code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Only used to validate feature names with the names seen in :meth:`fit`.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
# Note that passing attributes="n_features_in_" forces check_is_fitted
# to check if the attribute is present. Otherwise it will pass on this
# stateless estimator (requires_fit=False)
check_is_fitted(self, attributes="n_features_in_")
input_features = _check_feature_names_in(
self, input_features, generate_names=True
)
est_name = self.__class__.__name__.lower()
names_list = [f"{est_name}_{name}_sqrt" for name in input_features]
for j in range(1, self.sample_steps):
cos_names = [f"{est_name}_{name}_cos{j}" for name in input_features]
sin_names = [f"{est_name}_{name}_sin{j}" for name in input_features]
names_list.extend(cos_names + sin_names)
return np.asarray(names_list, dtype=object)
|
Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Only used to validate feature names with the names seen in :meth:`fit`.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
|
get_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/kernel_approximation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Fit estimator to data.
Samples a subset of training points, computes kernel
on these and computes normalization matrix.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the instance itself.
"""
X = validate_data(self, X, accept_sparse="csr")
rnd = check_random_state(self.random_state)
n_samples = X.shape[0]
# get basis vectors
if self.n_components > n_samples:
# XXX should we just bail?
n_components = n_samples
warnings.warn(
"n_components > n_samples. This is not possible.\n"
"n_components was set to n_samples, which results"
" in inefficient evaluation of the full kernel."
)
else:
n_components = self.n_components
n_components = min(n_samples, n_components)
inds = rnd.permutation(n_samples)
basis_inds = inds[:n_components]
basis = X[basis_inds]
basis_kernel = pairwise_kernels(
basis,
metric=self.kernel,
filter_params=True,
n_jobs=self.n_jobs,
**self._get_kernel_params(),
)
# sqrt of kernel matrix on basis vectors
U, S, V = svd(basis_kernel)
S = np.maximum(S, 1e-12)
self.normalization_ = np.dot(U / np.sqrt(S), V)
self.components_ = basis
self.component_indices_ = basis_inds
self._n_features_out = n_components
return self
|
Fit estimator to data.
Samples a subset of training points, computes kernel
on these and computes normalization matrix.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like, shape (n_samples,) or (n_samples, n_outputs), default=None
Target values (None for unsupervised transformations).
Returns
-------
self : object
Returns the instance itself.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/kernel_approximation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
|
BSD-3-Clause
|
def transform(self, X):
"""Apply feature map to X.
Computes an approximate feature map using the kernel
between some training points and X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data to transform.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_components)
Transformed data.
"""
check_is_fitted(self)
X = validate_data(self, X, accept_sparse="csr", reset=False)
kernel_params = self._get_kernel_params()
embedded = pairwise_kernels(
X,
self.components_,
metric=self.kernel,
filter_params=True,
n_jobs=self.n_jobs,
**kernel_params,
)
return np.dot(embedded, self.normalization_.T)
|
Apply feature map to X.
Computes an approximate feature map using the kernel
between some training points and X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data to transform.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_components)
Transformed data.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/kernel_approximation.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_approximation.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Fit Kernel Ridge regression model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. If kernel == "precomputed" this is instead
a precomputed kernel matrix, of shape (n_samples, n_samples).
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : float or array-like of shape (n_samples,), default=None
Individual weights for each sample, ignored if None is passed.
Returns
-------
self : object
Returns the instance itself.
"""
# Convert data
X, y = validate_data(
self, X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
)
if sample_weight is not None and not isinstance(sample_weight, float):
sample_weight = _check_sample_weight(sample_weight, X)
K = self._get_kernel(X)
alpha = np.atleast_1d(self.alpha)
ravel = False
if len(y.shape) == 1:
y = y.reshape(-1, 1)
ravel = True
copy = self.kernel == "precomputed"
self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy)
if ravel:
self.dual_coef_ = self.dual_coef_.ravel()
self.X_fit_ = X
return self
|
Fit Kernel Ridge regression model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training data. If kernel == "precomputed" this is instead
a precomputed kernel matrix, of shape (n_samples, n_samples).
y : array-like of shape (n_samples,) or (n_samples, n_targets)
Target values.
sample_weight : float or array-like of shape (n_samples,), default=None
Individual weights for each sample, ignored if None is passed.
Returns
-------
self : object
Returns the instance itself.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/kernel_ridge.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_ridge.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict using the kernel ridge model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples. If kernel == "precomputed" this is instead a
precomputed kernel matrix, shape = [n_samples,
n_samples_fitted], where n_samples_fitted is the number of
samples used in the fitting for this estimator.
Returns
-------
C : ndarray of shape (n_samples,) or (n_samples, n_targets)
Returns predicted values.
"""
check_is_fitted(self)
X = validate_data(self, X, accept_sparse=("csr", "csc"), reset=False)
K = self._get_kernel(X, self.X_fit_)
return np.dot(K, self.dual_coef_)
|
Predict using the kernel ridge model.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples. If kernel == "precomputed" this is instead a
precomputed kernel matrix, shape = [n_samples,
n_samples_fitted], where n_samples_fitted is the number of
samples used in the fitting for this estimator.
Returns
-------
C : ndarray of shape (n_samples,) or (n_samples, n_targets)
Returns predicted values.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/kernel_ridge.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/kernel_ridge.py
|
BSD-3-Clause
|
def _predict_binary(estimator, X):
"""Make predictions using a single binary estimator."""
if is_regressor(estimator):
return estimator.predict(X)
try:
score = np.ravel(estimator.decision_function(X))
except (AttributeError, NotImplementedError):
# probabilities of the positive class
score = estimator.predict_proba(X)[:, 1]
return score
|
Make predictions using a single binary estimator.
|
_predict_binary
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def _threshold_for_binary_predict(estimator):
"""Threshold for predictions from binary estimator."""
if hasattr(estimator, "decision_function") and is_classifier(estimator):
return 0.0
else:
# predict_proba threshold
return 0.5
|
Threshold for predictions from binary estimator.
|
_threshold_for_binary_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def _estimators_has(attr):
"""Check if self.estimator or self.estimators_[0] has attr.
If `self.estimators_[0]` has the attr, then its safe to assume that other
estimators have it too. We raise the original `AttributeError` if `attr`
does not exist. This function is used together with `available_if`.
"""
def check(self):
if hasattr(self, "estimators_"):
getattr(self.estimators_[0], attr)
else:
getattr(self.estimator, attr)
return True
return check
|
Check if self.estimator or self.estimators_[0] has attr.
If `self.estimators_[0]` has the attr, then its safe to assume that other
estimators have it too. We raise the original `AttributeError` if `attr`
does not exist. This function is used together with `available_if`.
|
_estimators_has
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Multi-class targets. An indicator matrix turns on multilabel
classification.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Instance of fitted estimator.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
# A sparse LabelBinarizer, with sparse_output=True, has been shown to
# outperform or match a dense label binarizer in all cases and has also
# resulted in less or equal memory consumption in the fit_ovr function
# overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
Y = self.label_binarizer_.fit_transform(y)
Y = Y.tocsc()
self.classes_ = self.label_binarizer_.classes_
columns = (col.toarray().ravel() for col in Y.T)
# In cases where individual estimators are very fast to train setting
# n_jobs > 1 in can results in slower performance due to the overhead
# of spawning threads. See joblib issue #112.
self.estimators_ = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
delayed(_fit_binary)(
self.estimator,
X,
column,
fit_params=routed_params.estimator.fit,
classes=[
"not %s" % self.label_binarizer_.classes_[i],
self.label_binarizer_.classes_[i],
],
)
for i, column in enumerate(columns)
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
|
Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Multi-class targets. An indicator matrix turns on multilabel
classification.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Instance of fitted estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Predicted multi-class targets.
"""
check_is_fitted(self)
n_samples = _num_samples(X)
if self.label_binarizer_.y_type_ == "multiclass":
maxima = np.empty(n_samples, dtype=float)
maxima.fill(-np.inf)
argmaxima = np.zeros(n_samples, dtype=int)
for i, e in enumerate(self.estimators_):
pred = _predict_binary(e, X)
np.maximum(maxima, pred, out=maxima)
argmaxima[maxima == pred] = i
return self.classes_[argmaxima]
else:
thresh = _threshold_for_binary_predict(self.estimators_[0])
indices = array.array("i")
indptr = array.array("i", [0])
for e in self.estimators_:
indices.extend(np.where(_predict_binary(e, X) > thresh)[0])
indptr.append(len(indices))
data = np.ones(len(indices), dtype=int)
indicator = sp.csc_matrix(
(data, indices, indptr), shape=(n_samples, len(self.estimators_))
)
return self.label_binarizer_.inverse_transform(indicator)
|
Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_classes)
Predicted multi-class targets.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by label of classes.
Note that in the multilabel case, each sample can have any number of
labels. This returns the marginal probability that the given sample has
the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.
In the single label multiclass case, the rows of the returned matrix
sum to 1.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes)
Returns the probability of the sample for each class in the model,
where classes are ordered as they are in `self.classes_`.
"""
check_is_fitted(self)
# Y[i, j] gives the probability that sample i has the label j.
# In the multi-label case, these are not disjoint.
Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T
if len(self.estimators_) == 1:
# Only one estimator, but we still want to return probabilities
# for two classes.
Y = np.concatenate(((1 - Y), Y), axis=1)
if not self.multilabel_:
# Then, (nonzero) sample probability distributions should be normalized.
row_sums = np.sum(Y, axis=1)[:, np.newaxis]
np.divide(Y, row_sums, out=Y, where=row_sums != 0)
return Y
|
Probability estimates.
The returned estimates for all classes are ordered by label of classes.
Note that in the multilabel case, each sample can have any number of
labels. This returns the marginal probability that the given sample has
the label in question. For example, it is entirely consistent that two
labels both have a 90% probability of applying to a given sample.
In the single label multiclass case, the rows of the returned matrix
sum to 1.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes)
Returns the probability of the sample for each class in the model,
where classes are ordered as they are in `self.classes_`.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def decision_function(self, X):
"""Decision function for the OneVsRestClassifier.
Return the distance of each sample from the decision boundary for each
class. This can only be used with estimators which implement the
`decision_function` method.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes) or (n_samples,) for \
binary classification.
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
"""
check_is_fitted(self)
if len(self.estimators_) == 1:
return self.estimators_[0].decision_function(X)
return np.array(
[est.decision_function(X).ravel() for est in self.estimators_]
).T
|
Decision function for the OneVsRestClassifier.
Return the distance of each sample from the decision boundary for each
class. This can only be used with estimators which implement the
`decision_function` method.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
T : array-like of shape (n_samples, n_classes) or (n_samples,) for binary classification.
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
|
decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def __sklearn_tags__(self):
"""Indicate if wrapped estimator is using a precomputed Gram matrix"""
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise
tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse
return tags
|
Indicate if wrapped estimator is using a precomputed Gram matrix
|
__sklearn_tags__
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="partial_fit", callee="partial_fit"),
)
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def _fit_ovo_binary(estimator, X, y, i, j, fit_params):
"""Fit a single binary estimator (one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
y_binary = np.empty(y.shape, int)
y_binary[y == i] = 0
y_binary[y == j] = 1
indcond = np.arange(_num_samples(X))[cond]
fit_params_subset = _check_method_params(X, params=fit_params, indices=indcond)
return (
_fit_binary(
estimator,
_safe_split(estimator, X, None, indices=indcond)[0],
y_binary,
fit_params=fit_params_subset,
classes=[i, j],
),
indcond,
)
|
Fit a single binary estimator (one-vs-one).
|
_fit_ovo_binary
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def _partial_fit_ovo_binary(estimator, X, y, i, j, partial_fit_params):
"""Partially fit a single binary estimator(one-vs-one)."""
cond = np.logical_or(y == i, y == j)
y = y[cond]
if len(y) != 0:
y_binary = np.zeros_like(y)
y_binary[y == j] = 1
partial_fit_params_subset = _check_method_params(
X, params=partial_fit_params, indices=cond
)
return _partial_fit_binary(
estimator, X[cond], y_binary, partial_fit_params=partial_fit_params_subset
)
return estimator
|
Partially fit a single binary estimator(one-vs-one).
|
_partial_fit_ovo_binary
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
The fitted underlying estimator.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
# We need to validate the data because we do a safe_indexing later.
X, y = validate_data(
self, X, y, accept_sparse=["csr", "csc"], ensure_all_finite=False
)
check_classification_targets(y)
self.classes_ = np.unique(y)
if len(self.classes_) == 1:
raise ValueError(
"OneVsOneClassifier can not be fit when only one class is present."
)
n_classes = self.classes_.shape[0]
estimators_indices = list(
zip(
*(
Parallel(n_jobs=self.n_jobs)(
delayed(_fit_ovo_binary)(
self.estimator,
X,
y,
self.classes_[i],
self.classes_[j],
fit_params=routed_params.estimator.fit,
)
for i in range(n_classes)
for j in range(i + 1, n_classes)
)
)
)
)
self.estimators_ = estimators_indices[0]
pairwise = self.__sklearn_tags__().input_tags.pairwise
self.pairwise_indices_ = estimators_indices[1] if pairwise else None
return self
|
Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
The fitted underlying estimator.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def predict(self, X):
"""Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
"""
Y = self.decision_function(X)
if self.n_classes_ == 2:
thresh = _threshold_for_binary_predict(self.estimators_[0])
return self.classes_[(Y > thresh).astype(int)]
return self.classes_[Y.argmax(axis=1)]
|
Estimate the best class label for each sample in X.
This is implemented as ``argmax(decision_function(X), axis=1)`` which
will return the label of the class with most votes by estimators
predicting the outcome of a decision for each possible class pair.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : numpy array of shape [n_samples]
Predicted multi-class targets.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def decision_function(self, X):
"""Decision function for the OneVsOneClassifier.
The decision values for the samples are computed by adding the
normalized sum of pair-wise classification confidence levels to the
votes in order to disambiguate between the decision values when the
votes for all the classes are equal leading to a tie.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
Y : array-like of shape (n_samples, n_classes) or (n_samples,)
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
"""
check_is_fitted(self)
X = validate_data(
self,
X,
accept_sparse=True,
ensure_all_finite=False,
reset=False,
)
indices = self.pairwise_indices_
if indices is None:
Xs = [X] * len(self.estimators_)
else:
Xs = [X[:, idx] for idx in indices]
predictions = np.vstack(
[est.predict(Xi) for est, Xi in zip(self.estimators_, Xs)]
).T
confidences = np.vstack(
[_predict_binary(est, Xi) for est, Xi in zip(self.estimators_, Xs)]
).T
Y = _ovr_decision_function(predictions, confidences, len(self.classes_))
if self.n_classes_ == 2:
return Y[:, 1]
return Y
|
Decision function for the OneVsOneClassifier.
The decision values for the samples are computed by adding the
normalized sum of pair-wise classification confidence levels to the
votes in order to disambiguate between the decision values when the
votes for all the classes are equal leading to a tie.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data.
Returns
-------
Y : array-like of shape (n_samples, n_classes) or (n_samples,)
Result of calling `decision_function` on the final estimator.
.. versionchanged:: 0.19
output shape changed to ``(n_samples,)`` to conform to
scikit-learn conventions for binary classification.
|
decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def __sklearn_tags__(self):
"""Indicate if wrapped estimator is using a precomputed Gram matrix"""
tags = super().__sklearn_tags__()
tags.input_tags.pairwise = get_tags(self.estimator).input_tags.pairwise
tags.input_tags.sparse = get_tags(self.estimator).input_tags.sparse
return tags
|
Indicate if wrapped estimator is using a precomputed Gram matrix
|
__sklearn_tags__
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="partial_fit", callee="partial_fit"),
)
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def fit(self, X, y, **fit_params):
"""Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Returns a fitted instance of self.
"""
_raise_for_params(fit_params, self, "fit")
routed_params = process_routing(
self,
"fit",
**fit_params,
)
y = validate_data(self, X="no_validation", y=y)
random_state = check_random_state(self.random_state)
check_classification_targets(y)
self.classes_ = np.unique(y)
n_classes = self.classes_.shape[0]
if n_classes == 0:
raise ValueError(
"OutputCodeClassifier can not be fit when no class is present."
)
n_estimators = int(n_classes * self.code_size)
# FIXME: there are more elaborate methods than generating the codebook
# randomly.
self.code_book_ = random_state.uniform(size=(n_classes, n_estimators))
self.code_book_[self.code_book_ > 0.5] = 1.0
if hasattr(self.estimator, "decision_function"):
self.code_book_[self.code_book_ != 1] = -1.0
else:
self.code_book_[self.code_book_ != 1] = 0.0
classes_index = {c: i for i, c in enumerate(self.classes_)}
Y = np.array(
[self.code_book_[classes_index[y[i]]] for i in range(_num_samples(y))],
dtype=int,
)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_binary)(
self.estimator, X, Y[:, i], fit_params=routed_params.estimator.fit
)
for i in range(Y.shape[1])
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
|
Fit underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
y : array-like of shape (n_samples,)
Multi-class targets.
**fit_params : dict
Parameters passed to the ``estimator.fit`` method of each
sub-estimator.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Returns a fitted instance of self.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : ndarray of shape (n_samples,)
Predicted multi-class targets.
"""
check_is_fitted(self)
# ArgKmin only accepts C-contiguous array. The aggregated predictions need to be
# transposed. We therefore create a F-contiguous array to avoid a copy and have
# a C-contiguous array after the transpose operation.
Y = np.array(
[_predict_binary(e, X) for e in self.estimators_],
order="F",
dtype=np.float64,
).T
pred = pairwise_distances_argmin(Y, self.code_book_, metric="euclidean")
return self.classes_[pred]
|
Predict multi-class targets using underlying estimators.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Data.
Returns
-------
y : ndarray of shape (n_samples,)
Predicted multi-class targets.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.4
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multiclass.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multiclass.py
|
BSD-3-Clause
|
def _available_if_estimator_has(attr):
"""Return a function to check if the sub-estimator(s) has(have) `attr`.
Helper for Chain implementations.
"""
def _check(self):
if hasattr(self, "estimators_"):
return all(hasattr(est, attr) for est in self.estimators_)
if hasattr(self.estimator, attr):
return True
return False
return available_if(_check)
|
Return a function to check if the sub-estimator(s) has(have) `attr`.
Helper for Chain implementations.
|
_available_if_estimator_has
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None, **fit_params):
"""Fit the model to data, separately for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
if not hasattr(self.estimator, "fit"):
raise ValueError("The base estimator should implement a fit method")
y = validate_data(self, X="no_validation", y=y, multi_output=True)
if is_classifier(self):
check_classification_targets(y)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi-output regression but has only one."
)
if _routing_enabled():
if sample_weight is not None:
fit_params["sample_weight"] = sample_weight
routed_params = process_routing(
self,
"fit",
**fit_params,
)
else:
if sample_weight is not None and not has_fit_parameter(
self.estimator, "sample_weight"
):
raise ValueError(
"Underlying estimator does not support sample weights."
)
fit_params_validated = _check_method_params(X, params=fit_params)
routed_params = Bunch(estimator=Bunch(fit=fit_params_validated))
if sample_weight is not None:
routed_params.estimator.fit["sample_weight"] = sample_weight
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], **routed_params.estimator.fit
)
for i in range(y.shape[1])
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
if hasattr(self.estimators_[0], "feature_names_in_"):
self.feature_names_in_ = self.estimators_[0].feature_names_in_
return self
|
Fit the model to data, separately for each output variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def predict(self, X):
"""Predict multi-output variable using model for each target variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors.
Note: Separate models are generated for each predictor.
"""
check_is_fitted(self)
if not hasattr(self.estimators_[0], "predict"):
raise ValueError("The base estimator should implement a predict method")
y = Parallel(n_jobs=self.n_jobs)(
delayed(e.predict)(X) for e in self.estimators_
)
return np.asarray(y).T
|
Predict multi-output variable using model for each target variable.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
y : {array-like, sparse matrix} of shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors.
Note: Separate models are generated for each predictor.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator,
method_mapping=MethodMapping()
.add(caller="partial_fit", callee="partial_fit")
.add(caller="fit", callee="fit"),
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def fit(self, X, Y, sample_weight=None, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying classifier supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
super().fit(X, Y, sample_weight=sample_weight, **fit_params)
self.classes_ = [estimator.classes_ for estimator in self.estimators_]
return self
|
Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights. If `None`, then samples are equally weighted.
Only supported if the underlying classifier supports sample
weights.
**fit_params : dict of string -> object
Parameters passed to the ``estimator.fit`` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def predict_proba(self, X):
"""Return prediction probabilities for each class of each output.
This method will raise a ``ValueError`` if any of the
estimators do not have ``predict_proba``.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
p : array of shape (n_samples, n_classes), or a list of n_outputs \
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
.. versionchanged:: 0.19
This function now returns a list of arrays where the length of
the list is ``n_outputs``, and each array is (``n_samples``,
``n_classes``) for that particular output.
"""
check_is_fitted(self)
results = [estimator.predict_proba(X) for estimator in self.estimators_]
return results
|
Return prediction probabilities for each class of each output.
This method will raise a ``ValueError`` if any of the
estimators do not have ``predict_proba``.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input data.
Returns
-------
p : array of shape (n_samples, n_classes), or a list of n_outputs such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute :term:`classes_`.
.. versionchanged:: 0.19
This function now returns a list of arrays where the length of
the list is ``n_outputs``, and each array is (``n_samples``,
``n_classes``) for that particular output.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def score(self, X, y):
"""Return the mean accuracy on the given test data and labels.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples, n_outputs)
True values for X.
Returns
-------
scores : float
Mean accuracy of predicted target versus true target.
"""
check_is_fitted(self)
n_outputs_ = len(self.estimators_)
if y.ndim == 1:
raise ValueError(
"y must have at least two dimensions for "
"multi target classification but has only one"
)
if y.shape[1] != n_outputs_:
raise ValueError(
"The number of outputs of Y for fit {0} and"
" score {1} should be same".format(n_outputs_, y.shape[1])
)
y_pred = self.predict(X)
return np.mean(np.all(y == y_pred, axis=1))
|
Return the mean accuracy on the given test data and labels.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Test samples.
y : array-like of shape (n_samples, n_outputs)
True values for X.
Returns
-------
scores : float
Mean accuracy of predicted target versus true target.
|
score
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def _available_if_base_estimator_has(attr):
"""Return a function to check if `base_estimator` or `estimators_` has `attr`.
Helper for Chain implementations.
"""
def _check(self):
return hasattr(self._get_estimator(), attr) or all(
hasattr(est, attr) for est in self.estimators_
)
return available_if(_check)
|
Return a function to check if `base_estimator` or `estimators_` has `attr`.
Helper for Chain implementations.
|
_available_if_base_estimator_has
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def _get_predictions(self, X, *, output_method):
"""Get predictions for each model in the chain."""
check_is_fitted(self)
X = validate_data(self, X, accept_sparse=True, reset=False)
Y_output_chain = np.zeros((X.shape[0], len(self.estimators_)))
Y_feature_chain = np.zeros((X.shape[0], len(self.estimators_)))
# `RegressorChain` does not have a `chain_method_` parameter so we
# default to "predict"
chain_method = getattr(self, "chain_method_", "predict")
hstack = sp.hstack if sp.issparse(X) else np.hstack
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_feature_chain[:, :chain_idx]
# if `X` is a scipy sparse dok_array, we convert it to a sparse
# coo_array format before hstacking, it's faster; see
# https://github.com/scipy/scipy/issues/20060#issuecomment-1937007039:
if sp.issparse(X) and not sp.isspmatrix(X) and X.format == "dok":
X = sp.coo_array(X)
X_aug = hstack((X, previous_predictions))
feature_predictions, _ = _get_response_values(
estimator,
X_aug,
response_method=chain_method,
)
Y_feature_chain[:, chain_idx] = feature_predictions
output_predictions, _ = _get_response_values(
estimator,
X_aug,
response_method=output_method,
)
Y_output_chain[:, chain_idx] = output_predictions
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_output = Y_output_chain[:, inv_order]
return Y_output
|
Get predictions for each model in the chain.
|
_get_predictions
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def fit(self, X, Y, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
"""
X, Y = validate_data(self, X, Y, multi_output=True, accept_sparse=True)
random_state = check_random_state(self.random_state)
self.order_ = self.order
if isinstance(self.order_, tuple):
self.order_ = np.array(self.order_)
if self.order_ is None:
self.order_ = np.array(range(Y.shape[1]))
elif isinstance(self.order_, str):
if self.order_ == "random":
self.order_ = random_state.permutation(Y.shape[1])
elif sorted(self.order_) != list(range(Y.shape[1])):
raise ValueError("invalid order")
self.estimators_ = [clone(self._get_estimator()) for _ in range(Y.shape[1])]
if self.cv is None:
Y_pred_chain = Y[:, self.order_]
if sp.issparse(X):
X_aug = sp.hstack((X, Y_pred_chain), format="lil")
X_aug = X_aug.tocsr()
else:
X_aug = np.hstack((X, Y_pred_chain))
elif sp.issparse(X):
# TODO: remove this condition check when the minimum supported scipy version
# doesn't support sparse matrices anymore
if not sp.isspmatrix(X):
# if `X` is a scipy sparse dok_array, we convert it to a sparse
# coo_array format before hstacking, it's faster; see
# https://github.com/scipy/scipy/issues/20060#issuecomment-1937007039:
if X.format == "dok":
X = sp.coo_array(X)
# in case that `X` is a sparse array we create `Y_pred_chain` as a
# sparse array format:
Y_pred_chain = sp.coo_array((X.shape[0], Y.shape[1]))
else:
Y_pred_chain = sp.coo_matrix((X.shape[0], Y.shape[1]))
X_aug = sp.hstack((X, Y_pred_chain), format="lil")
else:
Y_pred_chain = np.zeros((X.shape[0], Y.shape[1]))
X_aug = np.hstack((X, Y_pred_chain))
del Y_pred_chain
if _routing_enabled():
routed_params = process_routing(self, "fit", **fit_params)
else:
routed_params = Bunch(estimator=Bunch(fit=fit_params))
if hasattr(self, "chain_method"):
chain_method = _check_response_method(
self._get_estimator(),
self.chain_method,
).__name__
self.chain_method_ = chain_method
else:
# `RegressorChain` does not have a `chain_method` parameter
chain_method = "predict"
for chain_idx, estimator in enumerate(self.estimators_):
message = self._log_message(
estimator_idx=chain_idx + 1,
n_estimators=len(self.estimators_),
processing_msg=f"Processing order {self.order_[chain_idx]}",
)
y = Y[:, self.order_[chain_idx]]
with _print_elapsed_time("Chain", message):
estimator.fit(
X_aug[:, : (X.shape[1] + chain_idx)],
y,
**routed_params.estimator.fit,
)
if self.cv is not None and chain_idx < len(self.estimators_) - 1:
col_idx = X.shape[1] + chain_idx
cv_result = cross_val_predict(
self._get_estimator(),
X_aug[:, :col_idx],
y=y,
cv=self.cv,
method=chain_method,
)
# `predict_proba` output is 2D, we use only output for classes[-1]
if cv_result.ndim > 1:
cv_result = cv_result[:, 1]
if sp.issparse(X_aug):
X_aug[:, col_idx] = np.expand_dims(cv_result, 1)
else:
X_aug[:, col_idx] = cv_result
return self
|
Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method of each step.
.. versionadded:: 0.23
Returns
-------
self : object
Returns a fitted instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def fit(self, X, Y, **fit_params):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method of each step.
Only available if `enable_metadata_routing=True`. See the
:ref:`User Guide <metadata_routing>`.
.. versionadded:: 1.3
Returns
-------
self : object
Class instance.
"""
_raise_for_params(fit_params, self, "fit")
super().fit(X, Y, **fit_params)
self.classes_ = [estimator.classes_ for estimator in self.estimators_]
return self
|
Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Y : array-like of shape (n_samples, n_classes)
The target values.
**fit_params : dict of string -> object
Parameters passed to the `fit` method of each step.
Only available if `enable_metadata_routing=True`. See the
:ref:`User Guide <metadata_routing>`.
.. versionadded:: 1.3
Returns
-------
self : object
Class instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self._get_estimator(),
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self._get_estimator(),
method_mapping=MethodMapping().add(caller="fit", callee="fit"),
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.3
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/multioutput.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/multioutput.py
|
BSD-3-Clause
|
def _joint_log_likelihood(self, X):
"""Compute the unnormalized posterior log probability of X
I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of
shape (n_samples, n_classes).
Public methods predict, predict_proba, predict_log_proba, and
predict_joint_log_proba pass the input through _check_X before handing it
over to _joint_log_likelihood. The term "joint log likelihood" is used
interchangibly with "joint log probability".
"""
|
Compute the unnormalized posterior log probability of X
I.e. ``log P(c) + log P(x|c)`` for all rows x of X, as an array-like of
shape (n_samples, n_classes).
Public methods predict, predict_proba, predict_log_proba, and
predict_joint_log_proba pass the input through _check_X before handing it
over to _joint_log_likelihood. The term "joint log likelihood" is used
interchangibly with "joint log probability".
|
_joint_log_likelihood
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _check_X(self, X):
"""To be overridden in subclasses with the actual checks.
Only used in predict* methods.
"""
|
To be overridden in subclasses with the actual checks.
Only used in predict* methods.
|
_check_X
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def predict_joint_log_proba(self, X):
"""Return joint log probability estimates for the test vector X.
For each row x of X and class y, the joint log probability is given by
``log P(x, y) = log P(y) + log P(x|y),``
where ``log P(y)`` is the class prior probability and ``log P(x|y)`` is
the class-conditional probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Returns the joint log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
"""
check_is_fitted(self)
X = self._check_X(X)
return self._joint_log_likelihood(X)
|
Return joint log probability estimates for the test vector X.
For each row x of X and class y, the joint log probability is given by
``log P(x, y) = log P(y) + log P(x|y),``
where ``log P(y)`` is the class prior probability and ``log P(x|y)`` is
the class-conditional probability.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples, n_classes)
Returns the joint log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
|
predict_joint_log_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def predict(self, X):
"""
Perform classification on an array of test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples,)
Predicted target values for X.
"""
check_is_fitted(self)
X = self._check_X(X)
jll = self._joint_log_likelihood(X)
return self.classes_[np.argmax(jll, axis=1)]
|
Perform classification on an array of test vectors X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : ndarray of shape (n_samples,)
Predicted target values for X.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def predict_log_proba(self, X):
"""
Return log-probability estimates for the test vector X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : array-like of shape (n_samples, n_classes)
Returns the log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
"""
check_is_fitted(self)
X = self._check_X(X)
jll = self._joint_log_likelihood(X)
# normalize by P(x) = P(f_1, ..., f_n)
log_prob_x = logsumexp(jll, axis=1)
return jll - np.atleast_2d(log_prob_x).T
|
Return log-probability estimates for the test vector X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
C : array-like of shape (n_samples, n_classes)
Returns the log-probability of the samples for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
|
predict_log_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Fit Gaussian Naive Bayes according to X, y.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
.. versionadded:: 0.17
Gaussian Naive Bayes supports fitting with *sample_weight*.
Returns
-------
self : object
Returns the instance itself.
"""
y = validate_data(self, y=y)
return self._partial_fit(
X, y, np.unique(y), _refit=True, sample_weight=sample_weight
)
|
Fit Gaussian Naive Bayes according to X, y.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
.. versionadded:: 0.17
Gaussian Naive Bayes supports fitting with *sample_weight*.
Returns
-------
self : object
Returns the instance itself.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_mean_variance(n_past, mu, var, X, sample_weight=None):
"""Compute online update of Gaussian mean and variance.
Given starting sample count, mean, and variance, a new set of
points X, and optionally sample weights, return the updated mean and
variance. (NB - each dimension (column) in X is treated as independent
-- you get variance, not covariance).
Can take scalar mean and variance, or vector mean and variance to
simultaneously update a number of independent Gaussians.
See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
Parameters
----------
n_past : int
Number of samples represented in old mean and variance. If sample
weights were given, this should contain the sum of sample
weights represented in old mean and variance.
mu : array-like of shape (number of Gaussians,)
Means for Gaussians in original set.
var : array-like of shape (number of Gaussians,)
Variances for Gaussians in original set.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
total_mu : array-like of shape (number of Gaussians,)
Updated mean for each Gaussian over the combined set.
total_var : array-like of shape (number of Gaussians,)
Updated variance for each Gaussian over the combined set.
"""
if X.shape[0] == 0:
return mu, var
# Compute (potentially weighted) mean and variance of new datapoints
if sample_weight is not None:
n_new = float(sample_weight.sum())
if np.isclose(n_new, 0.0):
return mu, var
new_mu = np.average(X, axis=0, weights=sample_weight)
new_var = np.average((X - new_mu) ** 2, axis=0, weights=sample_weight)
else:
n_new = X.shape[0]
new_var = np.var(X, axis=0)
new_mu = np.mean(X, axis=0)
if n_past == 0:
return new_mu, new_var
n_total = float(n_past + n_new)
# Combine mean of old and new data, taking into consideration
# (weighted) number of observations
total_mu = (n_new * new_mu + n_past * mu) / n_total
# Combine variance of old and new data, taking into consideration
# (weighted) number of observations. This is achieved by combining
# the sum-of-squared-differences (ssd)
old_ssd = n_past * var
new_ssd = n_new * new_var
total_ssd = old_ssd + new_ssd + (n_new * n_past / n_total) * (mu - new_mu) ** 2
total_var = total_ssd / n_total
return total_mu, total_var
|
Compute online update of Gaussian mean and variance.
Given starting sample count, mean, and variance, a new set of
points X, and optionally sample weights, return the updated mean and
variance. (NB - each dimension (column) in X is treated as independent
-- you get variance, not covariance).
Can take scalar mean and variance, or vector mean and variance to
simultaneously update a number of independent Gaussians.
See Stanford CS tech report STAN-CS-79-773 by Chan, Golub, and LeVeque:
http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf
Parameters
----------
n_past : int
Number of samples represented in old mean and variance. If sample
weights were given, this should contain the sum of sample
weights represented in old mean and variance.
mu : array-like of shape (number of Gaussians,)
Means for Gaussians in original set.
var : array-like of shape (number of Gaussians,)
Variances for Gaussians in original set.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
total_mu : array-like of shape (number of Gaussians,)
Updated mean for each Gaussian over the combined set.
total_var : array-like of shape (number of Gaussians,)
Updated variance for each Gaussian over the combined set.
|
_update_mean_variance
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _count(self, X, Y):
"""Update counts that are used to calculate probabilities.
The counts make up a sufficient statistic extracted from the data.
Accordingly, this method is called each time `fit` or `partial_fit`
update the model. `class_count_` and `feature_count_` must be updated
here along with any model specific counts.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input samples.
Y : ndarray of shape (n_samples, n_classes)
Binarized class labels.
"""
|
Update counts that are used to calculate probabilities.
The counts make up a sufficient statistic extracted from the data.
Accordingly, this method is called each time `fit` or `partial_fit`
update the model. `class_count_` and `feature_count_` must be updated
here along with any model specific counts.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input samples.
Y : ndarray of shape (n_samples, n_classes)
Binarized class labels.
|
_count
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_feature_log_prob(self, alpha):
"""Update feature log probabilities based on counts.
This method is called each time `fit` or `partial_fit` update the
model.
Parameters
----------
alpha : float
smoothing parameter. See :meth:`_check_alpha`.
"""
|
Update feature log probabilities based on counts.
This method is called each time `fit` or `partial_fit` update the
model.
Parameters
----------
alpha : float
smoothing parameter. See :meth:`_check_alpha`.
|
_update_feature_log_prob
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_class_log_prior(self, class_prior=None):
"""Update class log priors.
The class log priors are based on `class_prior`, class count or the
number of classes. This method is called each time `fit` or
`partial_fit` update the model.
"""
n_classes = len(self.classes_)
if class_prior is not None:
if len(class_prior) != n_classes:
raise ValueError("Number of priors must match number of classes.")
self.class_log_prior_ = np.log(class_prior)
elif self.fit_prior:
with warnings.catch_warnings():
# silence the warning when count is 0 because class was not yet
# observed
warnings.simplefilter("ignore", RuntimeWarning)
log_class_count = np.log(self.class_count_)
# empirical prior, with sample_weight taken into account
self.class_log_prior_ = log_class_count - np.log(self.class_count_.sum())
else:
self.class_log_prior_ = np.full(n_classes, -np.log(n_classes))
|
Update class log priors.
The class log priors are based on `class_prior`, class count or the
number of classes. This method is called each time `fit` or
`partial_fit` update the model.
|
_update_class_log_prior
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def fit(self, X, y, sample_weight=None):
"""Fit Naive Bayes classifier according to X, y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
"""
X, y = self._check_X_y(X, y)
_, n_features = X.shape
labelbin = LabelBinarizer()
Y = labelbin.fit_transform(y)
self.classes_ = labelbin.classes_
if Y.shape[1] == 1:
if len(self.classes_) == 2:
Y = np.concatenate((1 - Y, Y), axis=1)
else: # degenerate case: just one class
Y = np.ones_like(Y)
# LabelBinarizer().fit_transform() returns arrays with dtype=np.int64.
# We convert it to np.float64 to support sample_weight consistently;
# this means we also don't have to cast X to floating point
if sample_weight is not None:
Y = Y.astype(np.float64, copy=False)
sample_weight = _check_sample_weight(sample_weight, X)
sample_weight = np.atleast_2d(sample_weight)
Y *= sample_weight.T
class_prior = self.class_prior
# Count raw events from data before updating the class log prior
# and feature log probas
n_classes = Y.shape[1]
self._init_counters(n_classes, n_features)
self._count(X, Y)
alpha = self._check_alpha()
self._update_feature_log_prob(alpha)
self._update_class_log_prior(class_prior=class_prior)
return self
|
Fit Naive Bayes classifier according to X, y.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vectors, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,)
Target values.
sample_weight : array-like of shape (n_samples,), default=None
Weights applied to individual samples (1. for unweighted).
Returns
-------
self : object
Returns the instance itself.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and recompute log probabilities"""
smoothed_fc = self.feature_count_ + alpha
smoothed_cc = smoothed_fc.sum(axis=1)
self.feature_log_prob_ = np.log(smoothed_fc) - np.log(
smoothed_cc.reshape(-1, 1)
)
|
Apply smoothing to raw counts and recompute log probabilities
|
_update_feature_log_prob
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and compute the weights."""
comp_count = self.feature_all_ + alpha - self.feature_count_
logged = np.log(comp_count / comp_count.sum(axis=1, keepdims=True))
# _BaseNB.predict uses argmax, but ComplementNB operates with argmin.
if self.norm:
summed = logged.sum(axis=1, keepdims=True)
feature_log_prob = logged / summed
else:
feature_log_prob = -logged
self.feature_log_prob_ = feature_log_prob
|
Apply smoothing to raw counts and compute the weights.
|
_update_feature_log_prob
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _joint_log_likelihood(self, X):
"""Calculate the class scores for the samples in X."""
jll = safe_sparse_dot(X, self.feature_log_prob_.T)
if len(self.classes_) == 1:
jll += self.class_log_prior_
return jll
|
Calculate the class scores for the samples in X.
|
_joint_log_likelihood
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
X = super()._check_X(X)
if self.binarize is not None:
X = binarize(X, threshold=self.binarize)
return X
|
Validate X, used only in predict* methods.
|
_check_X
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _update_feature_log_prob(self, alpha):
"""Apply smoothing to raw counts and recompute log probabilities"""
smoothed_fc = self.feature_count_ + alpha
smoothed_cc = self.class_count_ + alpha * 2
self.feature_log_prob_ = np.log(smoothed_fc) - np.log(
smoothed_cc.reshape(-1, 1)
)
|
Apply smoothing to raw counts and recompute log probabilities
|
_update_feature_log_prob
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _check_X(self, X):
"""Validate X, used only in predict* methods."""
X = validate_data(
self,
X,
dtype="int",
accept_sparse=False,
ensure_all_finite=True,
reset=False,
)
check_non_negative(X, "CategoricalNB (input X)")
return X
|
Validate X, used only in predict* methods.
|
_check_X
|
python
|
scikit-learn/scikit-learn
|
sklearn/naive_bayes.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/naive_bayes.py
|
BSD-3-Clause
|
def _raise_or_warn_if_not_fitted(estimator):
"""A context manager to make sure a NotFittedError is raised, if a sub-estimator
raises the error.
Otherwise, we raise a warning if the pipeline is not fitted, with the deprecation.
TODO(1.8): remove this context manager and replace with check_is_fitted.
"""
try:
yield
except NotFittedError as exc:
raise NotFittedError("Pipeline is not fitted yet.") from exc
# we only get here if the above didn't raise
try:
check_is_fitted(estimator)
except NotFittedError:
warnings.warn(
"This Pipeline instance is not fitted yet. Call 'fit' with "
"appropriate arguments before using other methods such as transform, "
"predict, etc. This will raise an error in 1.8 instead of the current "
"warning.",
FutureWarning,
)
|
A context manager to make sure a NotFittedError is raised, if a sub-estimator
raises the error.
Otherwise, we raise a warning if the pipeline is not fitted, with the deprecation.
TODO(1.8): remove this context manager and replace with check_is_fitted.
|
_raise_or_warn_if_not_fitted
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _final_estimator_has(attr):
"""Check that final_estimator has `attr`.
Used together with `available_if` in `Pipeline`."""
def check(self):
# raise original `AttributeError` if `attr` does not exist
getattr(self._final_estimator, attr)
return True
return check
|
Check that final_estimator has `attr`.
Used together with `available_if` in `Pipeline`.
|
_final_estimator_has
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _cached_transform(
sub_pipeline, *, cache, param_name, param_value, transform_params
):
"""Transform a parameter value using a sub-pipeline and cache the result.
Parameters
----------
sub_pipeline : Pipeline
The sub-pipeline to be used for transformation.
cache : dict
The cache dictionary to store the transformed values.
param_name : str
The name of the parameter to be transformed.
param_value : object
The value of the parameter to be transformed.
transform_params : dict
The metadata to be used for transformation. This passed to the
`transform` method of the sub-pipeline.
Returns
-------
transformed_value : object
The transformed value of the parameter.
"""
if param_name not in cache:
# If the parameter is a tuple, transform each element of the
# tuple. This is needed to support the pattern present in
# `lightgbm` and `xgboost` where users can pass multiple
# validation sets.
if isinstance(param_value, tuple):
cache[param_name] = tuple(
sub_pipeline.transform(element, **transform_params)
for element in param_value
)
else:
cache[param_name] = sub_pipeline.transform(param_value, **transform_params)
return cache[param_name]
|
Transform a parameter value using a sub-pipeline and cache the result.
Parameters
----------
sub_pipeline : Pipeline
The sub-pipeline to be used for transformation.
cache : dict
The cache dictionary to store the transformed values.
param_name : str
The name of the parameter to be transformed.
param_value : object
The value of the parameter to be transformed.
transform_params : dict
The metadata to be used for transformation. This passed to the
`transform` method of the sub-pipeline.
Returns
-------
transformed_value : object
The transformed value of the parameter.
|
_cached_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def set_output(self, *, transform=None):
"""Set the output container when `"transform"` and `"fit_transform"` are called.
Calling `set_output` will set the output of all estimators in `steps`.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.4
`"polars"` option was added.
Returns
-------
self : estimator instance
Estimator instance.
"""
for _, _, step in self._iter():
_safe_set_output(step, transform=transform)
return self
|
Set the output container when `"transform"` and `"fit_transform"` are called.
Calling `set_output` will set the output of all estimators in `steps`.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
.. versionadded:: 1.4
`"polars"` option was added.
Returns
-------
self : estimator instance
Estimator instance.
|
set_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _iter(self, with_final=True, filter_passthrough=True):
"""
Generate (idx, (name, trans)) tuples from self.steps
When filter_passthrough is True, 'passthrough' and None transformers
are filtered out.
"""
stop = len(self.steps)
if not with_final:
stop -= 1
for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
if not filter_passthrough:
yield idx, name, trans
elif trans is not None and trans != "passthrough":
yield idx, name, trans
|
Generate (idx, (name, trans)) tuples from self.steps
When filter_passthrough is True, 'passthrough' and None transformers
are filtered out.
|
_iter
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def __getitem__(self, ind):
"""Returns a sub-pipeline or a single estimator in the pipeline
Indexing with an integer will return an estimator; using a slice
returns another Pipeline instance which copies a slice of this
Pipeline. This copy is shallow: modifying (or fitting) estimators in
the sub-pipeline will affect the larger pipeline and vice-versa.
However, replacing a value in `step` will not affect a copy.
See
:ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py`
for an example of how to use slicing to inspect part of a pipeline.
"""
if isinstance(ind, slice):
if ind.step not in (1, None):
raise ValueError("Pipeline slicing only supports a step of 1")
return self.__class__(
self.steps[ind], memory=self.memory, verbose=self.verbose
)
try:
name, est = self.steps[ind]
except TypeError:
# Not an int, try get step by name
return self.named_steps[ind]
return est
|
Returns a sub-pipeline or a single estimator in the pipeline
Indexing with an integer will return an estimator; using a slice
returns another Pipeline instance which copies a slice of this
Pipeline. This copy is shallow: modifying (or fitting) estimators in
the sub-pipeline will affect the larger pipeline and vice-versa.
However, replacing a value in `step` will not affect a copy.
See
:ref:`sphx_glr_auto_examples_feature_selection_plot_feature_selection_pipeline.py`
for an example of how to use slicing to inspect part of a pipeline.
|
__getitem__
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _estimator_type(self):
"""Return the estimator type of the last step in the pipeline."""
if not self.steps:
return None
return self.steps[-1][1]._estimator_type
|
Return the estimator type of the last step in the pipeline.
|
_estimator_type
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _get_metadata_for_step(self, *, step_idx, step_params, all_params):
"""Get params (metadata) for step `name`.
This transforms the metadata up to this step if required, which is
indicated by the `transform_input` parameter.
If a param in `step_params` is included in the `transform_input` list,
it will be transformed.
Parameters
----------
step_idx : int
Index of the step in the pipeline.
step_params : dict
Parameters specific to the step. These are routed parameters, e.g.
`routed_params[name]`. If a parameter name here is included in the
`pipeline.transform_input`, then it will be transformed. Note that
these parameters are *after* routing, so the aliases are already
resolved.
all_params : dict
All parameters passed by the user. Here this is used to call
`transform` on the slice of the pipeline itself.
Returns
-------
dict
Parameters to be passed to the step. The ones which should be
transformed are transformed.
"""
if (
self.transform_input is None
or not all_params
or not step_params
or step_idx == 0
):
# we only need to process step_params if transform_input is set
# and metadata is given by the user.
return step_params
sub_pipeline = self[:step_idx]
sub_metadata_routing = get_routing_for_object(sub_pipeline)
# here we get the metadata required by sub_pipeline.transform
transform_params = {
key: value
for key, value in all_params.items()
if key
in sub_metadata_routing.consumes(
method="transform", params=all_params.keys()
)
}
transformed_params = dict() # this is to be returned
transformed_cache = dict() # used to transform each param once
# `step_params` is the output of `process_routing`, so it has a dict for each
# method (e.g. fit, transform, predict), which are the args to be passed to
# those methods. We need to transform the parameters which are in the
# `transform_input`, before returning these dicts.
for method, method_params in step_params.items():
transformed_params[method] = Bunch()
for param_name, param_value in method_params.items():
# An example of `(param_name, param_value)` is
# `('sample_weight', array([0.5, 0.5, ...]))`
if param_name in self.transform_input:
# This parameter now needs to be transformed by the sub_pipeline, to
# this step. We cache these computations to avoid repeating them.
transformed_params[method][param_name] = _cached_transform(
sub_pipeline,
cache=transformed_cache,
param_name=param_name,
param_value=param_value,
transform_params=transform_params,
)
else:
transformed_params[method][param_name] = param_value
return transformed_params
|
Get params (metadata) for step `name`.
This transforms the metadata up to this step if required, which is
indicated by the `transform_input` parameter.
If a param in `step_params` is included in the `transform_input` list,
it will be transformed.
Parameters
----------
step_idx : int
Index of the step in the pipeline.
step_params : dict
Parameters specific to the step. These are routed parameters, e.g.
`routed_params[name]`. If a parameter name here is included in the
`pipeline.transform_input`, then it will be transformed. Note that
these parameters are *after* routing, so the aliases are already
resolved.
all_params : dict
All parameters passed by the user. Here this is used to call
`transform` on the slice of the pipeline itself.
Returns
-------
dict
Parameters to be passed to the step. The ones which should be
transformed are transformed.
|
_get_metadata_for_step
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _fit(self, X, y=None, routed_params=None, raw_params=None):
"""Fit the pipeline except the last step.
routed_params is the output of `process_routing`
raw_params is the parameters passed by the user, used when `transform_input`
is set by the user, to transform metadata using a sub-pipeline.
"""
# shallow copy of steps - this should really be steps_
self.steps = list(self.steps)
self._validate_steps()
# Setup the memory
memory = check_memory(self.memory)
fit_transform_one_cached = memory.cache(_fit_transform_one)
for step_idx, name, transformer in self._iter(
with_final=False, filter_passthrough=False
):
if transformer is None or transformer == "passthrough":
with _print_elapsed_time("Pipeline", self._log_message(step_idx)):
continue
if hasattr(memory, "location") and memory.location is None:
# we do not clone when caching is disabled to
# preserve backward compatibility
cloned_transformer = transformer
else:
cloned_transformer = clone(transformer)
# Fit or load from cache the current transformer
step_params = self._get_metadata_for_step(
step_idx=step_idx,
step_params=routed_params[name],
all_params=raw_params,
)
X, fitted_transformer = fit_transform_one_cached(
cloned_transformer,
X,
y,
weight=None,
message_clsname="Pipeline",
message=self._log_message(step_idx),
params=step_params,
)
# Replace the transformer of the step with the fitted
# transformer. This is necessary when loading the transformer
# from the cache.
self.steps[step_idx] = (name, fitted_transformer)
return X
|
Fit the pipeline except the last step.
routed_params is the output of `process_routing`
raw_params is the parameters passed by the user, used when `transform_input`
is set by the user, to transform metadata using a sub-pipeline.
|
_fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def fit(self, X, y=None, **params):
"""Fit the model.
Fit all the transformers one after the other and sequentially transform the
data. Finally, fit the transformed data using the final estimator.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters passed to the
``fit`` method of each step, where each parameter name is prefixed such
that parameter ``p`` for step ``s`` has key ``s__p``.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True` is set via
:func:`~sklearn.set_config`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Pipeline with fitted steps.
"""
if not _routing_enabled() and self.transform_input is not None:
raise ValueError(
"The `transform_input` parameter can only be set if metadata "
"routing is enabled. You can enable metadata routing using "
"`sklearn.set_config(enable_metadata_routing=True)`."
)
routed_params = self._check_method_params(method="fit", props=params)
Xt = self._fit(X, y, routed_params, raw_params=params)
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
if self._final_estimator != "passthrough":
last_step_params = self._get_metadata_for_step(
step_idx=len(self) - 1,
step_params=routed_params[self.steps[-1][0]],
all_params=params,
)
self._final_estimator.fit(Xt, y, **last_step_params["fit"])
return self
|
Fit the model.
Fit all the transformers one after the other and sequentially transform the
data. Finally, fit the transformed data using the final estimator.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters passed to the
``fit`` method of each step, where each parameter name is prefixed such
that parameter ``p`` for step ``s`` has key ``s__p``.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True` is set via
:func:`~sklearn.set_config`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
self : object
Pipeline with fitted steps.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def fit_transform(self, X, y=None, **params):
"""Fit the model and transform with the final estimator.
Fit all the transformers one after the other and sequentially transform
the data. Only valid if the final estimator either implements
`fit_transform` or `fit` and `transform`.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters passed to the
``fit`` method of each step, where each parameter name is prefixed such
that parameter ``p`` for step ``s`` has key ``s__p``.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
Xt : ndarray of shape (n_samples, n_transformed_features)
Transformed samples.
"""
routed_params = self._check_method_params(method="fit_transform", props=params)
Xt = self._fit(X, y, routed_params)
last_step = self._final_estimator
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
if last_step == "passthrough":
return Xt
last_step_params = self._get_metadata_for_step(
step_idx=len(self) - 1,
step_params=routed_params[self.steps[-1][0]],
all_params=params,
)
if hasattr(last_step, "fit_transform"):
return last_step.fit_transform(
Xt, y, **last_step_params["fit_transform"]
)
else:
return last_step.fit(Xt, y, **last_step_params["fit"]).transform(
Xt, **last_step_params["transform"]
)
|
Fit the model and transform with the final estimator.
Fit all the transformers one after the other and sequentially transform
the data. Only valid if the final estimator either implements
`fit_transform` or `fit` and `transform`.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of the
pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps of
the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters passed to the
``fit`` method of each step, where each parameter name is prefixed such
that parameter ``p`` for step ``s`` has key ``s__p``.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
Xt : ndarray of shape (n_samples, n_transformed_features)
Transformed samples.
|
fit_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def predict(self, X, **params):
"""Transform the data, and apply `predict` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls `predict`
method. Only valid if the final estimator implements `predict`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
``predict`` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True` is set via
:func:`~sklearn.set_config`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Note that while this may be used to return uncertainties from some
models with ``return_std`` or ``return_cov``, uncertainties that are
generated by the transformations in the pipeline are not propagated
to the final estimator.
Returns
-------
y_pred : ndarray
Result of calling `predict` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
Xt = X
if not _routing_enabled():
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][1].predict(Xt, **params)
# metadata routing enabled
routed_params = process_routing(self, "predict", **params)
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt, **routed_params[name].transform)
return self.steps[-1][1].predict(
Xt, **routed_params[self.steps[-1][0]].predict
)
|
Transform the data, and apply `predict` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls `predict`
method. Only valid if the final estimator implements `predict`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
``predict`` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True` is set via
:func:`~sklearn.set_config`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Note that while this may be used to return uncertainties from some
models with ``return_std`` or ``return_cov``, uncertainties that are
generated by the transformations in the pipeline are not propagated
to the final estimator.
Returns
-------
y_pred : ndarray
Result of calling `predict` on the final estimator.
|
predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def fit_predict(self, X, y=None, **params):
"""Transform the data, and apply `fit_predict` with the final estimator.
Call `fit_transform` of each transformer in the pipeline. The
transformed data are finally passed to the final estimator that calls
`fit_predict` method. Only valid if the final estimator implements
`fit_predict`.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of
the pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
``predict`` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Note that while this may be used to return uncertainties from some
models with ``return_std`` or ``return_cov``, uncertainties that are
generated by the transformations in the pipeline are not propagated
to the final estimator.
Returns
-------
y_pred : ndarray
Result of calling `fit_predict` on the final estimator.
"""
routed_params = self._check_method_params(method="fit_predict", props=params)
Xt = self._fit(X, y, routed_params)
params_last_step = routed_params[self.steps[-1][0]]
with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
y_pred = self.steps[-1][1].fit_predict(
Xt, y, **params_last_step.get("fit_predict", {})
)
return y_pred
|
Transform the data, and apply `fit_predict` with the final estimator.
Call `fit_transform` of each transformer in the pipeline. The
transformed data are finally passed to the final estimator that calls
`fit_predict` method. Only valid if the final estimator implements
`fit_predict`.
Parameters
----------
X : iterable
Training data. Must fulfill input requirements of first step of
the pipeline.
y : iterable, default=None
Training targets. Must fulfill label requirements for all steps
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
``predict`` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Note that while this may be used to return uncertainties from some
models with ``return_std`` or ``return_cov``, uncertainties that are
generated by the transformations in the pipeline are not propagated
to the final estimator.
Returns
-------
y_pred : ndarray
Result of calling `fit_predict` on the final estimator.
|
fit_predict
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def predict_proba(self, X, **params):
"""Transform the data, and apply `predict_proba` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`predict_proba` method. Only valid if the final estimator implements
`predict_proba`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
`predict_proba` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_proba : ndarray of shape (n_samples, n_classes)
Result of calling `predict_proba` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
Xt = X
if not _routing_enabled():
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][1].predict_proba(Xt, **params)
# metadata routing enabled
routed_params = process_routing(self, "predict_proba", **params)
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt, **routed_params[name].transform)
return self.steps[-1][1].predict_proba(
Xt, **routed_params[self.steps[-1][0]].predict_proba
)
|
Transform the data, and apply `predict_proba` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`predict_proba` method. Only valid if the final estimator implements
`predict_proba`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
`predict_proba` called at the end of all transformations in the pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_proba : ndarray of shape (n_samples, n_classes)
Result of calling `predict_proba` on the final estimator.
|
predict_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def decision_function(self, X, **params):
"""Transform the data, and apply `decision_function` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`decision_function` method. Only valid if the final estimator
implements `decision_function`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of string -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_score : ndarray of shape (n_samples, n_classes)
Result of calling `decision_function` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
_raise_for_params(params, self, "decision_function")
# not branching here since params is only available if
# enable_metadata_routing=True
routed_params = process_routing(self, "decision_function", **params)
Xt = X
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(
Xt, **routed_params.get(name, {}).get("transform", {})
)
return self.steps[-1][1].decision_function(
Xt,
**routed_params.get(self.steps[-1][0], {}).get("decision_function", {}),
)
|
Transform the data, and apply `decision_function` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`decision_function` method. Only valid if the final estimator
implements `decision_function`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of string -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_score : ndarray of shape (n_samples, n_classes)
Result of calling `decision_function` on the final estimator.
|
decision_function
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def score_samples(self, X):
"""Transform the data, and apply `score_samples` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`score_samples` method. Only valid if the final estimator implements
`score_samples`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
Returns
-------
y_score : ndarray of shape (n_samples,)
Result of calling `score_samples` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
Xt = X
for _, _, transformer in self._iter(with_final=False):
Xt = transformer.transform(Xt)
return self.steps[-1][1].score_samples(Xt)
|
Transform the data, and apply `score_samples` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`score_samples` method. Only valid if the final estimator implements
`score_samples`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
Returns
-------
y_score : ndarray of shape (n_samples,)
Result of calling `score_samples` on the final estimator.
|
score_samples
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def predict_log_proba(self, X, **params):
"""Transform the data, and apply `predict_log_proba` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`predict_log_proba` method. Only valid if the final estimator
implements `predict_log_proba`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
`predict_log_proba` called at the end of all transformations in the
pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_log_proba : ndarray of shape (n_samples, n_classes)
Result of calling `predict_log_proba` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
Xt = X
if not _routing_enabled():
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
return self.steps[-1][1].predict_log_proba(Xt, **params)
# metadata routing enabled
routed_params = process_routing(self, "predict_log_proba", **params)
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt, **routed_params[name].transform)
return self.steps[-1][1].predict_log_proba(
Xt, **routed_params[self.steps[-1][0]].predict_log_proba
)
|
Transform the data, and apply `predict_log_proba` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`predict_log_proba` method. Only valid if the final estimator
implements `predict_log_proba`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
- If `enable_metadata_routing=False` (default): Parameters to the
`predict_log_proba` called at the end of all transformations in the
pipeline.
- If `enable_metadata_routing=True`: Parameters requested and accepted by
steps. Each step must have requested certain metadata for these parameters
to be forwarded to them.
.. versionadded:: 0.20
.. versionchanged:: 1.4
Parameters are now passed to the ``transform`` method of the
intermediate steps as well, if requested, and if
`enable_metadata_routing=True`.
See :ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
y_log_proba : ndarray of shape (n_samples, n_classes)
Result of calling `predict_log_proba` on the final estimator.
|
predict_log_proba
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def transform(self, X, **params):
"""Transform the data, and apply `transform` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`transform` method. Only valid if the final estimator
implements `transform`.
This also works where final estimator is `None` in which case all prior
transformations are applied.
Parameters
----------
X : iterable
Data to transform. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
Xt : ndarray of shape (n_samples, n_transformed_features)
Transformed data.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
_raise_for_params(params, self, "transform")
# not branching here since params is only available if
# enable_metadata_routing=True
routed_params = process_routing(self, "transform", **params)
Xt = X
for _, name, transform in self._iter():
Xt = transform.transform(Xt, **routed_params[name].transform)
return Xt
|
Transform the data, and apply `transform` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`transform` method. Only valid if the final estimator
implements `transform`.
This also works where final estimator is `None` in which case all prior
transformations are applied.
Parameters
----------
X : iterable
Data to transform. Must fulfill input requirements of first step
of the pipeline.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
Xt : ndarray of shape (n_samples, n_transformed_features)
Transformed data.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def inverse_transform(self, X, **params):
"""Apply `inverse_transform` for each step in a reverse order.
All estimators in the pipeline must support `inverse_transform`.
Parameters
----------
X : array-like of shape (n_samples, n_transformed_features)
Data samples, where ``n_samples`` is the number of samples and
``n_features`` is the number of features. Must fulfill
input requirements of last step of pipeline's
``inverse_transform`` method.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
X_original : ndarray of shape (n_samples, n_features)
Inverse transformed data, that is, data in the original feature
space.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
_raise_for_params(params, self, "inverse_transform")
# we don't have to branch here, since params is only non-empty if
# enable_metadata_routing=True.
routed_params = process_routing(self, "inverse_transform", **params)
reverse_iter = reversed(list(self._iter()))
for _, name, transform in reverse_iter:
X = transform.inverse_transform(
X, **routed_params[name].inverse_transform
)
return X
|
Apply `inverse_transform` for each step in a reverse order.
All estimators in the pipeline must support `inverse_transform`.
Parameters
----------
X : array-like of shape (n_samples, n_transformed_features)
Data samples, where ``n_samples`` is the number of samples and
``n_features`` is the number of features. Must fulfill
input requirements of last step of pipeline's
``inverse_transform`` method.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
X_original : ndarray of shape (n_samples, n_features)
Inverse transformed data, that is, data in the original feature
space.
|
inverse_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def score(self, X, y=None, sample_weight=None, **params):
"""Transform the data, and apply `score` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`score` method. Only valid if the final estimator implements `score`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
y : iterable, default=None
Targets used for scoring. Must fulfill label requirements for all
steps of the pipeline.
sample_weight : array-like, default=None
If not None, this argument is passed as ``sample_weight`` keyword
argument to the ``score`` method of the final estimator.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
score : float
Result of calling `score` on the final estimator.
"""
# TODO(1.8): Remove the context manager and use check_is_fitted(self)
with _raise_or_warn_if_not_fitted(self):
Xt = X
if not _routing_enabled():
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt)
score_params = {}
if sample_weight is not None:
score_params["sample_weight"] = sample_weight
return self.steps[-1][1].score(Xt, y, **score_params)
# metadata routing is enabled.
routed_params = process_routing(
self, "score", sample_weight=sample_weight, **params
)
Xt = X
for _, name, transform in self._iter(with_final=False):
Xt = transform.transform(Xt, **routed_params[name].transform)
return self.steps[-1][1].score(
Xt, y, **routed_params[self.steps[-1][0]].score
)
|
Transform the data, and apply `score` with the final estimator.
Call `transform` of each transformer in the pipeline. The transformed
data are finally passed to the final estimator that calls
`score` method. Only valid if the final estimator implements `score`.
Parameters
----------
X : iterable
Data to predict on. Must fulfill input requirements of first step
of the pipeline.
y : iterable, default=None
Targets used for scoring. Must fulfill label requirements for all
steps of the pipeline.
sample_weight : array-like, default=None
If not None, this argument is passed as ``sample_weight`` keyword
argument to the ``score`` method of the final estimator.
**params : dict of str -> object
Parameters requested and accepted by steps. Each step must have
requested certain metadata for these parameters to be forwarded to
them.
.. versionadded:: 1.4
Only available if `enable_metadata_routing=True`. See
:ref:`Metadata Routing User Guide <metadata_routing>` for more
details.
Returns
-------
score : float
Result of calling `score` on the final estimator.
|
score
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Transform input features using the pipeline.
Parameters
----------
input_features : array-like of str or None, default=None
Input features.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
feature_names_out = input_features
for _, name, transform in self._iter():
if not hasattr(transform, "get_feature_names_out"):
raise AttributeError(
"Estimator {} does not provide get_feature_names_out. "
"Did you mean to call pipeline[:-1].get_feature_names_out"
"()?".format(name)
)
feature_names_out = transform.get_feature_names_out(feature_names_out)
return feature_names_out
|
Get output feature names for transformation.
Transform input features using the pipeline.
Parameters
----------
input_features : array-like of str or None, default=None
Input features.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
|
get_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def __sklearn_is_fitted__(self):
"""Indicate whether pipeline has been fit.
This is done by checking whether the last non-`passthrough` step of the
pipeline is fitted.
An empty pipeline is considered fitted.
"""
# First find the last step that is not 'passthrough'
last_step = None
for _, estimator in reversed(self.steps):
if estimator != "passthrough":
last_step = estimator
break
if last_step is None:
# All steps are 'passthrough', so the pipeline is considered fitted
return True
try:
# check if the last step of the pipeline is fitted
# we only check the last step since if the last step is fit, it
# means the previous steps should also be fit. This is faster than
# checking if every step of the pipeline is fit.
check_is_fitted(last_step)
return True
except NotFittedError:
return False
|
Indicate whether pipeline has been fit.
This is done by checking whether the last non-`passthrough` step of the
pipeline is fitted.
An empty pipeline is considered fitted.
|
__sklearn_is_fitted__
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__)
# first we add all steps except the last one
for _, name, trans in self._iter(with_final=False, filter_passthrough=True):
method_mapping = MethodMapping()
# fit, fit_predict, and fit_transform call fit_transform if it
# exists, or else fit and transform
if hasattr(trans, "fit_transform"):
(
method_mapping.add(caller="fit", callee="fit_transform")
.add(caller="fit_transform", callee="fit_transform")
.add(caller="fit_predict", callee="fit_transform")
)
else:
(
method_mapping.add(caller="fit", callee="fit")
.add(caller="fit", callee="transform")
.add(caller="fit_transform", callee="fit")
.add(caller="fit_transform", callee="transform")
.add(caller="fit_predict", callee="fit")
.add(caller="fit_predict", callee="transform")
)
(
method_mapping.add(caller="predict", callee="transform")
.add(caller="predict", callee="transform")
.add(caller="predict_proba", callee="transform")
.add(caller="decision_function", callee="transform")
.add(caller="predict_log_proba", callee="transform")
.add(caller="transform", callee="transform")
.add(caller="inverse_transform", callee="inverse_transform")
.add(caller="score", callee="transform")
)
router.add(method_mapping=method_mapping, **{name: trans})
final_name, final_est = self.steps[-1]
if final_est is None or final_est == "passthrough":
return router
# then we add the last step
method_mapping = MethodMapping()
if hasattr(final_est, "fit_transform"):
method_mapping.add(caller="fit_transform", callee="fit_transform")
else:
method_mapping.add(caller="fit", callee="fit").add(
caller="fit", callee="transform"
)
(
method_mapping.add(caller="fit", callee="fit")
.add(caller="predict", callee="predict")
.add(caller="fit_predict", callee="fit_predict")
.add(caller="predict_proba", callee="predict_proba")
.add(caller="decision_function", callee="decision_function")
.add(caller="predict_log_proba", callee="predict_log_proba")
.add(caller="transform", callee="transform")
.add(caller="inverse_transform", callee="inverse_transform")
.add(caller="score", callee="score")
)
router.add(method_mapping=method_mapping, **{final_name: final_est})
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _transform_one(transformer, X, y, weight, params):
"""Call transform and apply weight to output.
Parameters
----------
transformer : estimator
Estimator to be used for transformation.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data to be transformed.
y : ndarray of shape (n_samples,)
Ignored.
weight : float
Weight to be applied to the output of the transformation.
params : dict
Parameters to be passed to the transformer's ``transform`` method.
This should be of the form ``process_routing()["step_name"]``.
"""
res = transformer.transform(X, **params.transform)
# if we have a weight for this transformer, multiply output
if weight is None:
return res
return res * weight
|
Call transform and apply weight to output.
Parameters
----------
transformer : estimator
Estimator to be used for transformation.
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Input data to be transformed.
y : ndarray of shape (n_samples,)
Ignored.
weight : float
Weight to be applied to the output of the transformation.
params : dict
Parameters to be passed to the transformer's ``transform`` method.
This should be of the form ``process_routing()["step_name"]``.
|
_transform_one
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _fit_transform_one(
transformer, X, y, weight, message_clsname="", message=None, params=None
):
"""
Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
with the fitted transformer. If ``weight`` is not ``None``, the result will
be multiplied by ``weight``.
``params`` needs to be of the form ``process_routing()["step_name"]``.
"""
params = params or {}
with _print_elapsed_time(message_clsname, message):
if hasattr(transformer, "fit_transform"):
res = transformer.fit_transform(X, y, **params.get("fit_transform", {}))
else:
res = transformer.fit(X, y, **params.get("fit", {})).transform(
X, **params.get("transform", {})
)
if weight is None:
return res, transformer
return res * weight, transformer
|
Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
with the fitted transformer. If ``weight`` is not ``None``, the result will
be multiplied by ``weight``.
``params`` needs to be of the form ``process_routing()["step_name"]``.
|
_fit_transform_one
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def set_output(self, *, transform=None):
"""Set the output container when `"transform"` and `"fit_transform"` are called.
`set_output` will set the output of all estimators in `transformer_list`.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
Returns
-------
self : estimator instance
Estimator instance.
"""
super().set_output(transform=transform)
for _, step, _ in self._iter():
_safe_set_output(step, transform=transform)
return self
|
Set the output container when `"transform"` and `"fit_transform"` are called.
`set_output` will set the output of all estimators in `transformer_list`.
Parameters
----------
transform : {"default", "pandas", "polars"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `"polars"`: Polars output
- `None`: Transform configuration is unchanged
Returns
-------
self : estimator instance
Estimator instance.
|
set_output
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _iter(self):
"""
Generate (name, trans, weight) tuples excluding None and
'drop' transformers.
"""
get_weight = (self.transformer_weights or {}).get
for name, trans in self.transformer_list:
if trans == "drop":
continue
if trans == "passthrough":
trans = FunctionTransformer(feature_names_out="one-to-one")
yield (name, trans, get_weight(name))
|
Generate (name, trans, weight) tuples excluding None and
'drop' transformers.
|
_iter
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Input features.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
"""
# List of tuples (name, feature_names_out)
transformer_with_feature_names_out = []
for name, trans, _ in self._iter():
if not hasattr(trans, "get_feature_names_out"):
raise AttributeError(
"Transformer %s (type %s) does not provide get_feature_names_out."
% (str(name), type(trans).__name__)
)
feature_names_out = trans.get_feature_names_out(input_features)
transformer_with_feature_names_out.append((name, feature_names_out))
return self._add_prefix_for_feature_names_out(
transformer_with_feature_names_out
)
|
Get output feature names for transformation.
Parameters
----------
input_features : array-like of str or None, default=None
Input features.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
|
get_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _add_prefix_for_feature_names_out(self, transformer_with_feature_names_out):
"""Add prefix for feature names out that includes the transformer names.
Parameters
----------
transformer_with_feature_names_out : list of tuples of (str, array-like of str)
The tuple consistent of the transformer's name and its feature names out.
Returns
-------
feature_names_out : ndarray of shape (n_features,), dtype=str
Transformed feature names.
"""
if self.verbose_feature_names_out:
# Prefix the feature names out with the transformers name
names = list(
chain.from_iterable(
(f"{name}__{i}" for i in feature_names_out)
for name, feature_names_out in transformer_with_feature_names_out
)
)
return np.asarray(names, dtype=object)
# verbose_feature_names_out is False
# Check that names are all unique without a prefix
feature_names_count = Counter(
chain.from_iterable(s for _, s in transformer_with_feature_names_out)
)
top_6_overlap = [
name for name, count in feature_names_count.most_common(6) if count > 1
]
top_6_overlap.sort()
if top_6_overlap:
if len(top_6_overlap) == 6:
# There are more than 5 overlapping names, we only show the 5
# of the feature names
names_repr = str(top_6_overlap[:5])[:-1] + ", ...]"
else:
names_repr = str(top_6_overlap)
raise ValueError(
f"Output feature names: {names_repr} are not unique. Please set "
"verbose_feature_names_out=True to add prefixes to feature names"
)
return np.concatenate(
[name for _, name in transformer_with_feature_names_out],
)
|
Add prefix for feature names out that includes the transformer names.
Parameters
----------
transformer_with_feature_names_out : list of tuples of (str, array-like of str)
The tuple consistent of the transformer's name and its feature names out.
Returns
-------
feature_names_out : ndarray of shape (n_features,), dtype=str
Transformed feature names.
|
_add_prefix_for_feature_names_out
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def fit(self, X, y=None, **fit_params):
"""Fit all transformers using X.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data, used to fit transformers.
y : array-like of shape (n_samples, n_outputs), default=None
Targets for supervised learning.
**fit_params : dict, default=None
- If `enable_metadata_routing=False` (default):
Parameters directly passed to the `fit` methods of the
sub-transformers.
- If `enable_metadata_routing=True`:
Parameters safely routed to the `fit` methods of the
sub-transformers. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionchanged:: 1.5
`**fit_params` can be routed via metadata routing API.
Returns
-------
self : object
FeatureUnion class instance.
"""
if _routing_enabled():
routed_params = process_routing(self, "fit", **fit_params)
else:
# TODO(SLEP6): remove when metadata routing cannot be disabled.
routed_params = Bunch()
for name, _ in self.transformer_list:
routed_params[name] = Bunch(fit={})
routed_params[name].fit = fit_params
transformers = self._parallel_func(X, y, _fit_one, routed_params)
if not transformers:
# All transformers are None
return self
self._update_transformer_list(transformers)
return self
|
Fit all transformers using X.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data, used to fit transformers.
y : array-like of shape (n_samples, n_outputs), default=None
Targets for supervised learning.
**fit_params : dict, default=None
- If `enable_metadata_routing=False` (default):
Parameters directly passed to the `fit` methods of the
sub-transformers.
- If `enable_metadata_routing=True`:
Parameters safely routed to the `fit` methods of the
sub-transformers. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionchanged:: 1.5
`**fit_params` can be routed via metadata routing API.
Returns
-------
self : object
FeatureUnion class instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def fit_transform(self, X, y=None, **params):
"""Fit all transformers, transform the data and concatenate results.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data to be transformed.
y : array-like of shape (n_samples, n_outputs), default=None
Targets for supervised learning.
**params : dict, default=None
- If `enable_metadata_routing=False` (default):
Parameters directly passed to the `fit` methods of the
sub-transformers.
- If `enable_metadata_routing=True`:
Parameters safely routed to the `fit` methods of the
sub-transformers. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionchanged:: 1.5
`**params` can now be routed via metadata routing API.
Returns
-------
X_t : array-like or sparse matrix of \
shape (n_samples, sum_n_components)
The `hstack` of results of transformers. `sum_n_components` is the
sum of `n_components` (output dimension) over transformers.
"""
if _routing_enabled():
routed_params = process_routing(self, "fit_transform", **params)
else:
# TODO(SLEP6): remove when metadata routing cannot be disabled.
routed_params = Bunch()
for name, obj in self.transformer_list:
if hasattr(obj, "fit_transform"):
routed_params[name] = Bunch(fit_transform={})
routed_params[name].fit_transform = params
else:
routed_params[name] = Bunch(fit={})
routed_params[name] = Bunch(transform={})
routed_params[name].fit = params
results = self._parallel_func(X, y, _fit_transform_one, routed_params)
if not results:
# All transformers are None
return np.zeros((X.shape[0], 0))
Xs, transformers = zip(*results)
self._update_transformer_list(transformers)
return self._hstack(Xs)
|
Fit all transformers, transform the data and concatenate results.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data to be transformed.
y : array-like of shape (n_samples, n_outputs), default=None
Targets for supervised learning.
**params : dict, default=None
- If `enable_metadata_routing=False` (default):
Parameters directly passed to the `fit` methods of the
sub-transformers.
- If `enable_metadata_routing=True`:
Parameters safely routed to the `fit` methods of the
sub-transformers. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionchanged:: 1.5
`**params` can now be routed via metadata routing API.
Returns
-------
X_t : array-like or sparse matrix of shape (n_samples, sum_n_components)
The `hstack` of results of transformers. `sum_n_components` is the
sum of `n_components` (output dimension) over transformers.
|
fit_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def _parallel_func(self, X, y, func, routed_params):
"""Runs func in parallel on X and y"""
self.transformer_list = list(self.transformer_list)
self._validate_transformers()
self._validate_transformer_weights()
transformers = list(self._iter())
return Parallel(n_jobs=self.n_jobs)(
delayed(func)(
transformer,
X,
y,
weight,
message_clsname="FeatureUnion",
message=self._log_message(name, idx, len(transformers)),
params=routed_params[name],
)
for idx, (name, transformer, weight) in enumerate(transformers, 1)
)
|
Runs func in parallel on X and y
|
_parallel_func
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def transform(self, X, **params):
"""Transform X separately by each transformer, concatenate results.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data to be transformed.
**params : dict, default=None
Parameters routed to the `transform` method of the sub-transformers via the
metadata routing API. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionadded:: 1.5
Returns
-------
X_t : array-like or sparse matrix of shape (n_samples, sum_n_components)
The `hstack` of results of transformers. `sum_n_components` is the
sum of `n_components` (output dimension) over transformers.
"""
_raise_for_params(params, self, "transform")
if _routing_enabled():
routed_params = process_routing(self, "transform", **params)
else:
# TODO(SLEP6): remove when metadata routing cannot be disabled.
routed_params = Bunch()
for name, _ in self.transformer_list:
routed_params[name] = Bunch(transform={})
Xs = Parallel(n_jobs=self.n_jobs)(
delayed(_transform_one)(trans, X, None, weight, params=routed_params[name])
for name, trans, weight in self._iter()
)
if not Xs:
# All transformers are None
return np.zeros((X.shape[0], 0))
return self._hstack(Xs)
|
Transform X separately by each transformer, concatenate results.
Parameters
----------
X : iterable or array-like, depending on transformers
Input data to be transformed.
**params : dict, default=None
Parameters routed to the `transform` method of the sub-transformers via the
metadata routing API. See :ref:`Metadata Routing User Guide
<metadata_routing>` for more details.
.. versionadded:: 1.5
Returns
-------
X_t : array-like or sparse matrix of shape (n_samples, sum_n_components)
The `hstack` of results of transformers. `sum_n_components` is the
sum of `n_components` (output dimension) over transformers.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def get_metadata_routing(self):
"""Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.5
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
"""
router = MetadataRouter(owner=self.__class__.__name__)
for name, transformer in self.transformer_list:
router.add(
**{name: transformer},
method_mapping=MethodMapping()
.add(caller="fit", callee="fit")
.add(caller="fit_transform", callee="fit_transform")
.add(caller="fit_transform", callee="fit")
.add(caller="fit_transform", callee="transform")
.add(caller="transform", callee="transform"),
)
return router
|
Get metadata routing of this object.
Please check :ref:`User Guide <metadata_routing>` on how the routing
mechanism works.
.. versionadded:: 1.5
Returns
-------
routing : MetadataRouter
A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
routing information.
|
get_metadata_routing
|
python
|
scikit-learn/scikit-learn
|
sklearn/pipeline.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/pipeline.py
|
BSD-3-Clause
|
def johnson_lindenstrauss_min_dim(n_samples, *, eps=0.1):
"""Find a 'safe' number of components to randomly project to.
The distortion introduced by a random projection `p` only changes the
distance between two points by a factor (1 +- eps) in a euclidean space
with good probability. The projection `p` is an eps-embedding as defined
by:
.. code-block:: text
(1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2
Where u and v are any rows taken from a dataset of shape (n_samples,
n_features), eps is in ]0, 1[ and p is a projection by a random Gaussian
N(0, 1) matrix of shape (n_components, n_features) (or a sparse
Achlioptas matrix).
The minimum number of components to guarantee the eps-embedding is
given by:
.. code-block:: text
n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)
Note that the number of dimensions is independent of the original
number of features but instead depends on the size of the dataset:
the larger the dataset, the higher is the minimal dimensionality of
an eps-embedding.
Read more in the :ref:`User Guide <johnson_lindenstrauss>`.
Parameters
----------
n_samples : int or array-like of int
Number of samples that should be an integer greater than 0. If an array
is given, it will compute a safe number of components array-wise.
eps : float or array-like of shape (n_components,), dtype=float, \
default=0.1
Maximum distortion rate in the range (0, 1) as defined by the
Johnson-Lindenstrauss lemma. If an array is given, it will compute a
safe number of components array-wise.
Returns
-------
n_components : int or ndarray of int
The minimal number of components to guarantee with good probability
an eps-embedding with n_samples.
References
----------
.. [1] https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
.. [2] `Sanjoy Dasgupta and Anupam Gupta, 1999,
"An elementary proof of the Johnson-Lindenstrauss Lemma."
<https://citeseerx.ist.psu.edu/doc_view/pid/95cd464d27c25c9c8690b378b894d337cdf021f9>`_
Examples
--------
>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
np.int64(663)
>>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])
>>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])
"""
eps = np.asarray(eps)
n_samples = np.asarray(n_samples)
if np.any(eps <= 0.0) or np.any(eps >= 1):
raise ValueError("The JL bound is defined for eps in ]0, 1[, got %r" % eps)
if np.any(n_samples <= 0):
raise ValueError(
"The JL bound is defined for n_samples greater than zero, got %r"
% n_samples
)
denominator = (eps**2 / 2) - (eps**3 / 3)
return (4 * np.log(n_samples) / denominator).astype(np.int64)
|
Find a 'safe' number of components to randomly project to.
The distortion introduced by a random projection `p` only changes the
distance between two points by a factor (1 +- eps) in a euclidean space
with good probability. The projection `p` is an eps-embedding as defined
by:
.. code-block:: text
(1 - eps) ||u - v||^2 < ||p(u) - p(v)||^2 < (1 + eps) ||u - v||^2
Where u and v are any rows taken from a dataset of shape (n_samples,
n_features), eps is in ]0, 1[ and p is a projection by a random Gaussian
N(0, 1) matrix of shape (n_components, n_features) (or a sparse
Achlioptas matrix).
The minimum number of components to guarantee the eps-embedding is
given by:
.. code-block:: text
n_components >= 4 log(n_samples) / (eps^2 / 2 - eps^3 / 3)
Note that the number of dimensions is independent of the original
number of features but instead depends on the size of the dataset:
the larger the dataset, the higher is the minimal dimensionality of
an eps-embedding.
Read more in the :ref:`User Guide <johnson_lindenstrauss>`.
Parameters
----------
n_samples : int or array-like of int
Number of samples that should be an integer greater than 0. If an array
is given, it will compute a safe number of components array-wise.
eps : float or array-like of shape (n_components,), dtype=float, default=0.1
Maximum distortion rate in the range (0, 1) as defined by the
Johnson-Lindenstrauss lemma. If an array is given, it will compute a
safe number of components array-wise.
Returns
-------
n_components : int or ndarray of int
The minimal number of components to guarantee with good probability
an eps-embedding with n_samples.
References
----------
.. [1] https://en.wikipedia.org/wiki/Johnson%E2%80%93Lindenstrauss_lemma
.. [2] `Sanjoy Dasgupta and Anupam Gupta, 1999,
"An elementary proof of the Johnson-Lindenstrauss Lemma."
<https://citeseerx.ist.psu.edu/doc_view/pid/95cd464d27c25c9c8690b378b894d337cdf021f9>`_
Examples
--------
>>> from sklearn.random_projection import johnson_lindenstrauss_min_dim
>>> johnson_lindenstrauss_min_dim(1e6, eps=0.5)
np.int64(663)
>>> johnson_lindenstrauss_min_dim(1e6, eps=[0.5, 0.1, 0.01])
array([ 663, 11841, 1112658])
>>> johnson_lindenstrauss_min_dim([1e4, 1e5, 1e6], eps=0.1)
array([ 7894, 9868, 11841])
|
johnson_lindenstrauss_min_dim
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _check_density(density, n_features):
"""Factorize density check according to Li et al."""
if density == "auto":
density = 1 / np.sqrt(n_features)
elif density <= 0 or density > 1:
raise ValueError("Expected density in range ]0, 1], got: %r" % density)
return density
|
Factorize density check according to Li et al.
|
_check_density
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _check_input_size(n_components, n_features):
"""Factorize argument checking for random matrix generation."""
if n_components <= 0:
raise ValueError(
"n_components must be strictly positive, got %d" % n_components
)
if n_features <= 0:
raise ValueError("n_features must be strictly positive, got %d" % n_features)
|
Factorize argument checking for random matrix generation.
|
_check_input_size
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _gaussian_random_matrix(n_components, n_features, random_state=None):
"""Generate a dense Gaussian random matrix.
The components of the random matrix are drawn from
N(0, 1.0 / n_components).
Read more in the :ref:`User Guide <gaussian_random_matrix>`.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
random_state : int, RandomState instance or None, default=None
Controls the pseudo random number generator used to generate the matrix
at fit time.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
components : ndarray of shape (n_components, n_features)
The generated Gaussian random matrix.
See Also
--------
GaussianRandomProjection
"""
_check_input_size(n_components, n_features)
rng = check_random_state(random_state)
components = rng.normal(
loc=0.0, scale=1.0 / np.sqrt(n_components), size=(n_components, n_features)
)
return components
|
Generate a dense Gaussian random matrix.
The components of the random matrix are drawn from
N(0, 1.0 / n_components).
Read more in the :ref:`User Guide <gaussian_random_matrix>`.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
random_state : int, RandomState instance or None, default=None
Controls the pseudo random number generator used to generate the matrix
at fit time.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
Returns
-------
components : ndarray of shape (n_components, n_features)
The generated Gaussian random matrix.
See Also
--------
GaussianRandomProjection
|
_gaussian_random_matrix
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _make_random_matrix(self, n_components, n_features):
"""Generate the random projection matrix.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
Returns
-------
components : {ndarray, sparse matrix} of shape (n_components, n_features)
The generated random matrix. Sparse matrix will be of CSR format.
"""
|
Generate the random projection matrix.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
Returns
-------
components : {ndarray, sparse matrix} of shape (n_components, n_features)
The generated random matrix. Sparse matrix will be of CSR format.
|
_make_random_matrix
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _compute_inverse_components(self):
"""Compute the pseudo-inverse of the (densified) components."""
components = self.components_
if sp.issparse(components):
components = components.toarray()
return linalg.pinv(components, check_finite=False)
|
Compute the pseudo-inverse of the (densified) components.
|
_compute_inverse_components
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def fit(self, X, y=None):
"""Generate a sparse random projection matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training set: only the shape is used to find optimal random
matrix dimensions based on the theory referenced in the
afore mentioned papers.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
BaseRandomProjection class instance.
"""
X = validate_data(
self, X, accept_sparse=["csr", "csc"], dtype=[np.float64, np.float32]
)
n_samples, n_features = X.shape
if self.n_components == "auto":
self.n_components_ = johnson_lindenstrauss_min_dim(
n_samples=n_samples, eps=self.eps
)
if self.n_components_ <= 0:
raise ValueError(
"eps=%f and n_samples=%d lead to a target dimension of "
"%d which is invalid" % (self.eps, n_samples, self.n_components_)
)
elif self.n_components_ > n_features:
raise ValueError(
"eps=%f and n_samples=%d lead to a target dimension of "
"%d which is larger than the original space with "
"n_features=%d"
% (self.eps, n_samples, self.n_components_, n_features)
)
else:
if self.n_components > n_features:
warnings.warn(
"The number of components is higher than the number of"
" features: n_features < n_components (%s < %s)."
"The dimensionality of the problem will not be reduced."
% (n_features, self.n_components),
DataDimensionalityWarning,
)
self.n_components_ = self.n_components
# Generate a projection matrix of size [n_components, n_features]
self.components_ = self._make_random_matrix(
self.n_components_, n_features
).astype(X.dtype, copy=False)
if self.compute_inverse_components:
self.inverse_components_ = self._compute_inverse_components()
# Required by ClassNamePrefixFeaturesOutMixin.get_feature_names_out.
self._n_features_out = self.n_components
return self
|
Generate a sparse random projection matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
Training set: only the shape is used to find optimal random
matrix dimensions based on the theory referenced in the
afore mentioned papers.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
BaseRandomProjection class instance.
|
fit
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def inverse_transform(self, X):
"""Project data back to its original space.
Returns an array X_original whose transform would be X. Note that even
if X is sparse, X_original is dense: this may use a lot of RAM.
If `compute_inverse_components` is False, the inverse of the components is
computed during each call to `inverse_transform` which can be costly.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_components)
Data to be transformed back.
Returns
-------
X_original : ndarray of shape (n_samples, n_features)
Reconstructed data.
"""
check_is_fitted(self)
X = check_array(X, dtype=[np.float64, np.float32], accept_sparse=("csr", "csc"))
if self.compute_inverse_components:
return X @ self.inverse_components_.T
inverse_components = self._compute_inverse_components()
return X @ inverse_components.T
|
Project data back to its original space.
Returns an array X_original whose transform would be X. Note that even
if X is sparse, X_original is dense: this may use a lot of RAM.
If `compute_inverse_components` is False, the inverse of the components is
computed during each call to `inverse_transform` which can be costly.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_components)
Data to be transformed back.
Returns
-------
X_original : ndarray of shape (n_samples, n_features)
Reconstructed data.
|
inverse_transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _make_random_matrix(self, n_components, n_features):
"""Generate the random projection matrix.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
Returns
-------
components : ndarray of shape (n_components, n_features)
The generated random matrix.
"""
random_state = check_random_state(self.random_state)
return _gaussian_random_matrix(
n_components, n_features, random_state=random_state
)
|
Generate the random projection matrix.
Parameters
----------
n_components : int,
Dimensionality of the target projection space.
n_features : int,
Dimensionality of the original source space.
Returns
-------
components : ndarray of shape (n_components, n_features)
The generated random matrix.
|
_make_random_matrix
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def transform(self, X):
"""Project the data by using matrix product with the random matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input data to project into a smaller dimensional space.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Projected array.
"""
check_is_fitted(self)
X = validate_data(
self,
X,
accept_sparse=["csr", "csc"],
reset=False,
dtype=[np.float64, np.float32],
)
return X @ self.components_.T
|
Project the data by using matrix product with the random matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input data to project into a smaller dimensional space.
Returns
-------
X_new : ndarray of shape (n_samples, n_components)
Projected array.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def _make_random_matrix(self, n_components, n_features):
"""Generate the random projection matrix
Parameters
----------
n_components : int
Dimensionality of the target projection space.
n_features : int
Dimensionality of the original source space.
Returns
-------
components : sparse matrix of shape (n_components, n_features)
The generated random matrix in CSR format.
"""
random_state = check_random_state(self.random_state)
self.density_ = _check_density(self.density, n_features)
return _sparse_random_matrix(
n_components, n_features, density=self.density_, random_state=random_state
)
|
Generate the random projection matrix
Parameters
----------
n_components : int
Dimensionality of the target projection space.
n_features : int
Dimensionality of the original source space.
Returns
-------
components : sparse matrix of shape (n_components, n_features)
The generated random matrix in CSR format.
|
_make_random_matrix
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
def transform(self, X):
"""Project the data by using matrix product with the random matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input data to project into a smaller dimensional space.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples, n_components)
Projected array. It is a sparse matrix only when the input is sparse and
`dense_output = False`.
"""
check_is_fitted(self)
X = validate_data(
self,
X,
accept_sparse=["csr", "csc"],
reset=False,
dtype=[np.float64, np.float32],
)
return safe_sparse_dot(X, self.components_.T, dense_output=self.dense_output)
|
Project the data by using matrix product with the random matrix.
Parameters
----------
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
The input data to project into a smaller dimensional space.
Returns
-------
X_new : {ndarray, sparse matrix} of shape (n_samples, n_components)
Projected array. It is a sparse matrix only when the input is sparse and
`dense_output = False`.
|
transform
|
python
|
scikit-learn/scikit-learn
|
sklearn/random_projection.py
|
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/random_projection.py
|
BSD-3-Clause
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.