code
stringlengths
66
870k
docstring
stringlengths
19
26.7k
func_name
stringlengths
1
138
language
stringclasses
1 value
repo
stringlengths
7
68
path
stringlengths
5
324
url
stringlengths
46
389
license
stringclasses
7 values
def score_estimator(estimator, df_test): """Score an estimator on the test set.""" y_pred = estimator.predict(df_test) print( "MSE: %.3f" % mean_squared_error( df_test["Frequency"], y_pred, sample_weight=df_test["Exposure"] ) ) print( "MAE: %.3f" % mean_absolute_error( df_test["Frequency"], y_pred, sample_weight=df_test["Exposure"] ) ) # Ignore non-positive predictions, as they are invalid for # the Poisson deviance. mask = y_pred > 0 if (~mask).any(): n_masked, n_samples = (~mask).sum(), mask.shape[0] print( "WARNING: Estimator yields invalid, non-positive predictions " f" for {n_masked} samples out of {n_samples}. These predictions " "are ignored when computing the Poisson deviance." ) print( "mean Poisson deviance: %.3f" % mean_poisson_deviance( df_test["Frequency"][mask], y_pred[mask], sample_weight=df_test["Exposure"][mask], ) )
Score an estimator on the test set.
score_estimator
python
scikit-learn/scikit-learn
examples/linear_model/plot_poisson_regression_non_normal_loss.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_poisson_regression_non_normal_loss.py
BSD-3-Clause
def _mean_frequency_by_risk_group(y_true, y_pred, sample_weight=None, n_bins=100): """Compare predictions and observations for bins ordered by y_pred. We order the samples by ``y_pred`` and split it in bins. In each bin the observed mean is compared with the predicted mean. Parameters ---------- y_true: array-like of shape (n_samples,) Ground truth (correct) target values. y_pred: array-like of shape (n_samples,) Estimated target values. sample_weight : array-like of shape (n_samples,) Sample weights. n_bins: int Number of bins to use. Returns ------- bin_centers: ndarray of shape (n_bins,) bin centers y_true_bin: ndarray of shape (n_bins,) average y_pred for each bin y_pred_bin: ndarray of shape (n_bins,) average y_pred for each bin """ idx_sort = np.argsort(y_pred) bin_centers = np.arange(0, 1, 1 / n_bins) + 0.5 / n_bins y_pred_bin = np.zeros(n_bins) y_true_bin = np.zeros(n_bins) for n, sl in enumerate(gen_even_slices(len(y_true), n_bins)): weights = sample_weight[idx_sort][sl] y_pred_bin[n] = np.average(y_pred[idx_sort][sl], weights=weights) y_true_bin[n] = np.average(y_true[idx_sort][sl], weights=weights) return bin_centers, y_true_bin, y_pred_bin
Compare predictions and observations for bins ordered by y_pred. We order the samples by ``y_pred`` and split it in bins. In each bin the observed mean is compared with the predicted mean. Parameters ---------- y_true: array-like of shape (n_samples,) Ground truth (correct) target values. y_pred: array-like of shape (n_samples,) Estimated target values. sample_weight : array-like of shape (n_samples,) Sample weights. n_bins: int Number of bins to use. Returns ------- bin_centers: ndarray of shape (n_bins,) bin centers y_true_bin: ndarray of shape (n_bins,) average y_pred for each bin y_pred_bin: ndarray of shape (n_bins,) average y_pred for each bin
_mean_frequency_by_risk_group
python
scikit-learn/scikit-learn
examples/linear_model/plot_poisson_regression_non_normal_loss.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_poisson_regression_non_normal_loss.py
BSD-3-Clause
def load_mnist(n_samples=None, class_0="0", class_1="8"): """Load MNIST, select two classes, shuffle and return only n_samples.""" # Load data from http://openml.org/d/554 mnist = fetch_openml("mnist_784", version=1, as_frame=False) # take only two classes for binary classification mask = np.logical_or(mnist.target == class_0, mnist.target == class_1) X, y = shuffle(mnist.data[mask], mnist.target[mask], random_state=42) if n_samples is not None: X, y = X[:n_samples], y[:n_samples] return X, y
Load MNIST, select two classes, shuffle and return only n_samples.
load_mnist
python
scikit-learn/scikit-learn
examples/linear_model/plot_sgd_early_stopping.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_sgd_early_stopping.py
BSD-3-Clause
def fit_and_score(estimator, max_iter, X_train, X_test, y_train, y_test): """Fit the estimator on the train set and score it on both sets""" estimator.set_params(max_iter=max_iter) estimator.set_params(random_state=0) start = time.time() estimator.fit(X_train, y_train) fit_time = time.time() - start n_iter = estimator.n_iter_ train_score = estimator.score(X_train, y_train) test_score = estimator.score(X_test, y_test) return fit_time, n_iter, train_score, test_score
Fit the estimator on the train set and score it on both sets
fit_and_score
python
scikit-learn/scikit-learn
examples/linear_model/plot_sgd_early_stopping.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_sgd_early_stopping.py
BSD-3-Clause
def load_mtpl2(n_samples=None): """Fetch the French Motor Third-Party Liability Claims dataset. Parameters ---------- n_samples: int, default=None number of samples to select (for faster run time). Full dataset has 678013 samples. """ # freMTPL2freq dataset from https://www.openml.org/d/41214 df_freq = fetch_openml(data_id=41214, as_frame=True).data df_freq["IDpol"] = df_freq["IDpol"].astype(int) df_freq.set_index("IDpol", inplace=True) # freMTPL2sev dataset from https://www.openml.org/d/41215 df_sev = fetch_openml(data_id=41215, as_frame=True).data # sum ClaimAmount over identical IDs df_sev = df_sev.groupby("IDpol").sum() df = df_freq.join(df_sev, how="left") df["ClaimAmount"] = df["ClaimAmount"].fillna(0) # unquote string fields for column_name in df.columns[[t is object for t in df.dtypes.values]]: df[column_name] = df[column_name].str.strip("'") return df.iloc[:n_samples]
Fetch the French Motor Third-Party Liability Claims dataset. Parameters ---------- n_samples: int, default=None number of samples to select (for faster run time). Full dataset has 678013 samples.
load_mtpl2
python
scikit-learn/scikit-learn
examples/linear_model/plot_tweedie_regression_insurance_claims.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_tweedie_regression_insurance_claims.py
BSD-3-Clause
def plot_obs_pred( df, feature, weight, observed, predicted, y_label=None, title=None, ax=None, fill_legend=False, ): """Plot observed and predicted - aggregated per feature level. Parameters ---------- df : DataFrame input data feature: str a column name of df for the feature to be plotted weight : str column name of df with the values of weights or exposure observed : str a column name of df with the observed target predicted : DataFrame a dataframe, with the same index as df, with the predicted target fill_legend : bool, default=False whether to show fill_between legend """ # aggregate observed and predicted variables by feature level df_ = df.loc[:, [feature, weight]].copy() df_["observed"] = df[observed] * df[weight] df_["predicted"] = predicted * df[weight] df_ = ( df_.groupby([feature])[[weight, "observed", "predicted"]] .sum() .assign(observed=lambda x: x["observed"] / x[weight]) .assign(predicted=lambda x: x["predicted"] / x[weight]) ) ax = df_.loc[:, ["observed", "predicted"]].plot(style=".", ax=ax) y_max = df_.loc[:, ["observed", "predicted"]].values.max() * 0.8 p2 = ax.fill_between( df_.index, 0, y_max * df_[weight] / df_[weight].values.max(), color="g", alpha=0.1, ) if fill_legend: ax.legend([p2], ["{} distribution".format(feature)]) ax.set( ylabel=y_label if y_label is not None else None, title=title if title is not None else "Train: Observed vs Predicted", )
Plot observed and predicted - aggregated per feature level. Parameters ---------- df : DataFrame input data feature: str a column name of df for the feature to be plotted weight : str column name of df with the values of weights or exposure observed : str a column name of df with the observed target predicted : DataFrame a dataframe, with the same index as df, with the predicted target fill_legend : bool, default=False whether to show fill_between legend
plot_obs_pred
python
scikit-learn/scikit-learn
examples/linear_model/plot_tweedie_regression_insurance_claims.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/linear_model/plot_tweedie_regression_insurance_claims.py
BSD-3-Clause
def make_estimator(name, categorical_columns=None, iforest_kw=None, lof_kw=None): """Create an outlier detection estimator based on its name.""" if name == "LOF": outlier_detector = LocalOutlierFactor(**(lof_kw or {})) if categorical_columns is None: preprocessor = RobustScaler() else: preprocessor = ColumnTransformer( transformers=[("categorical", OneHotEncoder(), categorical_columns)], remainder=RobustScaler(), ) else: # name == "IForest" outlier_detector = IsolationForest(**(iforest_kw or {})) if categorical_columns is None: preprocessor = None else: ordinal_encoder = OrdinalEncoder( handle_unknown="use_encoded_value", unknown_value=-1 ) preprocessor = ColumnTransformer( transformers=[ ("categorical", ordinal_encoder, categorical_columns), ], remainder="passthrough", ) return make_pipeline(preprocessor, outlier_detector)
Create an outlier detection estimator based on its name.
make_estimator
python
scikit-learn/scikit-learn
examples/miscellaneous/plot_outlier_detection_bench.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/miscellaneous/plot_outlier_detection_bench.py
BSD-3-Clause
def plot_cv_indices(cv, X, y, group, ax, n_splits, lw=10): """Create a sample plot for indices of a cross-validation object.""" use_groups = "Group" in type(cv).__name__ groups = group if use_groups else None # Generate the training/testing visualizations for each CV split for ii, (tr, tt) in enumerate(cv.split(X=X, y=y, groups=groups)): # Fill in indices with the training/test groups indices = np.array([np.nan] * len(X)) indices[tt] = 1 indices[tr] = 0 # Visualize the results ax.scatter( range(len(indices)), [ii + 0.5] * len(indices), c=indices, marker="_", lw=lw, cmap=cmap_cv, vmin=-0.2, vmax=1.2, ) # Plot the data classes and groups at the end ax.scatter( range(len(X)), [ii + 1.5] * len(X), c=y, marker="_", lw=lw, cmap=cmap_data ) ax.scatter( range(len(X)), [ii + 2.5] * len(X), c=group, marker="_", lw=lw, cmap=cmap_data ) # Formatting yticklabels = list(range(n_splits)) + ["class", "group"] ax.set( yticks=np.arange(n_splits + 2) + 0.5, yticklabels=yticklabels, xlabel="Sample index", ylabel="CV iteration", ylim=[n_splits + 2.2, -0.2], xlim=[0, 100], ) ax.set_title("{}".format(type(cv).__name__), fontsize=15) return ax
Create a sample plot for indices of a cross-validation object.
plot_cv_indices
python
scikit-learn/scikit-learn
examples/model_selection/plot_cv_indices.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_cv_indices.py
BSD-3-Clause
def refit_strategy(cv_results): """Define the strategy to select the best estimator. The strategy defined here is to filter-out all results below a precision threshold of 0.98, rank the remaining by recall and keep all models with one standard deviation of the best by recall. Once these models are selected, we can select the fastest model to predict. Parameters ---------- cv_results : dict of numpy (masked) ndarrays CV results as returned by the `GridSearchCV`. Returns ------- best_index : int The index of the best estimator as it appears in `cv_results`. """ # print the info about the grid-search for the different scores precision_threshold = 0.98 cv_results_ = pd.DataFrame(cv_results) print("All grid-search results:") print_dataframe(cv_results_) # Filter-out all results below the threshold high_precision_cv_results = cv_results_[ cv_results_["mean_test_precision"] > precision_threshold ] print(f"Models with a precision higher than {precision_threshold}:") print_dataframe(high_precision_cv_results) high_precision_cv_results = high_precision_cv_results[ [ "mean_score_time", "mean_test_recall", "std_test_recall", "mean_test_precision", "std_test_precision", "rank_test_recall", "rank_test_precision", "params", ] ] # Select the most performant models in terms of recall # (within 1 sigma from the best) best_recall_std = high_precision_cv_results["mean_test_recall"].std() best_recall = high_precision_cv_results["mean_test_recall"].max() best_recall_threshold = best_recall - best_recall_std high_recall_cv_results = high_precision_cv_results[ high_precision_cv_results["mean_test_recall"] > best_recall_threshold ] print( "Out of the previously selected high precision models, we keep all the\n" "the models within one standard deviation of the highest recall model:" ) print_dataframe(high_recall_cv_results) # From the best candidates, select the fastest model to predict fastest_top_recall_high_precision_index = high_recall_cv_results[ "mean_score_time" ].idxmin() print( "\nThe selected final model is the fastest to predict out of the previously\n" "selected subset of best models based on precision and recall.\n" "Its scoring time is:\n\n" f"{high_recall_cv_results.loc[fastest_top_recall_high_precision_index]}" ) return fastest_top_recall_high_precision_index
Define the strategy to select the best estimator. The strategy defined here is to filter-out all results below a precision threshold of 0.98, rank the remaining by recall and keep all models with one standard deviation of the best by recall. Once these models are selected, we can select the fastest model to predict. Parameters ---------- cv_results : dict of numpy (masked) ndarrays CV results as returned by the `GridSearchCV`. Returns ------- best_index : int The index of the best estimator as it appears in `cv_results`.
refit_strategy
python
scikit-learn/scikit-learn
examples/model_selection/plot_grid_search_digits.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_grid_search_digits.py
BSD-3-Clause
def lower_bound(cv_results): """ Calculate the lower bound within 1 standard deviation of the best `mean_test_scores`. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV` Returns ------- float Lower bound within 1 standard deviation of the best `mean_test_score`. """ best_score_idx = np.argmax(cv_results["mean_test_score"]) return ( cv_results["mean_test_score"][best_score_idx] - cv_results["std_test_score"][best_score_idx] )
Calculate the lower bound within 1 standard deviation of the best `mean_test_scores`. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV` Returns ------- float Lower bound within 1 standard deviation of the best `mean_test_score`.
lower_bound
python
scikit-learn/scikit-learn
examples/model_selection/plot_grid_search_refit_callable.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_grid_search_refit_callable.py
BSD-3-Clause
def best_low_complexity(cv_results): """ Balance model complexity with cross-validated score. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV`. Return ------ int Index of a model that has the fewest PCA components while has its test score within 1 standard deviation of the best `mean_test_score`. """ threshold = lower_bound(cv_results) candidate_idx = np.flatnonzero(cv_results["mean_test_score"] >= threshold) best_idx = candidate_idx[ cv_results["param_reduce_dim__n_components"][candidate_idx].argmin() ] return best_idx
Balance model complexity with cross-validated score. Parameters ---------- cv_results : dict of numpy(masked) ndarrays See attribute cv_results_ of `GridSearchCV`. Return ------ int Index of a model that has the fewest PCA components while has its test score within 1 standard deviation of the best `mean_test_score`.
best_low_complexity
python
scikit-learn/scikit-learn
examples/model_selection/plot_grid_search_refit_callable.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_grid_search_refit_callable.py
BSD-3-Clause
def corrected_std(differences, n_train, n_test): """Corrects standard deviation using Nadeau and Bengio's approach. Parameters ---------- differences : ndarray of shape (n_samples,) Vector containing the differences in the score metrics of two models. n_train : int Number of samples in the training set. n_test : int Number of samples in the testing set. Returns ------- corrected_std : float Variance-corrected standard deviation of the set of differences. """ # kr = k times r, r times repeated k-fold crossvalidation, # kr equals the number of times the model was evaluated kr = len(differences) corrected_var = np.var(differences, ddof=1) * (1 / kr + n_test / n_train) corrected_std = np.sqrt(corrected_var) return corrected_std
Corrects standard deviation using Nadeau and Bengio's approach. Parameters ---------- differences : ndarray of shape (n_samples,) Vector containing the differences in the score metrics of two models. n_train : int Number of samples in the training set. n_test : int Number of samples in the testing set. Returns ------- corrected_std : float Variance-corrected standard deviation of the set of differences.
corrected_std
python
scikit-learn/scikit-learn
examples/model_selection/plot_grid_search_stats.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_grid_search_stats.py
BSD-3-Clause
def compute_corrected_ttest(differences, df, n_train, n_test): """Computes right-tailed paired t-test with corrected variance. Parameters ---------- differences : array-like of shape (n_samples,) Vector containing the differences in the score metrics of two models. df : int Degrees of freedom. n_train : int Number of samples in the training set. n_test : int Number of samples in the testing set. Returns ------- t_stat : float Variance-corrected t-statistic. p_val : float Variance-corrected p-value. """ mean = np.mean(differences) std = corrected_std(differences, n_train, n_test) t_stat = mean / std p_val = t.sf(np.abs(t_stat), df) # right-tailed t-test return t_stat, p_val
Computes right-tailed paired t-test with corrected variance. Parameters ---------- differences : array-like of shape (n_samples,) Vector containing the differences in the score metrics of two models. df : int Degrees of freedom. n_train : int Number of samples in the training set. n_test : int Number of samples in the testing set. Returns ------- t_stat : float Variance-corrected t-statistic. p_val : float Variance-corrected p-value.
compute_corrected_ttest
python
scikit-learn/scikit-learn
examples/model_selection/plot_grid_search_stats.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/model_selection/plot_grid_search_stats.py
BSD-3-Clause
def load_mnist(n_samples): """Load MNIST, shuffle the data, and return only n_samples.""" mnist = fetch_openml("mnist_784", as_frame=False) X, y = shuffle(mnist.data, mnist.target, random_state=2) return X[:n_samples] / 255, y[:n_samples]
Load MNIST, shuffle the data, and return only n_samples.
load_mnist
python
scikit-learn/scikit-learn
examples/neighbors/approximate_nearest_neighbors.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/neighbors/approximate_nearest_neighbors.py
BSD-3-Clause
def construct_grids(batch): """Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages """ # x,y coordinates for corner cells xmin = batch.x_left_lower_corner + batch.grid_size xmax = xmin + (batch.Nx * batch.grid_size) ymin = batch.y_left_lower_corner + batch.grid_size ymax = ymin + (batch.Ny * batch.grid_size) # x coordinates of the grid cells xgrid = np.arange(xmin, xmax, batch.grid_size) # y coordinates of the grid cells ygrid = np.arange(ymin, ymax, batch.grid_size) return (xgrid, ygrid)
Construct the map grid from the batch object Parameters ---------- batch : Batch object The object returned by :func:`fetch_species_distributions` Returns ------- (xgrid, ygrid) : 1-D arrays The grid corresponding to the values in batch.coverages
construct_grids
python
scikit-learn/scikit-learn
examples/neighbors/plot_species_kde.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/neighbors/plot_species_kde.py
BSD-3-Clause
def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]], ] def shift(x, w): return convolve(x.reshape((8, 8)), mode="constant", weights=w).ravel() X = np.concatenate( [X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors] ) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y
This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up
nudge_dataset
python
scikit-learn/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/neural_networks/plot_rbm_logistic_classification.py
BSD-3-Clause
def levenshtein_distance(x, y): """Return the Levenshtein distance between two strings.""" if x == "" or y == "": return max(len(x), len(y)) if x[0] == y[0]: return levenshtein_distance(x[1:], y[1:]) return 1 + min( levenshtein_distance(x[1:], y), levenshtein_distance(x, y[1:]), levenshtein_distance(x[1:], y[1:]), )
Return the Levenshtein distance between two strings.
levenshtein_distance
python
scikit-learn/scikit-learn
examples/release_highlights/plot_release_highlights_1_5_0.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/release_highlights/plot_release_highlights_1_5_0.py
BSD-3-Clause
def plot_decision_function(classifier, sample_weight, axis, title): """Plot the synthetic data and the classifier decision function. Points with larger sample_weight are mapped to larger circles in the scatter plot.""" axis.scatter( X_plot[:, 0], X_plot[:, 1], c=y_plot, s=100 * sample_weight[plot_indices], alpha=0.9, cmap=plt.cm.bone, edgecolors="black", ) DecisionBoundaryDisplay.from_estimator( classifier, X_plot, response_method="decision_function", alpha=0.75, ax=axis, cmap=plt.cm.bone, ) axis.axis("off") axis.set_title(title)
Plot the synthetic data and the classifier decision function. Points with larger sample_weight are mapped to larger circles in the scatter plot.
plot_decision_function
python
scikit-learn/scikit-learn
examples/svm/plot_weighted_samples.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/svm/plot_weighted_samples.py
BSD-3-Clause
def load_dataset(verbose=False, remove=()): """Load and vectorize the 20 newsgroups dataset.""" data_train = fetch_20newsgroups( subset="train", categories=categories, shuffle=True, random_state=42, remove=remove, ) data_test = fetch_20newsgroups( subset="test", categories=categories, shuffle=True, random_state=42, remove=remove, ) # order of labels in `target_names` can be different from `categories` target_names = data_train.target_names # split target in a training set and a test set y_train, y_test = data_train.target, data_test.target # Extracting features from the training data using a sparse vectorizer t0 = time() vectorizer = TfidfVectorizer( sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english" ) X_train = vectorizer.fit_transform(data_train.data) duration_train = time() - t0 # Extracting features from the test data using the same vectorizer t0 = time() X_test = vectorizer.transform(data_test.data) duration_test = time() - t0 feature_names = vectorizer.get_feature_names_out() if verbose: # compute size of loaded data data_train_size_mb = size_mb(data_train.data) data_test_size_mb = size_mb(data_test.data) print( f"{len(data_train.data)} documents - " f"{data_train_size_mb:.2f}MB (training set)" ) print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)") print(f"{len(target_names)} categories") print( f"vectorize training done in {duration_train:.3f}s " f"at {data_train_size_mb / duration_train:.3f}MB/s" ) print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}") print( f"vectorize testing done in {duration_test:.3f}s " f"at {data_test_size_mb / duration_test:.3f}MB/s" ) print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}") return X_train, X_test, y_train, y_test, feature_names, target_names
Load and vectorize the 20 newsgroups dataset.
load_dataset
python
scikit-learn/scikit-learn
examples/text/plot_document_classification_20newsgroups.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/text/plot_document_classification_20newsgroups.py
BSD-3-Clause
def token_freqs(doc): """Extract a dict mapping tokens from doc to their occurrences.""" freq = defaultdict(int) for tok in tokenize(doc): freq[tok] += 1 return freq
Extract a dict mapping tokens from doc to their occurrences.
token_freqs
python
scikit-learn/scikit-learn
examples/text/plot_hashing_vs_dict_vectorizer.py
https://github.com/scikit-learn/scikit-learn/blob/master/examples/text/plot_hashing_vs_dict_vectorizer.py
BSD-3-Clause
def clone(estimator, *, safe=True): """Construct a new unfitted estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It returns a new estimator with the same parameters that has not been fitted on any data. .. versionchanged:: 1.3 Delegates to `estimator.__sklearn_clone__` if the method exists. Parameters ---------- estimator : {list, tuple, set} of estimator instance or a single \ estimator instance The estimator or group of estimators to be cloned. safe : bool, default=True If safe is False, clone will fall back to a deep copy on objects that are not estimators. Ignored if `estimator.__sklearn_clone__` exists. Returns ------- estimator : object The deep copy of the input, an estimator if input is an estimator. Notes ----- If the estimator's `random_state` parameter is an integer (or if the estimator doesn't have a `random_state` parameter), an *exact clone* is returned: the clone and the original estimator will give the exact same results. Otherwise, *statistical clone* is returned: the clone might return different results from the original estimator. More details can be found in :ref:`randomness`. Examples -------- >>> from sklearn.base import clone >>> from sklearn.linear_model import LogisticRegression >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]] >>> y = [0, 0, 1, 1] >>> classifier = LogisticRegression().fit(X, y) >>> cloned_classifier = clone(classifier) >>> hasattr(classifier, "classes_") True >>> hasattr(cloned_classifier, "classes_") False >>> classifier is cloned_classifier False """ if hasattr(estimator, "__sklearn_clone__") and not inspect.isclass(estimator): return estimator.__sklearn_clone__() return _clone_parametrized(estimator, safe=safe)
Construct a new unfitted estimator with the same parameters. Clone does a deep copy of the model in an estimator without actually copying attached data. It returns a new estimator with the same parameters that has not been fitted on any data. .. versionchanged:: 1.3 Delegates to `estimator.__sklearn_clone__` if the method exists. Parameters ---------- estimator : {list, tuple, set} of estimator instance or a single estimator instance The estimator or group of estimators to be cloned. safe : bool, default=True If safe is False, clone will fall back to a deep copy on objects that are not estimators. Ignored if `estimator.__sklearn_clone__` exists. Returns ------- estimator : object The deep copy of the input, an estimator if input is an estimator. Notes ----- If the estimator's `random_state` parameter is an integer (or if the estimator doesn't have a `random_state` parameter), an *exact clone* is returned: the clone and the original estimator will give the exact same results. Otherwise, *statistical clone* is returned: the clone might return different results from the original estimator. More details can be found in :ref:`randomness`. Examples -------- >>> from sklearn.base import clone >>> from sklearn.linear_model import LogisticRegression >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]] >>> y = [0, 0, 1, 1] >>> classifier = LogisticRegression().fit(X, y) >>> cloned_classifier = clone(classifier) >>> hasattr(classifier, "classes_") True >>> hasattr(cloned_classifier, "classes_") False >>> classifier is cloned_classifier False
clone
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _clone_parametrized(estimator, *, safe=True): """Default implementation of clone. See :func:`sklearn.base.clone` for details.""" estimator_type = type(estimator) if estimator_type is dict: return {k: clone(v, safe=safe) for k, v in estimator.items()} elif estimator_type in (list, tuple, set, frozenset): return estimator_type([clone(e, safe=safe) for e in estimator]) elif not hasattr(estimator, "get_params") or isinstance(estimator, type): if not safe: return copy.deepcopy(estimator) else: if isinstance(estimator, type): raise TypeError( "Cannot clone object. " "You should provide an instance of " "scikit-learn estimator instead of a class." ) else: raise TypeError( "Cannot clone object '%s' (type %s): " "it does not seem to be a scikit-learn " "estimator as it does not implement a " "'get_params' method." % (repr(estimator), type(estimator)) ) klass = estimator.__class__ new_object_params = estimator.get_params(deep=False) for name, param in new_object_params.items(): new_object_params[name] = clone(param, safe=False) new_object = klass(**new_object_params) try: new_object._metadata_request = copy.deepcopy(estimator._metadata_request) except AttributeError: pass params_set = new_object.get_params(deep=False) # quick sanity check of the parameters of the clone for name in new_object_params: param1 = new_object_params[name] param2 = params_set[name] if param1 is not param2: raise RuntimeError( "Cannot clone object %s, as the constructor " "either does not set or modifies parameter %s" % (estimator, name) ) # _sklearn_output_config is used by `set_output` to configure the output # container of an estimator. if hasattr(estimator, "_sklearn_output_config"): new_object._sklearn_output_config = copy.deepcopy( estimator._sklearn_output_config ) return new_object
Default implementation of clone. See :func:`sklearn.base.clone` for details.
_clone_parametrized
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _get_param_names(cls): """Get parameter names for the estimator""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, "deprecated_original", cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = inspect.signature(init) # Consider the constructor parameters excluding 'self' parameters = [ p for p in init_signature.parameters.values() if p.name != "self" and p.kind != p.VAR_KEYWORD ] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError( "scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." " %s with constructor %s doesn't " " follow this convention." % (cls, init_signature) ) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters])
Get parameter names for the estimator
_get_param_names
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_params(self, deep=True): """ Get parameters for this estimator. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): value = getattr(self, key) if deep and hasattr(value, "get_params") and not isinstance(value, type): deep_items = value.get_params().items() out.update((key + "__" + k, val) for k, val in deep_items) out[key] = value return out
Get parameters for this estimator. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values.
get_params
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _get_params_html(self, deep=True): """ Get parameters for this estimator with a specific HTML representation. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : ParamsDict Parameter names mapped to their values. We return a `ParamsDict` dictionary, which renders a specific HTML representation in table form. """ out = self.get_params(deep=deep) init_func = getattr(self.__init__, "deprecated_original", self.__init__) init_default_params = inspect.signature(init_func).parameters init_default_params = { name: param.default for name, param in init_default_params.items() } def is_non_default(param_name, param_value): """Finds the parameters that have been set by the user.""" if param_name not in init_default_params: # happens if k is part of a **kwargs return True if init_default_params[param_name] == inspect._empty: # k has no default value return True # avoid calling repr on nested estimators if isinstance(param_value, BaseEstimator) and type(param_value) is not type( init_default_params[param_name] ): return True if param_value != init_default_params[param_name] and not ( is_scalar_nan(init_default_params[param_name]) and is_scalar_nan(param_value) ): return True return False # reorder the parameters from `self.get_params` using the `__init__` # signature remaining_params = [name for name in out if name not in init_default_params] ordered_out = {name: out[name] for name in init_default_params if name in out} ordered_out.update({name: out[name] for name in remaining_params}) non_default_ls = tuple( [name for name, value in ordered_out.items() if is_non_default(name, value)] ) return ParamsDict(ordered_out, non_default=non_default_ls)
Get parameters for this estimator with a specific HTML representation. Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : ParamsDict Parameter names mapped to their values. We return a `ParamsDict` dictionary, which renders a specific HTML representation in table form.
_get_params_html
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def is_non_default(param_name, param_value): """Finds the parameters that have been set by the user.""" if param_name not in init_default_params: # happens if k is part of a **kwargs return True if init_default_params[param_name] == inspect._empty: # k has no default value return True # avoid calling repr on nested estimators if isinstance(param_value, BaseEstimator) and type(param_value) is not type( init_default_params[param_name] ): return True if param_value != init_default_params[param_name] and not ( is_scalar_nan(init_default_params[param_name]) and is_scalar_nan(param_value) ): return True return False
Finds the parameters that have been set by the user.
is_non_default
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as :class:`~sklearn.pipeline.Pipeline`). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance. """ if not params: # Simple optimization to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) nested_params = defaultdict(dict) # grouped by prefix for key, value in params.items(): key, delim, sub_key = key.partition("__") if key not in valid_params: local_valid_params = self._get_param_names() raise ValueError( f"Invalid parameter {key!r} for estimator {self}. " f"Valid parameters are: {local_valid_params!r}." ) if delim: nested_params[key][sub_key] = value else: setattr(self, key, value) valid_params[key] = value for key, sub_params in nested_params.items(): valid_params[key].set_params(**sub_params) return self
Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as :class:`~sklearn.pipeline.Pipeline`). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance.
set_params
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _validate_params(self): """Validate types and values of constructor parameters The expected type and values must be defined in the `_parameter_constraints` class attribute, which is a dictionary `param_name: list of constraints`. See the docstring of `validate_parameter_constraints` for a description of the accepted constraints. """ validate_parameter_constraints( self._parameter_constraints, self.get_params(deep=False), caller_name=self.__class__.__name__, )
Validate types and values of constructor parameters The expected type and values must be defined in the `_parameter_constraints` class attribute, which is a dictionary `param_name: list of constraints`. See the docstring of `validate_parameter_constraints` for a description of the accepted constraints.
_validate_params
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def score(self, X, y, sample_weight=None): """ Return :ref:`accuracy <accuracy_score>` on provided data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for `X`. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float Mean accuracy of ``self.predict(X)`` w.r.t. `y`. """ from .metrics import accuracy_score return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
Return :ref:`accuracy <accuracy_score>` on provided data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for `X`. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float Mean accuracy of ``self.predict(X)`` w.r.t. `y`.
score
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def score(self, X, y, sample_weight=None): """Return :ref:`coefficient of determination <r2_score>` on test data. The coefficient of determination, :math:`R^2`, is defined as :math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v` is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of `y`, disregarding the input features, would get a :math:`R^2` score of 0.0. Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted`` is the number of samples used in the fitting for the estimator. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for `X`. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float :math:`R^2` of ``self.predict(X)`` w.r.t. `y`. Notes ----- The :math:`R^2` score used when calling ``score`` on a regressor uses ``multioutput='uniform_average'`` from version 0.23 to keep consistent with default value of :func:`~sklearn.metrics.r2_score`. This influences the ``score`` method of all the multioutput regressors (except for :class:`~sklearn.multioutput.MultiOutputRegressor`). """ from .metrics import r2_score y_pred = self.predict(X) return r2_score(y, y_pred, sample_weight=sample_weight)
Return :ref:`coefficient of determination <r2_score>` on test data. The coefficient of determination, :math:`R^2`, is defined as :math:`(1 - \frac{u}{v})`, where :math:`u` is the residual sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v` is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of `y`, disregarding the input features, would get a :math:`R^2` score of 0.0. Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted`` is the number of samples used in the fitting for the estimator. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for `X`. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float :math:`R^2` of ``self.predict(X)`` w.r.t. `y`. Notes ----- The :math:`R^2` score used when calling ``score`` on a regressor uses ``multioutput='uniform_average'`` from version 0.23 to keep consistent with default value of :func:`~sklearn.metrics.r2_score`. This influences the ``score`` method of all the multioutput regressors (except for :class:`~sklearn.multioutput.MultiOutputRegressor`).
score
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def fit_predict(self, X, y=None, **kwargs): """ Perform clustering on `X` and returns cluster labels. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : Ignored Not used, present for API consistency by convention. **kwargs : dict Arguments to be passed to ``fit``. .. versionadded:: 1.4 Returns ------- labels : ndarray of shape (n_samples,), dtype=np.int64 Cluster labels. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm self.fit(X, **kwargs) return self.labels_
Perform clustering on `X` and returns cluster labels. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : Ignored Not used, present for API consistency by convention. **kwargs : dict Arguments to be passed to ``fit``. .. versionadded:: 1.4 Returns ------- labels : ndarray of shape (n_samples,), dtype=np.int64 Cluster labels.
fit_predict
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_indices(self, i): """Row and column indices of the `i`'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Parameters ---------- i : int The index of the cluster. Returns ------- row_ind : ndarray, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : ndarray, dtype=np.intp Indices of columns in the dataset that belong to the bicluster. """ rows = self.rows_[i] columns = self.columns_[i] return np.nonzero(rows)[0], np.nonzero(columns)[0]
Row and column indices of the `i`'th bicluster. Only works if ``rows_`` and ``columns_`` attributes exist. Parameters ---------- i : int The index of the cluster. Returns ------- row_ind : ndarray, dtype=np.intp Indices of rows in the dataset that belong to the bicluster. col_ind : ndarray, dtype=np.intp Indices of columns in the dataset that belong to the bicluster.
get_indices
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_shape(self, i): """Shape of the `i`'th bicluster. Parameters ---------- i : int The index of the cluster. Returns ------- n_rows : int Number of rows in the bicluster. n_cols : int Number of columns in the bicluster. """ indices = self.get_indices(i) return tuple(len(i) for i in indices)
Shape of the `i`'th bicluster. Parameters ---------- i : int The index of the cluster. Returns ------- n_rows : int Number of rows in the bicluster. n_cols : int Number of columns in the bicluster.
get_shape
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_submatrix(self, i, data): """Return the submatrix corresponding to bicluster `i`. Parameters ---------- i : int The index of the cluster. data : array-like of shape (n_samples, n_features) The data. Returns ------- submatrix : ndarray of shape (n_rows, n_cols) The submatrix corresponding to bicluster `i`. Notes ----- Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist. """ data = check_array(data, accept_sparse="csr") row_ind, col_ind = self.get_indices(i) return data[row_ind[:, np.newaxis], col_ind]
Return the submatrix corresponding to bicluster `i`. Parameters ---------- i : int The index of the cluster. data : array-like of shape (n_samples, n_features) The data. Returns ------- submatrix : ndarray of shape (n_rows, n_cols) The submatrix corresponding to bicluster `i`. Notes ----- Works with sparse matrices. Only works if ``rows_`` and ``columns_`` attributes exist.
get_submatrix
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def fit_transform(self, X, y=None, **fit_params): """ Fit to data, then transform it. Fits transformer to `X` and `y` with optional parameters `fit_params` and returns a transformed version of `X`. Parameters ---------- X : array-like of shape (n_samples, n_features) Input samples. y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ default=None Target values (None for unsupervised transformations). **fit_params : dict Additional fit parameters. Returns ------- X_new : ndarray array of shape (n_samples, n_features_new) Transformed array. """ # non-optimized default implementation; override when a better # method is possible for a given clustering algorithm # we do not route parameters here, since consumers don't route. But # since it's possible for a `transform` method to also consume # metadata, we check if that's the case, and we raise a warning telling # users that they should implement a custom `fit_transform` method # to forward metadata to `transform` as well. # # For that, we calculate routing and check if anything would be routed # to `transform` if we were to route them. if _routing_enabled(): transform_params = self.get_metadata_routing().consumes( method="transform", params=fit_params.keys() ) if transform_params: warnings.warn( ( f"This object ({self.__class__.__name__}) has a `transform`" " method which consumes metadata, but `fit_transform` does not" " forward metadata to `transform`. Please implement a custom" " `fit_transform` method to forward metadata to `transform` as" " well. Alternatively, you can explicitly do" " `set_transform_request`and set all values to `False` to" " disable metadata routed to `transform`, if that's an option." ), UserWarning, ) if y is None: # fit method of arity 1 (unsupervised transformation) return self.fit(X, **fit_params).transform(X) else: # fit method of arity 2 (supervised transformation) return self.fit(X, y, **fit_params).transform(X)
Fit to data, then transform it. Fits transformer to `X` and `y` with optional parameters `fit_params` and returns a transformed version of `X`. Parameters ---------- X : array-like of shape (n_samples, n_features) Input samples. y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None Target values (None for unsupervised transformations). **fit_params : dict Additional fit parameters. Returns ------- X_new : ndarray array of shape (n_samples, n_features_new) Transformed array.
fit_transform
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then the following input feature names are generated: `["x0", "x1", ..., "x(n_features_in_ - 1)"]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Same as input features. """ # Note that passing attributes="n_features_in_" forces check_is_fitted # to check if the attribute is present. Otherwise it will pass on # stateless estimators (requires_fit=False) check_is_fitted(self, attributes="n_features_in_") return _check_feature_names_in(self, input_features)
Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Input features. - If `input_features` is `None`, then `feature_names_in_` is used as feature names in. If `feature_names_in_` is not defined, then the following input feature names are generated: `["x0", "x1", ..., "x(n_features_in_ - 1)"]`. - If `input_features` is an array-like, then `input_features` must match `feature_names_in_` if `feature_names_in_` is defined. Returns ------- feature_names_out : ndarray of str objects Same as input features.
get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: `["class_name0", "class_name1", "class_name2"]`. Parameters ---------- input_features : array-like of str or None, default=None Only used to validate feature names with the names seen in `fit`. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ check_is_fitted(self, "_n_features_out") return _generate_get_feature_names_out( self, self._n_features_out, input_features=input_features )
Get output feature names for transformation. The feature names out will prefixed by the lowercased class name. For example, if the transformer outputs 3 features, then the feature names out are: `["class_name0", "class_name1", "class_name2"]`. Parameters ---------- input_features : array-like of str or None, default=None Only used to validate feature names with the names seen in `fit`. Returns ------- feature_names_out : ndarray of str objects Transformed feature names.
get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def fit_predict(self, X, y=None, **kwargs): """Perform fit on X and returns labels for X. Returns -1 for outliers and 1 for inliers. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. **kwargs : dict Arguments to be passed to ``fit``. .. versionadded:: 1.4 Returns ------- y : ndarray of shape (n_samples,) 1 for inliers, -1 for outliers. """ # we do not route parameters here, since consumers don't route. But # since it's possible for a `predict` method to also consume # metadata, we check if that's the case, and we raise a warning telling # users that they should implement a custom `fit_predict` method # to forward metadata to `predict` as well. # # For that, we calculate routing and check if anything would be routed # to `predict` if we were to route them. if _routing_enabled(): transform_params = self.get_metadata_routing().consumes( method="predict", params=kwargs.keys() ) if transform_params: warnings.warn( ( f"This object ({self.__class__.__name__}) has a `predict` " "method which consumes metadata, but `fit_predict` does not " "forward metadata to `predict`. Please implement a custom " "`fit_predict` method to forward metadata to `predict` as well." "Alternatively, you can explicitly do `set_predict_request`" "and set all values to `False` to disable metadata routed to " "`predict`, if that's an option." ), UserWarning, ) # override for transductive outlier detectors like LocalOulierFactor return self.fit(X, **kwargs).predict(X)
Perform fit on X and returns labels for X. Returns -1 for outliers and 1 for inliers. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. y : Ignored Not used, present for API consistency by convention. **kwargs : dict Arguments to be passed to ``fit``. .. versionadded:: 1.4 Returns ------- y : ndarray of shape (n_samples,) 1 for inliers, -1 for outliers.
fit_predict
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def is_classifier(estimator): """Return True if the given estimator is (probably) a classifier. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. Examples -------- >>> from sklearn.base import is_classifier >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_classifier(classifier) True >>> is_classifier(regressor) False >>> is_classifier(kmeans) False """ # TODO(1.8): Remove this check if isinstance(estimator, type): warnings.warn( f"passing a class to {print(inspect.stack()[0][3])} is deprecated and " "will be removed in 1.8. Use an instance of the class instead.", FutureWarning, ) return getattr(estimator, "_estimator_type", None) == "classifier" return get_tags(estimator).estimator_type == "classifier"
Return True if the given estimator is (probably) a classifier. Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a classifier and False otherwise. Examples -------- >>> from sklearn.base import is_classifier >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_classifier(classifier) True >>> is_classifier(regressor) False >>> is_classifier(kmeans) False
is_classifier
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def is_regressor(estimator): """Return True if the given estimator is (probably) a regressor. Parameters ---------- estimator : estimator instance Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. Examples -------- >>> from sklearn.base import is_regressor >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_regressor(classifier) False >>> is_regressor(regressor) True >>> is_regressor(kmeans) False """ # TODO(1.8): Remove this check if isinstance(estimator, type): warnings.warn( f"passing a class to {print(inspect.stack()[0][3])} is deprecated and " "will be removed in 1.8. Use an instance of the class instead.", FutureWarning, ) return getattr(estimator, "_estimator_type", None) == "regressor" return get_tags(estimator).estimator_type == "regressor"
Return True if the given estimator is (probably) a regressor. Parameters ---------- estimator : estimator instance Estimator object to test. Returns ------- out : bool True if estimator is a regressor and False otherwise. Examples -------- >>> from sklearn.base import is_regressor >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_regressor(classifier) False >>> is_regressor(regressor) True >>> is_regressor(kmeans) False
is_regressor
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def is_clusterer(estimator): """Return True if the given estimator is (probably) a clusterer. .. versionadded:: 1.6 Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a clusterer and False otherwise. Examples -------- >>> from sklearn.base import is_clusterer >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_clusterer(classifier) False >>> is_clusterer(regressor) False >>> is_clusterer(kmeans) True """ # TODO(1.8): Remove this check if isinstance(estimator, type): warnings.warn( f"passing a class to {print(inspect.stack()[0][3])} is deprecated and " "will be removed in 1.8. Use an instance of the class instead.", FutureWarning, ) return getattr(estimator, "_estimator_type", None) == "clusterer" return get_tags(estimator).estimator_type == "clusterer"
Return True if the given estimator is (probably) a clusterer. .. versionadded:: 1.6 Parameters ---------- estimator : object Estimator object to test. Returns ------- out : bool True if estimator is a clusterer and False otherwise. Examples -------- >>> from sklearn.base import is_clusterer >>> from sklearn.cluster import KMeans >>> from sklearn.svm import SVC, SVR >>> classifier = SVC() >>> regressor = SVR() >>> kmeans = KMeans() >>> is_clusterer(classifier) False >>> is_clusterer(regressor) False >>> is_clusterer(kmeans) True
is_clusterer
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def is_outlier_detector(estimator): """Return True if the given estimator is (probably) an outlier detector. Parameters ---------- estimator : estimator instance Estimator object to test. Returns ------- out : bool True if estimator is an outlier detector and False otherwise. """ # TODO(1.8): Remove this check if isinstance(estimator, type): warnings.warn( f"passing a class to {print(inspect.stack()[0][3])} is deprecated and " "will be removed in 1.8. Use an instance of the class instead.", FutureWarning, ) return getattr(estimator, "_estimator_type", None) == "outlier_detector" return get_tags(estimator).estimator_type == "outlier_detector"
Return True if the given estimator is (probably) an outlier detector. Parameters ---------- estimator : estimator instance Estimator object to test. Returns ------- out : bool True if estimator is an outlier detector and False otherwise.
is_outlier_detector
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _fit_context(*, prefer_skip_nested_validation): """Decorator to run the fit methods of estimators within context managers. Parameters ---------- prefer_skip_nested_validation : bool If True, the validation of parameters of inner estimators or functions called during fit will be skipped. This is useful to avoid validating many times the parameters passed by the user from the public facing API. It's also useful to avoid validating parameters that we pass internally to inner functions that are guaranteed to be valid by the test suite. It should be set to True for most estimators, except for those that receive non-validated objects as parameters, such as meta-estimators that are given estimator objects. Returns ------- decorated_fit : method The decorated fit method. """ def decorator(fit_method): @functools.wraps(fit_method) def wrapper(estimator, *args, **kwargs): global_skip_validation = get_config()["skip_parameter_validation"] # we don't want to validate again for each call to partial_fit partial_fit_and_fitted = ( fit_method.__name__ == "partial_fit" and _is_fitted(estimator) ) if not global_skip_validation and not partial_fit_and_fitted: estimator._validate_params() with config_context( skip_parameter_validation=( prefer_skip_nested_validation or global_skip_validation ) ): return fit_method(estimator, *args, **kwargs) return wrapper return decorator
Decorator to run the fit methods of estimators within context managers. Parameters ---------- prefer_skip_nested_validation : bool If True, the validation of parameters of inner estimators or functions called during fit will be skipped. This is useful to avoid validating many times the parameters passed by the user from the public facing API. It's also useful to avoid validating parameters that we pass internally to inner functions that are guaranteed to be valid by the test suite. It should be set to True for most estimators, except for those that receive non-validated objects as parameters, such as meta-estimators that are given estimator objects. Returns ------- decorated_fit : method The decorated fit method.
_fit_context
python
scikit-learn/scikit-learn
sklearn/base.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/base.py
BSD-3-Clause
def _get_estimator(self): """Resolve which estimator to return (default is LinearSVC)""" if self.estimator is None: # we want all classifiers that don't expose a random_state # to be deterministic (and we don't want to expose this one). estimator = LinearSVC(random_state=0) if _routing_enabled(): estimator.set_fit_request(sample_weight=True) else: estimator = self.estimator return estimator
Resolve which estimator to return (default is LinearSVC)
_get_estimator
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None, **fit_params): """Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict Parameters to pass to the `fit` method of the underlying classifier. Returns ------- self : object Returns an instance of self. """ check_classification_targets(y) X, y = indexable(X, y) estimator = self._get_estimator() _ensemble = self.ensemble if _ensemble == "auto": _ensemble = not isinstance(estimator, FrozenEstimator) self.calibrated_classifiers_ = [] if self.cv == "prefit": # TODO(1.8): Remove this code branch and cv='prefit' warnings.warn( "The `cv='prefit'` option is deprecated in 1.6 and will be removed in" " 1.8. You can use CalibratedClassifierCV(FrozenEstimator(estimator))" " instead.", category=FutureWarning, ) # `classes_` should be consistent with that of estimator check_is_fitted(self.estimator, attributes=["classes_"]) self.classes_ = self.estimator.classes_ predictions, _ = _get_response_values( estimator, X, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) if sample_weight is not None: # Check that the sample_weight dtype is consistent with the predictions # to avoid unintentional upcasts. sample_weight = _check_sample_weight( sample_weight, predictions, dtype=predictions.dtype ) calibrated_classifier = _fit_calibrator( estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) else: # Set `classes_` using all `y` label_encoder_ = LabelEncoder().fit(y) self.classes_ = label_encoder_.classes_ if _routing_enabled(): routed_params = process_routing( self, "fit", sample_weight=sample_weight, **fit_params, ) else: # sample_weight checks fit_parameters = signature(estimator.fit).parameters supports_sw = "sample_weight" in fit_parameters if sample_weight is not None and not supports_sw: estimator_name = type(estimator).__name__ warnings.warn( f"Since {estimator_name} does not appear to accept" " sample_weight, sample weights will only be used for the" " calibration itself. This can be caused by a limitation of" " the current scikit-learn API. See the following issue for" " more details:" " https://github.com/scikit-learn/scikit-learn/issues/21134." " Be warned that the result of the calibration is likely to be" " incorrect." ) routed_params = Bunch() routed_params.splitter = Bunch(split={}) # no routing for splitter routed_params.estimator = Bunch(fit=fit_params) if sample_weight is not None and supports_sw: routed_params.estimator.fit["sample_weight"] = sample_weight # Check that each cross-validation fold can have at least one # example per class if isinstance(self.cv, int): n_folds = self.cv elif hasattr(self.cv, "n_splits"): n_folds = self.cv.n_splits else: n_folds = None if n_folds and np.any(np.unique(y, return_counts=True)[1] < n_folds): raise ValueError( f"Requesting {n_folds}-fold " "cross-validation but provided less than " f"{n_folds} examples for at least one class." ) if isinstance(self.cv, LeaveOneOut): raise ValueError( "LeaveOneOut cross-validation does not allow" "all classes to be present in test splits. " "Please use a cross-validation generator that allows " "all classes to appear in every test and train split." ) cv = check_cv(self.cv, y, classifier=True) if _ensemble: parallel = Parallel(n_jobs=self.n_jobs) self.calibrated_classifiers_ = parallel( delayed(_fit_classifier_calibrator_pair)( clone(estimator), X, y, train=train, test=test, method=self.method, classes=self.classes_, sample_weight=sample_weight, fit_params=routed_params.estimator.fit, ) for train, test in cv.split(X, y, **routed_params.splitter.split) ) else: this_estimator = clone(estimator) method_name = _check_response_method( this_estimator, ["decision_function", "predict_proba"], ).__name__ predictions = cross_val_predict( estimator=this_estimator, X=X, y=y, cv=cv, method=method_name, n_jobs=self.n_jobs, params=routed_params.estimator.fit, ) if len(self.classes_) == 2: # Ensure shape (n_samples, 1) in the binary case if method_name == "predict_proba": # Select the probability column of the positive class predictions = _process_predict_proba( y_pred=predictions, target_type="binary", classes=self.classes_, pos_label=self.classes_[1], ) predictions = predictions.reshape(-1, 1) if sample_weight is not None: # Check that the sample_weight dtype is consistent with the # predictions to avoid unintentional upcasts. sample_weight = _check_sample_weight( sample_weight, predictions, dtype=predictions.dtype ) this_estimator.fit(X, y, **routed_params.estimator.fit) # Note: Here we don't pass on fit_params because the supported # calibrators don't support fit_params anyway calibrated_classifier = _fit_calibrator( this_estimator, predictions, y, self.classes_, self.method, sample_weight, ) self.calibrated_classifiers_.append(calibrated_classifier) first_clf = self.calibrated_classifiers_[0].estimator if hasattr(first_clf, "n_features_in_"): self.n_features_in_ = first_clf.n_features_in_ if hasattr(first_clf, "feature_names_in_"): self.feature_names_in_ = first_clf.feature_names_in_ return self
Fit the calibrated model. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. **fit_params : dict Parameters to pass to the `fit` method of the underlying classifier. Returns ------- self : object Returns an instance of self.
fit
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def predict_proba(self, X): """Calibrated probabilities of classification. This function returns calibrated probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict_proba`. Returns ------- C : ndarray of shape (n_samples, n_classes) The predicted probas. """ check_is_fitted(self) # Compute the arithmetic mean of the predictions of the calibrated # classifiers mean_proba = np.zeros((_num_samples(X), len(self.classes_))) for calibrated_classifier in self.calibrated_classifiers_: proba = calibrated_classifier.predict_proba(X) mean_proba += proba mean_proba /= len(self.calibrated_classifiers_) return mean_proba
Calibrated probabilities of classification. This function returns calibrated probabilities of classification according to each class on an array of test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict_proba`. Returns ------- C : ndarray of shape (n_samples, n_classes) The predicted probas.
predict_proba
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def predict(self, X): """Predict the target of new samples. The predicted class is the class that has the highest probability, and can thus be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict`. Returns ------- C : ndarray of shape (n_samples,) The predicted class. """ check_is_fitted(self) return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
Predict the target of new samples. The predicted class is the class that has the highest probability, and can thus be different from the prediction of the uncalibrated classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) The samples, as accepted by `estimator.predict`. Returns ------- C : ndarray of shape (n_samples,) The predicted class.
predict
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def get_metadata_routing(self): """Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information. """ router = ( MetadataRouter(owner=self.__class__.__name__) .add_self_request(self) .add( estimator=self._get_estimator(), method_mapping=MethodMapping().add(caller="fit", callee="fit"), ) .add( splitter=self.cv, method_mapping=MethodMapping().add(caller="fit", callee="split"), ) ) return router
Get metadata routing of this object. Please check :ref:`User Guide <metadata_routing>` on how the routing mechanism works. Returns ------- routing : MetadataRouter A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating routing information.
get_metadata_routing
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def _fit_classifier_calibrator_pair( estimator, X, y, train, test, method, classes, sample_weight=None, fit_params=None, ): """Fit a classifier/calibration pair on a given train/test split. Fit the classifier on the train set, compute its predictions on the test set and use the predictions as input to fit the calibrator along with the test labels. Parameters ---------- estimator : estimator instance Cloned base estimator. X : array-like, shape (n_samples, n_features) Sample data. y : array-like, shape (n_samples,) Targets. train : ndarray, shape (n_train_indices,) Indices of the training subset. test : ndarray, shape (n_test_indices,) Indices of the testing subset. method : {'sigmoid', 'isotonic'} Method to use for calibration. classes : ndarray, shape (n_classes,) The target classes. sample_weight : array-like, default=None Sample weights for `X`. fit_params : dict, default=None Parameters to pass to the `fit` method of the underlying classifier. Returns ------- calibrated_classifier : _CalibratedClassifier instance """ fit_params_train = _check_method_params(X, params=fit_params, indices=train) X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train) X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test) estimator.fit(X_train, y_train, **fit_params_train) predictions, _ = _get_response_values( estimator, X_test, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) if sample_weight is not None: # Check that the sample_weight dtype is consistent with the predictions # to avoid unintentional upcasts. sample_weight = _check_sample_weight(sample_weight, X, dtype=predictions.dtype) sw_test = _safe_indexing(sample_weight, test) else: sw_test = None calibrated_classifier = _fit_calibrator( estimator, predictions, y_test, classes, method, sample_weight=sw_test ) return calibrated_classifier
Fit a classifier/calibration pair on a given train/test split. Fit the classifier on the train set, compute its predictions on the test set and use the predictions as input to fit the calibrator along with the test labels. Parameters ---------- estimator : estimator instance Cloned base estimator. X : array-like, shape (n_samples, n_features) Sample data. y : array-like, shape (n_samples,) Targets. train : ndarray, shape (n_train_indices,) Indices of the training subset. test : ndarray, shape (n_test_indices,) Indices of the testing subset. method : {'sigmoid', 'isotonic'} Method to use for calibration. classes : ndarray, shape (n_classes,) The target classes. sample_weight : array-like, default=None Sample weights for `X`. fit_params : dict, default=None Parameters to pass to the `fit` method of the underlying classifier. Returns ------- calibrated_classifier : _CalibratedClassifier instance
_fit_classifier_calibrator_pair
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None): """Fit calibrator(s) and return a `_CalibratedClassifier` instance. `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted. However, if `n_classes` equals 2, one calibrator is fitted. Parameters ---------- clf : estimator instance Fitted classifier. predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \ when binary. Raw predictions returned by the un-calibrated base classifier. y : array-like, shape (n_samples,) The targets. classes : ndarray, shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'} The method to use for calibration. sample_weight : ndarray, shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- pipeline : _CalibratedClassifier instance """ Y = label_binarize(y, classes=classes) label_encoder = LabelEncoder().fit(classes) pos_class_indices = label_encoder.transform(clf.classes_) calibrators = [] for class_idx, this_pred in zip(pos_class_indices, predictions.T): if method == "isotonic": calibrator = IsotonicRegression(out_of_bounds="clip") else: # "sigmoid" calibrator = _SigmoidCalibration() calibrator.fit(this_pred, Y[:, class_idx], sample_weight) calibrators.append(calibrator) pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes) return pipeline
Fit calibrator(s) and return a `_CalibratedClassifier` instance. `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted. However, if `n_classes` equals 2, one calibrator is fitted. Parameters ---------- clf : estimator instance Fitted classifier. predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) when binary. Raw predictions returned by the un-calibrated base classifier. y : array-like, shape (n_samples,) The targets. classes : ndarray, shape (n_classes,) All the prediction classes. method : {'sigmoid', 'isotonic'} The method to use for calibration. sample_weight : ndarray, shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- pipeline : _CalibratedClassifier instance
_fit_calibrator
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def predict_proba(self, X): """Calculate calibrated probabilities. Calculates classification calibrated probabilities for each class, in a one-vs-all manner, for `X`. Parameters ---------- X : ndarray of shape (n_samples, n_features) The sample data. Returns ------- proba : array, shape (n_samples, n_classes) The predicted probabilities. Can be exact zeros. """ predictions, _ = _get_response_values( self.estimator, X, response_method=["decision_function", "predict_proba"], ) if predictions.ndim == 1: # Reshape binary output from `(n_samples,)` to `(n_samples, 1)` predictions = predictions.reshape(-1, 1) n_classes = len(self.classes) label_encoder = LabelEncoder().fit(self.classes) pos_class_indices = label_encoder.transform(self.estimator.classes_) proba = np.zeros((_num_samples(X), n_classes)) for class_idx, this_pred, calibrator in zip( pos_class_indices, predictions.T, self.calibrators ): if n_classes == 2: # When binary, `predictions` consists only of predictions for # clf.classes_[1] but `pos_class_indices` = 0 class_idx += 1 proba[:, class_idx] = calibrator.predict(this_pred) # Normalize the probabilities if n_classes == 2: proba[:, 0] = 1.0 - proba[:, 1] else: denominator = np.sum(proba, axis=1)[:, np.newaxis] # In the edge case where for each class calibrator returns a null # probability for a given sample, use the uniform distribution # instead. uniform_proba = np.full_like(proba, 1 / n_classes) proba = np.divide( proba, denominator, out=uniform_proba, where=denominator != 0 ) # Deal with cases where the predicted probability minimally exceeds 1.0 proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0 return proba
Calculate calibrated probabilities. Calculates classification calibrated probabilities for each class, in a one-vs-all manner, for `X`. Parameters ---------- X : ndarray of shape (n_samples, n_features) The sample data. Returns ------- proba : array, shape (n_samples, n_classes) The predicted probabilities. Can be exact zeros.
predict_proba
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def _sigmoid_calibration( predictions, y, sample_weight=None, max_abs_prediction_threshold=30 ): """Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines" """ predictions = column_or_1d(predictions) y = column_or_1d(y) F = predictions # F follows Platt's notations scale_constant = 1.0 max_prediction = np.max(np.abs(F)) # If the predictions have large values we scale them in order to bring # them within a suitable range. This has no effect on the final # (prediction) result because linear models like Logisitic Regression # without a penalty are invariant to multiplying the features by a # constant. if max_prediction >= max_abs_prediction_threshold: scale_constant = max_prediction # We rescale the features in a copy: inplace rescaling could confuse # the caller and make the code harder to reason about. F = F / scale_constant # Bayesian priors (see Platt end of section 2.2): # It corresponds to the number of samples, taking into account the # `sample_weight`. mask_negative_samples = y <= 0 if sample_weight is not None: prior0 = (sample_weight[mask_negative_samples]).sum() prior1 = (sample_weight[~mask_negative_samples]).sum() else: prior0 = float(np.sum(mask_negative_samples)) prior1 = y.shape[0] - prior0 T = np.zeros_like(y, dtype=predictions.dtype) T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0) T[y <= 0] = 1.0 / (prior0 + 2.0) bin_loss = HalfBinomialLoss() def loss_grad(AB): # .astype below is needed to ensure y_true and raw_prediction have the # same dtype. With result = np.float64(0) * np.array([1, 2], dtype=np.float32) # - in Numpy 2, result.dtype is float64 # - in Numpy<2, result.dtype is float32 raw_prediction = -(AB[0] * F + AB[1]).astype(dtype=predictions.dtype) l, g = bin_loss.loss_gradient( y_true=T, raw_prediction=raw_prediction, sample_weight=sample_weight, ) loss = l.sum() # TODO: Remove casting to np.float64 when minimum supported SciPy is 1.11.2 # With SciPy >= 1.11.2, the LBFGS implementation will cast to float64 # https://github.com/scipy/scipy/pull/18825. # Here we cast to float64 to support SciPy < 1.11.2 grad = np.asarray([-g @ F, -g.sum()], dtype=np.float64) return loss, grad AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))]) opt_result = minimize( loss_grad, AB0, method="L-BFGS-B", jac=True, options={ "gtol": 1e-6, "ftol": 64 * np.finfo(float).eps, }, ) AB_ = opt_result.x # The tuned multiplicative parameter is converted back to the original # input feature scale. The offset parameter does not need rescaling since # we did not rescale the outcome variable. return AB_[0] / scale_constant, AB_[1]
Probability Calibration with sigmoid method (Platt 2000) Parameters ---------- predictions : ndarray of shape (n_samples,) The decision function or predict proba for the samples. y : ndarray of shape (n_samples,) The targets. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- a : float The slope. b : float The intercept. References ---------- Platt, "Probabilistic Outputs for Support Vector Machines"
_sigmoid_calibration
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self. """ X = column_or_1d(X) y = column_or_1d(y) X, y = indexable(X, y) self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight) return self
Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Returns ------- self : object Returns an instance of self.
fit
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def predict(self, T): """Predict new data by linear interpolation. Parameters ---------- T : array-like of shape (n_samples,) Data to predict from. Returns ------- T_ : ndarray of shape (n_samples,) The predicted data. """ T = column_or_1d(T) return expit(-(self.a_ * T + self.b_))
Predict new data by linear interpolation. Parameters ---------- T : array-like of shape (n_samples,) Data to predict from. Returns ------- T_ : ndarray of shape (n_samples,) The predicted data.
predict
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def calibration_curve( y_true, y_prob, *, pos_label=None, n_bins=5, strategy="uniform", ): """Compute true and predicted probabilities for a calibration curve. The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array-like of shape (n_samples,) True targets. y_prob : array-like of shape (n_samples,) Probabilities of the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. .. versionadded:: 1.1 n_bins : int, default=5 Number of bins to discretize the [0, 1] interval. A bigger number requires more data. Bins with no samples (i.e. without corresponding values in `y_prob`) will not be returned, thus the returned arrays may have less than `n_bins` values. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. uniform The bins have identical widths. quantile The bins have the same number of samples and depend on `y_prob`. Returns ------- prob_true : ndarray of shape (n_bins,) or smaller The proportion of samples whose class is the positive class, in each bin (fraction of positives). prob_pred : ndarray of shape (n_bins,) or smaller The mean predicted probability in each bin. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). Examples -------- >>> import numpy as np >>> from sklearn.calibration import calibration_curve >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1]) >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3) >>> prob_true array([0. , 0.5, 1. ]) >>> prob_pred array([0.2 , 0.525, 0.85 ]) """ y_true = column_or_1d(y_true) y_prob = column_or_1d(y_prob) check_consistent_length(y_true, y_prob) pos_label = _check_pos_label_consistency(pos_label, y_true) if y_prob.min() < 0 or y_prob.max() > 1: raise ValueError("y_prob has values outside [0, 1].") labels = np.unique(y_true) if len(labels) > 2: raise ValueError( f"Only binary classification is supported. Provided labels {labels}." ) y_true = y_true == pos_label if strategy == "quantile": # Determine bin edges by distribution of data quantiles = np.linspace(0, 1, n_bins + 1) bins = np.percentile(y_prob, quantiles * 100) elif strategy == "uniform": bins = np.linspace(0.0, 1.0, n_bins + 1) else: raise ValueError( "Invalid entry to 'strategy' input. Strategy " "must be either 'quantile' or 'uniform'." ) binids = np.searchsorted(bins[1:-1], y_prob) bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins)) bin_true = np.bincount(binids, weights=y_true, minlength=len(bins)) bin_total = np.bincount(binids, minlength=len(bins)) nonzero = bin_total != 0 prob_true = bin_true[nonzero] / bin_total[nonzero] prob_pred = bin_sums[nonzero] / bin_total[nonzero] return prob_true, prob_pred
Compute true and predicted probabilities for a calibration curve. The method assumes the inputs come from a binary classifier, and discretize the [0, 1] interval into bins. Calibration curves may also be referred to as reliability diagrams. Read more in the :ref:`User Guide <calibration>`. Parameters ---------- y_true : array-like of shape (n_samples,) True targets. y_prob : array-like of shape (n_samples,) Probabilities of the positive class. pos_label : int, float, bool or str, default=None The label of the positive class. .. versionadded:: 1.1 n_bins : int, default=5 Number of bins to discretize the [0, 1] interval. A bigger number requires more data. Bins with no samples (i.e. without corresponding values in `y_prob`) will not be returned, thus the returned arrays may have less than `n_bins` values. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. uniform The bins have identical widths. quantile The bins have the same number of samples and depend on `y_prob`. Returns ------- prob_true : ndarray of shape (n_bins,) or smaller The proportion of samples whose class is the positive class, in each bin (fraction of positives). prob_pred : ndarray of shape (n_bins,) or smaller The mean predicted probability in each bin. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. References ---------- Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good Probabilities With Supervised Learning, in Proceedings of the 22nd International Conference on Machine Learning (ICML). See section 4 (Qualitative Analysis of Predictions). Examples -------- >>> import numpy as np >>> from sklearn.calibration import calibration_curve >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1]) >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.]) >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3) >>> prob_true array([0. , 0.5, 1. ]) >>> prob_pred array([0.2 , 0.525, 0.85 ])
calibration_curve
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def plot(self, *, ax=None, name=None, ref_line=True, **kwargs): """Plot visualization. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. name : str, default=None Name for labeling curve. If `None`, use `estimator_name` if not `None`, otherwise no labeling is shown. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay` Object that stores computed values. """ self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name) info_pos_label = ( f"(Positive class: {self.pos_label})" if self.pos_label is not None else "" ) default_line_kwargs = {"marker": "s", "linestyle": "-"} if name is not None: default_line_kwargs["label"] = name line_kwargs = _validate_style_kwargs(default_line_kwargs, kwargs) ref_line_label = "Perfectly calibrated" existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1] if ref_line and not existing_ref_line: self.ax_.plot([0, 1], [0, 1], "k:", label=ref_line_label) self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0] # We always have to show the legend for at least the reference line self.ax_.legend(loc="lower right") xlabel = f"Mean predicted probability {info_pos_label}" ylabel = f"Fraction of positives {info_pos_label}" self.ax_.set(xlabel=xlabel, ylabel=ylabel) return self
Plot visualization. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. name : str, default=None Name for labeling curve. If `None`, use `estimator_name` if not `None`, otherwise no labeling is shown. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay` Object that stores computed values.
plot
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def from_estimator( cls, estimator, X, y, *, n_bins=5, strategy="uniform", pos_label=None, name=None, ax=None, ref_line=True, **kwargs, ): """Plot calibration curve using a binary classifier and data. A calibration curve, also known as a reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide <calibration>` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. The classifier must have a :term:`predict_proba` method. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Binary target values. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default, `estimators.classes_[1]` is considered as the positive class. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. If `None`, the name of the estimator is used. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test) >>> plt.show() """ y_prob, pos_label, name = cls._validate_and_get_response_values( estimator, X, y, response_method="predict_proba", pos_label=pos_label, name=name, ) return cls.from_predictions( y, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label, name=name, ref_line=ref_line, ax=ax, **kwargs, )
Plot calibration curve using a binary classifier and data. A calibration curve, also known as a reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide <calibration>` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- estimator : estimator instance Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a classifier. The classifier must have a :term:`predict_proba` method. X : {array-like, sparse matrix} of shape (n_samples, n_features) Input values. y : array-like of shape (n_samples,) Binary target values. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default, `estimators.classes_[1]` is considered as the positive class. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. If `None`, the name of the estimator is used. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_predictions : Plot calibration curve using true and predicted labels. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test) >>> plt.show()
from_estimator
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def from_predictions( cls, y_true, y_prob, *, n_bins=5, strategy="uniform", pos_label=None, name=None, ax=None, ref_line=True, **kwargs, ): """Plot calibration curve using true labels and predicted probabilities. Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide <calibration>` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- y_true : array-like of shape (n_samples,) True labels. y_prob : array-like of shape (n_samples,) The predicted probabilities of the positive class. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default `pos_label` is set to 1. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob) >>> plt.show() """ pos_label_validated, name = cls._validate_from_predictions_params( y_true, y_prob, sample_weight=None, pos_label=pos_label, name=name ) prob_true, prob_pred = calibration_curve( y_true, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label ) disp = cls( prob_true=prob_true, prob_pred=prob_pred, y_prob=y_prob, estimator_name=name, pos_label=pos_label_validated, ) return disp.plot(ax=ax, ref_line=ref_line, **kwargs)
Plot calibration curve using true labels and predicted probabilities. Calibration curve, also known as reliability diagram, uses inputs from a binary classifier and plots the average predicted probability for each bin against the fraction of positive classes, on the y-axis. Extra keyword arguments will be passed to :func:`matplotlib.pyplot.plot`. Read more about calibration in the :ref:`User Guide <calibration>` and more about the scikit-learn visualization API in :ref:`visualizations`. .. versionadded:: 1.0 Parameters ---------- y_true : array-like of shape (n_samples,) True labels. y_prob : array-like of shape (n_samples,) The predicted probabilities of the positive class. n_bins : int, default=5 Number of bins to discretize the [0, 1] interval into when calculating the calibration curve. A bigger number requires more data. strategy : {'uniform', 'quantile'}, default='uniform' Strategy used to define the widths of the bins. - `'uniform'`: The bins have identical widths. - `'quantile'`: The bins have the same number of samples and depend on predicted probabilities. pos_label : int, float, bool or str, default=None The positive class when computing the calibration curve. By default `pos_label` is set to 1. .. versionadded:: 1.1 name : str, default=None Name for labeling curve. ax : matplotlib axes, default=None Axes object to plot on. If `None`, a new figure and axes is created. ref_line : bool, default=True If `True`, plots a reference line representing a perfectly calibrated classifier. **kwargs : dict Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`. Returns ------- display : :class:`~sklearn.calibration.CalibrationDisplay`. Object that stores computed values. See Also -------- CalibrationDisplay.from_estimator : Plot calibration curve using an estimator and data. Examples -------- >>> import matplotlib.pyplot as plt >>> from sklearn.datasets import make_classification >>> from sklearn.model_selection import train_test_split >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.calibration import CalibrationDisplay >>> X, y = make_classification(random_state=0) >>> X_train, X_test, y_train, y_test = train_test_split( ... X, y, random_state=0) >>> clf = LogisticRegression(random_state=0) >>> clf.fit(X_train, y_train) LogisticRegression(random_state=0) >>> y_prob = clf.predict_proba(X_test)[:, 1] >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob) >>> plt.show()
from_predictions
python
scikit-learn/scikit-learn
sklearn/calibration.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/calibration.py
BSD-3-Clause
def _fetch_fixture(f): """Fetch dataset (download if missing and requested by environment).""" download_if_missing = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0" @wraps(f) def wrapped(*args, **kwargs): kwargs["download_if_missing"] = download_if_missing try: return f(*args, **kwargs) except OSError as e: if str(e) != "Data not found and `download_if_missing` is False": raise pytest.skip("test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0") return pytest.fixture(lambda: wrapped)
Fetch dataset (download if missing and requested by environment).
_fetch_fixture
python
scikit-learn/scikit-learn
sklearn/conftest.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/conftest.py
BSD-3-Clause
def pytest_collection_modifyitems(config, items): """Called after collect is completed. Parameters ---------- config : pytest config items : list of collected items """ run_network_tests = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0" skip_network = pytest.mark.skip( reason="test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0" ) # download datasets during collection to avoid thread unsafe behavior # when running pytest in parallel with pytest-xdist dataset_features_set = set(dataset_fetchers) datasets_to_download = set() for item in items: if isinstance(item, DoctestItem) and "fetch_" in item.name: fetcher_function_name = item.name.split(".")[-1] dataset_fetchers_key = f"{fetcher_function_name}_fxt" dataset_to_fetch = set([dataset_fetchers_key]) & dataset_features_set elif not hasattr(item, "fixturenames"): continue else: item_fixtures = set(item.fixturenames) dataset_to_fetch = item_fixtures & dataset_features_set if not dataset_to_fetch: continue if run_network_tests: datasets_to_download |= dataset_to_fetch else: # network tests are skipped item.add_marker(skip_network) # Only download datasets on the first worker spawned by pytest-xdist # to avoid thread unsafe behavior. If pytest-xdist is not used, we still # download before tests run. worker_id = environ.get("PYTEST_XDIST_WORKER", "gw0") if worker_id == "gw0" and run_network_tests: for name in datasets_to_download: with suppress(SkipTest): dataset_fetchers[name]() for item in items: # Known failure on with GradientBoostingClassifier on ARM64 if ( item.name.endswith("GradientBoostingClassifier") and platform.machine() == "aarch64" ): marker = pytest.mark.xfail( reason=( "know failure. See " "https://github.com/scikit-learn/scikit-learn/issues/17797" ) ) item.add_marker(marker) skip_doctests = False try: import matplotlib # noqa: F401 except ImportError: skip_doctests = True reason = "matplotlib is required to run the doctests" if _IS_32BIT: reason = "doctest are only run when the default numpy int is 64 bits." skip_doctests = True elif sys.platform.startswith("win32"): reason = ( "doctests are not run for Windows because numpy arrays " "repr is inconsistent across platforms." ) skip_doctests = True if np_base_version < parse_version("2"): # TODO: configure numpy to output scalar arrays as regular Python scalars # once possible to improve readability of the tests docstrings. # https://numpy.org/neps/nep-0051-scalar-representation.html#implementation reason = "Due to NEP 51 numpy scalar repr has changed in numpy 2" skip_doctests = True if sp_version < parse_version("1.14"): reason = "Scipy sparse matrix repr has changed in scipy 1.14" skip_doctests = True # Normally doctest has the entire module's scope. Here we set globs to an empty dict # to remove the module's scope: # https://docs.python.org/3/library/doctest.html#what-s-the-execution-context for item in items: if isinstance(item, DoctestItem): item.dtest.globs = {} if skip_doctests: skip_marker = pytest.mark.skip(reason=reason) for item in items: if isinstance(item, DoctestItem): # work-around an internal error with pytest if adding a skip # mark to a doctest in a contextmanager, see # https://github.com/pytest-dev/pytest/issues/8796 for more # details. if item.name != "sklearn._config.config_context": item.add_marker(skip_marker) try: import PIL # noqa: F401 pillow_installed = True except ImportError: pillow_installed = False if not pillow_installed: skip_marker = pytest.mark.skip(reason="pillow (or PIL) not installed!") for item in items: if item.name in [ "sklearn.feature_extraction.image.PatchExtractor", "sklearn.feature_extraction.image.extract_patches_2d", ]: item.add_marker(skip_marker)
Called after collect is completed. Parameters ---------- config : pytest config items : list of collected items
pytest_collection_modifyitems
python
scikit-learn/scikit-learn
sklearn/conftest.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/conftest.py
BSD-3-Clause
def pyplot(): """Setup and teardown fixture for matplotlib. This fixture checks if we can import matplotlib. If not, the tests will be skipped. Otherwise, we close the figures before and after running the functions. Returns ------- pyplot : module The ``matplotlib.pyplot`` module. """ pyplot = pytest.importorskip("matplotlib.pyplot") pyplot.close("all") yield pyplot pyplot.close("all")
Setup and teardown fixture for matplotlib. This fixture checks if we can import matplotlib. If not, the tests will be skipped. Otherwise, we close the figures before and after running the functions. Returns ------- pyplot : module The ``matplotlib.pyplot`` module.
pyplot
python
scikit-learn/scikit-learn
sklearn/conftest.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/conftest.py
BSD-3-Clause
def pytest_generate_tests(metafunc): """Parametrization of global_random_seed fixture based on the SKLEARN_TESTS_GLOBAL_RANDOM_SEED environment variable. The goal of this fixture is to prevent tests that use it to be sensitive to a specific seed value while still being deterministic by default. See the documentation for the SKLEARN_TESTS_GLOBAL_RANDOM_SEED variable for instructions on how to use this fixture. https://scikit-learn.org/dev/computing/parallelism.html#sklearn-tests-global-random-seed """ # When using pytest-xdist this function is called in the xdist workers. # We rely on SKLEARN_TESTS_GLOBAL_RANDOM_SEED environment variable which is # set in before running pytest and is available in xdist workers since they # are subprocesses. RANDOM_SEED_RANGE = list(range(100)) # All seeds in [0, 99] should be valid. random_seed_var = environ.get("SKLEARN_TESTS_GLOBAL_RANDOM_SEED") default_random_seeds = [42] if random_seed_var is None: random_seeds = default_random_seeds elif random_seed_var == "all": random_seeds = RANDOM_SEED_RANGE else: if "-" in random_seed_var: start, stop = random_seed_var.split("-") random_seeds = list(range(int(start), int(stop) + 1)) else: random_seeds = [int(random_seed_var)] if min(random_seeds) < 0 or max(random_seeds) > 99: raise ValueError( "The value(s) of the environment variable " "SKLEARN_TESTS_GLOBAL_RANDOM_SEED must be in the range [0, 99] " f"(or 'all'), got: {random_seed_var}" ) if "global_random_seed" in metafunc.fixturenames: metafunc.parametrize("global_random_seed", random_seeds)
Parametrization of global_random_seed fixture based on the SKLEARN_TESTS_GLOBAL_RANDOM_SEED environment variable. The goal of this fixture is to prevent tests that use it to be sensitive to a specific seed value while still being deterministic by default. See the documentation for the SKLEARN_TESTS_GLOBAL_RANDOM_SEED variable for instructions on how to use this fixture. https://scikit-learn.org/dev/computing/parallelism.html#sklearn-tests-global-random-seed
pytest_generate_tests
python
scikit-learn/scikit-learn
sklearn/conftest.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/conftest.py
BSD-3-Clause
def print_changed_only_false(): """Set `print_changed_only` to False for the duration of the test.""" set_config(print_changed_only=False) yield set_config(print_changed_only=True) # reset to default
Set `print_changed_only` to False for the duration of the test.
print_changed_only_false
python
scikit-learn/scikit-learn
sklearn/conftest.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/conftest.py
BSD-3-Clause
def _cov(X, shrinkage=None, covariance_estimator=None): """Estimate covariance matrix (using optional covariance_estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. shrinkage : {'empirical', 'auto'} or float, default=None Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying on the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in :mod:`sklearn.covariance``. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- s : ndarray of shape (n_features, n_features) Estimated covariance matrix. """ if covariance_estimator is None: shrinkage = "empirical" if shrinkage is None else shrinkage if isinstance(shrinkage, str): if shrinkage == "auto": sc = StandardScaler() # standardize features X = sc.fit_transform(X) s = ledoit_wolf(X)[0] # rescale s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :] elif shrinkage == "empirical": s = empirical_covariance(X) elif isinstance(shrinkage, Real): s = shrunk_covariance(empirical_covariance(X), shrinkage) else: if shrinkage is not None and shrinkage != 0: raise ValueError( "covariance_estimator and shrinkage parameters " "are not None. Only one of the two can be set." ) covariance_estimator.fit(X) if not hasattr(covariance_estimator, "covariance_"): raise ValueError( "%s does not have a covariance_ attribute" % covariance_estimator.__class__.__name__ ) s = covariance_estimator.covariance_ return s
Estimate covariance matrix (using optional covariance_estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. shrinkage : {'empirical', 'auto'} or float, default=None Shrinkage parameter, possible values: - None or 'empirical': no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying on the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in :mod:`sklearn.covariance``. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- s : ndarray of shape (n_features, n_features) Estimated covariance matrix.
_cov
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def _class_means(X, y): """Compute class means. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like of shape (n_classes, n_features) Class means. """ xp, is_array_api_compliant = get_namespace(X) classes, y = xp.unique_inverse(y) means = xp.zeros((classes.shape[0], X.shape[1]), device=device(X), dtype=X.dtype) if is_array_api_compliant: for i in range(classes.shape[0]): means[i, :] = xp.mean(X[y == i], axis=0) else: # TODO: Explore the choice of using bincount + add.at as it seems sub optimal # from a performance-wise cnt = np.bincount(y) np.add.at(means, y, X) means /= cnt[:, None] return means
Compute class means. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. Returns ------- means : array-like of shape (n_classes, n_features) Class means.
_class_means
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def _class_cov(X, y, priors, shrinkage=None, covariance_estimator=None): """Compute weighted within-class covariance matrix. The per-class covariance are weighted by the class priors. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like of shape (n_classes,) Class priors. shrinkage : 'auto' or float, default=None Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. If None, the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- cov : array-like of shape (n_features, n_features) Weighted within-class covariance matrix """ classes = np.unique(y) cov = np.zeros(shape=(X.shape[1], X.shape[1])) for idx, group in enumerate(classes): Xg = X[y == group, :] cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage, covariance_estimator)) return cov
Compute weighted within-class covariance matrix. The per-class covariance are weighted by the class priors. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. priors : array-like of shape (n_classes,) Class priors. shrinkage : 'auto' or float, default=None Shrinkage parameter, possible values: - None: no shrinkage (default). - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` is not None. covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. If None, the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Returns ------- cov : array-like of shape (n_features, n_features) Weighted within-class covariance matrix
_class_cov
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def decision_function(self, X): """Apply decision function to an array of samples. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array of samples (test vectors). Returns ------- y_scores : ndarray of shape (n_samples,) or (n_samples, n_classes) Decision function values related to each class, per sample. In the two-class case, the shape is `(n_samples,)`, giving the log likelihood ratio of the positive class. """ y_scores = self._decision_function(X) if len(self.classes_) == 2: return y_scores[:, 1] - y_scores[:, 0] return y_scores
Apply decision function to an array of samples. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Array of samples (test vectors). Returns ------- y_scores : ndarray of shape (n_samples,) or (n_samples, n_classes) Decision function values related to each class, per sample. In the two-class case, the shape is `(n_samples,)`, giving the log likelihood ratio of the positive class.
decision_function
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def predict_log_proba(self, X): """Estimate log class probabilities. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data. Returns ------- y_log_proba : ndarray of shape (n_samples, n_classes) Estimated log probabilities. """ scores = self._decision_function(X) log_likelihood = scores - scores.max(axis=1)[:, np.newaxis] return log_likelihood - np.log( np.exp(log_likelihood).sum(axis=1)[:, np.newaxis] )
Estimate log class probabilities. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Input data. Returns ------- y_log_proba : ndarray of shape (n_samples, n_classes) Estimated log probabilities.
predict_log_proba
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def _solve_lstsq(self, X, y, shrinkage, covariance_estimator): """Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with any covariance estimator), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` i not None covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov( X, y, self.priors_, shrinkage, covariance_estimator ) self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log( self.priors_ )
Least squares solver. The least squares solver computes a straightforward solution of the optimal decision rule based directly on the discriminant functions. It can only be used for classification (with any covariance estimator), because estimation of eigenvectors is not performed. Therefore, dimensionality reduction with the transform is not supported. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_classes) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage parameter. Shrinkage parameter is ignored if `covariance_estimator` i not None covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Notes ----- This solver is based on [1]_, section 2.6.2, pp. 39-41. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3.
_solve_lstsq
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def _solve_eigen(self, X, y, shrinkage, covariance_estimator): """Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with any covariance estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Shrinkage parameter is ignored if `covariance_estimator` i not None covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3. """ self.means_ = _class_means(X, y) self.covariance_ = _class_cov( X, y, self.priors_, shrinkage, covariance_estimator ) Sw = self.covariance_ # within scatter St = _cov(X, shrinkage, covariance_estimator) # total scatter Sb = St - Sw # between scatter evals, evecs = linalg.eigh(Sb, Sw) self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1][ : self._max_components ] evecs = evecs[:, np.argsort(evals)[::-1]] # sort eigenvectors self.scalings_ = evecs self.coef_ = np.dot(self.means_, evecs).dot(evecs.T) self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log( self.priors_ )
Eigenvalue solver. The eigenvalue solver computes the optimal solution of the Rayleigh coefficient (basically the ratio of between class scatter to within class scatter). This solver supports both classification and dimensionality reduction (with any covariance estimator). Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. shrinkage : 'auto', float or None Shrinkage parameter, possible values: - None: no shrinkage. - 'auto': automatic shrinkage using the Ledoit-Wolf lemma. - float between 0 and 1: fixed shrinkage constant. Shrinkage parameter is ignored if `covariance_estimator` i not None covariance_estimator : estimator, default=None If not None, `covariance_estimator` is used to estimate the covariance matrices instead of relying the empirical covariance estimator (with potential shrinkage). The object should have a fit method and a ``covariance_`` attribute like the estimators in sklearn.covariance. if None the shrinkage parameter drives the estimate. .. versionadded:: 0.24 Notes ----- This solver is based on [1]_, section 3.8.3, pp. 121-124. References ---------- .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN 0-471-05669-3.
_solve_eigen
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def _solve_svd(self, X, y): """SVD solver. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values. """ xp, is_array_api_compliant = get_namespace(X) if is_array_api_compliant: svd = xp.linalg.svd else: svd = scipy.linalg.svd n_samples, n_features = X.shape n_classes = self.classes_.shape[0] self.means_ = _class_means(X, y) if self.store_covariance: self.covariance_ = _class_cov(X, y, self.priors_) Xc = [] for idx, group in enumerate(self.classes_): Xg = X[y == group] Xc.append(Xg - self.means_[idx, :]) self.xbar_ = self.priors_ @ self.means_ Xc = xp.concat(Xc, axis=0) # 1) within (univariate) scaling by with classes std-dev std = xp.std(Xc, axis=0) # avoid division by zero in normalization std[std == 0] = 1.0 fac = xp.asarray(1.0 / (n_samples - n_classes), dtype=X.dtype, device=device(X)) # 2) Within variance scaling X = xp.sqrt(fac) * (Xc / std) # SVD of centered (within)scaled data U, S, Vt = svd(X, full_matrices=False) rank = xp.sum(xp.astype(S > self.tol, xp.int32)) # Scaling of within covariance is: V' 1/S scalings = (Vt[:rank, :] / std).T / S[:rank] fac = 1.0 if n_classes == 1 else 1.0 / (n_classes - 1) # 3) Between variance scaling # Scale weighted centers X = ( (xp.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T ).T @ scalings # Centers are living in a space with n_classes-1 dim (maximum) # Use SVD to find projection in the space spanned by the # (n_classes) centers _, S, Vt = svd(X, full_matrices=False) if self._max_components == 0: self.explained_variance_ratio_ = xp.empty((0,), dtype=S.dtype) else: self.explained_variance_ratio_ = (S**2 / xp.sum(S**2))[ : self._max_components ] rank = xp.sum(xp.astype(S > self.tol * S[0], xp.int32)) self.scalings_ = scalings @ Vt.T[:, :rank] coef = (self.means_ - self.xbar_) @ self.scalings_ self.intercept_ = -0.5 * xp.sum(coef**2, axis=1) + xp.log(self.priors_) self.coef_ = coef @ self.scalings_.T self.intercept_ -= self.xbar_ @ self.coef_.T
SVD solver. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values.
_solve_svd
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def fit(self, X, y): """Fit the Linear Discriminant Analysis model. .. versionchanged:: 0.19 `store_covariance` and `tol` has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. Returns ------- self : object Fitted estimator. """ xp, _ = get_namespace(X) X, y = validate_data( self, X, y, ensure_min_samples=2, dtype=[xp.float64, xp.float32] ) self.classes_ = unique_labels(y) n_samples, _ = X.shape n_classes = self.classes_.shape[0] if n_samples == n_classes: raise ValueError( "The number of samples must be more than the number of classes." ) if self.priors is None: # estimate priors from sample _, cnts = xp.unique_counts(y) # non-negative ints self.priors_ = xp.astype(cnts, X.dtype) / float(y.shape[0]) else: self.priors_ = xp.asarray(self.priors, dtype=X.dtype) if xp.any(self.priors_ < 0): raise ValueError("priors must be non-negative") if xp.abs(xp.sum(self.priors_) - 1.0) > 1e-5: warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning) self.priors_ = self.priors_ / self.priors_.sum() # Maximum number of components no matter what n_components is # specified: max_components = min(n_classes - 1, X.shape[1]) if self.n_components is None: self._max_components = max_components else: if self.n_components > max_components: raise ValueError( "n_components cannot be larger than min(n_features, n_classes - 1)." ) self._max_components = self.n_components if self.solver == "svd": if self.shrinkage is not None: raise NotImplementedError("shrinkage not supported with 'svd' solver.") if self.covariance_estimator is not None: raise ValueError( "covariance estimator " "is not supported " "with svd solver. Try another solver" ) self._solve_svd(X, y) elif self.solver == "lsqr": self._solve_lstsq( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) elif self.solver == "eigen": self._solve_eigen( X, y, shrinkage=self.shrinkage, covariance_estimator=self.covariance_estimator, ) if size(self.classes_) == 2: # treat binary case as a special case coef_ = xp.asarray(self.coef_[1, :] - self.coef_[0, :], dtype=X.dtype) self.coef_ = xp.reshape(coef_, (1, -1)) intercept_ = xp.asarray( self.intercept_[1] - self.intercept_[0], dtype=X.dtype ) self.intercept_ = xp.reshape(intercept_, (1,)) self._n_features_out = self._max_components return self
Fit the Linear Discriminant Analysis model. .. versionchanged:: 0.19 `store_covariance` and `tol` has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) Target values. Returns ------- self : object Fitted estimator.
fit
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def transform(self, X): """Project data to maximize class separation. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- X_new : ndarray of shape (n_samples, n_components) or \ (n_samples, min(rank, n_components)) Transformed data. In the case of the 'svd' solver, the shape is (n_samples, min(rank, n_components)). """ if self.solver == "lsqr": raise NotImplementedError( "transform not implemented for 'lsqr' solver (use 'svd' or 'eigen')." ) check_is_fitted(self) xp, _ = get_namespace(X) X = validate_data(self, X, reset=False) if self.solver == "svd": X_new = (X - self.xbar_) @ self.scalings_ elif self.solver == "eigen": X_new = X @ self.scalings_ return X_new[:, : self._max_components]
Project data to maximize class separation. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- X_new : ndarray of shape (n_samples, n_components) or (n_samples, min(rank, n_components)) Transformed data. In the case of the 'svd' solver, the shape is (n_samples, min(rank, n_components)).
transform
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def predict_proba(self, X): """Estimate probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated probabilities. """ check_is_fitted(self) xp, is_array_api_compliant = get_namespace(X) decision = self.decision_function(X) if size(self.classes_) == 2: proba = _expit(decision, xp) return xp.stack([1 - proba, proba], axis=1) else: return softmax(decision)
Estimate probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated probabilities.
predict_proba
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def predict_log_proba(self, X): """Estimate log probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated log probabilities. """ xp, _ = get_namespace(X) prediction = self.predict_proba(X) info = xp.finfo(prediction.dtype) if hasattr(info, "smallest_normal"): smallest_normal = info.smallest_normal else: # smallest_normal was introduced in NumPy 1.22 smallest_normal = info.tiny prediction[prediction == 0.0] += smallest_normal return xp.log(prediction)
Estimate log probability. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. Returns ------- C : ndarray of shape (n_samples, n_classes) Estimated log probabilities.
predict_log_proba
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def fit(self, X, y): """Fit the model according to the given training data and parameters. .. versionchanged:: 0.19 ``store_covariances`` has been moved to main constructor as ``store_covariance``. .. versionchanged:: 0.19 ``tol`` has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values (integers). Returns ------- self : object Fitted estimator. """ X, y = validate_data(self, X, y) check_classification_targets(y) self.classes_, y = np.unique(y, return_inverse=True) n_samples, n_features = X.shape n_classes = len(self.classes_) if n_classes < 2: raise ValueError( "The number of classes has to be greater than one; got %d class" % (n_classes) ) if self.priors is None: self.priors_ = np.bincount(y) / float(n_samples) else: self.priors_ = np.array(self.priors) cov = None store_covariance = self.store_covariance if store_covariance: cov = [] means = [] scalings = [] rotations = [] for ind in range(n_classes): Xg = X[y == ind, :] meang = Xg.mean(0) means.append(meang) if len(Xg) == 1: raise ValueError( "y has only 1 sample in class %s, covariance is ill defined." % str(self.classes_[ind]) ) Xgc = Xg - meang # Xgc = U * S * V.T _, S, Vt = np.linalg.svd(Xgc, full_matrices=False) S2 = (S**2) / (len(Xg) - 1) S2 = ((1 - self.reg_param) * S2) + self.reg_param rank = np.sum(S2 > self.tol) if rank < n_features: warnings.warn( f"The covariance matrix of class {ind} is not full rank. " "Increasing the value of parameter `reg_param` might help" " reducing the collinearity.", linalg.LinAlgWarning, ) if self.store_covariance or store_covariance: # cov = V * (S^2 / (n-1)) * V.T cov.append(np.dot(S2 * Vt.T, Vt)) scalings.append(S2) rotations.append(Vt.T) if self.store_covariance or store_covariance: self.covariance_ = cov self.means_ = np.asarray(means) self.scalings_ = scalings self.rotations_ = rotations return self
Fit the model according to the given training data and parameters. .. versionchanged:: 0.19 ``store_covariances`` has been moved to main constructor as ``store_covariance``. .. versionchanged:: 0.19 ``tol`` has been moved to main constructor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training vector, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values (integers). Returns ------- self : object Fitted estimator.
fit
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def predict_proba(self, X): """Return posterior probabilities of classification. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples/test vectors. Returns ------- C : ndarray of shape (n_samples, n_classes) Posterior probabilities of classification per class. """ # compute the likelihood of the underlying gaussian models # up to a multiplicative constant. return super().predict_proba(X)
Return posterior probabilities of classification. Parameters ---------- X : array-like of shape (n_samples, n_features) Array of samples/test vectors. Returns ------- C : ndarray of shape (n_samples, n_classes) Posterior probabilities of classification per class.
predict_proba
python
scikit-learn/scikit-learn
sklearn/discriminant_analysis.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/discriminant_analysis.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None): """Fit the baseline classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_outputs) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Returns the instance itself. """ validate_data(self, X, skip_check_array=True) self._strategy = self.strategy if self._strategy == "uniform" and sp.issparse(y): y = y.toarray() warnings.warn( ( "A local copy of the target data has been converted " "to a numpy array. Predicting on sparse target data " "with the uniform strategy would not save memory " "and would be slower." ), UserWarning, ) self.sparse_output_ = sp.issparse(y) if not self.sparse_output_: y = np.asarray(y) y = np.atleast_1d(y) if y.ndim == 1: y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] check_consistent_length(X, y) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) if self._strategy == "constant": if self.constant is None: raise ValueError( "Constant target value has to be specified " "when the constant strategy is used." ) else: constant = np.reshape(np.atleast_1d(self.constant), (-1, 1)) if constant.shape[0] != self.n_outputs_: raise ValueError( "Constant target value should have shape (%d, 1)." % self.n_outputs_ ) (self.classes_, self.n_classes_, self.class_prior_) = class_distribution( y, sample_weight ) if self._strategy == "constant": for k in range(self.n_outputs_): if not any(constant[k][0] == c for c in self.classes_[k]): # Checking in case of constant strategy if the constant # provided by the user is in y. err_msg = ( "The constant target value must be present in " "the training data. You provided constant={}. " "Possible values are: {}.".format( self.constant, self.classes_[k].tolist() ) ) raise ValueError(err_msg) if self.n_outputs_ == 1: self.n_classes_ = self.n_classes_[0] self.classes_ = self.classes_[0] self.class_prior_ = self.class_prior_[0] return self
Fit the baseline classifier. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_outputs) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Returns the instance itself.
fit
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def predict(self, X): """Perform classification on test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) Predicted target values for X. """ check_is_fitted(self) # numpy random_state expects Python int and not long as size argument # under Windows n_samples = _num_samples(X) rs = check_random_state(self.random_state) n_classes_ = self.n_classes_ classes_ = self.classes_ class_prior_ = self.class_prior_ constant = self.constant if self.n_outputs_ == 1: # Get same type even for self.n_outputs_ == 1 n_classes_ = [n_classes_] classes_ = [classes_] class_prior_ = [class_prior_] constant = [constant] # Compute probability only once if self._strategy == "stratified": proba = self.predict_proba(X) if self.n_outputs_ == 1: proba = [proba] if self.sparse_output_: class_prob = None if self._strategy in ("most_frequent", "prior"): classes_ = [np.array([cp.argmax()]) for cp in class_prior_] elif self._strategy == "stratified": class_prob = class_prior_ elif self._strategy == "uniform": raise ValueError( "Sparse target prediction is not " "supported with the uniform strategy" ) elif self._strategy == "constant": classes_ = [np.array([c]) for c in constant] y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state) else: if self._strategy in ("most_frequent", "prior"): y = np.tile( [ classes_[k][class_prior_[k].argmax()] for k in range(self.n_outputs_) ], [n_samples, 1], ) elif self._strategy == "stratified": y = np.vstack( [ classes_[k][proba[k].argmax(axis=1)] for k in range(self.n_outputs_) ] ).T elif self._strategy == "uniform": ret = [ classes_[k][rs.randint(n_classes_[k], size=n_samples)] for k in range(self.n_outputs_) ] y = np.vstack(ret).T elif self._strategy == "constant": y = np.tile(self.constant, (n_samples, 1)) if self.n_outputs_ == 1: y = np.ravel(y) return y
Perform classification on test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) Predicted target values for X.
predict
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def predict_proba(self, X): """ Return probability estimates for the test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. Returns ------- P : ndarray of shape (n_samples, n_classes) or list of such arrays Returns the probability of the sample for each class in the model, where classes are ordered arithmetically, for each output. """ check_is_fitted(self) # numpy random_state expects Python int and not long as size argument # under Windows n_samples = _num_samples(X) rs = check_random_state(self.random_state) n_classes_ = self.n_classes_ classes_ = self.classes_ class_prior_ = self.class_prior_ constant = self.constant if self.n_outputs_ == 1: # Get same type even for self.n_outputs_ == 1 n_classes_ = [n_classes_] classes_ = [classes_] class_prior_ = [class_prior_] constant = [constant] P = [] for k in range(self.n_outputs_): if self._strategy == "most_frequent": ind = class_prior_[k].argmax() out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64) out[:, ind] = 1.0 elif self._strategy == "prior": out = np.ones((n_samples, 1)) * class_prior_[k] elif self._strategy == "stratified": out = rs.multinomial(1, class_prior_[k], size=n_samples) out = out.astype(np.float64) elif self._strategy == "uniform": out = np.ones((n_samples, n_classes_[k]), dtype=np.float64) out /= n_classes_[k] elif self._strategy == "constant": ind = np.where(classes_[k] == constant[k]) out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64) out[:, ind] = 1.0 P.append(out) if self.n_outputs_ == 1: P = P[0] return P
Return probability estimates for the test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. Returns ------- P : ndarray of shape (n_samples, n_classes) or list of such arrays Returns the probability of the sample for each class in the model, where classes are ordered arithmetically, for each output.
predict_proba
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def predict_log_proba(self, X): """ Return log probability estimates for the test vectors X. Parameters ---------- X : {array-like, object with finite length or shape} Training data. Returns ------- P : ndarray of shape (n_samples, n_classes) or list of such arrays Returns the log probability of the sample for each class in the model, where classes are ordered arithmetically for each output. """ proba = self.predict_proba(X) if self.n_outputs_ == 1: return np.log(proba) else: return [np.log(p) for p in proba]
Return log probability estimates for the test vectors X. Parameters ---------- X : {array-like, object with finite length or shape} Training data. Returns ------- P : ndarray of shape (n_samples, n_classes) or list of such arrays Returns the log probability of the sample for each class in the model, where classes are ordered arithmetically for each output.
predict_log_proba
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def score(self, X, y, sample_weight=None): """Return the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : None or array-like of shape (n_samples, n_features) Test samples. Passing None as test samples gives the same result as passing real test samples, since DummyClassifier operates independently of the sampled observations. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) w.r.t. y. """ if X is None: X = np.zeros(shape=(len(y), 1)) return super().score(X, y, sample_weight)
Return the mean accuracy on the given test data and labels. In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted. Parameters ---------- X : None or array-like of shape (n_samples, n_features) Test samples. Passing None as test samples gives the same result as passing real test samples, since DummyClassifier operates independently of the sampled observations. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float Mean accuracy of self.predict(X) w.r.t. y.
score
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None): """Fit the baseline regressor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_outputs) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Fitted estimator. """ validate_data(self, X, skip_check_array=True) y = check_array(y, ensure_2d=False, input_name="y") if len(y) == 0: raise ValueError("y must not be empty.") if y.ndim == 1: y = np.reshape(y, (-1, 1)) self.n_outputs_ = y.shape[1] check_consistent_length(X, y, sample_weight) if sample_weight is not None: sample_weight = _check_sample_weight(sample_weight, X) if self.strategy == "mean": self.constant_ = np.average(y, axis=0, weights=sample_weight) elif self.strategy == "median": if sample_weight is None: self.constant_ = np.median(y, axis=0) else: self.constant_ = [ _weighted_percentile(y[:, k], sample_weight, percentile_rank=50.0) for k in range(self.n_outputs_) ] elif self.strategy == "quantile": if self.quantile is None: raise ValueError( "When using `strategy='quantile', you have to specify the desired " "quantile in the range [0, 1]." ) percentile_rank = self.quantile * 100.0 if sample_weight is None: self.constant_ = np.percentile(y, axis=0, q=percentile_rank) else: self.constant_ = [ _weighted_percentile( y[:, k], sample_weight, percentile_rank=percentile_rank ) for k in range(self.n_outputs_) ] elif self.strategy == "constant": if self.constant is None: raise TypeError( "Constant target value has to be specified " "when the constant strategy is used." ) self.constant_ = check_array( self.constant, accept_sparse=["csr", "csc", "coo"], ensure_2d=False, ensure_min_samples=0, ) if self.n_outputs_ != 1 and self.constant_.shape[0] != y.shape[1]: raise ValueError( "Constant target value should have shape (%d, 1)." % y.shape[1] ) self.constant_ = np.reshape(self.constant_, (1, -1)) return self
Fit the baseline regressor. Parameters ---------- X : array-like of shape (n_samples, n_features) Training data. y : array-like of shape (n_samples,) or (n_samples, n_outputs) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- self : object Fitted estimator.
fit
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def predict(self, X, return_std=False): """Perform classification on test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. return_std : bool, default=False Whether to return the standard deviation of posterior prediction. All zeros in this case. .. versionadded:: 0.20 Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) Predicted target values for X. y_std : array-like of shape (n_samples,) or (n_samples, n_outputs) Standard deviation of predictive distribution of query points. """ check_is_fitted(self) n_samples = _num_samples(X) y = np.full( (n_samples, self.n_outputs_), self.constant_, dtype=np.array(self.constant_).dtype, ) y_std = np.zeros((n_samples, self.n_outputs_)) if self.n_outputs_ == 1: y = np.ravel(y) y_std = np.ravel(y_std) return (y, y_std) if return_std else y
Perform classification on test vectors X. Parameters ---------- X : array-like of shape (n_samples, n_features) Test data. return_std : bool, default=False Whether to return the standard deviation of posterior prediction. All zeros in this case. .. versionadded:: 0.20 Returns ------- y : array-like of shape (n_samples,) or (n_samples, n_outputs) Predicted target values for X. y_std : array-like of shape (n_samples,) or (n_samples, n_outputs) Standard deviation of predictive distribution of query points.
predict
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def score(self, X, y, sample_weight=None): """Return the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : None or array-like of shape (n_samples, n_features) Test samples. Passing None as test samples gives the same result as passing real test samples, since `DummyRegressor` operates independently of the sampled observations. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float R^2 of `self.predict(X)` w.r.t. y. """ if X is None: X = np.zeros(shape=(len(y), 1)) return super().score(X, y, sample_weight)
Return the coefficient of determination R^2 of the prediction. The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0. Parameters ---------- X : None or array-like of shape (n_samples, n_features) Test samples. Passing None as test samples gives the same result as passing real test samples, since `DummyRegressor` operates independently of the sampled observations. y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for X. sample_weight : array-like of shape (n_samples,), default=None Sample weights. Returns ------- score : float R^2 of `self.predict(X)` w.r.t. y.
score
python
scikit-learn/scikit-learn
sklearn/dummy.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/dummy.py
BSD-3-Clause
def check_increasing(x, y): """Determine whether y is monotonically correlated with x. y is found increasing or decreasing with respect to x based on a Spearman correlation test. Parameters ---------- x : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. Returns ------- increasing_bool : boolean Whether the relationship is increasing or decreasing. Notes ----- The Spearman correlation coefficient is estimated from the data, and the sign of the resulting estimate is used as the result. In the event that the 95% confidence interval based on Fisher transform spans zero, a warning is raised. References ---------- Fisher transformation. Wikipedia. https://en.wikipedia.org/wiki/Fisher_transformation Examples -------- >>> from sklearn.isotonic import check_increasing >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10] >>> check_increasing(x, y) np.True_ >>> y = [10, 8, 6, 4, 2] >>> check_increasing(x, y) np.False_ """ # Calculate Spearman rho estimate and set return accordingly. rho, _ = spearmanr(x, y) increasing_bool = rho >= 0 # Run Fisher transform to get the rho CI, but handle rho=+/-1 if rho not in [-1.0, 1.0] and len(x) > 3: F = 0.5 * math.log((1.0 + rho) / (1.0 - rho)) F_se = 1 / math.sqrt(len(x) - 3) # Use a 95% CI, i.e., +/-1.96 S.E. # https://en.wikipedia.org/wiki/Fisher_transformation rho_0 = math.tanh(F - 1.96 * F_se) rho_1 = math.tanh(F + 1.96 * F_se) # Warn if the CI spans zero. if np.sign(rho_0) != np.sign(rho_1): warnings.warn( "Confidence interval of the Spearman " "correlation coefficient spans zero. " "Determination of ``increasing`` may be " "suspect." ) return increasing_bool
Determine whether y is monotonically correlated with x. y is found increasing or decreasing with respect to x based on a Spearman correlation test. Parameters ---------- x : array-like of shape (n_samples,) Training data. y : array-like of shape (n_samples,) Training target. Returns ------- increasing_bool : boolean Whether the relationship is increasing or decreasing. Notes ----- The Spearman correlation coefficient is estimated from the data, and the sign of the resulting estimate is used as the result. In the event that the 95% confidence interval based on Fisher transform spans zero, a warning is raised. References ---------- Fisher transformation. Wikipedia. https://en.wikipedia.org/wiki/Fisher_transformation Examples -------- >>> from sklearn.isotonic import check_increasing >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10] >>> check_increasing(x, y) np.True_ >>> y = [10, 8, 6, 4, 2] >>> check_increasing(x, y) np.False_
check_increasing
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def isotonic_regression( y, *, sample_weight=None, y_min=None, y_max=None, increasing=True ): """Solve the isotonic regression model. Read more in the :ref:`User Guide <isotonic>`. Parameters ---------- y : array-like of shape (n_samples,) The data. sample_weight : array-like of shape (n_samples,), default=None Weights on each point of the regression. If None, weight is set to 1 (equal weights). y_min : float, default=None Lower bound on the lowest predicted value (the minimum value may still be higher). If not set, defaults to -inf. y_max : float, default=None Upper bound on the highest predicted value (the maximum may still be lower). If not set, defaults to +inf. increasing : bool, default=True Whether to compute ``y_`` is increasing (if set to True) or decreasing (if set to False). Returns ------- y_ : ndarray of shape (n_samples,) Isotonic fit of y. References ---------- "Active set algorithms for isotonic regression; A unifying framework" by Michael J. Best and Nilotpal Chakravarti, section 3. Examples -------- >>> from sklearn.isotonic import isotonic_regression >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4]) array([2.75 , 2.75 , 2.75 , 2.75 , 7.33, 7.33, 7.33, 7.33, 7.33, 7.33]) """ y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32]) if sp_base_version >= parse_version("1.12.0"): res = optimize.isotonic_regression( y=y, weights=sample_weight, increasing=increasing ) y = np.asarray(res.x, dtype=y.dtype) else: # TODO: remove this branch when Scipy 1.12 is the minimum supported version # Also remove _inplace_contiguous_isotonic_regression. order = np.s_[:] if increasing else np.s_[::-1] y = np.array(y[order], dtype=y.dtype) sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True) sample_weight = np.ascontiguousarray(sample_weight[order]) _inplace_contiguous_isotonic_regression(y, sample_weight) y = y[order] if y_min is not None or y_max is not None: # Older versions of np.clip don't accept None as a bound, so use np.inf if y_min is None: y_min = -np.inf if y_max is None: y_max = np.inf np.clip(y, y_min, y_max, y) return y
Solve the isotonic regression model. Read more in the :ref:`User Guide <isotonic>`. Parameters ---------- y : array-like of shape (n_samples,) The data. sample_weight : array-like of shape (n_samples,), default=None Weights on each point of the regression. If None, weight is set to 1 (equal weights). y_min : float, default=None Lower bound on the lowest predicted value (the minimum value may still be higher). If not set, defaults to -inf. y_max : float, default=None Upper bound on the highest predicted value (the maximum may still be lower). If not set, defaults to +inf. increasing : bool, default=True Whether to compute ``y_`` is increasing (if set to True) or decreasing (if set to False). Returns ------- y_ : ndarray of shape (n_samples,) Isotonic fit of y. References ---------- "Active set algorithms for isotonic regression; A unifying framework" by Michael J. Best and Nilotpal Chakravarti, section 3. Examples -------- >>> from sklearn.isotonic import isotonic_regression >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4]) array([2.75 , 2.75 , 2.75 , 2.75 , 7.33, 7.33, 7.33, 7.33, 7.33, 7.33])
isotonic_regression
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def fit(self, X, y, sample_weight=None): """Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) or (n_samples, 1) Training data. .. versionchanged:: 0.24 Also accepts 2d array with 1 feature. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Weights. If set to None, all weights will be set to 1 (equal weights). Returns ------- self : object Returns an instance of self. Notes ----- X is stored for future use, as :meth:`transform` needs X to interpolate new input data. """ check_params = dict(accept_sparse=False, ensure_2d=False) X = check_array( X, input_name="X", dtype=[np.float64, np.float32], **check_params ) y = check_array(y, input_name="y", dtype=X.dtype, **check_params) check_consistent_length(X, y, sample_weight) # Transform y by running the isotonic regression algorithm and # transform X accordingly. X, y = self._build_y(X, y, sample_weight) # It is necessary to store the non-redundant part of the training set # on the model to make it possible to support model persistence via # the pickle module as the object built by scipy.interp1d is not # picklable directly. self.X_thresholds_, self.y_thresholds_ = X, y # Build the interpolation function self._build_f(X, y) return self
Fit the model using X, y as training data. Parameters ---------- X : array-like of shape (n_samples,) or (n_samples, 1) Training data. .. versionchanged:: 0.24 Also accepts 2d array with 1 feature. y : array-like of shape (n_samples,) Training target. sample_weight : array-like of shape (n_samples,), default=None Weights. If set to None, all weights will be set to 1 (equal weights). Returns ------- self : object Returns an instance of self. Notes ----- X is stored for future use, as :meth:`transform` needs X to interpolate new input data.
fit
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def _transform(self, T): """`_transform` is called by both `transform` and `predict` methods. Since `transform` is wrapped to output arrays of specific types (e.g. NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform` directly. The above behaviour could be changed in the future, if we decide to output other type of arrays when calling `predict`. """ if hasattr(self, "X_thresholds_"): dtype = self.X_thresholds_.dtype else: dtype = np.float64 T = check_array(T, dtype=dtype, ensure_2d=False) self._check_input_data_shape(T) T = T.reshape(-1) # use 1d view if self.out_of_bounds == "clip": T = np.clip(T, self.X_min_, self.X_max_) res = self.f_(T) # on scipy 0.17, interp1d up-casts to float64, so we cast back res = res.astype(T.dtype) return res
`_transform` is called by both `transform` and `predict` methods. Since `transform` is wrapped to output arrays of specific types (e.g. NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform` directly. The above behaviour could be changed in the future, if we decide to output other type of arrays when calling `predict`.
_transform
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Ignored. Returns ------- feature_names_out : ndarray of str objects An ndarray with one string i.e. ["isotonicregression0"]. """ check_is_fitted(self, "f_") class_name = self.__class__.__name__.lower() return np.asarray([f"{class_name}0"], dtype=object)
Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Ignored. Returns ------- feature_names_out : ndarray of str objects An ndarray with one string i.e. ["isotonicregression0"].
get_feature_names_out
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def __getstate__(self): """Pickle-protocol - return state of the estimator.""" state = super().__getstate__() # remove interpolation method state.pop("f_", None) return state
Pickle-protocol - return state of the estimator.
__getstate__
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def __setstate__(self, state): """Pickle-protocol - set state of the estimator. We need to rebuild the interpolation function. """ super().__setstate__(state) if hasattr(self, "X_thresholds_") and hasattr(self, "y_thresholds_"): self._build_f(self.X_thresholds_, self.y_thresholds_)
Pickle-protocol - set state of the estimator. We need to rebuild the interpolation function.
__setstate__
python
scikit-learn/scikit-learn
sklearn/isotonic.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/isotonic.py
BSD-3-Clause
def fit(self, X, y=None): """Fit the model with X. Initializes the internal variables. The method needs no information about the distribution of data, so we only care about n_features in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) or (n_samples, n_outputs), \ default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself. """ X = validate_data(self, X, accept_sparse="csc") random_state = check_random_state(self.random_state) n_features = X.shape[1] if self.coef0 != 0: n_features += 1 self.indexHash_ = random_state.randint( 0, high=self.n_components, size=(self.degree, n_features) ) self.bitHash_ = random_state.choice(a=[-1, 1], size=(self.degree, n_features)) self._n_features_out = self.n_components return self
Fit the model with X. Initializes the internal variables. The method needs no information about the distribution of data, so we only care about n_features in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) or (n_samples, n_outputs), default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself.
fit
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def transform(self, X): """Generate the feature map approximation for X. Parameters ---------- X : {array-like}, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself. """ check_is_fitted(self) X = validate_data(self, X, accept_sparse="csc", reset=False) X_gamma = np.sqrt(self.gamma) * X if sp.issparse(X_gamma) and self.coef0 != 0: X_gamma = sp.hstack( [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))], format="csc", ) elif not sp.issparse(X_gamma) and self.coef0 != 0: X_gamma = np.hstack( [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))] ) if X_gamma.shape[1] != self.indexHash_.shape[1]: raise ValueError( "Number of features of test samples does not" " match that of training samples." ) count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components)) if sp.issparse(X_gamma): for j in range(X_gamma.shape[1]): for d in range(self.degree): iHashIndex = self.indexHash_[d, j] iHashBit = self.bitHash_[d, j] count_sketches[:, d, iHashIndex] += ( (iHashBit * X_gamma[:, [j]]).toarray().ravel() ) else: for j in range(X_gamma.shape[1]): for d in range(self.degree): iHashIndex = self.indexHash_[d, j] iHashBit = self.bitHash_[d, j] count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j] # For each same, compute a count sketch of phi(x) using the polynomial # multiplication (via FFT) of p count sketches of x. count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True) count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1) data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True)) return data_sketch
Generate the feature map approximation for X. Parameters ---------- X : {array-like}, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself.
transform
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself. """ X = validate_data(self, X, accept_sparse="csr") random_state = check_random_state(self.random_state) n_features = X.shape[1] sparse = sp.issparse(X) if self.gamma == "scale": # var = E[X^2] - E[X]^2 if sparse X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var() self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0 else: self._gamma = self.gamma self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal( size=(n_features, self.n_components) ) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) if X.dtype == np.float32: # Setting the data type of the fitted attribute will ensure the # output data type during `transform`. self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False) self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False) self._n_features_out = self.n_components return self
Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself.
fit
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def transform(self, X): """Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself. """ check_is_fitted(self) X = validate_data(self, X, accept_sparse="csr", reset=False) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= (2.0 / self.n_components) ** 0.5 return projection
Apply the approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself.
transform
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def fit(self, X, y=None): """Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself. """ X = validate_data(self, X) random_state = check_random_state(self.random_state) n_features = X.shape[1] uniform = random_state.uniform(size=(n_features, self.n_components)) # transform by inverse CDF of sech self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform)) self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components) if X.dtype == np.float32: # Setting the data type of the fitted attribute will ensure the # output data type during `transform`. self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False) self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False) self._n_features_out = self.n_components return self
Fit the model with X. Samples random projection according to n_features. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the instance itself.
fit
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def transform(self, X): """Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. All values of X must be strictly greater than "-skewedness". Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself. """ check_is_fitted(self) X = validate_data( self, X, copy=True, dtype=[np.float64, np.float32], reset=False ) if (X <= -self.skewedness).any(): raise ValueError("X may not contain entries smaller than -skewedness.") X += self.skewedness np.log(X, X) projection = safe_sparse_dot(X, self.random_weights_) projection += self.random_offset_ np.cos(projection, projection) projection *= np.sqrt(2.0) / np.sqrt(self.n_components) return projection
Apply the approximate feature map to X. Parameters ---------- X : array-like, shape (n_samples, n_features) New data, where `n_samples` is the number of samples and `n_features` is the number of features. All values of X must be strictly greater than "-skewedness". Returns ------- X_new : array-like, shape (n_samples, n_components) Returns the instance itself.
transform
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def fit(self, X, y=None): """Only validates estimator's parameters. This method allows to: (i) validate the estimator's parameters and (ii) be consistent with the scikit-learn transformer API. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), \ default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the transformer. """ X = validate_data(self, X, accept_sparse="csr", ensure_non_negative=True) if self.sample_interval is None and self.sample_steps not in (1, 2, 3): raise ValueError( "If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval" ) return self
Only validates estimator's parameters. This method allows to: (i) validate the estimator's parameters and (ii) be consistent with the scikit-learn transformer API. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like, shape (n_samples,) or (n_samples, n_outputs), default=None Target values (None for unsupervised transformations). Returns ------- self : object Returns the transformer.
fit
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause
def transform(self, X): """Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : {ndarray, sparse matrix}, \ shape = (n_samples, n_features * (2*sample_steps - 1)) Whether the return value is an array or sparse matrix depends on the type of the input X. """ X = validate_data( self, X, accept_sparse="csr", reset=False, ensure_non_negative=True ) sparse = sp.issparse(X) if self.sample_interval is None: # See figure 2 c) of "Efficient additive kernels via explicit feature maps" # <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf> # A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # 2011 if self.sample_steps == 1: sample_interval = 0.8 elif self.sample_steps == 2: sample_interval = 0.5 elif self.sample_steps == 3: sample_interval = 0.4 else: raise ValueError( "If sample_steps is not in [1, 2, 3]," " you need to provide sample_interval" ) else: sample_interval = self.sample_interval # zeroth component # 1/cosh = sech # cosh(0) = 1.0 transf = self._transform_sparse if sparse else self._transform_dense return transf(X, self.sample_steps, sample_interval)
Apply approximate feature map to X. Parameters ---------- X : {array-like, sparse matrix}, shape (n_samples, n_features) Training data, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- X_new : {ndarray, sparse matrix}, shape = (n_samples, n_features * (2*sample_steps - 1)) Whether the return value is an array or sparse matrix depends on the type of the input X.
transform
python
scikit-learn/scikit-learn
sklearn/kernel_approximation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
BSD-3-Clause