code
stringlengths 66
870k
| docstring
stringlengths 19
26.7k
| func_name
stringlengths 1
138
| language
stringclasses 1
value | repo
stringlengths 7
68
| path
stringlengths 5
324
| url
stringlengths 46
389
| license
stringclasses 7
values |
---|---|---|---|---|---|---|---|
def list_models(path):
"""
Lists all model files in the given directory.
Args:
path (str): The directory path to search for model files.
Returns:
list: A list of model file paths.
"""
nonlocal current_model_dir
current_model_dir = path
return list(list_files(path, exts=[".safetensors"], all=True))
|
Lists all model files in the given directory.
Args:
path (str): The directory path to search for model files.
Returns:
list: A list of model file paths.
|
list_models
|
python
|
bmaltais/kohya_ss
|
kohya_gui/convert_lcm_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/convert_lcm_gui.py
|
Apache-2.0
|
def list_save_to(path):
"""
Lists all save-to options for the given directory.
Args:
path (str): The directory path to search for save-to options.
Returns:
list: A list of save-to options.
"""
nonlocal current_save_dir
current_save_dir = path
return list(list_files(path, exts=[".safetensors"], all=True))
|
Lists all save-to options for the given directory.
Args:
path (str): The directory path to search for save-to options.
Returns:
list: A list of save-to options.
|
list_save_to
|
python
|
bmaltais/kohya_ss
|
kohya_gui/convert_lcm_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/convert_lcm_gui.py
|
Apache-2.0
|
def _get_caption_path(image_file, images_dir, caption_ext):
"""
Returns the expected path of a caption file for a given image path
"""
caption_file_name = os.path.splitext(image_file)[0] + caption_ext
caption_file_path = os.path.join(images_dir, caption_file_name)
return caption_file_path
|
Returns the expected path of a caption file for a given image path
|
_get_caption_path
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def _get_quick_tags(quick_tags_text):
"""
Gets a list of tags from the quick tags text box
"""
quick_tags = [t.strip() for t in quick_tags_text.split(",") if t.strip()]
quick_tags_set = set(quick_tags)
return quick_tags, quick_tags_set
|
Gets a list of tags from the quick tags text box
|
_get_quick_tags
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def _get_tag_checkbox_updates(caption, quick_tags, quick_tags_set):
"""
Updates a list of caption checkboxes to show possible tags and tags
already included in the caption
"""
caption_tags_have = [c.strip() for c in caption.split(",") if c.strip()]
caption_tags_unique = [t for t in caption_tags_have if t not in quick_tags_set]
caption_tags_all = quick_tags + caption_tags_unique
return gr.CheckboxGroup(choices=caption_tags_all, value=caption_tags_have)
|
Updates a list of caption checkboxes to show possible tags and tags
already included in the caption
|
_get_tag_checkbox_updates
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def import_tags_from_captions(
images_dir, caption_ext, quick_tags_text, ignore_load_tags_word_count
):
"""
Scans images directory for all available captions and loads all tags
under a specified word count into the quick tags box
"""
def empty_return():
return gr.Text()
# Check for images_dir
if not images_dir:
msgbox("Image folder is missing...")
return empty_return()
if not os.path.exists(images_dir):
msgbox("Image folder does not exist...")
return empty_return()
if not caption_ext:
msgbox("Please provide an extension for the caption files.")
return empty_return()
if quick_tags_text:
if not boolbox(
f"Are you sure you wish to overwrite the current quick tags?",
choices=("Yes", "No"),
):
return empty_return()
images_list = os.listdir(images_dir)
image_files = [f for f in images_list if f.lower().endswith(IMAGE_EXTENSIONS)]
# Use a set for lookup but store order with list
tags = []
tags_set = set()
for image_file in image_files:
caption_file_path = _get_caption_path(image_file, images_dir, caption_ext)
if os.path.exists(caption_file_path):
with open(caption_file_path, "r", encoding="utf-8") as f:
caption = f.read()
for tag in caption.split(","):
tag = tag.strip()
tag_key = tag.lower()
if not tag_key in tags_set:
# Ignore extra spaces
total_words = len(re.findall(r"\s+", tag)) + 1
if total_words <= ignore_load_tags_word_count:
tags.append(tag)
tags_set.add(tag_key)
return ", ".join(tags)
|
Scans images directory for all available captions and loads all tags
under a specified word count into the quick tags box
|
import_tags_from_captions
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def load_images(images_dir, caption_ext, loaded_images_dir, page, max_page):
"""
Triggered to load a new set of images from the folder to caption
This loads in the total expected image counts to be used by pagination
before running update_images
"""
def empty_return():
return [loaded_images_dir, page, max_page]
# Check for images_dir
if not images_dir:
msgbox("Image folder is missing...")
return empty_return()
if not os.path.exists(images_dir):
msgbox("Image folder does not exist...")
return empty_return()
if not caption_ext:
msgbox("Please provide an extension for the caption files.")
return empty_return()
# Load Images
images_list = os.listdir(images_dir)
total_images = len(
[True for f in images_list if f.lower().endswith(IMAGE_EXTENSIONS)]
)
return [images_dir, 1, ceil(total_images / IMAGES_TO_SHOW)]
|
Triggered to load a new set of images from the folder to caption
This loads in the total expected image counts to be used by pagination
before running update_images
|
load_images
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def update_images(
images_dir,
caption_ext,
quick_tags_text,
page,
):
"""
Updates the displayed images and captions from the current page and
image directory
"""
# Load Images
images_list = os.listdir(images_dir)
image_files = [f for f in images_list if f.lower().endswith(IMAGE_EXTENSIONS)]
# Quick tags
quick_tags, quick_tags_set = _get_quick_tags(quick_tags_text or "")
# Display Images
rows = []
image_paths = []
captions = []
tag_checkbox_groups = []
start_index = (int(page) - 1) * IMAGES_TO_SHOW
for i in range(IMAGES_TO_SHOW):
image_index = start_index + i
show_row = image_index < len(image_files)
image_path = None
caption = ""
tag_checkboxes = None
if show_row:
image_file = image_files[image_index]
image_path = os.path.join(images_dir, image_file)
caption_file_path = _get_caption_path(image_file, images_dir, caption_ext)
if os.path.exists(caption_file_path):
with open(caption_file_path, "r", encoding="utf-8") as f:
caption = f.read()
tag_checkboxes = _get_tag_checkbox_updates(caption, quick_tags, quick_tags_set)
rows.append(gr.Row(visible=show_row))
image_paths.append(image_path)
captions.append(caption)
tag_checkbox_groups.append(tag_checkboxes)
return (
rows
+ image_paths
+ image_paths
+ captions
+ tag_checkbox_groups
+ [gr.Row(visible=True), gr.Row(visible=True)]
)
|
Updates the displayed images and captions from the current page and
image directory
|
update_images
|
python
|
bmaltais/kohya_ss
|
kohya_gui/manual_caption_gui.py
|
https://github.com/bmaltais/kohya_ss/blob/master/kohya_gui/manual_caption_gui.py
|
Apache-2.0
|
def check_python_version():
"""
Check if the current Python version is within the acceptable range.
Returns:
bool: True if the current Python version is valid, False otherwise.
"""
log.debug("Checking Python version...")
try:
current_version = sys.version_info
log.info(f"Python version is {sys.version}")
if not (MIN_PYTHON_VERSION <= current_version < MAX_PYTHON_VERSION):
log.error(
f"The current version of python ({sys.version}) is not supported."
)
log.error("The Python version must be >= 3.10.9 and < 3.13.0.")
return False
return True
except Exception as e:
log.error(f"Failed to verify Python version. Error: {e}")
return False
|
Check if the current Python version is within the acceptable range.
Returns:
bool: True if the current Python version is valid, False otherwise.
|
check_python_version
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def update_submodule(quiet=True):
"""
Ensure the submodule is initialized and updated.
"""
log.debug("Updating submodule...")
git_command = ["git", "submodule", "update", "--init", "--recursive"]
if quiet:
git_command.append("--quiet")
try:
subprocess.run(git_command, check=True)
log.info("Submodule initialized and updated.")
except subprocess.CalledProcessError as e:
log.error(f"Error during Git operation: {e}")
except FileNotFoundError as e:
log.error(e)
|
Ensure the submodule is initialized and updated.
|
update_submodule
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def clone_or_checkout(repo_url, branch_or_tag, directory_name):
"""
Clone a repo or checkout a specific branch or tag if the repo already exists.
"""
log.debug(
f"Cloning or checking out repository: {repo_url}, branch/tag: {branch_or_tag}, directory: {directory_name}"
)
original_dir = os.getcwd()
try:
if not os.path.exists(directory_name):
run_cmd = [
"git",
"clone",
"--branch",
branch_or_tag,
"--single-branch",
"--quiet",
repo_url,
directory_name,
]
log.debug(f"Cloning repository: {run_cmd}")
subprocess.run(run_cmd, check=True)
log.info(f"Successfully cloned {repo_url} ({branch_or_tag})")
else:
os.chdir(directory_name)
log.debug("Fetching all branches and tags...")
subprocess.run(["git", "fetch", "--all", "--quiet"], check=True)
subprocess.run(
["git", "config", "advice.detachedHead", "false"], check=True
)
current_branch_hash = (
subprocess.check_output(["git", "rev-parse", "HEAD"]).strip().decode()
)
target_branch_hash = (
subprocess.check_output(["git", "rev-parse", branch_or_tag])
.strip()
.decode()
)
if current_branch_hash != target_branch_hash:
log.debug(f"Checking out branch/tag: {branch_or_tag}")
subprocess.run(
["git", "checkout", branch_or_tag, "--quiet"], check=True
)
log.info(f"Checked out {branch_or_tag} successfully.")
else:
log.info(f"Already at required branch/tag: {branch_or_tag}")
except subprocess.CalledProcessError as e:
log.error(f"Error during Git operation: {e}")
finally:
os.chdir(original_dir)
|
Clone a repo or checkout a specific branch or tag if the repo already exists.
|
clone_or_checkout
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def setup_logging():
"""
Set up logging to file and console.
"""
log.debug("Setting up logging...")
from rich.theme import Theme
from rich.logging import RichHandler
from rich.console import Console
console = Console(
log_time=True,
log_time_format="%H:%M:%S-%f",
theme=Theme({"traceback.border": "black", "inspect.value.border": "black"}),
)
current_datetime_str = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
log_file = os.path.join(
os.path.dirname(__file__), f"{LOG_DIR}kohya_ss_gui_{current_datetime_str}.log"
)
os.makedirs(os.path.dirname(log_file), exist_ok=True)
logging.basicConfig(
level=logging.ERROR,
format="%(asctime)s | %(name)s | %(levelname)s | %(module)s | %(message)s",
filename=log_file,
filemode="a",
encoding="utf-8",
force=True,
)
log_level = os.getenv("LOG_LEVEL", LOG_LEVEL).upper()
log.setLevel(getattr(logging, log_level, logging.DEBUG))
rich_handler = RichHandler(console=console)
# Replace existing handlers with the rich handler
log.handlers.clear()
log.addHandler(rich_handler)
log.debug("Logging setup complete.")
|
Set up logging to file and console.
|
setup_logging
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def check_repo_version():
"""
This function checks the version of the repository by reading the contents of a file named '.release'
in the current directory. If the file exists, it reads the release version from the file and logs it.
If the file does not exist, it logs a debug message indicating that the release could not be read.
"""
log.debug("Checking repository version...")
if os.path.exists(".release"):
try:
with open(os.path.join("./.release"), "r", encoding="utf8") as file:
release = file.read()
log.info(f"Kohya_ss GUI version: {release}")
except Exception as e:
log.error(f"Could not read release: {e}")
else:
log.debug("Could not read release...")
|
This function checks the version of the repository by reading the contents of a file named '.release'
in the current directory. If the file exists, it reads the release version from the file and logs it.
If the file does not exist, it logs a debug message indicating that the release could not be read.
|
check_repo_version
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def pip(arg: str, ignore: bool = False, quiet: bool = False, show_stdout: bool = False):
"""
Executes a pip command with the specified arguments.
This function is designed to run pip commands and handle their output.
It can be used to install, upgrade, or uninstall packages using pip.
If an error occurs during the pip operation and the 'ignore' flag is not set,
it logs the error message and the pip output for debugging purposes.
Parameters:
- arg: A string containing the pip command arguments.
- ignore: A boolean flag indicating whether to ignore errors during the pip operation.
If set to True, errors will not be logged.
- quiet: A boolean flag indicating whether to suppress the output of the pip command.
If set to True, the function will not log any output.
- show_stdout: A boolean flag indicating whether to display the pip command's output
to the console. If set to True, the function will print the output
to the console.
Returns:
- The output of the pip command as a string, or None if the 'show_stdout' flag is set.
"""
log.debug(f"Running pip command: {arg}")
if not quiet:
log.info(
f'Installing package: {arg.replace("install", "").replace("--upgrade", "").replace("--no-deps", "").replace("--force", "").replace(" ", " ").strip()}'
)
# pip_cmd = [rf"{sys.executable}", "-m", "pip"] + arg.split(" ")
pip_cmd = [rf"{sys.executable}", "-m", "pip"] + arg.split(" ")
if installed("uv"):
log.info("Using uv for pip...")
pip_cmd.insert(2, "uv")
log.debug(f"Running pip: {pip_cmd}")
if show_stdout or installed("uv"):
subprocess.run(pip_cmd, shell=False, check=False, env=os.environ)
else:
result = subprocess.run(
pip_cmd,
shell=False,
check=False,
env=os.environ,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
txt = result.stdout.decode(encoding="utf8", errors="ignore")
if len(result.stderr) > 0:
txt += ("\n" if len(txt) > 0 else "") + result.stderr.decode(
encoding="utf8", errors="ignore"
)
txt = txt.strip()
if result.returncode != 0 and not ignore:
log.error(f"Error running pip: {arg}")
log.error(f"Pip output: {txt}")
return txt
|
Executes a pip command with the specified arguments.
This function is designed to run pip commands and handle their output.
It can be used to install, upgrade, or uninstall packages using pip.
If an error occurs during the pip operation and the 'ignore' flag is not set,
it logs the error message and the pip output for debugging purposes.
Parameters:
- arg: A string containing the pip command arguments.
- ignore: A boolean flag indicating whether to ignore errors during the pip operation.
If set to True, errors will not be logged.
- quiet: A boolean flag indicating whether to suppress the output of the pip command.
If set to True, the function will not log any output.
- show_stdout: A boolean flag indicating whether to display the pip command's output
to the console. If set to True, the function will print the output
to the console.
Returns:
- The output of the pip command as a string, or None if the 'show_stdout' flag is set.
|
pip
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def installed(package, friendly: str = None):
"""
Checks if the specified package(s) are installed with the correct version.
This function can handle package specifications with or without version constraints,
and can also filter out command-line options and URLs when a 'friendly' string is provided.
Parameters:
- package: A string that specifies one or more packages with optional version constraints.
- friendly: An optional string used to provide a cleaner version of the package string
that excludes command-line options and URLs.
Returns:
- True if all specified packages are installed with the correct versions, False otherwise.
Note:
This function was adapted from code written by vladimandic.
"""
log.debug(f"Checking if package is installed: {package}")
# Remove any optional features specified in brackets (e.g., "package[option]==version" becomes "package==version")
package = re.sub(r"\[.*?\]", "", package)
try:
if friendly:
# If a 'friendly' version of the package string is provided, split it into components
pkgs = friendly.split()
# Filter out command-line options and URLs from the package specification
pkgs = [
p for p in package.split() if not p.startswith("--") and "://" not in p
]
else:
# Split the package string into components, excluding '-' and '=' prefixed items
pkgs = [
p
for p in package.split()
if not p.startswith("-") and not p.startswith("=")
]
# For each package component, extract the package name, excluding any URLs
pkgs = [p.split("/")[-1] for p in pkgs]
for pkg in pkgs:
# Parse the package name and version based on the version specifier used
if ">=" in pkg:
pkg_name, pkg_version = [x.strip() for x in pkg.split(">=")]
elif "==" in pkg:
pkg_name, pkg_version = [x.strip() for x in pkg.split("==")]
else:
pkg_name, pkg_version = pkg.strip(), None
# Attempt to find the installed package by its name
spec = pkg_resources.working_set.by_key.get(pkg_name, None)
if spec is None:
# Try again with lowercase name
spec = pkg_resources.working_set.by_key.get(pkg_name.lower(), None)
if spec is None:
# Try replacing underscores with dashes
spec = pkg_resources.working_set.by_key.get(
pkg_name.replace("_", "-"), None
)
if spec is not None:
# Package is found, check version
version = pkg_resources.get_distribution(pkg_name).version
log.debug(f"Package version found: {pkg_name} {version}")
if pkg_version is not None:
# Verify if the installed version meets the specified constraints
if ">=" in pkg:
ok = version >= pkg_version
else:
ok = version == pkg_version
if not ok:
# Version mismatch, log warning and return False
log.warning(
f"Package wrong version: {pkg_name} {version} required {pkg_version}"
)
return False
else:
# Package not found, log debug message and return False
log.debug(f"Package version not found: {pkg_name}")
return False
# All specified packages are installed with the correct versions
return True
except ModuleNotFoundError:
# One or more packages are not installed, log debug message and return False
log.debug(f"Package not installed: {pkgs}")
return False
|
Checks if the specified package(s) are installed with the correct version.
This function can handle package specifications with or without version constraints,
and can also filter out command-line options and URLs when a 'friendly' string is provided.
Parameters:
- package: A string that specifies one or more packages with optional version constraints.
- friendly: An optional string used to provide a cleaner version of the package string
that excludes command-line options and URLs.
Returns:
- True if all specified packages are installed with the correct versions, False otherwise.
Note:
This function was adapted from code written by vladimandic.
|
installed
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def install(
package,
friendly: str = None,
ignore: bool = False,
reinstall: bool = False,
show_stdout: bool = False,
):
"""
Installs or upgrades a Python package using pip, with options to ignode errors,
reinstall packages, and display outputs.
Parameters:
- package (str): The name of the package to be installed or upgraded. Can include
version specifiers. Anything after a '#' in the package name will be ignored.
- friendly (str, optional): A more user-friendly name for the package, used for
logging or user interface purposes. Defaults to None.
- ignore (bool, optional): If True, any errors encountered during the installation
will be ignored. Defaults to False.
- reinstall (bool, optional): If True, forces the reinstallation of the package
even if it's already installed. This also disables any quick install checks. Defaults to False.
- show_stdout (bool, optional): If True, displays the standard output from the pip
command to the console. Useful for debugging. Defaults to False.
Returns:
None. The function performs operations that affect the environment but does not return
any value.
Note:
If `reinstall` is True, it disables any mechanism that allows for skipping installations
when the package is already present, forcing a fresh install.
"""
log.debug(f"Installing package: {package}")
# Remove anything after '#' in the package variable
package = package.split("#")[0].strip()
if reinstall:
global quick_allowed # pylint: disable=global-statement
quick_allowed = False
if reinstall or not installed(package, friendly):
pip(f"install --upgrade {package}", ignore=ignore, show_stdout=show_stdout)
|
Installs or upgrades a Python package using pip, with options to ignode errors,
reinstall packages, and display outputs.
Parameters:
- package (str): The name of the package to be installed or upgraded. Can include
version specifiers. Anything after a '#' in the package name will be ignored.
- friendly (str, optional): A more user-friendly name for the package, used for
logging or user interface purposes. Defaults to None.
- ignore (bool, optional): If True, any errors encountered during the installation
will be ignored. Defaults to False.
- reinstall (bool, optional): If True, forces the reinstallation of the package
even if it's already installed. This also disables any quick install checks. Defaults to False.
- show_stdout (bool, optional): If True, displays the standard output from the pip
command to the console. Useful for debugging. Defaults to False.
Returns:
None. The function performs operations that affect the environment but does not return
any value.
Note:
If `reinstall` is True, it disables any mechanism that allows for skipping installations
when the package is already present, forcing a fresh install.
|
install
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def install_requirements(
requirements_file, check_no_verify_flag=False, show_stdout: bool = False
):
"""
Install or verify modules from a requirements file.
Parameters:
- requirements_file (str): Path to the requirements file.
- check_no_verify_flag (bool): If True, verify modules installation status without installing.
- show_stdout (bool): If True, show the standard output of the installation process.
"""
log.debug(f"Installing requirements from file: {requirements_file}")
action = "Verifying" if check_no_verify_flag else "Installing"
log.info(f"{action} modules from {requirements_file}...")
with open(requirements_file, "r", encoding="utf8") as f:
lines = [
line.strip()
for line in f.readlines()
if line.strip() and not line.startswith("#") and "no_verify" not in line
]
for line in lines:
if line.startswith("-r"):
included_file = line[2:].strip()
log.debug(f"Processing included requirements file: {included_file}")
install_requirements(
included_file,
check_no_verify_flag=check_no_verify_flag,
show_stdout=show_stdout,
)
else:
process_requirements_line(line, show_stdout=show_stdout)
|
Install or verify modules from a requirements file.
Parameters:
- requirements_file (str): Path to the requirements file.
- check_no_verify_flag (bool): If True, verify modules installation status without installing.
- show_stdout (bool): If True, show the standard output of the installation process.
|
install_requirements
|
python
|
bmaltais/kohya_ss
|
setup/setup_common.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/setup_common.py
|
Apache-2.0
|
def sync_bits_and_bytes_files():
"""
Check for "different" bitsandbytes Files and copy only if necessary.
This function is specific for Windows OS.
"""
# Only execute on Windows
if os.name != "nt":
print("This function is only applicable to Windows OS.")
return
try:
# Define source and destination directories
source_dir = os.path.join(os.getcwd(), "bitsandbytes_windows")
dest_dir_base = os.path.join(sysconfig.get_paths()["purelib"], "bitsandbytes")
# Clear file comparison cache
filecmp.clear_cache()
# Iterate over each file in source directory
for file in os.listdir(source_dir):
source_file_path = os.path.join(source_dir, file)
# Decide the destination directory based on file name
if file in ("main.py", "paths.py"):
dest_dir = os.path.join(dest_dir_base, "cuda_setup")
else:
dest_dir = dest_dir_base
# Copy file from source to destination, maintaining original file's metadata
print(f'Copy {source_file_path} to {dest_dir}')
shutil.copy2(source_file_path, dest_dir)
except FileNotFoundError as fnf_error:
print(f"File not found error: {fnf_error}")
except PermissionError as perm_error:
print(f"Permission error: {perm_error}")
except Exception as e:
print(f"An unexpected error occurred: {e}")
|
Check for "different" bitsandbytes Files and copy only if necessary.
This function is specific for Windows OS.
|
sync_bits_and_bytes_files
|
python
|
bmaltais/kohya_ss
|
setup/update_bitsandbytes.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/update_bitsandbytes.py
|
Apache-2.0
|
def check_path_with_space():
"""Check if the current working directory contains a space."""
cwd = os.getcwd()
log.debug(f"Current working directory: {cwd}")
if " " in cwd:
# Log an error if the current working directory contains spaces
log.error(
"The path in which this python code is executed contains one or many spaces. This is not supported for running kohya_ss GUI."
)
log.error(
"Please move the repo to a path without spaces, delete the venv folder, and run setup.sh again."
)
log.error(f"The current working directory is: {cwd}")
raise RuntimeError("Invalid path: contains spaces.")
|
Check if the current working directory contains a space.
|
check_path_with_space
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def detect_toolkit():
"""Detect the available toolkit (NVIDIA, AMD, or Intel) and log the information."""
log.debug("Detecting available toolkit...")
# Check for NVIDIA toolkit by looking for nvidia-smi executable
if shutil.which("nvidia-smi") or os.path.exists(
os.path.join(
os.environ.get("SystemRoot", r"C:\Windows"), "System32", "nvidia-smi.exe"
)
):
log.debug("nVidia toolkit detected")
return "nVidia"
# Check for AMD toolkit by looking for rocminfo executable
elif shutil.which("rocminfo") or os.path.exists("/opt/rocm/bin/rocminfo"):
log.debug("AMD toolkit detected")
return "AMD"
# Check for Intel toolkit by looking for SYCL or OneAPI indicators
elif (
shutil.which("sycl-ls")
or os.environ.get("ONEAPI_ROOT")
or os.path.exists("/opt/intel/oneapi")
):
log.debug("Intel toolkit detected")
return "Intel"
# Default to CPU if no toolkit is detected
else:
log.debug("No specific GPU toolkit detected, defaulting to CPU")
return "CPU"
|
Detect the available toolkit (NVIDIA, AMD, or Intel) and log the information.
|
detect_toolkit
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def check_torch():
"""Check if torch is available and log the relevant information."""
# Detect the available toolkit (e.g., NVIDIA, AMD, Intel, or CPU)
toolkit = detect_toolkit()
log.info(f"{toolkit} toolkit detected")
try:
# Import PyTorch
log.debug("Importing PyTorch...")
import torch
ipex = None
# Attempt to import Intel Extension for PyTorch if Intel toolkit is detected
if toolkit == "Intel":
try:
log.debug("Attempting to import Intel Extension for PyTorch (IPEX)...")
import intel_extension_for_pytorch as ipex
log.debug("Intel Extension for PyTorch (IPEX) imported successfully")
except ImportError:
log.warning("Intel Extension for PyTorch (IPEX) not found.")
# Log the PyTorch version
log.info(f"Torch {torch.__version__}")
# Check if CUDA (NVIDIA GPU) is available
if torch.cuda.is_available():
log.debug("CUDA is available, logging CUDA info...")
log_cuda_info(torch)
# Check if XPU (Intel GPU) is available
elif hasattr(torch, "xpu") and torch.xpu.is_available():
log.debug("XPU is available, logging XPU info...")
log_xpu_info(torch, ipex)
# Log a warning if no GPU is available
elif hasattr(torch, "mps") and torch.mps.is_available():
log.info("MPS is available, logging MPS info...")
log_mps_info(torch)
else:
log.warning("Torch reports GPU not available")
# Return the major version of PyTorch
return int(torch.__version__[0])
except ImportError as e:
# Log an error if PyTorch cannot be loaded
log.error(f"Could not load torch: {e}")
sys.exit(1)
except Exception as e:
# Log an unexpected error
log.error(f"Unexpected error while checking torch: {e}")
sys.exit(1)
|
Check if torch is available and log the relevant information.
|
check_torch
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def log_cuda_info(torch):
"""Log information about CUDA-enabled GPUs."""
# Log the CUDA and cuDNN versions if available
if torch.version.cuda:
log.info(
f'Torch backend: nVidia CUDA {torch.version.cuda} cuDNN {torch.backends.cudnn.version() if torch.backends.cudnn.is_available() else "N/A"}'
)
# Log the ROCm HIP version if using AMD GPU
elif torch.version.hip:
log.info(f"Torch backend: AMD ROCm HIP {torch.version.hip}")
else:
log.warning("Unknown Torch backend")
# Log information about each detected CUDA-enabled GPU
for device in range(torch.cuda.device_count()):
props = torch.cuda.get_device_properties(device)
log.info(
f"Torch detected GPU: {props.name} VRAM {round(props.total_memory / 1024 / 1024)}MB Arch {props.major}.{props.minor} Cores {props.multi_processor_count}"
)
|
Log information about CUDA-enabled GPUs.
|
log_cuda_info
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def log_mps_info(torch):
"""Log information about Apple Silicone (MPS)"""
max_reccomended_mem = round(torch.mps.recommended_max_memory() / 1024**2)
log.info(
f"Torch detected Apple MPS: {max_reccomended_mem}MB Unified Memory Available"
)
log.warning('MPS support is still experimental, proceed with caution.')
|
Log information about Apple Silicone (MPS)
|
log_mps_info
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def log_xpu_info(torch, ipex):
"""Log information about Intel XPU-enabled GPUs."""
# Log the Intel Extension for PyTorch (IPEX) version if available
if ipex:
log.info(f"Torch backend: Intel IPEX {ipex.__version__}")
# Log information about each detected XPU-enabled GPU
for device in range(torch.xpu.device_count()):
props = torch.xpu.get_device_properties(device)
log.info(
f"Torch detected GPU: {props.name} VRAM {round(props.total_memory / 1024 / 1024)}MB Compute Units {props.max_compute_units}"
)
|
Log information about Intel XPU-enabled GPUs.
|
log_xpu_info
|
python
|
bmaltais/kohya_ss
|
setup/validate_requirements.py
|
https://github.com/bmaltais/kohya_ss/blob/master/setup/validate_requirements.py
|
Apache-2.0
|
def writable_dir(target_path):
""" Check if a path is a valid directory and that it can be written to. """
path = Path(target_path)
if path.is_dir():
if os.access(path, os.W_OK):
return path
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' is not writable.")
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' does not exist.")
|
Check if a path is a valid directory and that it can be written to.
|
writable_dir
|
python
|
bmaltais/kohya_ss
|
tools/caption.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/caption.py
|
Apache-2.0
|
def create_text_file(image_filename, output_directory, text_extension):
"""Create a text file with the same name as the image file."""
# Extract prompt from filename
prompt = Path(image_filename).stem
# Construct path for the output text file
text_file_path = Path(output_directory) / (prompt + text_extension)
try:
# Write prompt to text file
with open(text_file_path, 'w') as text_file:
text_file.write(prompt)
logging.info(f"Text file created: {text_file_path}")
return 1
except IOError as e:
logging.error(f"Failed to write to {text_file_path}: {e}")
return 0
|
Create a text file with the same name as the image file.
|
create_text_file
|
python
|
bmaltais/kohya_ss
|
tools/caption_from_filename.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/caption_from_filename.py
|
Apache-2.0
|
def writable_dir(target_path):
""" Check if a path is a valid directory and that it can be written to. """
path = Path(target_path)
if path.is_dir():
if os.access(path, os.W_OK):
return path
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' is not writable.")
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' does not exist.")
|
Check if a path is a valid directory and that it can be written to.
|
writable_dir
|
python
|
bmaltais/kohya_ss
|
tools/cleanup_captions.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/cleanup_captions.py
|
Apache-2.0
|
def writable_dir(target_path):
""" Check if a path is a valid directory and that it can be written to. """
path = Path(target_path)
if path.is_dir():
if os.access(path, os.W_OK):
return path
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' is not writable.")
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' does not exist.")
|
Check if a path is a valid directory and that it can be written to.
|
writable_dir
|
python
|
bmaltais/kohya_ss
|
tools/convert_images_to_hq_jpg.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/convert_images_to_hq_jpg.py
|
Apache-2.0
|
def writable_dir(target_path):
""" Check if a path is a valid directory and that it can be written to. """
path = Path(target_path)
if path.is_dir():
if os.access(path, os.W_OK):
return path
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' is not writable.")
else:
raise argparse.ArgumentTypeError(f"Directory '{path}' does not exist.")
|
Check if a path is a valid directory and that it can be written to.
|
writable_dir
|
python
|
bmaltais/kohya_ss
|
tools/convert_images_to_webp.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/convert_images_to_webp.py
|
Apache-2.0
|
def aspect_ratio(img_path):
"""
Calculate and return the aspect ratio of an image.
Parameters:
img_path: A string representing the path to the input image.
Returns:
float: Aspect ratio of the input image, defined as width / height.
Returns None if the image cannot be read.
"""
try:
image = cv2.imread(img_path)
if image is None:
raise ValueError("Image not found or could not be read.")
height, width = image.shape[:2]
return float(width) / float(height)
except Exception as e:
print(f"Error: {e}")
return None
|
Calculate and return the aspect ratio of an image.
Parameters:
img_path: A string representing the path to the input image.
Returns:
float: Aspect ratio of the input image, defined as width / height.
Returns None if the image cannot be read.
|
aspect_ratio
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def sort_images_by_aspect_ratio(path):
"""Sort all images in a folder by aspect ratio"""
images = []
for filename in os.listdir(path):
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png") or filename.endswith(".webp"):
print(filename)
img_path = os.path.join(path, filename)
images.append((img_path, aspect_ratio(img_path)))
# sort the list of tuples based on the aspect ratio
sorted_images = sorted(images, key=lambda x: x[1])
return sorted_images
|
Sort all images in a folder by aspect ratio
|
sort_images_by_aspect_ratio
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def create_groups(sorted_images, n_groups):
"""
Create groups of images from a sorted list of images.
This function takes a sorted list of images and a group size as input, and returns a list of groups,
where each group contains a specified number of images.
Parameters:
sorted_images (list of tuples): A list of tuples, where each tuple contains the path to an image and its aspect ratio.
n_groups (int): The number of images to include in each group.
Returns:
list of lists: A list of groups, where each group is a list of tuples representing the images in the group.
Raises:
ValueError: If the group size is not a positive integer or if the group size is greater than the number of images.
"""
if not isinstance(n_groups, int) or n_groups <= 0:
raise ValueError("Error: n_groups must be a positive integer.")
if n_groups > len(sorted_images):
raise ValueError("Error: n_groups must be less than or equal to the number of images.")
n = len(sorted_images)
size = n // n_groups
groups = [sorted_images[i * size : (i + 1) * size] for i in range(n_groups - 1)]
groups.append(sorted_images[(n_groups - 1) * size:])
return groups
|
Create groups of images from a sorted list of images.
This function takes a sorted list of images and a group size as input, and returns a list of groups,
where each group contains a specified number of images.
Parameters:
sorted_images (list of tuples): A list of tuples, where each tuple contains the path to an image and its aspect ratio.
n_groups (int): The number of images to include in each group.
Returns:
list of lists: A list of groups, where each group is a list of tuples representing the images in the group.
Raises:
ValueError: If the group size is not a positive integer or if the group size is greater than the number of images.
|
create_groups
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def average_aspect_ratio(group):
"""
Calculate the average aspect ratio for a given group of images.
Parameters:
group (list of tuples):, A list of tuples, where each tuple contains the path to an image and its aspect ratio.
Returns:
float: The average aspect ratio of the images in the group.
"""
if not group:
print("Error: The group is empty")
return None
try:
aspect_ratios = [aspect_ratio for _, aspect_ratio in group]
avg_aspect_ratio = sum(aspect_ratios) / len(aspect_ratios)
print(f"Average aspect ratio for group: {avg_aspect_ratio}")
return avg_aspect_ratio
except TypeError:
print("Error: Check the structure of the input group elements. They should be tuples of (image_path, aspect_ratio).")
return None
except Exception as e:
print(f"Error: {e}")
return None
|
Calculate the average aspect ratio for a given group of images.
Parameters:
group (list of tuples):, A list of tuples, where each tuple contains the path to an image and its aspect ratio.
Returns:
float: The average aspect ratio of the images in the group.
|
average_aspect_ratio
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def center_crop_image(image, target_aspect_ratio):
"""Crop the input image to the target aspect ratio.
The function calculates the crop region for the input image based on its current aspect ratio and the target aspect ratio.
Args:
image: A numpy array representing the input image.
target_aspect_ratio: A float representing the target aspect ratio.
Returns:
A numpy array representing the cropped image.
Raises:
ValueError: If the input image is not a valid numpy array with at least two dimensions or if the calculated new width or height is zero.
"""
# Check if the input image is a valid numpy array with at least two dimensions
if not isinstance(image, np.ndarray) or image.ndim < 2:
raise ValueError("Input image must be a valid numpy array with at least two dimensions.")
height, width = image.shape[:2]
current_aspect_ratio = float(width) / float(height)
# If the current aspect ratio is already equal to the target aspect ratio, return the image as is
if current_aspect_ratio == target_aspect_ratio:
return image
# Calculate the new width and height based on the target aspect ratio
if current_aspect_ratio > target_aspect_ratio:
new_width = int(target_aspect_ratio * height)
if new_width == 0:
raise ValueError("Calculated new width is zero. Please check the input image and target aspect ratio.")
x_start = (width - new_width) // 2
cropped_image = image[:, x_start:x_start+new_width]
else:
new_height = int(width / target_aspect_ratio)
if new_height == 0:
raise ValueError("Calculated new height is zero. Please check the input image and target aspect ratio.")
y_start = (height - new_height) // 2
cropped_image = image[y_start:y_start+new_height, :]
return cropped_image
|
Crop the input image to the target aspect ratio.
The function calculates the crop region for the input image based on its current aspect ratio and the target aspect ratio.
Args:
image: A numpy array representing the input image.
target_aspect_ratio: A float representing the target aspect ratio.
Returns:
A numpy array representing the cropped image.
Raises:
ValueError: If the input image is not a valid numpy array with at least two dimensions or if the calculated new width or height is zero.
|
center_crop_image
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def copy_related_files(img_path, save_path):
"""
Copy all files in the same directory as the input image that have the same base name as the input image to the
output directory with the corresponding new filename.
Args:
img_path (str): Path to the input image file.
save_path: Path to the output directory where the files should be copied with a new name.
"""
# Get the base filename and directory
img_dir, img_basename = os.path.split(img_path)
img_base, img_ext = os.path.splitext(img_basename)
save_dir, save_basename = os.path.split(save_path)
save_base, save_ext = os.path.splitext(save_basename)
# Create the output directory if it does not exist
if not os.path.exists(save_dir):
os.makedirs(save_dir)
# Loop over all files in the same directory as the input image
try:
for filename in os.listdir(img_dir):
# Skip files with the same name as the input image
if filename == img_basename:
continue
# Check if the file has the same base name as the input image
file_base, file_ext = os.path.splitext(filename)
if file_base == img_base:
# Build the new filename and copy the file
new_filename = os.path.join(save_dir, f"{save_base}{file_ext}")
shutil.copy2(os.path.join(img_dir, filename), new_filename)
except OSError as e:
print(f"Error: {e}") # Handle errors from os.listdir()
|
Copy all files in the same directory as the input image that have the same base name as the input image to the
output directory with the corresponding new filename.
Args:
img_path (str): Path to the input image file.
save_path: Path to the output directory where the files should be copied with a new name.
|
copy_related_files
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def save_resized_cropped_images(group, folder_name, group_number, avg_aspect_ratio, use_original_name=False):
"""Crop and resize all images in the input group to the smallest resolution, and save them to a folder.
Args:
group: A list of tuples, where each tuple contains the path to an image and its aspect ratio.
folder_name: A string representing the name of the folder to save the images to.
group_number: An integer representing the group number.
avg_aspect_ratio: A float representing the average aspect ratio of the images in the group.
use_original_name: A boolean indicating whether to save the images with their original file names.
"""
if not os.path.exists(folder_name):
os.makedirs(folder_name)
# get the smallest size of the images
smallest_res = float("inf")
for img_path, _ in group:
image = cv2.imread(img_path)
cropped_image = center_crop_image(image, avg_aspect_ratio)
height, width = cropped_image.shape[:2]
image_res = height * width
if image_res < smallest_res:
smallest_res = image_res
small_height, small_width = height, width
# resize all images to the smallest resolution of the images in the group
for i, (img_path, aspect_ratio) in enumerate(group):
image = cv2.imread(img_path)
cropped_image = center_crop_image(image, avg_aspect_ratio)
# resized_image = cv2.resize(cropped_image, (small_width, small_height))
if use_original_name:
save_name = os.path.basename(img_path)
else:
save_name = f"group_{group_number}_{i}.jpg"
save_path = os.path.join(folder_name, save_name)
cv2.imwrite(save_path, cropped_image)
# Copy matching files named the same as img_path to
copy_related_files(img_path, save_path)
print(f"Saved {save_name} to {folder_name}")
|
Crop and resize all images in the input group to the smallest resolution, and save them to a folder.
Args:
group: A list of tuples, where each tuple contains the path to an image and its aspect ratio.
folder_name: A string representing the name of the folder to save the images to.
group_number: An integer representing the group number.
avg_aspect_ratio: A float representing the average aspect ratio of the images in the group.
use_original_name: A boolean indicating whether to save the images with their original file names.
|
save_resized_cropped_images
|
python
|
bmaltais/kohya_ss
|
tools/crop_images_to_n_buckets.py
|
https://github.com/bmaltais/kohya_ss/blob/master/tools/crop_images_to_n_buckets.py
|
Apache-2.0
|
def main():
"""Main method for building model from command line."""
empty_args = core.convert_build_args_to_argparser() # Create new ArgumentParser
parsed_args = empty_args.parse_args() # Parse through command line
# Post processing of arguments
parsed_args = core._parse_args(parsed_args) # pylint: disable=protected-access
core.build_model_from_args(parsed_args)
|
Main method for building model from command line.
|
main
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/build.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/build.py
|
Apache-2.0
|
def convert_build_args_to_argparser() -> argparse.ArgumentParser:
"""Convert from BuildArgs to an equivalent ArgumentParser."""
args = argparse.ArgumentParser()
for field in fields(BuildArgs):
name = field.name.replace("_", "-")
field_name = f"--{name}"
# `kwargs` contains `help`, `choices`, and `action`
kwargs = field.metadata.copy()
if field.type == bool:
# boolean arguments do not need to specify `type`
args.add_argument(field_name, default=field.default, **kwargs)
else:
args.add_argument(field_name, type=field.type, default=field.default, **kwargs)
return args
|
Convert from BuildArgs to an equivalent ArgumentParser.
|
convert_build_args_to_argparser
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/core.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/core.py
|
Apache-2.0
|
def mod_transform_before_build(
mod: tvm.IRModule,
param_manager: param_manager.ParamManager,
args: argparse.Namespace,
config: Dict,
) -> tvm.IRModule:
"""First-stage: Legalize ops and trace"""
if args.model.startswith("minigpt"):
model_names = ["embed"]
else:
model_names = [
"prefill",
"decode",
"create_kv_cache",
"softmax_with_temperature",
"get_metadata",
]
if args.sep_embed:
model_names = ["embed", "prefill_with_embed"] + model_names[1:]
if args.model.lower().startswith("rwkv-"):
model_names += ["reset_kv_cache"]
mod = param_manager.transform_dequantize(mod)
use_ft_quant = args.quantization.name in ["q4f16_ft", "q8f16_ft"]
mod = mlc_llm.transform.FuseDecodeTranspose(skip_gemm=not use_ft_quant)(
mod
) # pylint: disable=not-callable
if hasattr(config, "num_attention_heads") and hasattr(config, "hidden_size"):
max_seq_len = None
if args.max_seq_len > 0:
max_seq_len = args.max_seq_len
elif hasattr(config, "max_sequence_length"):
max_seq_len = config.max_sequence_length
if max_seq_len:
mod = fuse_split_rotary_embedding(
mod, config.num_attention_heads, config.hidden_size, max_seq_len
)
if args.target_kind == "cuda":
patterns = []
has_cutlass = tvm.get_global_func("relax.ext.cutlass", True)
if has_cutlass and not args.no_cutlass_attn:
mod["prefill"] = rewrite_attention(mod["prefill"])
mod["decode"] = rewrite_attention(mod["decode"])
patterns += get_patterns_with_prefix("cutlass.attention")
if has_cutlass and not args.no_cutlass_norm:
patterns += get_patterns_with_prefix("cutlass.layer_norm")
patterns += get_patterns_with_prefix("cutlass.rms_norm")
if has_cutlass and use_ft_quant:
patterns += get_patterns_with_prefix("cutlass.decode_matmul")
has_cublas = tvm.get_global_func("relax.ext.cublas", True)
if has_cublas and args.quantization.name in ("q0f16", "q0f32") and not args.no_cublas:
patterns += get_patterns_with_prefix("cublas")
if len(patterns) > 0:
os.makedirs("./tmp", exist_ok=True)
major, minor = parse_compute_version(tvm.cuda(0).compute_version)
if major == 8:
sm = 80
else:
sm = 10 * major + minor
mod = tvm.transform.Sequential(
[
relax.transform.FuseOpsByPattern(
patterns, bind_constants=False, annotate_codegen=True
),
annotate_workspace,
relax.transform.AllocateWorkspace(),
relax.transform.RunCodegen(
{"cutlass": {"sm": sm, "find_first_valid": False}},
entry_functions=model_names,
),
]
)(mod)
mod = mlc_llm.transform.FuseTransposeMatmul()(mod) # pylint: disable=not-callable
mod = relax.pipeline.get_pipeline()(mod) # pylint: disable=no-value-for-parameter
mod = mlc_llm.transform.FuseDecodeMatmulEwise( # pylint: disable=not-callable
args.quantization.name, args.target_kind
)(mod)
mod = mlc_llm.transform.FuseDecodeTake()(mod)
mod = relax.transform.DeadCodeElimination(model_names)(mod)
mod = mlc_llm.transform.CleanUpTIRAttrs()(mod)
mod_deploy = mod
utils.debug_dump_script(mod_deploy, "mod_deploy.py", args)
return mod_deploy
|
First-stage: Legalize ops and trace
|
mod_transform_before_build
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/core.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/core.py
|
Apache-2.0
|
def build_model(args: BuildArgs) -> (Optional[str], Optional[str], Optional[str]):
r"""Builds/compiles a model.
Parameters
----------
args : :class:`BuildArgs`
A dataclass of arguments for building models.
Returns
----------
lib_path: Optional[str]
The path to the model library file. Return ``None`` if not applicable.
model_path: Optional[str]
The path to the folder of the model's parameters. Return ``None`` if not applicable.
chat_config_path: Optional[str]
The path to the chat config `.json` file. Return ``None`` if not applicable.
"""
# Convert BuildArgs to argparse.Namespace so that we can share the rest
# of the code with the command line workflow
build_args_as_dict = asdict(args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
args = _parse_args(build_args_namespace)
build_model_from_args(args)
# Prepare output; some workflows may or may not have the paths to return
lib_path = args.lib_path if hasattr(args, "lib_path") else None
model_path = args.params_path if hasattr(args, "params_path") else None
chat_config_path = args.chat_config_path if hasattr(args, "chat_config_path") else None
return lib_path, model_path, chat_config_path
|
Builds/compiles a model.
Parameters
----------
args : :class:`BuildArgs`
A dataclass of arguments for building models.
Returns
----------
lib_path: Optional[str]
The path to the model library file. Return ``None`` if not applicable.
model_path: Optional[str]
The path to the folder of the model's parameters. Return ``None`` if not applicable.
chat_config_path: Optional[str]
The path to the chat config `.json` file. Return ``None`` if not applicable.
|
build_model
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/core.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/core.py
|
Apache-2.0
|
def debug_dump_benchmark_script(
mod: tvm.ir.IRModule,
name: str,
args: argparse.Namespace,
) -> None:
"""Extract model level benchmark workloads from relax model."""
if not args.debug_dump:
return
from tvm.dlight.benchmark import ( # pylint: disable=import-error,import-outside-toplevel
extract_all_func_info_from_relax,
)
dump_path = os.path.join(args.artifact_path, "debug", name + ".py")
with open(dump_path, "w", encoding="utf-8") as outfile:
outfile.write(
"# Please save this file to dlight_bench/models and add\n"
+ f"# `from .{name} import *` to dlight_bench/models/__init__.py\n"
+ "from dlight_bench import DlightBench\n"
+ "from tvm.script import tir as T\n\n"
)
stmt = []
try:
relax_funcs, _ = extract_all_func_info_from_relax(mod)
except NotImplementedError:
return
tvm_script_prefix = "# from tvm.script import tir as T"
for relax_func_gv in relax_funcs: # pylint: disable=consider-using-dict-items
for prim_func_gv in relax_funcs[relax_func_gv]:
# add global_symbol
func_body = (
mod[prim_func_gv]
.with_attr("global_symbol", prim_func_gv.name_hint)
.script(name=prim_func_gv.name_hint)
)
# remove prefix
if func_body.startswith(tvm_script_prefix + "\n"):
func_body = func_body[len(tvm_script_prefix) :]
# print out
outfile.write(func_body + "\n")
# register
stmt.append(
f"DlightBench.register_bench_workload({prim_func_gv.name_hint}, "
f"'{name}', '{prim_func_gv.name_hint}')"
)
outfile.write("\n" + "\n".join(stmt) + "\n")
print(f"Dump benchmarking script to {dump_path}.")
|
Extract model level benchmark workloads from relax model.
|
debug_dump_benchmark_script
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/utils.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/utils.py
|
Apache-2.0
|
def tvm_callback_cuda_compile(code, target): # pylint: disable=unused-argument
"""use nvcc to generate fatbin code for better optimization"""
arch = []
for compute_version in compute_versions:
arch += ["-gencode", f"arch=compute_{compute_version},code=sm_{compute_version}"]
ptx = nvcc.compile_cuda(code, target_format="fatbin", arch=arch)
return ptx
|
use nvcc to generate fatbin code for better optimization
|
tvm_callback_cuda_compile
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/utils.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/utils.py
|
Apache-2.0
|
def get_loaded_tensor_info(
self, pname: str, param_info: relax.TensorStructInfo
) -> Tuple[List[str], List[relax.TensorStructInfo]]:
"""Returns the names and shapes and dtypes of the tensors that need to
be loaded from the disk.
It is useful when the parameter is pre-quantized. In such cases, we need
to know how many tensors the parameter is quantized into, and together
with the dtype and shape of each tensor, so that we can load the
pre-quantized tensors in.
"""
return [pname], [param_info]
|
Returns the names and shapes and dtypes of the tensors that need to
be loaded from the disk.
It is useful when the parameter is pre-quantized. In such cases, we need
to know how many tensors the parameter is quantized into, and together
with the dtype and shape of each tensor, so that we can load the
pre-quantized tensors in.
|
get_loaded_tensor_info
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/quantization/quantization.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/quantization/quantization.py
|
Apache-2.0
|
def get_dequantize_func(
self,
param_info: relax.TensorStructInfo,
qparam_info: List[relax.TensorStructInfo],
) -> Optional[FQuantize]:
"""Returns the function which computes dequantization.
Returning `None` means the parameter does not need dequantization.
The returned function takes a Relax BlockBuilder and a (list of)
quantized weight relax Var, computes the dequantization and returns the
result Relax Var(s).
You can use `convert_TE_func` to convert a TE function to the function
of the desired return format. See `group_quantization.py` for examples.
"""
return NotImplementedError()
|
Returns the function which computes dequantization.
Returning `None` means the parameter does not need dequantization.
The returned function takes a Relax BlockBuilder and a (list of)
quantized weight relax Var, computes the dequantization and returns the
result Relax Var(s).
You can use `convert_TE_func` to convert a TE function to the function
of the desired return format. See `group_quantization.py` for examples.
|
get_dequantize_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/quantization/quantization.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/quantization/quantization.py
|
Apache-2.0
|
def get_param_quant_kind(
name: str, param_info: relax.TensorStructInfo
) -> ParamQuantKind:
"""No quantization for MiniGPT. Use q0f16 or q0f32 when building it."""
return ParamQuantKind.others
|
No quantization for MiniGPT. Use q0f16 or q0f32 when building it.
|
get_param_quant_kind
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/minigpt.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/minigpt.py
|
Apache-2.0
|
def register_params(
self,
model: nn.Module,
func_name: str,
quantization_scheme: quantization.QuantizationScheme,
f_get_param_quant_kind: Callable[
[str, relax.TensorStructInfo], quantization.ParamQuantKind
],
) -> None:
"""Register the parameters of the input model (within the context of the
input function) in the parameter manager.
Parameters
----------
model : nn.Module
The input model whose parameters are registered.
func_name : str
The name of the function the input model is in.
For example, the "prefill" function or the "decode" function.
quantization_scheme : quantization.QuantizationScheme
The quantization scheme of the input model, which describes how
to quantize the model.
f_get_param_quant_kind: Callable[[str, relax.TensorStructInfo], quantization.ParamQuantKind]
A function which takes the name and StructInfo (effectively shape
and dtype) of a parameter, and returns which quantization kind this
parameter uses.
This is used for applying quantization to the parameters.
"""
if quantization_scheme.qspec_updater_class is not None:
self.qspec_updater_classes.append(quantization_scheme.qspec_updater_class)
if quantization_scheme.f_convert_param_bkwd is not None:
self.f_convert_param_bkwd = quantization_scheme.f_convert_param_bkwd
if quantization_scheme.f_compute_relax_param is not None:
self.f_compute_relax_param = quantization_scheme.f_compute_relax_param
if quantization_scheme.f_run_prequantize is not None:
self.f_run_prequantize = quantization_scheme.f_run_prequantize
self.params_in_func[func_name] = []
# For each parameter in the input model, get its quantization kind and
# register the parameter with its name and quantization kind.
for name, relax_param in named_parameters(model).items():
quant_kind = f_get_param_quant_kind(name, relax_param.struct_info)
param = self._register_param(
name,
relax_param,
getattr(quantization_scheme, quant_kind.name),
func_name,
)
self.params_in_func[func_name].append(param)
|
Register the parameters of the input model (within the context of the
input function) in the parameter manager.
Parameters
----------
model : nn.Module
The input model whose parameters are registered.
func_name : str
The name of the function the input model is in.
For example, the "prefill" function or the "decode" function.
quantization_scheme : quantization.QuantizationScheme
The quantization scheme of the input model, which describes how
to quantize the model.
f_get_param_quant_kind: Callable[[str, relax.TensorStructInfo], quantization.ParamQuantKind]
A function which takes the name and StructInfo (effectively shape
and dtype) of a parameter, and returns which quantization kind this
parameter uses.
This is used for applying quantization to the parameters.
|
register_params
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def set_param_loading_func(
self,
model_path: str,
use_safetensors: bool,
f_convert_pname_fwd: Callable[[str], List[str]] = lambda pname: [pname],
f_convert_param_bkwd: Callable[
[str, Any], Optional[List[Tuple[str, Any]]]
] = lambda pname, torch_param: [(pname, torch_param)],
f_compute_relax_param: Callable[[str, List[Any]], Any] = f_default_compute_relax_param,
*,
no_lazy_param_loading: bool = False,
) -> None:
"""Set the parameter loading functions.
Parameters
----------
model_path : str
The path of the Hugging Face model on disk.
use_safetensors : bool
Whether to use ``.safetensors`` instead of ``.bin`` to load model.
f_convert_pname_fwd : Callable[[str], List[str]]
The function which converts Relax parameter name (ours) to torch's
parameter names. See the document of ParamManager for more details.
f_convert_param_bkwd : Callable[[str, Any], Optional[List[Tuple[str, Any]]]]
The function which converts torch parameter and param name back to
Relax parameters with names. `Any` here stands for numpy.ndarray.
See the document of ParamManager for more details.
f_compute_relax_param : Callable[[str, List[Any]], Any]
The function which computes a Relax parameter from a list of torch
parameters. `Any` here stands for numpy.ndarray.
See the document of ParamManager for more details.
no_lazy_param_loading : bool
A boolean indicating that no lazy parameter loading from torch is needed.
This needs to be set as True when all the model weights are loaded
at the time of constructing the model.
"""
self.f_convert_pname_fwd = f_convert_pname_fwd
if self.f_convert_param_bkwd is None:
self.f_convert_param_bkwd = f_convert_param_bkwd
if self.f_compute_relax_param is None:
self.f_compute_relax_param = f_compute_relax_param
self.model_path = model_path
self.use_safetensors = use_safetensors
if self.use_safetensors:
# Use a pointer here to prevent repeated import in tvm registered function
from safetensors.torch import load_file # pylint: disable=import-outside-toplevel
self.safetensors_load_func = load_file
pnames_to_load = []
for param_name in self.param_names:
param = self.params[param_name]
loaded_names, _ = param.quant_spec.get_loaded_tensor_info(param_name, param.param_info)
pnames_to_load += loaded_names
self.nparam_to_load = len(pnames_to_load)
if not no_lazy_param_loading:
self.pidx2pname = {pidx: pname for pidx, pname in enumerate(pnames_to_load)}
else:
self.pidx2pname = dict()
|
Set the parameter loading functions.
Parameters
----------
model_path : str
The path of the Hugging Face model on disk.
use_safetensors : bool
Whether to use ``.safetensors`` instead of ``.bin`` to load model.
f_convert_pname_fwd : Callable[[str], List[str]]
The function which converts Relax parameter name (ours) to torch's
parameter names. See the document of ParamManager for more details.
f_convert_param_bkwd : Callable[[str, Any], Optional[List[Tuple[str, Any]]]]
The function which converts torch parameter and param name back to
Relax parameters with names. `Any` here stands for numpy.ndarray.
See the document of ParamManager for more details.
f_compute_relax_param : Callable[[str, List[Any]], Any]
The function which computes a Relax parameter from a list of torch
parameters. `Any` here stands for numpy.ndarray.
See the document of ParamManager for more details.
no_lazy_param_loading : bool
A boolean indicating that no lazy parameter loading from torch is needed.
This needs to be set as True when all the model weights are loaded
at the time of constructing the model.
|
set_param_loading_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def transform_dequantize(self, mod: tvm.IRModule) -> tvm.IRModule:
"""Apply dequantization to the input IRModule.
Parameters
----------
mod : tvm.IRModule
The input IRModule to be applied dequantization.
The IRModule contains all the constructed Relax functions
(e.g., the "prefill"/"decode" functions) and is expected to
have all of its parameters registered in the ParamManager.
Returns
-------
updated_mod : tvm.IRModule
The IRModule updated with the dequantization computation.
"""
# For each Relax function in the input IRModule (e.g., "prefill"),
# we create its input relax.Var of all the quantized data, and
# store the mapping from function name to the var.
func2param_var: Dict[str, relax.Var] = {}
quantized_param_info = self.get_quantized_param_info()
for gv, func in mod.functions.items():
if not isinstance(func, relax.Function):
continue
if func.attrs is None or not "num_input" in func.attrs:
continue
func2param_var[gv.name_hint] = relax.Var("params", quantized_param_info)
# Cache mapping to avoid duplicate dequantization.
dequantized_cache: Dict[relax.Var, relax.Var] = {}
# Define a var replacement function for applying dequantization.
def f_replace(var: relax.Var, bb: relax.BlockBuilder) -> relax.Var:
if var in dequantized_cache:
return dequantized_cache[var]
assert var in self.func_raw_param_map
func_name, param = self.func_raw_param_map[var]
dequantized = self._dequantize(param, func2param_var[func_name], bb)
dequantized_cache[var] = dequantized
return dequantized
# Create the function mutator for applying dequantization.
replacer = ParamReplacer(mod, func2param_var, f_replace)
# Update the input IRModule with dequantization.
mod = replacer.transform()
return mod
|
Apply dequantization to the input IRModule.
Parameters
----------
mod : tvm.IRModule
The input IRModule to be applied dequantization.
The IRModule contains all the constructed Relax functions
(e.g., the "prefill"/"decode" functions) and is expected to
have all of its parameters registered in the ParamManager.
Returns
-------
updated_mod : tvm.IRModule
The IRModule updated with the dequantization computation.
|
transform_dequantize
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def get_param_loading_functions(
self,
model_params: List[Optional[tvm.nd.NDArray]],
loaded_params: List[tvm.nd.NDArray],
loaded_idx_set: Set[int],
loaded_torch_bins: Set[str],
cached_relax_params: Dict[int, tvm.nd.NDArray],
cached_torch_params: Dict[str, Any],
device: Device,
device_cpu: Device,
) -> Tuple[Callable, Callable]:
"""A wrapper function which returns the `get_item` and `set_item`
functions for parameter lazy loading.
Parameters
----------
model_params : List[Optional[tvm.nd.NDArray]]
The pre-loaded model parameters, for which we skip lazy loading.
loaded_params : List[tvm.nd.NDArray]
The parameter loading result, storing all the loaded parameters.
loaded_idx_set : Set[int]
The set of indices of loaded parameters, serving for robustness
guarantee to avoid one parameter being loaded for multiple times.
loaded_torch_bins : Set[str]
The set of torch binary filenames, serving for robustness guarantee
to avoid one torch binary file being loaded for multiple times.
cached_relax_params : Dict[int, tvm.nd.NDArray]
The set of cached Relax parameters.
cached_torch_params: Dict[str, Any]
The set of cached torch parameters. `Any` here stands for numpy.ndarray.
device : Device
The device which we load the parameters to.
device_cpu : Device
The CPU device.
"""
import torch # pylint: disable=import-outside-toplevel
assert self.f_convert_pname_fwd is not None
assert self.f_convert_param_bkwd is not None
assert self.f_compute_relax_param is not None
pname2pidx: Dict[str, int] = {pname: pidx for pidx, pname in self.pidx2pname.items()}
def fetch_torch_param(torch_param):
if str(torch_param.dtype) == "torch.bfloat16":
# Convert to float32 first.
return torch_param.detach().cpu().float().numpy()
else:
return torch_param.detach().cpu().numpy()
def load_torch_params_from_bin(torch_binname: str):
torch_binpath = os.path.join(self.model_path, torch_binname)
torch_params = None
if self.use_safetensors:
torch_params = self.safetensors_load_func(torch_binpath)
else:
torch_params = torch.load(
torch_binpath,
map_location=torch.device("cpu"),
)
torch_param_names = list(torch_params.keys())
for torch_param_name in torch_param_names:
torch_param = fetch_torch_param(torch_params[torch_param_name])
del torch_params[torch_param_name]
relax_params = self.f_convert_param_bkwd(torch_param_name, torch_param)
if relax_params is not None:
for param_name, param in relax_params:
if param_name not in pname2pidx.keys():
continue
pidx = pname2pidx[param_name]
assert pidx not in cached_relax_params
cached_relax_params[pidx] = tvm.nd.array(param, device_cpu)
else:
assert torch_param_name not in cached_torch_params
cached_torch_params[torch_param_name] = torch_param
del torch_param
def get_item(i):
# If the weight is already provided by `model_params`, directly use it
# and no need to load from binary file.
if model_params[i] is not None:
assert i not in cached_relax_params
return tvm.nd.array(model_params[i], device=device)
# Otherwise, we load the weight from its corresponding binary file.
assert i in self.pidx2pname
relax_pname = self.pidx2pname[i]
torch_pnames = self.f_convert_pname_fwd(relax_pname)
if i not in cached_relax_params:
for torch_binname in [
self.torch_pname2binname[torch_pname] for torch_pname in torch_pnames
]:
if torch_binname in loaded_torch_bins:
continue
load_torch_params_from_bin(torch_binname)
loaded_torch_bins.add(torch_binname)
if i not in cached_relax_params:
assert len(torch_pnames) > 1
assert all([torch_pname in cached_torch_params] for torch_pname in torch_pnames)
cached_relax_params[i] = self.f_compute_relax_param(
relax_pname,
[cached_torch_params[torch_pname] for torch_pname in torch_pnames],
)
for torch_pname in torch_pnames:
del cached_torch_params[torch_pname]
assert i in cached_relax_params
assert i not in loaded_idx_set
param_on_device = tvm.nd.array(cached_relax_params[i], device=device)
loaded_idx_set.add(i)
del cached_relax_params[i]
return param_on_device
def set_item(i, computed_param):
if len(loaded_params) <= i:
loaded_params.extend([None for _ in range(i - len(loaded_params) + 1)])
loaded_params[i] = tvm.nd.array(computed_param, device=device_cpu)
return get_item, set_item
|
A wrapper function which returns the `get_item` and `set_item`
functions for parameter lazy loading.
Parameters
----------
model_params : List[Optional[tvm.nd.NDArray]]
The pre-loaded model parameters, for which we skip lazy loading.
loaded_params : List[tvm.nd.NDArray]
The parameter loading result, storing all the loaded parameters.
loaded_idx_set : Set[int]
The set of indices of loaded parameters, serving for robustness
guarantee to avoid one parameter being loaded for multiple times.
loaded_torch_bins : Set[str]
The set of torch binary filenames, serving for robustness guarantee
to avoid one torch binary file being loaded for multiple times.
cached_relax_params : Dict[int, tvm.nd.NDArray]
The set of cached Relax parameters.
cached_torch_params: Dict[str, Any]
The set of cached torch parameters. `Any` here stands for numpy.ndarray.
device : Device
The device which we load the parameters to.
device_cpu : Device
The CPU device.
|
get_param_loading_functions
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def _register_param(
self,
name: str,
var: relax.Var,
quant_spec: quantization.QuantizationSpec,
func_name: str,
) -> Parameter:
"""Register a single parameter in the parameter manager.
In most cases, this method is not directly used outside this class:
it is called by `register_params` above.
Parameters
----------
name : str
The name of the parameter to register.
Name serves as the unique identifier of the parameter.
var : relax.Var
The parameter relax.Var on the nn.Module side.
quant_spec : quantization.QuantizationSpec
The quantization specification of the parameter
func_name : str
The name of the function the input var is in.
For example, the "prefill" function or the "decode" function.
Returns
-------
param : Parameter
The registered Parameter.
"""
assert (
var not in self.func_raw_param_map
), "The input var is not supposed to be already registered."
assert isinstance(
var.struct_info.shape, relax.ShapeExpr
), "The parameter to register is expected to have static shape"
assert all(
[isinstance(dim_len, tir.IntImm) for dim_len in var.struct_info.shape.values]
), "The parameter to register is expected to have static shape"
if name in self.params:
# When the input name appears in `self.params`, it means the input
# parameter has been previously registered in some other function.
# Thus, we check if the dtype, shape and the quantization specification
# of both sides are consistent.
param = self.params[name]
assert (
param.quant_spec == quant_spec
), "One parameter is expected to be quantized by single specification in all functions."
assert (
param.param_info.dtype == var.struct_info.dtype
), "Dtype mismatch of one parameter in two functions."
assert (
param.param_info.ndim == var.struct_info.ndim
), "Shape mismatch of one parameter in two functions."
for len0, len1 in zip(param.param_info.shape.values, var.struct_info.shape.values):
assert len0.value == len1.value, "Shape mismatch of one parameter in two functions."
else:
# Otherwise, the parameter is registered for the first time.
param = Parameter(name, var.struct_info, quant_spec)
self.params[name] = param
self.param_names.append(name)
# Record the mapping from the input relax.Var to the function name and
# the parameter in the manager.
self.func_raw_param_map[var] = (func_name, param)
return param
|
Register a single parameter in the parameter manager.
In most cases, this method is not directly used outside this class:
it is called by `register_params` above.
Parameters
----------
name : str
The name of the parameter to register.
Name serves as the unique identifier of the parameter.
var : relax.Var
The parameter relax.Var on the nn.Module side.
quant_spec : quantization.QuantizationSpec
The quantization specification of the parameter
func_name : str
The name of the function the input var is in.
For example, the "prefill" function or the "decode" function.
Returns
-------
param : Parameter
The registered Parameter.
|
_register_param
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def _dequantize(
self,
param: Parameter,
quantized_tuple: relax.Var,
bb: relax.BlockBuilder,
qparams: List[relax.Var] = None,
) -> relax.Var:
"""Applying dequantization to the input parameter.
This method is called by `transform_module` below, and is not
directly invoked outside the class.
Parameters
----------
param : Parameter
The parameter whose quantized tensors are to be dequantized.
quantized_tuple : relax.Var
The relax.Var of the quantized tensors of all parameters in the model.
bb : relax.BlockBuilder
The Relax BlockBuilder used for inserting the dequantization computations.
qparams : List[relax.Var]
The quantized parts of the parameter.
By default it is `None`, in which case we will get the quantized parts
from `quantized_tuple`.
Returns
-------
The dequantized parameter, in the form of a relax.Var.
"""
if not qparams:
# Get the corresponding Relax vars of the quantized tensors of this parameter.
qparams: List[relax.Var] = []
for qparam_idx in self.param2qrange[param]:
qparams.append(bb.emit(relax.TupleGetItem(quantized_tuple, qparam_idx)))
# Get the dequantization function of this parameter.
f_dequantize = param.quant_spec.get_dequantize_func(
param_info=param.param_info,
qparam_info=[qparam.struct_info for qparam in qparams],
)
if f_dequantize is None:
# If the parameter does not have a dequantization function, its "quantized
# data" is expected to have only one element.
assert len(qparams) == 1, (
"A parameter without dequantization function is expected not to have "
'more than one "quantized data".'
)
return qparams[0]
else:
# Apply the dequantization function.
return bb.emit(f_dequantize(bb, qparams))
|
Applying dequantization to the input parameter.
This method is called by `transform_module` below, and is not
directly invoked outside the class.
Parameters
----------
param : Parameter
The parameter whose quantized tensors are to be dequantized.
quantized_tuple : relax.Var
The relax.Var of the quantized tensors of all parameters in the model.
bb : relax.BlockBuilder
The Relax BlockBuilder used for inserting the dequantization computations.
qparams : List[relax.Var]
The quantized parts of the parameter.
By default it is `None`, in which case we will get the quantized parts
from `quantized_tuple`.
Returns
-------
The dequantized parameter, in the form of a relax.Var.
|
_dequantize
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def load_torch_pname2binname_map(
model_path: str,
use_safetensors: bool,
relax_pnames: Set[str],
f_convert_pname_fwd: Callable[[str], List[str]] = lambda pname: [pname],
) -> Dict[str, str]:
"""Constructing the dictionary from each torch parameter's name to
the name of the binary shard where the torch parameter is saved.
Parameters
----------
model_path : str
The path of the Hugging Face model on disk.
use_safetensors: bool
Whether to use ``.safetensors`` instead of ``.bin`` to load model.
relax_pnames: Set[str]
The name of the Relax parameters.
f_convert_pname_fwd: Callable[[str], List[str]]
The function which converts Relax parameter name to torch's
parameter names. See ParamManager for more details.
"""
bin_idx_path = None
single_shard_file_name = None
if use_safetensors:
bin_idx_path = os.path.join(model_path, "model.safetensors.index.json")
single_shard_file_name = "model.safetensors"
else:
bin_idx_path = os.path.join(model_path, "pytorch_model.bin.index.json")
single_shard_file_name = "pytorch_model.bin"
single_shard_path = os.path.join(model_path, single_shard_file_name)
if os.path.isfile(bin_idx_path):
# Multiple weight shards.
with open(bin_idx_path, "r") as f_torch_json:
torch_bin_json = json.load(f_torch_json)
torch_pname2binname = torch_bin_json["weight_map"]
elif os.path.isfile(single_shard_path):
# Single weight shard.
torch_pname2binname = {
torch_pname: single_shard_file_name
for relax_pname in relax_pnames
for torch_pname in f_convert_pname_fwd(relax_pname)
}
else:
suffix = ".safetensors" if use_safetensors else ".bin"
shard_names = []
# Collect Scan every single file with the suffix
for filename in os.listdir(model_path):
if filename.endswith(suffix):
shard_names.append(filename)
if len(shard_names) == 1:
torch_pname2binname = {
torch_pname: shard_names[0]
for relax_pname in relax_pnames
for torch_pname in f_convert_pname_fwd(relax_pname)
}
else:
raise ValueError("Multiple weight shard files without json map is not supported")
return torch_pname2binname
|
Constructing the dictionary from each torch parameter's name to
the name of the binary shard where the torch parameter is saved.
Parameters
----------
model_path : str
The path of the Hugging Face model on disk.
use_safetensors: bool
Whether to use ``.safetensors`` instead of ``.bin`` to load model.
relax_pnames: Set[str]
The name of the Relax parameters.
f_convert_pname_fwd: Callable[[str], List[str]]
The function which converts Relax parameter name to torch's
parameter names. See ParamManager for more details.
|
load_torch_pname2binname_map
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def create_quantize_func(param_manager: ParamManager) -> tvm.IRModule:
"""Construct the Relax function which computes quantization.
This method is called by `transform_module` below, and is not
directly invoked outside the class.
Parameters
----------
param_manager : ParamManager
The parameter manager which has all the parameter information.
Returns
-------
The created function which computes quantization.
Precisely, an IRModule which contains the main quantization Relax function
and a series of TIR functions is returned.
"""
bb = relax.BlockBuilder()
param2qrange = dict()
# Construct the input of the function.
# We need a list of ranges for each
# parameter to get its corresponding tensors loaded from disk.
input_tensor_info: List[relax.TensorStructInfo] = []
loaded_tensor_ranges: List[range] = []
for name in param_manager.param_names:
param = param_manager.params[name]
_, loaded_tensor_info = param.quant_spec.get_loaded_tensor_info(name, param.param_info)
loaded_tensor_ranges.append(
range(
len(input_tensor_info),
len(input_tensor_info) + len(loaded_tensor_info),
)
)
input_tensor_info += loaded_tensor_info
raw_param_tuple = relax.Var("params", relax.TupleStructInfo(input_tensor_info))
with bb.function("transform_params", params=[raw_param_tuple]):
with bb.dataflow():
quantized_params: List[relax.Var] = []
for pidx, name in enumerate(param_manager.param_names):
param = param_manager.params[name]
param_vars: List[relax.Var] = []
# Emit relax.TupleGetItem to get the raw parameters or pre-quantized params.
for loaded_tensor_idx in loaded_tensor_ranges[pidx]:
param_vars.append(
bb.emit(relax.TupleGetItem(raw_param_tuple, loaded_tensor_idx))
)
# Get the quantization function of this parameter.
f_quantize = param.quant_spec.get_quantize_func(param.param_info)
if f_quantize is None:
# If the parameter does not have a quantization function, either it
# does not need quantization or it is pre-quantized.
param2qrange[param] = range(
len(quantized_params),
len(quantized_params) + len(param_vars),
)
quantized_params += param_vars
else:
# If the parameter has a quantization function, it is not expected
# to be pre-quantized.
assert len(param_vars) == 1, (
"A parameter with quantization function is not expected "
"to be pre-quantized."
)
# Apply the quantization function.
quantized_data = bb.emit(f_quantize(bb, param_vars))
if isinstance(quantized_data.struct_info, relax.TupleStructInfo):
n_tensor = len(quantized_data.struct_info.fields)
assert n_tensor > 1
# Record the range of quantized tensors of this parameter.
param2qrange[param] = range(
len(quantized_params), len(quantized_params) + n_tensor
)
# Collect the quantized tensors to return.
for i in range(n_tensor):
quantized_params.append(bb.emit(relax.TupleGetItem(quantized_data, i)))
else:
assert isinstance(quantized_data.struct_info, relax.TensorStructInfo)
param2qrange[param] = range(
len(quantized_params), len(quantized_params) + 1
)
quantized_params.append(quantized_data)
output = bb.emit_output(relax.Tuple(quantized_params))
bb.emit_func_output(output)
mod = bb.get()
param_manager.param2qrange = param2qrange
param_manager.quantized_param_info = mod["transform_params"].struct_info.ret
# Return the created IRModule.
return bb.get()
|
Construct the Relax function which computes quantization.
This method is called by `transform_module` below, and is not
directly invoked outside the class.
Parameters
----------
param_manager : ParamManager
The parameter manager which has all the parameter information.
Returns
-------
The created function which computes quantization.
Precisely, an IRModule which contains the main quantization Relax function
and a series of TIR functions is returned.
|
create_quantize_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/param_manager.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/param_manager.py
|
Apache-2.0
|
def create_kv_cache_func(bb: relax.BlockBuilder, config: RWKVConfig) -> None:
"""NOTE: It's not typical kv-cache, but try to reuse the logic for the quick hack."""
init_shape = relax.ShapeExpr((1, config.hidden_size))
with bb.function("create_kv_cache", []):
with bb.dataflow():
input_dtype_zeros = bb.emit(relax.op.zeros(init_shape, config.dtype))
fp32_zeros = bb.emit(relax.op.zeros(init_shape, "float32"))
fp32_neg_inf = bb.emit(fp32_zeros - relax.const(1e30, "float32"))
caches = []
f_kv_cache_create = relax.extern("vm.builtin.attention_kv_cache_create")
conf = [
("att_x", input_dtype_zeros),
("att_a", fp32_zeros),
("att_b", fp32_zeros),
("att_p", fp32_neg_inf),
("ffn_x", input_dtype_zeros),
]
for i in range(config.num_hidden_layers):
for name, init_value in conf:
caches.append(
bb.emit(
relax.Call(
f_kv_cache_create,
[init_value, init_shape, relax.PrimValue(1)],
sinfo_args=[R.Object()],
),
name_hint=f"{name}_state_{i}",
)
)
gv = bb.emit_output(caches)
bb.emit_func_output(gv)
|
NOTE: It's not typical kv-cache, but try to reuse the logic for the quick hack.
|
create_kv_cache_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/relax_model/rwkv.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/relax_model/rwkv.py
|
Apache-2.0
|
def remove_global_buf_alloc(
func: tir.PrimFunc,
) -> Tuple[tir.PrimFunc, List[relax.TensorStructInfo]]:
"""Remove the global buffer allocation for a given TIR PrimFunc."""
assert isinstance(func.body, tir.BlockRealize)
params = list(func.params)
buffer_map = dict(func.buffer_map)
tensor_sinfo = []
alloc_buffers = []
insertion_point = len(params)
while params[insertion_point - 1].dtype != "handle":
insertion_point -= 1
assert insertion_point >= 1
prev_root_block = func.body.block
for buf_alloc in func.body.block.alloc_buffers:
if buf_alloc.scope() == "global":
param = tir.Var("var_" + buf_alloc.name, "handle")
params.insert(insertion_point, param)
insertion_point += 1
buffer_map[param] = buf_alloc
tensor_sinfo.append(
relax.TensorStructInfo(buf_alloc.shape, buf_alloc.dtype)
)
else:
alloc_buffers.append(buf_alloc)
if len(tensor_sinfo) == 0:
return func, []
assert len(prev_root_block.iter_vars) == 0
assert len(prev_root_block.reads) == 0
assert len(prev_root_block.writes) == 0
assert len(prev_root_block.match_buffers) == 0
assert prev_root_block.name_hint == "root"
assert prev_root_block.init is None
root_block = tir.Block(
iter_vars=[],
reads=[],
writes=[],
name_hint="root",
body=prev_root_block.body,
alloc_buffers=alloc_buffers,
annotations=prev_root_block.annotations,
)
updated_func = tir.PrimFunc(
params=params,
body=tir.BlockRealize(iter_values=[], predicate=True, block=root_block),
ret_type=func.ret_type,
buffer_map=buffer_map,
attrs=func.attrs,
)
return updated_func, tensor_sinfo
|
Remove the global buffer allocation for a given TIR PrimFunc.
|
remove_global_buf_alloc
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/transform/lift_tir_global_buffer_alloc.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/transform/lift_tir_global_buffer_alloc.py
|
Apache-2.0
|
def resolve_tir_var_mapping(
func: tir.PrimFunc, call: relax.Call, tensor_sinfo: List[relax.TensorStructInfo]
) -> Tuple[List[relax.TensorStructInfo], bool]:
"""Resolve the TIR symbolic var relationship across sides of PrimFunc and Relax Function"""
var_map: Dict[tir.Var, tir.PrimExpr] = dict()
n_arg = len(call.args[1].fields)
for i in range(n_arg):
buffer_shape = func.buffer_map[func.params[i]].shape
arg_shape = call.args[1][i].struct_info.shape.values
assert len(buffer_shape) == len(arg_shape)
for vl, vr in zip(buffer_shape, arg_shape):
if isinstance(vl, tir.Var):
var_map[vl] = vr
elif not isinstance(vl, tir.IntImm):
return [], False
ret_tensors = call.sinfo_args[0]
ret_tensors = (
[ret_tensors]
if isinstance(ret_tensors, relax.TensorStructInfo)
else list(ret_tensors.fields)
)
for i in range(len(ret_tensors)):
buffer_shape = func.buffer_map[func.params[n_arg + i]].shape
ret_tensor_shape = ret_tensors[i].shape.values
assert len(buffer_shape) == len(ret_tensor_shape)
for vl, vr in zip(buffer_shape, ret_tensor_shape):
if isinstance(vl, tir.Var):
var_map[vl] = vr
elif not isinstance(vl, tir.IntImm):
return [], False
updated_tensor_sinfo = []
for sinfo in tensor_sinfo:
if not contain_symbolic_var(sinfo):
updated_tensor_sinfo.append(sinfo)
continue
new_shape = []
for v in sinfo.shape.values:
new_shape.append(tir.stmt_functor.substitute(v, var_map))
updated_tensor_sinfo.append(relax.TensorStructInfo(new_shape, sinfo.dtype))
return updated_tensor_sinfo, True
|
Resolve the TIR symbolic var relationship across sides of PrimFunc and Relax Function
|
resolve_tir_var_mapping
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/transform/lift_tir_global_buffer_alloc.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/transform/lift_tir_global_buffer_alloc.py
|
Apache-2.0
|
def analyze_func(
func: relax.Function,
pidx2binname: Dict[int, str],
) -> Tuple[
List[relax.Binding],
Dict[relax.Var, List[relax.Binding]],
Dict[relax.Binding, int],
]:
"""Binding grouping analysis function.
It takes the function to be analyzed, and mapping from each raw tensor index
to the name of the binary file where it resides.
This analysis function
* computes a new order of weight fetching bindings (the bindings in form
`lv = params[idx]`) based on weight location on disk.
* collects the dataflow def-use information of the given function for
topological sort (particularly, it collects the consumers of each binding
variables and the number of variables each binding depends on).
Parameters
----------
func : relax.Function
The weight transform function to be analyzed.
pidx2binname : Dict[int, str]
The mapping from each raw tensor index to the name of the binary
file where it resides.
Returns
-------
get_param_bindings : List[relax.Binding]
The weight fetching bindings (`lv = params[idx]`) in the new order.
var_users : Dict[relax.Var, List[relax.Binding]]
The consumer bindings of each binding variable.
Used for topological sort.
num_depending_vars : Dict[relax.Binding, int]
The number of variables each binding depends on.
Used for topological sort.
"""
# The mapping of the weight fetching bindings in each binary file.
# Here empty string means the weight is not in any binary file (e.g., cached
# sin and cos values for rotary embeddings).
binname2get_param_bindings: Dict[str, List[relax.Binding]] = {"": []}
# The set of binding variables.
binding_var_set: Set[relax.Var] = set()
var_users: Dict[relax.Var, List[relax.Binding]] = {}
num_depending_vars: Dict[relax.Binding, int] = {}
# Sanity check on the function pattern.
assert len(func.params) == 1
assert isinstance(func.body, relax.SeqExpr)
assert len(func.body.blocks) == 1
assert isinstance(func.body.blocks[0], relax.DataflowBlock)
assert func.body.blocks[0].bindings[-1].var.same_as(func.body.body)
params = func.params[0]
bindings = func.body.blocks[0].bindings
# Go through each binding except the last one. (The last one is the output
# binding `gv = (lv, lv1, ...)`) which we ignore for analysis.
for binding in bindings[:-1]:
value = binding.value
binding_var_set.add(binding.var)
var_users[binding.var] = []
if isinstance(value, relax.TupleGetItem) and value.tuple_value.same_as(params):
# For weight fetching bindings (`lv = params[idx]`), we group them
# according to the binary file name.
pidx = value.index
if pidx not in pidx2binname:
binname2get_param_bindings[""].append(binding)
continue
binname = pidx2binname[pidx]
if binname in binname2get_param_bindings:
binname2get_param_bindings[binname].append(binding)
else:
binname2get_param_bindings[binname] = [binding]
else:
# For other bindings, we collect the use-def information for
# topological sort.
num_depending_vars[binding] = 0
def fvisit(obj):
if isinstance(obj, relax.Var) and obj in binding_var_set:
assert obj in var_users
var_users[obj].append(binding)
num_depending_vars[binding] += 1
relax.analysis.post_order_visit(value, fvisit)
# Get the weight fetching bindings in new order according to the group results.
get_param_bindings: List[relax.Binding] = []
for bindings in binname2get_param_bindings.values():
get_param_bindings += bindings
return get_param_bindings, var_users, num_depending_vars
|
Binding grouping analysis function.
It takes the function to be analyzed, and mapping from each raw tensor index
to the name of the binary file where it resides.
This analysis function
* computes a new order of weight fetching bindings (the bindings in form
`lv = params[idx]`) based on weight location on disk.
* collects the dataflow def-use information of the given function for
topological sort (particularly, it collects the consumers of each binding
variables and the number of variables each binding depends on).
Parameters
----------
func : relax.Function
The weight transform function to be analyzed.
pidx2binname : Dict[int, str]
The mapping from each raw tensor index to the name of the binary
file where it resides.
Returns
-------
get_param_bindings : List[relax.Binding]
The weight fetching bindings (`lv = params[idx]`) in the new order.
var_users : Dict[relax.Var, List[relax.Binding]]
The consumer bindings of each binding variable.
Used for topological sort.
num_depending_vars : Dict[relax.Binding, int]
The number of variables each binding depends on.
Used for topological sort.
|
analyze_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/transform/reorder_transform_func.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/transform/reorder_transform_func.py
|
Apache-2.0
|
def reorder_func(
func: relax.Function,
pidx2binname: Dict[int, str],
) -> relax.Function:
"""Reorder the bindings of the input weight transform Relax function
according the weight location in binary files.
This function first analyzes the input function and gets the reordered
weight fetching bindings and the use-def information for topological sort.
It then reorders all bindings in the function with topological sort.
Parameters
----------
func : relax.Function
The weight transform function to be analyzed.
pidx2binname : Dict[int, str]
The mapping from each raw tensor index to the name of the binary
file where it resides.
Returns
-------
func_updated : relax.Function
The returned function where the bindings are updated with the new order.
"""
get_param_bindings, var_users, num_depending_vars = analyze_func(func, pidx2binname)
# The bindings in the new order, output by the topological sort.
new_bindings: List[relax.Binding] = []
# The queue used in the topological sort.
binding_queue: List[relax.Binding] = []
for binding, n_depending in list(num_depending_vars.items()):
if n_depending == 0:
binding_queue.append(binding)
del num_depending_vars[binding]
# Start topological sort:
# each time we emit a weight fetching binding, and then adds all bindings
# that depend on it.
for get_param_binding in get_param_bindings:
binding_queue.append(get_param_binding)
while len(binding_queue) > 0:
binding = binding_queue.pop(0)
new_bindings.append(binding)
for user_binding in var_users[binding.var]:
num_depending_vars[user_binding] -= 1
if num_depending_vars[user_binding] == 0:
del num_depending_vars[user_binding]
binding_queue.append(user_binding)
# Add the output binding.
new_bindings.append(func.body.blocks[0].bindings[-1])
# Sanity check on the integrity.
assert len(new_bindings) == len(func.body.blocks[0].bindings)
assert len(num_depending_vars) == 0
return relax.Function(
func.params,
relax.SeqExpr(blocks=[relax.DataflowBlock(new_bindings)], body=func.body.body),
func.ret_struct_info,
func.is_pure,
func.attrs,
)
|
Reorder the bindings of the input weight transform Relax function
according the weight location in binary files.
This function first analyzes the input function and gets the reordered
weight fetching bindings and the use-def information for topological sort.
It then reorders all bindings in the function with topological sort.
Parameters
----------
func : relax.Function
The weight transform function to be analyzed.
pidx2binname : Dict[int, str]
The mapping from each raw tensor index to the name of the binary
file where it resides.
Returns
-------
func_updated : relax.Function
The returned function where the bindings are updated with the new order.
|
reorder_func
|
python
|
llSourcell/Doctor-Dignity
|
mlc_llm/transform/reorder_transform_func.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/mlc_llm/transform/reorder_transform_func.py
|
Apache-2.0
|
def get_lib_path():
"""Get library path, name and version"""
# Directly exec libinfo to get the right setup
libinfo_py = os.path.join(CURRENT_DIR, "./mlc_chat/libinfo.py")
libinfo = {"__file__": libinfo_py}
exec(compile(open(libinfo_py, "rb").read(), libinfo_py, "exec"), libinfo, libinfo)
version = libinfo["__version__"]
# conda installs libraries into env instead of packaging with pip
if not CONDA_BUILD:
libs = [
libinfo["find_lib_path"]("mlc_llm")[0],
libinfo["find_lib_path"]("mlc_llm_module")[0],
]
else:
libs = None
return libs, version
|
Get library path, name and version
|
get_lib_path
|
python
|
llSourcell/Doctor-Dignity
|
python/setup.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/setup.py
|
Apache-2.0
|
def get_delta_message(curr_message: str, new_message: str) -> str:
r"""Given the current message and the new message, compute the delta message
(the newly generated part, the diff of the new message from the current message).
Parameters
----------
curr_message : str
The message generated in the previous round.
new_message : str
The message generated in the new round.
Returns
-------
delta_message : str
The diff of the new message from the current message (the newly generated part).
"""
f_get_delta_message = tvm.get_global_func("mlc.get_delta_message")
return f_get_delta_message(curr_message, new_message)
|
Given the current message and the new message, compute the delta message
(the newly generated part, the diff of the new message from the current message).
Parameters
----------
curr_message : str
The message generated in the previous round.
new_message : str
The message generated in the new round.
Returns
-------
delta_message : str
The diff of the new message from the current message (the newly generated part).
|
get_delta_message
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/base.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/base.py
|
Apache-2.0
|
def __call__(self, message: str = "", stopped: bool = False):
r"""Process newly generated message using callback functions.
Parameters
----------
message : str
The newly generated message.
stopped : bool
Whether generation reaches an end. If True, clear the state of current message.
"""
if stopped:
self.stopped_callback()
self.curr_message = ""
else:
delta = get_delta_message(self.curr_message, message)
self.curr_message = message
self.delta_callback(delta)
|
Process newly generated message using callback functions.
Parameters
----------
message : str
The newly generated message.
stopped : bool
Whether generation reaches an end. If True, clear the state of current message.
|
__call__
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/callback.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/callback.py
|
Apache-2.0
|
def __init__(self, callback_interval: int = 2):
r"""Initialize the callback class with callback interval.
Parameters
----------
callback_interval : int
The refresh rate of the streaming process.
"""
super().__init__()
self.callback_interval = callback_interval
|
Initialize the callback class with callback interval.
Parameters
----------
callback_interval : int
The refresh rate of the streaming process.
|
__init__
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/callback.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/callback.py
|
Apache-2.0
|
def _get_model_path(model: str) -> (str, str):
"""Use user-provided argument ``model`` to search for a valid model path.
We define "valid" as having an ``mlc-chat-config.json`` right under the folder.
Parameters
----------
model : str
User's input; may be a compiled model's name, or a full path.
Returns
------
model_path : str
A "valid" path to model folder, with ``os.isfile(os.path.join(model_path,
"mlc-chat-config.json"))`` being ``True``.
chat_file : str
Essentially ``os.path.join(model_path, "mlc-chat-config.json")``.
Raises
------
FileNotFoundError: if we cannot find a valid `model_path`.
"""
# Note that the order of this list corresponds to our search priority
candidate_paths = [
f"{model}", # full path, or just the name
f"dist/prebuilt/{model}", # Using prebuilt workflow
f"dist/{model}/params", # Default directory after mlc_llm.build_model()
f"dist/prebuilt/mlc-chat-{model}", # Also prebuilt workflow, but missed prefix
]
# Look for the first folder that has `mlc-chat-config.json` under it
for candidate in candidate_paths:
chat_file = os.path.join(candidate, "mlc-chat-config.json")
if os.path.isfile(chat_file):
logging.info(f"Using model folder: {os.path.abspath(candidate)}")
logging.info(f"Using mlc chat config: {os.path.abspath(chat_file)}")
return candidate, chat_file
# Failed to find a valid model_path, analyzing error for user
# First see if any candidate path is an actual folder
found_folder = False
valid_dir_str = ""
for candidate in candidate_paths:
if os.path.isdir(candidate):
valid_dir_str += f"- {os.path.abspath(candidate)}\n"
found_folder = True
if found_folder:
# Error 1: there is a folder, but not an mlc-llm model folder (E1)
err_msg = (
"The model folder provided does not seem to refer to a valid mlc-llm model folder.\n"
"Specifically, we cannot find `mlc-chat-config.json`, a required file. You should "
"provide a path that contains the file.\n"
"According to your input `model`, we looked at folder(s):\n"
f"{valid_dir_str}"
"MLC-Chat consumes models that are processed by the MLC-LLM build process.\n"
f"Please checkout {_PYTHON_GET_STARTED_TUTORIAL_URL} for an example on "
"how to load a model."
)
raise FileNotFoundError(err_msg)
else:
# Error 2: cannot find a folder (E0)
all_paths_str = ""
for path in candidate_paths:
all_paths_str += f"- {path}\n"
err_msg = (
"Cannot find the model folder. We searched over the following possible paths:\n"
f"{all_paths_str}"
"You can try to pass in `model=/path/to/your-model-path`, and confirm "
"that it contains `mlc-chat-config.json`, among other essential files.\n"
f"Please checkout {_PYTHON_GET_STARTED_TUTORIAL_URL} for an "
"example on how to load a model."
)
raise FileNotFoundError(err_msg)
|
Use user-provided argument ``model`` to search for a valid model path.
We define "valid" as having an ``mlc-chat-config.json`` right under the folder.
Parameters
----------
model : str
User's input; may be a compiled model's name, or a full path.
Returns
------
model_path : str
A "valid" path to model folder, with ``os.isfile(os.path.join(model_path,
"mlc-chat-config.json"))`` being ``True``.
chat_file : str
Essentially ``os.path.join(model_path, "mlc-chat-config.json")``.
Raises
------
FileNotFoundError: if we cannot find a valid `model_path`.
|
_get_model_path
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def _get_chat_config(config_file_path: str, user_chat_config: Optional[ChatConfig]) -> ChatConfig:
"""Read in the config file in model path, then potentially override with user input.
Parameters
----------
config_file_path : str
``chat_file`` returned by ``_get_model_path()``.
user_chat_config : Optional[ChatConfig]
User's input, a partial ``ChatConfig`` to override the one in ``config_file_path``.
Returns
------
final_chat_config : ChatConfig
``ChatConfig`` corresponding to ``config_file_path``, overriden by ``user_chat_config``.
"""
final_chat_config = None
with open(config_file_path, mode="rt", encoding="utf-8") as f:
json_object = json.load(f)
final_chat_config = ChatConfig._from_json(json_object)
if user_chat_config is not None:
# We override using user's chat config
for field in fields(user_chat_config):
field_name = field.name
field_value = getattr(user_chat_config, field_name)
if field_value is not None:
setattr(final_chat_config, field_name, field_value)
return final_chat_config
|
Read in the config file in model path, then potentially override with user input.
Parameters
----------
config_file_path : str
``chat_file`` returned by ``_get_model_path()``.
user_chat_config : Optional[ChatConfig]
User's input, a partial ``ChatConfig`` to override the one in ``config_file_path``.
Returns
------
final_chat_config : ChatConfig
``ChatConfig`` corresponding to ``config_file_path``, overriden by ``user_chat_config``.
|
_get_chat_config
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def _get_lib_module(
model: str,
model_path: str,
chat_config: ChatConfig,
lib_path: Optional[str],
device_name: str,
config_file_path: str,
) -> tvm.runtime.Module:
"""Look up the model library. Then return a corresponding ``tvm`` runtime Module.
Parameters
----------
model : str
User's input; may be a compiled model's name, or a full path.
model_path : str
Model path found by `_get_model_path`.
chat_config : ChatConfig
Chat config after potential overrides. Returned by ``_get_chat_config``.
lib_path : Optional[str]
User's input. Supposedly a full path to model library. Prioritized to use.
device_name : str
User's input. Used to construct the library model file name.
config_file_path : str
The path to ``mlc-chat-config.json``. Used for error message making.
Returns
------
lib_module : tvm.runtime.Module
A tvm runtime module corresponding to the model library we find.
Raises
------
FileNotFoundError: if we cannot find a valid model library file.
"""
# 1. Use user's lib_path if provided
if lib_path is not None:
if os.path.isfile(lib_path):
logging.info(f"Using library model: {lib_path}")
return tvm.runtime.load_module(lib_path)
else:
err_msg = (
f"The `lib_path` you passed in is not a file: {lib_path}.\nPlease checkout "
f"{_PYTHON_GET_STARTED_TUTORIAL_URL} for an example on how to load a model."
)
raise FileNotFoundError(err_msg)
# 2. Generate all possible file names according to OS
candidate_lib_names = []
if sys.platform.startswith("linux"):
candidate_lib_names = [f"{chat_config.model_lib}-{device_name}.so"]
elif sys.platform.startswith("Darwin"):
# Note that `dylib` comes before `so` since we prioritize `dylib` for MacOS
candidate_lib_names = [
f"{chat_config.model_lib}-{device_name}.dylib",
f"{chat_config.model_lib}-{device_name}.so",
]
elif sys.platform.startswith("win32"):
candidate_lib_names = [f"{chat_config.model_lib}-{device_name}.dll"]
else:
candidate_lib_names = [
f"{chat_config.model_lib}-{device_name}.dylib",
f"{chat_config.model_lib}-{device_name}.so",
f"{chat_config.model_lib}-{device_name}.dll",
]
# 3. Generate possible model library paths
candidate_paths = []
for lib_name in candidate_lib_names:
# Equivalent to {model_path}/../
pardir_model_path = os.path.abspath(os.path.join(os.path.abspath(model_path), os.pardir))
candidate_paths.extend(
[
f"{lib_name}",
f"dist/prebuilt/lib/{lib_name}", # Using prebuilt workflow
f"dist/{model}/{lib_name}", # Default directory after mlc_llm.build_model()
os.path.join(model_path, lib_name), # User put library inside `model_path`
os.path.join(pardir_model_path, lib_name), # Under parent directory of `model_path`
]
)
# 4. Search for model library
for candidate in candidate_paths:
if os.path.isfile(candidate):
logging.info(f"Using library model: {os.path.abspath(candidate)}\n")
return tvm.runtime.load_module(candidate)
# 5. Error
err_msg = (
f"Cannot find the model library that corresponds to `{chat_config.model_lib}`.\n"
f"`{chat_config.model_lib}` is either provided in the `chat_config` "
f"you passed in, or specified in {config_file_path}.\n"
"We searched over the following possible paths: \n"
)
for candidate in candidate_paths:
err_msg += f"- {candidate}\n"
err_msg += (
"If you would like to directly specify the model library path, you may "
"consider passing in the `lib_path` parameter.\n"
f"Please checkout {_PYTHON_GET_STARTED_TUTORIAL_URL} for an example "
"on how to load a model."
)
raise FileNotFoundError(err_msg)
|
Look up the model library. Then return a corresponding ``tvm`` runtime Module.
Parameters
----------
model : str
User's input; may be a compiled model's name, or a full path.
model_path : str
Model path found by `_get_model_path`.
chat_config : ChatConfig
Chat config after potential overrides. Returned by ``_get_chat_config``.
lib_path : Optional[str]
User's input. Supposedly a full path to model library. Prioritized to use.
device_name : str
User's input. Used to construct the library model file name.
config_file_path : str
The path to ``mlc-chat-config.json``. Used for error message making.
Returns
------
lib_module : tvm.runtime.Module
A tvm runtime module corresponding to the model library we find.
Raises
------
FileNotFoundError: if we cannot find a valid model library file.
|
_get_lib_module
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def _detect_local_device(device_id: int = 0):
"""Automatically detect the local device if user does not specify.
Parameters
----------
device_id : int
The local device id.
Returns
------
dev : Device
The local device.
"""
if tvm.metal().exist:
return tvm.metal(device_id), "metal"
if tvm.rocm().exist:
return tvm.rocm(device_id), "rocm"
if tvm.cuda().exist:
return tvm.cuda(device_id), "cuda"
if tvm.vulkan().exist:
return tvm.vulkan(device_id), "vulkan"
if tvm.opencl().exist:
return tvm.opencl(device_id), "opencl"
logging.info(
"None of the following device is detected: metal, rocm, cuda, vulkan, opencl. Switch to llvm instead."
)
return tvm.cpu(device_id), "llvm"
|
Automatically detect the local device if user does not specify.
Parameters
----------
device_id : int
The local device id.
Returns
------
dev : Device
The local device.
|
_detect_local_device
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def generate(self, prompt: str, progress_callback=None) -> str:
r"""A high-level method that returns the full response from the chat module given a user prompt.
User can optionally specify which callback method to use upon receiving the response. By default,
no callback will be applied.
Parameters
----------
prompt : str
The user input prompt, i.e. a question to ask the chat module.
progress_callback: object
The optional callback method used upon receiving a newly generated message from the chat module.
See `mlc_chat/callback.py` for a full list of available callback classes. Currently, only
streaming to stdout callback method is supported, see `Examples` for more detailed usage.
Returns
-------
output : string
The generated full output from the chat module.
Examples
--------
.. code-block:: python
# Suppose we would like to stream the response of the chat module to stdout
# with a refresh interval of 2. Upon calling generate(), We will see the response of
# the chat module streaming to stdout piece by piece, and in the end we receive the
# full response as a single string `output`.
from mlc_chat import ChatModule, callback
cm = ChatModule(xxx)
prompt = "what's the color of banana?"
output = cm.generate(prompt, callback.StreamToStdout(callback_interval=2))
print(output)
"""
self._prefill(prompt)
if not progress_callback:
while not self._stopped():
self._decode()
new_msg = self._get_message()
return new_msg
# apply callback with a rate of callback_interval
i, new_msg = 0, ""
while not self._stopped():
self._decode()
if i % progress_callback.callback_interval == 0 or self._stopped():
new_msg = self._get_message()
progress_callback(new_msg)
i += 1
progress_callback(stopped=True)
return new_msg
|
A high-level method that returns the full response from the chat module given a user prompt.
User can optionally specify which callback method to use upon receiving the response. By default,
no callback will be applied.
Parameters
----------
prompt : str
The user input prompt, i.e. a question to ask the chat module.
progress_callback: object
The optional callback method used upon receiving a newly generated message from the chat module.
See `mlc_chat/callback.py` for a full list of available callback classes. Currently, only
streaming to stdout callback method is supported, see `Examples` for more detailed usage.
Returns
-------
output : string
The generated full output from the chat module.
Examples
--------
.. code-block:: python
# Suppose we would like to stream the response of the chat module to stdout
# with a refresh interval of 2. Upon calling generate(), We will see the response of
# the chat module streaming to stdout piece by piece, and in the end we receive the
# full response as a single string `output`.
from mlc_chat import ChatModule, callback
cm = ChatModule(xxx)
prompt = "what's the color of banana?"
output = cm.generate(prompt, callback.StreamToStdout(callback_interval=2))
print(output)
|
generate
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def reset_chat(self, chat_config: Optional[ChatConfig] = None):
r"""Reset the chat session, clear all chat history, and potentially
override the original `mlc-chat-config.json`.
Parameters
----------
chat_config : Optional[ChatConfig]
A ``ChatConfig`` instance partially filled. If specified, the chat
module will reload the `mlc-chat-config.json`, and override it with
``chat_config``, just like in initialization.
Note
----
The model remains the same after :func:`reset_chat`.
To reload module, please either re-initialize a :class:`ChatModule` instance
or use :func:`_reload` instead.
"""
self._reset_chat_func()
if chat_config is not None:
# Redo the overriding
self.chat_config = _get_chat_config(self.config_file_path, chat_config)
user_chat_config_json_str = _convert_chat_config_to_json_str(
chat_config, self.chat_config.conv_template
)
# Second argument is `partial_update = True`
self._load_json_override_func(user_chat_config_json_str, True)
|
Reset the chat session, clear all chat history, and potentially
override the original `mlc-chat-config.json`.
Parameters
----------
chat_config : Optional[ChatConfig]
A ``ChatConfig`` instance partially filled. If specified, the chat
module will reload the `mlc-chat-config.json`, and override it with
``chat_config``, just like in initialization.
Note
----
The model remains the same after :func:`reset_chat`.
To reload module, please either re-initialize a :class:`ChatModule` instance
or use :func:`_reload` instead.
|
reset_chat
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def benchmark_generate(self, prompt: str, generate_length: int) -> str:
r"""Controlled generation with input prompt and fixed number of
generated tokens, ignoring system prompt. For example,
.. code:: python
from mlc_chat import ChatModule
cm = ChatModule(model="Llama-2-7b-chat-hf-q4f16_1")
output = cm.benchmark_generate("What's the meaning of life?", generate_length=256)
print(f"Generated text:\n{output}\n")
print(f"Statistics: {cm.stats()}")
will generate 256 tokens in total based on prompt "What's the meaning
of life?". After generation, you can use `cm.stats()` to print the
generation speed.
Notes
-----
1. This function is typically used in controlled benchmarks. It generates
text without system prompt (i.e., it is pure text generation with no chat
style) and ignores the token stop model(s).
2. To make the benchmark as accurate as possible, we first do a round of
warmup prefill and decode before text generation.
3. This function resets the previous performance statistics.
Parameters
----------
prompt : str
The prompt of the text generation.
generate_length : int
The target length of generation.
Returns
-------
output : str
The generated text output.
"""
if generate_length < 0:
raise ValueError(
"The generation length is expected to be non-negative, "
f"while the given length is {generate_length}"
)
# warmup run
self.reset_chat()
self._prefill(prompt)
self._decode()
return self._raw_generate_func(prompt, generate_length)
|
Controlled generation with input prompt and fixed number of
generated tokens, ignoring system prompt. For example,
.. code:: python
from mlc_chat import ChatModule
cm = ChatModule(model="Llama-2-7b-chat-hf-q4f16_1")
output = cm.benchmark_generate("What's the meaning of life?", generate_length=256)
print(f"Generated text:\n{output}\n")
print(f"Statistics: {cm.stats()}")
will generate 256 tokens in total based on prompt "What's the meaning
of life?". After generation, you can use `cm.stats()` to print the
generation speed.
Notes
-----
1. This function is typically used in controlled benchmarks. It generates
text without system prompt (i.e., it is pure text generation with no chat
style) and ignores the token stop model(s).
2. To make the benchmark as accurate as possible, we first do a round of
warmup prefill and decode before text generation.
3. This function resets the previous performance statistics.
Parameters
----------
prompt : str
The prompt of the text generation.
generate_length : int
The target length of generation.
Returns
-------
output : str
The generated text output.
|
benchmark_generate
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def _prefill(
self,
input: str,
decode_next_token: bool = True,
place_in_prompt: PlaceInPrompt = PlaceInPrompt.All,
):
r"""Run prefill stage for a given input and optionally decode the first output token.
User can decide where to place the input in the prompt.
Parameters
----------
input : str
The user input string.
decode_next_token : bool
Whether to decode the next token after prefilling.
place_in_prompt: PlaceInPrompt
The place of the input message in the prompt. See `class PlaceInPrompt` for details.
"""
self._prefill_func(input, decode_next_token, place_in_prompt.value)
|
Run prefill stage for a given input and optionally decode the first output token.
User can decide where to place the input in the prompt.
Parameters
----------
input : str
The user input string.
decode_next_token : bool
Whether to decode the next token after prefilling.
place_in_prompt: PlaceInPrompt
The place of the input message in the prompt. See `class PlaceInPrompt` for details.
|
_prefill
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/chat_module.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/chat_module.py
|
Apache-2.0
|
def _get_all_available_models_under_dir(artifact_path: str) -> Dict[str, str]:
r"""Given the artifact path storing all models, returns a dict mapping available model names
to the correct `model` args passed into ChatModule.
Note
----
We only search for folders under the artifact_path, without recursive search for subfolders.
For each folder, we count it as a valid MLC model folder if either it contains a `mlc-chat-config.json`
file, or it contains a `params` folder which contains a `mlc-chat-config.json` file. We will map
the name of a valid folder to its full path to the folder containing `mlc-chat-config.json`.
"""
# step 0. retrieve the absolute path of artifact_path
search_dir = os.path.abspath(artifact_path)
if not os.path.exists(search_dir):
err_msg = (
f"The artifact path {artifact_path} you provided is neither a valid full path nor a valid path ",
"relative to the current working directory. Please provide a correct artifact path.",
)
raise FileNotFoundError(err_msg)
# step 1. go through all the folders, build the model dict
model_dict = {}
for path in glob.glob(os.path.join(search_dir, "*")):
if os.path.isdir(path):
model_name = os.path.basename(os.path.normpath(path))
# check if it contains `mlc-chat-config.json`
if os.path.exists(os.path.join(path, "mlc-chat-config.json")):
model_dict[model_name] = os.path.abspath(path)
# check if it contains `params/mlc-chat-config.json`
elif os.path.exists(os.path.join(path, "params", "mlc-chat-config.json")):
model_dict[model_name] = os.path.abspath(os.path.join(path, "params"))
return model_dict
|
Given the artifact path storing all models, returns a dict mapping available model names
to the correct `model` args passed into ChatModule.
Note
----
We only search for folders under the artifact_path, without recursive search for subfolders.
For each folder, we count it as a valid MLC model folder if either it contains a `mlc-chat-config.json`
file, or it contains a `params` folder which contains a `mlc-chat-config.json` file. We will map
the name of a valid folder to its full path to the folder containing `mlc-chat-config.json`.
|
_get_all_available_models_under_dir
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/gradio.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/gradio.py
|
Apache-2.0
|
def gradio_reload_model(self, model_name: str):
r"""Reload the model given the user-selected model name."""
self.chat_mod = ChatModule(self.model_dict[model_name], self.device_str)
updated_dict = {
"chatbot": None,
"chat_state": [],
"img_list": [],
"image_model": gr.update(interactive=False, visible=False),
"stream_interval": gr.update(interactive=True, visible=True),
"reset_llm_button": gr.update(interactive=True, visible=True),
"stats_button": gr.update(interactive=True, visible=True),
"stats_output": gr.update(placeholder="Click to get runtime statistics.", visible=True),
"text_input": gr.update(interactive=True, placeholder="Type and press enter"),
}
return list(updated_dict.values())
|
Reload the model given the user-selected model name.
|
gradio_reload_model
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/gradio.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/gradio.py
|
Apache-2.0
|
def gradio_ask(self, text_input, chatbot):
r"""Display user text input in the chatbot."""
chatbot = chatbot + [[text_input, None]]
text_input = ""
return text_input, chatbot
|
Display user text input in the chatbot.
|
gradio_ask
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/gradio.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/gradio.py
|
Apache-2.0
|
def gradio_answer(self, chatbot, stream_interval):
r"""Generate and display the chat module's response.
Note: Below is a low-level implementation of generate() API, since it's easier
to yield without delta callback."""
prompt = chatbot[-1][0]
self.chat_mod._prefill(prompt)
i, new_msg = 0, ""
while not self.chat_mod._stopped():
self.chat_mod._decode()
if i % stream_interval == 0 or self.chat_mod._stopped():
new_msg = self.chat_mod._get_message()
chatbot[-1][1] = new_msg
yield chatbot
i += 1
|
Generate and display the chat module's response.
Note: Below is a low-level implementation of generate() API, since it's easier
to yield without delta callback.
|
gradio_answer
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/gradio.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/gradio.py
|
Apache-2.0
|
def launch_gradio(
artifact_path: str = "dist", device: str = "auto", port: int = 7860, share: bool = False, host: str = "127.0.0.1"):
r"""Launch the gradio interface with a given port, creating a publically sharable link if specified."""
# create a gradio module
mod = GradioModule(artifact_path, device)
title = """<h1 align="center">MLC Chat Gradio Interface</h1>"""
description = (
"""<h3>Welcome to MLC Chat! Pick a model from your local ids to get started.</h3>"""
)
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
# ---------------------- user interface design -------------------------
with gr.Row():
with gr.Column(scale=0.3):
llm_model = gr.Dropdown(list(mod.model_dict.keys()), label="Language Model")
image_model = gr.Dropdown(
["-None-"],
label="Do you wanna add an image model?",
visible=False,
interactive=False,
)
image = gr.Image(type="pil", interactive=False, visible=False)
stream_interval = gr.Slider(
minimum=1.0,
maximum=5.0,
value=2.0,
step=1.0,
interactive=True,
visible=False,
label="Stream Interval",
)
reset_llm_button = gr.Button("Reset chat", visible=False, interactive=False)
stats_button = gr.Button("Get Runtime Statistics", interactive=False, visible=False)
stats_output = gr.Textbox(
show_label=False,
placeholder="Click to get runtime statistics.",
interactive=False,
visible=False,
container=False,
)
with gr.Column():
chat_state = gr.State()
img_list = gr.State()
chatbot = gr.Chatbot(label="MLC Chat")
text_input = gr.Textbox(
show_label=False,
placeholder="Select a model to start chatting!",
interactive=False,
container=False,
)
# ---------------------- local variables ---------------------------
# type 1. buttons whose visibility change when llm reload
llm_buttons = [
image_model,
stream_interval,
reset_llm_button,
stats_button,
stats_output,
text_input,
]
# type 2. buttons whose visibility change when image model reload
# pylint: disable=unused-variable
image_model_buttons = [image, text_input]
# type 3. chatbot state variables
chatbot_vars = [chatbot, chat_state, img_list]
# -------------------------- handle control --------------------------
llm_model.change(
mod.gradio_reload_model, [llm_model], chatbot_vars + llm_buttons, queue=False
)
text_input.submit(mod.gradio_ask, [text_input, chatbot], [text_input, chatbot]).then(
mod.gradio_answer, [chatbot, stream_interval], [chatbot]
)
reset_llm_button.click(mod.gradio_reset_model, [], chatbot_vars + [text_input])
stats_button.click(mod.gradio_stats, [], [stats_output])
# launch to the web
demo.launch(share=share, enable_queue=True, server_port=port,server_name=host)
|
Launch the gradio interface with a given port, creating a publically sharable link if specified.
|
launch_gradio
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/gradio.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/gradio.py
|
Apache-2.0
|
def get_dll_directories():
"""Get extra mlc llm dll directories"""
curr_dir = os.path.dirname(os.path.realpath(os.path.expanduser(__file__)))
source_dir = os.path.abspath(os.path.join(curr_dir, "..", ".."))
dll_path = [
curr_dir,
os.path.join(source_dir, "build"),
os.path.join(source_dir, "build", "Release"),
]
if "MLC_LIBRARY_PATH" in os.environ:
dll_path.append(os.environ["MLC_LIBRARY_PATH"])
if "CONDA_PREFIX" in os.environ:
dll_path.append(os.path.join(os.environ["CONDA_PREFIX"], "lib"))
if sys.platform.startswith("linux") or sys.platform.startswith("freebsd"):
dll_path.extend(get_env_paths("LD_LIBRARY_PATH", ":"))
elif sys.platform.startswith("darwin"):
dll_path.extend(get_env_paths("DYLD_LIBRARY_PATH", ":"))
elif sys.platform.startswith("win32"):
dll_path.extend(get_env_paths("PATH", ";"))
return [os.path.abspath(p) for p in dll_path if os.path.isdir(p)]
|
Get extra mlc llm dll directories
|
get_dll_directories
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/libinfo.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/libinfo.py
|
Apache-2.0
|
def find_lib_path(name, optional=False):
"""Find mlc llm library
Parameters
----------
name : str
The name of the library
optional: boolean
Whether the library is required
"""
if sys.platform.startswith("linux") or sys.platform.startswith("freebsd"):
lib_name = f"lib{name}.so"
elif sys.platform.startswith("win32"):
lib_name = f"{name}.dll"
elif sys.platform.startswith("darwin"):
lib_name = f"lib{name}.dylib"
else:
lib_name = f"lib{name}.so"
dll_paths = get_dll_directories()
lib_dll_path = [os.path.join(p, lib_name) for p in dll_paths]
lib_found = [p for p in lib_dll_path if os.path.exists(p) and os.path.isfile(p)]
if not lib_found:
if not optional:
message = (
f"Cannot find libraries: {lib_name}\n"
+ "List of candidates:\n"
+ "\n".join(lib_dll_path)
)
raise RuntimeError(message)
return lib_found
|
Find mlc llm library
Parameters
----------
name : str
The name of the library
optional: boolean
Whether the library is required
|
find_lib_path
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/libinfo.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/libinfo.py
|
Apache-2.0
|
def convert_args_to_argparser() -> argparse.ArgumentParser:
"""Convert from RestAPIArgs to an equivalent ArgumentParser."""
args = argparse.ArgumentParser("MLC Chat REST API")
for field in fields(RestAPIArgs):
name = field.name.replace("_", "-")
field_name = f"--{name}"
# `kwargs` contains `help`, `choices`, and `action`
kwargs = field.metadata.copy()
if field.type == bool:
# boolean arguments do not need to specify `type`
args.add_argument(field_name, default=field.default, **kwargs)
else:
args.add_argument(field_name, type=field.type, default=field.default, **kwargs)
return args
|
Convert from RestAPIArgs to an equivalent ArgumentParser.
|
convert_args_to_argparser
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/rest.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/rest.py
|
Apache-2.0
|
async def request_completion(request: ChatCompletionRequest):
"""
Creates model response for the given chat conversation.
"""
if len(request.messages) > 1:
raise ValueError(
"""
The /v1/chat/completions endpoint currently only supports single message prompts.
Please ensure your request contains only one message
""")
if request.stream:
session["chat_mod"]._prefill(input=request.messages[0].content)
async def iter_response():
prev_txt = ""
async for content in AsyncChatCompletionStream():
if content:
chunk = ChatCompletionStreamResponse(
choices=[
ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(
role="assistant", content=content[len(prev_txt) :]
),
finish_reason="stop",
)
]
)
prev_txt = content
yield f"data: {chunk.json(exclude_unset=True)}\n\n"
return StreamingResponse(iter_response(), media_type="text/event-stream")
else:
msg = session["chat_mod"].generate(prompt=request.messages[0].content)
return ChatCompletionResponse(
choices=[
ChatCompletionResponseChoice(
index=0,
message=ChatMessage(role="assistant", content=msg),
finish_reason="stop",
)
],
# TODO: Fill in correct usage info
usage=UsageInfo(prompt_tokens=0, completion_tokens=0, total_tokens=0),
)
|
Creates model response for the given chat conversation.
|
request_completion
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/rest.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/rest.py
|
Apache-2.0
|
async def reset():
"""
Reset the chat for the currently initialized model.
"""
session["chat_mod"].reset_chat()
|
Reset the chat for the currently initialized model.
|
reset
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/rest.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/rest.py
|
Apache-2.0
|
def _chunk_tokens(self, texts: Sequence[str]) -> Tuple[List[List], List[int]]:
"""Tokenize and chunk texts to fit in the model's context window."""
if not self.embedding_ctx_length:
raise ValueError(
"embedding_ctx_length must be defined to use _get_len_safe_embeddings."
)
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning("Warning: model not found. Using cl100k_base encoding.")
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
return tokens, indices
|
Tokenize and chunk texts to fit in the model's context window.
|
_chunk_tokens
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/embeddings/openai.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/embeddings/openai.py
|
Apache-2.0
|
def embed_documents(
self, texts: List[str], chunk_size: Optional[int] = None
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, as long as the embedding_ctx_length is defined,
# we assume the list may contain texts longer than the maximum context and
# use length-safe embedding function.
if self.embedding_ctx_length:
return self._get_len_safe_embeddings(
texts, engine=self.deployment, chunk_size=chunk_size
)
embeddings = self._batch_embed(texts, chunk_size=chunk_size)
return [(np.array(e) / np.linalg.norm(e)).tolist() for e in embeddings]
|
Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
|
embed_documents
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/embeddings/openai.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/embeddings/openai.py
|
Apache-2.0
|
async def aembed_documents(
self, texts: List[str], chunk_size: Optional[int] = 0
) -> List[List[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, as long as the embedding_ctx_length is defined,
# we assume the list may contain texts longer than the maximum context and
# use length-safe embedding function.
if self.embedding_ctx_length:
return await self._aget_len_safe_embeddings(texts, engine=self.deployment)
embeddings = await self._abatch_embed(texts, chunk_size=chunk_size)
return [(np.array(e) / np.linalg.norm(e)).tolist() for e in embeddings]
|
Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
|
aembed_documents
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/embeddings/openai.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/embeddings/openai.py
|
Apache-2.0
|
async def aembed_query(self, text: str) -> List[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]
|
Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
|
aembed_query
|
python
|
llSourcell/Doctor-Dignity
|
python/mlc_chat/embeddings/openai.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/python/mlc_chat/embeddings/openai.py
|
Apache-2.0
|
def old_make_args():
"""The exact old way of creating `ArgumentParser`, used to test whether
`BuildArgs` is equivalent to this. """
args = argparse.ArgumentParser()
args.add_argument(
"--model",
type=str,
default="auto",
help=(
'The name of the model to build. If it is "auto", we will '
'automatically set the model name according to "--model-path", '
'"hf-path" or the model folders under "--artifact-path/models"'
)
)
args.add_argument(
"--hf-path",
type=str,
default=None,
help="Hugging Face path from which to download params, tokenizer, and config",
)
args.add_argument(
"--quantization",
type=str,
choices=[*utils.quantization_schemes.keys()],
default=list(utils.quantization_schemes.keys())[0],
help="The quantization mode we use to compile."
)
args.add_argument(
"--max-seq-len",
type=int,
default=-1,
help="The maximum allowed sequence length for the model."
)
args.add_argument(
"--target",
type=str,
default="auto",
help="The target platform to compile the model for."
)
args.add_argument(
"--reuse-lib",
type=str,
default=None,
help="Whether to reuse a previously generated lib.",
)
args.add_argument(
"--artifact-path",
type=str,
default="dist",
help="Where to store the output."
)
args.add_argument(
"--use-cache",
type=int,
default=1,
help="Whether to use previously pickled IRModule and skip trace.",
)
args.add_argument(
"--debug-dump",
action="store_true",
default=False,
help="Whether to dump debugging files during compilation."
)
args.add_argument(
"--debug-load-script",
action="store_true",
default=False,
help="Whether to load the script for debugging."
)
args.add_argument(
"--llvm-mingw",
type=str,
default="",
help="/path/to/llvm-mingw-root, use llvm-mingw to cross compile to windows.",
)
args.add_argument(
"--system-lib",
action="store_true",
default=False,
help="A parameter to `relax.build`."
)
args.add_argument(
"--sep-embed",
action="store_true",
default=False,
help=(
"Build with separated embedding layer, only applicable to LlaMa. "
"This feature is in testing stage, and will be formally replaced after "
"massive overhaul of embedding feature for all models and use cases"
),
)
return args
|
The exact old way of creating `ArgumentParser`, used to test whether
`BuildArgs` is equivalent to this.
|
old_make_args
|
python
|
llSourcell/Doctor-Dignity
|
tests/python/test_build_args.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/tests/python/test_build_args.py
|
Apache-2.0
|
def argparsers_equal(self, parse_a: argparse.ArgumentParser,
parse_b: argparse.ArgumentParser):
"""
Small helper to check pseudo-equality of parsed arguments on `ArgumentParser` instances.
"""
self.assertEqual(len(parse_a._actions), len(parse_b._actions)) # pylint: disable=protected-access
for x, y in zip(parse_a._actions, parse_b._actions): # pylint: disable=protected-access
xx = {k: v for k, v in vars(x).items() if k != "container"}
yy = {k: v for k, v in vars(y).items() if k != "container"}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get("choices", None) and yy.get("choices", None):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx["type"](expected_choice), yy["type"](expected_choice))
del xx["type"], yy["type"]
self.assertEqual(xx, yy)
|
Small helper to check pseudo-equality of parsed arguments on `ArgumentParser` instances.
|
argparsers_equal
|
python
|
llSourcell/Doctor-Dignity
|
tests/python/test_build_args.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/tests/python/test_build_args.py
|
Apache-2.0
|
def test_namespaces_are_equivalent_str(self):
"""Tests whether the resulting namespaces from command line entry
and Python API entry are equivalent, as they are passed down to the
same workflow."""
# Namespace that would be created through Python API build_model
build_args = BuildArgs(model="RedPJ", target="cuda")
build_args_as_dict = dataclasses.asdict(build_args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
# Namespace that would be created through commandline
empty_args = core.convert_build_args_to_argparser()
parsed_args = empty_args.parse_args(["--model", "RedPJ", "--target", "cuda"])
self.assertEqual(build_args_namespace, parsed_args)
# Modify build_args so that it would not be equivalent
build_args = BuildArgs(model="RedPJ", target="vulkan")
build_args_as_dict = dataclasses.asdict(build_args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
self.assertNotEqual(build_args_namespace, parsed_args)
|
Tests whether the resulting namespaces from command line entry
and Python API entry are equivalent, as they are passed down to the
same workflow.
|
test_namespaces_are_equivalent_str
|
python
|
llSourcell/Doctor-Dignity
|
tests/python/test_build_args.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/tests/python/test_build_args.py
|
Apache-2.0
|
def test_namespaces_are_equivalent_str_boolean_int(self):
"""Same test, but for a mixture of argument types."""
# 1. Equal
build_args = BuildArgs(model="RedPJ", max_seq_len=20, debug_dump=True)
build_args_as_dict = dataclasses.asdict(build_args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
# Namespace that would be created through commandline
empty_args = core.convert_build_args_to_argparser()
parsed_args = empty_args.parse_args(
["--model", "RedPJ", "--max-seq-len", "20", "--debug-dump"]
)
self.assertEqual(build_args_namespace, parsed_args)
# 2. Not equal - missing boolean
build_args = BuildArgs(model="RedPJ", max_seq_len=20)
build_args_as_dict = dataclasses.asdict(build_args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
self.assertNotEqual(build_args_namespace, parsed_args)
# 3. Not equal - different integer
build_args = BuildArgs(model="RedPJ", max_seq_len=18, debug_dump=True)
build_args_as_dict = dataclasses.asdict(build_args)
build_args_namespace = argparse.Namespace(**build_args_as_dict)
self.assertNotEqual(build_args_namespace, parsed_args)
|
Same test, but for a mixture of argument types.
|
test_namespaces_are_equivalent_str_boolean_int
|
python
|
llSourcell/Doctor-Dignity
|
tests/python/test_build_args.py
|
https://github.com/llSourcell/Doctor-Dignity/blob/master/tests/python/test_build_args.py
|
Apache-2.0
|
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the miio fan device from config."""
if DATA_KEY not in hass.data:
hass.data[DATA_KEY] = {}
host = config[CONF_HOST]
name = config[CONF_NAME]
token = config[CONF_TOKEN]
model = config.get(CONF_MODEL)
_LOGGER.info("Initializing with host %s (token %s...)", host, token[:5])
unique_id = None
if model is None:
miio_device = Device(host, token)
try:
device_info = miio_device.info()
except DeviceException:
raise PlatformNotReady
model = device_info.model
unique_id = "{}-{}".format(model, device_info.mac_address)
_LOGGER.info(
"%s %s %s detected",
model,
device_info.firmware_version,
device_info.hardware_version,
)
if model.startswith("nwt.derh."):
air_dehumidifier = AirDehumidifier(host, token, model=model)
device = XiaomiAirDehumidifier(name, air_dehumidifier, model, unique_id)
else:
_LOGGER.error(
"Unsupported device found! Please create an issue at "
"https://github.com/rytilahti/python-miio/issues "
"and provide the following data: %s",
model,
)
return False
hass.data[DATA_KEY][host] = device
async_add_entities([device], update_before_add=True)
async def async_service_handler(service):
"""Map services to methods on XiaomiAirDehumidifier."""
method = SERVICE_TO_METHOD.get(service.service)
params = {
key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID
}
entity_ids = service.data.get(ATTR_ENTITY_ID)
if entity_ids:
devices = [
device
for device in hass.data[DATA_KEY].values()
if device.entity_id in entity_ids
]
else:
devices = hass.data[DATA_KEY].values()
update_tasks = []
for device in devices:
if not hasattr(device, method["method"]):
continue
await getattr(device, method["method"])(**params)
update_tasks.append(asyncio.create_task(device.async_update_ha_state(True)))
if update_tasks:
await asyncio.wait(update_tasks)
for air_dehumidifier_service in SERVICE_TO_METHOD:
schema = SERVICE_TO_METHOD[air_dehumidifier_service].get(
"schema", AIRDEHUMIDIFIER_SERVICE_SCHEMA
)
hass.services.async_register(
DOMAIN, air_dehumidifier_service, async_service_handler, schema=schema
)
|
Set up the miio fan device from config.
|
async_setup_platform
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/climate.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/climate.py
|
Apache-2.0
|
async def async_service_handler(service):
"""Map services to methods on XiaomiAirDehumidifier."""
method = SERVICE_TO_METHOD.get(service.service)
params = {
key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID
}
entity_ids = service.data.get(ATTR_ENTITY_ID)
if entity_ids:
devices = [
device
for device in hass.data[DATA_KEY].values()
if device.entity_id in entity_ids
]
else:
devices = hass.data[DATA_KEY].values()
update_tasks = []
for device in devices:
if not hasattr(device, method["method"]):
continue
await getattr(device, method["method"])(**params)
update_tasks.append(asyncio.create_task(device.async_update_ha_state(True)))
if update_tasks:
await asyncio.wait(update_tasks)
|
Map services to methods on XiaomiAirDehumidifier.
|
async_service_handler
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/climate.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/climate.py
|
Apache-2.0
|
async def _try_command(self, mask_error, func, *args, **kwargs):
"""Call a miio device command handling error messages."""
try:
result = await self.hass.async_add_executor_job(
partial(func, *args, **kwargs)
)
except DeviceException as exc:
_LOGGER.error(mask_error, exc)
self._available = False
return False
_LOGGER.debug("Response received from miio device: %s", result)
return result == SUCCESS
|
Call a miio device command handling error messages.
|
_try_command
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/climate.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/climate.py
|
Apache-2.0
|
def hvac_mode(self):
"""Return hvac operation ie. heat, cool mode."""
if self.is_on:
return HVACMode.DRY
return HVACMode.OFF
|
Return hvac operation ie. heat, cool mode.
|
hvac_mode
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/climate.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/climate.py
|
Apache-2.0
|
async def async_setup_platform(hass, config, async_add_entities, discovery_info=None):
"""Set up the miio fan device from config."""
if DATA_KEY not in hass.data:
hass.data[DATA_KEY] = {}
host = config[CONF_HOST]
token = config[CONF_TOKEN]
name = config[CONF_NAME]
model = config.get(CONF_MODEL)
retries = config[CONF_RETRIES]
_LOGGER.info("Initializing with host %s (token %s...)", host, token[:5])
unique_id = None
if model is None:
try:
miio_device = Device(host, token)
device_info = await hass.async_add_executor_job(miio_device.info)
model = device_info.model
unique_id = f"{model}-{device_info.mac_address}"
_LOGGER.info(
"%s %s %s detected",
model,
device_info.firmware_version,
device_info.hardware_version,
)
except DeviceException as ex:
raise PlatformNotReady from ex
if model in PURIFIER_MIOT:
air_purifier = AirPurifierMiot(host, token)
device = XiaomiAirPurifierMiot(name, air_purifier, model, unique_id, retries)
elif model.startswith("zhimi.airpurifier."):
air_purifier = AirPurifier(host, token)
device = XiaomiAirPurifier(name, air_purifier, model, unique_id)
elif model in HUMIDIFIER_MIOT:
air_humidifier = AirHumidifierMiot(host, token)
device = XiaomiAirHumidifierMiot(name, air_humidifier, model, unique_id)
elif model.startswith("zhimi.humidifier."):
air_humidifier = AirHumidifier(host, token, model=model)
device = XiaomiAirHumidifier(name, air_humidifier, model, unique_id)
elif model in [
MODEL_AIRHUMIDIFIER_MJJSQ,
MODEL_AIRHUMIDIFIER_JSQ,
MODEL_AIRHUMIDIFIER_JSQ1,
]:
air_humidifier = AirHumidifierMjjsq(host, token, model=model)
device = XiaomiAirHumidifierMjjsq(name, air_humidifier, model, unique_id)
elif model in [
MODEL_AIRHUMIDIFIER_JSQ2W,
MODEL_AIRHUMIDIFIER_JSQ3,
MODEL_AIRHUMIDIFIER_JSQ5,
MODEL_AIRHUMIDIFIER_JSQS,
]:
air_humidifier = AirHumidifierJsqs(host, token, model=model)
device = XiaomiAirHumidifierJsqs(name, air_humidifier, model, unique_id)
elif model == MODEL_AIRHUMIDIFIER_JSQ001:
air_humidifier = AirHumidifierJsq(host, token, model=model)
device = XiaomiAirHumidifierJsq(name, air_humidifier, model, unique_id)
elif model.startswith("zhimi.airfresh."):
air_fresh = AirFresh(host, token, model=model)
device = XiaomiAirFresh(name, air_fresh, model, unique_id)
elif model == MODEL_AIRFRESH_A1:
air_fresh = AirFreshA1(host, token, model=model)
device = XiaomiAirFreshA1(name, air_fresh, model, unique_id)
elif model == MODEL_AIRFRESH_T2017:
air_fresh = AirFreshT2017(host, token, model=model)
device = XiaomiAirFreshT2017(name, air_fresh, model, unique_id)
elif model in [
MODEL_FAN_V2,
MODEL_FAN_V3,
MODEL_FAN_SA1,
MODEL_FAN_ZA1,
MODEL_FAN_ZA3,
MODEL_FAN_ZA4,
]:
fan = Fan(host, token, model=model)
device = XiaomiFan(name, fan, model, unique_id, retries)
elif model == MODEL_FAN_P5:
fan = FanP5(host, token, model=model)
device = XiaomiFanP5(name, fan, model, unique_id, retries)
elif model in [MODEL_FAN_P10, MODEL_FAN_P18]:
fan = FanMiot(host, token, model=MODEL_FAN_P10)
device = XiaomiFanMiot(name, fan, model, unique_id, retries)
elif model in [MODEL_FAN_P9, MODEL_FAN_P11]:
fan = FanMiot(host, token, model=model)
device = XiaomiFanMiot(name, fan, model, unique_id, retries)
elif model == MODEL_FAN_LESHOW_SS4:
fan = FanLeshow(host, token, model=model)
device = XiaomiFanLeshow(name, fan, model, unique_id, retries)
elif model in [
MODEL_AIRPURIFIER_AIRDOG_X3,
MODEL_AIRPURIFIER_AIRDOG_X5,
MODEL_AIRPURIFIER_AIRDOG_X7SM,
]:
air_purifier = AirDogX3(host, token, model=model)
device = XiaomiAirDog(name, air_purifier, model, unique_id, retries)
elif model in [MODEL_FAN_1C, MODEL_FAN_P8]:
fan = Fan1C(host, token, model=model)
device = XiaomiFan1C(name, fan, model, unique_id, retries)
else:
_LOGGER.error(
"Unsupported device found! Please create an issue at "
"https://github.com/syssi/xiaomi_airpurifier/issues "
"and provide the following data: %s",
model,
)
return False
hass.data[DATA_KEY][host] = device
async_add_entities([device], update_before_add=True)
async def async_service_handler(service):
"""Map services to methods on XiaomiAirPurifier."""
method = SERVICE_TO_METHOD.get(service.service)
params = {
key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID
}
entity_ids = service.data.get(ATTR_ENTITY_ID)
if entity_ids:
devices = [
device
for device in hass.data[DATA_KEY].values()
if device.entity_id in entity_ids
]
else:
devices = hass.data[DATA_KEY].values()
update_tasks = []
for device in devices:
if not hasattr(device, method["method"]):
continue
await getattr(device, method["method"])(**params)
update_tasks.append(asyncio.create_task(device.async_update_ha_state(True)))
if update_tasks:
await asyncio.wait(update_tasks)
for air_purifier_service in SERVICE_TO_METHOD:
schema = SERVICE_TO_METHOD[air_purifier_service].get(
"schema", AIRPURIFIER_SERVICE_SCHEMA
)
hass.services.async_register(
DOMAIN, air_purifier_service, async_service_handler, schema=schema
)
|
Set up the miio fan device from config.
|
async_setup_platform
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_service_handler(service):
"""Map services to methods on XiaomiAirPurifier."""
method = SERVICE_TO_METHOD.get(service.service)
params = {
key: value for key, value in service.data.items() if key != ATTR_ENTITY_ID
}
entity_ids = service.data.get(ATTR_ENTITY_ID)
if entity_ids:
devices = [
device
for device in hass.data[DATA_KEY].values()
if device.entity_id in entity_ids
]
else:
devices = hass.data[DATA_KEY].values()
update_tasks = []
for device in devices:
if not hasattr(device, method["method"]):
continue
await getattr(device, method["method"])(**params)
update_tasks.append(asyncio.create_task(device.async_update_ha_state(True)))
if update_tasks:
await asyncio.wait(update_tasks)
|
Map services to methods on XiaomiAirPurifier.
|
async_service_handler
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def _try_command(self, mask_error, func, *args, **kwargs):
"""Call a miio device command handling error messages."""
try:
result = await self.hass.async_add_executor_job(
partial(func, *args, **kwargs)
)
_LOGGER.debug("Response received from miio device: %s", result)
return result == SUCCESS
except DeviceException as exc:
_LOGGER.error(mask_error, exc)
self._available = False
return False
|
Call a miio device command handling error messages.
|
_try_command
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_set_preset_mode(self, preset_mode: str) -> None:
"""Set the preset mode of the fan."""
_LOGGER.debug("Setting the preset mode to: %s", preset_mode)
await self._try_command(
"Setting preset mode of the miio device failed.",
self._device.set_mode,
AirpurifierOperationMode[preset_mode.title()],
)
|
Set the preset mode of the fan.
|
async_set_preset_mode
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_reset_filter(self):
"""Reset the filter lifetime and usage."""
if self._device_features & FEATURE_RESET_FILTER == 0:
return
await self._try_command(
"Resetting the filter lifetime of the miio device failed.",
self._device.reset_filter,
)
|
Reset the filter lifetime and usage.
|
async_reset_filter
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_set_preset_mode(self, preset_mode: str) -> None:
"""Set the preset mode of the fan."""
_LOGGER.debug("Setting the preset mode to: %s", preset_mode)
await self._try_command(
"Setting preset mode of the miio device failed.",
self._device.set_mode,
AirpurifierMiotOperationMode[preset_mode.title()],
)
|
Set the preset mode of the fan.
|
async_set_preset_mode
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_set_preset_mode(self, preset_mode: str) -> None:
"""Set the preset mode of the fan."""
_LOGGER.debug("Setting the preset mode to: %s", preset_mode)
await self._try_command(
"Setting preset mode of the miio device failed.",
self._device.set_mode,
AirhumidifierOperationMode[preset_mode.title()],
)
|
Set the preset mode of the fan.
|
async_set_preset_mode
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
async def async_set_preset_mode(self, preset_mode: str) -> None:
"""Set the preset mode of the fan."""
_LOGGER.debug("Setting the preset mode to: %s", preset_mode)
await self._try_command(
"Setting preset mode of the miio device failed.",
self._device.set_mode,
AirhumidifierMiotOperationMode[preset_mode.title()],
)
|
Set the preset mode of the fan.
|
async_set_preset_mode
|
python
|
syssi/xiaomi_airpurifier
|
custom_components/xiaomi_miio_airpurifier/fan.py
|
https://github.com/syssi/xiaomi_airpurifier/blob/master/custom_components/xiaomi_miio_airpurifier/fan.py
|
Apache-2.0
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.