, buf19, buf28, buf27, buf5, buf6, buf13, buf14, buf21, buf22, buf29, buf30, 4, XBLOCK=4, num_warps=1, num_stages=1) buf7 = reinterpret_tensor(buf2, (4, 4), (4, 1), 0) del buf2 buf15 = reinterpret_tensor(buf11, (4, 4), (4, 1), 0) del buf11 buf23 = reinterpret_tensor(buf19, (4, 4), (4, 1), 0) del buf19 buf31 = reinterpret_tensor(buf27, (4, 4), (4, 1), 0) del buf27 triton_poi_fused__softmax_leaky_relu_mul_where_3[grid(16)](buf7, buf15, buf23, buf31, buf4, buf3, buf5, buf6, buf12, buf13, buf14, buf20, buf21, buf22, buf28, buf29, buf30, 16, XBLOCK=16, num_warps=1, num_stages=1) del buf13 del buf14 del buf21 del buf22 del buf29 del buf30 buf8 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf7, buf0, out=buf8) buf16 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf15, buf9, out=buf16) buf24 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf23, buf17, out=buf24) buf32 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf31, buf25, out=buf32) buf33 = empty_strided_cuda((4, 16), (16, 1), torch.float32) triton_poi_fused_cat_4[grid(64)](buf8, buf16, buf24, buf32, buf33, 64, XBLOCK=64, num_warps=1, num_stages=1) buf34 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf33, primals_11, out=buf34) buf35 = empty_strided_cuda((16, 8), (8, 1), torch.float32) triton_poi_fused_cat_0[grid(128)](buf34, buf35, 128, XBLOCK=128, num_warps=4, num_stages=1) buf36 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.mm(buf35, primals_12, out=buf36) buf37 = empty_strided_cuda((4, 4), (4, 1), torch.bool) triton_poi_fused_leaky_relu_1[grid(16)](buf36, buf37, 16, XBLOCK=16, num_warps=1, num_stages=1) buf38 = buf6 del buf6 buf39 = buf5 del buf5 triton_poi_fused__softmax_leaky_relu_mul_where_5[grid(4)](buf4, buf37, buf36, buf38, buf39, 4, XBLOCK=4, num_warps=1, num_stages=1) buf40 = reinterpret_tensor(buf36, (4, 4), (4, 1), 0) del buf36 triton_poi_fused__softmax_leaky_relu_mul_where_6[grid(16)](buf40, buf4, buf37, buf38, buf39, 16, XBLOCK=16, num_warps=1, num_stages=1 ) del buf38 del buf39 buf41 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf40, buf34, out=buf41) buf42 = empty_strided_cuda((4, 4), (4, 1), torch.float32) triton_poi_fused_elu_7[grid(16)](buf41, buf42, 16, XBLOCK=16, num_warps=1, num_stages=1) return (buf42, buf3, buf4, buf7, buf8, buf12, buf15, buf16, buf20, buf23, buf24, buf28, buf31, buf32, buf37, buf40, buf41, reinterpret_tensor(buf34, (4, 4), (1, 4), 0), reinterpret_tensor( buf35, (8, 16), (1, 8), 0), reinterpret_tensor(primals_12, (1, 8), (1, 1), 0), reinterpret_tensor(buf33, (16, 4), (1, 16), 0), reinterpret_tensor(primals_11, (4, 16), (1, 4), 0), reinterpret_tensor(buf25, (4, 4), (1, 4), 0), reinterpret_tensor( buf26, (8, 16), (1, 8), 0), reinterpret_tensor(primals_10, (1, 8), (1, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0), reinterpret_tensor(buf17, (4, 4), (1, 4), 0), reinterpret_tensor( buf18, (8, 16), (1, 8), 0), reinterpret_tensor(primals_8, (1, 8), ( 1, 1), 0), reinterpret_tensor(buf9, (4, 4), (1, 4), 0), reinterpret_tensor(buf10, (8, 16), (1, 8), 0), reinterpret_tensor( primals_6, (1, 8), (1, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(buf1, (8, 16), (1, 8), 0), reinterpret_tensor(primals_3, (1, 8), (1, 1), 0)) class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.empty(size=(in_features, out_features))) nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.empty(size=(2 * out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, h, adj): Wh = torch.mm(h, self.W) a_input = self._prepare_attentional_mechanism_input(Wh) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9000000000000000.0 * torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, Wh) if self.concat: return F.elu(h_prime) else: return h_prime def _prepare_attentional_mechanism_input(self, Wh): N = Wh.size()[0] Wh_repeated_in_chunks = Wh.repeat_interleave(N, dim=0) Wh_repeated_alternating = Wh.repeat(N, 1) all_combinations_matrix = torch.cat([Wh_repeated_in_chunks, Wh_repeated_alternating], dim=1) return all_combinations_matrix.view(N, N, 2 * self.out_features) def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features ) + ' -> ' + str(self.out_features) + ')' class GATNew(nn.Module): def __init__(self, nfeat, nhid, output, dropout, alpha, nheads): """Dense version of GAT.""" super(GATNew, self).__init__() self.dropout = dropout self.attentions = [GraphAttentionLayer(nfeat, nhid, dropout=dropout, alpha=alpha, concat=True) for _ in range(nheads)] for i, attention in enumerate(self.attentions): self.add_module('attention_{}'.format(i), attention) self.out_att = GraphAttentionLayer(nhid * nheads, output, dropout= dropout, alpha=alpha, concat=False) def forward(self, input_0, input_1): primals_1 = self.attention_0.W primals_3 = self.attention_0.a primals_2 = self.attention_1.W primals_6 = self.attention_1.a primals_4 = self.attention_2.W primals_8 = self.attention_2.a primals_5 = self.attention_3.W primals_10 = self.attention_3.a primals_11 = self.out_att.W primals_12 = self.out_att.a primals_7 = input_0 primals_9 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12]) return output[0]
OkYongChoi/smac
GAT
false
17,815
[ "Apache-2.0" ]
8
5b2b59e42d17a124e97feeecf9154a3a0aa9d260
https://github.com/OkYongChoi/smac/tree/5b2b59e42d17a124e97feeecf9154a3a0aa9d260
ZeroCenter
import torch import torch.nn as nn class ZeroCenter(nn.Module): def __init__(self): super().__init__() def forward(self, x): """x : [B, C, H, W]""" return x.sub_(x.flatten(1).mean(1, keepdim=True).unsqueeze(-1). unsqueeze(-1)) def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride @triton.jit def triton_per_fused_mean_sub_0(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, 0) tmp4 = tl.sum(tmp3, 1)[:, None] tmp5 = 64.0 tmp6 = tmp4 / tmp5 tmp7 = tmp0 - tmp6 tl.store(out_ptr2 + (r1 + 64 * x0), tmp7, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) get_raw_stream(0) triton_per_fused_mean_sub_0[grid(4)](arg0_1, arg0_1, 4, 64, XBLOCK= 1, num_warps=2, num_stages=1) return arg0_1, class ZeroCenterNew(nn.Module): def __init__(self): super().__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
vinnamkim/segmentation_models.pytorch
ZeroCenter
false
4,486
[ "MIT" ]
0
f967ded34df6fb536e8e8cba9b6491ae63b939f5
https://github.com/vinnamkim/segmentation_models.pytorch/tree/f967ded34df6fb536e8e8cba9b6491ae63b939f5
HardBinaryConv
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/qv/cqvgm3akruqekytxapszngo4c2kqrgrbkoi6iwmgzouh7sstbfhd.py # Topologically Sorted Source Nodes: [abs_1, mean, mean_1], Original ATen: [aten.abs, aten.mean] # Source node to ATen node mapping: # abs_1 => abs_1 # mean => mean # mean_1 => mean_1 # Graph fragment: # %abs_1 : [num_users=1] = call_function[target=torch.ops.aten.abs.default](args = (%view,), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%abs_1, [3], True), kwargs = {}) # %mean_1 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean, [2], True), kwargs = {}) triton_poi_fused_abs_mean_0 = async_compile.triton('triton_poi_fused_abs_mean_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_abs_mean_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_abs_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (9*x0), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (9*x0)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + (9*x0)), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + (9*x0)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (4 + (9*x0)), xmask, eviction_policy='evict_last') tmp15 = tl.load(in_ptr0 + (5 + (9*x0)), xmask, eviction_policy='evict_last') tmp20 = tl.load(in_ptr0 + (6 + (9*x0)), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr0 + (7 + (9*x0)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr0 + (8 + (9*x0)), xmask, eviction_policy='evict_last') tmp1 = tl_math.abs(tmp0) tmp3 = tl_math.abs(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.abs(tmp5) tmp7 = tmp4 + tmp6 tmp8 = 3.0 tmp9 = tmp7 / tmp8 tmp11 = tl_math.abs(tmp10) tmp13 = tl_math.abs(tmp12) tmp14 = tmp11 + tmp13 tmp16 = tl_math.abs(tmp15) tmp17 = tmp14 + tmp16 tmp18 = tmp17 / tmp8 tmp19 = tmp9 + tmp18 tmp21 = tl_math.abs(tmp20) tmp23 = tl_math.abs(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.abs(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp8 tmp29 = tmp19 + tmp28 tmp30 = tmp29 / tmp8 tl.store(out_ptr0 + (x0), tmp30, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/nl/cnliz7sk7n5gwps7hwzrx7hpgry6o46xpkizfn5x2lah42wrbc2u.py # Topologically Sorted Source Nodes: [scaling_factor, sign, binary_weights_no_grad, cliped_weights, sub, binary_weights], Original ATen: [aten.mean, aten.sign, aten.mul, aten.clamp, aten.sub, aten.add, aten.ge, aten.le, aten.logical_and] # Source node to ATen node mapping: # binary_weights => add # binary_weights_no_grad => mul # cliped_weights => clamp_max, clamp_min # scaling_factor => mean_2 # sign => sign # sub => sub # Graph fragment: # %mean_2 : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%mean_1, [1], True), kwargs = {}) # %sign : [num_users=1] = call_function[target=torch.ops.aten.sign.default](args = (%view,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean_2, %sign), kwargs = {}) # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%view, -1.0), kwargs = {}) # %clamp_max : [num_users=2] = call_function[target=torch.ops.aten.clamp_max.default](args = (%clamp_min, 1.0), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul, %clamp_max), kwargs = {}) # %add : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%sub, %clamp_max), kwargs = {}) # %ge : [num_users=1] = call_function[target=torch.ops.aten.ge.Scalar](args = (%view, -1.0), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%view, 1.0), kwargs = {}) # %logical_and : [num_users=1] = call_function[target=torch.ops.aten.logical_and.default](args = (%ge, %le), kwargs = {}) triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1 = async_compile.triton('triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*i1', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 36) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + (x2), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp10 < tmp9 tmp12 = tmp11.to(tl.int8) tmp13 = tmp9 < tmp10 tmp14 = tmp13.to(tl.int8) tmp15 = tmp12 - tmp14 tmp16 = tmp15.to(tmp9.dtype) tmp17 = tmp8 * tmp16 tmp18 = -1.0 tmp19 = triton_helpers.maximum(tmp9, tmp18) tmp20 = 1.0 tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tmp17 - tmp21 tmp23 = tmp22 + tmp21 tmp24 = tmp9 >= tmp18 tmp25 = tmp9 <= tmp20 tmp26 = tmp24 & tmp25 tl.store(out_ptr0 + (x2), tmp23, xmask) tl.store(out_ptr1 + (x2), tmp26, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (144, 1), (1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [abs_1, mean, mean_1], Original ATen: [aten.abs, aten.mean] stream0 = get_raw_stream(0) triton_poi_fused_abs_mean_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) buf1 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) # Topologically Sorted Source Nodes: [scaling_factor, sign, binary_weights_no_grad, cliped_weights, sub, binary_weights], Original ATen: [aten.mean, aten.sign, aten.mul, aten.clamp, aten.sub, aten.add, aten.ge, aten.le, aten.logical_and] triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1.run(buf0, primals_1, buf1, buf3, 144, grid=grid(144), stream=stream0) del buf0 del primals_1 # Topologically Sorted Source Nodes: [y], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_2, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return (buf2, primals_2, buf1, buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((144, 1), (1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_abs_mean_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 9 * x0, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 9 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (2 + 9 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr0 + (3 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr0 + (4 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (5 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr0 + (6 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp22 = tl.load(in_ptr0 + (7 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr0 + (8 + 9 * x0), xmask, eviction_policy='evict_last' ) tmp1 = tl_math.abs(tmp0) tmp3 = tl_math.abs(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.abs(tmp5) tmp7 = tmp4 + tmp6 tmp8 = 3.0 tmp9 = tmp7 / tmp8 tmp11 = tl_math.abs(tmp10) tmp13 = tl_math.abs(tmp12) tmp14 = tmp11 + tmp13 tmp16 = tl_math.abs(tmp15) tmp17 = tmp14 + tmp16 tmp18 = tmp17 / tmp8 tmp19 = tmp9 + tmp18 tmp21 = tl_math.abs(tmp20) tmp23 = tl_math.abs(tmp22) tmp24 = tmp21 + tmp23 tmp26 = tl_math.abs(tmp25) tmp27 = tmp24 + tmp26 tmp28 = tmp27 / tmp8 tmp29 = tmp19 + tmp28 tmp30 = tmp29 / tmp8 tl.store(out_ptr0 + x0, tmp30, xmask) @triton.jit def triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 36 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr1 + x2, xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp10 = tl.full([1], 0, tl.int32) tmp11 = tmp10 < tmp9 tmp12 = tmp11.to(tl.int8) tmp13 = tmp9 < tmp10 tmp14 = tmp13.to(tl.int8) tmp15 = tmp12 - tmp14 tmp16 = tmp15.to(tmp9.dtype) tmp17 = tmp8 * tmp16 tmp18 = -1.0 tmp19 = triton_helpers.maximum(tmp9, tmp18) tmp20 = 1.0 tmp21 = triton_helpers.minimum(tmp19, tmp20) tmp22 = tmp17 - tmp21 tmp23 = tmp22 + tmp21 tmp24 = tmp9 >= tmp18 tmp25 = tmp9 <= tmp20 tmp26 = tmp24 & tmp25 tl.store(out_ptr0 + x2, tmp23, xmask) tl.store(out_ptr1 + x2, tmp26, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (144, 1), (1, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 1, 1), (4, 1, 16, 16), torch.float32) get_raw_stream(0) triton_poi_fused_abs_mean_0[grid(16)](primals_1, buf0, 16, XBLOCK= 16, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.float32) buf3 = empty_strided_cuda((4, 4, 3, 3), (36, 9, 3, 1), torch.bool) triton_poi_fused_add_clamp_ge_le_logical_and_mean_mul_sign_sub_1[grid (144)](buf0, primals_1, buf1, buf3, 144, XBLOCK=128, num_warps= 4, num_stages=1) del buf0 del primals_1 buf2 = extern_kernels.convolution(primals_2, buf1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) return buf2, primals_2, buf1, buf3 class HardBinaryConvNew(nn.Module): def __init__(self, in_chn, out_chn, kernel_size=3, stride=1, padding=1): super(HardBinaryConvNew, self).__init__() self.stride = stride self.padding = padding self.number_of_weights = in_chn * out_chn * kernel_size * kernel_size self.shape = out_chn, in_chn, kernel_size, kernel_size self.weights = nn.Parameter(torch.rand((self.number_of_weights, 1)) * 0.001, requires_grad=True) def forward(self, input_0): primals_1 = self.weights primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
uzair789/pytorch-retinanet
HardBinaryConv
false
10,964
[ "Apache-2.0" ]
0
cabac159a9877825ef04ab06d3b9a63bdfa4f306
https://github.com/uzair789/pytorch-retinanet/tree/cabac159a9877825ef04ab06d3b9a63bdfa4f306
PositionEmbedding
from _paritybench_helpers import _mock_config import torch from torch import nn class PositionEmbedding(nn.Module): """ adpated from transformers package by huggingface. """ def __init__(self, config): super(PositionEmbedding, self).__init__() self.config = config self.pos_embs = nn.Embedding(config['trans_max_pos'], config[ 'trans_hidden']) self.LayerNorm = nn.LayerNorm(config['trans_hidden']) self.dropout = nn.Dropout(config['trans_drop_prob']) def forward(self, input_embs): """ `input_embs` should be shaped as [`numBatch`, `seqLength`, `hiddenSize`] """ seq_length = input_embs.size(1) position_ids = torch.arange(seq_length, dtype=torch.long, device= input_embs.device) position_ids = position_ids.unsqueeze(0).expand_as(input_embs[:, :, 0]) position_embeddings = self.pos_embs(position_ids) embeddings = input_embs + position_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'config': _mock_config(trans_max_pos=4, trans_hidden=4, trans_drop_prob=0.5)}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_arange_0(out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = x0 tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_add_embedding_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp2 = tl.full([XBLOCK], 4, tl.int32) tmp3 = tmp1 + tmp2 tmp4 = tmp1 < 0 tmp5 = tl.where(tmp4, tmp3, tmp1) tl.device_assert((0 <= tmp5) & (tmp5 < 4) | ~xmask, 'index out of bounds: 0 <= tmp5 < 4') tmp7 = tl.load(in_ptr2 + (x0 + 4 * tmp5), xmask) tmp8 = tmp0 + tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused_native_layer_norm_2(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + 4 * x0, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (3 + 4 * x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 4.0 tmp8 = tmp6 / tmp7 tmp9 = tmp0 - tmp8 tmp10 = tmp9 * tmp9 tmp11 = tmp1 - tmp8 tmp12 = tmp11 * tmp11 tmp13 = tmp10 + tmp12 tmp14 = tmp3 - tmp8 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp8 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp19 / tmp7 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(out_ptr0 + x0, tmp8, xmask) tl.store(out_ptr1 + x0, tmp23, xmask) @triton.jit def triton_poi_fused_native_layer_norm_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr4 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp8 = tmp6 + tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.int64) get_raw_stream(0) triton_poi_fused_arange_0[grid(4)](buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_embedding_1[grid(256)](primals_1, buf0, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 del primals_2 buf2 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf3 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused_native_layer_norm_2[grid(64)](buf1, buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_native_layer_norm_3[grid(256)](buf1, buf2, buf3, primals_3, primals_4, buf4, 256, XBLOCK=128, num_warps=4, num_stages=1) del buf2 del buf3 del primals_4 return buf4, primals_3, reinterpret_tensor(buf0, (1, 4), (4, 1), 0), buf1 class PositionEmbeddingNew(nn.Module): """ adpated from transformers package by huggingface. """ def __init__(self, config): super(PositionEmbeddingNew, self).__init__() self.config = config self.pos_embs = nn.Embedding(config['trans_max_pos'], config[ 'trans_hidden']) self.LayerNorm = nn.LayerNorm(config['trans_hidden']) self.dropout = nn.Dropout(config['trans_drop_prob']) def forward(self, input_0): primals_2 = self.pos_embs.weight primals_3 = self.LayerNorm.weight primals_4 = self.LayerNorm.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
choumartin1234/Music-Eye
PositionEmbedding
false
6,438
[ "MIT" ]
1
059b43fd21f7e7bf6c84cb35a03fd936e64b59a5
https://github.com/choumartin1234/Music-Eye/tree/059b43fd21f7e7bf6c84cb35a03fd936e64b59a5
PKT
import torch from torch import nn class PKT(nn.Module): """Probabilistic Knowledge Transfer for deep representation learning Code from author: https://github.com/passalis/probabilistic_kt""" def __init__(self): super(PKT, self).__init__() def forward(self, f_s, f_t): return self.cosine_similarity_loss(f_s, f_t) @staticmethod def cosine_similarity_loss(output_net, target_net, eps=1e-07): output_net_norm = torch.sqrt(torch.sum(output_net ** 2, dim=1, keepdim=True)) output_net = output_net / (output_net_norm + eps) output_net[output_net != output_net] = 0 target_net_norm = torch.sqrt(torch.sum(target_net ** 2, dim=1, keepdim=True)) target_net = target_net / (target_net_norm + eps) target_net[target_net != target_net] = 0 model_similarity = torch.mm(output_net, output_net.transpose(0, 1)) target_similarity = torch.mm(target_net, target_net.transpose(0, 1)) model_similarity = (model_similarity + 1.0) / 2.0 target_similarity = (target_similarity + 1.0) / 2.0 model_similarity = model_similarity / torch.sum(model_similarity, dim=1, keepdim=True) target_similarity = target_similarity / torch.sum(target_similarity, dim=1, keepdim=True) loss = torch.mean(target_similarity * torch.log((target_similarity + eps) / (model_similarity + eps))) return loss def get_inputs(): return [torch.rand([4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp9 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-07 tmp14 = tmp12 + tmp13 tmp15 = tmp0 / tmp14 tmp16 = tmp15 != tmp15 tmp17 = 0.0 tmp18 = tl.where(tmp16, tmp17, tmp15) tl.store(in_out_ptr0 + x2, tmp18, xmask) @triton.jit def triton_per_fused_add_div_log_mean_mul_sum_1(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex r1 = rindex // 4 tmp0 = tl.load(in_ptr0 + r2, None) tmp5 = tl.load(in_ptr0 + 4 * r1, None, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp16 = tl.load(in_ptr0 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp23 = tl.load(in_ptr1 + r2, None) tmp26 = tl.load(in_ptr1 + 4 * r1, None, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (1 + 4 * r1), None, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (2 + 4 * r1), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr1 + (3 + 4 * r1), None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 + tmp1 tmp3 = 0.5 tmp4 = tmp2 * tmp3 tmp6 = tmp5 + tmp1 tmp7 = tmp6 * tmp3 tmp9 = tmp8 + tmp1 tmp10 = tmp9 * tmp3 tmp11 = tmp7 + tmp10 tmp13 = tmp12 + tmp1 tmp14 = tmp13 * tmp3 tmp15 = tmp11 + tmp14 tmp17 = tmp16 + tmp1 tmp18 = tmp17 * tmp3 tmp19 = tmp15 + tmp18 tmp20 = tmp4 / tmp19 tmp21 = 1e-07 tmp22 = tmp20 + tmp21 tmp24 = tmp23 + tmp1 tmp25 = tmp24 * tmp3 tmp27 = tmp26 + tmp1 tmp28 = tmp27 * tmp3 tmp30 = tmp29 + tmp1 tmp31 = tmp30 * tmp3 tmp32 = tmp28 + tmp31 tmp34 = tmp33 + tmp1 tmp35 = tmp34 * tmp3 tmp36 = tmp32 + tmp35 tmp38 = tmp37 + tmp1 tmp39 = tmp38 * tmp3 tmp40 = tmp36 + tmp39 tmp41 = tmp25 / tmp40 tmp42 = tmp41 + tmp21 tmp43 = tmp22 / tmp42 tmp44 = tl_math.log(tmp43) tmp45 = tmp20 * tmp44 tmp46 = tl.broadcast_to(tmp45, [XBLOCK, RBLOCK]) tmp48 = tl.sum(tmp46, 1)[:, None] tmp49 = 16.0 tmp50 = tmp48 / tmp49 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp50, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4), (4, 1)) assert_size_stride(arg1_1, (4, 4), (4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0[grid(16)]( buf1, arg1_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg1_1 buf2 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf1, reinterpret_tensor(buf1, (4, 4), (1, 4), 0), out=buf2) buf4 = buf1 del buf1 buf5 = buf4 del buf4 triton_poi_fused_add_div_index_put_lift_fresh_pow_sqrt_sum_0[grid(16)]( buf5, arg0_1, 16, XBLOCK=16, num_warps=1, num_stages=1) del arg0_1 buf6 = empty_strided_cuda((4, 4), (4, 1), torch.float32) extern_kernels.mm(buf5, reinterpret_tensor(buf5, (4, 4), (1, 4), 0), out=buf6) del buf5 buf7 = empty_strided_cuda((), (), torch.float32) buf8 = buf7 del buf7 triton_per_fused_add_div_log_mean_mul_sum_1[grid(1)](buf8, buf2, buf6, 1, 16, XBLOCK=1, num_warps=2, num_stages=1) del buf2 del buf6 return buf8, class PKTNew(nn.Module): """Probabilistic Knowledge Transfer for deep representation learning Code from author: https://github.com/passalis/probabilistic_kt""" def __init__(self): super(PKTNew, self).__init__() @staticmethod def cosine_similarity_loss(output_net, target_net, eps=1e-07): output_net_norm = torch.sqrt(torch.sum(output_net ** 2, dim=1, keepdim=True)) output_net = output_net / (output_net_norm + eps) output_net[output_net != output_net] = 0 target_net_norm = torch.sqrt(torch.sum(target_net ** 2, dim=1, keepdim=True)) target_net = target_net / (target_net_norm + eps) target_net[target_net != target_net] = 0 model_similarity = torch.mm(output_net, output_net.transpose(0, 1)) target_similarity = torch.mm(target_net, target_net.transpose(0, 1)) model_similarity = (model_similarity + 1.0) / 2.0 target_similarity = (target_similarity + 1.0) / 2.0 model_similarity = model_similarity / torch.sum(model_similarity, dim=1, keepdim=True) target_similarity = target_similarity / torch.sum(target_similarity, dim=1, keepdim=True) loss = torch.mean(target_similarity * torch.log((target_similarity + eps) / (model_similarity + eps))) return loss def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
UBCDingXin/RepDistiller
PKT
false
14,519
[ "BSD-2-Clause" ]
1,347
dcc043277f2820efafd679ffb82b8e8195b7e222
https://github.com/UBCDingXin/RepDistiller/tree/dcc043277f2820efafd679ffb82b8e8195b7e222
h_sigmoid
import torch import torch.utils.data import torch.nn as nn class h_sigmoid(nn.Module): def __init__(self, inplace=True): super(h_sigmoid, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, x): return self.relu(x + 3) / 6 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = 0.16666666666666666 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x0, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class h_sigmoidNew(nn.Module): def __init__(self, inplace=True): super(h_sigmoidNew, self).__init__() self.relu = nn.ReLU6(inplace=inplace) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
Ghaust/SSD
h_sigmoid
false
9,114
[ "MIT" ]
0
2bf14a48795d20ad2177f622e84d62b3ff81183f
https://github.com/Ghaust/SSD/tree/2bf14a48795d20ad2177f622e84d62b3ff81183f
TripletLoss
import torch import torch.nn as nn class TripletLoss(nn.Module): """Triplet loss for metric learning """ def __init__(self, margin=1.0, p=2, loss_weight=1.0, reduction='mean'): """ Initialization. Args: margin(float): a margin distance between for anchor-positive and anchor-negative p(int): Denominator value, \\sum{x^p}+\\sum{y^p}, default:2 loss_weight(float): loss weight """ super().__init__() self.margin = margin self.p = p self.loss_weight = loss_weight self.reduction = reduction self.loss = nn.TripletMarginLoss(margin=self.margin, p=self.p, reduction=self.reduction) def forward(self, anchor, positive, negative): """ Multiply loss with loss_weight. Args: anchor(Tensor): a tensor of shape [N, C, H, W] positive(Tensor): a tensor of shape same with anchor negative(Tensor): a tensor of shape same with anchor Returns: Tensor: loss tensor """ loss = self.loss_weight * self.loss(anchor, positive, negative) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_min_mean_mul_norm_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp36 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp41 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = 1.0 tmp26 = tmp24 + tmp25 tmp28 = tmp0 - tmp27 tmp29 = tmp28 + tmp3 tmp30 = tmp29 * tmp29 tmp32 = tmp6 - tmp31 tmp33 = tmp32 + tmp3 tmp34 = tmp33 * tmp33 tmp35 = tmp30 + tmp34 tmp37 = tmp12 - tmp36 tmp38 = tmp37 + tmp3 tmp39 = tmp38 * tmp38 tmp40 = tmp35 + tmp39 tmp42 = tmp18 - tmp41 tmp43 = tmp42 + tmp3 tmp44 = tmp43 * tmp43 tmp45 = tmp40 + tmp44 tmp46 = libdevice.sqrt(tmp45) tmp47 = tmp26 - tmp46 tmp48 = 0.0 tmp49 = triton_helpers.maximum(tmp47, tmp48) tmp50 = tl.broadcast_to(tmp49, [XBLOCK, RBLOCK]) tmp52 = tl.sum(tmp50, 1)[:, None] tmp53 = 64.0 tmp54 = tmp52 / tmp53 tmp55 = tmp54 * tmp25 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp55, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_clamp_min_mean_mul_norm_sub_0[grid(1)](buf2, arg2_1, arg1_1, arg0_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 return buf2, class TripletLossNew(nn.Module): """Triplet loss for metric learning """ def __init__(self, margin=1.0, p=2, loss_weight=1.0, reduction='mean'): """ Initialization. Args: margin(float): a margin distance between for anchor-positive and anchor-negative p(int): Denominator value, \\sum{x^p}+\\sum{y^p}, default:2 loss_weight(float): loss weight """ super().__init__() self.margin = margin self.p = p self.loss_weight = loss_weight self.reduction = reduction self.loss = nn.TripletMarginLoss(margin=self.margin, p=self.p, reduction=self.reduction) def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0]
hikopensource/DAVAR-Lab-OCR
TripletLoss
false
15,512
[ "Apache-2.0" ]
387
c65285f6668864cca7a12770ae4c8d083ea1cf1b
https://github.com/hikopensource/DAVAR-Lab-OCR/tree/c65285f6668864cca7a12770ae4c8d083ea1cf1b
vgg11_modified
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/xq/cxqxvwhuevcb5oe7gsgfej3rmce7mdc6vqg3mkviccgugis2c7ro.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (27*y1)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/az/cazvf33aclbntgyixs3zlm6bdzs672xtry2xl6pc3l3sjzwrnks5.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4096], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 12 xnumel = 4096 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = (yindex // 3) tmp0 = tl.load(in_ptr0 + (x2 + (4096*y3)), ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (3*x2) + (12288*y1)), tmp0, ymask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/xs/cxsarnw2wm2gid2judloczqftyialh3etpmvbejw7tuglcm5m2ir.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 8192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = (yindex // 64) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (64*x2) + (576*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/eg/cegkhpirbdizrfwpxf7z5iyj5fnizpk2ywd44ximmmde2qo6slhl.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_3 = async_compile.triton('triton_poi_fused_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 32768 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = (yindex // 128) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (128*x2) + (1152*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/pk/cpk3qxvr4jdycfn52kwh56tkx6nlymtusmthr4pmlmdbx6ynetdb.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_4 = async_compile.triton('triton_poi_fused_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_4', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 65536 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lz/clzpohj5x6hlioxeijuuae6z6bjxvvgvg4xatw6ioclgtmvvwkt7.py # Unsorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: triton_poi_fused_5 = async_compile.triton('triton_poi_fused_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072, 16], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 131072 xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1)) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = (yindex // 256) tmp0 = tl.load(in_ptr0 + (x2 + (9*y3)), xmask, eviction_policy='evict_last') tl.store(out_ptr0 + (y0 + (256*x2) + (2304*y1)), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6g/c6gobw4tgkxw2c3jho3hm5coegz2hfvfv6dszo2elstdb3iokhem.py # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # relu => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_3, %primals_1, %primals_2, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_6 = async_compile.triton('triton_poi_fused_convolution_relu_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1048576], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_6', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 984064 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ni/cnisvmqpevrxu33agrlsvk7bocr3hbnivm6cn7zqcb4milii2cmp.py # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d => getitem_1 # Graph fragment: # %getitem_1 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_7 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_7', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_7', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 246016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 31 x2 = (xindex // 1984) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (128*x1) + (7936*x2)), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + (128*x1) + (7936*x2)), xmask) tmp7 = tl.load(in_ptr0 + (3968 + x0 + (128*x1) + (7936*x2)), xmask) tmp12 = tl.load(in_ptr0 + (4032 + x0 + (128*x1) + (7936*x2)), xmask) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/vl/cvlqqx7ltskbrowyadv4dzye7wqnr26ci3db7zrcaw3753zzoox4.py # Topologically Sorted Source Nodes: [max_pool2d, vector], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # max_pool2d => _low_memory_max_pool2d_with_offsets # vector => _unsafe_index, _unsafe_index_1 # Graph fragment: # %_low_memory_max_pool2d_with_offsets : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu, [2, 2], [2, 2], [0, 0], [1, 1], True), kwargs = {}) # %_unsafe_index : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem, [None, None, %sub_1, None]), kwargs = {}) # %_unsafe_index_1 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index, [None, None, None, %sub_1]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = (xindex // 64) % 33 x2 = (xindex // 2112) % 33 x3 = (xindex // 69696) x4 = xindex tmp0 = tl.load(in_ptr0 + (241920 + x0 + ((-7936)*(tl_math.abs((-30) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-30) + (tl_math.abs((-1) + x1))))) + (246016*x3)), xmask) tmp1 = tl.load(in_ptr0 + (241984 + x0 + ((-7936)*(tl_math.abs((-30) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-30) + (tl_math.abs((-1) + x1))))) + (246016*x3)), xmask) tmp3 = tl.load(in_ptr0 + (245888 + x0 + ((-7936)*(tl_math.abs((-30) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-30) + (tl_math.abs((-1) + x1))))) + (246016*x3)), xmask) tmp5 = tl.load(in_ptr0 + (245952 + x0 + ((-7936)*(tl_math.abs((-30) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-30) + (tl_math.abs((-1) + x1))))) + (246016*x3)), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/nd/cnduxjno4uyvopzbpa646jbnvu3fq625hvdkh7qoqc3tym2rkpqc.py # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # relu_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_9 = async_compile.triton('triton_poi_fused_convolution_relu_9', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_9', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/ez/cez3nam3fak765e4auervdqt4355gaamdvx3i5j42h473agz6qny.py # Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d_1 => _low_memory_max_pool2d_with_offsets_1, getitem_3 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_1 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_1, [2, 2], [2, 2], [0, 0], [1, 1], True), kwargs = {}) # %getitem_3 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_1, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_10 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_10', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i8', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_10', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = (xindex // 2048) % 16 x1 = (xindex // 128) % 16 x0 = xindex % 128 x3 = (xindex // 32768) x6 = xindex tmp0 = 2*x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 31, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2*x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + (256*x1) + (7936*x2) + (123008*x3)), tmp10, other=float("-inf")) tmp12 = 1 + (2*x1) tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (128 + x0 + (256*x1) + (7936*x2) + (123008*x3)), tmp16, other=float("-inf")) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + (2*x2) tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp22 & tmp9 tmp24 = tl.load(in_ptr0 + (3968 + x0 + (256*x1) + (7936*x2) + (123008*x3)), tmp23, other=float("-inf")) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = tmp22 & tmp15 tmp27 = tl.load(in_ptr0 + (4096 + x0 + (256*x1) + (7936*x2) + (123008*x3)), tmp26, other=float("-inf")) tmp28 = triton_helpers.maximum(tmp27, tmp25) tmp29 = tmp17 > tmp11 tmp30 = tl.full([1], 1, tl.int8) tmp31 = tl.full([1], 0, tl.int8) tmp32 = tl.where(tmp29, tmp30, tmp31) tmp33 = tmp24 > tmp18 tmp34 = tl.full([1], 2, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp27 > tmp25 tmp37 = tl.full([1], 3, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tl.store(out_ptr0 + (x6), tmp28, None) tl.store(out_ptr1 + (x6), tmp38, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/gb/cgb6gauadrhqueygknmein5p3uvq4xvmzjndnkqonn5cv3gwc2zk.py # Topologically Sorted Source Nodes: [vector_1], Original ATen: [aten.reflection_pad2d] # Source node to ATen node mapping: # vector_1 => _unsafe_index_2, _unsafe_index_3 # Graph fragment: # %_unsafe_index_2 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_3 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_2, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_reflection_pad2d_11 = async_compile.triton('triton_poi_fused_reflection_pad2d_11', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_reflection_pad2d_11', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_reflection_pad2d_11(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 165888 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = (xindex // 128) % 18 x2 = (xindex // 2304) % 18 x3 = (xindex // 41472) x4 = xindex tmp0 = tl.load(in_ptr0 + (32640 + x0 + ((-2048)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-128)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (32768*x3)), None) tl.store(out_ptr0 + (x4), tmp0, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/io/cio4qkdpcwku5g7jiexu53ki4namjljuw6uewnphelcopuazqfuk.py # Topologically Sorted Source Nodes: [conv2d_2, relu_2, vector_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_2 => relu_2 # vector_2 => _unsafe_index_4, _unsafe_index_5 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %_unsafe_index_4 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_2, [None, None, %sub_5, None]), kwargs = {}) # %_unsafe_index_5 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_4, [None, None, None, %sub_5]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_12 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_12', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_12', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 18 x2 = (xindex // 4608) % 18 x3 = (xindex // 82944) x4 = xindex tmp0 = tl.load(in_ptr0 + (65280 + x0 + ((-4096)*(tl_math.abs((-15) + (tl_math.abs((-1) + x2))))) + ((-256)*(tl_math.abs((-15) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x4), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/uv/cuv7up5cmdteul6mmws7brrmq46a72ailw3kt7jkbjo67mhgxnrs.py # Topologically Sorted Source Nodes: [conv2d_3, relu_3], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_3 => convolution_3 # relu_3 => relu_3 # Graph fragment: # %convolution_3 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_5, %primals_8, %primals_9, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_3 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_3,), kwargs = {}) triton_poi_fused_convolution_relu_13 = async_compile.triton('triton_poi_fused_convolution_relu_13', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_13', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/lw/clwrpk5qq4ema4t2n7avu73spld5knrlirojpucyjwxyvcxauth6.py # Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices] # Source node to ATen node mapping: # max_pool2d_2 => getitem_5 # Graph fragment: # %getitem_5 : [num_users=1] = call_function[target=operator.getitem](args = (%_low_memory_max_pool2d_with_offsets_2, 1), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_14 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_14', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*i8', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_14', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 8 x2 = (xindex // 2048) x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (512*x1) + (8192*x2)), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + (512*x1) + (8192*x2)), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + (512*x1) + (8192*x2)), None) tmp12 = tl.load(in_ptr0 + (4352 + x0 + (512*x1) + (8192*x2)), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + (x3), tmp15, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/mj/cmjt6aazegzuzhghk24kc7bptzpnq4j62xenet6aqqmhgdmw62zp.py # Topologically Sorted Source Nodes: [max_pool2d_2, vector_3], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] # Source node to ATen node mapping: # max_pool2d_2 => _low_memory_max_pool2d_with_offsets_2 # vector_3 => _unsafe_index_6, _unsafe_index_7 # Graph fragment: # %_low_memory_max_pool2d_with_offsets_2 : [num_users=2] = call_function[target=torch.ops.prims._low_memory_max_pool2d_with_offsets.default](args = (%relu_3, [2, 2], [2, 2], [0, 0], [1, 1], True), kwargs = {}) # %_unsafe_index_6 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%getitem_4, [None, None, %sub_13, None]), kwargs = {}) # %_unsafe_index_7 : [num_users=2] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_6, [None, None, None, %sub_13]), kwargs = {}) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15 = async_compile.triton('triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 102400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = (xindex // 256) % 10 x2 = (xindex // 2560) % 10 x3 = (xindex // 25600) x4 = xindex tmp0 = tl.load(in_ptr0 + (60928 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp1 = tl.load(in_ptr0 + (61184 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp3 = tl.load(in_ptr0 + (65024 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp5 = tl.load(in_ptr0 + (65280 + x0 + ((-8192)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x1))))) + (65536*x3)), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + (x4), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/6n/c6nnt3ues2wosdrjhegp3v76kvmkn53qbkc5gatzwqyeyahka7iu.py # Topologically Sorted Source Nodes: [conv2d_4, relu_4, vector_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # relu_4 => relu_4 # vector_4 => _unsafe_index_8, _unsafe_index_9 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %_unsafe_index_8 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%relu_4, [None, None, %sub_13, None]), kwargs = {}) # %_unsafe_index_9 : [num_users=1] = call_function[target=torch.ops.aten._unsafe_index.Tensor](args = (%_unsafe_index_8, [None, None, None, %sub_13]), kwargs = {}) triton_poi_fused_convolution_reflection_pad2d_relu_16 = async_compile.triton('triton_poi_fused_convolution_reflection_pad2d_relu_16', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048, 128], tile_hint=TileHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_reflection_pad2d_relu_16', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_16(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 2048 xnumel = 100 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 10 x3 = (xindex // 10) y0 = yindex % 512 y1 = (yindex // 512) x5 = xindex y4 = yindex tmp0 = tl.load(in_ptr0 + (32256 + y0 + ((-4096)*(tl_math.abs((-7) + (tl_math.abs((-1) + x3))))) + ((-512)*(tl_math.abs((-7) + (tl_math.abs((-1) + x2))))) + (32768*y1)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (y0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5 + (100*y4)), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/42/c423pvc4nqtxotc57p6yus34zuelbx7tlqmuyalloq5pcobw6bao.py # Topologically Sorted Source Nodes: [conv2d_4, relu_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_4 => convolution_4 # relu_4 => relu_4 # Graph fragment: # %convolution_4 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_7, %primals_10, %primals_11, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_4 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_4,), kwargs = {}) # %le_18 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_4, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_17 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_17', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[131072], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_17', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 131072 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') # kernel path: runs/run_shard_2/inductor_cache/wz/cwze6al2y2y5exhx5vrxjrol6sjfzlu66sao2xk66yxiu4ncw7x3.py # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # relu_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%_unsafe_index_3, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_56 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_18 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_18', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_18', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 262144 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + (x2), None) tmp1 = tl.load(in_ptr1 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2), tmp6, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11 = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64, ), (1, )) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (128, ), (1, )) assert_size_stride(primals_6, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (256, ), (1, )) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256, ), (1, )) assert_size_stride(primals_10, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (512, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(primals_1, buf0, 192, 9, grid=grid(192, 9), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(primals_3, buf1, 12, 4096, grid=grid(12, 4096), stream=stream0) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(primals_4, buf2, 8192, 9, grid=grid(8192, 9), stream=stream0) del primals_4 buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_3.run(primals_6, buf3, 32768, 9, grid=grid(32768, 9), stream=stream0) del primals_6 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_4.run(primals_8, buf4, 65536, 9, grid=grid(65536, 9), stream=stream0) del primals_8 buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) # Unsorted Source Nodes: [], Original ATen: [] triton_poi_fused_5.run(primals_10, buf5, 131072, 9, grid=grid(131072, 9), stream=stream0) del primals_10 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 62, 62), (246016, 1, 3968, 64)) buf7 = buf6; del buf6 # reuse # Topologically Sorted Source Nodes: [conv2d, relu], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_6.run(buf7, primals_2, 984064, grid=grid(984064), stream=stream0) del primals_2 buf8 = empty_strided_cuda((4, 64, 31, 31), (61504, 1, 1984, 64), torch.int8) # Topologically Sorted Source Nodes: [max_pool2d], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_7.run(buf7, buf8, 246016, grid=grid(246016), stream=stream0) buf9 = empty_strided_cuda((4, 64, 33, 33), (69696, 1, 2112, 64), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d, vector], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8.run(buf7, buf9, 278784, grid=grid(278784), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 31, 31), (123008, 1, 3968, 128)) buf11 = buf10; del buf10 # reuse # Topologically Sorted Source Nodes: [conv2d_1, relu_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_9.run(buf11, primals_5, 492032, grid=grid(492032), stream=stream0) del primals_5 buf12 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf13 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) # Topologically Sorted Source Nodes: [max_pool2d_1], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_10.run(buf11, buf12, buf13, 131072, grid=grid(131072), stream=stream0) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 1, 2304, 128), torch.float32) # Topologically Sorted Source Nodes: [vector_1], Original ATen: [aten.reflection_pad2d] triton_poi_fused_reflection_pad2d_11.run(buf12, buf14, 165888, grid=grid(165888), stream=stream0) del buf12 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf15 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) # Topologically Sorted Source Nodes: [conv2d_2, relu_2, vector_2], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_12.run(buf15, primals_7, buf16, 331776, grid=grid(331776), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_3], Original ATen: [aten.convolution] buf17 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf18 = buf17; del buf17 # reuse # Topologically Sorted Source Nodes: [conv2d_3, relu_3], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_13.run(buf18, primals_9, 262144, grid=grid(262144), stream=stream0) del primals_9 buf19 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) # Topologically Sorted Source Nodes: [max_pool2d_2], Original ATen: [aten.max_pool2d_with_indices] triton_poi_fused_max_pool2d_with_indices_14.run(buf18, buf19, 65536, grid=grid(65536), stream=stream0) buf20 = empty_strided_cuda((4, 256, 10, 10), (25600, 1, 2560, 256), torch.float32) # Topologically Sorted Source Nodes: [max_pool2d_2, vector_3], Original ATen: [aten.max_pool2d_with_indices, aten.reflection_pad2d] triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15.run(buf18, buf20, 102400, grid=grid(102400), stream=stream0) # Topologically Sorted Source Nodes: [conv2d_4], Original ATen: [aten.convolution] buf21 = extern_kernels.convolution(buf20, buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf22 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [conv2d_4, relu_4, vector_4], Original ATen: [aten.convolution, aten.relu, aten.reflection_pad2d] triton_poi_fused_convolution_reflection_pad2d_relu_16.run(buf21, primals_11, buf22, 2048, 100, grid=grid(2048, 100), stream=stream0) buf23 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) # Topologically Sorted Source Nodes: [conv2d_4, relu_4], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_17.run(buf21, primals_11, buf23, 131072, grid=grid(131072), stream=stream0) del buf21 del primals_11 buf24 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, relu_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_18.run(buf15, primals_7, buf24, 262144, grid=grid(262144), stream=stream0) del buf15 del primals_7 return (reinterpret_tensor(buf22, (4, 51200), (51200, 1), 0), buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf13, buf14, buf16, buf18, buf19, buf20, buf23, buf24, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((64, 3, 3, 3), (27, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 3, 64, 64), (12288, 4096, 64, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((128, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((128, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((256, 128, 3, 3), (1152, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((256, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((256, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((512, 256, 3, 3), (2304, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 128 y1 = yindex // 128 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 128 * x2 + 1152 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_4(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_5(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = (tl.program_id(1) + tl.program_id(2) * tl.num_programs(1) ) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 256 y1 = yindex // 256 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 256 * x2 + 2304 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 984064 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 246016 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 31 x2 = xindex // 1984 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 7936 * x2), xmask) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 7936 * x2), xmask) tmp7 = tl.load(in_ptr0 + (3968 + x0 + 128 * x1 + 7936 * x2), xmask) tmp12 = tl.load(in_ptr0 + (4032 + x0 + 128 * x1 + 7936 * x2), xmask) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 278784 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 33 x2 = xindex // 2112 % 33 x3 = xindex // 69696 x4 = xindex tmp0 = tl.load(in_ptr0 + (241920 + x0 + -7936 * tl_math.abs(-30 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-30 + tl_math.abs(-1 + x1)) + 246016 * x3), xmask) tmp1 = tl.load(in_ptr0 + (241984 + x0 + -7936 * tl_math.abs(-30 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-30 + tl_math.abs(-1 + x1)) + 246016 * x3), xmask) tmp3 = tl.load(in_ptr0 + (245888 + x0 + -7936 * tl_math.abs(-30 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-30 + tl_math.abs(-1 + x1)) + 246016 * x3), xmask) tmp5 = tl.load(in_ptr0 + (245952 + x0 + -7936 * tl_math.abs(-30 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-30 + tl_math.abs(-1 + x1)) + 246016 * x3), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_9(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 492032 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 128 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_10(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex // 2048 % 16 x1 = xindex // 128 % 16 x0 = xindex % 128 x3 = xindex // 32768 x6 = xindex tmp0 = 2 * x2 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 31, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = 2 * x1 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (x0 + 256 * x1 + 7936 * x2 + 123008 * x3), tmp10, other=float('-inf')) tmp12 = 1 + 2 * x1 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (128 + x0 + 256 * x1 + 7936 * x2 + 123008 * x3), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + 2 * x2 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp22 & tmp9 tmp24 = tl.load(in_ptr0 + (3968 + x0 + 256 * x1 + 7936 * x2 + 123008 * x3), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = tmp22 & tmp15 tmp27 = tl.load(in_ptr0 + (4096 + x0 + 256 * x1 + 7936 * x2 + 123008 * x3), tmp26, other=float('-inf')) tmp28 = triton_helpers.maximum(tmp27, tmp25) tmp29 = tmp17 > tmp11 tmp30 = tl.full([1], 1, tl.int8) tmp31 = tl.full([1], 0, tl.int8) tmp32 = tl.where(tmp29, tmp30, tmp31) tmp33 = tmp24 > tmp18 tmp34 = tl.full([1], 2, tl.int8) tmp35 = tl.where(tmp33, tmp34, tmp32) tmp36 = tmp27 > tmp25 tmp37 = tl.full([1], 3, tl.int8) tmp38 = tl.where(tmp36, tmp37, tmp35) tl.store(out_ptr0 + x6, tmp28, None) tl.store(out_ptr1 + x6, tmp38, None) @triton.jit def triton_poi_fused_reflection_pad2d_11(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 % 18 x2 = xindex // 2304 % 18 x3 = xindex // 41472 x4 = xindex tmp0 = tl.load(in_ptr0 + (32640 + x0 + -2048 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 32768 * x3), None) tl.store(out_ptr0 + x4, tmp0, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_12(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 18 x2 = xindex // 4608 % 18 x3 = xindex // 82944 x4 = xindex tmp0 = tl.load(in_ptr0 + (65280 + x0 + -4096 * tl_math.abs(-15 + tl_math.abs(-1 + x2)) + -256 * tl_math.abs(-15 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_14(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 8 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 512 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (256 + x0 + 512 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 512 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4352 + x0 + 512 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 % 10 x2 = xindex // 2560 % 10 x3 = xindex // 25600 x4 = xindex tmp0 = tl.load(in_ptr0 + (60928 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp1 = tl.load(in_ptr0 + (61184 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp3 = tl.load(in_ptr0 + (65024 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp5 = tl.load(in_ptr0 + (65280 + x0 + -8192 * tl_math.abs(-7 + tl_math .abs(-1 + x2)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x1)) + 65536 * x3), None) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, None) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_16(in_ptr0, in_ptr1, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): xnumel = 100 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex % 10 x3 = xindex // 10 y0 = yindex % 512 y1 = yindex // 512 x5 = xindex y4 = yindex tmp0 = tl.load(in_ptr0 + (32256 + y0 + -4096 * tl_math.abs(-7 + tl_math .abs(-1 + x3)) + -512 * tl_math.abs(-7 + tl_math.abs(-1 + x2)) + 32768 * y1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + (x5 + 100 * y4), tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_17(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_18(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 256 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (128,), (1,)) assert_size_stride(primals_6, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_7, (256,), (1,)) assert_size_stride(primals_8, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_9, (256,), (1,)) assert_size_stride(primals_10, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_11, (512,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) get_raw_stream(0) triton_poi_fused_0[grid(192, 9)](primals_1, buf0, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) triton_poi_fused_1[grid(12, 4096)](primals_3, buf1, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf2 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_2[grid(8192, 9)](primals_4, buf2, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf3 = empty_strided_cuda((256, 128, 3, 3), (1152, 1, 384, 128), torch.float32) triton_poi_fused_3[grid(32768, 9)](primals_6, buf3, 32768, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf4 = empty_strided_cuda((256, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_4[grid(65536, 9)](primals_8, buf4, 65536, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf5 = empty_strided_cuda((512, 256, 3, 3), (2304, 1, 768, 256), torch.float32) triton_poi_fused_5[grid(131072, 9)](primals_10, buf5, 131072, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_10 buf6 = extern_kernels.convolution(buf1, buf0, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 62, 62), (246016, 1, 3968, 64)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_6[grid(984064)](buf7, primals_2, 984064, XBLOCK=1024, num_warps=4, num_stages=1) del primals_2 buf8 = empty_strided_cuda((4, 64, 31, 31), (61504, 1, 1984, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(246016)](buf7, buf8, 246016, XBLOCK=512, num_warps=8, num_stages=1) buf9 = empty_strided_cuda((4, 64, 33, 33), (69696, 1, 2112, 64), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8[grid( 278784)](buf7, buf9, 278784, XBLOCK=512, num_warps=8, num_stages=1) buf10 = extern_kernels.convolution(buf9, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf10, (4, 128, 31, 31), (123008, 1, 3968, 128)) buf11 = buf10 del buf10 triton_poi_fused_convolution_relu_9[grid(492032)](buf11, primals_5, 492032, XBLOCK=1024, num_warps=4, num_stages=1) del primals_5 buf12 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.float32) buf13 = empty_strided_cuda((4, 128, 16, 16), (32768, 1, 2048, 128), torch.int8) triton_poi_fused_max_pool2d_with_indices_10[grid(131072)](buf11, buf12, buf13, 131072, XBLOCK=512, num_warps=8, num_stages=1) buf14 = empty_strided_cuda((4, 128, 18, 18), (41472, 1, 2304, 128), torch.float32) triton_poi_fused_reflection_pad2d_11[grid(165888)](buf12, buf14, 165888, XBLOCK=1024, num_warps=4, num_stages=1) del buf12 buf15 = extern_kernels.convolution(buf14, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf15, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf16 = empty_strided_cuda((4, 256, 18, 18), (82944, 1, 4608, 256), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_12[grid(331776)]( buf15, primals_7, buf16, 331776, XBLOCK=1024, num_warps=4, num_stages=1) buf17 = extern_kernels.convolution(buf16, buf4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf17, (4, 256, 16, 16), (65536, 1, 4096, 256)) buf18 = buf17 del buf17 triton_poi_fused_convolution_relu_13[grid(262144)](buf18, primals_9, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf19 = empty_strided_cuda((4, 256, 8, 8), (16384, 1, 2048, 256), torch.int8) triton_poi_fused_max_pool2d_with_indices_14[grid(65536)](buf18, buf19, 65536, XBLOCK=512, num_warps=4, num_stages=1) buf20 = empty_strided_cuda((4, 256, 10, 10), (25600, 1, 2560, 256), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_15[grid( 102400)](buf18, buf20, 102400, XBLOCK=512, num_warps=8, num_stages=1) buf21 = extern_kernels.convolution(buf20, buf5, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf21, (4, 512, 8, 8), (32768, 1, 4096, 512)) buf22 = empty_strided_cuda((4, 512, 10, 10), (51200, 100, 10, 1), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_16[grid(2048, 100)]( buf21, primals_11, buf22, 2048, 100, XBLOCK=128, YBLOCK=8, num_warps=4, num_stages=1) buf23 = empty_strided_cuda((4, 512, 8, 8), (32768, 1, 4096, 512), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_17[grid(131072)]( buf21, primals_11, buf23, 131072, XBLOCK=1024, num_warps=4, num_stages=1) del buf21 del primals_11 buf24 = empty_strided_cuda((4, 256, 16, 16), (65536, 1, 4096, 256), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_18[grid(262144)]( buf15, primals_7, buf24, 262144, XBLOCK=1024, num_warps=4, num_stages=1) del buf15 del primals_7 return (reinterpret_tensor(buf22, (4, 51200), (51200, 1), 0), buf0, buf1, buf2, buf3, buf4, buf5, buf7, buf8, buf9, buf11, buf13, buf14, buf16, buf18, buf19, buf20, buf23, buf24) class vgg11_modifiedNew(nn.Module): def __init__(self, num_classes=20): super(vgg11_modifiedNew, self).__init__() self.num_classes = num_classes self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) self.pool = nn.MaxPool2d((2, 2), (2, 2), (0, 0), ceil_mode=True) self.conv1_1 = nn.Conv2d(3, 64, (3, 3)) self.conv2_1 = nn.Conv2d(64, 128, (3, 3)) self.conv3_1 = nn.Conv2d(128, 256, (3, 3)) self.conv3_2 = nn.Conv2d(256, 256, (3, 3)) self.conv4_1 = nn.Conv2d(256, 512, (3, 3)) def forward(self, input_0): primals_1 = self.conv1_1.weight primals_2 = self.conv1_1.bias primals_4 = self.conv2_1.weight primals_5 = self.conv2_1.bias primals_6 = self.conv3_1.weight primals_7 = self.conv3_1.bias primals_8 = self.conv3_2.weight primals_9 = self.conv3_2.bias primals_10 = self.conv4_1.weight primals_11 = self.conv4_1.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
JonGant/FoveatedTextureTransform
vgg11_modified
false
17,547
[ "MIT" ]
4
a3bad4abdb0a61e038cfe3602ef568dfea1a6127
https://github.com/JonGant/FoveatedTextureTransform/tree/a3bad4abdb0a61e038cfe3602ef568dfea1a6127
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_6/inductor_cache/sc/csc4e2vzzrvn5vasjwt33h5twu2lbmnykvnkrdwx4vjrfjftxot7.py # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # add => add # add_1 => add_1 # add_2 => add_2 # dice => div # intersection => sum_1 # mul => mul # mul_1 => mul_1 # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg0_1, %arg1_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%mul,), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2.0), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, 1e-05), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg0_1,), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.default](args = (%arg1_1,), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, %sum_3), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add_1, 1e-05), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%add, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 256], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {3: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=(3,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': True, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): xnumel = 1 XBLOCK: tl.constexpr = 1 rnumel = 256 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK xindex = tl.full([1], xoffset, tl.int32) xmask = tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] roffset = 0 rmask = tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (r0), None) tmp1 = tl.load(in_ptr1 + (r0), None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([1], 0, tl.int32)), tmp20, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, intersection, mul_1, add, sum_2, sum_3, add_1, add_2, dice, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 1, 256, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [RBLOCK]) tmp5 = triton_helpers.promote_to_tensor(tl.sum(tmp3, 0)) tmp6 = tl.broadcast_to(tmp0, [RBLOCK]) tmp8 = triton_helpers.promote_to_tensor(tl.sum(tmp6, 0)) tmp9 = tl.broadcast_to(tmp1, [RBLOCK]) tmp11 = triton_helpers.promote_to_tensor(tl.sum(tmp9, 0)) tmp12 = 2.0 tmp13 = tmp5 * tmp12 tmp14 = 1e-05 tmp15 = tmp13 + tmp14 tmp16 = tmp8 + tmp11 tmp17 = tmp16 + tmp14 tmp18 = tmp15 / tmp17 tmp19 = 1.0 tmp20 = tmp19 - tmp18 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(1)](buf3, arg0_1, arg1_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): def __init__(self, weight=None, size_average=True): super(DiceLossNew, self).__init__() def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
MohannadEhabBarakat/U-2-Net
DiceLoss
false
840
[ "Apache-2.0" ]
0
89a4eba7a565e7afcd4ac04b11b55099ebef687c
https://github.com/MohannadEhabBarakat/U-2-Net/tree/89a4eba7a565e7afcd4ac04b11b55099ebef687c
FlowEntropy
import torch import numpy as np import torch.nn as nn import torch.nn.functional as F class FlowEntropy(nn.Module): """ Computes entropy from matching cost """ def __init__(self): super(FlowEntropy, self).__init__() def forward(self, x): """ Performs forward pass. Parameters ---------- x : torch.Tensor A tensor of shape B x U x V x H x W representing the cost Returns ------- torch.Tensor A tensor of shape B x 1 x H x W """ x = torch.squeeze(x, 1) B, U, V, H, W = x.shape x = x.view(B, -1, H, W) x = F.softmax(x, dim=1).view(B, U, V, H, W) global_entropy = (-x * torch.clamp(x, 1e-09, 1 - 1e-09).log()).sum(1 ).sum(1)[:, np.newaxis] global_entropy /= np.log(x.shape[1] * x.shape[2]) return global_entropy def get_inputs(): return [torch.rand([4, 4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_per_fused__softmax_0(in_ptr0, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 64 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x0 = xindex % 16 x1 = xindex // 16 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 16 * r2 + 256 * x1), xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tl.store(out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr1 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_clamp_log_mul_neg_sum_1(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex // 64 x3 = xindex % 64 x0 = xindex % 16 x4 = xindex tmp0 = tl.load(in_ptr0 + (x3 + 256 * x2), xmask) tmp1 = tl.load(in_ptr1 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr2 + (x0 + 16 * x2), xmask, eviction_policy= 'evict_last') tmp13 = tl.load(in_ptr0 + (64 + x3 + 256 * x2), xmask) tmp23 = tl.load(in_ptr0 + (128 + x3 + 256 * x2), xmask) tmp33 = tl.load(in_ptr0 + (192 + x3 + 256 * x2), xmask) tmp2 = tmp0 - tmp1 tmp3 = tl_math.exp(tmp2) tmp5 = tmp3 / tmp4 tmp6 = -tmp5 tmp7 = 1e-09 tmp8 = triton_helpers.maximum(tmp5, tmp7) tmp9 = 0.999999999 tmp10 = triton_helpers.minimum(tmp8, tmp9) tmp11 = tl_math.log(tmp10) tmp12 = tmp6 * tmp11 tmp14 = tmp13 - tmp1 tmp15 = tl_math.exp(tmp14) tmp16 = tmp15 / tmp4 tmp17 = -tmp16 tmp18 = triton_helpers.maximum(tmp16, tmp7) tmp19 = triton_helpers.minimum(tmp18, tmp9) tmp20 = tl_math.log(tmp19) tmp21 = tmp17 * tmp20 tmp22 = tmp12 + tmp21 tmp24 = tmp23 - tmp1 tmp25 = tl_math.exp(tmp24) tmp26 = tmp25 / tmp4 tmp27 = -tmp26 tmp28 = triton_helpers.maximum(tmp26, tmp7) tmp29 = triton_helpers.minimum(tmp28, tmp9) tmp30 = tl_math.log(tmp29) tmp31 = tmp27 * tmp30 tmp32 = tmp22 + tmp31 tmp34 = tmp33 - tmp1 tmp35 = tl_math.exp(tmp34) tmp36 = tmp35 / tmp4 tmp37 = -tmp36 tmp38 = triton_helpers.maximum(tmp36, tmp7) tmp39 = triton_helpers.minimum(tmp38, tmp9) tmp40 = tl_math.log(tmp39) tmp41 = tmp37 * tmp40 tmp42 = tmp32 + tmp41 tl.store(out_ptr0 + x4, tmp42, xmask) @triton.jit def triton_poi_fused_div_log_2(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp7 = 2.772588722239781 tmp8 = tmp6 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4, 4), (256, 64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) buf1 = empty_strided_cuda((4, 1, 4, 4), (16, 64, 4, 1), torch.float32) get_raw_stream(0) triton_per_fused__softmax_0[grid(64)](arg0_1, buf0, buf1, 64, 16, XBLOCK=1, num_warps=2, num_stages=1) buf2 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_clamp_log_mul_neg_sum_1[grid(256)](arg0_1, buf0, buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 del buf0 buf3 = reinterpret_tensor(buf1, (4, 1, 4, 4), (16, 1, 4, 1), 0) del buf1 triton_poi_fused_div_log_2[grid(64)](buf2, buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf2 return reinterpret_tensor(buf3, (4, 1, 4, 4), (16, 16, 4, 1), 0), class FlowEntropyNew(nn.Module): """ Computes entropy from matching cost """ def __init__(self): super(FlowEntropyNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NeelayS/ezflow
FlowEntropy
false
14,098
[ "MIT" ]
94
b93a48c4adf5021f7eacbfc43220c7efa5ae55cd
https://github.com/NeelayS/ezflow/tree/b93a48c4adf5021f7eacbfc43220c7efa5ae55cd
Net
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/yg/cygigdediun32xqpnn2rvwqivcwityjlhmhcxprrpqarzdrxjcrc.py # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] # Source node to ATen node mapping: # truediv => div # Graph fragment: # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%primals_1, 255.0), kwargs = {}) triton_poi_fused_div_0 = async_compile.triton('triton_poi_fused_div_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[524288], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_div_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 331776 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), None) tmp1 = 0.00392156862745098 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + (x0), tmp2, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/x3/cx3zumgw77e3igayg4xhlhbpdfk2ntbgunplp6t4wmspo7thr3v3.py # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d => convolution # x => relu # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%div, %primals_2, %primals_3, [4, 4], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution,), kwargs = {}) triton_poi_fused_convolution_relu_1 = async_compile.triton('triton_poi_fused_convolution_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[262144], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 1225) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/oj/cojqknocmn4drzmdartfcdsvk3jhz65nil4x2gpmirq4cuh6g76u.py # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] # Source node to ATen node mapping: # conv2d_1 => convolution_1 # x_1 => relu_1 # Graph fragment: # %convolution_1 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu, %primals_4, %primals_5, [2, 2], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_1,), kwargs = {}) triton_poi_fused_convolution_relu_2 = async_compile.triton('triton_poi_fused_convolution_relu_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[65536], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 65536 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = (xindex // 256) % 64 tmp0 = tl.load(in_out_ptr0 + (x3), None) tmp1 = tl.load(in_ptr0 + (x1), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x3), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/rc/crcw4seqqptojl4alrxhff3veg5mcn5lnphx3rwpub7llukqhf6y.py # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # conv2d_2 => convolution_2 # x_2 => relu_2 # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%relu_1, %primals_6, %primals_7, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %relu_2 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%convolution_2,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_2, 0), kwargs = {}) triton_poi_fused_convolution_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_convolution_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[32768], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_relu_threshold_backward_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 196) % 32 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x3), tmp4, xmask) tl.store(out_ptr0 + (x3), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zr/czrmtzfjcgvuv6v3uj6vtrligvhht34omkpigptjfjaceraanhzn.py # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] # Source node to ATen node mapping: # x_4 => relu_3 # Graph fragment: # %add_tensor : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mm_default, %primals_9), kwargs = {}) # %relu_3 : [num_users=3] = call_function[target=torch.ops.aten.relu.default](args = (%add_tensor,), kwargs = {}) triton_poi_fused_relu_4 = async_compile.triton('triton_poi_fused_relu_4', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[8192], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_4', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 8192 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + (x2), None) tmp1 = tl.load(in_ptr0 + (x0), None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + (x2), tmp4, None) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/j7/cj7mv2k5l2kigfluq2rwwpouckm4oow7jia7wwvjogp3qlr23xwv.py # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pi => amax, exp, sub # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%addmm_2, [1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%addmm_2, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) triton_poi_fused__softmax_5 = async_compile.triton('triton_poi_fused__softmax_5', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_5', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/b4/cb4vdtviarmy2ckmxjdkc3dnwp4gssl3dh4u4col3s2illvdpvql.py # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] # Source node to ATen node mapping: # pi => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [1], True), kwargs = {}) # %div_1 : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_6 = async_compile.triton('triton_poi_fused__softmax_6', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_6', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13 = args args.clear() assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1)) assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_3, (32, ), (1, )) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64, ), (1, )) assert_size_stride(primals_6, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (32, ), (1, )) assert_size_stride(primals_8, (512, 1568), (1568, 1)) assert_size_stride(primals_9, (512, ), (1, )) assert_size_stride(primals_10, (1, 512), (512, 1)) assert_size_stride(primals_11, (1, ), (1, )) assert_size_stride(primals_12, (4, 512), (512, 1)) assert_size_stride(primals_13, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1), torch.float32) # Topologically Sorted Source Nodes: [truediv], Original ATen: [aten.div] stream0 = get_raw_stream(0) triton_poi_fused_div_0.run(primals_1, buf0, 331776, grid=grid(331776), stream=stream0) del primals_1 # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1)) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [conv2d, x], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_1.run(buf2, primals_3, 156800, grid=grid(156800), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1)) buf4 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_1, x_1], Original ATen: [aten.convolution, aten.relu] triton_poi_fused_convolution_relu_2.run(buf4, primals_5, 65536, grid=grid(65536), stream=stream0) del primals_5 # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 14, 14), (6272, 196, 14, 1)) buf6 = buf5; del buf5 # reuse buf14 = empty_strided_cuda((4, 32, 14, 14), (6272, 196, 14, 1), torch.bool) # Topologically Sorted Source Nodes: [conv2d_2, x_2], Original ATen: [aten.convolution, aten.relu, aten.threshold_backward] triton_poi_fused_convolution_relu_threshold_backward_3.run(buf6, primals_7, buf14, 25088, grid=grid(25088), stream=stream0) del primals_7 buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf6, (16, 1568), (1568, 1), 0), reinterpret_tensor(primals_8, (1568, 512), (1, 1568), 0), out=buf7) buf8 = buf7; del buf7 # reuse # Topologically Sorted Source Nodes: [x_4], Original ATen: [aten.relu] triton_poi_fused_relu_4.run(buf8, primals_9, 8192, grid=grid(8192), stream=stream0) del primals_9 buf10 = empty_strided_cuda((16, 1), (1, 1), torch.float32) # Topologically Sorted Source Nodes: [value], Original ATen: [aten.addmm] extern_kernels.addmm(primals_11, buf8, reinterpret_tensor(primals_10, (512, 1), (1, 512), 0), alpha=1, beta=1, out=buf10) del primals_11 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_13, buf8, reinterpret_tensor(primals_12, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf11) del primals_13 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] triton_poi_fused__softmax_5.run(buf11, buf12, 64, grid=grid(64), stream=stream0) buf13 = buf11; del buf11 # reuse # Topologically Sorted Source Nodes: [pi], Original ATen: [aten._softmax] triton_poi_fused__softmax_6.run(buf12, buf13, 64, grid=grid(64), stream=stream0) del buf12 return (buf10, buf13, primals_2, primals_4, primals_6, buf0, buf2, buf4, reinterpret_tensor(buf6, (16, 1568), (1568, 1), 0), buf8, buf13, primals_12, primals_10, primals_8, buf14, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 144, 144), (82944, 20736, 144, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((32, 4, 8, 8), (256, 64, 8, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((64, 32, 4, 4), (512, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((64, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((32, 64, 3, 3), (576, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((32, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((512, 1568), (1568, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((512, ), (1, ), device='cuda:0', dtype=torch.float32) primals_10 = rand_strided((1, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_11 = rand_strided((1, ), (1, ), device='cuda:0', dtype=torch.float32) primals_12 = rand_strided((4, 512), (512, 1), device='cuda:0', dtype=torch.float32) primals_13 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn import torch.nn.functional as F assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_div_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_ptr0 + x0, None) tmp1 = 0.00392156862745098 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, None) @triton.jit def triton_poi_fused_convolution_relu_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 156800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 1225 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_3(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 25088 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 196 % 32 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x3, tmp4, xmask) tl.store(out_ptr0 + x3, tmp6, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 512 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused__softmax_5(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused__softmax_6(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13) = args args.clear() assert_size_stride(primals_1, (4, 4, 144, 144), (82944, 20736, 144, 1)) assert_size_stride(primals_2, (32, 4, 8, 8), (256, 64, 8, 1)) assert_size_stride(primals_3, (32,), (1,)) assert_size_stride(primals_4, (64, 32, 4, 4), (512, 16, 4, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (32, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (32,), (1,)) assert_size_stride(primals_8, (512, 1568), (1568, 1)) assert_size_stride(primals_9, (512,), (1,)) assert_size_stride(primals_10, (1, 512), (512, 1)) assert_size_stride(primals_11, (1,), (1,)) assert_size_stride(primals_12, (4, 512), (512, 1)) assert_size_stride(primals_13, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 144, 144), (82944, 20736, 144, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_0[grid(331776)](primals_1, buf0, 331776, XBLOCK=1024, num_warps=4, num_stages=1) del primals_1 buf1 = extern_kernels.convolution(buf0, primals_2, stride=(4, 4), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 32, 35, 35), (39200, 1225, 35, 1)) buf2 = buf1 del buf1 triton_poi_fused_convolution_relu_1[grid(156800)](buf2, primals_3, 156800, XBLOCK=512, num_warps=8, num_stages=1) del primals_3 buf3 = extern_kernels.convolution(buf2, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 64, 16, 16), (16384, 256, 16, 1)) buf4 = buf3 del buf3 triton_poi_fused_convolution_relu_2[grid(65536)](buf4, primals_5, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 32, 14, 14), (6272, 196, 14, 1)) buf6 = buf5 del buf5 buf14 = empty_strided_cuda((4, 32, 14, 14), (6272, 196, 14, 1), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_3[grid(25088)]( buf6, primals_7, buf14, 25088, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf7 = empty_strided_cuda((16, 512), (512, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (16, 1568), (1568, 1), 0 ), reinterpret_tensor(primals_8, (1568, 512), (1, 1568), 0), out=buf7) buf8 = buf7 del buf7 triton_poi_fused_relu_4[grid(8192)](buf8, primals_9, 8192, XBLOCK= 256, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((16, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, buf8, reinterpret_tensor( primals_10, (512, 1), (1, 512), 0), alpha=1, beta=1, out=buf10) del primals_11 buf11 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_13, buf8, reinterpret_tensor( primals_12, (512, 4), (1, 512), 0), alpha=1, beta=1, out=buf11) del primals_13 buf12 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused__softmax_5[grid(64)](buf11, buf12, 64, XBLOCK=64, num_warps=1, num_stages=1) buf13 = buf11 del buf11 triton_poi_fused__softmax_6[grid(64)](buf12, buf13, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf12 return (buf10, buf13, primals_2, primals_4, primals_6, buf0, buf2, buf4, reinterpret_tensor(buf6, (16, 1568), (1568, 1), 0), buf8, buf13, primals_12, primals_10, primals_8, buf14) class DeepMind(nn.Module): def __init__(self): super(DeepMind, self).__init__() self.conv1 = nn.Conv2d(4, 32, 8, stride=4) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 32, 3, stride=1) self.fc1 = nn.Linear(32 * 7 * 7, 512) nn.init.orthogonal_(self.conv1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv2.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.conv3.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.orthogonal_(self.fc1.weight.data, gain=nn.init. calculate_gain('relu')) nn.init.constant_(self.conv1.bias.data, 0) nn.init.constant_(self.conv2.bias.data, 0) nn.init.constant_(self.conv3.bias.data, 0) nn.init.constant_(self.fc1.bias.data, 0) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = x.view(-1, 32 * 7 * 7) x = F.relu(self.fc1(x)) return x class NetNew(nn.Module): def __init__(self, num_actions): super(NetNew, self).__init__() self.cnn_layer = DeepMind() self.critic = nn.Linear(512, 1) self.actor = nn.Linear(512, num_actions) nn.init.orthogonal_(self.critic.weight.data) nn.init.constant_(self.critic.bias.data, 0) nn.init.orthogonal_(self.actor.weight.data, gain=0.01) nn.init.constant_(self.actor.bias.data, 0) def forward(self, input_0): primals_2 = self.cnn_layer.conv1.weight primals_3 = self.cnn_layer.conv1.bias primals_4 = self.cnn_layer.conv2.weight primals_5 = self.cnn_layer.conv2.bias primals_6 = self.cnn_layer.conv3.weight primals_7 = self.cnn_layer.conv3.bias primals_8 = self.cnn_layer.fc1.weight primals_9 = self.cnn_layer.fc1.bias primals_10 = self.critic.weight primals_11 = self.critic.bias primals_12 = self.actor.weight primals_13 = self.actor.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13]) return output[0], output[1]
TianhongDai/Self_Imitation_Learning
Net
false
15,270
[ "MIT" ]
61
e49003582fa3d875495d84682f2a3332d4922dbc
https://github.com/TianhongDai/Self_Imitation_Learning/tree/e49003582fa3d875495d84682f2a3332d4922dbc
SparseConv2d
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/w7/cw7kmlo7vngjrzz2fl4nrd6rnf7o2266le56li6smcptk7jnvzpz.py # Topologically Sorted Source Nodes: [diag], Original ATen: [aten.diag_embed] # Source node to ATen node mapping: # diag => eq, full_default, iota, where # Graph fragment: # %iota : [num_users=2] = call_function[target=torch.ops.prims.iota.default](args = (4,), kwargs = {start: 0, step: 1, dtype: torch.int64, device: cuda:0, requires_grad: False}) # %eq : [num_users=1] = call_function[target=torch.ops.aten.eq.Tensor](args = (%iota, %unsqueeze_1), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([], 0.0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%eq, %permute, %full_default), kwargs = {}) triton_poi_fused_diag_embed_0 = async_compile.triton('triton_poi_fused_diag_embed_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_diag_embed_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_diag_embed_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = (xindex // 4) x2 = xindex tmp3 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + (x2), tmp5, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/tc/ctcagp37ljugm52zu6ckorigrppqo67voefe2f2odg5r6hyllhyu.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_4, %view_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x2), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, ), (1, )) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [diag], Original ATen: [aten.diag_embed] stream0 = get_raw_stream(0) triton_poi_fused_diag_embed_0.run(primals_1, buf0, 16, grid=grid(16), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32) # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 64), (64, 1), 0), out=buf1) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_4, reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf3, primals_3, 16, grid=grid(16), stream=stream0) del primals_3 return (buf3, primals_4, reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0), reinterpret_tensor(primals_2, (64, 4), (1, 64), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import math import numpy as np import torch.nn as nn import torch.utils.data import scipy.sparse as sparse from torch.nn.modules.utils import _pair assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_diag_embed_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 4 x1 = xindex // 4 x2 = xindex tmp3 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp0 = x0 tmp1 = x1 tmp2 = tmp0 == tmp1 tmp4 = 0.0 tmp5 = tl.where(tmp2, tmp3, tmp4) tl.store(out_ptr0 + x2, tmp5, xmask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x2, tmp2, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_diag_embed_0[grid(16)](primals_1, buf0, 16, XBLOCK =16, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 64), (64, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_2, (4, 64), (64, 1), 0), out=buf1) buf2 = extern_kernels.convolution(primals_4, reinterpret_tensor( buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), stride=(1, 1), padding= (0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0 ), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 1, 1), (4, 1, 1, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(16)](buf3, primals_3, 16, XBLOCK=16, num_warps=1, num_stages=1) del primals_3 return buf3, primals_4, reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0), reinterpret_tensor(buf0, (4, 4), (1, 4), 0 ), reinterpret_tensor(primals_2, (64, 4), (1, 64), 0) class SparseConv2dNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, k, rho_init, rho_maximum, mu, stride=1, padding=0, bias=True): super(SparseConv2dNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = _pair(kernel_size) self.stride = _pair(stride) self.padding = _pair(padding) self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size)) self.v = nn.Parameter(torch.Tensor(out_channels)) if bias: self.bias = nn.Parameter(torch.Tensor(out_channels)) else: self.register_parameter('bias', None) self.reset_parameters() self.k = k self.rho_init = rho_init self.rho = rho_init self.rho_maximum = rho_maximum self.mu = mu self.y1 = np.zeros([out_channels, 1]) self.y2 = np.zeros([out_channels, 1]) self.z1 = np.zeros([out_channels, 1]) self.z2 = np.zeros([out_channels, 1]) self.v_np = np.zeros([out_channels, 1]) self.P = sparse.csc_matrix(np.eye(self.out_channels)) self.q = np.zeros([self.out_channels, 1]) self.E = sparse.csc_matrix(np.vstack([np.eye(self.out_channels), np .ones([self.out_channels, 1]).transpose()])) self.l = np.vstack([np.zeros([self.out_channels, 1]), self.k * np. ones([1, 1])]) self.u = np.vstack([np.ones([self.out_channels, 1]), self.k * np. ones([1, 1])]) def reset_parameters(self): stdv = math.sqrt(2.0 / sum(self.weight.size())) self.weight.data.normal_(0, stdv) if self.bias is not None: self.bias.data.zero_() v_shape = self.v.data.numpy().shape np_v = np.ones(v_shape) self.v.data = torch.from_numpy(np_v).float() def forward(self, input_0): primals_2 = self.weight primals_1 = self.v primals_3 = self.bias primals_4 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
FaithfulZhening/CNN-FCF-CVPR-2019
SparseConv2d
false
9,111
[ "Apache-2.0" ]
0
f65f6577feb4a2cdaed3fb60cb14b8840e25e19c
https://github.com/FaithfulZhening/CNN-FCF-CVPR-2019/tree/f65f6577feb4a2cdaed3fb60cb14b8840e25e19c
BertPooler
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_3/inductor_cache/qm/cqmqejojpdhiutcecl4uiqkwznpqhn353cvazvgjyo3qp6end7wo.py # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] # Source node to ATen node mapping: # pooled_output => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%select,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_0 = async_compile.triton('triton_poi_fused_clone_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = (xindex // 16) x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + (64*x1)), xmask) tl.store(out_ptr0 + (x2), tmp0, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_3/inductor_cache/ia/ciayx7opi77bbyngzfajvslu66mpxbxtut2byl2nbgczgubrj5jb.py # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] # Source node to ATen node mapping: # pooled_output => add # pooled_output_1 => tanh # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_1, %primals_3), kwargs = {}) # %tanh : [num_users=1] = call_function[target=torch.ops.aten.tanh.default](args = (%add,), kwargs = {}) triton_poi_fused_add_tanh_1 = async_compile.triton('triton_poi_fused_add_tanh_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_tanh_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + (x2), tmp3, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.clone] stream0 = get_raw_stream(0) triton_poi_fused_clone_0.run(primals_1, buf0, 64, grid=grid(64), stream=stream0) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [pooled_output], Original ATen: [aten.mm] extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [pooled_output, pooled_output_1], Original ATen: [aten.add, aten.tanh] triton_poi_fused_add_tanh_1.run(buf2, primals_3, 64, grid=grid(64), stream=stream0) del primals_3 return (buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_clone_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tl.store(out_ptr0 + x2, tmp0, xmask) @triton.jit def triton_poi_fused_add_tanh_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = libdevice.tanh(tmp2) tl.store(in_out_ptr0 + x2, tmp3, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4), (4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clone_0[grid(64)](primals_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((16, 4), (4, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf0, (16, 4), (4, 1), 0), reinterpret_tensor(primals_2, (4, 4), (1, 4), 0), out=buf1) del primals_2 buf2 = reinterpret_tensor(buf1, (4, 4, 4), (16, 4, 1), 0) del buf1 triton_poi_fused_add_tanh_1[grid(64)](buf2, primals_3, 64, XBLOCK= 64, num_warps=1, num_stages=1) del primals_3 return buf2, reinterpret_tensor(buf0, (16, 4), (4, 1), 0), buf2 class BertPoolerNew(nn.Module): def __init__(self, config): super(BertPoolerNew, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, input_0): primals_2 = self.dense.weight primals_3 = self.dense.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
Albert-Ma/bert-fine-tuned-gain
BertPooler
false
18,448
[ "Apache-2.0" ]
2
f752c1182f1c800f5f56998e13fd6115929df655
https://github.com/Albert-Ma/bert-fine-tuned-gain/tree/f752c1182f1c800f5f56998e13fd6115929df655
QNet
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/v7/cv7zazascu4rpkkwoxbiwk6c2le2e6wshdhae73bmaoapelvwguv.py # Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # a => relu # Graph fragment: # %relu : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_1,), kwargs = {}) # %le_1 : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_0 = async_compile.triton('triton_poi_fused_relu_threshold_backward_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + (x2), tmp4, xmask) tl.store(out_ptr0 + (x2), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/xf/cxf4na4u2jaehhvves35mikpqe7m3jl2pikqdmab7ftwzhsdy3qk.py # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] # Source node to ATen node mapping: # softmax => amax, div, exp, sub, sum_1 # Graph fragment: # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_6, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_6, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_1 = async_compile.triton('triton_per_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (10*x0)), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float("-inf")) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + (10*x0)), tmp11, rmask & xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (40, 16), (16, 1)) assert_size_stride(primals_7, (40, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf0 # reuse buf9 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [a], Original ATen: [aten.relu, aten.threshold_backward] stream0 = get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0.run(buf1, primals_2, buf9, 1024, grid=grid(1024), stream=stream0) del primals_2 buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0); del buf2 # reuse buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) # Topologically Sorted Source Nodes: [a_1], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_0.run(buf3, primals_5, buf8, 1024, grid=grid(1024), stream=stream0) del primals_5 buf4 = empty_strided_cuda((64, 40), (40, 1), torch.float32) # Topologically Sorted Source Nodes: [linear_2], Original ATen: [aten.addmm] extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 40), (1, 16), 0), alpha=1, beta=1, out=buf4) del primals_7 buf7 = empty_strided_cuda((64, 4, 10), (40, 10, 1), torch.float32) # Topologically Sorted Source Nodes: [softmax], Original ATen: [aten._softmax] triton_per_fused__softmax_1.run(buf4, buf7, 256, 10, grid=grid(256), stream=stream0) del buf4 return (buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(buf3, (64, 16), (16, 1), 0), buf7, primals_6, buf8, primals_4, buf9, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((40, 16), (16, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((40, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_per_fused__softmax_1(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tmp6 / tmp10 tl.store(out_ptr2 + (r1 + 10 * x0), tmp11, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (16, 4), (4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 16), (16, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (40, 16), (16, 1)) assert_size_stride(primals_7, (40,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 16), (1, 4), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf0 buf9 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf1, primals_2, buf9, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((64, 16), (16, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor(primals_4, (16, 16), (1, 16), 0), out=buf2) buf3 = reinterpret_tensor(buf2, (4, 4, 4, 16), (256, 64, 16, 1), 0) del buf2 buf8 = empty_strided_cuda((4, 4, 4, 16), (256, 64, 16, 1), torch.bool) triton_poi_fused_relu_threshold_backward_0[grid(1024)](buf3, primals_5, buf8, 1024, XBLOCK=128, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 40), (40, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf3, (64, 16), (16, 1), 0), reinterpret_tensor(primals_6, (16, 40), (1, 16), 0 ), alpha=1, beta=1, out=buf4) del primals_7 buf7 = empty_strided_cuda((64, 4, 10), (40, 10, 1), torch.float32) triton_per_fused__softmax_1[grid(256)](buf4, buf7, 256, 10, XBLOCK= 32, num_warps=4, num_stages=1) del buf4 return buf7, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), reinterpret_tensor(buf1, (64, 16), (16, 1), 0), reinterpret_tensor( buf3, (64, 16), (16, 1), 0), buf7, primals_6, buf8, primals_4, buf9 class QNetNew(nn.Module): def __init__(self, state_dim, action_num, atom_num=10): super().__init__() self.fc1 = nn.Linear(state_dim, 16) self.fc2 = nn.Linear(16, 16) self.fc3 = nn.Linear(16, action_num * atom_num) self.action_num = action_num self.atom_num = atom_num def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
iffiX/machin
QNet
false
15,594
[ "MIT" ]
287
7fa986b1bafdefff117d6ff73d14644a5488de9d
https://github.com/iffiX/machin/tree/7fa986b1bafdefff117d6ff73d14644a5488de9d
CriticNet
import torch import torch.nn as nn import torch.nn.functional as F class CriticNet(nn.Module): def __init__(self): super(CriticNet, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 30) self.fc4 = nn.Linear(30, 8) self.fc5 = nn.Linear(8, 1) def forward(self, x): x = self.fc1(x) x = F.leaky_relu(self.fc2(x)) x = F.leaky_relu(self.fc3(x)) x = F.leaky_relu(self.fc4(x)) x = self.fc5(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_leaky_relu_0(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 2560 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 40 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 1920 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 30 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) @triton.jit def triton_poi_fused_leaky_relu_2(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 8 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = tmp2 > tmp3 tmp5 = 0.01 tmp6 = tmp2 * tmp5 tmp7 = tl.where(tmp4, tmp2, tmp6) tl.store(out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr1 + x2, tmp7, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (20, 4), (4, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (40, 20), (20, 1)) assert_size_stride(primals_5, (40,), (1,)) assert_size_stride(primals_6, (30, 40), (40, 1)) assert_size_stride(primals_7, (30,), (1,)) assert_size_stride(primals_8, (8, 30), (30, 1)) assert_size_stride(primals_9, (8,), (1,)) assert_size_stride(primals_10, (1, 8), (8, 1)) assert_size_stride(primals_11, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 20), (20, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 20), (1, 4), 0), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 40), (40, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (20, 40), (1, 20), 0), out=buf1) buf2 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch.bool) buf3 = empty_strided_cuda((4, 4, 4, 40), (640, 160, 40, 1), torch. float32) get_raw_stream(0) triton_poi_fused_leaky_relu_0[grid(2560)](buf1, primals_5, buf2, buf3, 2560, XBLOCK=256, num_warps=4, num_stages=1) del buf1 del primals_5 buf4 = empty_strided_cuda((64, 30), (30, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf3, (64, 40), (40, 1), 0), reinterpret_tensor(primals_6, (40, 30), (1, 40), 0), out=buf4) buf5 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch.bool) buf6 = empty_strided_cuda((4, 4, 4, 30), (480, 120, 30, 1), torch. float32) triton_poi_fused_leaky_relu_1[grid(1920)](buf4, primals_7, buf5, buf6, 1920, XBLOCK=128, num_warps=4, num_stages=1) del buf4 del primals_7 buf7 = empty_strided_cuda((64, 8), (8, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf6, (64, 30), (30, 1), 0), reinterpret_tensor(primals_8, (30, 8), (1, 30), 0), out=buf7) buf8 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.bool) buf9 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32) triton_poi_fused_leaky_relu_2[grid(512)](buf7, primals_9, buf8, buf9, 512, XBLOCK=256, num_warps=4, num_stages=1) del buf7 del primals_9 buf11 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_11, reinterpret_tensor(buf9, (64, 8), (8, 1), 0), reinterpret_tensor(primals_10, (8, 1), (1, 8), 0), alpha=1, beta=1, out=buf11) del primals_11 return reinterpret_tensor(buf11, (4, 4, 4, 1), (16, 4, 1, 1), 0 ), reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, buf2, reinterpret_tensor(buf3, (64, 40), (40, 1), 0 ), buf5, reinterpret_tensor(buf6, (64, 30), (30, 1), 0 ), buf8, reinterpret_tensor(buf9, (64, 8), (8, 1), 0 ), primals_10, primals_8, primals_6, primals_4 class CriticNetNew(nn.Module): def __init__(self): super(CriticNetNew, self).__init__() self.fc1 = nn.Linear(4, 20) self.fc2 = nn.Linear(20, 40) self.fc3 = nn.Linear(40, 30) self.fc4 = nn.Linear(30, 8) self.fc5 = nn.Linear(8, 1) def forward(self, input_0): primals_1 = self.fc1.weight primals_2 = self.fc1.bias primals_4 = self.fc2.weight primals_5 = self.fc2.bias primals_6 = self.fc3.weight primals_7 = self.fc3.bias primals_8 = self.fc4.weight primals_9 = self.fc4.bias primals_10 = self.fc5.weight primals_11 = self.fc5.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
mathildebadoual/RL_power_systems
CriticNet
false
7,181
[ "MIT" ]
1
825e60bad16129e0a0229d15af5110b26e0a1577
https://github.com/mathildebadoual/RL_power_systems/tree/825e60bad16129e0a0229d15af5110b26e0a1577
ExponentialMSE
import torch from torch import nn def _assert_no_grad(tensor): assert not tensor.requires_grad class ExponentialMSE(nn.Module): def __init__(self, lam): super().__init__() self.lam = lam def forward(self, output, target): _assert_no_grad(target) loss = (output - target).pow(2) exp_loss = loss * torch.exp(self.lam * target) return exp_loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'lam': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_exp_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp4 = 4.0 tmp5 = tmp1 * tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tmp3 * tmp6 tmp8 = tl.broadcast_to(tmp7, [RBLOCK]) tmp10 = triton_helpers.promote_to_tensor(tl.sum(tmp8, 0)) tmp11 = 256.0 tmp12 = tmp10 / tmp11 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp12, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_exp_mean_mul_pow_sub_0[grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, def _assert_no_grad(tensor): assert not tensor.requires_grad class ExponentialMSENew(nn.Module): def __init__(self, lam): super().__init__() self.lam = lam def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
dattientran/attorch
ExponentialMSE
false
12,388
[ "MIT" ]
0
469b225846c6d8a7d833ebac19d040c7a407a0ff
https://github.com/dattientran/attorch/tree/469b225846c6d8a7d833ebac19d040c7a407a0ff
LinearZeros
import torch import torch.nn as nn class LinearZeros(nn.Linear): def __init__(self, in_features, out_features, bias=True, logscale_factor=3.0): """ Linear layer with zero initialization :param in_features: size of each input sample :type in_features: int :param out_features: size of each output sample :type out_features: int :param bias: whether to learn an additive bias. :type bias: bool :param logscale_factor: factor of logscale :type logscale_factor: float """ super().__init__(in_features, out_features, bias) self.logscale_factor = logscale_factor self.weight.data.zero_() self.bias.data.zero_() self.register_parameter('logs', nn.Parameter(torch.zeros(out_features)) ) def forward(self, x): """ Forward linear zero layer :param x: input :type x: torch.Tensor :return: output :rtype: torch.Tensor """ output = super().forward(x) output *= torch.exp(self.logs * self.logscale_factor) return output def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_features': 4, 'out_features': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_exp_mul_view_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = 3.0 tmp3 = tmp1 * tmp2 tmp4 = tl_math.exp(tmp3) tmp5 = tmp0 * tmp4 tl.store(in_out_ptr0 + x4, tmp5, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_poi_fused_exp_mul_view_0[grid(256)](buf2, buf0, primals_4, 256, XBLOCK=128, num_warps=4, num_stages=1) return buf2, primals_4, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0 class LinearZerosNew(nn.Linear): def __init__(self, in_features, out_features, bias=True, logscale_factor=3.0): """ Linear layer with zero initialization :param in_features: size of each input sample :type in_features: int :param out_features: size of each output sample :type out_features: int :param bias: whether to learn an additive bias. :type bias: bool :param logscale_factor: factor of logscale :type logscale_factor: float """ super().__init__(in_features, out_features, bias) self.logscale_factor = logscale_factor self.weight.data.zero_() self.bias.data.zero_() self.register_parameter('logs', nn.Parameter(torch.zeros(out_features)) ) def forward(self, input_0): primals_1 = self.weight primals_2 = self.bias primals_4 = self.logs primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
NirDiamant/pytorch-glow
LinearZeros
false
907
[ "MIT" ]
0
2ab11f3a8486b86a279fe4fa64f25aa91226ee8a
https://github.com/NirDiamant/pytorch-glow/tree/2ab11f3a8486b86a279fe4fa64f25aa91226ee8a
AconC
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/te/ctevscmztmeqanhbazxgk27ctyy2bh4pbqsqpvoymuxkfobwmsus.py # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] # Source node to ATen node mapping: # sub => sub # Graph fragment: # %sub : [num_users=2] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %primals_2), kwargs = {}) triton_poi_fused_sub_0 = async_compile.triton('triton_poi_fused_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_sub_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp1 = tl.load(in_ptr1 + (x0), xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_8/inductor_cache/4y/c4yb2uqsmfgwhifdn3lgvi3pjuiqdjy2tmjjh74dyzsjvym4fjkl.py # Topologically Sorted Source Nodes: [dpx, mul_1, sigmoid, mul_2, mul_3, add], Original ATen: [aten.mul, aten.sigmoid, aten.add] # Source node to ATen node mapping: # add => add # dpx => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # sigmoid => sigmoid # Graph fragment: # %mul : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %primals_3), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_4, %mul), kwargs = {}) # %sigmoid : [num_users=1] = call_function[target=torch.ops.aten.sigmoid.default](args = (%mul_1,), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mul, %sigmoid), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %primals_3), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_2, %mul_3), kwargs = {}) triton_poi_fused_add_mul_sigmoid_1 = async_compile.triton('triton_poi_fused_add_mul_sigmoid_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mul_sigmoid_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp3 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp6 = tmp2 * tmp5 tmp8 = tmp7 * tmp1 tmp9 = tmp6 + tmp8 tl.store(out_ptr0 + (x3), tmp9, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [sub], Original ATen: [aten.sub] stream0 = get_raw_stream(0) triton_poi_fused_sub_0.run(primals_1, primals_2, buf0, 4, grid=grid(4), stream=stream0) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [dpx, mul_1, sigmoid, mul_2, mul_3, add], Original ATen: [aten.mul, aten.sigmoid, aten.add] triton_poi_fused_add_mul_sigmoid_1.run(buf0, primals_3, primals_4, primals_2, buf1, 256, grid=grid(256), stream=stream0) del primals_2 return (buf1, primals_3, primals_4, buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_sub_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 4 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = tl.load(in_ptr1 + x0, xmask) tmp2 = tmp0 - tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_add_mul_sigmoid_1(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp3 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr3 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp2 tmp5 = tl.sigmoid(tmp4) tmp6 = tmp2 * tmp5 tmp8 = tmp7 * tmp1 tmp9 = tmp6 + tmp8 tl.store(out_ptr0 + x3, tmp9, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((1, 4, 1, 1), (4, 1, 1, 1), torch.float32) get_raw_stream(0) triton_poi_fused_sub_0[grid(4)](primals_1, primals_2, buf0, 4, XBLOCK=4, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_sigmoid_1[grid(256)](buf0, primals_3, primals_4, primals_2, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 return buf1, primals_3, primals_4, buf0 class AconCNew(nn.Module): """ ACON activation (activate or not). AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>. """ def __init__(self, c1): super().__init__() self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1)) self.beta = nn.Parameter(torch.ones(1, c1, 1, 1)) def forward(self, input_0): primals_1 = self.p1 primals_2 = self.p2 primals_4 = self.beta primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
Lalihoo/yolov5-detect
AconC
false
9,617
[ "MIT" ]
0
265c3137ea3586d913541501a1562488fbe59e9e
https://github.com/Lalihoo/yolov5-detect/tree/265c3137ea3586d913541501a1562488fbe59e9e
Encoder2
import torch import torch.nn as nn class Encoder2(nn.Module): def __init__(self, model=None, fixed=False): super(Encoder2, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv11 = nn.Conv2d(3, 64, 3, 1, 0, dilation=1) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv21 = nn.Conv2d(64, 128, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input): y = self.conv0(input) y = self.relu(self.conv11(self.pad(y))) y = self.relu(self.conv12(self.pad(y))) y = self.pool(y) y = self.relu(self.conv21(self.pad(y))) return y def get_inputs(): return [torch.rand([4, 3, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 12 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, YBLOCK], True, tl.int1) x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 4096 * y3), ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 12288 * y1), tmp0, ymask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): ynumel = 192 xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 3 y1 = yindex // 3 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask & ymask, eviction_policy= 'evict_last') tl.store(out_ptr0 + (y0 + 3 * x2 + 27 * y1), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_2(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl. constexpr, XBLOCK: tl.constexpr): xnumel = 9 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] tl.full([XBLOCK, YBLOCK], True, tl.int1) xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y3 = yindex y0 = yindex % 64 y1 = yindex // 64 tmp0 = tl.load(in_ptr0 + (x2 + 9 * y3), xmask, eviction_policy='evict_last' ) tl.store(out_ptr0 + (y0 + 64 * x2 + 576 * y1), tmp0, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_4(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 52272 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 3 x1 = xindex // 3 % 66 x2 = xindex // 198 % 66 x3 = xindex // 13068 x4 = xindex tmp0 = tl.load(in_ptr0 + (12285 + x0 + -192 * tl_math.abs(-63 + tl_math .abs(-1 + x2)) + -3 * tl_math.abs(-63 + tl_math.abs(-1 + x1)) + 12288 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_poi_fused_convolution_reflection_pad2d_relu_5(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1115136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 66 x2 = xindex // 4224 % 66 x3 = xindex // 278784 x4 = xindex tmp0 = tl.load(in_ptr0 + (262080 + x0 + -4096 * tl_math.abs(-63 + tl_math.abs(-1 + x2)) + -64 * tl_math.abs(-63 + tl_math.abs(-1 + x1 )) + 262144 * x3), xmask) tmp1 = tl.load(in_ptr1 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(out_ptr0 + x4, tmp4, xmask) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_out_ptr0 + x2, None) tmp1 = tl.load(in_ptr0 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 % 32 x2 = xindex // 2048 x3 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 128 * x1 + 8192 * x2), None) tmp1 = tl.load(in_ptr0 + (64 + x0 + 128 * x1 + 8192 * x2), None) tmp7 = tl.load(in_ptr0 + (4096 + x0 + 128 * x1 + 8192 * x2), None) tmp12 = tl.load(in_ptr0 + (4160 + x0 + 128 * x1 + 8192 * x2), None) tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x3, tmp15, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 295936 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 64 x1 = xindex // 64 % 34 x2 = xindex // 2176 % 34 x3 = xindex // 73984 x4 = xindex tmp0 = tl.load(in_ptr0 + (257920 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp1 = tl.load(in_ptr0 + (257984 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp3 = tl.load(in_ptr0 + (262016 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp5 = tl.load(in_ptr0 + (262080 + x0 + -8192 * tl_math.abs(-31 + tl_math.abs(-1 + x2)) + -128 * tl_math.abs(-31 + tl_math.abs(-1 + x1)) + 262144 * x3), xmask) tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tl.store(out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_9(in_ptr0, in_ptr1, out_ptr0, out_ptr1, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl. constexpr): ynumel = 512 xnumel = 1024 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x2 = xindex y0 = yindex % 128 y1 = yindex // 128 y3 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 128 * x2 + 131072 * y1), xmask & ymask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + y0, ymask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1, 1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x2 + 1024 * y3), tmp4, xmask & ymask) tl.store(out_ptr1 + (y0 + 128 * x2 + 131072 * y1), tmp6, xmask & ymask) @triton.jit def triton_poi_fused_convolution_relu_threshold_backward_10(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x2 = xindex x0 = xindex % 64 tmp0 = tl.load(in_ptr0 + x2, None) tmp1 = tl.load(in_ptr1 + x0, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x2, tmp6, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (3, 3, 1, 1), (3, 1, 1, 1)) assert_size_stride(primals_2, (3,), (1,)) assert_size_stride(primals_3, (4, 3, 64, 64), (12288, 4096, 64, 1)) assert_size_stride(primals_4, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (64,), (1,)) assert_size_stride(primals_8, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 3, 64, 64), (12288, 1, 192, 3), torch .float32) get_raw_stream(0) triton_poi_fused_0[grid(12, 4096)](primals_3, buf0, 12, 4096, XBLOCK=64, YBLOCK=16, num_warps=4, num_stages=1) del primals_3 buf1 = empty_strided_cuda((64, 3, 3, 3), (27, 1, 9, 3), torch.float32) triton_poi_fused_1[grid(192, 9)](primals_4, buf1, 192, 9, XBLOCK=16, YBLOCK=64, num_warps=4, num_stages=1) del primals_4 buf2 = empty_strided_cuda((64, 64, 3, 3), (576, 1, 192, 64), torch. float32) triton_poi_fused_2[grid(4096, 9)](primals_6, buf2, 4096, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_6 buf3 = empty_strided_cuda((128, 64, 3, 3), (576, 1, 192, 64), torch .float32) triton_poi_fused_3[grid(8192, 9)](primals_8, buf3, 8192, 9, XBLOCK= 16, YBLOCK=64, num_warps=4, num_stages=1) del primals_8 buf4 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 3, 64, 64), (12288, 1, 192, 3)) buf5 = empty_strided_cuda((4, 3, 66, 66), (13068, 1, 198, 3), torch .float32) triton_poi_fused_convolution_reflection_pad2d_4[grid(52272)](buf4, primals_2, buf5, 52272, XBLOCK=256, num_warps=4, num_stages=1) del buf4 del primals_2 buf6 = extern_kernels.convolution(buf5, buf1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf7 = empty_strided_cuda((4, 64, 66, 66), (278784, 1, 4224, 64), torch.float32) triton_poi_fused_convolution_reflection_pad2d_relu_5[grid(1115136)]( buf6, primals_5, buf7, 1115136, XBLOCK=1024, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, buf2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 64, 64, 64), (262144, 1, 4096, 64)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_6[grid(1048576)](buf9, primals_7, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 64, 32, 32), (65536, 1, 2048, 64), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(262144)](buf9, buf10, 262144, XBLOCK=1024, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 64, 34, 34), (73984, 1, 2176, 64), torch.float32) triton_poi_fused_max_pool2d_with_indices_reflection_pad2d_8[grid( 295936)](buf9, buf11, 295936, XBLOCK=1024, num_warps=4, num_stages=1) buf12 = extern_kernels.convolution(buf11, buf3, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 128, 32, 32), (131072, 1, 4096, 128)) buf13 = empty_strided_cuda((4, 128, 32, 32), (131072, 1024, 32, 1), torch.float32) buf14 = empty_strided_cuda((4, 128, 32, 32), (131072, 1, 4096, 128), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_9[grid(512, 1024) ](buf12, primals_9, buf13, buf14, 512, 1024, XBLOCK=64, YBLOCK= 64, num_warps=8, num_stages=1) del buf12 del primals_9 buf15 = empty_strided_cuda((4, 64, 64, 64), (262144, 1, 4096, 64), torch.bool) triton_poi_fused_convolution_relu_threshold_backward_10[grid(1048576)]( buf6, primals_5, buf15, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del buf6 del primals_5 return (buf13, primals_1, buf0, buf1, buf2, buf3, buf5, buf7, buf9, buf10, buf11, buf14, buf15) class Encoder2New(nn.Module): def __init__(self, model=None, fixed=False): super(Encoder2New, self).__init__() self.fixed = fixed self.conv0 = nn.Conv2d(3, 3, 1, 1, 0) self.conv11 = nn.Conv2d(3, 64, 3, 1, 0, dilation=1) self.conv12 = nn.Conv2d(64, 64, 3, 1, 0, dilation=1) self.conv21 = nn.Conv2d(64, 128, 3, 1, 0) self.relu = nn.ReLU(inplace=True) self.pool = nn.MaxPool2d(kernel_size=2, stride=2, return_indices=False) self.pad = nn.ReflectionPad2d((1, 1, 1, 1)) if model: self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, input_0): primals_1 = self.conv0.weight primals_2 = self.conv0.bias primals_4 = self.conv11.weight primals_5 = self.conv11.bias primals_6 = self.conv12.weight primals_7 = self.conv12.bias primals_8 = self.conv21.weight primals_9 = self.conv21.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
EndyWon/Texture-Reformer
Encoder2
false
8,141
[ "MIT" ]
11
f84f95accb3574c7b759a7f03c0b0b4e150314b5
https://github.com/EndyWon/Texture-Reformer/tree/f84f95accb3574c7b759a7f03c0b0b4e150314b5
MHSA
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_9/inductor_cache/pw/cpw5jgywzg5ntkknxkt5orxsrrr5zq7a6eoteboi3ba7zrcxj2p7.py # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] # Source node to ATen node mapping: # conv2d => convolution # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%primals_1, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 16) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/oo/cootxpfzjtwnlopb2xmwez5chjf7fefuzaalfo77dvlc542y2hzb.py # Topologically Sorted Source Nodes: [content_position_1], Original ATen: [aten.clone] # Source node to ATen node mapping: # content_position_1 => clone # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%expand_2,), kwargs = {memory_format: torch.contiguous_format}) triton_poi_fused_clone_1 = async_compile.triton('triton_poi_fused_clone_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[4096], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 196 x1 = (xindex // 196) % 4 x3 = xindex % 784 x4 = xindex tmp0 = tl.load(in_ptr0 + ((14*x1) + (x0 % 14)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((x3 // 14)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + (x4), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_9/inductor_cache/o6/co6wrmnpmupx6xpmkx7rtr3dcbu4kbjwixreyxxutzt6z27r67hj.py # Topologically Sorted Source Nodes: [energy, attention], Original ATen: [aten.add, aten._softmax] # Source node to ATen node mapping: # attention => amax, div, exp, sub, sum_1 # energy => add_1 # Graph fragment: # %add_1 : [num_users=2] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_5, %slice_3), kwargs = {}) # %amax : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%add_1, [-1], True), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%add_1, %amax), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub,), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_per_fused__softmax_add_2 = async_compile.triton('triton_per_fused__softmax_add_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[256, 16], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__softmax_add_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 2, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 256 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 x1 = (xindex // 16) tmp0 = tl.load(in_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + (16*x0) + (3136*x1)), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float("-inf")) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp8 / tmp12 tl.store(out_ptr2 + (r2 + (16*x3)), tmp13, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4, ), (1, )) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4, ), (1, )) assert_size_stride(primals_8, (1, 4, 1, 1, 14), (56, 14, 14, 14, 1)) assert_size_stride(primals_9, (1, 4, 1, 14, 1), (56, 14, 14, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [conv2d], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf2; del buf2 # reuse # Topologically Sorted Source Nodes: [conv2d_1], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf4, primals_5, 256, grid=grid(256), stream=stream0) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [content_content], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf1, (16, 16, 1), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 196, 1), (784, 196, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [content_position_1], Original ATen: [aten.clone] triton_poi_fused_clone_1.run(primals_8, primals_9, buf6, 3136, grid=grid(3136), stream=stream0) del primals_8 del primals_9 buf7 = empty_strided_cuda((16, 196, 16), (3136, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [content_position_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf6, (16, 196, 1), (196, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (16, 16, 1), 0), out=buf7) buf10 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [energy, attention], Original ATen: [aten.add, aten._softmax] triton_per_fused__softmax_add_2.run(buf5, buf7, buf10, 256, 16, grid=grid(256), stream=stream0) del buf5 del buf7 buf11 = buf3; del buf3 # reuse # Topologically Sorted Source Nodes: [conv2d_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_0.run(buf11, primals_7, 256, grid=grid(256), stream=stream0) del primals_7 buf12 = empty_strided_cuda((16, 1, 16), (16, 16, 1), torch.float32) # Topologically Sorted Source Nodes: [out], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf11, (16, 1, 16), (16, 0, 1), 0), reinterpret_tensor(buf10, (16, 16, 16), (256, 1, 16), 0), out=buf12) return (reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, primals_4, primals_6, buf1, buf10, reinterpret_tensor(buf11, (16, 16, 1), (16, 1, 16), 0), reinterpret_tensor(buf6, (16, 1, 196), (196, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_8 = rand_strided((1, 4, 1, 1, 14), (56, 14, 14, 14, 1), device='cuda:0', dtype=torch.float32) primals_9 = rand_strided((1, 4, 1, 14, 1), (56, 14, 14, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.utils.data import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 16 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_clone_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 3136 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 196 x1 = xindex // 196 % 4 x3 = xindex % 784 x4 = xindex tmp0 = tl.load(in_ptr0 + (14 * x1 + x0 % 14), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr1 + x3 // 14, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(out_ptr0 + x4, tmp2, xmask) @triton.jit def triton_per_fused__softmax_add_2(in_ptr0, in_ptr1, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 256 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 16 x1 = xindex // 16 tmp0 = tl.load(in_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r2 + 16 * x0 + 3136 * x1), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, float('-inf')) tmp6 = triton_helpers.max2(tmp5, 1)[:, None] tmp7 = tmp2 - tmp6 tmp8 = tl_math.exp(tmp7) tmp9 = tl.broadcast_to(tmp8, [XBLOCK, RBLOCK]) tmp11 = tl.where(xmask, tmp9, 0) tmp12 = tl.sum(tmp11, 1)[:, None] tmp13 = tmp8 / tmp12 tl.store(out_ptr2 + (r2 + 16 * x3), tmp13, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (4, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_7, (4,), (1,)) assert_size_stride(primals_8, (1, 4, 1, 1, 14), (56, 14, 14, 14, 1)) assert_size_stride(primals_9, (1, 4, 1, 14, 1), (56, 14, 14, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_1, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 4, 4, 4), (64, 16, 4, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(256)](buf1, primals_3, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_3 buf2 = extern_kernels.convolution(primals_1, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 4, 4), (64, 16, 4, 1)) buf3 = extern_kernels.convolution(primals_1, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 4, 4, 4), (64, 16, 4, 1)) buf4 = buf2 del buf2 triton_poi_fused_convolution_0[grid(256)](buf4, primals_5, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf5 = empty_strided_cuda((16, 16, 16), (256, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf1, (16, 16, 1), (16, 1, 1), 0), reinterpret_tensor(buf4, (16, 1, 16), (16, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 196, 1), (784, 196, 1, 1), torch. float32) triton_poi_fused_clone_1[grid(3136)](primals_8, primals_9, buf6, 3136, XBLOCK=256, num_warps=4, num_stages=1) del primals_8 del primals_9 buf7 = empty_strided_cuda((16, 196, 16), (3136, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf6, (16, 196, 1), (196, 1, 0), 0), reinterpret_tensor(buf1, (16, 1, 16), (16, 16, 1), 0), out=buf7) buf10 = empty_strided_cuda((4, 4, 16, 16), (1024, 256, 16, 1), torch.float32) triton_per_fused__softmax_add_2[grid(256)](buf5, buf7, buf10, 256, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf5 del buf7 buf11 = buf3 del buf3 triton_poi_fused_convolution_0[grid(256)](buf11, primals_7, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf12 = empty_strided_cuda((16, 1, 16), (16, 16, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf11, (16, 1, 16), (16, 0, 1 ), 0), reinterpret_tensor(buf10, (16, 16, 16), (256, 1, 16), 0), out=buf12) return (reinterpret_tensor(buf12, (4, 4, 4, 4), (64, 16, 4, 1), 0), primals_1, primals_2, primals_4, primals_6, buf1, buf10, reinterpret_tensor(buf11, (16, 16, 1), (16, 1, 16), 0), reinterpret_tensor(buf6, (16, 1, 196), (196, 1, 1), 0), reinterpret_tensor(buf4, (16, 16, 1), (16, 1, 16), 0)) class MHSANew(nn.Module): def __init__(self, n_dims, width=14, height=14, heads=4): super(MHSANew, self).__init__() self.heads = heads self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1) self.rel_h = nn.Parameter(torch.randn([1, heads, n_dims // heads, 1, int(height)]), requires_grad=True) self.rel_w = nn.Parameter(torch.randn([1, heads, n_dims // heads, int(width), 1]), requires_grad=True) self.softmax = nn.Softmax(dim=-1) def forward(self, input_0): primals_8 = self.rel_h primals_9 = self.rel_w primals_2 = self.query.weight primals_3 = self.query.bias primals_4 = self.key.weight primals_5 = self.key.bias primals_6 = self.value.weight primals_7 = self.value.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
binghuiwu98/discriminatory-yolov5
MHSA
false
12,172
[ "Apache-2.0" ]
0
831bfdb8e0df38e247a72ca029ee3301fc14a311
https://github.com/binghuiwu98/discriminatory-yolov5/tree/831bfdb8e0df38e247a72ca029ee3301fc14a311
output
import math import torch from torch import nn class output(nn.Module): def __init__(self, scope=512): super(output, self).__init__() self.conv1 = nn.Conv2d(32, 1, 1) self.sigmoid1 = nn.Sigmoid() self.conv2 = nn.Conv2d(32, 4, 1) self.sigmoid2 = nn.Sigmoid() self.conv3 = nn.Conv2d(32, 1, 1) self.sigmoid3 = nn.Sigmoid() self.scope = 512 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): score = self.sigmoid1(self.conv1(x)) loc = self.sigmoid2(self.conv2(x)) * self.scope angle = (self.sigmoid3(self.conv3(x)) - 0.5) * math.pi geo = torch.cat((loc, angle), 1) return score, geo def get_inputs(): return [torch.rand([4, 32, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_convolution_sigmoid_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tmp4 = tl.sigmoid(tmp3) tl.store(in_out_ptr0 + x0, tmp4, None) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 4 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, None) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, None) tmp1 = tl.load(in_ptr0 + 0) tmp2 = tl.broadcast_to(tmp1, [XBLOCK]) tmp3 = tmp0 + tmp2 tl.store(in_out_ptr0 + x0, tmp3, None) @triton.jit def triton_poi_fused_cat_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl. constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 4096 % 5 x0 = xindex % 4096 x2 = xindex // 20480 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (x0 + 4096 * x1 + 16384 * x2), tmp4, other=0.0) tmp6 = tl.sigmoid(tmp5) tmp7 = 512.0 tmp8 = tmp6 * tmp7 tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp4, tmp8, tmp9) tmp11 = tmp0 >= tmp3 tl.full([1], 5, tl.int64) tmp14 = tl.load(in_ptr1 + (x0 + 4096 * x2), tmp11, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.sigmoid(tmp14) tmp16 = 0.5 tmp17 = tmp15 - tmp16 tmp18 = 3.141592653589793 tmp19 = tmp17 * tmp18 tmp20 = tl.full(tmp19.shape, 0.0, tmp19.dtype) tmp21 = tl.where(tmp11, tmp19, tmp20) tmp22 = tl.where(tmp4, tmp10, tmp21) tl.store(out_ptr0 + x3, tmp22, None) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_2, (1,), (1,)) assert_size_stride(primals_3, (4, 32, 64, 64), (131072, 4096, 64, 1)) assert_size_stride(primals_4, (4, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 32, 1, 1), (32, 1, 1, 1)) assert_size_stride(primals_7, (1,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_sigmoid_0[grid(16384)](buf1, primals_2, 16384, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(primals_3, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 4, 64, 64), (16384, 4096, 64, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_1[grid(65536)](buf3, primals_5, 65536, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf4 = extern_kernels.convolution(primals_3, primals_6, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 1, 64, 64), (4096, 4096, 64, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(16384)](buf5, primals_7, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf6 = empty_strided_cuda((4, 5, 64, 64), (20480, 4096, 64, 1), torch.float32) triton_poi_fused_cat_3[grid(81920)](buf3, buf5, buf6, 81920, XBLOCK =1024, num_warps=4, num_stages=1) return (buf1, buf6, primals_1, primals_3, primals_4, primals_6, buf1, buf3, buf5) class outputNew(nn.Module): def __init__(self, scope=512): super(outputNew, self).__init__() self.conv1 = nn.Conv2d(32, 1, 1) self.sigmoid1 = nn.Sigmoid() self.conv2 = nn.Conv2d(32, 4, 1) self.sigmoid2 = nn.Sigmoid() self.conv3 = nn.Conv2d(32, 1, 1) self.sigmoid3 = nn.Sigmoid() self.scope = 512 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.conv3.weight primals_7 = self.conv3.bias primals_3 = input_0 outputNew = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return outputNew[0], outputNew[1]
YongWookHa/Pytorch-EAST-for-Documents
output
false
6,021
[ "MIT" ]
1
169f879ffe2db916821f929b26fdaf29c6ccd757
https://github.com/YongWookHa/Pytorch-EAST-for-Documents/tree/169f879ffe2db916821f929b26fdaf29c6ccd757
ContrastiveLoss
import torch from torch import nn from torch.nn import CosineSimilarity class ContrastiveLoss(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise """ def __init__(self, margin=0.5): super(ContrastiveLoss, self).__init__() self.margin = margin self.distance = CosineSimilarity() self.eps = 1e-06 self.mse = torch.nn.MSELoss() def forward(self, output1, output2, target, size_average=True): distances = self.distance(output1, output2) losses = (1 - target.float()) * nn.functional.relu(self.margin - distances).pow(2) + target.float() * (1 - distances).pow(2) / 4 return losses.mean() if size_average else losses.sum(), distances def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from torch.nn import CosineSimilarity assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp16 = tl.load(in_ptr1 + x3, xmask) tmp17 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp19 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp22 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp25 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 * tmp1 tmp4 = tmp3 * tmp3 tmp5 = tmp2 + tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp12 = libdevice.sqrt(tmp11) tmp13 = 1e-08 tmp14 = triton_helpers.maximum(tmp12, tmp13) tmp15 = tmp0 / tmp14 tmp18 = tmp17 * tmp17 tmp20 = tmp19 * tmp19 tmp21 = tmp18 + tmp20 tmp23 = tmp22 * tmp22 tmp24 = tmp21 + tmp23 tmp26 = tmp25 * tmp25 tmp27 = tmp24 + tmp26 tmp28 = libdevice.sqrt(tmp27) tmp29 = triton_helpers.maximum(tmp28, tmp13) tmp30 = tmp16 / tmp29 tmp31 = tmp15 * tmp30 tl.store(out_ptr0 + x3, tmp31, xmask) @triton.jit def triton_poi_fused_sum_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp1 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp3 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp2 = tmp0 + tmp1 tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_per_fused_add_div_mean_mul_pow_relu_rsub_2(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r2 = rindex r0 = rindex % 64 tmp0 = tl.load(in_ptr0 + r2, None) tmp3 = tl.load(in_ptr1 + r0, None, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp1 - tmp0 tmp4 = 0.5 tmp5 = tmp4 - tmp3 tmp6 = tl.full([1], 0, tl.int32) tmp7 = triton_helpers.maximum(tmp6, tmp5) tmp8 = tmp7 * tmp7 tmp9 = tmp2 * tmp8 tmp10 = tmp1 - tmp3 tmp11 = tmp10 * tmp10 tmp12 = tmp0 * tmp11 tmp13 = 0.25 tmp14 = tmp12 * tmp13 tmp15 = tmp9 + tmp14 tmp16 = tl.broadcast_to(tmp15, [RBLOCK]) tmp18 = triton_helpers.promote_to_tensor(tl.sum(tmp16, 0)) tmp19 = 256.0 tmp20 = tmp18 / tmp19 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp20, None) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_clamp_min_div_linalg_vector_norm_mul_0[grid(256)]( arg1_1, arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused_sum_1[grid(64)](buf0, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del buf0 buf2 = empty_strided_cuda((), (), torch.float32) buf3 = buf2 del buf2 triton_per_fused_add_div_mean_mul_pow_relu_rsub_2[grid(1)](buf3, arg2_1, buf1, 1, 256, num_warps=2, num_stages=1) del arg2_1 return buf3, buf1 class ContrastiveLossNew(nn.Module): """ Contrastive loss Takes embeddings of two samples and a target label == 1 if samples are from the same class and label == 0 otherwise """ def __init__(self, margin=0.5): super(ContrastiveLossNew, self).__init__() self.margin = margin self.distance = CosineSimilarity() self.eps = 1e-06 self.mse = torch.nn.MSELoss() def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
elloworl/FRMiner2.0
ContrastiveLoss
false
10,020
[ "MIT" ]
0
f596530d18512a1b1b8b8d56772f006f9f53f429
https://github.com/elloworl/FRMiner2.0/tree/f596530d18512a1b1b8b8d56772f006f9f53f429
MultiHeadAttention
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/wl/cwl3r3y2pgt376us4loda5kjeqzzwgynhcjamefpeshkd44ofpoz.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %mul_scalar : [num_users=1] = call_function[target=torch.ops.aten.mul.Scalar](args = (%view_9, 1.0), kwargs = {}) triton_poi_fused_0 = async_compile.triton('triton_poi_fused_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_0(in_out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + (x0), xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + (x0), tmp2, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/5j/c5jll3kxtd32cl7pwubrb5oky2mtzckfgip2xbwad7crvvp4zk4r.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%view_default_2, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%view_default_2, %amax_default), kwargs = {}) # %exp_default : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%sub_tensor,), kwargs = {}) triton_poi_fused_1 = async_compile.triton('triton_poi_fused_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + (x2), tmp9, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/kt/cktnex5febczl2ac6zugjmcksgsd5kjdufazv65vtepuwob3cb7a.py # Topologically Sorted Source Nodes: [], Original ATen: [] # Source node to ATen node mapping: # Graph fragment: # %sum_dim_int_list : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp_default, [-1], True), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp_default, %sum_dim_int_list), kwargs = {}) # %eq_scalar : [num_users=1] = call_function[target=torch.ops.aten.eq.Scalar](args = (%view_default_2, -inf), kwargs = {}) # %logical_not_default : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%eq_scalar,), kwargs = {}) # %any_dim : [num_users=1] = call_function[target=torch.ops.aten.any.dim](args = (%logical_not_default, -1, True), kwargs = {}) # %logical_not_default_1 : [num_users=1] = call_function[target=torch.ops.aten.logical_not.default](args = (%any_dim,), kwargs = {}) # %full_default : [num_users=1] = call_function[target=torch.ops.aten.full.default](args = ([4, 4, 4, 4], 0), kwargs = {dtype: torch.float32, layout: torch.strided, device: cuda:0, pin_memory: False}) # %where_self : [num_users=2] = call_function[target=torch.ops.aten.where.self](args = (%logical_not_default_1, %full_default, %div_tensor), kwargs = {}) triton_poi_fused_2 = async_compile.triton('triton_poi_fused_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 9, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 4) x2 = xindex tmp0 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr1 + (x2), xmask) tmp26 = tl.load(in_ptr1 + (4*x1), xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp29 = tl.load(in_ptr1 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp31 = tl.load(in_ptr1 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = float("-inf") tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = (tmp4 != 0) tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = (tmp9 != 0) tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = (tmp15 != 0) tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = (tmp21 != 0) tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + (x2), tmp35, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/ym/cym2aoh2473azgl5qufcsfqa4qgp5bji7hptnotbmkegfc7h3xan.py # Topologically Sorted Source Nodes: [contiguous_2, view_5], Original ATen: [aten.clone, aten.view] # Source node to ATen node mapping: # contiguous_2 => clone # view_5 => view_20 # Graph fragment: # %clone : [num_users=1] = call_function[target=torch.ops.aten.clone.default](args = (%permute_1,), kwargs = {memory_format: torch.contiguous_format}) # %view_20 : [num_users=2] = call_function[target=torch.ops.aten.reshape.default](args = (%clone, [-1, 4]), kwargs = {}) triton_poi_fused_clone_view_3 = async_compile.triton('triton_poi_fused_clone_view_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[16, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_clone_view_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_clone_view_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (16*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul_2], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] stream0 = get_raw_stream(0) triton_poi_fused_0.run(buf3, 64, grid=grid(64), stream=stream0) buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0); del buf2 # reuse # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_0.run(buf4, 64, grid=grid(64), stream=stream0) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_1.run(buf5, buf6, 256, grid=grid(256), stream=stream0) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] triton_poi_fused_2.run(buf5, buf6, buf7, 256, grid=grid(256), stream=stream0) del buf5 del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) # Topologically Sorted Source Nodes: [], Original ATen: [] extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0), out=buf8) buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) # Topologically Sorted Source Nodes: [contiguous_2, view_5], Original ATen: [aten.clone, aten.view] triton_poi_fused_clone_view_3.run(buf8, buf9, 16, 4, grid=grid(16, 4), stream=stream0) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0); del buf8 # reuse # Topologically Sorted Source Nodes: [mm], Original ATen: [aten.mm] extern_kernels.mm(buf9, reinterpret_tensor(primals_5, (4, 4), (4, 1), 0), out=buf10) return (reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0), primals_1, buf7, reinterpret_tensor(buf0, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0), reinterpret_tensor(buf9, (4, 16), (1, 4), 0), reinterpret_tensor(primals_5, (4, 4), (1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4), (16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 1), (4, 1, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, 1, 4), (4, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_0(in_out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_out_ptr0 + x0, xmask) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tl.store(in_out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_poi_fused_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tmp9 = tl_math.exp(tmp8) tl.store(out_ptr0 + x2, tmp9, xmask) @triton.jit def triton_poi_fused_2(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 x2 = xindex tmp0 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp25 = tl.load(in_ptr1 + x2, xmask) tmp26 = tl.load(in_ptr1 + 4 * x1, xmask, eviction_policy='evict_last') tmp27 = tl.load(in_ptr1 + (1 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp29 = tl.load(in_ptr1 + (2 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp31 = tl.load(in_ptr1 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = float('-inf') tmp2 = tmp0 == tmp1 tmp3 = tmp2 == 0 tmp4 = tmp3.to(tl.int64) tmp5 = tmp4 != 0 tmp7 = tmp6 == tmp1 tmp8 = tmp7 == 0 tmp9 = tmp8.to(tl.int64) tmp10 = tmp9 != 0 tmp11 = tmp5 | tmp10 tmp13 = tmp12 == tmp1 tmp14 = tmp13 == 0 tmp15 = tmp14.to(tl.int64) tmp16 = tmp15 != 0 tmp17 = tmp11 | tmp16 tmp19 = tmp18 == tmp1 tmp20 = tmp19 == 0 tmp21 = tmp20.to(tl.int64) tmp22 = tmp21 != 0 tmp23 = tmp17 | tmp22 tmp24 = tmp23 == 0 tmp28 = tmp26 + tmp27 tmp30 = tmp28 + tmp29 tmp32 = tmp30 + tmp31 tmp33 = tmp25 / tmp32 tmp34 = 0.0 tmp35 = tl.where(tmp24, tmp34, tmp33) tl.store(out_ptr0 + x2, tmp35, xmask) @triton.jit def triton_poi_fused_clone_view_3(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 16 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 16 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_3, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_4, (4, 4, 1), (4, 1, 1)) assert_size_stride(primals_5, (4, 1, 4), (4, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_2, out=buf0) del primals_2 buf1 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_3, out=buf1) del primals_3 buf2 = empty_strided_cuda((4, 16, 1), (16, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (4, 16, 4), (0, 4, 1), 0), primals_4, out=buf2) del primals_4 buf3 = reinterpret_tensor(buf1, (4, 4, 4, 1), (16, 4, 1, 1), 0) del buf1 get_raw_stream(0) triton_poi_fused_0[grid(64)](buf3, 64, XBLOCK=64, num_warps=1, num_stages=1) buf4 = reinterpret_tensor(buf2, (4, 4, 1, 4), (16, 4, 4, 1), 0) del buf2 triton_poi_fused_0[grid(64)](buf4, 64, XBLOCK=64, num_warps=1, num_stages=1) buf5 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf3, (16, 4, 1), (4, 1, 0), 0), reinterpret_tensor(buf4, (16, 1, 4), (4, 0, 1), 0), out=buf5) buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_1[grid(256)](buf5, buf6, 256, XBLOCK=128, num_warps=4, num_stages=1) buf7 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_2[grid(256)](buf5, buf6, buf7, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 buf8 = empty_strided_cuda((16, 4, 1), (4, 1, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(buf7, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(buf0, (16, 4, 1), (4, 1, 1), 0), out=buf8) buf9 = empty_strided_cuda((16, 4), (4, 1), torch.float32) triton_poi_fused_clone_view_3[grid(16, 4)](buf8, buf9, 16, 4, XBLOCK=4, YBLOCK=16, num_warps=1, num_stages=1) buf10 = reinterpret_tensor(buf8, (16, 4), (4, 1), 0) del buf8 extern_kernels.mm(buf9, reinterpret_tensor(primals_5, (4, 4), (4, 1 ), 0), out=buf10) return reinterpret_tensor(buf10, (4, 4, 4), (16, 4, 1), 0 ), primals_1, buf7, reinterpret_tensor(buf0, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf3, (16, 1, 4), (4, 1, 1), 0 ), reinterpret_tensor(buf4, (16, 4, 1), (4, 1, 4), 0 ), reinterpret_tensor(buf9, (4, 16), (1, 4), 0), reinterpret_tensor( primals_5, (4, 4), (1, 4), 0) class MultiHeadAttentionNew(nn.Module): def __init__(self, n_heads, input_dim, embed_dim, val_dim=None, key_dim =None): super(MultiHeadAttentionNew, self).__init__() if val_dim is None: val_dim = embed_dim // n_heads if key_dim is None: key_dim = val_dim self.n_heads = n_heads self.input_dim = input_dim self.embed_dim = embed_dim self.val_dim = val_dim self.key_dim = key_dim self.norm_factor = 1 / math.sqrt(key_dim) self.W_query = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_key = nn.Parameter(torch.Tensor(n_heads, input_dim, key_dim)) self.W_val = nn.Parameter(torch.Tensor(n_heads, input_dim, val_dim)) self.W_out = nn.Parameter(torch.Tensor(n_heads, val_dim, embed_dim)) self.init_parameters() def init_parameters(self): for param in self.parameters(): stdv = 1.0 / math.sqrt(param.size(-1)) param.data.uniform_(-stdv, stdv) def forward(self, input_0): primals_2 = self.W_query primals_3 = self.W_key primals_4 = self.W_val primals_5 = self.W_out primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
rdjdejong/attention-learn-to-route
MultiHeadAttention
false
16,319
[ "MIT" ]
540
3b6bbdad677a36df53eabad98b48f436be298ac8
https://github.com/rdjdejong/attention-learn-to-route/tree/3b6bbdad677a36df53eabad98b48f436be298ac8
FocalLoss
import torch from torch import nn import torch.nn.functional as F class FocalLoss(nn.Module): def __init__(self, gamma=2): super().__init__() self.gamma = gamma def forward(self, logit, target): target = target.float() max_val = (-logit).clamp(min=0) loss = logit - logit * target + max_val + ((-max_val).exp() + (- logit - max_val).exp()).log() invprobs = F.logsigmoid(-logit * (target * 2.0 - 1.0)) loss = (invprobs * self.gamma).exp() * loss if len(loss.size()) == 2: loss = loss.sum(dim=1) return loss.mean() def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_0( in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp2 = tl.load(in_ptr1 + r0, None) tmp1 = -tmp0 tmp3 = 2.0 tmp4 = tmp2 * tmp3 tmp5 = 1.0 tmp6 = tmp4 - tmp5 tmp7 = tmp1 * tmp6 tmp8 = 0.0 tmp9 = triton_helpers.minimum(tmp8, tmp7) tmp10 = tl_math.abs(tmp7) tmp11 = -tmp10 tmp12 = tl_math.exp(tmp11) tmp13 = libdevice.log1p(tmp12) tmp14 = tmp9 - tmp13 tmp15 = tmp14 * tmp3 tmp16 = tl_math.exp(tmp15) tmp17 = tmp0 * tmp2 tmp18 = tmp0 - tmp17 tmp19 = triton_helpers.maximum(tmp1, tmp8) tmp20 = tmp18 + tmp19 tmp21 = -tmp19 tmp22 = tl_math.exp(tmp21) tmp23 = tmp1 - tmp19 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tmp26 = tl_math.log(tmp25) tmp27 = tmp20 + tmp26 tmp28 = tmp16 * tmp27 tmp29 = tl.broadcast_to(tmp28, [RBLOCK]) tmp31 = triton_helpers.promote_to_tensor(tl.sum(tmp29, 0)) tmp32 = 256.0 tmp33 = tmp31 / tmp32 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp33, None) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_clamp_exp_log_log_sigmoid_forward_mean_mul_neg_sub_0[ grid(1)](buf1, arg1_1, arg0_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf1, class FocalLossNew(nn.Module): def __init__(self, gamma=2): super().__init__() self.gamma = gamma def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Thagio/kaggle-aptos
FocalLoss
false
9,534
[ "MIT" ]
0
f565335d34b46b7fa7ca925b7d325397df8e1fee
https://github.com/Thagio/kaggle-aptos/tree/f565335d34b46b7fa7ca925b7d325397df8e1fee
Loss
import torch import torch.nn as nn import torch.utils.data class Loss(nn.Module): def __init__(self): super(Loss, self).__init__() def forward(self, gt_region, gt_affinity, pred_region, pred_affinity, conf_map): loss = torch.mean(((gt_region - pred_region).pow(2) + (gt_affinity - pred_affinity).pow(2)) * conf_map) return loss def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand( [4, 4, 4, 4]), torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn import torch.utils.data assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, xnumel, rnumel): XBLOCK: tl.constexpr = 1 RBLOCK: tl.constexpr = 256 xoffset = tl.program_id(0) * XBLOCK tl.full([1], xoffset, tl.int32) tl.full([RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[:] tl.full([RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + r0, None) tmp1 = tl.load(in_ptr1 + r0, None) tmp4 = tl.load(in_ptr2 + r0, None) tmp5 = tl.load(in_ptr3 + r0, None) tmp9 = tl.load(in_ptr4 + r0, None) tmp2 = tmp0 - tmp1 tmp3 = tmp2 * tmp2 tmp6 = tmp4 - tmp5 tmp7 = tmp6 * tmp6 tmp8 = tmp3 + tmp7 tmp10 = tmp8 * tmp9 tmp11 = tl.broadcast_to(tmp10, [RBLOCK]) tmp13 = triton_helpers.promote_to_tensor(tl.sum(tmp11, 0)) tmp14 = 256.0 tmp15 = tmp13 / tmp14 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([1], 0, tl.int32), tmp15, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1, arg4_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg4_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((), (), torch.float32) buf1 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_mean_mul_pow_sub_0[grid(1)](buf1, arg0_1, arg1_1, arg2_1, arg3_1, arg4_1, 1, 256, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 del arg4_1 return buf1, class LossNew(nn.Module): def __init__(self): super(LossNew, self).__init__() def forward(self, input_0, input_1, input_2, input_3, input_4): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 arg4_1 = input_4 output = call([arg0_1, arg1_1, arg2_1, arg3_1, arg4_1]) return output[0]
ishine/EasyOCR
Loss
false
15,612
[ "Apache-2.0" ]
56
ab7cebb64482e5e50ee7a37fa50398b8cb7481c7
https://github.com/ishine/EasyOCR/tree/ab7cebb64482e5e50ee7a37fa50398b8cb7481c7
SSD300
import torch import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F from math import sqrt from itertools import product as product import torch.optim def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor def cxcy_to_xy(cxcy): """ Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max). :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4) :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4) """ return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, :2] + cxcy[:, 2:] / 2], 1) def find_intersection(set_1, set_2): """ Find the intersection of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2]. unsqueeze(0)) upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:]. unsqueeze(0)) intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] def find_jaccard_overlap(set_1, set_2): """ Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ intersection = find_intersection(set_1, set_2) areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection return intersection / union def gcxgcy_to_cxcy(gcxgcy, priors_cxcy): """ Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above. They are decoded into center-size coordinates. This is the inverse of the function above. :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4) :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4) """ return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy [:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1) class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBase, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None class AuxiliaryConvolutions(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutions, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats class PredictionConvolutions(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutions, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) l_conv10_2 = self.loc_conv10_2(conv10_2_feats) l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous() l_conv10_2 = l_conv10_2.view(batch_size, -1, 4) l_conv11_2 = self.loc_conv11_2(conv11_2_feats) l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous() l_conv11_2 = l_conv11_2.view(batch_size, -1, 4) c_conv4_3 = self.cl_conv4_3(conv4_3_feats) c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) c_conv7 = self.cl_conv7(conv7_feats) c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) c_conv8_2 = self.cl_conv8_2(conv8_2_feats) c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) c_conv9_2 = self.cl_conv9_2(conv9_2_feats) c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) c_conv10_2 = self.cl_conv10_2(conv10_2_feats) c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) c_conv11_2 = self.cl_conv11_2(conv11_2_feats) c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1) classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2], dim=1) return locs, classes_scores class SSD300(nn.Module): """ The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions. """ def __init__(self, n_classes): super(SSD300, self).__init__() self.n_classes = n_classes self.base = VGGBase() self.aux_convs = AuxiliaryConvolutions() self.pred_convs = PredictionConvolutions(n_classes) self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1)) nn.init.constant_(self.rescale_factors, 20) self.priors_cxcy = self.create_prior_boxes() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ conv4_3_feats, conv7_feats = self.base(image) norm = conv4_3_feats.pow(2).sum(dim=1, keepdim=True).sqrt() conv4_3_feats = conv4_3_feats / norm conv4_3_feats = conv4_3_feats * self.rescale_factors conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats = (self .aux_convs(conv7_feats)) locs, classes_scores = self.pred_convs(conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats) return locs, classes_scores def create_prior_boxes(self): """ Create the 8732 prior (default) boxes for the SSD300, as defined in the paper. :return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4) """ fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1} obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375, 'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9} aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0, 0.5], 'conv11_2': [1.0, 2.0, 0.5]} fmaps = list(fmap_dims.keys()) prior_boxes = [] for k, fmap in enumerate(fmaps): for i in range(fmap_dims[fmap]): for j in range(fmap_dims[fmap]): cx = (j + 0.5) / fmap_dims[fmap] cy = (i + 0.5) / fmap_dims[fmap] for ratio in aspect_ratios[fmap]: prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt (ratio), obj_scales[fmap] / sqrt(ratio)]) if ratio == 1.0: try: additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]]) except IndexError: additional_scale = 1.0 prior_boxes.append([cx, cy, additional_scale, additional_scale]) prior_boxes = torch.FloatTensor(prior_boxes) prior_boxes.clamp_(0, 1) return prior_boxes def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k): """ Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects. For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold. :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4) :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes) :param min_score: minimum threshold for a box to be considered a match for a certain class :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k' :return: detections (boxes, labels, and scores), lists of length batch_size """ batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) predicted_scores = F.softmax(predicted_scores, dim=2) all_images_boxes = list() all_images_labels = list() all_images_scores = list() assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) for i in range(batch_size): decoded_locs = cxcy_to_xy(gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy)) image_boxes = list() image_labels = list() image_scores = list() _max_scores, _best_label = predicted_scores[i].max(dim=1) for c in range(1, self.n_classes): class_scores = predicted_scores[i][:, c] score_above_min_score = class_scores > min_score n_above_min_score = score_above_min_score.sum().item() if n_above_min_score == 0: continue class_scores = class_scores[score_above_min_score] class_decoded_locs = decoded_locs[score_above_min_score] class_scores, sort_ind = class_scores.sort(dim=0, descending=True) class_decoded_locs = class_decoded_locs[sort_ind] overlap = find_jaccard_overlap(class_decoded_locs, class_decoded_locs) suppress = torch.zeros(n_above_min_score, dtype=torch.uint8) for box in range(class_decoded_locs.size(0)): if suppress[box] == 1: continue suppress = torch.max(suppress, overlap[box] > max_overlap) suppress[box] = 0 image_boxes.append(class_decoded_locs[1 - suppress]) image_labels.append(torch.LongTensor((1 - suppress).sum(). item() * [c])) image_scores.append(class_scores[1 - suppress]) if len(image_boxes) == 0: image_boxes.append(torch.FloatTensor([[0.0, 0.0, 1.0, 1.0]])) image_labels.append(torch.LongTensor([0])) image_scores.append(torch.FloatTensor([0.0])) image_boxes = torch.cat(image_boxes, dim=0) image_labels = torch.cat(image_labels, dim=0) image_scores = torch.cat(image_scores, dim=0) n_objects = image_scores.size(0) if n_objects > top_k: image_scores, sort_ind = image_scores.sort(dim=0, descending=True) image_scores = image_scores[:top_k] image_boxes = image_boxes[sort_ind][:top_k] image_labels = image_labels[sort_ind][:top_k] all_images_boxes.append(image_boxes) all_images_labels.append(image_labels) all_images_scores.append(image_scores) return all_images_boxes, all_images_labels, all_images_scores def get_inputs(): return [torch.rand([4, 3, 512, 512])] def get_init_inputs(): return [[], {'n_classes': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice import torchvision import torch.utils.data from torch import nn import torch.nn.functional as F from math import sqrt from itertools import product as product import torch.optim assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 262144 % 64 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 256 x1 = xindex // 256 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 1024 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (512 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (513 + 2 * x0 + 1024 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 65536 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 128 x1 = xindex // 128 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 512 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 512 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (256 + 2 * x0 + 512 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (257 + 2 * x0 + 512 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16384 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_5(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 64 x1 = xindex // 64 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 256 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 256 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (128 + 2 * x0 + 256 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (129 + 2 * x0 + 256 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_6(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 4096 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_7(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x0 = xindex % 32 x1 = xindex // 32 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 128 * x1), None, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 128 * x1), None, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (64 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (65 + 2 * x0 + 128 * x1), None, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + x2, tmp6, None) tl.store(out_ptr1 + x2, tmp16, None) @triton.jit def triton_poi_fused_convolution_relu_8(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_max_pool2d_with_indices_9(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x1 = xindex // 32 % 32 x0 = xindex % 32 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 32, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tmp2 & tmp4 tmp6 = -1 + x0 tmp7 = tmp6 >= tmp1 tmp8 = tmp6 < tmp3 tmp9 = tmp7 & tmp8 tmp10 = tmp5 & tmp9 tmp11 = tl.load(in_ptr0 + (-33 + x4), tmp10, other=float('-inf')) tmp12 = x0 tmp13 = tmp12 >= tmp1 tmp14 = tmp12 < tmp3 tmp15 = tmp13 & tmp14 tmp16 = tmp5 & tmp15 tmp17 = tl.load(in_ptr0 + (-32 + x4), tmp16, other=float('-inf')) tmp18 = triton_helpers.maximum(tmp17, tmp11) tmp19 = 1 + x0 tmp20 = tmp19 >= tmp1 tmp21 = tmp19 < tmp3 tmp22 = tmp20 & tmp21 tmp23 = tmp5 & tmp22 tmp24 = tl.load(in_ptr0 + (-31 + x4), tmp23, other=float('-inf')) tmp25 = triton_helpers.maximum(tmp24, tmp18) tmp26 = x1 tmp27 = tmp26 >= tmp1 tmp28 = tmp26 < tmp3 tmp29 = tmp27 & tmp28 tmp30 = tmp29 & tmp9 tmp31 = tl.load(in_ptr0 + (-1 + x4), tmp30, other=float('-inf')) tmp32 = triton_helpers.maximum(tmp31, tmp25) tmp33 = tmp29 & tmp15 tmp34 = tl.load(in_ptr0 + x4, tmp33, other=float('-inf')) tmp35 = triton_helpers.maximum(tmp34, tmp32) tmp36 = tmp29 & tmp22 tmp37 = tl.load(in_ptr0 + (1 + x4), tmp36, other=float('-inf')) tmp38 = triton_helpers.maximum(tmp37, tmp35) tmp39 = 1 + x1 tmp40 = tmp39 >= tmp1 tmp41 = tmp39 < tmp3 tmp42 = tmp40 & tmp41 tmp43 = tmp42 & tmp9 tmp44 = tl.load(in_ptr0 + (31 + x4), tmp43, other=float('-inf')) tmp45 = triton_helpers.maximum(tmp44, tmp38) tmp46 = tmp42 & tmp15 tmp47 = tl.load(in_ptr0 + (32 + x4), tmp46, other=float('-inf')) tmp48 = triton_helpers.maximum(tmp47, tmp45) tmp49 = tmp42 & tmp22 tmp50 = tl.load(in_ptr0 + (33 + x4), tmp49, other=float('-inf')) tmp51 = triton_helpers.maximum(tmp50, tmp48) tmp52 = tmp17 > tmp11 tmp53 = tl.full([1], 1, tl.int8) tmp54 = tl.full([1], 0, tl.int8) tmp55 = tl.where(tmp52, tmp53, tmp54) tmp56 = tmp24 > tmp18 tmp57 = tl.full([1], 2, tl.int8) tmp58 = tl.where(tmp56, tmp57, tmp55) tmp59 = tmp31 > tmp25 tmp60 = tl.full([1], 3, tl.int8) tmp61 = tl.where(tmp59, tmp60, tmp58) tmp62 = tmp34 > tmp32 tmp63 = tl.full([1], 4, tl.int8) tmp64 = tl.where(tmp62, tmp63, tmp61) tmp65 = tmp37 > tmp35 tmp66 = tl.full([1], 5, tl.int8) tmp67 = tl.where(tmp65, tmp66, tmp64) tmp68 = tmp44 > tmp38 tmp69 = tl.full([1], 6, tl.int8) tmp70 = tl.where(tmp68, tmp69, tmp67) tmp71 = tmp47 > tmp45 tmp72 = tl.full([1], 7, tl.int8) tmp73 = tl.where(tmp71, tmp72, tmp70) tmp74 = tmp50 > tmp48 tmp75 = tl.full([1], 8, tl.int8) tmp76 = tl.where(tmp74, tmp75, tmp73) tl.store(out_ptr0 + x4, tmp51, None) tl.store(out_ptr1 + x4, tmp76, None) @triton.jit def triton_poi_fused_convolution_relu_10(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 1024 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_red_fused_pow_sqrt_sum_11(in_out_ptr0, in_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr, RBLOCK: tl.constexpr): rnumel = 512 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rbase = tl.arange(0, RBLOCK)[None, :] x0 = xindex % 4096 x1 = xindex // 4096 _tmp3 = tl.full([XBLOCK, RBLOCK], 0, tl.float32) x3 = xindex for roffset in range(0, rnumel, RBLOCK): rindex = roffset + rbase rmask = rindex < rnumel r2 = rindex tmp0 = tl.load(in_ptr0 + (x0 + 4096 * r2 + 2097152 * x1), rmask, eviction_policy='evict_first', other=0.0) tmp1 = tmp0 * tmp0 tmp2 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp4 = _tmp3 + tmp2 _tmp3 = tl.where(rmask, tmp4, _tmp3) tmp3 = tl.sum(_tmp3, 1)[:, None] tmp5 = libdevice.sqrt(tmp3) tl.debug_barrier() tl.store(in_out_ptr0 + x3, tmp5, None) @triton.jit def triton_poi_fused_div_mul_12(in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x0 = xindex % 4096 x2 = xindex // 2097152 x1 = xindex // 4096 % 512 tmp0 = tl.load(in_ptr0 + x3, None) tmp1 = tl.load(in_ptr1 + (x0 + 4096 * x2), None, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr2 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 / tmp1 tmp4 = tmp2 * tmp3 tl.store(out_ptr0 + x3, tmp2, None) tl.store(out_ptr1 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_13(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 1024 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_14(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 512 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_15(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 256 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_16(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_17(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 64 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_18(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 36 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_19(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 36 % 128 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_convolution_relu_20(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] tl.full([XBLOCK], True, tl.int1) x3 = xindex x1 = xindex // 16 % 256 tmp0 = tl.load(in_out_ptr0 + x3, None) tmp1 = tl.load(in_ptr0 + x1, None, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, None) @triton.jit def triton_poi_fused_cat_21(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, in_ptr6, in_ptr7, in_ptr8, in_ptr9, in_ptr10, in_ptr11, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 394496 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 4 % 24656 x0 = xindex % 4 x2 = xindex // 98624 x3 = xindex tmp0 = x1 tl.full([1], 0, tl.int64) tmp3 = tl.full([1], 16384, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = tl.load(in_ptr0 + (4096 * ((x0 + 4 * x1) % 16) + 65536 * ((x0 + 4 * x1 + 65536 * x2) // 65536 % 4) + (x0 + 4 * x1) // 16 % 4096), tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp6 = tl.load(in_ptr1 + (x0 + 4 * x1) % 16, tmp4 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tmp5 + tmp6 tmp8 = tl.full(tmp7.shape, 0.0, tmp7.dtype) tmp9 = tl.where(tmp4, tmp7, tmp8) tmp10 = tmp0 >= tmp3 tmp11 = tl.full([1], 22528, tl.int64) tmp12 = tmp0 < tmp11 tmp13 = tmp10 & tmp12 tmp14 = tl.load(in_ptr2 + (1024 * ((x0 + 4 * (-16384 + x1)) % 24) + 24576 * ((x0 + 4 * (-16384 + x1) + 24576 * x2) // 24576 % 4) + (x0 + 4 * (-16384 + x1)) // 24 % 1024), tmp13 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tl.load(in_ptr3 + (x0 + 4 * (-16384 + x1)) % 24, tmp13 & xmask, eviction_policy='evict_last', other=0.0) tmp16 = tmp14 + tmp15 tmp17 = tl.full(tmp16.shape, 0.0, tmp16.dtype) tmp18 = tl.where(tmp13, tmp16, tmp17) tmp19 = tmp0 >= tmp11 tmp20 = tl.full([1], 24064, tl.int64) tmp21 = tmp0 < tmp20 tmp22 = tmp19 & tmp21 tmp23 = tl.load(in_ptr4 + (256 * ((x0 + 4 * (-22528 + x1)) % 24) + 6144 * ((x0 + 4 * (-22528 + x1) + 6144 * x2) // 6144 % 4) + (x0 + 4 * (- 22528 + x1)) // 24 % 256), tmp22 & xmask, eviction_policy= 'evict_last', other=0.0) tmp24 = tl.load(in_ptr5 + (x0 + 4 * (-22528 + x1)) % 24, tmp22 & xmask, eviction_policy='evict_last', other=0.0) tmp25 = tmp23 + tmp24 tmp26 = tl.full(tmp25.shape, 0.0, tmp25.dtype) tmp27 = tl.where(tmp22, tmp25, tmp26) tmp28 = tmp0 >= tmp20 tmp29 = tl.full([1], 24448, tl.int64) tmp30 = tmp0 < tmp29 tmp31 = tmp28 & tmp30 tmp32 = tl.load(in_ptr6 + (64 * ((x0 + 4 * (-24064 + x1)) % 24) + 1536 * ((x0 + 4 * (-24064 + x1) + 1536 * x2) // 1536 % 4) + (x0 + 4 * (- 24064 + x1)) // 24 % 64), tmp31 & xmask, eviction_policy= 'evict_last', other=0.0) tmp33 = tl.load(in_ptr7 + (x0 + 4 * (-24064 + x1)) % 24, tmp31 & xmask, eviction_policy='evict_last', other=0.0) tmp34 = tmp32 + tmp33 tmp35 = tl.full(tmp34.shape, 0.0, tmp34.dtype) tmp36 = tl.where(tmp31, tmp34, tmp35) tmp37 = tmp0 >= tmp29 tmp38 = tl.full([1], 24592, tl.int64) tmp39 = tmp0 < tmp38 tmp40 = tmp37 & tmp39 tmp41 = tl.load(in_ptr8 + (36 * ((x0 + 4 * (-24448 + x1)) % 16) + 576 * ((x0 + 4 * (-24448 + x1) + 576 * x2) // 576 % 4) + (x0 + 4 * (- 24448 + x1)) // 16 % 36), tmp40 & xmask, eviction_policy= 'evict_last', other=0.0) tmp42 = tl.load(in_ptr9 + (x0 + 4 * (-24448 + x1)) % 16, tmp40 & xmask, eviction_policy='evict_last', other=0.0) tmp43 = tmp41 + tmp42 tmp44 = tl.full(tmp43.shape, 0.0, tmp43.dtype) tmp45 = tl.where(tmp40, tmp43, tmp44) tmp46 = tmp0 >= tmp38 tl.full([1], 24656, tl.int64) tmp49 = tl.load(in_ptr10 + (16 * ((x0 + 4 * (-24592 + x1)) % 16) + 256 * ((x0 + 4 * (-24592 + x1) + 256 * x2) // 256 % 4) + (x0 + 4 * (- 24592 + x1)) // 16 % 16), tmp46 & xmask, eviction_policy= 'evict_last', other=0.0) tmp50 = tl.load(in_ptr11 + (x0 + 4 * (-24592 + x1)) % 16, tmp46 & xmask, eviction_policy='evict_last', other=0.0) tmp51 = tmp49 + tmp50 tmp52 = tl.full(tmp51.shape, 0.0, tmp51.dtype) tmp53 = tl.where(tmp46, tmp51, tmp52) tmp54 = tl.where(tmp40, tmp45, tmp53) tmp55 = tl.where(tmp31, tmp36, tmp54) tmp56 = tl.where(tmp22, tmp27, tmp55) tmp57 = tl.where(tmp13, tmp18, tmp56) tmp58 = tl.where(tmp4, tmp9, tmp57) tl.store(out_ptr0 + x3, tmp58, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72) = args args.clear() assert_size_stride(primals_1, (64, 3, 3, 3), (27, 9, 3, 1)) assert_size_stride(primals_2, (64,), (1,)) assert_size_stride(primals_3, (4, 3, 512, 512), (786432, 262144, 512, 1)) assert_size_stride(primals_4, (64, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_5, (64,), (1,)) assert_size_stride(primals_6, (128, 64, 3, 3), (576, 9, 3, 1)) assert_size_stride(primals_7, (128,), (1,)) assert_size_stride(primals_8, (128, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_9, (128,), (1,)) assert_size_stride(primals_10, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_11, (256,), (1,)) assert_size_stride(primals_12, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_13, (256,), (1,)) assert_size_stride(primals_14, (256, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_15, (256,), (1,)) assert_size_stride(primals_16, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_17, (512,), (1,)) assert_size_stride(primals_18, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_19, (512,), (1,)) assert_size_stride(primals_20, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_21, (512,), (1,)) assert_size_stride(primals_22, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_23, (512,), (1,)) assert_size_stride(primals_24, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_25, (512,), (1,)) assert_size_stride(primals_26, (512, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_27, (512,), (1,)) assert_size_stride(primals_28, (1024, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_29, (1024,), (1,)) assert_size_stride(primals_30, (1024, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_31, (1024,), (1,)) assert_size_stride(primals_32, (1, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_33, (256, 1024, 1, 1), (1024, 1, 1, 1)) assert_size_stride(primals_34, (256,), (1,)) assert_size_stride(primals_35, (512, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_36, (512,), (1,)) assert_size_stride(primals_37, (128, 512, 1, 1), (512, 1, 1, 1)) assert_size_stride(primals_38, (128,), (1,)) assert_size_stride(primals_39, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_40, (256,), (1,)) assert_size_stride(primals_41, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_42, (128,), (1,)) assert_size_stride(primals_43, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_44, (256,), (1,)) assert_size_stride(primals_45, (128, 256, 1, 1), (256, 1, 1, 1)) assert_size_stride(primals_46, (128,), (1,)) assert_size_stride(primals_47, (256, 128, 3, 3), (1152, 9, 3, 1)) assert_size_stride(primals_48, (256,), (1,)) assert_size_stride(primals_49, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_50, (16,), (1,)) assert_size_stride(primals_51, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_52, (24,), (1,)) assert_size_stride(primals_53, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_54, (24,), (1,)) assert_size_stride(primals_55, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_56, (24,), (1,)) assert_size_stride(primals_57, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_58, (16,), (1,)) assert_size_stride(primals_59, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_60, (16,), (1,)) assert_size_stride(primals_61, (16, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_62, (16,), (1,)) assert_size_stride(primals_63, (24, 1024, 3, 3), (9216, 9, 3, 1)) assert_size_stride(primals_64, (24,), (1,)) assert_size_stride(primals_65, (24, 512, 3, 3), (4608, 9, 3, 1)) assert_size_stride(primals_66, (24,), (1,)) assert_size_stride(primals_67, (24, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_68, (24,), (1,)) assert_size_stride(primals_69, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_70, (16,), (1,)) assert_size_stride(primals_71, (16, 256, 3, 3), (2304, 9, 3, 1)) assert_size_stride(primals_72, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(67108864)](buf1, primals_2, 67108864, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = extern_kernels.convolution(buf1, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf2, (4, 64, 512, 512), (16777216, 262144, 512, 1)) buf3 = buf2 del buf2 triton_poi_fused_convolution_relu_0[grid(67108864)](buf3, primals_5, 67108864, XBLOCK=512, num_warps=8, num_stages=1) del primals_5 buf4 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.float32) buf5 = empty_strided_cuda((4, 64, 256, 256), (4194304, 65536, 256, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(16777216)](buf3, buf4, buf5, 16777216, XBLOCK=512, num_warps=8, num_stages=1) buf6 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf6, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf7 = buf6 del buf6 triton_poi_fused_convolution_relu_2[grid(33554432)](buf7, primals_7, 33554432, XBLOCK=1024, num_warps=4, num_stages=1) del primals_7 buf8 = extern_kernels.convolution(buf7, primals_8, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 128, 256, 256), (8388608, 65536, 256, 1)) buf9 = buf8 del buf8 triton_poi_fused_convolution_relu_2[grid(33554432)](buf9, primals_9, 33554432, XBLOCK=1024, num_warps=4, num_stages=1) del primals_9 buf10 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.float32) buf11 = empty_strided_cuda((4, 128, 128, 128), (2097152, 16384, 128, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_3[grid(8388608)](buf9, buf10, buf11, 8388608, XBLOCK=512, num_warps=8, num_stages=1) buf12 = extern_kernels.convolution(buf10, primals_10, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf12, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf13 = buf12 del buf12 triton_poi_fused_convolution_relu_4[grid(16777216)](buf13, primals_11, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_11 buf14 = extern_kernels.convolution(buf13, primals_12, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf14, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf15 = buf14 del buf14 triton_poi_fused_convolution_relu_4[grid(16777216)](buf15, primals_13, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_13 buf16 = extern_kernels.convolution(buf15, primals_14, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf16, (4, 256, 128, 128), (4194304, 16384, 128, 1)) buf17 = buf16 del buf16 triton_poi_fused_convolution_relu_4[grid(16777216)](buf17, primals_15, 16777216, XBLOCK=512, num_warps=8, num_stages=1) del primals_15 buf18 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.float32) buf19 = empty_strided_cuda((4, 256, 64, 64), (1048576, 4096, 64, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_5[grid(4194304)](buf17, buf18, buf19, 4194304, XBLOCK=512, num_warps=8, num_stages=1) buf20 = extern_kernels.convolution(buf18, primals_16, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf20, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf21 = buf20 del buf20 triton_poi_fused_convolution_relu_6[grid(8388608)](buf21, primals_17, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_17 buf22 = extern_kernels.convolution(buf21, primals_18, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf22, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf23 = buf22 del buf22 triton_poi_fused_convolution_relu_6[grid(8388608)](buf23, primals_19, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_19 buf24 = extern_kernels.convolution(buf23, primals_20, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf24, (4, 512, 64, 64), (2097152, 4096, 64, 1)) buf25 = buf24 del buf24 triton_poi_fused_convolution_relu_6[grid(8388608)](buf25, primals_21, 8388608, XBLOCK=512, num_warps=8, num_stages=1) del primals_21 buf26 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf27 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_7[grid(2097152)](buf25, buf26, buf27, 2097152, XBLOCK=512, num_warps=8, num_stages=1) buf28 = extern_kernels.convolution(buf26, primals_22, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf28, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf29 = buf28 del buf28 triton_poi_fused_convolution_relu_8[grid(2097152)](buf29, primals_23, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_23 buf30 = extern_kernels.convolution(buf29, primals_24, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf30, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf31 = buf30 del buf30 triton_poi_fused_convolution_relu_8[grid(2097152)](buf31, primals_25, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_25 buf32 = extern_kernels.convolution(buf31, primals_26, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf32, (4, 512, 32, 32), (524288, 1024, 32, 1)) buf33 = buf32 del buf32 triton_poi_fused_convolution_relu_8[grid(2097152)](buf33, primals_27, 2097152, XBLOCK=1024, num_warps=4, num_stages=1) del primals_27 buf34 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.float32) buf35 = empty_strided_cuda((4, 512, 32, 32), (524288, 1024, 32, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_9[grid(2097152)](buf33, buf34, buf35, 2097152, XBLOCK=512, num_warps=8, num_stages=1) buf36 = extern_kernels.convolution(buf34, primals_28, stride=(1, 1), padding=(6, 6), dilation=(6, 6), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf36, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf37 = buf36 del buf36 triton_poi_fused_convolution_relu_10[grid(4194304)](buf37, primals_29, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_29 buf38 = extern_kernels.convolution(buf37, primals_30, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf38, (4, 1024, 32, 32), (1048576, 1024, 32, 1)) buf39 = buf38 del buf38 triton_poi_fused_convolution_relu_10[grid(4194304)](buf39, primals_31, 4194304, XBLOCK=1024, num_warps=4, num_stages=1) del primals_31 buf40 = empty_strided_cuda((4, 1, 64, 64), (4096, 16384, 64, 1), torch.float32) buf41 = reinterpret_tensor(buf40, (4, 1, 64, 64), (4096, 4096, 64, 1), 0) del buf40 triton_red_fused_pow_sqrt_sum_11[grid(16384)](buf41, buf25, 16384, 512, XBLOCK=64, RBLOCK=8, num_warps=4, num_stages=1) buf42 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) buf43 = empty_strided_cuda((4, 512, 64, 64), (2097152, 4096, 64, 1), torch.float32) triton_poi_fused_div_mul_12[grid(8388608)](buf25, buf41, primals_32, buf42, buf43, 8388608, XBLOCK=512, num_warps=8, num_stages=1) buf44 = extern_kernels.convolution(buf39, primals_33, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf44, (4, 256, 32, 32), (262144, 1024, 32, 1)) buf45 = buf44 del buf44 triton_poi_fused_convolution_relu_13[grid(1048576)](buf45, primals_34, 1048576, XBLOCK=1024, num_warps=4, num_stages=1) del primals_34 buf46 = extern_kernels.convolution(buf45, primals_35, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf46, (4, 512, 16, 16), (131072, 256, 16, 1)) buf47 = buf46 del buf46 triton_poi_fused_convolution_relu_14[grid(524288)](buf47, primals_36, 524288, XBLOCK=1024, num_warps=4, num_stages=1) del primals_36 buf48 = extern_kernels.convolution(buf47, primals_37, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf48, (4, 128, 16, 16), (32768, 256, 16, 1)) buf49 = buf48 del buf48 triton_poi_fused_convolution_relu_15[grid(131072)](buf49, primals_38, 131072, XBLOCK=512, num_warps=8, num_stages=1) del primals_38 buf50 = extern_kernels.convolution(buf49, primals_39, stride=(2, 2), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf50, (4, 256, 8, 8), (16384, 64, 8, 1)) buf51 = buf50 del buf50 triton_poi_fused_convolution_relu_16[grid(65536)](buf51, primals_40, 65536, XBLOCK=256, num_warps=4, num_stages=1) del primals_40 buf52 = extern_kernels.convolution(buf51, primals_41, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf52, (4, 128, 8, 8), (8192, 64, 8, 1)) buf53 = buf52 del buf52 triton_poi_fused_convolution_relu_17[grid(32768)](buf53, primals_42, 32768, XBLOCK=256, num_warps=4, num_stages=1) del primals_42 buf54 = extern_kernels.convolution(buf53, primals_43, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf54, (4, 256, 6, 6), (9216, 36, 6, 1)) buf55 = buf54 del buf54 triton_poi_fused_convolution_relu_18[grid(36864)](buf55, primals_44, 36864, XBLOCK=512, num_warps=4, num_stages=1) del primals_44 buf56 = extern_kernels.convolution(buf55, primals_45, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf56, (4, 128, 6, 6), (4608, 36, 6, 1)) buf57 = buf56 del buf56 triton_poi_fused_convolution_relu_19[grid(18432)](buf57, primals_46, 18432, XBLOCK=256, num_warps=4, num_stages=1) del primals_46 buf58 = extern_kernels.convolution(buf57, primals_47, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf58, (4, 256, 4, 4), (4096, 16, 4, 1)) buf59 = buf58 del buf58 triton_poi_fused_convolution_relu_20[grid(16384)](buf59, primals_48, 16384, XBLOCK=256, num_warps=4, num_stages=1) del primals_48 buf60 = extern_kernels.convolution(buf43, primals_49, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf60, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf61 = extern_kernels.convolution(buf39, primals_51, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf61, (4, 24, 32, 32), (24576, 1024, 32, 1)) buf62 = extern_kernels.convolution(buf47, primals_53, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf62, (4, 24, 16, 16), (6144, 256, 16, 1)) buf63 = extern_kernels.convolution(buf51, primals_55, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf63, (4, 24, 8, 8), (1536, 64, 8, 1)) buf64 = extern_kernels.convolution(buf55, primals_57, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf64, (4, 16, 6, 6), (576, 36, 6, 1)) buf65 = extern_kernels.convolution(buf59, primals_59, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf65, (4, 16, 4, 4), (256, 16, 4, 1)) buf66 = extern_kernels.convolution(buf43, primals_61, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf66, (4, 16, 64, 64), (65536, 4096, 64, 1)) buf67 = extern_kernels.convolution(buf39, primals_63, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf67, (4, 24, 32, 32), (24576, 1024, 32, 1)) buf68 = extern_kernels.convolution(buf47, primals_65, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf68, (4, 24, 16, 16), (6144, 256, 16, 1)) buf69 = extern_kernels.convolution(buf51, primals_67, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf69, (4, 24, 8, 8), (1536, 64, 8, 1)) buf70 = extern_kernels.convolution(buf55, primals_69, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf70, (4, 16, 6, 6), (576, 36, 6, 1)) buf71 = extern_kernels.convolution(buf59, primals_71, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf71, (4, 16, 4, 4), (256, 16, 4, 1)) buf72 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) triton_poi_fused_cat_21[grid(394496)](buf60, primals_50, buf61, primals_52, buf62, primals_54, buf63, primals_56, buf64, primals_58, buf65, primals_60, buf72, 394496, XBLOCK=512, num_warps=8, num_stages=1) del buf60 del buf61 del buf62 del buf63 del buf64 del buf65 del primals_50 del primals_52 del primals_54 del primals_56 del primals_58 del primals_60 buf73 = empty_strided_cuda((4, 24656, 4), (98624, 4, 1), torch.float32) triton_poi_fused_cat_21[grid(394496)](buf66, primals_62, buf67, primals_64, buf68, primals_66, buf69, primals_68, buf70, primals_70, buf71, primals_72, buf73, 394496, XBLOCK=512, num_warps=8, num_stages=1) del buf66 del buf67 del buf68 del buf69 del buf70 del buf71 del primals_62 del primals_64 del primals_66 del primals_68 del primals_70 del primals_72 return (buf72, buf73, primals_1, primals_3, primals_4, primals_6, primals_8, primals_10, primals_12, primals_14, primals_16, primals_18, primals_20, primals_22, primals_24, primals_26, primals_28, primals_30, primals_32, primals_33, primals_35, primals_37, primals_39, primals_41, primals_43, primals_45, primals_47, primals_49, primals_51, primals_53, primals_55, primals_57, primals_59, primals_61, primals_63, primals_65, primals_67, primals_69, primals_71, buf1, buf3, buf4, buf5, buf7, buf9, buf10, buf11, buf13, buf15, buf17, buf18, buf19, buf21, buf23, buf25, buf26, buf27, buf29, buf31, buf33, buf34, buf35, buf37, buf39, buf41, buf42, buf43, buf45, buf47, buf49, buf51, buf53, buf55, buf57, buf59) def decimate(tensor, m): """ Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value. This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size. :param tensor: tensor to be decimated :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension :return: decimated tensor """ assert tensor.dim() == len(m) for d in range(tensor.dim()): if m[d] is not None: tensor = tensor.index_select(dim=d, index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long()) return tensor def cxcy_to_xy(cxcy): """ Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max). :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4) :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4) """ return torch.cat([cxcy[:, :2] - cxcy[:, 2:] / 2, cxcy[:, :2] + cxcy[:, 2:] / 2], 1) def find_intersection(set_1, set_2): """ Find the intersection of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2]. unsqueeze(0)) upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:]. unsqueeze(0)) intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0) return intersection_dims[:, :, 0] * intersection_dims[:, :, 1] def find_jaccard_overlap(set_1, set_2): """ Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates. :param set_1: set 1, a tensor of dimensions (n1, 4) :param set_2: set 2, a tensor of dimensions (n2, 4) :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2) """ intersection = find_intersection(set_1, set_2) areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1]) areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1]) union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection return intersection / union def gcxgcy_to_cxcy(gcxgcy, priors_cxcy): """ Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above. They are decoded into center-size coordinates. This is the inverse of the function above. :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4) :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4) :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4) """ return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy [:, :2], torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1) class VGGBase(nn.Module): """ VGG base convolutions to produce lower-level feature maps. """ def __init__(self): super(VGGBase, self).__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1) self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6) self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1) self.load_pretrained_layers() def forward(self, image): """ Forward propagation. :param image: images, a tensor of dimensions (N, 3, 300, 300) :return: lower-level feature maps conv4_3 and conv7 """ out = F.relu(self.conv1_1(image)) out = F.relu(self.conv1_2(out)) out = self.pool1(out) out = F.relu(self.conv2_1(out)) out = F.relu(self.conv2_2(out)) out = self.pool2(out) out = F.relu(self.conv3_1(out)) out = F.relu(self.conv3_2(out)) out = F.relu(self.conv3_3(out)) out = self.pool3(out) out = F.relu(self.conv4_1(out)) out = F.relu(self.conv4_2(out)) out = F.relu(self.conv4_3(out)) conv4_3_feats = out out = self.pool4(out) out = F.relu(self.conv5_1(out)) out = F.relu(self.conv5_2(out)) out = F.relu(self.conv5_3(out)) out = self.pool5(out) out = F.relu(self.conv6(out)) conv7_feats = F.relu(self.conv7(out)) return conv4_3_feats, conv7_feats def load_pretrained_layers(self): """ As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network. There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16 We copy these parameters into our network. It's straightforward for conv1 to conv5. However, the original VGG-16 does not contain the conv6 and con7 layers. Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py. """ state_dict = self.state_dict() param_names = list(state_dict.keys()) pretrained_state_dict = torchvision.models.vgg16(pretrained=True ).state_dict() pretrained_param_names = list(pretrained_state_dict.keys()) for i, param in enumerate(param_names[:-4]): state_dict[param] = pretrained_state_dict[pretrained_param_names[i] ] conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view( 4096, 512, 7, 7) conv_fc6_bias = pretrained_state_dict['classifier.0.bias'] state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3]) state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4]) conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view( 4096, 4096, 1, 1) conv_fc7_bias = pretrained_state_dict['classifier.3.bias'] state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None]) state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4]) self.load_state_dict(state_dict) None class AuxiliaryConvolutions(nn.Module): """ Additional convolutions to produce higher-level feature maps. """ def __init__(self): super(AuxiliaryConvolutions, self).__init__() self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0) self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0) self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0) self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv7_feats): """ Forward propagation. :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2 """ out = F.relu(self.conv8_1(conv7_feats)) out = F.relu(self.conv8_2(out)) conv8_2_feats = out out = F.relu(self.conv9_1(out)) out = F.relu(self.conv9_2(out)) conv9_2_feats = out out = F.relu(self.conv10_1(out)) out = F.relu(self.conv10_2(out)) conv10_2_feats = out out = F.relu(self.conv11_1(out)) conv11_2_feats = F.relu(self.conv11_2(out)) return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats class PredictionConvolutions(nn.Module): """ Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps. The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes. See 'cxcy_to_gcxgcy' in utils.py for the encoding definition. The class scores represent the scores of each object class in each of the 8732 bounding boxes located. A high score for 'background' = no object. """ def __init__(self, n_classes): """ :param n_classes: number of different types of objects """ super(PredictionConvolutions, self).__init__() self.n_classes = n_classes n_boxes = {'conv4_3': 4, 'conv7': 6, 'conv8_2': 6, 'conv9_2': 6, 'conv10_2': 4, 'conv11_2': 4} self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1) self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size= 3, padding=1) self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1) self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1) self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1) self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1) self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1) self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1) self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1) self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1) self.init_conv2d() def init_conv2d(self): """ Initialize convolution parameters. """ for c in self.children(): if isinstance(c, nn.Conv2d): nn.init.xavier_uniform_(c.weight) nn.init.constant_(c.bias, 0.0) def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats): """ Forward propagation. :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38) :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19) :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10) :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5) :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3) :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1) :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image """ batch_size = conv4_3_feats.size(0) l_conv4_3 = self.loc_conv4_3(conv4_3_feats) l_conv4_3 = l_conv4_3.permute(0, 2, 3, 1).contiguous() l_conv4_3 = l_conv4_3.view(batch_size, -1, 4) l_conv7 = self.loc_conv7(conv7_feats) l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous() l_conv7 = l_conv7.view(batch_size, -1, 4) l_conv8_2 = self.loc_conv8_2(conv8_2_feats) l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous() l_conv8_2 = l_conv8_2.view(batch_size, -1, 4) l_conv9_2 = self.loc_conv9_2(conv9_2_feats) l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous() l_conv9_2 = l_conv9_2.view(batch_size, -1, 4) l_conv10_2 = self.loc_conv10_2(conv10_2_feats) l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous() l_conv10_2 = l_conv10_2.view(batch_size, -1, 4) l_conv11_2 = self.loc_conv11_2(conv11_2_feats) l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous() l_conv11_2 = l_conv11_2.view(batch_size, -1, 4) c_conv4_3 = self.cl_conv4_3(conv4_3_feats) c_conv4_3 = c_conv4_3.permute(0, 2, 3, 1).contiguous() c_conv4_3 = c_conv4_3.view(batch_size, -1, self.n_classes) c_conv7 = self.cl_conv7(conv7_feats) c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous() c_conv7 = c_conv7.view(batch_size, -1, self.n_classes) c_conv8_2 = self.cl_conv8_2(conv8_2_feats) c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous() c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes) c_conv9_2 = self.cl_conv9_2(conv9_2_feats) c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous() c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes) c_conv10_2 = self.cl_conv10_2(conv10_2_feats) c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous() c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes) c_conv11_2 = self.cl_conv11_2(conv11_2_feats) c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous() c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes) locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1) classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2], dim=1) return locs, classes_scores class SSD300New(nn.Module): """ The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions. """ def __init__(self, n_classes): super(SSD300New, self).__init__() self.n_classes = n_classes self.base = VGGBase() self.aux_convs = AuxiliaryConvolutions() self.pred_convs = PredictionConvolutions(n_classes) self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1)) nn.init.constant_(self.rescale_factors, 20) self.priors_cxcy = self.create_prior_boxes() def create_prior_boxes(self): """ Create the 8732 prior (default) boxes for the SSD300, as defined in the paper. :return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4) """ fmap_dims = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10, 'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1} obj_scales = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375, 'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9} aspect_ratios = {'conv4_3': [1.0, 2.0, 0.5], 'conv7': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv8_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv9_2': [1.0, 2.0, 3.0, 0.5, 0.333], 'conv10_2': [1.0, 2.0, 0.5], 'conv11_2': [1.0, 2.0, 0.5]} fmaps = list(fmap_dims.keys()) prior_boxes = [] for k, fmap in enumerate(fmaps): for i in range(fmap_dims[fmap]): for j in range(fmap_dims[fmap]): cx = (j + 0.5) / fmap_dims[fmap] cy = (i + 0.5) / fmap_dims[fmap] for ratio in aspect_ratios[fmap]: prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt (ratio), obj_scales[fmap] / sqrt(ratio)]) if ratio == 1.0: try: additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]]) except IndexError: additional_scale = 1.0 prior_boxes.append([cx, cy, additional_scale, additional_scale]) prior_boxes = torch.FloatTensor(prior_boxes) prior_boxes.clamp_(0, 1) return prior_boxes def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k): """ Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects. For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold. :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4) :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes) :param min_score: minimum threshold for a box to be considered a match for a certain class :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k' :return: detections (boxes, labels, and scores), lists of length batch_size """ batch_size = predicted_locs.size(0) n_priors = self.priors_cxcy.size(0) predicted_scores = F.softmax(predicted_scores, dim=2) all_images_boxes = list() all_images_labels = list() all_images_scores = list() assert n_priors == predicted_locs.size(1) == predicted_scores.size(1) for i in range(batch_size): decoded_locs = cxcy_to_xy(gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy)) image_boxes = list() image_labels = list() image_scores = list() _max_scores, _best_label = predicted_scores[i].max(dim=1) for c in range(1, self.n_classes): class_scores = predicted_scores[i][:, c] score_above_min_score = class_scores > min_score n_above_min_score = score_above_min_score.sum().item() if n_above_min_score == 0: continue class_scores = class_scores[score_above_min_score] class_decoded_locs = decoded_locs[score_above_min_score] class_scores, sort_ind = class_scores.sort(dim=0, descending=True) class_decoded_locs = class_decoded_locs[sort_ind] overlap = find_jaccard_overlap(class_decoded_locs, class_decoded_locs) suppress = torch.zeros(n_above_min_score, dtype=torch.uint8) for box in range(class_decoded_locs.size(0)): if suppress[box] == 1: continue suppress = torch.max(suppress, overlap[box] > max_overlap) suppress[box] = 0 image_boxes.append(class_decoded_locs[1 - suppress]) image_labels.append(torch.LongTensor((1 - suppress).sum(). item() * [c])) image_scores.append(class_scores[1 - suppress]) if len(image_boxes) == 0: image_boxes.append(torch.FloatTensor([[0.0, 0.0, 1.0, 1.0]])) image_labels.append(torch.LongTensor([0])) image_scores.append(torch.FloatTensor([0.0])) image_boxes = torch.cat(image_boxes, dim=0) image_labels = torch.cat(image_labels, dim=0) image_scores = torch.cat(image_scores, dim=0) n_objects = image_scores.size(0) if n_objects > top_k: image_scores, sort_ind = image_scores.sort(dim=0, descending=True) image_scores = image_scores[:top_k] image_boxes = image_boxes[sort_ind][:top_k] image_labels = image_labels[sort_ind][:top_k] all_images_boxes.append(image_boxes) all_images_labels.append(image_labels) all_images_scores.append(image_scores) return all_images_boxes, all_images_labels, all_images_scores def forward(self, input_0): primals_32 = self.rescale_factors primals_1 = self.base.conv1_1.weight primals_2 = self.base.conv1_1.bias primals_4 = self.base.conv1_2.weight primals_5 = self.base.conv1_2.bias primals_6 = self.base.conv2_1.weight primals_7 = self.base.conv2_1.bias primals_8 = self.base.conv2_2.weight primals_9 = self.base.conv2_2.bias primals_10 = self.base.conv3_1.weight primals_11 = self.base.conv3_1.bias primals_12 = self.base.conv3_2.weight primals_13 = self.base.conv3_2.bias primals_14 = self.base.conv3_3.weight primals_15 = self.base.conv3_3.bias primals_16 = self.base.conv4_1.weight primals_17 = self.base.conv4_1.bias primals_18 = self.base.conv4_2.weight primals_19 = self.base.conv4_2.bias primals_20 = self.base.conv4_3.weight primals_21 = self.base.conv4_3.bias primals_22 = self.base.conv5_1.weight primals_23 = self.base.conv5_1.bias primals_24 = self.base.conv5_2.weight primals_25 = self.base.conv5_2.bias primals_26 = self.base.conv5_3.weight primals_27 = self.base.conv5_3.bias primals_28 = self.base.conv6.weight primals_29 = self.base.conv6.bias primals_30 = self.base.conv7.weight primals_31 = self.base.conv7.bias primals_33 = self.aux_convs.conv8_1.weight primals_34 = self.aux_convs.conv8_1.bias primals_35 = self.aux_convs.conv8_2.weight primals_36 = self.aux_convs.conv8_2.bias primals_37 = self.aux_convs.conv9_1.weight primals_38 = self.aux_convs.conv9_1.bias primals_39 = self.aux_convs.conv9_2.weight primals_40 = self.aux_convs.conv9_2.bias primals_41 = self.aux_convs.conv10_1.weight primals_42 = self.aux_convs.conv10_1.bias primals_43 = self.aux_convs.conv10_2.weight primals_44 = self.aux_convs.conv10_2.bias primals_45 = self.aux_convs.conv11_1.weight primals_46 = self.aux_convs.conv11_1.bias primals_47 = self.aux_convs.conv11_2.weight primals_48 = self.aux_convs.conv11_2.bias primals_49 = self.pred_convs.loc_conv4_3.weight primals_50 = self.pred_convs.loc_conv4_3.bias primals_51 = self.pred_convs.loc_conv7.weight primals_52 = self.pred_convs.loc_conv7.bias primals_53 = self.pred_convs.loc_conv8_2.weight primals_54 = self.pred_convs.loc_conv8_2.bias primals_55 = self.pred_convs.loc_conv9_2.weight primals_56 = self.pred_convs.loc_conv9_2.bias primals_57 = self.pred_convs.loc_conv10_2.weight primals_58 = self.pred_convs.loc_conv10_2.bias primals_59 = self.pred_convs.loc_conv11_2.weight primals_60 = self.pred_convs.loc_conv11_2.bias primals_61 = self.pred_convs.cl_conv4_3.weight primals_62 = self.pred_convs.cl_conv4_3.bias primals_63 = self.pred_convs.cl_conv7.weight primals_64 = self.pred_convs.cl_conv7.bias primals_65 = self.pred_convs.cl_conv8_2.weight primals_66 = self.pred_convs.cl_conv8_2.bias primals_67 = self.pred_convs.cl_conv9_2.weight primals_68 = self.pred_convs.cl_conv9_2.bias primals_69 = self.pred_convs.cl_conv10_2.weight primals_70 = self.pred_convs.cl_conv10_2.bias primals_71 = self.pred_convs.cl_conv11_2.weight primals_72 = self.pred_convs.cl_conv11_2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11, primals_12, primals_13, primals_14, primals_15, primals_16, primals_17, primals_18, primals_19, primals_20, primals_21, primals_22, primals_23, primals_24, primals_25, primals_26, primals_27, primals_28, primals_29, primals_30, primals_31, primals_32, primals_33, primals_34, primals_35, primals_36, primals_37, primals_38, primals_39, primals_40, primals_41, primals_42, primals_43, primals_44, primals_45, primals_46, primals_47, primals_48, primals_49, primals_50, primals_51, primals_52, primals_53, primals_54, primals_55, primals_56, primals_57, primals_58, primals_59, primals_60, primals_61, primals_62, primals_63, primals_64, primals_65, primals_66, primals_67, primals_68, primals_69, primals_70, primals_71, primals_72]) return output[0], output[1]
adityag6994/pytorch_ssd_training
SSD300
false
3,587
[ "MIT" ]
0
404f3cbef815e314337ec2c1b4f06a2403a7ce03
https://github.com/adityag6994/pytorch_ssd_training/tree/404f3cbef815e314337ec2c1b4f06a2403a7ce03
NormalizationLayer
import torch import torch.nn.init class NormalizationLayer(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayer, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, x): features = self.norm_s * x / torch.norm(x, dim=1, keepdim=True ).expand_as(x) return features def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn.init assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_div_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + 0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK]) tmp2 = tl.load(in_ptr1 + x3, xmask) tmp4 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp9 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tmp1 * tmp2 tmp5 = tmp4 * tmp4 tmp7 = tmp6 * tmp6 tmp8 = tmp5 + tmp7 tmp10 = tmp9 * tmp9 tmp11 = tmp8 + tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp11 + tmp13 tmp15 = libdevice.sqrt(tmp14) tmp16 = tmp3 / tmp15 tl.store(out_ptr0 + x3, tmp16, xmask) def call(args): primals_1, primals_2 = args args.clear() assert_size_stride(primals_1, (1,), (1,)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_div_mul_0[grid(256)](primals_1, primals_2, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_1 return buf0, primals_2 class NormalizationLayerNew(torch.nn.Module): """Class for normalization layer.""" def __init__(self, normalize_scale=1.0, learn_scale=True): super(NormalizationLayerNew, self).__init__() self.norm_s = float(normalize_scale) if learn_scale: self.norm_s = torch.nn.Parameter(torch.FloatTensor((self.norm_s,))) def forward(self, input_0): primals_1 = self.norm_s primals_2 = input_0 output = call([primals_1, primals_2]) return output[0]
sidphbot/jina-hub
NormalizationLayer
false
16,442
[ "Apache-2.0" ]
106
ab195030b72353c9b803874e2c99829fb75e1b17
https://github.com/sidphbot/jina-hub/tree/ab195030b72353c9b803874e2c99829fb75e1b17
CosAttention
import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class CosAttention(GatAttention): def forward(self, neighbor_vecs, self_vecs): alpha = (neighbor_vecs * self.att_neighbor_weight * self_vecs * self.att_self_weight) alpha = alpha.sum(dim=-1) return alpha def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'num_heads': 4, 'out_channels': 4}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn.functional as F import torch.nn as nn from torch.nn import Parameter assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_mul_sum_0(in_ptr0, in_ptr1, in_ptr2, in_ptr3, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + 4 * x2, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr3 + 4 * x0, xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp10 = tl.load(in_ptr2 + (1 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr3 + (1 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp15 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp16 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp18 = tl.load(in_ptr2 + (2 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp20 = tl.load(in_ptr3 + (2 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp23 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp24 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp26 = tl.load(in_ptr2 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp28 = tl.load(in_ptr3 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 * tmp1 tmp4 = tmp2 * tmp3 tmp6 = tmp4 * tmp5 tmp9 = tmp7 * tmp8 tmp11 = tmp9 * tmp10 tmp13 = tmp11 * tmp12 tmp14 = tmp6 + tmp13 tmp17 = tmp15 * tmp16 tmp19 = tmp17 * tmp18 tmp21 = tmp19 * tmp20 tmp22 = tmp14 + tmp21 tmp25 = tmp23 * tmp24 tmp27 = tmp25 * tmp26 tmp29 = tmp27 * tmp28 tmp30 = tmp22 + tmp29 tl.store(out_ptr0 + x2, tmp30, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (1, 4, 4), (16, 4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (1, 4, 4), (16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_sum_0[grid(64)](primals_2, primals_1, primals_3, primals_4, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) return buf0, primals_1, primals_2, primals_3, primals_4 class ConstAttention(nn.Module): def __init__(self, **kwargs): super(ConstAttention, self).__init__() def forward(self, neighbor_vecs, self_vecs): return 1 class GatAttention(ConstAttention): def __init__(self, num_heads, out_channels): super(GatAttention, self).__init__() self.num_heads = num_heads self.out_channels = out_channels self.att_self_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.att_neighbor_weight = Parameter(torch.Tensor(1, self.num_heads, self.out_channels)) self.reset_parameters() def reset_parameters(self): pass def forward(self, neighbor_vecs, self_vecs): alpha = (self_vecs * self.att_self_weight).sum(dim=-1) + (neighbor_vecs * self.att_neighbor_weight).sum(dim=-1) alpha = F.leaky_relu(alpha, negative_slope=0.2) return alpha class CosAttentionNew(GatAttention): def forward(self, input_0, input_1): primals_1 = self.att_self_weight primals_4 = self.att_neighbor_weight primals_2 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
GraphNAS/GraphNAS
CosAttention
false
13,731
[ "Apache-2.0" ]
94
b4f05bb10b8b96bb9e82344bfae36a23db2431a6
https://github.com/GraphNAS/GraphNAS/tree/b4f05bb10b8b96bb9e82344bfae36a23db2431a6
_DSH_loss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_2/inductor_cache/ww/cwwwntgqv3zm2f7fpx37pzrwalipkmakhd6yljotxrwdpunpd5bf.py # Topologically Sorted Source Nodes: [pairwise_distance, pow_1, pairwise_distance_1, pow_2, add, mean, mul], Original ATen: [aten.sub, aten.add, aten.norm, aten.pow, aten.mean, aten.mul] # Source node to ATen node mapping: # add => add_2 # mean => mean # mul => mul # pairwise_distance => add, pow_1, pow_2, sub, sum_1 # pairwise_distance_1 => add_1, pow_4, pow_5, sub_1, sum_2 # pow_1 => pow_3 # pow_2 => pow_6 # Graph fragment: # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg1_1, %arg0_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub, 1e-06), kwargs = {}) # %pow_1 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add, 2.0), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_1, [3]), kwargs = {}) # %pow_2 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_1, 0.5), kwargs = {}) # %pow_3 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_2, 2), kwargs = {}) # %sub_1 : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%arg3_1, %arg2_1), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Scalar](args = (%sub_1, 1e-06), kwargs = {}) # %pow_4 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%add_1, 2.0), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%pow_4, [3]), kwargs = {}) # %pow_5 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%sum_2, 0.5), kwargs = {}) # %pow_6 : [num_users=1] = call_function[target=torch.ops.aten.pow.Tensor_Scalar](args = (%pow_5, 2), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%pow_3, %pow_6), kwargs = {}) # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.default](args = (%add_2,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%mean, 1), kwargs = {}) triton_per_fused_add_mean_mul_norm_pow_sub_0 = async_compile.triton('triton_per_fused_add_mean_mul_norm_pow_sub_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[1, 64], reduction_hint=ReductionHint.DEFAULT, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: 'i32', 6: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {5: 1}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 6), equal_to_1=(5,))]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_mean_mul_norm_pow_sub_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 16, 'num_reduction': 1, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_mean_mul_norm_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 1 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + (4*r0), None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (4*r0), None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + (4*r0), None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + (4*r0), None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr3 + (1 + (4*r0)), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr2 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr3 + (2 + (4*r0)), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr2 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr3 + (3 + (4*r0)), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = tmp24 * tmp24 tmp28 = tmp26 - tmp27 tmp29 = tmp28 + tmp3 tmp30 = tmp29 * tmp29 tmp33 = tmp31 - tmp32 tmp34 = tmp33 + tmp3 tmp35 = tmp34 * tmp34 tmp36 = tmp30 + tmp35 tmp39 = tmp37 - tmp38 tmp40 = tmp39 + tmp3 tmp41 = tmp40 * tmp40 tmp42 = tmp36 + tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 + tmp3 tmp47 = tmp46 * tmp46 tmp48 = tmp42 + tmp47 tmp49 = libdevice.sqrt(tmp48) tmp50 = tmp49 * tmp49 tmp51 = tmp25 + tmp50 tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK]) tmp54 = tl.sum(tmp52, 1)[:, None] tmp55 = 64.0 tmp56 = tmp54 / tmp55 tmp57 = 1.0 tmp58 = tmp56 * tmp57 tl.debug_barrier() tl.store(in_out_ptr0 + (tl.full([XBLOCK, 1], 0, tl.int32)), tmp58, None) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [pairwise_distance, pow_1, pairwise_distance_1, pow_2, add, mean, mul], Original ATen: [aten.sub, aten.add, aten.norm, aten.pow, aten.mean, aten.mul] stream0 = get_raw_stream(0) triton_per_fused_add_mean_mul_norm_pow_sub_0.run(buf2, arg1_1, arg0_1, arg3_1, arg2_1, 1, 64, grid=grid(1), stream=stream0) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return (buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg3_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1, arg3_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_mean_mul_norm_pow_sub_0(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, in_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xoffset + tl.arange(0, XBLOCK)[:, None] tl.full([XBLOCK, RBLOCK], True, tl.int1) rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r0 = rindex tmp0 = tl.load(in_ptr0 + 4 * r0, None, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * r0, None, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp13 = tl.load(in_ptr1 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp18 = tl.load(in_ptr0 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp19 = tl.load(in_ptr1 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp26 = tl.load(in_ptr2 + 4 * r0, None, eviction_policy='evict_last') tmp27 = tl.load(in_ptr3 + 4 * r0, None, eviction_policy='evict_last') tmp31 = tl.load(in_ptr2 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp32 = tl.load(in_ptr3 + (1 + 4 * r0), None, eviction_policy='evict_last') tmp37 = tl.load(in_ptr2 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp38 = tl.load(in_ptr3 + (2 + 4 * r0), None, eviction_policy='evict_last') tmp43 = tl.load(in_ptr2 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp44 = tl.load(in_ptr3 + (3 + 4 * r0), None, eviction_policy='evict_last') tmp2 = tmp0 - tmp1 tmp3 = 1e-06 tmp4 = tmp2 + tmp3 tmp5 = tmp4 * tmp4 tmp8 = tmp6 - tmp7 tmp9 = tmp8 + tmp3 tmp10 = tmp9 * tmp9 tmp11 = tmp5 + tmp10 tmp14 = tmp12 - tmp13 tmp15 = tmp14 + tmp3 tmp16 = tmp15 * tmp15 tmp17 = tmp11 + tmp16 tmp20 = tmp18 - tmp19 tmp21 = tmp20 + tmp3 tmp22 = tmp21 * tmp21 tmp23 = tmp17 + tmp22 tmp24 = libdevice.sqrt(tmp23) tmp25 = tmp24 * tmp24 tmp28 = tmp26 - tmp27 tmp29 = tmp28 + tmp3 tmp30 = tmp29 * tmp29 tmp33 = tmp31 - tmp32 tmp34 = tmp33 + tmp3 tmp35 = tmp34 * tmp34 tmp36 = tmp30 + tmp35 tmp39 = tmp37 - tmp38 tmp40 = tmp39 + tmp3 tmp41 = tmp40 * tmp40 tmp42 = tmp36 + tmp41 tmp45 = tmp43 - tmp44 tmp46 = tmp45 + tmp3 tmp47 = tmp46 * tmp46 tmp48 = tmp42 + tmp47 tmp49 = libdevice.sqrt(tmp48) tmp50 = tmp49 * tmp49 tmp51 = tmp25 + tmp50 tmp52 = tl.broadcast_to(tmp51, [XBLOCK, RBLOCK]) tmp54 = tl.sum(tmp52, 1)[:, None] tmp55 = 64.0 tmp56 = tmp54 / tmp55 tmp57 = 1.0 tmp58 = tmp56 * tmp57 tl.debug_barrier() tl.store(in_out_ptr0 + tl.full([XBLOCK, 1], 0, tl.int32), tmp58, None) def call(args): arg0_1, arg1_1, arg2_1, arg3_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg3_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf1 = empty_strided_cuda((), (), torch.float32) buf2 = buf1 del buf1 get_raw_stream(0) triton_per_fused_add_mean_mul_norm_pow_sub_0[grid(1)](buf2, arg1_1, arg0_1, arg3_1, arg2_1, 1, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 del arg2_1 del arg3_1 return buf2, class _DSH_lossNew(nn.Module): def __init__(self, gamma=1): super(_DSH_lossNew, self).__init__() self.gamma = gamma self.d = nn.PairwiseDistance() def forward(self, input_0, input_1, input_2, input_3): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 arg3_1 = input_3 output = call([arg0_1, arg1_1, arg2_1, arg3_1]) return output[0]
Jiangtong-Li/ZHSIR
_DSH_loss
false
17,503
[ "Apache-2.0" ]
8
fd2c0a7e79f22cbf565ccd5e13342f1b317ac9b7
https://github.com/Jiangtong-Li/ZHSIR/tree/fd2c0a7e79f22cbf565ccd5e13342f1b317ac9b7
ASP
import torch import torch.nn as nn class AttentivePooling(nn.Module): """ Implementation of Attentive Pooling """ def __init__(self, input_dim, **kwargs): super(AttentivePooling, self).__init__() self.W_a = nn.Linear(input_dim, input_dim) self.W = nn.Linear(input_dim, 1) self.act_fn = nn.ReLU() self.softmax = nn.functional.softmax def forward(self, batch_rep, att_mask): """ input: batch_rep : size (B, T, H), B: batch size, T: sequence length, H: Hidden dimension attention_weight: att_w : size (B, T, 1) return: utter_rep: size (B, H) """ att_logits = self.W(self.act_fn(self.W_a(batch_rep))).squeeze(-1) att_logits = att_mask + att_logits att_w = self.softmax(att_logits, dim=-1).unsqueeze(-1) utter_rep = torch.sum(batch_rep * att_w, dim=1) return utter_rep, att_w class ASP(nn.Module): """ Attentive Statistic Pooling module incoporate attention mask""" def __init__(self, out_dim, input_dim): super(ASP, self).__init__() self.linear = nn.Linear(input_dim, out_dim) self.ap_layer = AttentivePooling(out_dim) def forward(self, feature_BxTxH, att_mask_BxT): """ Arguments feature_BxTxH - [BxTxH] Acoustic feature with shape att_mask_BxT - [BxT] Attention Mask logits """ feature_BxTxH = self.linear(feature_BxTxH) sap_vec, att_w = self.ap_layer(feature_BxTxH, att_mask_BxT) variance = torch.sqrt(torch.sum(att_w * feature_BxTxH * feature_BxTxH, dim=1) - sap_vec ** 2 + 1e-08) statistic_pooling = torch.cat([sap_vec, variance], dim=-1) return statistic_pooling def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'out_dim': 4, 'input_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_relu_threshold_backward_0(in_out_ptr0, in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(in_out_ptr0 + x2, tmp4, xmask) tl.store(out_ptr0 + x2, tmp6, xmask) @triton.jit def triton_poi_fused__softmax_add_1(in_ptr0, in_ptr1, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 16 tmp0 = tl.load(in_ptr0 + 4 * x2, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + 4 * x0, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr0 + (1 + 4 * x2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr1 + (1 + 4 * x0), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (2 + 4 * x2), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr1 + (2 + 4 * x0), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x2), xmask, eviction_policy='evict_last' ) tmp12 = tl.load(in_ptr1 + (3 + 4 * x0), xmask, eviction_policy='evict_last' ) tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = triton_helpers.maximum(tmp2, tmp5) tmp9 = tmp7 + tmp8 tmp10 = triton_helpers.maximum(tmp6, tmp9) tmp13 = tmp11 + tmp12 tmp14 = triton_helpers.maximum(tmp10, tmp13) tmp15 = tmp2 - tmp14 tmp16 = tl_math.exp(tmp15) tmp17 = tmp5 - tmp14 tmp18 = tl_math.exp(tmp17) tmp19 = tmp16 + tmp18 tmp20 = tmp9 - tmp14 tmp21 = tl_math.exp(tmp20) tmp22 = tmp19 + tmp21 tmp23 = tmp13 - tmp14 tmp24 = tl_math.exp(tmp23) tmp25 = tmp22 + tmp24 tl.store(out_ptr0 + x2, tmp14, xmask) tl.store(out_ptr1 + x2, tmp25, xmask) @triton.jit def triton_poi_fused_mul_2(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex // 4 x5 = xindex // 4 % 64 x7 = xindex // 16 x8 = xindex % 256 x9 = xindex tmp0 = tl.load(in_ptr0 + x4, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x5, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr2 + x7, xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr3 + x7, xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr4 + x8, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp4 = tmp2 - tmp3 tmp5 = tl_math.exp(tmp4) tmp7 = tmp5 / tmp6 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x9, tmp9, xmask) @triton.jit def triton_poi_fused_add_mul_pow_sqrt_sub_sum_3(in_ptr0, in_ptr1, in_ptr2, in_ptr3, in_ptr4, in_ptr5, out_ptr0, out_ptr2, out_ptr3, out_ptr4, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x6 = xindex % 64 x3 = xindex // 64 x4 = xindex // 4 % 16 x2 = xindex // 16 % 4 x0 = xindex % 4 x5 = xindex // 4 x8 = xindex tmp0 = tl.load(in_ptr0 + x6, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x4 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr2 + x4, xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr3 + (x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr4 + (x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp10 = tl.load(in_ptr0 + (64 + x6), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr1 + (16 + x4 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp12 = tl.load(in_ptr2 + (16 + x4), xmask, eviction_policy='evict_last') tmp14 = tl.load(in_ptr3 + (4 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp17 = tl.load(in_ptr4 + (4 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp21 = tl.load(in_ptr0 + (128 + x6), xmask, eviction_policy='evict_last') tmp22 = tl.load(in_ptr1 + (32 + x4 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + (32 + x4), xmask, eviction_policy='evict_last') tmp25 = tl.load(in_ptr3 + (8 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp28 = tl.load(in_ptr4 + (8 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp32 = tl.load(in_ptr0 + (192 + x6), xmask, eviction_policy='evict_last') tmp33 = tl.load(in_ptr1 + (48 + x4 + 64 * x3), xmask, eviction_policy= 'evict_last') tmp34 = tl.load(in_ptr2 + (48 + x4), xmask, eviction_policy='evict_last') tmp36 = tl.load(in_ptr3 + (12 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp39 = tl.load(in_ptr4 + (12 + x2 + 16 * x3), xmask, eviction_policy= 'evict_last') tmp43 = tl.load(in_ptr5 + (x6 + 256 * x3), xmask) tmp45 = tl.load(in_ptr5 + (64 + x6 + 256 * x3), xmask) tmp48 = tl.load(in_ptr5 + (128 + x6 + 256 * x3), xmask) tmp51 = tl.load(in_ptr5 + (192 + x6 + 256 * x3), xmask) tmp3 = tmp1 + tmp2 tmp5 = tmp3 - tmp4 tmp6 = tl_math.exp(tmp5) tmp8 = tmp6 / tmp7 tmp9 = tmp0 * tmp8 tmp13 = tmp11 + tmp12 tmp15 = tmp13 - tmp14 tmp16 = tl_math.exp(tmp15) tmp18 = tmp16 / tmp17 tmp19 = tmp10 * tmp18 tmp20 = tmp9 + tmp19 tmp24 = tmp22 + tmp23 tmp26 = tmp24 - tmp25 tmp27 = tl_math.exp(tmp26) tmp29 = tmp27 / tmp28 tmp30 = tmp21 * tmp29 tmp31 = tmp20 + tmp30 tmp35 = tmp33 + tmp34 tmp37 = tmp35 - tmp36 tmp38 = tl_math.exp(tmp37) tmp40 = tmp38 / tmp39 tmp41 = tmp32 * tmp40 tmp42 = tmp31 + tmp41 tmp44 = tmp43 * tmp0 tmp46 = tmp45 * tmp10 tmp47 = tmp44 + tmp46 tmp49 = tmp48 * tmp21 tmp50 = tmp47 + tmp49 tmp52 = tmp51 * tmp32 tmp53 = tmp50 + tmp52 tmp54 = tmp42 * tmp42 tmp55 = tmp53 - tmp54 tmp56 = 1e-08 tmp57 = tmp55 + tmp56 tmp58 = libdevice.sqrt(tmp57) tmp59 = 2.0 tmp60 = tmp58 * tmp59 tmp61 = tmp42 * tmp59 tl.store(out_ptr0 + (x0 + 8 * x5), tmp42, xmask) tl.store(out_ptr2 + (x0 + 8 * x5), tmp58, xmask) tl.store(out_ptr3 + x8, tmp60, xmask) tl.store(out_ptr4 + x8, tmp61, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8) = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (4, 4), (4, 1)) assert_size_stride(primals_5, (4,), (1,)) assert_size_stride(primals_6, (1, 4), (4, 1)) assert_size_stride(primals_7, (1,), (1,)) assert_size_stride(primals_8, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.addmm(primals_2, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0), reinterpret_tensor(primals_1, (4, 4), (1, 4), 0 ), alpha=1, beta=1, out=buf0) del primals_1 del primals_2 buf1 = empty_strided_cuda((64, 4), (4, 1), torch.float32) extern_kernels.mm(buf0, reinterpret_tensor(primals_4, (4, 4), (1, 4 ), 0), out=buf1) buf2 = reinterpret_tensor(buf1, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf1 buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.bool) get_raw_stream(0) triton_poi_fused_relu_threshold_backward_0[grid(256)](buf2, primals_5, buf14, 256, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf4 = empty_strided_cuda((64, 1), (1, 1), torch.float32) extern_kernels.addmm(primals_7, reinterpret_tensor(buf2, (64, 4), ( 4, 1), 0), reinterpret_tensor(primals_6, (4, 1), (1, 4), 0), alpha=1, beta=1, out=buf4) del primals_7 buf5 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) buf6 = empty_strided_cuda((4, 4, 4, 1), (16, 4, 1, 64), torch.float32) triton_poi_fused__softmax_add_1[grid(64)](primals_8, buf4, buf5, buf6, 64, XBLOCK=64, num_warps=1, num_stages=1) buf8 = empty_strided_cuda((4, 4, 4, 4, 4), (256, 64, 16, 4, 1), torch.float32) triton_poi_fused_mul_2[grid(1024)](primals_8, buf4, buf5, buf6, buf0, buf8, 1024, XBLOCK=256, num_warps=4, num_stages=1) buf11 = empty_strided_cuda((4, 4, 4, 8), (128, 32, 8, 1), torch.float32 ) buf7 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 0) buf10 = reinterpret_tensor(buf11, (4, 4, 4, 4), (128, 32, 8, 1), 4) buf12 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_poi_fused_add_mul_pow_sqrt_sub_sum_3[grid(256)](buf0, primals_8, buf4, buf5, buf6, buf8, buf7, buf10, buf12, buf13, 256, XBLOCK=256, num_warps=4, num_stages=1) del buf5 del buf6 return buf11, primals_8, reinterpret_tensor(primals_3, (64, 4), (4, 1), 0 ), buf0, reinterpret_tensor(buf2, (64, 4), (4, 1), 0 ), buf4, buf8, buf12, buf13, primals_6, buf14, primals_4 class AttentivePooling(nn.Module): """ Implementation of Attentive Pooling """ def __init__(self, input_dim, **kwargs): super(AttentivePooling, self).__init__() self.W_a = nn.Linear(input_dim, input_dim) self.W = nn.Linear(input_dim, 1) self.act_fn = nn.ReLU() self.softmax = nn.functional.softmax def forward(self, batch_rep, att_mask): """ input: batch_rep : size (B, T, H), B: batch size, T: sequence length, H: Hidden dimension attention_weight: att_w : size (B, T, 1) return: utter_rep: size (B, H) """ att_logits = self.W(self.act_fn(self.W_a(batch_rep))).squeeze(-1) att_logits = att_mask + att_logits att_w = self.softmax(att_logits, dim=-1).unsqueeze(-1) utter_rep = torch.sum(batch_rep * att_w, dim=1) return utter_rep, att_w class ASPNew(nn.Module): """ Attentive Statistic Pooling module incoporate attention mask""" def __init__(self, out_dim, input_dim): super(ASPNew, self).__init__() self.linear = nn.Linear(input_dim, out_dim) self.ap_layer = AttentivePooling(out_dim) def forward(self, input_0, input_1): primals_1 = self.linear.weight primals_2 = self.linear.bias primals_4 = self.ap_layer.W_a.weight primals_5 = self.ap_layer.W_a.bias primals_6 = self.ap_layer.W.weight primals_7 = self.ap_layer.W.bias primals_3 = input_0 primals_8 = input_1 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8]) return output[0]
gcambara/s3prl
ASP
false
15,413
[ "MIT" ]
856
33284ebde3a903ed8604d6dae85669d0174ae1d3
https://github.com/gcambara/s3prl/tree/33284ebde3a903ed8604d6dae85669d0174ae1d3
Hardswish
import torch import torch.nn as nn import torch.nn.functional as F class Hardswish(nn.Module): @staticmethod def forward(x): return x * F.hardtanh(x + 3, 0.0, 6.0) / 6.0 def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_div_hardtanh_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 3.0 tmp2 = tmp0 + tmp1 tmp3 = 0.0 tmp4 = triton_helpers.maximum(tmp2, tmp3) tmp5 = 6.0 tmp6 = triton_helpers.minimum(tmp4, tmp5) tmp7 = tmp0 * tmp6 tmp8 = 0.16666666666666666 tmp9 = tmp7 * tmp8 tl.store(out_ptr0 + x0, tmp9, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_div_hardtanh_mul_0[grid(256)](arg0_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 return buf0, class HardswishNew(nn.Module): def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
AkshayGanesh/yolov5processor
Hardswish
false
4,811
[ "MIT" ]
1
788accfa93798729c002b2c9b4f943284ff97cad
https://github.com/AkshayGanesh/yolov5processor/tree/788accfa93798729c002b2c9b4f943284ff97cad
Attention
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_4/inductor_cache/nu/cnuc7ivckuuly7yn2763pwt3sw72jd6vuwpeeu4sfespm5iz7fq4.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => exp # Graph fragment: # %mul_tensor : [num_users=2] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_2, 1), kwargs = {}) # %amax_default : [num_users=1] = call_function[target=torch.ops.aten.amax.default](args = (%mul_tensor, [-1], True), kwargs = {}) # %sub_tensor : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%mul_tensor, %amax_default), kwargs = {}) # %div_tensor : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%sub_tensor, 2.0), kwargs = {}) # %exp : [num_users=2] = call_function[target=torch.ops.aten.exp.default](args = (%div_tensor,), kwargs = {}) triton_poi_fused__softmax_0 = async_compile.triton('triton_poi_fused__softmax_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp3 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + (x2), tmp17, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_4/inductor_cache/fj/cfjl47pvhwbpfbvh6rfehwy5ijxc5p3zgkld2lwf3mw5bl6pbkak.py # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] # Source node to ATen node mapping: # p_attn => div_1, sum_1 # Graph fragment: # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%exp, [-1], True), kwargs = {}) # %div_1 : [num_users=2] = call_function[target=torch.ops.aten.div.Tensor](args = (%exp, %sum_1), kwargs = {}) triton_poi_fused__softmax_1 = async_compile.triton('triton_poi_fused__softmax_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused__softmax_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 5, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = (xindex // 4) tmp0 = tl.load(in_ptr0 + (x2), xmask) tmp1 = tl.load(in_ptr0 + (4*x1), xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + (4*x1)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + (4*x1)), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + (4*x1)), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + (x2), tmp8, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] stream0 = get_raw_stream(0) triton_poi_fused__softmax_0.run(buf0, buf1, 256, grid=grid(256), stream=stream0) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [p_attn], Original ATen: [aten._softmax] triton_poi_fused__softmax_1.run(buf1, buf2, 256, grid=grid(256), stream=stream0) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0); del buf1 # reuse # Topologically Sorted Source Nodes: [matmul_1], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3) del arg2_1 return (reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg2_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1, arg2_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused__softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp3 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp8 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp11 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last' ) tmp1 = 1.0 tmp2 = tmp0 * tmp1 tmp4 = tmp3 * tmp1 tmp6 = tmp5 * tmp1 tmp7 = triton_helpers.maximum(tmp4, tmp6) tmp9 = tmp8 * tmp1 tmp10 = triton_helpers.maximum(tmp7, tmp9) tmp12 = tmp11 * tmp1 tmp13 = triton_helpers.maximum(tmp10, tmp12) tmp14 = tmp2 - tmp13 tmp15 = 0.5 tmp16 = tmp14 * tmp15 tmp17 = tl_math.exp(tmp16) tl.store(out_ptr0 + x2, tmp17, xmask) @triton.jit def triton_poi_fused__softmax_1(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x1 = xindex // 4 tmp0 = tl.load(in_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + 4 * x1, xmask, eviction_policy='evict_last') tmp2 = tl.load(in_ptr0 + (1 + 4 * x1), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr0 + (2 + 4 * x1), xmask, eviction_policy='evict_last') tmp6 = tl.load(in_ptr0 + (3 + 4 * x1), xmask, eviction_policy='evict_last') tmp3 = tmp1 + tmp2 tmp5 = tmp3 + tmp4 tmp7 = tmp5 + tmp6 tmp8 = tmp0 / tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, arg1_1, arg2_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg2_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(arg1_1, (16, 4, 4), (16, 4, 1 ), 0), reinterpret_tensor(arg0_1, (16, 4, 4), (16, 1, 4), 0), out=buf0) del arg0_1 del arg1_1 buf1 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__softmax_0[grid(256)](buf0, buf1, 256, XBLOCK=256, num_warps=4, num_stages=1) buf2 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 triton_poi_fused__softmax_1[grid(256)](buf1, buf2, 256, XBLOCK=256, num_warps=4, num_stages=1) buf3 = reinterpret_tensor(buf1, (16, 4, 4), (16, 4, 1), 0) del buf1 extern_kernels.bmm(reinterpret_tensor(buf2, (16, 4, 4), (16, 4, 1), 0), reinterpret_tensor(arg2_1, (16, 4, 4), (16, 4, 1), 0), out=buf3 ) del arg2_1 return reinterpret_tensor(buf3, (4, 4, 4, 4), (64, 16, 4, 1), 0), buf2 class AttentionNew(nn.Module): """ Compute 'Scaled Dot Product Attention """ def forward(self, input_0, input_1, input_2): arg0_1 = input_0 arg1_1 = input_1 arg2_1 = input_2 output = call([arg0_1, arg1_1, arg2_1]) return output[0], output[1]
MobtgZhang/MWMLNet
Attention
false
5,609
[ "MIT" ]
1
125bb39935916b6b4be505c51cb6a04eb49b96d0
https://github.com/MobtgZhang/MWMLNet/tree/125bb39935916b6b4be505c51cb6a04eb49b96d0
RpowInt
import torch class RpowInt(torch.nn.Module): def __init__(self): super(RpowInt, self).__init__() def forward(self, x): return 2 ** x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_pow_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = libdevice.exp2(tmp0) tl.store(out_ptr0 + x0, tmp1, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_pow_0[grid(256)](arg0_1, buf0, 256, XBLOCK=256, num_warps=4, num_stages=1) del arg0_1 return buf0, class RpowIntNew(torch.nn.Module): def __init__(self): super(RpowIntNew, self).__init__() def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
NVIDIA-AI-IOT-private/torch2trt
RpowInt
false
10,539
[ "MIT" ]
0
953d60039e0c81e90eea467c3df2e6e3f7040242
https://github.com/NVIDIA-AI-IOT-private/torch2trt/tree/953d60039e0c81e90eea467c3df2e6e3f7040242
GraphLinear
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/sj/csjponabvswzx52iypnd62a7oobcrz2pk4pqzcbvywkblpv4e5rw.py # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] # Source node to ATen node mapping: # add => add # Graph fragment: # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_2, %unsqueeze_2), kwargs = {}) triton_poi_fused_add_0 = async_compile.triton('triton_poi_fused_add_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 4) % 4 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [matmul], Original ATen: [aten.bmm] extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0); del buf0 # reuse # Topologically Sorted Source Nodes: [add], Original ATen: [aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_0.run(buf1, primals_3, 256, grid=grid(256), stream=stream0) del primals_3 return (buf1, reinterpret_tensor(primals_2, (16, 4, 4), (16, 1, 4), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4), (4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch._utils assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_add_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 4 % 4 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4), (4, 1)) assert_size_stride(primals_2, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_3, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((16, 4, 4), (16, 4, 1), torch.float32) extern_kernels.bmm(reinterpret_tensor(primals_1, (16, 4, 4), (0, 4, 1), 0), reinterpret_tensor(primals_2, (16, 4, 4), (16, 4, 1), 0 ), out=buf0) del primals_1 buf1 = reinterpret_tensor(buf0, (4, 4, 4, 4), (64, 16, 4, 1), 0) del buf0 get_raw_stream(0) triton_poi_fused_add_0[grid(256)](buf1, primals_3, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return buf1, reinterpret_tensor(primals_2, (16, 4, 4), (16, 1, 4), 0) class GraphLinearNew(torch.nn.Module): """ Generalization of 1x1 convolutions on Graphs """ def __init__(self, in_channels, out_channels): super(GraphLinearNew, self).__init__() self.in_channels = in_channels self.out_channels = out_channels self.W = torch.nn.Parameter(torch.FloatTensor(out_channels, in_channels)) self.b = torch.nn.Parameter(torch.FloatTensor(out_channels)) self.reset_parameters() def reset_parameters(self): w_stdv = 1 / (self.in_channels * self.out_channels) self.W.data.uniform_(-w_stdv, w_stdv) self.b.data.uniform_(-w_stdv, w_stdv) def forward(self, input_0): primals_1 = self.W primals_3 = self.b primals_2 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
microsoft/MeshGraphormer
GraphLinear
false
16,048
[ "MIT" ]
135
1c489e35e6bd3848ce0702891e4c8365b584bb8e
https://github.com/microsoft/MeshGraphormer/tree/1c489e35e6bd3848ce0702891e4c8365b584bb8e
AdaptiveInstanceNorm
import torch from torch import nn from math import sqrt def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNorm(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input, style): style = self.style(style).unsqueeze(2).unsqueeze(3) gamma, beta = style.chunk(2, 1) out = self.norm(input) out = gamma * out + beta return out def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4])] def get_init_inputs(): return [[], {'in_channel': 4, 'style_dim': 4}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice from torch import nn from math import sqrt assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_mul_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 32 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp1 = 0.7071067811865476 tmp2 = tmp0 * tmp1 tl.store(out_ptr0 + x0, tmp2, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_mul_1(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, out_ptr0, out_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex x2 = xindex % 4 x3 = xindex // 4 tmp0 = tl.load(in_ptr0 + (r1 + 16 * x0), xmask, other=0.0) tmp22 = tl.load(in_ptr1 + (x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp23 = tl.load(in_ptr2 + x2, xmask, eviction_policy='evict_last') tmp28 = tl.load(in_ptr1 + (4 + x2 + 8 * x3), xmask, eviction_policy= 'evict_last') tmp29 = tl.load(in_ptr2 + (4 + x2), xmask, eviction_policy='evict_last') tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tl.where(xmask, tmp1, 0) tmp4 = tl.broadcast_to(tmp1, [XBLOCK, RBLOCK]) tmp6 = tl.where(xmask, tmp4, 0) tmp7 = tl.sum(tmp6, 1)[:, None] tmp8 = tl.full([XBLOCK, 1], 16, tl.int32) tmp9 = tmp8.to(tl.float32) tmp10 = tmp7 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp11 * tmp11 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 16.0 tmp18 = tmp16 / tmp17 tmp19 = 1e-05 tmp20 = tmp18 + tmp19 tmp21 = libdevice.rsqrt(tmp20) tmp24 = tmp22 + tmp23 tmp25 = tmp0 - tmp10 tmp26 = tmp25 * tmp21 tmp27 = tmp24 * tmp26 tmp30 = tmp28 + tmp29 tmp31 = tmp27 + tmp30 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp21, xmask) tl.store(out_ptr1 + (r1 + 16 * x0), tmp31, xmask) tl.store(out_ptr0 + x0, tmp10, xmask) def call(args): primals_1, primals_2, primals_3, primals_4 = args args.clear() assert_size_stride(primals_1, (8, 4), (4, 1)) assert_size_stride(primals_2, (8,), (1,)) assert_size_stride(primals_3, (4, 4), (4, 1)) assert_size_stride(primals_4, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((8, 4), (4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_mul_0[grid(32)](primals_1, buf0, 32, XBLOCK=32, num_warps=1, num_stages=1) del primals_1 buf1 = empty_strided_cuda((4, 8), (8, 1), torch.float32) extern_kernels.mm(primals_3, reinterpret_tensor(buf0, (4, 8), (1, 4 ), 0), out=buf1) buf2 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf5 = reinterpret_tensor(buf3, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf3 buf6 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) triton_per_fused__native_batch_norm_legit_add_mul_1[grid(16)](buf5, primals_4, buf1, primals_2, buf2, buf6, 16, 16, XBLOCK=8, num_warps=2, num_stages=1) del buf1 del primals_2 return buf6, buf0, primals_3, primals_4, buf2, buf5 def equal_lr(module, name='weight'): EqualLR.apply(module, name) return module class EqualLR: def __init__(self, name): self.name = name def compute_weight(self, module): weight = getattr(module, self.name + '_orig') fan_in = weight.data.size(1) * weight.data[0][0].numel() return weight * sqrt(2 / fan_in) @staticmethod def apply(module, name): fn = EqualLR(name) weight = getattr(module, name) del module._parameters[name] module.register_parameter(name + '_orig', nn.Parameter(weight.data)) module.register_forward_pre_hook(fn) return fn def __call__(self, module, input): weight = self.compute_weight(module) setattr(module, self.name, weight) class EqualLinear(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() linear = nn.Linear(in_dim, out_dim) linear.weight.data.normal_() linear.bias.data.zero_() self.linear = equal_lr(linear) def forward(self, input): return self.linear(input) class AdaptiveInstanceNormNew(nn.Module): def __init__(self, in_channel, style_dim): super().__init__() self.norm = nn.InstanceNorm2d(in_channel) self.style = EqualLinear(style_dim, in_channel * 2) self.style.linear.bias.data[:in_channel] = 1 self.style.linear.bias.data[in_channel:] = 0 def forward(self, input_0, input_1): primals_2 = self.style.linear.bias primals_1 = self.style.linear.weight_orig primals_4 = input_0 primals_3 = input_1 output = call([primals_1, primals_2, primals_3, primals_4]) return output[0]
KUMartin77/AAA738_StyleGAN_pytorch
AdaptiveInstanceNorm
false
11,604
[ "BSD-2-Clause" ]
0
ed0689102c922d336f53e374e8be2ab532a84ccd
https://github.com/KUMartin77/AAA738_StyleGAN_pytorch/tree/ed0689102c922d336f53e374e8be2ab532a84ccd
DiceLoss
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/m6/cm6wzurewzqnksq5u7c7eenepi63vxbk7q7xtmblsrhi2aja4o7a.py # Topologically Sorted Source Nodes: [mul, a, mul_3, mul_1, sum_2, b, mul_2, sum_3, c, add_2, d, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] # Source node to ATen node mapping: # a => sum_1 # add_2 => add_2 # b => add # c => add_1 # d => div # mul => mul # mul_1 => mul_1 # mul_2 => mul_2 # mul_3 => mul_3 # sub => sub # sum_2 => sum_2 # sum_3 => sum_3 # Graph fragment: # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view_1), kwargs = {}) # %sum_1 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul, [1]), kwargs = {}) # %mul_3 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sum_1, 2), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view, %view), kwargs = {}) # %sum_2 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_1, [1]), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_2, 0.001), kwargs = {}) # %mul_2 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%view_1, %view_1), kwargs = {}) # %sum_3 : [num_users=1] = call_function[target=torch.ops.aten.sum.dim_IntList](args = (%mul_2, [1]), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%sum_3, 0.001), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%add, %add_1), kwargs = {}) # %div : [num_users=1] = call_function[target=torch.ops.aten.div.Tensor](args = (%mul_3, %add_2), kwargs = {}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (1, %div), kwargs = {}) triton_per_fused_add_div_mul_rsub_sum_0 = async_compile.triton('triton_per_fused_add_div_mul_rsub_sum_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[4, 64], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused_add_div_mul_rsub_sum_0', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 3, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 4 rnumel = 64 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + (64*x0)), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + (64*x0)), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tmp0 * tmp0 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tmp1 * tmp1 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 2.0 tmp18 = tmp6 * tmp17 tmp19 = 0.001 tmp20 = tmp11 + tmp19 tmp21 = tmp16 + tmp19 tmp22 = tmp20 + tmp21 tmp23 = tmp18 / tmp22 tmp24 = 1.0 tmp25 = tmp24 - tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + (x0), tmp25, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, ), (1, ), torch.float32) buf3 = buf0; del buf0 # reuse # Topologically Sorted Source Nodes: [mul, a, mul_3, mul_1, sum_2, b, mul_2, sum_3, c, add_2, d, sub], Original ATen: [aten.mul, aten.sum, aten.add, aten.div, aten.rsub] stream0 = get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0.run(buf3, arg0_1, arg1_1, 4, 64, grid=grid(4), stream=stream0) del arg0_1 del arg1_1 return (buf3, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_per_fused_add_div_mul_rsub_sum_0(in_out_ptr0, in_ptr0, in_ptr1, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 4 RBLOCK: tl.constexpr = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 64 * x0), xmask, other=0.0) tmp1 = tl.load(in_ptr1 + (r1 + 64 * x0), xmask, other=0.0) tmp2 = tmp0 * tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.sum(tmp5, 1)[:, None] tmp7 = tmp0 * tmp0 tmp8 = tl.broadcast_to(tmp7, [XBLOCK, RBLOCK]) tmp10 = tl.where(xmask, tmp8, 0) tmp11 = tl.sum(tmp10, 1)[:, None] tmp12 = tmp1 * tmp1 tmp13 = tl.broadcast_to(tmp12, [XBLOCK, RBLOCK]) tmp15 = tl.where(xmask, tmp13, 0) tmp16 = tl.sum(tmp15, 1)[:, None] tmp17 = 2.0 tmp18 = tmp6 * tmp17 tmp19 = 0.001 tmp20 = tmp11 + tmp19 tmp21 = tmp16 + tmp19 tmp22 = tmp20 + tmp21 tmp23 = tmp18 / tmp22 tmp24 = 1.0 tmp25 = tmp24 - tmp23 tl.debug_barrier() tl.store(in_out_ptr0 + x0, tmp25, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4,), (1,), torch.float32) buf3 = buf0 del buf0 get_raw_stream(0) triton_per_fused_add_div_mul_rsub_sum_0[grid(4)](buf3, arg0_1, arg1_1, 4, 64, XBLOCK=1, num_warps=2, num_stages=1) del arg0_1 del arg1_1 return buf3, class DiceLossNew(nn.Module): def __init__(self): super(DiceLossNew, self).__init__() pass def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
EryiXie/PlaneRecNet
DiceLoss
false
8,045
[ "MIT" ]
34
534e23e6c5db2235ab1e5a9419fb4bfec3ffa943
https://github.com/EryiXie/PlaneRecNet/tree/534e23e6c5db2235ab1e5a9419fb4bfec3ffa943
_TestNetStrided
import torch import torch.nn.functional as F import torch.nn import torch.utils.data import torch.utils.tensorboard._pytorch_graph import torch.onnx.symbolic_caffe2 class _TestNetStrided(torch.nn.Module): def __init__(self): super(_TestNetStrided, self).__init__() self.conv1 = torch.nn.Conv2d(1, 20, kernel_size=5) self.conv2 = torch.nn.Conv2d(20, 50, kernel_size=5, stride=(2, 2)) self.fc1 = torch.nn.Linear(200, 500) self.fc2 = torch.nn.Linear(500, 10) def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2(x), 2)) x = x.view(-1, 200) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) def get_inputs(): return [torch.rand([4, 1, 64, 64])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn import torch.utils.data import torch.utils.tensorboard._pytorch_graph import torch.onnx.symbolic_caffe2 assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 288000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 3600 % 20 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 72000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 30 x3 = xindex // 30 x2 = xindex // 18000 x4 = xindex % 18000 x5 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 120 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 120 * x3), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (60 + 2 * x0 + 120 * x3), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (61 + 2 * x0 + 120 * x3), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tl.store(out_ptr0 + (x4 + 18048 * x2), tmp15, xmask) tl.store(out_ptr1 + x5, tmp18, xmask) @triton.jit def triton_poi_fused_convolution_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 33800 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 169 % 50 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3(in_ptr0, out_ptr0, out_ptr1, out_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 7200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 % 6 x5 = xindex // 36 x3 = xindex // 1800 x4 = xindex % 1800 tmp0 = tl.load(in_ptr0 + (2 * x0 + 26 * x1 + 169 * x5), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 26 * x1 + 169 * x5), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr0 + (13 + 2 * x0 + 26 * x1 + 169 * x5), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (14 + 2 * x0 + 26 * x1 + 169 * x5), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tmp17 = tl.full([1], 0, tl.int32) tmp18 = triton_helpers.maximum(tmp17, tmp16) tmp19 = 0.0 tmp20 = tmp18 <= tmp19 tl.store(out_ptr0 + (x4 + 1920 * x3), tmp15, xmask) tl.store(out_ptr1 + (x4 + 1824 * x3), tmp18, xmask) tl.store(out_ptr2 + (x4 + 1920 * x3), tmp20, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_relu_view_4(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 7200 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (1824 * (x0 // 1800) + x0 % 1800), xmask) tl.store(out_ptr0 + x0, tmp0, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 18000 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 500 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_per_fused__log_softmax_6(in_ptr0, out_ptr2, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 36 rnumel = 10 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] rmask = rindex < rnumel r1 = rindex x0 = xindex tmp0 = tl.load(in_ptr0 + (r1 + 10 * x0), rmask & xmask, other=0.0) tmp1 = tl.broadcast_to(tmp0, [XBLOCK, RBLOCK]) tmp3 = tl.where(rmask & xmask, tmp1, float('-inf')) tmp4 = triton_helpers.max2(tmp3, 1)[:, None] tmp5 = tmp0 - tmp4 tmp6 = tl_math.exp(tmp5) tmp7 = tl.broadcast_to(tmp6, [XBLOCK, RBLOCK]) tmp9 = tl.where(rmask & xmask, tmp7, 0) tmp10 = tl.sum(tmp9, 1)[:, None] tmp11 = tl_math.log(tmp10) tmp12 = tmp5 - tmp11 tl.store(out_ptr2 + (r1 + 10 * x0), tmp12, rmask & xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9) = args args.clear() assert_size_stride(primals_1, (20, 1, 5, 5), (25, 25, 5, 1)) assert_size_stride(primals_2, (20,), (1,)) assert_size_stride(primals_3, (4, 1, 64, 64), (4096, 4096, 64, 1)) assert_size_stride(primals_4, (50, 20, 5, 5), (500, 25, 5, 1)) assert_size_stride(primals_5, (50,), (1,)) assert_size_stride(primals_6, (500, 200), (200, 1)) assert_size_stride(primals_7, (500,), (1,)) assert_size_stride(primals_8, (10, 500), (500, 1)) assert_size_stride(primals_9, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 20, 60, 60), (72000, 3600, 60, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_0[grid(288000)](buf1, primals_2, 288000, XBLOCK=512, num_warps=8, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 20, 30, 30), (18048, 900, 30, 1), torch.int8) buf3 = empty_strided_cuda((4, 20, 30, 30), (18000, 900, 30, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_1[grid(72000)](buf1, buf2, buf3, 72000, XBLOCK=512, num_warps=8, num_stages=1) buf4 = extern_kernels.convolution(buf3, primals_4, stride=(2, 2), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 50, 13, 13), (8450, 169, 13, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_2[grid(33800)](buf5, primals_5, 33800, XBLOCK=512, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 50, 6, 6), (1920, 36, 6, 1), torch.int8) buf7 = empty_strided_cuda((4, 50, 6, 6), (1824, 36, 6, 1), torch. float32) buf15 = empty_strided_cuda((4, 50, 6, 6), (1920, 36, 6, 1), torch.bool) triton_poi_fused_max_pool2d_with_indices_relu_threshold_backward_3[grid (7200)](buf5, buf6, buf7, buf15, 7200, XBLOCK=256, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((36, 200), (200, 1), torch.float32) triton_poi_fused_max_pool2d_with_indices_relu_view_4[grid(7200)](buf7, buf8, 7200, XBLOCK=256, num_warps=4, num_stages=1) del buf7 buf9 = empty_strided_cuda((36, 500), (500, 1), torch.float32) extern_kernels.mm(buf8, reinterpret_tensor(primals_6, (200, 500), ( 1, 200), 0), out=buf9) buf10 = buf9 del buf9 triton_poi_fused_relu_5[grid(18000)](buf10, primals_7, 18000, XBLOCK=256, num_warps=4, num_stages=1) del primals_7 buf11 = empty_strided_cuda((36, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_9, buf10, reinterpret_tensor(primals_8, (500, 10), (1, 500), 0), alpha=1, beta=1, out=buf11) del primals_9 buf14 = empty_strided_cuda((36, 10), (10, 1), torch.float32) triton_per_fused__log_softmax_6[grid(36)](buf11, buf14, 36, 10, XBLOCK=1, num_warps=2, num_stages=1) del buf11 return (buf14, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, buf8, buf10, buf14, primals_8, primals_6, buf15) class _TestNetStridedNew(torch.nn.Module): def __init__(self): super(_TestNetStridedNew, self).__init__() self.conv1 = torch.nn.Conv2d(1, 20, kernel_size=5) self.conv2 = torch.nn.Conv2d(20, 50, kernel_size=5, stride=(2, 2)) self.fc1 = torch.nn.Linear(200, 500) self.fc2 = torch.nn.Linear(500, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9]) return output[0]
arjunsuresh/aimet
_TestNetStrided
false
12,325
[ "BSD-3-Clause" ]
0
f6e09cb07a91eed3a5e6b8e19e6b065303af5a39
https://github.com/arjunsuresh/aimet/tree/f6e09cb07a91eed3a5e6b8e19e6b065303af5a39
ResBlock
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/td/ctdv3m5a33kovvtng5iilth4k6mtnyfcota6hhwoiqm34iumu7wi.py # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad => constant_pad_nd # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_1, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + (x4), tmp11, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/t6/ct6syu6rq3n7yx3zuog2yujcrfreefdccraqz7zj2m3c5xhvp5vl.py # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit] # Source node to ATen node mapping: # x => convolution # x_1 => add, rsqrt, var_mean # Graph fragment: # %convolution : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd, %primals_2, %primals_3, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem, 1e-05), kwargs = {}) # %rsqrt : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) triton_per_fused__native_batch_norm_legit_convolution_1 = async_compile.triton('triton_per_fused__native_batch_norm_legit_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32', 5: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_convolution_1', 'mutated_arg_names': ['in_out_ptr0', 'in_out_ptr1'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + (x3), tmp23, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/da/cdaomigtpu7qm7mfdbrwghyh7hd5b5ma5oayrbdkijjlwdjmenyo.py # Topologically Sorted Source Nodes: [pad_1], Original ATen: [aten.constant_pad_nd] # Source node to ATen node mapping: # pad_1 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%view_3, [1, 1, 1, 1], 0.0), kwargs = {}) triton_poi_fused_constant_pad_nd_2 = async_compile.triton('triton_poi_fused_constant_pad_nd_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_2', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 6) % 6 x0 = xindex % 6 x2 = (xindex // 36) x4 = xindex tmp0 = (-1) + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = (-1) + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + ((-5) + x0 + (4*x1) + (16*x2)), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + (x2), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp13 = tmp11 - tmp12 tmp14 = tl.load(in_ptr2 + (x2), tmp10 & xmask, eviction_policy='evict_last', other=0.0) tmp15 = tmp13 * tmp14 tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.2 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp10, tmp20, tmp21) tl.store(out_ptr0 + (x4), tmp22, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/zj/czjmq3zcguqrld6wqqldqbpx3xlawhci2nnuldynzx6eu2u7mdri.py # Topologically Sorted Source Nodes: [x_3, out, out_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.add] # Source node to ATen node mapping: # out => add_1, rsqrt_1, var_mean_1 # out_1 => add_2 # x_3 => convolution_1 # Graph fragment: # %convolution_1 : [num_users=2] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_1, %primals_4, %primals_5, [1, 1], [0, 0], [1, 1], False, [0, 0], 1), kwargs = {}) # %var_mean_1 : [num_users=2] = call_function[target=torch.ops.aten.var_mean.correction](args = (%view_5, [0, 2, 3]), kwargs = {correction: 0, keepdim: True}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%getitem_2, 1e-05), kwargs = {}) # %rsqrt_1 : [num_users=2] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add_1,), kwargs = {}) # %add_2 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%view_6, %primals_1), kwargs = {}) triton_per_fused__native_batch_norm_legit_add_convolution_3 = async_compile.triton('triton_per_fused__native_batch_norm_legit_add_convolution_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.persistent_reduction( size_hints=[16, 16], reduction_hint=ReductionHint.INNER, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: '*fp32', 5: '*fp32', 6: 'i32', 7: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4, 5, 6, 7), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_per_fused__native_batch_norm_legit_add_convolution_3', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 3, 'num_reduction': 4, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False} ) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK : tl.constexpr): xnumel = 16 rnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] roffset = 0 rmask = tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + (16*x3)), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + (x0), xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (r2 + (16*x3)), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tmp5 = tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 16.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp27 = tmp25 + tmp26 tl.store(in_out_ptr0 + (r2 + (16*x3)), tmp2, xmask) tl.store(out_ptr2 + (r2 + (16*x3)), tmp27, xmask) tl.store(out_ptr3 + (x3), tmp24, xmask) tl.store(out_ptr0 + (x3), tmp12, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4, ), (1, )) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad], Original ATen: [aten.constant_pad_nd] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_0.run(primals_1, buf0, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [x], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1; del buf1 # reuse buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf6 = reinterpret_tensor(buf4, (1, 16, 1, 1), (16, 1, 1, 1), 0); del buf4 # reuse # Topologically Sorted Source Nodes: [x, x_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit] triton_per_fused__native_batch_norm_legit_convolution_1.run(buf2, buf6, primals_3, buf3, 16, 16, grid=grid(16), stream=stream0) del primals_3 buf7 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) # Topologically Sorted Source Nodes: [pad_1], Original ATen: [aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_2.run(buf2, buf3, buf6, buf7, 576, grid=grid(576), stream=stream0) # Topologically Sorted Source Nodes: [x_3], Original ATen: [aten.convolution] buf8 = extern_kernels.convolution(buf7, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8; del buf8 # reuse buf10 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32) # Topologically Sorted Source Nodes: [x_3, out, out_1], Original ATen: [aten.convolution, aten._native_batch_norm_legit, aten.add] triton_per_fused__native_batch_norm_legit_add_convolution_3.run(buf9, primals_5, primals_1, buf10, buf14, buf13, 16, 16, grid=grid(16), stream=stream0) del primals_1 del primals_5 return (buf14, primals_2, primals_4, buf0, buf2, buf3, buf6, buf7, buf9, reinterpret_tensor(buf13, (16, ), (1, ), 0), reinterpret_tensor(buf10, (1, 16, 1, 1), (16, 1, 1, 1), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((4, 4, 3, 3), (36, 9, 3, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn import torch.nn.functional as F import torch.nn.parallel assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_constant_pad_nd_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tl.store(out_ptr0 + x4, tmp11, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_convolution_1(in_out_ptr0, in_out_ptr1, in_ptr0, out_ptr0, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = 16.0 tmp20 = tmp18 / tmp19 tmp21 = 1e-05 tmp22 = tmp20 + tmp21 tmp23 = libdevice.rsqrt(tmp22) tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.debug_barrier() tl.store(in_out_ptr1 + x3, tmp23, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_2(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 576 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 6 % 6 x0 = xindex % 6 x2 = xindex // 36 x4 = xindex tmp0 = -1 + x1 tmp1 = tl.full([1], 0, tl.int64) tmp2 = tmp0 >= tmp1 tmp3 = tl.full([1], 4, tl.int64) tmp4 = tmp0 < tmp3 tmp5 = -1 + x0 tmp6 = tmp5 >= tmp1 tmp7 = tmp5 < tmp3 tmp8 = tmp2 & tmp4 tmp9 = tmp8 & tmp6 tmp10 = tmp9 & tmp7 tmp11 = tl.load(in_ptr0 + (-5 + x0 + 4 * x1 + 16 * x2), tmp10 & xmask, other=0.0) tmp12 = tl.load(in_ptr1 + x2, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp13 = tmp11 - tmp12 tmp14 = tl.load(in_ptr2 + x2, tmp10 & xmask, eviction_policy= 'evict_last', other=0.0) tmp15 = tmp13 * tmp14 tmp16 = 0.0 tmp17 = tmp15 > tmp16 tmp18 = 0.2 tmp19 = tmp15 * tmp18 tmp20 = tl.where(tmp17, tmp15, tmp19) tmp21 = tl.full(tmp20.shape, 0.0, tmp20.dtype) tmp22 = tl.where(tmp10, tmp20, tmp21) tl.store(out_ptr0 + x4, tmp22, xmask) @triton.jit def triton_per_fused__native_batch_norm_legit_add_convolution_3(in_out_ptr0, in_ptr0, in_ptr1, out_ptr0, out_ptr2, out_ptr3, xnumel, rnumel, XBLOCK: tl.constexpr): xnumel = 16 RBLOCK: tl.constexpr = 16 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel rindex = tl.arange(0, RBLOCK)[None, :] tl.full([XBLOCK, RBLOCK], True, tl.int1) r2 = rindex x3 = xindex x0 = xindex % 4 tmp0 = tl.load(in_out_ptr0 + (r2 + 16 * x3), xmask, other=0.0) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp26 = tl.load(in_ptr1 + (r2 + 16 * x3), xmask, other=0.0) tmp2 = tmp0 + tmp1 tmp3 = tl.broadcast_to(tmp2, [XBLOCK, RBLOCK]) tl.where(xmask, tmp3, 0) tmp6 = tl.broadcast_to(tmp3, [XBLOCK, RBLOCK]) tmp8 = tl.where(xmask, tmp6, 0) tmp9 = tl.sum(tmp8, 1)[:, None] tmp10 = tl.full([XBLOCK, 1], 16, tl.int32) tmp11 = tmp10.to(tl.float32) tmp12 = tmp9 / tmp11 tmp13 = tmp3 - tmp12 tmp14 = tmp13 * tmp13 tmp15 = tl.broadcast_to(tmp14, [XBLOCK, RBLOCK]) tmp17 = tl.where(xmask, tmp15, 0) tmp18 = tl.sum(tmp17, 1)[:, None] tmp19 = tmp2 - tmp12 tmp20 = 16.0 tmp21 = tmp18 / tmp20 tmp22 = 1e-05 tmp23 = tmp21 + tmp22 tmp24 = libdevice.rsqrt(tmp23) tmp25 = tmp19 * tmp24 tmp27 = tmp25 + tmp26 tl.store(in_out_ptr0 + (r2 + 16 * x3), tmp2, xmask) tl.store(out_ptr2 + (r2 + 16 * x3), tmp27, xmask) tl.store(out_ptr3 + x3, tmp24, xmask) tl.store(out_ptr0 + x3, tmp12, xmask) def call(args): primals_1, primals_2, primals_3, primals_4, primals_5 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_3, (4,), (1,)) assert_size_stride(primals_4, (4, 4, 3, 3), (36, 9, 3, 1)) assert_size_stride(primals_5, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_0[grid(576)](primals_1, buf0, 576, XBLOCK=256, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 4, 4, 4), (64, 16, 4, 1)) buf2 = buf1 del buf1 buf3 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 1, 1), torch.float32) buf4 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch.float32 ) buf6 = reinterpret_tensor(buf4, (1, 16, 1, 1), (16, 1, 1, 1), 0) del buf4 triton_per_fused__native_batch_norm_legit_convolution_1[grid(16)](buf2, buf6, primals_3, buf3, 16, 16, XBLOCK=1, num_warps=2, num_stages=1) del primals_3 buf7 = empty_strided_cuda((4, 4, 6, 6), (144, 36, 6, 1), torch.float32) triton_poi_fused_constant_pad_nd_2[grid(576)](buf2, buf3, buf6, buf7, 576, XBLOCK=128, num_warps=4, num_stages=1) buf8 = extern_kernels.convolution(buf7, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf8, (4, 4, 4, 4), (64, 16, 4, 1)) buf9 = buf8 del buf8 buf10 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) buf14 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) buf13 = empty_strided_cuda((1, 16, 1, 1), (16, 1, 16, 16), torch. float32) triton_per_fused__native_batch_norm_legit_add_convolution_3[grid(16)]( buf9, primals_5, primals_1, buf10, buf14, buf13, 16, 16, XBLOCK =1, num_warps=2, num_stages=1) del primals_1 del primals_5 return (buf14, primals_2, primals_4, buf0, buf2, buf3, buf6, buf7, buf9, reinterpret_tensor(buf13, (16,), (1,), 0), reinterpret_tensor(buf10, (1, 16, 1, 1), (16, 1, 1, 1), 0)) class AdaptiveInstanceNorm2d(nn.Module): def __init__(self, num_features, eps=1e-05, momentum=0.1): super(AdaptiveInstanceNorm2d, self).__init__() self.num_features = num_features self.eps = eps self.momentum = momentum self.weight = None self.bias = None self.register_buffer('running_mean', torch.zeros(num_features)) self.register_buffer('running_var', torch.ones(num_features)) def forward(self, x): assert self.weight is not None and self.bias is not None, 'Please assign weight and bias before calling AdaIN!' b, c = x.size(0), x.size(1) running_mean = self.running_mean.repeat(b) running_var = self.running_var.repeat(b) x_reshaped = x.contiguous().view(1, b * c, *x.size()[2:]) out = F.batch_norm(x_reshaped, running_mean, running_var, self. weight, self.bias, True, self.momentum, self.eps) return out.view(b, c, *x.size()[2:]) def __repr__(self): return self.__class__.__name__ + '(' + str(self.num_features) + ')' class ResBlockNew(nn.Module): def __init__(self, dim, norm='in', activation='relu', pad_type='zero'): super(ResBlockNew, self).__init__() padding = 1 if pad_type == 'reflect': self.pad = nn.ReflectionPad2d(padding) elif pad_type == 'replicate': self.pad = nn.ReplicationPad2d(padding) elif pad_type == 'zero': self.pad = nn.ZeroPad2d(padding) else: assert 0, 'Unsupported padding type: {}'.format(pad_type) self.conv1 = nn.Conv2d(dim, dim, 3, 1, bias=True) if norm == 'in': self.norm1 = nn.InstanceNorm2d(dim) elif norm == 'adain': self.norm1 = AdaptiveInstanceNorm2d(dim) self.relu1 = nn.LeakyReLU(0.2, inplace=True) self.conv2 = nn.Conv2d(dim, dim, 3, 1, bias=True) if norm == 'in': self.norm2 = nn.InstanceNorm2d(dim) elif norm == 'adain': self.norm2 = AdaptiveInstanceNorm2d(dim) def forward(self, input_0): primals_2 = self.conv1.weight primals_3 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5]) return output[0]
microsoft/S2R-DepthNet
ResBlock
false
16,071
[ "MIT" ]
144
aebc931c7e8c7baad4dec2a0fd8643244741c52e
https://github.com/microsoft/S2R-DepthNet/tree/aebc931c7e8c7baad4dec2a0fd8643244741c52e
SpatialDepthWisePerHeadConvolution
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/jb/cjbf3ssum7resbwampiwoknxcnzh4uzdy4fhoaakjojloew6qlw5.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {}) triton_poi_fused_convolution_0 = async_compile.triton('triton_poi_fused_convolution_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[64, 4], tile_hint=TileHint.SQUARE, filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK : tl.constexpr, XBLOCK : tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + (64*x1)), xmask & ymask, eviction_policy='evict_last') tl.store(out_ptr0 + (x1 + (4*y0)), tmp0, xmask & ymask) ''', device_str='cuda') # kernel path: runs/run_shard_0/inductor_cache/6z/c6zyvii2c5e5dc43sgzfkfbsfrhltqlojfzhuoqqgpavg7xdvriv.py # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] # Source node to ATen node mapping: # x_2 => convolution # Graph fragment: # %convolution : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%view, %primals_2, %primals_3, [1], [2], [1], False, [0], 16), kwargs = {}) triton_poi_fused_convolution_1 = async_compile.triton('triton_poi_fused_convolution_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_convolution_1', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = (xindex // 6) % 16 tmp0 = tl.load(in_out_ptr0 + (x3), xmask) tmp1 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + (x3), tmp2, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (16, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] stream0 = get_raw_stream(0) triton_poi_fused_convolution_0.run(primals_1, buf0, 64, 4, grid=grid(64, 4), stream=stream0) # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=(0,), groups=16, bias=None) assert_size_stride(buf1, (4, 16, 6), (96, 6, 1)) del buf0 buf2 = buf1; del buf1 # reuse # Topologically Sorted Source Nodes: [x_2], Original ATen: [aten.convolution] triton_poi_fused_convolution_1.run(buf2, primals_3, 384, grid=grid(384), stream=stream0) del primals_3 return (reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0), ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, 1, 3), (3, 3, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch.nn import Module from torch import nn import torch.utils.data import torch.nn.functional import torch.autograd assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_0(in_ptr0, out_ptr0, ynumel, xnumel, YBLOCK: tl.constexpr, XBLOCK: tl.constexpr): ynumel = 64 xnumel = 4 yoffset = tl.program_id(1) * YBLOCK yindex = yoffset + tl.arange(0, YBLOCK)[None, :] ymask = yindex < ynumel xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:, None] xmask = xindex < xnumel x1 = xindex y0 = yindex tmp0 = tl.load(in_ptr0 + (y0 + 64 * x1), xmask & ymask, eviction_policy ='evict_last') tl.store(out_ptr0 + (x1 + 4 * y0), tmp0, xmask & ymask) @triton.jit def triton_poi_fused_convolution_1(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl .constexpr): xnumel = 384 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 6 % 16 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tl.store(in_out_ptr0 + x3, tmp2, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, 1, 3), (3, 3, 1)) assert_size_stride(primals_3, (16,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 16, 4), (64, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_convolution_0[grid(64, 4)](primals_1, buf0, 64, 4, XBLOCK=4, YBLOCK=32, num_warps=4, num_stages=1) buf1 = extern_kernels.convolution(buf0, primals_2, stride=(1,), padding=(2,), dilation=(1,), transposed=False, output_padding=( 0,), groups=16, bias=None) assert_size_stride(buf1, (4, 16, 6), (96, 6, 1)) del buf0 buf2 = buf1 del buf1 triton_poi_fused_convolution_1[grid(384)](buf2, primals_3, 384, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 return reinterpret_tensor(buf2, (4, 4, 4, 4), (1, 96, 24, 6), 0 ), primals_2, reinterpret_tensor(primals_1, (4, 16, 4), (16, 1, 64), 0) class SpatialDepthWisePerHeadConvolutionNew(Module): """ ## Spatial Depth Wise Per Head Convolution """ def __init__(self, heads: 'int', d_k: 'int', kernel_size: 'int'=3): """ * `heads` is the number of heads * `d_k` is the number of channels in each head """ super().__init__() self.kernel_size = kernel_size self.conv = nn.Conv1d(in_channels=d_k * heads, out_channels=d_k * heads, kernel_size=(kernel_size,), padding=(kernel_size - 1,), groups=d_k * heads) def forward(self, input_0): primals_2 = self.conv.weight primals_3 = self.conv.bias primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
techthiyanes/annotated_deep_learning_paper_implementations
SpatialDepthWisePerHeadConvolution
false
16,569
[ "MIT" ]
3,714
8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
https://github.com/techthiyanes/annotated_deep_learning_paper_implementations/tree/8af24da2dd39a9a87482a4d18c2dc829bbd3fd47
CrossEntropy2D
import torch import torch.nn as nn class CrossEntropy2D(nn.Module): """ 2D Cross-entropy loss implemented as negative log likelihood """ def __init__(self, weight=None, reduction='none'): super(CrossEntropy2D, self).__init__() self.nll_loss = nn.CrossEntropyLoss(weight=weight, reduction=reduction) def forward(self, inputs, targets): return self.nll_loss(inputs, targets) def get_inputs(): return [torch.rand([4, 4, 4, 4]), torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch._inductor.runtime.triton_helpers import math as tl_math import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused__log_softmax_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp4 = tl.load(in_ptr0 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp6 = tl.load(in_ptr0 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = triton_helpers.maximum(tmp1, tmp2) tmp5 = triton_helpers.maximum(tmp3, tmp4) tmp7 = triton_helpers.maximum(tmp5, tmp6) tmp8 = tmp0 - tmp7 tl.store(out_ptr0 + x3, tmp8, xmask) @triton.jit def triton_poi_fused__log_softmax_mul_neg_sum_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 16 x1 = xindex // 16 x2 = xindex tmp0 = tl.load(in_ptr0 + (x0 + 64 * x1), xmask) tmp2 = tl.load(in_ptr0 + (16 + x0 + 64 * x1), xmask) tmp5 = tl.load(in_ptr0 + (32 + x0 + 64 * x1), xmask) tmp8 = tl.load(in_ptr0 + (48 + x0 + 64 * x1), xmask) tmp13 = tl.load(in_ptr1 + (x0 + 64 * x1), xmask) tmp16 = tl.load(in_ptr1 + (16 + x0 + 64 * x1), xmask) tmp20 = tl.load(in_ptr1 + (32 + x0 + 64 * x1), xmask) tmp24 = tl.load(in_ptr1 + (48 + x0 + 64 * x1), xmask) tmp1 = tl_math.exp(tmp0) tmp3 = tl_math.exp(tmp2) tmp4 = tmp1 + tmp3 tmp6 = tl_math.exp(tmp5) tmp7 = tmp4 + tmp6 tmp9 = tl_math.exp(tmp8) tmp10 = tmp7 + tmp9 tmp11 = tl_math.log(tmp10) tmp12 = tmp0 - tmp11 tmp14 = tmp12 * tmp13 tmp15 = tmp2 - tmp11 tmp17 = tmp15 * tmp16 tmp18 = tmp14 + tmp17 tmp19 = tmp5 - tmp11 tmp21 = tmp19 * tmp20 tmp22 = tmp18 + tmp21 tmp23 = tmp8 - tmp11 tmp25 = tmp23 * tmp24 tmp26 = tmp22 + tmp25 tmp27 = -tmp26 tl.store(out_ptr0 + x2, tmp27, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused__log_softmax_0[grid(256)](arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg1_1 buf1 = empty_strided_cuda((4, 4, 4), (16, 4, 1), torch.float32) triton_poi_fused__log_softmax_mul_neg_sum_1[grid(64)](buf0, arg0_1, buf1, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 del buf0 return buf1, class CrossEntropy2DNew(nn.Module): """ 2D Cross-entropy loss implemented as negative log likelihood """ def __init__(self, weight=None, reduction='none'): super(CrossEntropy2DNew, self).__init__() self.nll_loss = nn.CrossEntropyLoss(weight=weight, reduction=reduction) def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Jinboasltw/FastSurfer
CrossEntropy2D
false
13,894
[ "Apache-2.0" ]
257
3c0330c459c221b85428d3ec2e95f5196aee3129
https://github.com/Jinboasltw/FastSurfer/tree/3c0330c459c221b85428d3ec2e95f5196aee3129
ChannelNorm2D
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_0/inductor_cache/k2/ck2ahiysbz5am2kdqgxfcalsms7yveiz5dvoxtgdx6inzxd62dti.py # Topologically Sorted Source Nodes: [mu, var, sub, add, rsqrt, x_normed, mul_1, x_normed_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.rsqrt, aten.mul] # Source node to ATen node mapping: # add => add # mu => mean # mul_1 => mul_1 # rsqrt => rsqrt # sub => sub # var => var # x_normed => mul # x_normed_1 => add_1 # Graph fragment: # %mean : [num_users=1] = call_function[target=torch.ops.aten.mean.dim](args = (%primals_1, [1], True), kwargs = {}) # %var : [num_users=1] = call_function[target=torch.ops.aten.var.correction](args = (%primals_1, [1]), kwargs = {correction: 1, keepdim: True}) # %sub : [num_users=1] = call_function[target=torch.ops.aten.sub.Tensor](args = (%primals_1, %mean), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%var, 0.001), kwargs = {}) # %rsqrt : [num_users=1] = call_function[target=torch.ops.aten.rsqrt.default](args = (%add,), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%sub, %rsqrt), kwargs = {}) # %mul_1 : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%primals_2, %mul), kwargs = {}) # %add_1 : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%mul_1, %primals_3), kwargs = {}) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0 = async_compile.triton('triton_poi_fused_add_mean_mul_rsqrt_sub_var_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_mean_mul_rsqrt_sub_var_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 7, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 16) % 4 x3 = xindex x0 = xindex % 16 x2 = (xindex // 64) tmp0 = tl.load(in_ptr0 + (x1), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (x3), xmask) tmp2 = tl.load(in_ptr1 + (x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (16 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr1 + (32 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp7 = tl.load(in_ptr1 + (48 + x0 + (64*x2)), xmask, eviction_policy='evict_last') tmp30 = tl.load(in_ptr2 + (x1), xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = 0.001 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp28 = tmp11 * tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + (x3), tmp31, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [mu, var, sub, add, rsqrt, x_normed, mul_1, x_normed_1], Original ATen: [aten.mean, aten.var, aten.sub, aten.add, aten.rsqrt, aten.mul] stream0 = get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0.run(primals_2, primals_1, primals_3, buf0, 256, grid=grid(256), stream=stream0) del primals_2 del primals_3 return (buf0, primals_1, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((1, 4, 1, 1), (4, 1, 1, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime.triton_helpers import libdevice import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_mean_mul_rsqrt_sub_var_0(in_ptr0, in_ptr1, in_ptr2, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 16 % 4 x3 = xindex x0 = xindex % 16 x2 = xindex // 64 tmp0 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + x3, xmask) tmp2 = tl.load(in_ptr1 + (x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr1 + (16 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr1 + (32 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp7 = tl.load(in_ptr1 + (48 + x0 + 64 * x2), xmask, eviction_policy= 'evict_last') tmp30 = tl.load(in_ptr2 + x1, xmask, eviction_policy='evict_last') tmp4 = tmp2 + tmp3 tmp6 = tmp4 + tmp5 tmp8 = tmp6 + tmp7 tmp9 = 4.0 tmp10 = tmp8 / tmp9 tmp11 = tmp1 - tmp10 tmp12 = tmp2 - tmp10 tmp13 = tmp12 * tmp12 tmp14 = tmp3 - tmp10 tmp15 = tmp14 * tmp14 tmp16 = tmp13 + tmp15 tmp17 = tmp5 - tmp10 tmp18 = tmp17 * tmp17 tmp19 = tmp16 + tmp18 tmp20 = tmp7 - tmp10 tmp21 = tmp20 * tmp20 tmp22 = tmp19 + tmp21 tmp23 = 3.0 tmp24 = tmp22 / tmp23 tmp25 = 0.001 tmp26 = tmp24 + tmp25 tmp27 = libdevice.rsqrt(tmp26) tmp28 = tmp11 * tmp27 tmp29 = tmp0 * tmp28 tmp31 = tmp29 + tmp30 tl.store(out_ptr0 + x3, tmp31, xmask) def call(args): primals_1, primals_2, primals_3 = args args.clear() assert_size_stride(primals_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (1, 4, 1, 1), (4, 1, 1, 1)) assert_size_stride(primals_3, (1, 4, 1, 1), (4, 1, 1, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_mean_mul_rsqrt_sub_var_0[grid(256)](primals_2, primals_1, primals_3, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del primals_2 del primals_3 return buf0, primals_1 class ChannelNorm2DNew(nn.Module): """ Similar to default Torch instanceNorm2D but calculates moments over channel dimension instead of spatial dims. Expects input_dim in format (B,C,H,W) """ def __init__(self, input_channels, momentum=0.1, eps=0.001, affine=True, **kwargs): super(ChannelNorm2DNew, self).__init__() self.momentum = momentum self.eps = eps self.affine = affine if affine is True: self.gamma = nn.Parameter(torch.ones(1, input_channels, 1, 1)) self.beta = nn.Parameter(torch.zeros(1, input_channels, 1, 1)) def forward(self, input_0): primals_2 = self.gamma primals_3 = self.beta primals_1 = input_0 output = call([primals_1, primals_2, primals_3]) return output[0]
sedrickkeh/high-fidelity-dual-image
ChannelNorm2D
false
16,375
[ "Apache-2.0" ]
266
9cefd378467826b91596653df38666e469bb23e0
https://github.com/sedrickkeh/high-fidelity-dual-image/tree/9cefd378467826b91596653df38666e469bb23e0
PRelu
# AOT ID: ['0_inference'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_8/inductor_cache/42/c42snyxsxaulzxl6mh4ukjh644gqliqovvdal7ekdlexpljeqznt.py # Topologically Sorted Source Nodes: [clamp, clamp_1, mul, add], Original ATen: [aten.clamp, aten.mul, aten.add] # Source node to ATen node mapping: # add => add # clamp => clamp_min # clamp_1 => clamp_max # mul => mul # Graph fragment: # %clamp_min : [num_users=1] = call_function[target=torch.ops.aten.clamp_min.default](args = (%arg0_1, 0), kwargs = {}) # %clamp_max : [num_users=1] = call_function[target=torch.ops.aten.clamp_max.default](args = (%arg0_1, 0), kwargs = {}) # %mul : [num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%clamp_max, %arg1_1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%clamp_min, %mul), kwargs = {}) triton_poi_fused_add_clamp_mul_0 = async_compile.triton('triton_poi_fused_add_clamp_mul_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[256], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=80, major=8, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=108), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_clamp_mul_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'A9C866B4A14FD3277824029365D703C2427B2E685E54EC9B3EF4ADC8D1EEAC1D', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_clamp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + (x0), xmask) tmp4 = tl.load(in_ptr1 + (x0), xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = triton_helpers.minimum(tmp0, tmp1) tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + (x0), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) # Topologically Sorted Source Nodes: [clamp, clamp_1, mul, add], Original ATen: [aten.clamp, aten.mul, aten.add] stream0 = get_raw_stream(0) triton_poi_fused_add_clamp_mul_0.run(arg0_1, arg1_1, buf0, 256, grid=grid(256), stream=stream0) del arg0_1 del arg1_1 return (buf0, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance arg0_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) arg1_1 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) fn = lambda: call([arg0_1, arg1_1]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn import torch.onnx assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_add_clamp_mul_0(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 256 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex tmp0 = tl.load(in_ptr0 + x0, xmask) tmp4 = tl.load(in_ptr1 + x0, xmask) tmp1 = 0.0 tmp2 = triton_helpers.maximum(tmp0, tmp1) tmp3 = triton_helpers.minimum(tmp0, tmp1) tmp5 = tmp3 * tmp4 tmp6 = tmp2 + tmp5 tl.store(out_ptr0 + x0, tmp6, xmask) def call(args): arg0_1, arg1_1 = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(arg1_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 4, 4), (64, 16, 4, 1), torch.float32) get_raw_stream(0) triton_poi_fused_add_clamp_mul_0[grid(256)](arg0_1, arg1_1, buf0, 256, XBLOCK=128, num_warps=4, num_stages=1) del arg0_1 del arg1_1 return buf0, class PReluNew(nn.Module): def forward(self, input_0, input_1): arg0_1 = input_0 arg1_1 = input_1 output = call([arg0_1, arg1_1]) return output[0]
Piteryo/onnx2pytorch
PRelu
false
9,448
[ "Apache-2.0" ]
0
c25b3a5289ee7073d644d280a112c15382b7f690
https://github.com/Piteryo/onnx2pytorch/tree/c25b3a5289ee7073d644d280a112c15382b7f690
Upscale_Conv_block
# AOT ID: ['0_forward'] from ctypes import c_void_p, c_long, c_int import torch import math import random import os import tempfile from math import inf, nan from torch._inductor.hooks import run_intermediate_hooks from torch._inductor.utils import maybe_profile from torch._inductor.codegen.memory_planning import _align as align from torch import device, empty_strided from torch._inductor.async_compile import AsyncCompile from torch._inductor.select_algorithm import extern_kernels from torch._inductor.codegen.multi_kernel import MultiKernelCall import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid, split_scan_grid, grid_combo_kernels, start_graph, end_graph from torch._C import _cuda_getCurrentRawStream as get_raw_stream aten = torch.ops.aten inductor_ops = torch.ops.inductor _quantized = torch.ops._quantized assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cpu = torch._C._dynamo.guards._empty_strided_cpu empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda empty_strided_xpu = torch._C._dynamo.guards._empty_strided_xpu reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor alloc_from_pool = torch.ops.inductor._alloc_from_pool async_compile = AsyncCompile() # kernel path: runs/run_shard_1/inductor_cache/gi/cgi2hszrjniw6ncyter6qipkbjwmsxrmjql3fibjwudjvgclte25.py # Topologically Sorted Source Nodes: [X, X_1, X_2], Original ATen: [aten.constant_pad_nd, aten.relu] # Source node to ATen node mapping: # X => constant_pad_nd # X_1 => relu # X_2 => constant_pad_nd_1 # Graph fragment: # %constant_pad_nd : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%primals_3, [0, 1, 0, 1]), kwargs = {}) # %relu : [num_users=1] = call_function[target=torch.ops.aten.relu.default](args = (%primals_3,), kwargs = {}) # %constant_pad_nd_1 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu, [0, 1, 0, 1]), kwargs = {}) triton_poi_fused_constant_pad_nd_relu_0 = async_compile.triton('triton_poi_fused_constant_pad_nd_relu_0', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[512], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_relu_0', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 1, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK : tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 5) % 5 x0 = xindex % 5 x2 = (xindex // 25) x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + (4*x1) + (16*x2)), tmp5 & xmask, other=0.0) tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tl.store(out_ptr0 + (x3), tmp6, xmask) tl.store(out_ptr1 + (x3), tmp10, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_1/inductor_cache/35/c35wrtw4jur3xaxq7ut2gk27upe5scdzvcwpdctdxqpgzvbnh735.py # Topologically Sorted Source Nodes: [X_4, X_5], Original ATen: [aten.relu, aten.constant_pad_nd] # Source node to ATen node mapping: # X_4 => relu_1 # X_5 => constant_pad_nd_2 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %constant_pad_nd_2 : [num_users=2] = call_function[target=torch.ops.aten.constant_pad_nd.default](args = (%relu_1, [0, 1, 0, 1]), kwargs = {}) triton_poi_fused_constant_pad_nd_relu_1 = async_compile.triton('triton_poi_fused_constant_pad_nd_relu_1', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[2048], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_constant_pad_nd_relu_1', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_constant_pad_nd_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = (xindex // 9) % 9 x0 = xindex % 9 x4 = (xindex // 81) x2 = (xindex // 81) % 4 x5 = xindex tmp0 = x1 tmp1 = tl.full([1], 8, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + ((4*((x1 // 2) % 4)) + (16*(x0 % 2)) + (32*(x1 % 2)) + (64*x4) + ((x0 // 2) % 4)), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + ((2*(x1 % 2)) + (4*x2) + (x0 % 2)), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp5, tmp10, tmp11) tl.store(out_ptr0 + (x5), tmp12, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_1/inductor_cache/i5/ci53bsz62habasu4hzydebxtd4pbocmefvo3vbus4kflpf7gq7ay.py # Topologically Sorted Source Nodes: [X_5, X_6], Original ATen: [aten.convolution, aten.add] # Source node to ATen node mapping: # X_5 => convolution_2 # X_6 => add # Graph fragment: # %convolution_2 : [num_users=1] = call_function[target=torch.ops.aten.convolution.default](args = (%constant_pad_nd_2, %primals_6, %primals_7, [1, 1], [1, 1], [1, 1], False, [0, 0], 1), kwargs = {}) # %add : [num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%convolution_2, %view_1), kwargs = {}) triton_poi_fused_add_convolution_2 = async_compile.triton('triton_poi_fused_add_convolution_2', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*fp32', 3: '*fp32', 4: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3, 4), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_add_convolution_2', 'mutated_arg_names': ['in_out_ptr0'], 'no_x_dim': False, 'num_load': 4, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x2 = (xindex // 64) % 4 x0 = xindex % 8 x1 = (xindex // 8) % 8 x5 = (xindex // 64) tmp0 = tl.load(in_out_ptr0 + (x4), xmask) tmp1 = tl.load(in_ptr0 + (x2), xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + ((4*(x1 // 2)) + (16*(x0 % 2)) + (32*(x1 % 2)) + (64*x5) + (x0 // 2)), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + ((2*(x1 % 2)) + (4*x2) + (x0 % 2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + (x4), tmp6, xmask) ''', device_str='cuda') # kernel path: runs/run_shard_1/inductor_cache/74/c74vzy264zbtl3kgxuqdurfai2hahnzoqrv7bczdbuntickhynq4.py # Topologically Sorted Source Nodes: [X_4], Original ATen: [aten.relu, aten.threshold_backward] # Source node to ATen node mapping: # X_4 => relu_1 # Graph fragment: # %relu_1 : [num_users=2] = call_function[target=torch.ops.aten.relu.default](args = (%view_3,), kwargs = {}) # %le : [num_users=1] = call_function[target=torch.ops.aten.le.Scalar](args = (%relu_1, 0), kwargs = {}) triton_poi_fused_relu_threshold_backward_3 = async_compile.triton('triton_poi_fused_relu_threshold_backward_3', ''' import triton import triton.language as tl from triton.compiler.compiler import AttrsDescriptor from torch._inductor.runtime import triton_helpers, triton_heuristics from torch._inductor.runtime.triton_helpers import libdevice, math as tl_math from torch._inductor.runtime.hints import AutotuneHint, ReductionHint, TileHint, instance_descriptor, DeviceProperties @triton_heuristics.pointwise( size_hints=[1024], filename=__file__, triton_meta={'signature': {0: '*fp32', 1: '*fp32', 2: '*i1', 3: 'i32'}, 'device': DeviceProperties(type='cuda', index=0, cc=90, major=9, regs_per_multiprocessor=65536, max_threads_per_multi_processor=2048, multi_processor_count=132), 'constants': {}, 'configs': [AttrsDescriptor(divisible_by_16=(0, 1, 2, 3), equal_to_1=())]}, inductor_meta={'autotune_hints': set(), 'kernel_name': 'triton_poi_fused_relu_threshold_backward_3', 'mutated_arg_names': [], 'no_x_dim': False, 'num_load': 2, 'num_reduction': 0, 'backend_hash': 'B098E03CDA7B8ADC90DAFFDF24A2956451D1B13F297756A5DCC209498AA53705', 'are_deterministic_algorithms_enabled': False, 'assert_indirect_indexing': True, 'autotune_local_cache': True, 'autotune_pointwise': True, 'autotune_remote_cache': None, 'force_disable_caches': False, 'dynamic_scale_rblock': True, 'max_autotune': False, 'max_autotune_pointwise': False, 'min_split_scan_rblock': 256, 'spill_threshold': 16, 'store_cubin': False}, min_elem_per_thread=0 ) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK : tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = (xindex // 8) % 8 x4 = (xindex // 64) x2 = (xindex // 64) % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + ((4*(x1 // 2)) + (16*(x0 % 2)) + (32*(x1 % 2)) + (64*x4) + (x0 // 2)), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + ((2*(x1 % 2)) + (4*x2) + (x0 % 2)), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + (x5), tmp6, xmask) ''', device_str='cuda') async_compile.wait(globals()) del async_compile def call(args): primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7 = args args.clear() assert_size_stride(primals_1, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16, ), (1, )) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (16, ), (1, )) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4, ), (1, )) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) # Topologically Sorted Source Nodes: [X, X_1, X_2], Original ATen: [aten.constant_pad_nd, aten.relu] stream0 = get_raw_stream(0) triton_poi_fused_constant_pad_nd_relu_0.run(primals_3, buf0, buf2, 400, grid=grid(400), stream=stream0) del primals_3 # Topologically Sorted Source Nodes: [X], Original ATen: [aten.convolution] buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 4, 4), (256, 16, 4, 1)) # Topologically Sorted Source Nodes: [X_2], Original ATen: [aten.convolution] buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 4, 4), (256, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) # Topologically Sorted Source Nodes: [X_4, X_5], Original ATen: [aten.relu, aten.constant_pad_nd] triton_poi_fused_constant_pad_nd_relu_1.run(buf3, primals_5, buf4, 1296, grid=grid(1296), stream=stream0) # Topologically Sorted Source Nodes: [X_5], Original ATen: [aten.convolution] buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 8, 8), (256, 64, 8, 1)) buf6 = buf5; del buf5 # reuse # Topologically Sorted Source Nodes: [X_5, X_6], Original ATen: [aten.convolution, aten.add] triton_poi_fused_add_convolution_2.run(buf6, primals_7, buf1, primals_2, 1024, grid=grid(1024), stream=stream0) del buf1 del primals_2 del primals_7 buf7 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.bool) # Topologically Sorted Source Nodes: [X_4], Original ATen: [aten.relu, aten.threshold_backward] triton_poi_fused_relu_threshold_backward_3.run(buf3, primals_5, buf7, 1024, grid=grid(1024), stream=stream0) del buf3 del primals_5 return (buf6, primals_1, primals_4, primals_6, buf0, buf2, buf4, buf7, ) def benchmark_compiled_module(times=10, repeat=10): from torch._dynamo.testing import rand_strided from torch._inductor.utils import print_performance primals_1 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_2 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_3 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_4 = rand_strided((16, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_5 = rand_strided((16, ), (1, ), device='cuda:0', dtype=torch.float32) primals_6 = rand_strided((4, 4, 4, 4), (64, 16, 4, 1), device='cuda:0', dtype=torch.float32) primals_7 = rand_strided((4, ), (1, ), device='cuda:0', dtype=torch.float32) fn = lambda: call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return print_performance(fn, times=times, repeat=repeat) if __name__ == "__main__": from torch._inductor.wrapper_benchmark import compiled_module_main compiled_module_main('None', benchmark_compiled_module)
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers from torch import nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_constant_pad_nd_relu_0(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 400 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 5 % 5 x0 = xindex % 5 x2 = xindex // 25 x3 = xindex tmp0 = x1 tmp1 = tl.full([1], 4, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (x0 + 4 * x1 + 16 * x2), tmp5 & xmask, other=0.0) tmp7 = tl.full([1], 0, tl.int32) tmp8 = triton_helpers.maximum(tmp7, tmp6) tmp9 = tl.full(tmp8.shape, 0.0, tmp8.dtype) tmp10 = tl.where(tmp5, tmp8, tmp9) tl.store(out_ptr0 + x3, tmp6, xmask) tl.store(out_ptr1 + x3, tmp10, xmask) @triton.jit def triton_poi_fused_constant_pad_nd_relu_1(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1296 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x1 = xindex // 9 % 9 x0 = xindex % 9 x4 = xindex // 81 x2 = xindex // 81 % 4 x5 = xindex tmp0 = x1 tmp1 = tl.full([1], 8, tl.int64) tmp2 = tmp0 < tmp1 tmp3 = x0 tmp4 = tmp3 < tmp1 tmp5 = tmp2 & tmp4 tmp6 = tl.load(in_ptr0 + (4 * (x1 // 2 % 4) + 16 * (x0 % 2) + 32 * (x1 % 2) + 64 * x4 + x0 // 2 % 4), tmp5 & xmask, eviction_policy= 'evict_last', other=0.0) tmp7 = tl.load(in_ptr1 + (2 * (x1 % 2) + 4 * x2 + x0 % 2), tmp5 & xmask, eviction_policy='evict_last', other=0.0) tmp8 = tmp6 + tmp7 tmp9 = tl.full([1], 0, tl.int32) tmp10 = triton_helpers.maximum(tmp9, tmp8) tmp11 = tl.full(tmp10.shape, 0.0, tmp10.dtype) tmp12 = tl.where(tmp5, tmp10, tmp11) tl.store(out_ptr0 + x5, tmp12, xmask) @triton.jit def triton_poi_fused_add_convolution_2(in_out_ptr0, in_ptr0, in_ptr1, in_ptr2, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x4 = xindex x2 = xindex // 64 % 4 x0 = xindex % 8 x1 = xindex // 8 % 8 x5 = xindex // 64 tmp0 = tl.load(in_out_ptr0 + x4, xmask) tmp1 = tl.load(in_ptr0 + x2, xmask, eviction_policy='evict_last') tmp3 = tl.load(in_ptr1 + (4 * (x1 // 2) + 16 * (x0 % 2) + 32 * (x1 % 2) + 64 * x5 + x0 // 2), xmask, eviction_policy='evict_last') tmp4 = tl.load(in_ptr2 + (2 * (x1 % 2) + 4 * x2 + x0 % 2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp5 = tmp3 + tmp4 tmp6 = tmp2 + tmp5 tl.store(in_out_ptr0 + x4, tmp6, xmask) @triton.jit def triton_poi_fused_relu_threshold_backward_3(in_ptr0, in_ptr1, out_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 1024 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 8 x1 = xindex // 8 % 8 x4 = xindex // 64 x2 = xindex // 64 % 4 x5 = xindex tmp0 = tl.load(in_ptr0 + (4 * (x1 // 2) + 16 * (x0 % 2) + 32 * (x1 % 2) + 64 * x4 + x0 // 2), xmask, eviction_policy='evict_last') tmp1 = tl.load(in_ptr1 + (2 * (x1 % 2) + 4 * x2 + x0 % 2), xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp5 = 0.0 tmp6 = tmp4 <= tmp5 tl.store(out_ptr0 + x5, tmp6, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7) = args args.clear() assert_size_stride(primals_1, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_2, (16,), (1,)) assert_size_stride(primals_3, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_4, (16, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_5, (16,), (1,)) assert_size_stride(primals_6, (4, 4, 4, 4), (64, 16, 4, 1)) assert_size_stride(primals_7, (4,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) buf2 = empty_strided_cuda((4, 4, 5, 5), (100, 25, 5, 1), torch.float32) get_raw_stream(0) triton_poi_fused_constant_pad_nd_relu_0[grid(400)](primals_3, buf0, buf2, 400, XBLOCK=128, num_warps=4, num_stages=1) del primals_3 buf1 = extern_kernels.convolution(buf0, primals_1, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf1, (4, 16, 4, 4), (256, 16, 4, 1)) buf3 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf3, (4, 16, 4, 4), (256, 16, 4, 1)) buf4 = empty_strided_cuda((4, 4, 9, 9), (324, 81, 9, 1), torch.float32) triton_poi_fused_constant_pad_nd_relu_1[grid(1296)](buf3, primals_5, buf4, 1296, XBLOCK=128, num_warps=4, num_stages=1) buf5 = extern_kernels.convolution(buf4, primals_6, stride=(1, 1), padding=(1, 1), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf5, (4, 4, 8, 8), (256, 64, 8, 1)) buf6 = buf5 del buf5 triton_poi_fused_add_convolution_2[grid(1024)](buf6, primals_7, buf1, primals_2, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf1 del primals_2 del primals_7 buf7 = empty_strided_cuda((4, 4, 8, 8), (256, 64, 8, 1), torch.bool) triton_poi_fused_relu_threshold_backward_3[grid(1024)](buf3, primals_5, buf7, 1024, XBLOCK=128, num_warps=4, num_stages=1) del buf3 del primals_5 return buf6, primals_1, primals_4, primals_6, buf0, buf2, buf4, buf7 class ConvShuffle(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding= 'same', upscale_factor=2, padding_mode='zeros'): super(ConvShuffle, self).__init__() self.upscale_factor = upscale_factor self.conv = nn.Conv2d(in_channels, out_channels * upscale_factor ** 2, kernel_size, padding=padding, padding_mode=padding_mode) def forward(self, X): X = self.conv(X) return nn.functional.pixel_shuffle(X, self.upscale_factor) class Upscale_Conv_blockNew(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, padding= 'same', upscale_factor=2, main_upscale=ConvShuffle, shortcut= ConvShuffle, padding_mode='zeros', activation=nn.functional.relu, Ch=0, Cw=0): assert isinstance(upscale_factor, int) super(Upscale_Conv_blockNew, self).__init__() self.shortcut = shortcut(in_channels, out_channels, kernel_size, padding=padding, padding_mode=padding_mode, upscale_factor= upscale_factor) self.activation = activation self.upscale = main_upscale(in_channels, out_channels, kernel_size, padding=padding, padding_mode=padding_mode, upscale_factor= upscale_factor) self.conv = nn.Conv2d(out_channels, out_channels, kernel_size, padding=padding, padding_mode=padding_mode) self.Ch = Ch self.Cw = Cw def forward(self, input_0): primals_1 = self.shortcut.conv.weight primals_2 = self.shortcut.conv.bias primals_4 = self.upscale.conv.weight primals_5 = self.upscale.conv.bias primals_3 = self.conv.weight primals_7 = self.conv.bias primals_6 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7]) return output[0]
GerbenBeintema/deepSI
Upscale_Conv_block
false
8,176
[ "BSD-3-Clause" ]
12
580711210398064bb7f01e41d08b7a248a88b35b
https://github.com/GerbenBeintema/deepSI/tree/580711210398064bb7f01e41d08b7a248a88b35b
DaiNet
import torch import torch.nn as nn import torch.nn.functional as F class DaiNet(nn.Module): def __init__(self): super(DaiNet, self).__init__() self.conv1 = nn.Conv2d(3, 12, 5) self.dp = nn.Dropout(0.5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(12, 24, 3) self.dp = nn.Dropout(0.5) self.fc1 = nn.Linear(24 * 6 * 6, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.pool(F.relu(self.conv1(x))) x = self.pool(F.relu(self.conv2(x))) x = x.view(-1, 24 * 6 * 6) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def get_inputs(): return [torch.rand([4, 3, 32, 32])] def get_init_inputs(): return [[], {}]
import torch from torch._inductor.select_algorithm import extern_kernels import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream from torch._inductor.runtime import triton_helpers import torch.nn as nn assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda reinterpret_tensor = torch._C._dynamo.guards._reinterpret_tensor @triton.jit def triton_poi_fused_convolution_relu_0(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 37632 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 784 % 12 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_1(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 9408 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 14 x3 = xindex // 14 x2 = xindex // 2352 x4 = xindex % 2352 tmp0 = tl.load(in_ptr0 + (2 * x0 + 56 * x3), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 56 * x3), xmask, eviction_policy ='evict_last') tmp3 = tl.load(in_ptr0 + (28 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp5 = tl.load(in_ptr0 + (29 + 2 * x0 + 56 * x3), xmask, eviction_policy='evict_last') tmp2 = triton_helpers.maximum(tmp1, tmp0) tmp4 = triton_helpers.maximum(tmp3, tmp2) tmp6 = triton_helpers.maximum(tmp5, tmp4) tmp7 = tmp1 > tmp0 tmp8 = tl.full([1], 1, tl.int8) tmp9 = tl.full([1], 0, tl.int8) tmp10 = tl.where(tmp7, tmp8, tmp9) tmp11 = tmp3 > tmp2 tmp12 = tl.full([1], 2, tl.int8) tmp13 = tl.where(tmp11, tmp12, tmp10) tmp14 = tmp5 > tmp4 tmp15 = tl.full([1], 3, tl.int8) tmp16 = tl.where(tmp14, tmp15, tmp13) tl.store(out_ptr0 + (x4 + 2368 * x2), tmp6, xmask) tl.store(out_ptr1 + (x4 + 2432 * x2), tmp16, xmask) @triton.jit def triton_poi_fused_convolution_relu_2(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr): xnumel = 13824 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x3 = xindex x1 = xindex // 144 % 24 tmp0 = tl.load(in_out_ptr0 + x3, xmask) tmp1 = tl.load(in_ptr0 + x1, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x3, tmp4, xmask) @triton.jit def triton_poi_fused_max_pool2d_with_indices_3(in_ptr0, out_ptr0, out_ptr1, xnumel, XBLOCK: tl.constexpr): xnumel = 3456 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 6 x1 = xindex // 6 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 24 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 24 * x1), xmask, eviction_policy ='evict_last') tmp7 = tl.load(in_ptr0 + (12 + 2 * x0 + 24 * x1), xmask, eviction_policy='evict_last') tmp12 = tl.load(in_ptr0 + (13 + 2 * x0 + 24 * x1), xmask, eviction_policy='evict_last') tmp2 = tmp1 > tmp0 tmp3 = tl.full([1], 1, tl.int8) tmp4 = tl.full([1], 0, tl.int8) tmp5 = tl.where(tmp2, tmp3, tmp4) tmp6 = triton_helpers.maximum(tmp1, tmp0) tmp8 = tmp7 > tmp6 tmp9 = tl.full([1], 2, tl.int8) tmp10 = tl.where(tmp8, tmp9, tmp5) tmp11 = triton_helpers.maximum(tmp7, tmp6) tmp13 = tmp12 > tmp11 tmp14 = tl.full([1], 3, tl.int8) tmp15 = tl.where(tmp13, tmp14, tmp10) tmp16 = triton_helpers.maximum(tmp12, tmp11) tl.store(out_ptr0 + x2, tmp15, xmask) tl.store(out_ptr1 + x2, tmp16, xmask) @triton.jit def triton_poi_fused_relu_4(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 480 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 120 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) @triton.jit def triton_poi_fused_relu_5(in_out_ptr0, in_ptr0, xnumel, XBLOCK: tl.constexpr ): xnumel = 336 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x2 = xindex x0 = xindex % 84 tmp0 = tl.load(in_out_ptr0 + x2, xmask) tmp1 = tl.load(in_ptr0 + x0, xmask, eviction_policy='evict_last') tmp2 = tmp0 + tmp1 tmp3 = tl.full([1], 0, tl.int32) tmp4 = triton_helpers.maximum(tmp3, tmp2) tl.store(in_out_ptr0 + x2, tmp4, xmask) def call(args): (primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11) = args args.clear() assert_size_stride(primals_1, (12, 3, 5, 5), (75, 25, 5, 1)) assert_size_stride(primals_2, (12,), (1,)) assert_size_stride(primals_3, (4, 3, 32, 32), (3072, 1024, 32, 1)) assert_size_stride(primals_4, (24, 12, 3, 3), (108, 9, 3, 1)) assert_size_stride(primals_5, (24,), (1,)) assert_size_stride(primals_6, (120, 864), (864, 1)) assert_size_stride(primals_7, (120,), (1,)) assert_size_stride(primals_8, (84, 120), (120, 1)) assert_size_stride(primals_9, (84,), (1,)) assert_size_stride(primals_10, (10, 84), (84, 1)) assert_size_stride(primals_11, (10,), (1,)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = extern_kernels.convolution(primals_3, primals_1, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf0, (4, 12, 28, 28), (9408, 784, 28, 1)) buf1 = buf0 del buf0 get_raw_stream(0) triton_poi_fused_convolution_relu_0[grid(37632)](buf1, primals_2, 37632, XBLOCK=256, num_warps=4, num_stages=1) del primals_2 buf2 = empty_strided_cuda((4, 12, 14, 14), (2368, 196, 14, 1), torch.float32) buf3 = empty_strided_cuda((4, 12, 14, 14), (2432, 196, 14, 1), torch.int8) triton_poi_fused_max_pool2d_with_indices_1[grid(9408)](buf1, buf2, buf3, 9408, XBLOCK=128, num_warps=4, num_stages=1) buf4 = extern_kernels.convolution(buf2, primals_4, stride=(1, 1), padding=(0, 0), dilation=(1, 1), transposed=False, output_padding=(0, 0), groups=1, bias=None) assert_size_stride(buf4, (4, 24, 12, 12), (3456, 144, 12, 1)) buf5 = buf4 del buf4 triton_poi_fused_convolution_relu_2[grid(13824)](buf5, primals_5, 13824, XBLOCK=256, num_warps=4, num_stages=1) del primals_5 buf6 = empty_strided_cuda((4, 24, 6, 6), (864, 36, 6, 1), torch.int8) buf7 = empty_strided_cuda((4, 24, 6, 6), (864, 36, 6, 1), torch.float32 ) triton_poi_fused_max_pool2d_with_indices_3[grid(3456)](buf5, buf6, buf7, 3456, XBLOCK=128, num_warps=4, num_stages=1) buf8 = empty_strided_cuda((4, 120), (120, 1), torch.float32) extern_kernels.mm(reinterpret_tensor(buf7, (4, 864), (864, 1), 0), reinterpret_tensor(primals_6, (864, 120), (1, 864), 0), out=buf8) buf9 = buf8 del buf8 triton_poi_fused_relu_4[grid(480)](buf9, primals_7, 480, XBLOCK=128, num_warps=4, num_stages=1) del primals_7 buf10 = empty_strided_cuda((4, 84), (84, 1), torch.float32) extern_kernels.mm(buf9, reinterpret_tensor(primals_8, (120, 84), (1, 120), 0), out=buf10) buf11 = buf10 del buf10 triton_poi_fused_relu_5[grid(336)](buf11, primals_9, 336, XBLOCK= 128, num_warps=4, num_stages=1) del primals_9 buf12 = empty_strided_cuda((4, 10), (10, 1), torch.float32) extern_kernels.addmm(primals_11, buf11, reinterpret_tensor( primals_10, (84, 10), (1, 84), 0), alpha=1, beta=1, out=buf12) del primals_11 return (buf12, primals_1, primals_3, primals_4, buf1, buf2, buf3, buf5, buf6, reinterpret_tensor(buf7, (4, 864), (864, 1), 0), buf9, buf11, primals_10, primals_8, primals_6) class DaiNetNew(nn.Module): def __init__(self): super(DaiNetNew, self).__init__() self.conv1 = nn.Conv2d(3, 12, 5) self.dp = nn.Dropout(0.5) self.pool = nn.MaxPool2d(2, 2) self.conv2 = nn.Conv2d(12, 24, 3) self.dp = nn.Dropout(0.5) self.fc1 = nn.Linear(24 * 6 * 6, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, input_0): primals_1 = self.conv1.weight primals_2 = self.conv1.bias primals_4 = self.conv2.weight primals_5 = self.conv2.bias primals_6 = self.fc1.weight primals_7 = self.fc1.bias primals_8 = self.fc2.weight primals_9 = self.fc2.bias primals_10 = self.fc3.weight primals_11 = self.fc3.bias primals_3 = input_0 output = call([primals_1, primals_2, primals_3, primals_4, primals_5, primals_6, primals_7, primals_8, primals_9, primals_10, primals_11]) return output[0]
MaxChanger/pytorch-cifar
DaiNet
false
8,590
[ "MIT" ]
20
217fd2cf7e603fe9a8d3d97f2085606bc43a356a
https://github.com/MaxChanger/pytorch-cifar/tree/217fd2cf7e603fe9a8d3d97f2085606bc43a356a
_Transition
from _paritybench_helpers import _mock_config import torch import torch.nn as nn from torchvision.transforms import * class _Transition(nn.Module): def __init__(self, in_channels, args): super(_Transition, self).__init__() self.pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): x = self.pool(x) return x def get_inputs(): return [torch.rand([4, 4, 4, 4])] def get_init_inputs(): return [[], {'in_channels': 4, 'args': _mock_config()}]
import torch import triton import triton.language as tl from torch._inductor.runtime.triton_heuristics import grid from torch._C import _cuda_getCurrentRawStream as get_raw_stream import torch.nn as nn from torchvision.transforms import * assert_size_stride = torch._C._dynamo.guards.assert_size_stride empty_strided_cuda = torch._C._dynamo.guards._empty_strided_cuda @triton.jit def triton_poi_fused_avg_pool2d_0(in_ptr0, out_ptr0, xnumel, XBLOCK: tl. constexpr): xnumel = 64 xoffset = tl.program_id(0) * XBLOCK xindex = xoffset + tl.arange(0, XBLOCK)[:] xmask = xindex < xnumel x0 = xindex % 2 x1 = xindex // 2 x2 = xindex tmp0 = tl.load(in_ptr0 + (2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp1 = tl.load(in_ptr0 + (1 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp3 = tl.load(in_ptr0 + (4 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp5 = tl.load(in_ptr0 + (5 + 2 * x0 + 8 * x1), xmask, eviction_policy= 'evict_last') tmp2 = tmp1 + tmp0 tmp4 = tmp3 + tmp2 tmp6 = tmp5 + tmp4 tmp7 = 0.25 tmp8 = tmp6 * tmp7 tl.store(out_ptr0 + x2, tmp8, xmask) def call(args): arg0_1, = args args.clear() assert_size_stride(arg0_1, (4, 4, 4, 4), (64, 16, 4, 1)) with torch.cuda._DeviceGuard(0): torch.cuda.set_device(0) buf0 = empty_strided_cuda((4, 4, 2, 2), (16, 4, 2, 1), torch.float32) get_raw_stream(0) triton_poi_fused_avg_pool2d_0[grid(64)](arg0_1, buf0, 64, XBLOCK=64, num_warps=1, num_stages=1) del arg0_1 return buf0, class _TransitionNew(nn.Module): def __init__(self, in_channels, args): super(_TransitionNew, self).__init__() self.pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, input_0): arg0_1 = input_0 output = call([arg0_1]) return output[0]
RobbieEarle/robustness
_Transition
false
11,837
[ "Apache-2.0" ]
0
2f4381900015bf7fcd9975d43b8104d2d14f8568
https://github.com/RobbieEarle/robustness/tree/2f4381900015bf7fcd9975d43b8104d2d14f8568