hash
stringlengths
64
64
content
stringlengths
0
1.51M
aa04789717a11148d409f401435cd418785eac15d859ffc85fe33ccfae0ad6fb
from sympy import ( Piecewise, lambdify, Equality, Unequality, Sum, Mod, sqrt, MatrixSymbol, BlockMatrix, Identity ) from sympy import eye from sympy.abc import x, i, j, a, b, c, d from sympy.codegen.matrix_nodes import MatrixSolve from sympy.codegen.cfunctions import log1p, expm1, hypot, log10, exp2, log2, Sqrt from sympy.codegen.array_utils import (CodegenArrayContraction, CodegenArrayTensorProduct, CodegenArrayDiagonal, CodegenArrayPermuteDims, CodegenArrayElementwiseAdd) from sympy.printing.lambdarepr import NumPyPrinter from sympy.utilities.pytest import warns_deprecated_sympy from sympy.utilities.pytest import skip, raises from sympy.external import import_module np = import_module('numpy') def test_numpy_piecewise_regression(): """ NumPyPrinter needs to print Piecewise()'s choicelist as a list to avoid breaking compatibility with numpy 1.8. This is not necessary in numpy 1.9+. See gh-9747 and gh-9749 for details. """ printer = NumPyPrinter() p = Piecewise((1, x < 0), (0, True)) assert printer.doprint(p) == \ 'numpy.select([numpy.less(x, 0),True], [1,0], default=numpy.nan)' assert printer.module_imports == {'numpy': {'select', 'less', 'nan'}} def test_sum(): if not np: skip("NumPy not installed") s = Sum(x ** i, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(x_ ** i_ for i_ in range(a_, b_ + 1))) s = Sum(i * x, (i, a, b)) f = lambdify((a, b, x), s, 'numpy') a_, b_ = 0, 10 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, x_), sum(i_ * x_ for i_ in range(a_, b_ + 1))) def test_multiple_sums(): if not np: skip("NumPy not installed") s = Sum((x + j) * i, (i, a, b), (j, c, d)) f = lambdify((a, b, c, d, x), s, 'numpy') a_, b_ = 0, 10 c_, d_ = 11, 21 x_ = np.linspace(-1, +1, 10) assert np.allclose(f(a_, b_, c_, d_, x_), sum((x_ + j_) * i_ for i_ in range(a_, b_ + 1) for j_ in range(c_, d_ + 1))) def test_codegen_einsum(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) cg = CodegenArrayContraction.from_MatMul(M*N) f = lambdify((M, N), cg, 'numpy') ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) assert (f(ma, mb) == ma*mb).all() def test_codegen_extra(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) N = MatrixSymbol("N", 2, 2) P = MatrixSymbol("P", 2, 2) Q = MatrixSymbol("Q", 2, 2) ma = np.matrix([[1, 2], [3, 4]]) mb = np.matrix([[1,-2], [-1, 3]]) mc = np.matrix([[2, 0], [1, 2]]) md = np.matrix([[1,-1], [4, 7]]) cg = CodegenArrayTensorProduct(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.einsum(ma, [0, 1], mb, [2, 3])).all() cg = CodegenArrayElementwiseAdd(M, N) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == ma+mb).all() cg = CodegenArrayElementwiseAdd(M, N, P) f = lambdify((M, N, P), cg, 'numpy') assert (f(ma, mb, mc) == ma+mb+mc).all() cg = CodegenArrayElementwiseAdd(M, N, P, Q) f = lambdify((M, N, P, Q), cg, 'numpy') assert (f(ma, mb, mc, md) == ma+mb+mc+md).all() cg = CodegenArrayPermuteDims(M, [1, 0]) f = lambdify((M,), cg, 'numpy') assert (f(ma) == ma.T).all() cg = CodegenArrayPermuteDims(CodegenArrayTensorProduct(M, N), [1, 2, 3, 0]) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.transpose(np.einsum(ma, [0, 1], mb, [2, 3]), (1, 2, 3, 0))).all() cg = CodegenArrayDiagonal(CodegenArrayTensorProduct(M, N), (1, 2)) f = lambdify((M, N), cg, 'numpy') assert (f(ma, mb) == np.diagonal(np.einsum(ma, [0, 1], mb, [2, 3]), axis1=1, axis2=2)).all() def test_relational(): if not np: skip("NumPy not installed") e = Equality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, False]) e = Unequality(x, 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, True]) e = (x < 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, False, False]) e = (x <= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [True, True, False]) e = (x > 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, False, True]) e = (x >= 1) f = lambdify((x,), e) x_ = np.array([0, 1, 2]) assert np.array_equal(f(x_), [False, True, True]) def test_mod(): if not np: skip("NumPy not installed") e = Mod(a, b) f = lambdify((a, b), e) a_ = np.array([0, 1, 2, 3]) b_ = 2 assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([0, 1, 2, 3]) b_ = np.array([2, 2, 2, 2]) assert np.array_equal(f(a_, b_), [0, 1, 0, 1]) a_ = np.array([2, 3, 4, 5]) b_ = np.array([2, 3, 4, 5]) assert np.array_equal(f(a_, b_), [0, 0, 0, 0]) def test_expm1(): if not np: skip("NumPy not installed") f = lambdify((a,), expm1(a), 'numpy') assert abs(f(1e-10) - 1e-10 - 5e-21) < 1e-22 def test_log1p(): if not np: skip("NumPy not installed") f = lambdify((a,), log1p(a), 'numpy') assert abs(f(1e-99) - 1e-99) < 1e-100 def test_hypot(): if not np: skip("NumPy not installed") assert abs(lambdify((a, b), hypot(a, b), 'numpy')(3, 4) - 5) < 1e-16 def test_log10(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log10(a), 'numpy')(100) - 2) < 1e-16 def test_exp2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), exp2(a), 'numpy')(5) - 32) < 1e-16 def test_log2(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), log2(a), 'numpy')(256) - 8) < 1e-16 def test_Sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), Sqrt(a), 'numpy')(4) - 2) < 1e-16 def test_sqrt(): if not np: skip("NumPy not installed") assert abs(lambdify((a,), sqrt(a), 'numpy')(4) - 2) < 1e-16 def test_matsolve(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 3, 3) x = MatrixSymbol("x", 3, 1) expr = M**(-1) * x + x matsolve_expr = MatrixSolve(M, x) + x f = lambdify((M, x), expr) f_matsolve = lambdify((M, x), matsolve_expr) m0 = np.array([[1, 2, 3], [3, 2, 5], [5, 6, 7]]) assert np.linalg.matrix_rank(m0) == 3 x0 = np.array([3, 4, 5]) assert np.allclose(f_matsolve(m0, x0), f(m0, x0)) def test_issue_15601(): if not np: skip("Numpy not installed") M = MatrixSymbol("M", 3, 3) N = MatrixSymbol("N", 3, 3) expr = M*N f = lambdify((M, N), expr, "numpy") with warns_deprecated_sympy(): ans = f(eye(3), eye(3)) assert np.array_equal(ans, np.array([1, 0, 0, 0, 1, 0, 0, 0, 1])) def test_16857(): if not np: skip("NumPy not installed") a_1 = MatrixSymbol('a_1', 10, 3) a_2 = MatrixSymbol('a_2', 10, 3) a_3 = MatrixSymbol('a_3', 10, 3) a_4 = MatrixSymbol('a_4', 10, 3) A = BlockMatrix([[a_1, a_2], [a_3, a_4]]) assert A.shape == (20, 6) printer = NumPyPrinter() assert printer.doprint(A) == 'numpy.block([[a_1, a_2], [a_3, a_4]])' def test_issue_17006(): if not np: skip("NumPy not installed") M = MatrixSymbol("M", 2, 2) f = lambdify(M, M + Identity(2)) ma = np.array([[1, 2], [3, 4]]) mr = np.array([[2, 2], [3, 5]]) assert (f(ma) == mr).all() from sympy import symbols n = symbols('n', integer=True) N = MatrixSymbol("M", n, n) raises(NotImplementedError, lambda: lambdify(N, N + Identity(n)))
963c48ed2109fa8a67e0486139ee9a2bda79f115a5b1d5f2ff35148cb7681839
# -*- coding: utf-8 -*- from sympy import ( Add, And, Basic, Derivative, Dict, Eq, Equivalent, FF, FiniteSet, Function, Ge, Gt, I, Implies, Integral, SingularityFunction, Lambda, Le, Limit, Lt, Matrix, Mul, Nand, Ne, Nor, Not, O, Or, Pow, Product, QQ, RR, Rational, Ray, rootof, RootSum, S, Segment, Subs, Sum, Symbol, Tuple, Trace, Xor, ZZ, conjugate, groebner, oo, pi, symbols, ilex, grlex, Range, Contains, SeqPer, SeqFormula, SeqAdd, SeqMul, fourier_series, fps, ITE, Complement, Interval, Intersection, Union, EulerGamma, GoldenRatio, LambertW, airyai, airybi, airyaiprime, airybiprime, fresnelc, fresnels, Heaviside, dirichlet_eta, diag) from sympy.codegen.ast import (Assignment, AddAugmentedAssignment, SubAugmentedAssignment, MulAugmentedAssignment, DivAugmentedAssignment, ModAugmentedAssignment) from sympy.core.compatibility import range, u_decode as u, unicode, PY3 from sympy.core.expr import UnevaluatedExpr from sympy.core.trace import Tr from sympy.functions import (Abs, Chi, Ci, Ei, KroneckerDelta, Piecewise, Shi, Si, atan2, beta, binomial, catalan, ceiling, cos, euler, exp, expint, factorial, factorial2, floor, gamma, hyper, log, meijerg, sin, sqrt, subfactorial, tan, uppergamma, lerchphi, elliptic_k, elliptic_f, elliptic_e, elliptic_pi, DiracDelta, bell, bernoulli, fibonacci, tribonacci, lucas, stieltjes, mathieuc, mathieus, mathieusprime, mathieucprime) from sympy.matrices import Adjoint, Inverse, MatrixSymbol, Transpose, KroneckerProduct from sympy.matrices.expressions import hadamard_power from sympy.physics import mechanics from sympy.physics.units import joule, degree from sympy.printing.pretty import pprint, pretty as xpretty from sympy.printing.pretty.pretty_symbology import center_accent, is_combining from sympy.sets import ImageSet, ProductSet from sympy.sets.setexpr import SetExpr from sympy.tensor.array import (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray, tensorproduct) from sympy.tensor.functions import TensorProduct from sympy.tensor.tensor import (TensorIndexType, tensor_indices, TensorHead, TensorElement, tensor_heads) from sympy.utilities.pytest import raises from sympy.vector import CoordSys3D, Gradient, Curl, Divergence, Dot, Cross, Laplacian import sympy as sym class lowergamma(sym.lowergamma): pass # testing notation inheritance by a subclass with same name a, b, c, d, x, y, z, k, n = symbols('a,b,c,d,x,y,z,k,n') f = Function("f") th = Symbol('theta') ph = Symbol('phi') """ Expressions whose pretty-printing is tested here: (A '#' to the right of an expression indicates that its various acceptable orderings are accounted for by the tests.) BASIC EXPRESSIONS: oo (x**2) 1/x y*x**-2 x**Rational(-5,2) (-2)**x Pow(3, 1, evaluate=False) (x**2 + x + 1) # 1-x # 1-2*x # x/y -x/y (x+2)/y # (1+x)*y #3 -5*x/(x+10) # correct placement of negative sign 1 - Rational(3,2)*(x+1) -(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5) # issue 5524 ORDERING: x**2 + x + 1 1 - x 1 - 2*x 2*x**4 + y**2 - x**2 + y**3 RELATIONAL: Eq(x, y) Lt(x, y) Gt(x, y) Le(x, y) Ge(x, y) Ne(x/(y+1), y**2) # RATIONAL NUMBERS: y*x**-2 y**Rational(3,2) * x**Rational(-5,2) sin(x)**3/tan(x)**2 FUNCTIONS (ABS, CONJ, EXP, FUNCTION BRACES, FACTORIAL, FLOOR, CEILING): (2*x + exp(x)) # Abs(x) Abs(x/(x**2+1)) # Abs(1 / (y - Abs(x))) factorial(n) factorial(2*n) subfactorial(n) subfactorial(2*n) factorial(factorial(factorial(n))) factorial(n+1) # conjugate(x) conjugate(f(x+1)) # f(x) f(x, y) f(x/(y+1), y) # f(x**x**x**x**x**x) sin(x)**2 conjugate(a+b*I) conjugate(exp(a+b*I)) conjugate( f(1 + conjugate(f(x))) ) # f(x/(y+1), y) # denom of first arg floor(1 / (y - floor(x))) ceiling(1 / (y - ceiling(x))) SQRT: sqrt(2) 2**Rational(1,3) 2**Rational(1,1000) sqrt(x**2 + 1) (1 + sqrt(5))**Rational(1,3) 2**(1/x) sqrt(2+pi) (2+(1+x**2)/(2+x))**Rational(1,4)+(1+x**Rational(1,1000))/sqrt(3+x**2) DERIVATIVES: Derivative(log(x), x, evaluate=False) Derivative(log(x), x, evaluate=False) + x # Derivative(log(x) + x**2, x, y, evaluate=False) Derivative(2*x*y, y, x, evaluate=False) + x**2 # beta(alpha).diff(alpha) INTEGRALS: Integral(log(x), x) Integral(x**2, x) Integral((sin(x))**2 / (tan(x))**2) Integral(x**(2**x), x) Integral(x**2, (x,1,2)) Integral(x**2, (x,Rational(1,2),10)) Integral(x**2*y**2, x,y) Integral(x**2, (x, None, 1)) Integral(x**2, (x, 1, None)) Integral(sin(th)/cos(ph), (th,0,pi), (ph, 0, 2*pi)) MATRICES: Matrix([[x**2+1, 1], [y, x+y]]) # Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) PIECEWISE: Piecewise((x,x<1),(x**2,True)) ITE: ITE(x, y, z) SEQUENCES (TUPLES, LISTS, DICTIONARIES): () [] {} (1/x,) [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) {x: sin(x)} {1/x: 1/y, x: sin(x)**2} # [x**2] (x**2,) {x**2: 1} LIMITS: Limit(x, x, oo) Limit(x**2, x, 0) Limit(1/x, x, 0) Limit(sin(x)/x, x, 0) UNITS: joule => kg*m**2/s SUBS: Subs(f(x), x, ph**2) Subs(f(x).diff(x), x, 0) Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ORDER: O(1) O(1/x) O(x**2 + y**2) """ def pretty(expr, order=None): """ASCII pretty-printing""" return xpretty(expr, order=order, use_unicode=False, wrap_line=False) def upretty(expr, order=None): """Unicode pretty-printing""" return xpretty(expr, order=order, use_unicode=True, wrap_line=False) def test_pretty_ascii_str(): assert pretty( 'xxx' ) == 'xxx' assert pretty( "xxx" ) == 'xxx' assert pretty( 'xxx\'xxx' ) == 'xxx\'xxx' assert pretty( 'xxx"xxx' ) == 'xxx\"xxx' assert pretty( 'xxx\"xxx' ) == 'xxx\"xxx' assert pretty( "xxx'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\'xxx" ) == 'xxx\'xxx' assert pretty( "xxx\"xxx" ) == 'xxx\"xxx' assert pretty( "xxx\"xxx\'xxx" ) == 'xxx"xxx\'xxx' assert pretty( "xxx\nxxx" ) == 'xxx\nxxx' def test_pretty_unicode_str(): assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx' ) == u'xxx' assert pretty( u'xxx\'xxx' ) == u'xxx\'xxx' assert pretty( u'xxx"xxx' ) == u'xxx\"xxx' assert pretty( u'xxx\"xxx' ) == u'xxx\"xxx' assert pretty( u"xxx'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\'xxx" ) == u'xxx\'xxx' assert pretty( u"xxx\"xxx" ) == u'xxx\"xxx' assert pretty( u"xxx\"xxx\'xxx" ) == u'xxx"xxx\'xxx' assert pretty( u"xxx\nxxx" ) == u'xxx\nxxx' def test_upretty_greek(): assert upretty( oo ) == u'∞' assert upretty( Symbol('alpha^+_1') ) == u'α⁺₁' assert upretty( Symbol('beta') ) == u'β' assert upretty(Symbol('lambda')) == u'λ' def test_upretty_multiindex(): assert upretty( Symbol('beta12') ) == u'β₁₂' assert upretty( Symbol('Y00') ) == u'Y₀₀' assert upretty( Symbol('Y_00') ) == u'Y₀₀' assert upretty( Symbol('F^+-') ) == u'F⁺⁻' def test_upretty_sub_super(): assert upretty( Symbol('beta_1_2') ) == u'β₁ ₂' assert upretty( Symbol('beta^1^2') ) == u'β¹ ²' assert upretty( Symbol('beta_1^2') ) == u'β²₁' assert upretty( Symbol('beta_10_20') ) == u'β₁₀ ₂₀' assert upretty( Symbol('beta_ax_gamma^i') ) == u'βⁱₐₓ ᵧ' assert upretty( Symbol("F^1^2_3_4") ) == u'F¹ ²₃ ₄' assert upretty( Symbol("F_1_2^3^4") ) == u'F³ ⁴₁ ₂' assert upretty( Symbol("F_1_2_3_4") ) == u'F₁ ₂ ₃ ₄' assert upretty( Symbol("F^1^2^3^4") ) == u'F¹ ² ³ ⁴' def test_upretty_subs_missing_in_24(): assert upretty( Symbol('F_beta') ) == u'Fᵦ' assert upretty( Symbol('F_gamma') ) == u'Fᵧ' assert upretty( Symbol('F_rho') ) == u'Fᵨ' assert upretty( Symbol('F_phi') ) == u'Fᵩ' assert upretty( Symbol('F_chi') ) == u'Fᵪ' assert upretty( Symbol('F_a') ) == u'Fₐ' assert upretty( Symbol('F_e') ) == u'Fₑ' assert upretty( Symbol('F_i') ) == u'Fᵢ' assert upretty( Symbol('F_o') ) == u'Fₒ' assert upretty( Symbol('F_u') ) == u'Fᵤ' assert upretty( Symbol('F_r') ) == u'Fᵣ' assert upretty( Symbol('F_v') ) == u'Fᵥ' assert upretty( Symbol('F_x') ) == u'Fₓ' def test_missing_in_2X_issue_9047(): if PY3: assert upretty( Symbol('F_h') ) == u'Fₕ' assert upretty( Symbol('F_k') ) == u'Fₖ' assert upretty( Symbol('F_l') ) == u'Fₗ' assert upretty( Symbol('F_m') ) == u'Fₘ' assert upretty( Symbol('F_n') ) == u'Fₙ' assert upretty( Symbol('F_p') ) == u'Fₚ' assert upretty( Symbol('F_s') ) == u'Fₛ' assert upretty( Symbol('F_t') ) == u'Fₜ' def test_upretty_modifiers(): # Accents assert upretty( Symbol('Fmathring') ) == u'F̊' assert upretty( Symbol('Fddddot') ) == u'F⃜' assert upretty( Symbol('Fdddot') ) == u'F⃛' assert upretty( Symbol('Fddot') ) == u'F̈' assert upretty( Symbol('Fdot') ) == u'Ḟ' assert upretty( Symbol('Fcheck') ) == u'F̌' assert upretty( Symbol('Fbreve') ) == u'F̆' assert upretty( Symbol('Facute') ) == u'F́' assert upretty( Symbol('Fgrave') ) == u'F̀' assert upretty( Symbol('Ftilde') ) == u'F̃' assert upretty( Symbol('Fhat') ) == u'F̂' assert upretty( Symbol('Fbar') ) == u'F̅' assert upretty( Symbol('Fvec') ) == u'F⃗' assert upretty( Symbol('Fprime') ) == u'F′' assert upretty( Symbol('Fprm') ) == u'F′' # No faces are actually implemented, but test to make sure the modifiers are stripped assert upretty( Symbol('Fbold') ) == u'Fbold' assert upretty( Symbol('Fbm') ) == u'Fbm' assert upretty( Symbol('Fcal') ) == u'Fcal' assert upretty( Symbol('Fscr') ) == u'Fscr' assert upretty( Symbol('Ffrak') ) == u'Ffrak' # Brackets assert upretty( Symbol('Fnorm') ) == u'‖F‖' assert upretty( Symbol('Favg') ) == u'⟨F⟩' assert upretty( Symbol('Fabs') ) == u'|F|' assert upretty( Symbol('Fmag') ) == u'|F|' # Combinations assert upretty( Symbol('xvecdot') ) == u'x⃗̇' assert upretty( Symbol('xDotVec') ) == u'ẋ⃗' assert upretty( Symbol('xHATNorm') ) == u'‖x̂‖' assert upretty( Symbol('xMathring_yCheckPRM__zbreveAbs') ) == u'x̊_y̌′__|z̆|' assert upretty( Symbol('alphadothat_nVECDOT__tTildePrime') ) == u'α̇̂_n⃗̇__t̃′' assert upretty( Symbol('x_dot') ) == u'x_dot' assert upretty( Symbol('x__dot') ) == u'x__dot' def test_pretty_Cycle(): from sympy.combinatorics.permutations import Cycle assert pretty(Cycle(1, 2)) == '(1 2)' assert pretty(Cycle(2)) == '(2)' assert pretty(Cycle(1, 3)(4, 5)) == '(1 3)(4 5)' assert pretty(Cycle()) == '()' def test_pretty_Permutation(): from sympy.combinatorics.permutations import Permutation p1 = Permutation(1, 2)(3, 4) assert xpretty(p1, perm_cyclic=True, use_unicode=True) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=True, use_unicode=False) == "(1 2)(3 4)" assert xpretty(p1, perm_cyclic=False, use_unicode=True) == \ u'⎛0 1 2 3 4⎞\n'\ u'⎝0 2 1 4 3⎠' assert xpretty(p1, perm_cyclic=False, use_unicode=False) == \ "/0 1 2 3 4\\\n"\ "\\0 2 1 4 3/" def test_pretty_basic(): assert pretty( -Rational(1)/2 ) == '-1/2' assert pretty( -Rational(13)/22 ) == \ """\ -13 \n\ ----\n\ 22 \ """ expr = oo ascii_str = \ """\ oo\ """ ucode_str = \ u("""\ ∞\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2) ascii_str = \ """\ 2\n\ x \ """ ucode_str = \ u("""\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 1/x ascii_str = \ """\ 1\n\ -\n\ x\ """ ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # not the same as 1/x expr = x**-1.0 ascii_str = \ """\ -1.0\n\ x \ """ ucode_str = \ ("""\ -1.0\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # see issue #2860 expr = Pow(S(2), -1.0, evaluate=False) ascii_str = \ """\ -1.0\n\ 2 \ """ ucode_str = \ ("""\ -1.0\n\ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str #see issue #14033 expr = x**Rational(1, 3) ascii_str = \ """\ 1/3\n\ x \ """ ucode_str = \ u("""\ 1/3\n\ x \ """) assert xpretty(expr, use_unicode=False, wrap_line=False,\ root_notation = False) == ascii_str assert xpretty(expr, use_unicode=True, wrap_line=False,\ root_notation = False) == ucode_str expr = x**Rational(-5, 2) ascii_str = \ """\ 1 \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 1 \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (-2)**x ascii_str = \ """\ x\n\ (-2) \ """ ucode_str = \ u("""\ x\n\ (-2) \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # See issue 4923 expr = Pow(3, 1, evaluate=False) ascii_str = \ """\ 1\n\ 3 \ """ ucode_str = \ u("""\ 1\n\ 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2 + x + 1) ascii_str_1 = \ """\ 2\n\ 1 + x + x \ """ ascii_str_2 = \ """\ 2 \n\ x + x + 1\ """ ascii_str_3 = \ """\ 2 \n\ x + 1 + x\ """ ucode_str_1 = \ u("""\ 2\n\ 1 + x + x \ """) ucode_str_2 = \ u("""\ 2 \n\ x + x + 1\ """) ucode_str_3 = \ u("""\ 2 \n\ x + 1 + x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] expr = 1 - x ascii_str_1 = \ """\ 1 - x\ """ ascii_str_2 = \ """\ -x + 1\ """ ucode_str_1 = \ u("""\ 1 - x\ """) ucode_str_2 = \ u("""\ -x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 1 - 2*x ascii_str_1 = \ """\ 1 - 2*x\ """ ascii_str_2 = \ """\ -2*x + 1\ """ ucode_str_1 = \ u("""\ 1 - 2⋅x\ """) ucode_str_2 = \ u("""\ -2⋅x + 1\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = x/y ascii_str = \ """\ x\n\ -\n\ y\ """ ucode_str = \ u("""\ x\n\ ─\n\ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/y ascii_str = \ """\ -x \n\ ---\n\ y \ """ ucode_str = \ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x + 2)/y ascii_str_1 = \ """\ 2 + x\n\ -----\n\ y \ """ ascii_str_2 = \ """\ x + 2\n\ -----\n\ y \ """ ucode_str_1 = \ u("""\ 2 + x\n\ ─────\n\ y \ """) ucode_str_2 = \ u("""\ x + 2\n\ ─────\n\ y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = (1 + x)*y ascii_str_1 = \ """\ y*(1 + x)\ """ ascii_str_2 = \ """\ (1 + x)*y\ """ ascii_str_3 = \ """\ y*(x + 1)\ """ ucode_str_1 = \ u("""\ y⋅(1 + x)\ """) ucode_str_2 = \ u("""\ (1 + x)⋅y\ """) ucode_str_3 = \ u("""\ y⋅(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2, ascii_str_3] assert upretty(expr) in [ucode_str_1, ucode_str_2, ucode_str_3] # Test for correct placement of the negative sign expr = -5*x/(x + 10) ascii_str_1 = \ """\ -5*x \n\ ------\n\ 10 + x\ """ ascii_str_2 = \ """\ -5*x \n\ ------\n\ x + 10\ """ ucode_str_1 = \ u("""\ -5⋅x \n\ ──────\n\ 10 + x\ """) ucode_str_2 = \ u("""\ -5⋅x \n\ ──────\n\ x + 10\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = -S.Half - 3*x ascii_str = \ """\ -3*x - 1/2\ """ ucode_str = \ u("""\ -3⋅x - 1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x ascii_str = \ """\ 1/2 - 3*x\ """ ucode_str = \ u("""\ 1/2 - 3⋅x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -S.Half - 3*x/2 ascii_str = \ """\ 3*x 1\n\ - --- - -\n\ 2 2\ """ ucode_str = \ u("""\ 3⋅x 1\n\ - ─── - ─\n\ 2 2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = S.Half - 3*x/2 ascii_str = \ """\ 1 3*x\n\ - - ---\n\ 2 2 \ """ ucode_str = \ u("""\ 1 3⋅x\n\ ─ - ───\n\ 2 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_negative_fractions(): expr = -x/y ascii_str =\ """\ -x \n\ ---\n\ y \ """ ucode_str =\ u("""\ -x \n\ ───\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x*z/y ascii_str =\ """\ -x*z \n\ -----\n\ y \ """ ucode_str =\ u("""\ -x⋅z \n\ ─────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x**2/y ascii_str =\ """\ 2\n\ x \n\ --\n\ y \ """ ucode_str =\ u("""\ 2\n\ x \n\ ──\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x**2/y ascii_str =\ """\ 2 \n\ -x \n\ ----\n\ y \ """ ucode_str =\ u("""\ 2 \n\ -x \n\ ────\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -x/(y*z) ascii_str =\ """\ -x \n\ ---\n\ y*z\ """ ucode_str =\ u("""\ -x \n\ ───\n\ y⋅z\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -a/y**2 ascii_str =\ """\ -a \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**(-a/b) ascii_str =\ """\ -a \n\ ---\n\ b \n\ y \ """ ucode_str =\ u("""\ -a \n\ ───\n\ b \n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -1/y**2 ascii_str =\ """\ -1 \n\ ---\n\ 2\n\ y \ """ ucode_str =\ u("""\ -1 \n\ ───\n\ 2\n\ y \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -10/b**2 ascii_str =\ """\ -10 \n\ ----\n\ 2 \n\ b \ """ ucode_str =\ u("""\ -10 \n\ ────\n\ 2 \n\ b \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Rational(-200, 37) ascii_str =\ """\ -200 \n\ -----\n\ 37 \ """ ucode_str =\ u("""\ -200 \n\ ─────\n\ 37 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_5524(): assert pretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ """\ 2 / ___ \\\n\ - (5 - y) + (x - 5)*\\-x - 2*\\/ 2 + 5/\ """ assert upretty(-(-x + 5)*(-x - 2*sqrt(2) + 5) - (-y + 5)*(-y + 5)) == \ u("""\ 2 \n\ - (5 - y) + (x - 5)⋅(-x - 2⋅√2 + 5)\ """) def test_pretty_ordering(): assert pretty(x**2 + x + 1, order='lex') == \ """\ 2 \n\ x + x + 1\ """ assert pretty(x**2 + x + 1, order='rev-lex') == \ """\ 2\n\ 1 + x + x \ """ assert pretty(1 - x, order='lex') == '-x + 1' assert pretty(1 - x, order='rev-lex') == '1 - x' assert pretty(1 - 2*x, order='lex') == '-2*x + 1' assert pretty(1 - 2*x, order='rev-lex') == '1 - 2*x' f = 2*x**4 + y**2 - x**2 + y**3 assert pretty(f, order=None) == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='lex') == \ """\ 4 2 3 2\n\ 2*x - x + y + y \ """ assert pretty(f, order='rev-lex') == \ """\ 2 3 2 4\n\ y + y - x + 2*x \ """ expr = x - x**3/6 + x**5/120 + O(x**6) ascii_str = \ """\ 3 5 \n\ x x / 6\\\n\ x - -- + --- + O\\x /\n\ 6 120 \ """ ucode_str = \ u("""\ 3 5 \n\ x x ⎛ 6⎞\n\ x - ── + ─── + O⎝x ⎠\n\ 6 120 \ """) assert pretty(expr, order=None) == ascii_str assert upretty(expr, order=None) == ucode_str assert pretty(expr, order='lex') == ascii_str assert upretty(expr, order='lex') == ucode_str assert pretty(expr, order='rev-lex') == ascii_str assert upretty(expr, order='rev-lex') == ucode_str def test_EulerGamma(): assert pretty(EulerGamma) == str(EulerGamma) == "EulerGamma" assert upretty(EulerGamma) == u"γ" def test_GoldenRatio(): assert pretty(GoldenRatio) == str(GoldenRatio) == "GoldenRatio" assert upretty(GoldenRatio) == u"φ" def test_pretty_relational(): expr = Eq(x, y) ascii_str = \ """\ x = y\ """ ucode_str = \ u("""\ x = y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lt(x, y) ascii_str = \ """\ x < y\ """ ucode_str = \ u("""\ x < y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Gt(x, y) ascii_str = \ """\ x > y\ """ ucode_str = \ u("""\ x > y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Le(x, y) ascii_str = \ """\ x <= y\ """ ucode_str = \ u("""\ x ≤ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ge(x, y) ascii_str = \ """\ x >= y\ """ ucode_str = \ u("""\ x ≥ y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Ne(x/(y + 1), y**2) ascii_str_1 = \ """\ x 2\n\ ----- != y \n\ 1 + y \ """ ascii_str_2 = \ """\ x 2\n\ ----- != y \n\ y + 1 \ """ ucode_str_1 = \ u("""\ x 2\n\ ───── ≠ y \n\ 1 + y \ """) ucode_str_2 = \ u("""\ x 2\n\ ───── ≠ y \n\ y + 1 \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] def test_Assignment(): expr = Assignment(x, y) ascii_str = \ """\ x := y\ """ ucode_str = \ u("""\ x := y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_AugmentedAssignment(): expr = AddAugmentedAssignment(x, y) ascii_str = \ """\ x += y\ """ ucode_str = \ u("""\ x += y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = SubAugmentedAssignment(x, y) ascii_str = \ """\ x -= y\ """ ucode_str = \ u("""\ x -= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = MulAugmentedAssignment(x, y) ascii_str = \ """\ x *= y\ """ ucode_str = \ u("""\ x *= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = DivAugmentedAssignment(x, y) ascii_str = \ """\ x /= y\ """ ucode_str = \ u("""\ x /= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ModAugmentedAssignment(x, y) ascii_str = \ """\ x %= y\ """ ucode_str = \ u("""\ x %= y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_7117(): # See also issue #5031 (hence the evaluate=False in these). e = Eq(x + 1, x/2) q = Mul(2, e, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 2⋅⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Add(e, 6, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞\n\ 6 + ⎜x + 1 = ─⎟\n\ ⎝ 2⎠\ """) q = Pow(e, 2, evaluate=False) assert upretty(q) == u("""\ 2\n\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟ \n\ ⎝ 2⎠ \ """) e2 = Eq(x, 2) q = Mul(e, e2, evaluate=False) assert upretty(q) == u("""\ ⎛ x⎞ \n\ ⎜x + 1 = ─⎟⋅(x = 2)\n\ ⎝ 2⎠ \ """) def test_pretty_rational(): expr = y*x**-2 ascii_str = \ """\ y \n\ --\n\ 2\n\ x \ """ ucode_str = \ u("""\ y \n\ ──\n\ 2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = y**Rational(3, 2) * x**Rational(-5, 2) ascii_str = \ """\ 3/2\n\ y \n\ ----\n\ 5/2\n\ x \ """ ucode_str = \ u("""\ 3/2\n\ y \n\ ────\n\ 5/2\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**3/tan(x)**2 ascii_str = \ """\ 3 \n\ sin (x)\n\ -------\n\ 2 \n\ tan (x)\ """ ucode_str = \ u("""\ 3 \n\ sin (x)\n\ ───────\n\ 2 \n\ tan (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_functions(): """Tests for Abs, conjugate, exp, function braces, and factorial.""" expr = (2*x + exp(x)) ascii_str_1 = \ """\ x\n\ 2*x + e \ """ ascii_str_2 = \ """\ x \n\ e + 2*x\ """ ucode_str_1 = \ u("""\ x\n\ 2⋅x + ℯ \ """) ucode_str_2 = \ u("""\ x \n\ ℯ + 2⋅x\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(x) ascii_str = \ """\ |x|\ """ ucode_str = \ u("""\ │x│\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Abs(x/(x**2 + 1)) ascii_str_1 = \ """\ | x |\n\ |------|\n\ | 2|\n\ |1 + x |\ """ ascii_str_2 = \ """\ | x |\n\ |------|\n\ | 2 |\n\ |x + 1|\ """ ucode_str_1 = \ u("""\ │ x │\n\ │──────│\n\ │ 2│\n\ │1 + x │\ """) ucode_str_2 = \ u("""\ │ x │\n\ │──────│\n\ │ 2 │\n\ │x + 1│\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Abs(1 / (y - Abs(x))) ascii_str = \ """\ 1 \n\ ---------\n\ |y - |x||\ """ ucode_str = \ u("""\ 1 \n\ ─────────\n\ │y - │x││\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial(n) ascii_str = \ """\ n!\ """ ucode_str = \ u("""\ n!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(2*n) ascii_str = \ """\ (2*n)!\ """ ucode_str = \ u("""\ (2⋅n)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(factorial(factorial(n))) ascii_str = \ """\ ((n!)!)!\ """ ucode_str = \ u("""\ ((n!)!)!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial(n + 1) ascii_str_1 = \ """\ (1 + n)!\ """ ascii_str_2 = \ """\ (n + 1)!\ """ ucode_str_1 = \ u("""\ (1 + n)!\ """) ucode_str_2 = \ u("""\ (n + 1)!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = subfactorial(n) ascii_str = \ """\ !n\ """ ucode_str = \ u("""\ !n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = subfactorial(2*n) ascii_str = \ """\ !(2*n)\ """ ucode_str = \ u("""\ !(2⋅n)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str n = Symbol('n', integer=True) expr = factorial2(n) ascii_str = \ """\ n!!\ """ ucode_str = \ u("""\ n!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(2*n) ascii_str = \ """\ (2*n)!!\ """ ucode_str = \ u("""\ (2⋅n)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(factorial2(factorial2(n))) ascii_str = \ """\ ((n!!)!!)!!\ """ ucode_str = \ u("""\ ((n!!)!!)!!\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = factorial2(n + 1) ascii_str_1 = \ """\ (1 + n)!!\ """ ascii_str_2 = \ """\ (n + 1)!!\ """ ucode_str_1 = \ u("""\ (1 + n)!!\ """) ucode_str_2 = \ u("""\ (n + 1)!!\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = 2*binomial(n, k) ascii_str = \ """\ /n\\\n\ 2*| |\n\ \\k/\ """ ucode_str = \ u("""\ ⎛n⎞\n\ 2⋅⎜ ⎟\n\ ⎝k⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(2*n, k) ascii_str = \ """\ /2*n\\\n\ 2*| |\n\ \\ k /\ """ ucode_str = \ u("""\ ⎛2⋅n⎞\n\ 2⋅⎜ ⎟\n\ ⎝ k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*binomial(n**2, k) ascii_str = \ """\ / 2\\\n\ |n |\n\ 2*| |\n\ \\k /\ """ ucode_str = \ u("""\ ⎛ 2⎞\n\ ⎜n ⎟\n\ 2⋅⎜ ⎟\n\ ⎝k ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ u("""\ C \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = catalan(n) ascii_str = \ """\ C \n\ n\ """ ucode_str = \ u("""\ C \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bell(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ u("""\ B \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n) ascii_str = \ """\ B \n\ n\ """ ucode_str = \ u("""\ B \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = bernoulli(n, x) ascii_str = \ """\ B (x)\n\ n \ """ ucode_str = \ u("""\ B (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = fibonacci(n) ascii_str = \ """\ F \n\ n\ """ ucode_str = \ u("""\ F \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = lucas(n) ascii_str = \ """\ L \n\ n\ """ ucode_str = \ u("""\ L \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = tribonacci(n) ascii_str = \ """\ T \n\ n\ """ ucode_str = \ u("""\ T \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n) ascii_str = \ """\ stieltjes \n\ n\ """ ucode_str = \ u("""\ γ \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = stieltjes(n, x) ascii_str = \ """\ stieltjes (x)\n\ n \ """ ucode_str = \ u("""\ γ (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieuc(x, y, z) ascii_str = 'C(x, y, z)' ucode_str = u('C(x, y, z)') assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieus(x, y, z) ascii_str = 'S(x, y, z)' ucode_str = u('S(x, y, z)') assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieucprime(x, y, z) ascii_str = "C'(x, y, z)" ucode_str = u("C'(x, y, z)") assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = mathieusprime(x, y, z) ascii_str = "S'(x, y, z)" ucode_str = u("S'(x, y, z)") assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(x) ascii_str = \ """\ _\n\ x\ """ ucode_str = \ u("""\ _\n\ x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str f = Function('f') expr = conjugate(f(x + 1)) ascii_str_1 = \ """\ ________\n\ f(1 + x)\ """ ascii_str_2 = \ """\ ________\n\ f(x + 1)\ """ ucode_str_1 = \ u("""\ ________\n\ f(1 + x)\ """) ucode_str_2 = \ u("""\ ________\n\ f(x + 1)\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x) ascii_str = \ """\ f(x)\ """ ucode_str = \ u("""\ f(x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x, y) ascii_str = \ """\ f(x, y)\ """ ucode_str = \ u("""\ f(x, y)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x**x**x**x**x**x) ascii_str = \ """\ / / / / / x\\\\\\\\\\ | | | | \\x /|||| | | | \\x /||| | | \\x /|| | \\x /| f\\x /\ """ ucode_str = \ u("""\ ⎛ ⎛ ⎛ ⎛ ⎛ x⎞⎞⎞⎞⎞ ⎜ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟⎟ ⎜ ⎜ ⎜ ⎝x ⎠⎟⎟⎟ ⎜ ⎜ ⎝x ⎠⎟⎟ ⎜ ⎝x ⎠⎟ f⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sin(x)**2 ascii_str = \ """\ 2 \n\ sin (x)\ """ ucode_str = \ u("""\ 2 \n\ sin (x)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(a + b*I) ascii_str = \ """\ _ _\n\ a - I*b\ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate(exp(a + b*I)) ascii_str = \ """\ _ _\n\ a - I*b\n\ e \ """ ucode_str = \ u("""\ _ _\n\ a - ⅈ⋅b\n\ ℯ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = conjugate( f(1 + conjugate(f(x))) ) ascii_str_1 = \ """\ ___________\n\ / ____\\\n\ f\\1 + f(x)/\ """ ascii_str_2 = \ """\ ___________\n\ /____ \\\n\ f\\f(x) + 1/\ """ ucode_str_1 = \ u("""\ ___________\n\ ⎛ ____⎞\n\ f⎝1 + f(x)⎠\ """) ucode_str_2 = \ u("""\ ___________\n\ ⎛____ ⎞\n\ f⎝f(x) + 1⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = f(x/(y + 1), y) ascii_str_1 = \ """\ / x \\\n\ f|-----, y|\n\ \\1 + y /\ """ ascii_str_2 = \ """\ / x \\\n\ f|-----, y|\n\ \\y + 1 /\ """ ucode_str_1 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝1 + y ⎠\ """) ucode_str_2 = \ u("""\ ⎛ x ⎞\n\ f⎜─────, y⎟\n\ ⎝y + 1 ⎠\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = floor(1 / (y - floor(x))) ascii_str = \ """\ / 1 \\\n\ floor|------------|\n\ \\y - floor(x)/\ """ ucode_str = \ u("""\ ⎢ 1 ⎥\n\ ⎢───────⎥\n\ ⎣y - ⌊x⌋⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = ceiling(1 / (y - ceiling(x))) ascii_str = \ """\ / 1 \\\n\ ceiling|--------------|\n\ \\y - ceiling(x)/\ """ ucode_str = \ u("""\ ⎡ 1 ⎤\n\ ⎢───────⎥\n\ ⎢y - ⌈x⌉⎥\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n) ascii_str = \ """\ E \n\ n\ """ ucode_str = \ u("""\ E \n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(1/(1 + 1/(1 + 1/n))) ascii_str = \ """\ E \n\ 1 \n\ ---------\n\ 1 \n\ 1 + -----\n\ 1\n\ 1 + -\n\ n\ """ ucode_str = \ u("""\ E \n\ 1 \n\ ─────────\n\ 1 \n\ 1 + ─────\n\ 1\n\ 1 + ─\n\ n\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x) ascii_str = \ """\ E (x)\n\ n \ """ ucode_str = \ u("""\ E (x)\n\ n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = euler(n, x/2) ascii_str = \ """\ /x\\\n\ E |-|\n\ n\\2/\ """ ucode_str = \ u("""\ ⎛x⎞\n\ E ⎜─⎟\n\ n⎝2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt(): expr = sqrt(2) ascii_str = \ """\ ___\n\ \\/ 2 \ """ ucode_str = \ u"√2" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 3) ascii_str = \ """\ 3 ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 3 ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**Rational(1, 1000) ascii_str = \ """\ 1000___\n\ \\/ 2 \ """ ucode_str = \ u("""\ 1000___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(x**2 + 1) ascii_str = \ """\ ________\n\ / 2 \n\ \\/ x + 1 \ """ ucode_str = \ u("""\ ________\n\ ╱ 2 \n\ ╲╱ x + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1 + sqrt(5))**Rational(1, 3) ascii_str = \ """\ ___________\n\ 3 / ___ \n\ \\/ 1 + \\/ 5 \ """ ucode_str = \ u("""\ 3 ________\n\ ╲╱ 1 + √5 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2**(1/x) ascii_str = \ """\ x ___\n\ \\/ 2 \ """ ucode_str = \ u("""\ x ___\n\ ╲╱ 2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = sqrt(2 + pi) ascii_str = \ """\ ________\n\ \\/ 2 + pi \ """ ucode_str = \ u("""\ _______\n\ ╲╱ 2 + π \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (2 + ( 1 + x**2)/(2 + x))**Rational(1, 4) + (1 + x**Rational(1, 1000))/sqrt(3 + x**2) ascii_str = \ """\ ____________ \n\ / 2 1000___ \n\ / x + 1 \\/ x + 1\n\ 4 / 2 + ------ + -----------\n\ \\/ x + 2 ________\n\ / 2 \n\ \\/ x + 3 \ """ ucode_str = \ u("""\ ____________ \n\ ╱ 2 1000___ \n\ ╱ x + 1 ╲╱ x + 1\n\ 4 ╱ 2 + ────── + ───────────\n\ ╲╱ x + 2 ________\n\ ╱ 2 \n\ ╲╱ x + 3 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_sqrt_char_knob(): # See PR #9234. expr = sqrt(2) ucode_str1 = \ u("""\ ___\n\ ╲╱ 2 \ """) ucode_str2 = \ u"√2" assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=False) == ucode_str1 assert xpretty(expr, use_unicode=True, use_unicode_sqrt_char=True) == ucode_str2 def test_pretty_sqrt_longsymbol_no_sqrt_char(): # Do not use unicode sqrt char for long symbols (see PR #9234). expr = sqrt(Symbol('C1')) ucode_str = \ u("""\ ____\n\ ╲╱ C₁ \ """) assert upretty(expr) == ucode_str def test_pretty_KroneckerDelta(): x, y = symbols("x, y") expr = KroneckerDelta(x, y) ascii_str = \ """\ d \n\ x,y\ """ ucode_str = \ u("""\ δ \n\ x,y\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_product(): n, m, k, l = symbols('n m k l') f = symbols('f', cls=Function) expr = Product(f((n/3)**2), (n, k**2, l)) unicode_str = \ u("""\ l \n\ ─┬──────┬─ \n\ │ │ ⎛ 2⎞\n\ │ │ ⎜n ⎟\n\ │ │ f⎜──⎟\n\ │ │ ⎝9 ⎠\n\ │ │ \n\ 2 \n\ n = k """) ascii_str = \ """\ l \n\ __________ \n\ | | / 2\\\n\ | | |n |\n\ | | f|--|\n\ | | \\9 /\n\ | | \n\ 2 \n\ n = k """ expr = Product(f((n/3)**2), (n, k**2, l), (l, 1, m)) unicode_str = \ u("""\ m l \n\ ─┬──────┬─ ─┬──────┬─ \n\ │ │ │ │ ⎛ 2⎞\n\ │ │ │ │ ⎜n ⎟\n\ │ │ │ │ f⎜──⎟\n\ │ │ │ │ ⎝9 ⎠\n\ │ │ │ │ \n\ l = 1 2 \n\ n = k """) ascii_str = \ """\ m l \n\ __________ __________ \n\ | | | | / 2\\\n\ | | | | |n |\n\ | | | | f|--|\n\ | | | | \\9 /\n\ | | | | \n\ l = 1 2 \n\ n = k """ assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_pretty_Lambda(): # S.IdentityFunction is a special case expr = Lambda(y, y) assert pretty(expr) == "x -> x" assert upretty(expr) == u"x ↦ x" expr = Lambda(x, x+1) assert pretty(expr) == "x -> x + 1" assert upretty(expr) == u"x ↦ x + 1" expr = Lambda(x, x**2) ascii_str = \ """\ 2\n\ x -> x \ """ ucode_str = \ u("""\ 2\n\ x ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(x, x**2)**2 ascii_str = \ """\ 2 / 2\\ \n\ \\x -> x / \ """ ucode_str = \ u("""\ 2 ⎛ 2⎞ \n\ ⎝x ↦ x ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x) ascii_str = "(x, y) -> x" ucode_str = u"(x, y) ↦ x" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda((x, y), x**2) ascii_str = \ """\ 2\n\ (x, y) -> x \ """ ucode_str = \ u("""\ 2\n\ (x, y) ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Lambda(((x, y),), x**2) ascii_str = \ """\ 2\n\ ((x, y),) -> x \ """ ucode_str = \ u("""\ 2\n\ ((x, y),) ↦ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_order(): expr = O(1) ascii_str = \ """\ O(1)\ """ ucode_str = \ u("""\ O(1)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x) ascii_str = \ """\ /1\\\n\ O|-|\n\ \\x/\ """ ucode_str = \ u("""\ ⎛1⎞\n\ O⎜─⎟\n\ ⎝x⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (0, 0)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (0, 0)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1, (x, oo)) ascii_str = \ """\ O(1; x -> oo)\ """ ucode_str = \ u("""\ O(1; x → ∞)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(1/x, (x, oo)) ascii_str = \ """\ /1 \\\n\ O|-; x -> oo|\n\ \\x /\ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ O⎜─; x → ∞⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = O(x**2 + y**2, (x, oo), (y, oo)) ascii_str = \ """\ / 2 2 \\\n\ O\\x + y ; (x, y) -> (oo, oo)/\ """ ucode_str = \ u("""\ ⎛ 2 2 ⎞\n\ O⎝x + y ; (x, y) → (∞, ∞)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_derivatives(): # Simple expr = Derivative(log(x), x, evaluate=False) ascii_str = \ """\ d \n\ --(log(x))\n\ dx \ """ ucode_str = \ u("""\ d \n\ ──(log(x))\n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(log(x), x, evaluate=False) + x ascii_str_1 = \ """\ d \n\ x + --(log(x))\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(log(x)) + x\n\ dx \ """ ucode_str_1 = \ u("""\ d \n\ x + ──(log(x))\n\ dx \ """) ucode_str_2 = \ u("""\ d \n\ ──(log(x)) + x\n\ dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] # basic partial derivatives expr = Derivative(log(x + y) + x, x) ascii_str_1 = \ """\ d \n\ --(log(x + y) + x)\n\ dx \ """ ascii_str_2 = \ """\ d \n\ --(x + log(x + y))\n\ dx \ """ ucode_str_1 = \ u("""\ ∂ \n\ ──(log(x + y) + x)\n\ ∂x \ """) ucode_str_2 = \ u("""\ ∂ \n\ ──(x + log(x + y))\n\ ∂x \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2], upretty(expr) # Multiple symbols expr = Derivative(log(x) + x**2, x, y) ascii_str_1 = \ """\ 2 \n\ d / 2\\\n\ -----\\log(x) + x /\n\ dy dx \ """ ascii_str_2 = \ """\ 2 \n\ d / 2 \\\n\ -----\\x + log(x)/\n\ dy dx \ """ ucode_str_1 = \ u("""\ 2 \n\ d ⎛ 2⎞\n\ ─────⎝log(x) + x ⎠\n\ dy dx \ """) ucode_str_2 = \ u("""\ 2 \n\ d ⎛ 2 ⎞\n\ ─────⎝x + log(x)⎠\n\ dy dx \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, y, x) + x**2 ascii_str_1 = \ """\ 2 \n\ d 2\n\ -----(2*x*y) + x \n\ dx dy \ """ ascii_str_2 = \ """\ 2 \n\ 2 d \n\ x + -----(2*x*y)\n\ dx dy \ """ ucode_str_1 = \ u("""\ 2 \n\ ∂ 2\n\ ─────(2⋅x⋅y) + x \n\ ∂x ∂y \ """) ucode_str_2 = \ u("""\ 2 \n\ 2 ∂ \n\ x + ─────(2⋅x⋅y)\n\ ∂x ∂y \ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Derivative(2*x*y, x, x) ascii_str = \ """\ 2 \n\ d \n\ ---(2*x*y)\n\ 2 \n\ dx \ """ ucode_str = \ u("""\ 2 \n\ ∂ \n\ ───(2⋅x⋅y)\n\ 2 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, 17) ascii_str = \ """\ 17 \n\ d \n\ ----(2*x*y)\n\ 17 \n\ dx \ """ ucode_str = \ u("""\ 17 \n\ ∂ \n\ ────(2⋅x⋅y)\n\ 17 \n\ ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(2*x*y, x, x, y) ascii_str = \ """\ 3 \n\ d \n\ ------(2*x*y)\n\ 2 \n\ dy dx \ """ ucode_str = \ u("""\ 3 \n\ ∂ \n\ ──────(2⋅x⋅y)\n\ 2 \n\ ∂y ∂x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # Greek letters alpha = Symbol('alpha') beta = Function('beta') expr = beta(alpha).diff(alpha) ascii_str = \ """\ d \n\ ------(beta(alpha))\n\ dalpha \ """ ucode_str = \ u("""\ d \n\ ──(β(α))\n\ dα \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Derivative(f(x), (x, n)) ascii_str = \ """\ n \n\ d \n\ ---(f(x))\n\ n \n\ dx \ """ ucode_str = \ u("""\ n \n\ d \n\ ───(f(x))\n\ n \n\ dx \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_integrals(): expr = Integral(log(x), x) ascii_str = \ """\ / \n\ | \n\ | log(x) dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ log(x) dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, x) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral((sin(x))**2 / (tan(x))**2) ascii_str = \ """\ / \n\ | \n\ | 2 \n\ | sin (x) \n\ | ------- dx\n\ | 2 \n\ | tan (x) \n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ 2 \n\ ⎮ sin (x) \n\ ⎮ ─────── dx\n\ ⎮ 2 \n\ ⎮ tan (x) \n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**(2**x), x) ascii_str = \ """\ / \n\ | \n\ | / x\\ \n\ | \\2 / \n\ | x dx\n\ | \n\ / \ """ ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ x⎞ \n\ ⎮ ⎝2 ⎠ \n\ ⎮ x dx\n\ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, 1, 2)) ascii_str = \ """\ 2 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1 \ """ ucode_str = \ u("""\ 2 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2, (x, Rational(1, 2), 10)) ascii_str = \ """\ 10 \n\ / \n\ | \n\ | 2 \n\ | x dx\n\ | \n\ / \n\ 1/2 \ """ ucode_str = \ u("""\ 10 \n\ ⌠ \n\ ⎮ 2 \n\ ⎮ x dx\n\ ⌡ \n\ 1/2 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(x**2*y**2, x, y) ascii_str = \ """\ / / \n\ | | \n\ | | 2 2 \n\ | | x *y dx dy\n\ | | \n\ / / \ """ ucode_str = \ u("""\ ⌠ ⌠ \n\ ⎮ ⎮ 2 2 \n\ ⎮ ⎮ x ⋅y dx dy\n\ ⌡ ⌡ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(sin(th)/cos(ph), (th, 0, pi), (ph, 0, 2*pi)) ascii_str = \ """\ 2*pi pi \n\ / / \n\ | | \n\ | | sin(theta) \n\ | | ---------- d(theta) d(phi)\n\ | | cos(phi) \n\ | | \n\ / / \n\ 0 0 \ """ ucode_str = \ u("""\ 2⋅π π \n\ ⌠ ⌠ \n\ ⎮ ⎮ sin(θ) \n\ ⎮ ⎮ ────── dθ dφ\n\ ⎮ ⎮ cos(φ) \n\ ⌡ ⌡ \n\ 0 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_matrix(): # Empty Matrix expr = Matrix() ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(2, 0, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix(0, 2, lambda i, j: 0) ascii_str = "[]" unicode_str = "[]" assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Matrix([[x**2 + 1, 1], [y, x + y]]) ascii_str_1 = \ """\ [ 2 ] [1 + x 1 ] [ ] [ y x + y]\ """ ascii_str_2 = \ """\ [ 2 ] [x + 1 1 ] [ ] [ y x + y]\ """ ucode_str_1 = \ u("""\ ⎡ 2 ⎤ ⎢1 + x 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) ucode_str_2 = \ u("""\ ⎡ 2 ⎤ ⎢x + 1 1 ⎥ ⎢ ⎥ ⎣ y x + y⎦\ """) assert pretty(expr) in [ascii_str_1, ascii_str_2] assert upretty(expr) in [ucode_str_1, ucode_str_2] expr = Matrix([[x/y, y, th], [0, exp(I*k*ph), 1]]) ascii_str = \ """\ [x ] [- y theta] [y ] [ ] [ I*k*phi ] [0 e 1 ]\ """ ucode_str = \ u("""\ ⎡x ⎤ ⎢─ y θ⎥ ⎢y ⎥ ⎢ ⎥ ⎢ ⅈ⋅k⋅φ ⎥ ⎣0 ℯ 1⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str unicode_str = \ u("""\ ⎡v̇_msc_00 0 0 ⎤ ⎢ ⎥ ⎢ 0 v̇_msc_01 0 ⎥ ⎢ ⎥ ⎣ 0 0 v̇_msc_02⎦\ """) expr = diag(*MatrixSymbol('vdot_msc',1,3)) assert upretty(expr) == unicode_str def test_pretty_ndim_arrays(): x, y, z, w = symbols("x y z w") for ArrayType in (ImmutableDenseNDimArray, ImmutableSparseNDimArray, MutableDenseNDimArray, MutableSparseNDimArray): # Basic: scalar array M = ArrayType(x) assert pretty(M) == "x" assert upretty(M) == "x" M = ArrayType([[1/x, y], [z, w]]) M1 = ArrayType([1/x, y, z]) M2 = tensorproduct(M1, M) M3 = tensorproduct(M, M) ascii_str = \ """\ [1 ]\n\ [- y]\n\ [x ]\n\ [ ]\n\ [z w]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y⎥\n\ ⎢x ⎥\n\ ⎢ ⎥\n\ ⎣z w⎦\ """) assert pretty(M) == ascii_str assert upretty(M) == ucode_str ascii_str = \ """\ [1 ]\n\ [- y z]\n\ [x ]\ """ ucode_str = \ u("""\ ⎡1 ⎤\n\ ⎢─ y z⎥\n\ ⎣x ⎦\ """) assert pretty(M1) == ascii_str assert upretty(M1) == ucode_str ascii_str = \ """\ [[1 y] ]\n\ [[-- -] [z ]]\n\ [[ 2 x] [ y 2 ] [- y*z]]\n\ [[x ] [ - y ] [x ]]\n\ [[ ] [ x ] [ ]]\n\ [[z w] [ ] [ 2 ]]\n\ [[- -] [y*z w*y] [z w*z]]\n\ [[x x] ]\ """ ucode_str = \ u("""\ ⎡⎡1 y⎤ ⎤\n\ ⎢⎢── ─⎥ ⎡z ⎤⎥\n\ ⎢⎢ 2 x⎥ ⎡ y 2 ⎤ ⎢─ y⋅z⎥⎥\n\ ⎢⎢x ⎥ ⎢ ─ y ⎥ ⎢x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ x ⎥ ⎢ ⎥⎥\n\ ⎢⎢z w⎥ ⎢ ⎥ ⎢ 2 ⎥⎥\n\ ⎢⎢─ ─⎥ ⎣y⋅z w⋅y⎦ ⎣z w⋅z⎦⎥\n\ ⎣⎣x x⎦ ⎦\ """) assert pretty(M2) == ascii_str assert upretty(M2) == ucode_str ascii_str = \ """\ [ [1 y] ]\n\ [ [-- -] ]\n\ [ [ 2 x] [ y 2 ]]\n\ [ [x ] [ - y ]]\n\ [ [ ] [ x ]]\n\ [ [z w] [ ]]\n\ [ [- -] [y*z w*y]]\n\ [ [x x] ]\n\ [ ]\n\ [[z ] [ w ]]\n\ [[- y*z] [ - w*y]]\n\ [[x ] [ x ]]\n\ [[ ] [ ]]\n\ [[ 2 ] [ 2 ]]\n\ [[z w*z] [w*z w ]]\ """ ucode_str = \ u("""\ ⎡ ⎡1 y⎤ ⎤\n\ ⎢ ⎢── ─⎥ ⎥\n\ ⎢ ⎢ 2 x⎥ ⎡ y 2 ⎤⎥\n\ ⎢ ⎢x ⎥ ⎢ ─ y ⎥⎥\n\ ⎢ ⎢ ⎥ ⎢ x ⎥⎥\n\ ⎢ ⎢z w⎥ ⎢ ⎥⎥\n\ ⎢ ⎢─ ─⎥ ⎣y⋅z w⋅y⎦⎥\n\ ⎢ ⎣x x⎦ ⎥\n\ ⎢ ⎥\n\ ⎢⎡z ⎤ ⎡ w ⎤⎥\n\ ⎢⎢─ y⋅z⎥ ⎢ ─ w⋅y⎥⎥\n\ ⎢⎢x ⎥ ⎢ x ⎥⎥\n\ ⎢⎢ ⎥ ⎢ ⎥⎥\n\ ⎢⎢ 2 ⎥ ⎢ 2 ⎥⎥\n\ ⎣⎣z w⋅z⎦ ⎣w⋅z w ⎦⎦\ """) assert pretty(M3) == ascii_str assert upretty(M3) == ucode_str Mrow = ArrayType([[x, y, 1 / z]]) Mcolumn = ArrayType([[x], [y], [1 / z]]) Mcol2 = ArrayType([Mcolumn.tolist()]) ascii_str = \ """\ [[ 1]]\n\ [[x y -]]\n\ [[ z]]\ """ ucode_str = \ u("""\ ⎡⎡ 1⎤⎤\n\ ⎢⎢x y ─⎥⎥\n\ ⎣⎣ z⎦⎦\ """) assert pretty(Mrow) == ascii_str assert upretty(Mrow) == ucode_str ascii_str = \ """\ [x]\n\ [ ]\n\ [y]\n\ [ ]\n\ [1]\n\ [-]\n\ [z]\ """ ucode_str = \ u("""\ ⎡x⎤\n\ ⎢ ⎥\n\ ⎢y⎥\n\ ⎢ ⎥\n\ ⎢1⎥\n\ ⎢─⎥\n\ ⎣z⎦\ """) assert pretty(Mcolumn) == ascii_str assert upretty(Mcolumn) == ucode_str ascii_str = \ """\ [[x]]\n\ [[ ]]\n\ [[y]]\n\ [[ ]]\n\ [[1]]\n\ [[-]]\n\ [[z]]\ """ ucode_str = \ u("""\ ⎡⎡x⎤⎤\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢y⎥⎥\n\ ⎢⎢ ⎥⎥\n\ ⎢⎢1⎥⎥\n\ ⎢⎢─⎥⎥\n\ ⎣⎣z⎦⎦\ """) assert pretty(Mcol2) == ascii_str assert upretty(Mcol2) == ucode_str def test_tensor_TensorProduct(): A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) assert upretty(TensorProduct(A, B)) == "A\u2297B" assert upretty(TensorProduct(A, B, A)) == "A\u2297B\u2297A" def test_diffgeom_print_WedgeProduct(): from sympy.diffgeom.rn import R2 from sympy.diffgeom import WedgeProduct wp = WedgeProduct(R2.dx, R2.dy) assert upretty(wp) == u("ⅆ x∧ⅆ y") def test_Adjoint(): X = MatrixSymbol('X', 2, 2) Y = MatrixSymbol('Y', 2, 2) assert pretty(Adjoint(X)) == " +\nX " assert pretty(Adjoint(X + Y)) == " +\n(X + Y) " assert pretty(Adjoint(X) + Adjoint(Y)) == " + +\nX + Y " assert pretty(Adjoint(X*Y)) == " +\n(X*Y) " assert pretty(Adjoint(Y)*Adjoint(X)) == " + +\nY *X " assert pretty(Adjoint(X**2)) == " +\n/ 2\\ \n\\X / " assert pretty(Adjoint(X)**2) == " 2\n/ +\\ \n\\X / " assert pretty(Adjoint(Inverse(X))) == " +\n/ -1\\ \n\\X / " assert pretty(Inverse(Adjoint(X))) == " -1\n/ +\\ \n\\X / " assert pretty(Adjoint(Transpose(X))) == " +\n/ T\\ \n\\X / " assert pretty(Transpose(Adjoint(X))) == " T\n/ +\\ \n\\X / " assert upretty(Adjoint(X)) == u" †\nX " assert upretty(Adjoint(X + Y)) == u" †\n(X + Y) " assert upretty(Adjoint(X) + Adjoint(Y)) == u" † †\nX + Y " assert upretty(Adjoint(X*Y)) == u" †\n(X⋅Y) " assert upretty(Adjoint(Y)*Adjoint(X)) == u" † †\nY ⋅X " assert upretty(Adjoint(X**2)) == \ u" †\n⎛ 2⎞ \n⎝X ⎠ " assert upretty(Adjoint(X)**2) == \ u" 2\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Inverse(X))) == \ u" †\n⎛ -1⎞ \n⎝X ⎠ " assert upretty(Inverse(Adjoint(X))) == \ u" -1\n⎛ †⎞ \n⎝X ⎠ " assert upretty(Adjoint(Transpose(X))) == \ u" †\n⎛ T⎞ \n⎝X ⎠ " assert upretty(Transpose(Adjoint(X))) == \ u" T\n⎛ †⎞ \n⎝X ⎠ " def test_pretty_Trace_issue_9044(): X = Matrix([[1, 2], [3, 4]]) Y = Matrix([[2, 4], [6, 8]]) ascii_str_1 = \ """\ /[1 2]\\ tr|[ ]| \\[3 4]/\ """ ucode_str_1 = \ u("""\ ⎛⎡1 2⎤⎞ tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠\ """) ascii_str_2 = \ """\ /[1 2]\\ /[2 4]\\ tr|[ ]| + tr|[ ]| \\[3 4]/ \\[6 8]/\ """ ucode_str_2 = \ u("""\ ⎛⎡1 2⎤⎞ ⎛⎡2 4⎤⎞ tr⎜⎢ ⎥⎟ + tr⎜⎢ ⎥⎟ ⎝⎣3 4⎦⎠ ⎝⎣6 8⎦⎠\ """) assert pretty(Trace(X)) == ascii_str_1 assert upretty(Trace(X)) == ucode_str_1 assert pretty(Trace(X) + Trace(Y)) == ascii_str_2 assert upretty(Trace(X) + Trace(Y)) == ucode_str_2 def test_MatrixExpressions(): n = Symbol('n', integer=True) X = MatrixSymbol('X', n, n) assert pretty(X) == upretty(X) == "X" Y = X[1:2:3, 4:5:6] ascii_str = ucode_str = "X[1:3, 4:6]" assert pretty(Y) == ascii_str assert upretty(Y) == ucode_str Z = X[1:10:2] ascii_str = ucode_str = "X[1:10:2, :n]" assert pretty(Z) == ascii_str assert upretty(Z) == ucode_str # Apply function elementwise (`ElementwiseApplyFunc`): expr = (X.T*X).applyfunc(sin) ascii_str = """\ / T \\\n\ (d -> sin(d)).\\X *X/\ """ ucode_str = u("""\ ⎛ T ⎞\n\ (d ↦ sin(d))˳⎝X ⋅X⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str lamda = Lambda(x, 1/x) expr = (n*X).applyfunc(lamda) ascii_str = """\ / 1\\ \n\ |d -> -|.(n*X)\n\ \\ d/ \ """ ucode_str = u("""\ ⎛ 1⎞ \n\ ⎜d ↦ ─⎟˳(n⋅X)\n\ ⎝ d⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_dotproduct(): from sympy.matrices import Matrix, MatrixSymbol from sympy.matrices.expressions.dotproduct import DotProduct n = symbols("n", integer=True) A = MatrixSymbol('A', n, 1) B = MatrixSymbol('B', n, 1) C = Matrix(1, 3, [1, 2, 3]) D = Matrix(1, 3, [1, 3, 4]) assert pretty(DotProduct(A, B)) == u"A*B" assert pretty(DotProduct(C, D)) == u"[1 2 3]*[1 3 4]" assert upretty(DotProduct(A, B)) == u"A⋅B" assert upretty(DotProduct(C, D)) == u"[1 2 3]⋅[1 3 4]" def test_pretty_piecewise(): expr = Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ /x for x < 1\n\ | \n\ < 2 \n\ |x otherwise\n\ \\ \ """ ucode_str = \ u("""\ ⎧x for x < 1\n\ ⎪ \n\ ⎨ 2 \n\ ⎪x otherwise\n\ ⎩ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x < 1), (x**2, True)) ascii_str = \ """\ //x for x < 1\\\n\ || |\n\ -|< 2 |\n\ ||x otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x for x < 1⎞\n\ ⎜⎪ ⎟\n\ -⎜⎨ 2 ⎟\n\ ⎜⎪x otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x + Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x + |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x + ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x - Piecewise((x, x > 0), (y, True)) + Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) + 1 ascii_str = \ """\ //x \\ \n\ ||- for x < 2| \n\ ||y | \n\ //x for x > 0\\ || | \n\ x - |< | + |< 2 | + 1\n\ \\\\y otherwise/ ||y for x > 2| \n\ || | \n\ ||1 otherwise| \n\ \\\\ / \ """ ucode_str = \ u("""\ ⎛⎧x ⎞ \n\ ⎜⎪─ for x < 2⎟ \n\ ⎜⎪y ⎟ \n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟ \n\ x - ⎜⎨ ⎟ + ⎜⎨ 2 ⎟ + 1\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟ \n\ ⎜⎪ ⎟ \n\ ⎜⎪1 otherwise⎟ \n\ ⎝⎩ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = x*Piecewise((x, x > 0), (y, True)) ascii_str = \ """\ //x for x > 0\\\n\ x*|< |\n\ \\\\y otherwise/\ """ ucode_str = \ u("""\ ⎛⎧x for x > 0⎞\n\ x⋅⎜⎨ ⎟\n\ ⎝⎩y otherwise⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ |< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ ⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -Piecewise((x, x > 0), (y, True))*Piecewise((x/y, x < 2), (y**2, x > 2), (1, True)) ascii_str = \ """\ //x \\\n\ ||- for x < 2|\n\ ||y |\n\ //x for x > 0\\ || |\n\ -|< |*|< 2 |\n\ \\\\y otherwise/ ||y for x > 2|\n\ || |\n\ ||1 otherwise|\n\ \\\\ /\ """ ucode_str = \ u("""\ ⎛⎧x ⎞\n\ ⎜⎪─ for x < 2⎟\n\ ⎜⎪y ⎟\n\ ⎛⎧x for x > 0⎞ ⎜⎪ ⎟\n\ -⎜⎨ ⎟⋅⎜⎨ 2 ⎟\n\ ⎝⎩y otherwise⎠ ⎜⎪y for x > 2⎟\n\ ⎜⎪ ⎟\n\ ⎜⎪1 otherwise⎟\n\ ⎝⎩ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Piecewise((0, Abs(1/y) < 1), (1, Abs(y) < 1), (y*meijerg(((2, 1), ()), ((), (1, 0)), 1/y), True)) ascii_str = \ """\ / 1 \n\ | 0 for --- < 1\n\ | |y| \n\ | \n\ < 1 for |y| < 1\n\ | \n\ | __0, 2 /2, 1 | 1\\ \n\ |y*/__ | | -| otherwise \n\ \\ \\_|2, 2 \\ 1, 0 | y/ \ """ ucode_str = \ u("""\ ⎧ 1 \n\ ⎪ 0 for ─── < 1\n\ ⎪ │y│ \n\ ⎪ \n\ ⎨ 1 for │y│ < 1\n\ ⎪ \n\ ⎪ ╭─╮0, 2 ⎛2, 1 │ 1⎞ \n\ ⎪y⋅│╶┐ ⎜ │ ─⎟ otherwise \n\ ⎩ ╰─╯2, 2 ⎝ 1, 0 │ y⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str # XXX: We have to use evaluate=False here because Piecewise._eval_power # denests the power. expr = Pow(Piecewise((x, x > 0), (y, True)), 2, evaluate=False) ascii_str = \ """\ 2\n\ //x for x > 0\\ \n\ |< | \n\ \\\\y otherwise/ \ """ ucode_str = \ u("""\ 2\n\ ⎛⎧x for x > 0⎞ \n\ ⎜⎨ ⎟ \n\ ⎝⎩y otherwise⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ITE(): expr = ITE(x, y, z) assert pretty(expr) == ( '/y for x \n' '< \n' '\\z otherwise' ) assert upretty(expr) == u("""\ ⎧y for x \n\ ⎨ \n\ ⎩z otherwise\ """) def test_pretty_seq(): expr = () ascii_str = \ """\ ()\ """ ucode_str = \ u("""\ ()\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [] ascii_str = \ """\ []\ """ ucode_str = \ u("""\ []\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {} expr_2 = {} ascii_str = \ """\ {}\ """ ucode_str = \ u("""\ {}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = (1/x,) ascii_str = \ """\ 1 \n\ (-,)\n\ x \ """ ucode_str = \ u("""\ ⎛1 ⎞\n\ ⎜─,⎟\n\ ⎝x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = [x**2, 1/x, x, y, sin(th)**2/cos(ph)**2] ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ [x , -, x, y, -----------]\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎡ 2 ⎤\n\ ⎢ 2 1 sin (θ)⎥\n\ ⎢x , ─, x, y, ───────⎥\n\ ⎢ x 2 ⎥\n\ ⎣ cos (φ)⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2, 1/x, x, y, sin(th)**2/cos(ph)**2) ascii_str = \ """\ 2 \n\ 2 1 sin (theta) \n\ (x , -, x, y, -----------)\n\ x 2 \n\ cos (phi) \ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎜ 2 1 sin (θ)⎟\n\ ⎜x , ─, x, y, ───────⎟\n\ ⎜ x 2 ⎟\n\ ⎝ cos (φ)⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x: sin(x)} expr_2 = Dict({x: sin(x)}) ascii_str = \ """\ {x: sin(x)}\ """ ucode_str = \ u("""\ {x: sin(x)}\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str expr = {1/x: 1/y, x: sin(x)**2} expr_2 = Dict({1/x: 1/y, x: sin(x)**2}) ascii_str = \ """\ 1 1 2 \n\ {-: -, x: sin (x)}\n\ x y \ """ ucode_str = \ u("""\ ⎧1 1 2 ⎫\n\ ⎨─: ─, x: sin (x)⎬\n\ ⎩x y ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str # There used to be a bug with pretty-printing sequences of even height. expr = [x**2] ascii_str = \ """\ 2 \n\ [x ]\ """ ucode_str = \ u("""\ ⎡ 2⎤\n\ ⎣x ⎦\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (x**2,) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Tuple(x**2) ascii_str = \ """\ 2 \n\ (x ,)\ """ ucode_str = \ u("""\ ⎛ 2 ⎞\n\ ⎝x ,⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = {x**2: 1} expr_2 = Dict({x**2: 1}) ascii_str = \ """\ 2 \n\ {x : 1}\ """ ucode_str = \ u("""\ ⎧ 2 ⎫\n\ ⎨x : 1⎬\n\ ⎩ ⎭\ """) assert pretty(expr) == ascii_str assert pretty(expr_2) == ascii_str assert upretty(expr) == ucode_str assert upretty(expr_2) == ucode_str def test_any_object_in_sequence(): # Cf. issue 5306 b1 = Basic() b2 = Basic(Basic()) expr = [b2, b1] assert pretty(expr) == "[Basic(Basic()), Basic()]" assert upretty(expr) == u"[Basic(Basic()), Basic()]" expr = {b2, b1} assert pretty(expr) == "{Basic(), Basic(Basic())}" assert upretty(expr) == u"{Basic(), Basic(Basic())}" expr = {b2: b1, b1: b2} expr2 = Dict({b2: b1, b1: b2}) assert pretty(expr) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert pretty( expr2) == "{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" assert upretty( expr2) == u"{Basic(): Basic(Basic()), Basic(Basic()): Basic()}" def test_print_builtin_set(): assert pretty(set()) == 'set()' assert upretty(set()) == u'set()' assert pretty(frozenset()) == 'frozenset()' assert upretty(frozenset()) == u'frozenset()' s1 = {1/x, x} s2 = frozenset(s1) assert pretty(s1) == \ """\ 1 \n\ {-, x} x \ """ assert upretty(s1) == \ u"""\ ⎧1 ⎫ ⎨─, x⎬ ⎩x ⎭\ """ assert pretty(s2) == \ """\ 1 \n\ frozenset({-, x}) x \ """ assert upretty(s2) == \ u"""\ ⎛⎧1 ⎫⎞ frozenset⎜⎨─, x⎬⎟ ⎝⎩x ⎭⎠\ """ def test_pretty_sets(): s = FiniteSet assert pretty(s(*[x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(s(*range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(s(*range(1, 13))) == "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(set([x*y, x**2])) == \ """\ 2 \n\ {x , x*y}\ """ assert pretty(set(range(1, 6))) == "{1, 2, 3, 4, 5}" assert pretty(set(range(1, 13))) == \ "{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}" assert pretty(frozenset([x*y, x**2])) == \ """\ 2 \n\ frozenset({x , x*y})\ """ assert pretty(frozenset(range(1, 6))) == "frozenset({1, 2, 3, 4, 5})" assert pretty(frozenset(range(1, 13))) == \ "frozenset({1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12})" assert pretty(Range(0, 3, 1)) == '{0, 1, 2}' ascii_str = '{0, 1, ..., 29}' ucode_str = u'{0, 1, …, 29}' assert pretty(Range(0, 30, 1)) == ascii_str assert upretty(Range(0, 30, 1)) == ucode_str ascii_str = '{30, 29, ..., 2}' ucode_str = u('{30, 29, …, 2}') assert pretty(Range(30, 1, -1)) == ascii_str assert upretty(Range(30, 1, -1)) == ucode_str ascii_str = '{0, 2, ...}' ucode_str = u'{0, 2, …}' assert pretty(Range(0, oo, 2)) == ascii_str assert upretty(Range(0, oo, 2)) == ucode_str ascii_str = '{..., 2, 0}' ucode_str = u('{…, 2, 0}') assert pretty(Range(oo, -2, -2)) == ascii_str assert upretty(Range(oo, -2, -2)) == ucode_str ascii_str = '{-2, -3, ...}' ucode_str = u('{-2, -3, …}') assert pretty(Range(-2, -oo, -1)) == ascii_str assert upretty(Range(-2, -oo, -1)) == ucode_str def test_pretty_SetExpr(): iv = Interval(1, 3) se = SetExpr(iv) ascii_str = "SetExpr([1, 3])" ucode_str = u("SetExpr([1, 3])") assert pretty(se) == ascii_str assert upretty(se) == ucode_str def test_pretty_ImageSet(): imgset = ImageSet(Lambda((x, y), x + y), {1, 2, 3}, {3, 4}) ascii_str = '{x + y | x in {1, 2, 3} , y in {3, 4}}' ucode_str = u('{x + y | x ∊ {1, 2, 3} , y ∊ {3, 4}}') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(((x, y),), x + y), ProductSet({1, 2, 3}, {3, 4})) ascii_str = '{x + y | (x, y) in {1, 2, 3} x {3, 4}}' ucode_str = u('{x + y | (x, y) ∊ {1, 2, 3} × {3, 4}}') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str imgset = ImageSet(Lambda(x, x**2), S.Naturals) ascii_str = \ ' 2 \n'\ '{x | x in Naturals}' ucode_str = u('''\ ⎧ 2 ⎫\n\ ⎨x | x ∊ ℕ⎬\n\ ⎩ ⎭''') assert pretty(imgset) == ascii_str assert upretty(imgset) == ucode_str def test_pretty_ConditionSet(): from sympy import ConditionSet ascii_str = '{x | x in (-oo, oo) and sin(x) = 0}' ucode_str = u'{x | x ∊ ℝ ∧ sin(x) = 0}' assert pretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ascii_str assert upretty(ConditionSet(x, Eq(sin(x), 0), S.Reals)) == ucode_str assert pretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == '{1}' assert upretty(ConditionSet(x, Contains(x, S.Reals, evaluate=False), FiniteSet(1))) == u'{1}' assert pretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == "EmptySet" assert upretty(ConditionSet(x, And(x > 1, x < -1), FiniteSet(1, 2, 3))) == u"∅" assert pretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == '{2}' assert upretty(ConditionSet(x, Or(x > 1, x < -1), FiniteSet(1, 2))) == u'{2}' def test_pretty_ComplexRegion(): from sympy import ComplexRegion ucode_str = u'{x + y⋅ⅈ | x, y ∊ [3, 5] × [4, 6]}' assert upretty(ComplexRegion(Interval(3, 5)*Interval(4, 6))) == ucode_str ucode_str = u'{r⋅(ⅈ⋅sin(θ) + cos(θ)) | r, θ ∊ [0, 1] × [0, 2⋅π)}' assert upretty(ComplexRegion(Interval(0, 1)*Interval(0, 2*pi), polar=True)) == ucode_str def test_pretty_Union_issue_10414(): a, b = Interval(2, 3), Interval(4, 7) ucode_str = u'[2, 3] ∪ [4, 7]' ascii_str = '[2, 3] U [4, 7]' assert upretty(Union(a, b)) == ucode_str assert pretty(Union(a, b)) == ascii_str def test_pretty_Intersection_issue_10414(): x, y, z, w = symbols('x, y, z, w') a, b = Interval(x, y), Interval(z, w) ucode_str = u'[x, y] ∩ [z, w]' ascii_str = '[x, y] n [z, w]' assert upretty(Intersection(a, b)) == ucode_str assert pretty(Intersection(a, b)) == ascii_str def test_ProductSet_exponent(): ucode_str = ' 1\n[0, 1] ' assert upretty(Interval(0, 1)**1) == ucode_str ucode_str = ' 2\n[0, 1] ' assert upretty(Interval(0, 1)**2) == ucode_str def test_ProductSet_parenthesis(): ucode_str = u'([4, 7] × {1, 2}) ∪ ([2, 3] × [4, 7])' a, b = Interval(2, 3), Interval(4, 7) assert upretty(Union(a*b, b*FiniteSet(1, 2))) == ucode_str def test_ProductSet_prod_char_issue_10413(): ascii_str = '[2, 3] x [4, 7]' ucode_str = u'[2, 3] × [4, 7]' a, b = Interval(2, 3), Interval(4, 7) assert pretty(a*b) == ascii_str assert upretty(a*b) == ucode_str def test_pretty_sequences(): s1 = SeqFormula(a**2, (0, oo)) s2 = SeqPer((1, 2)) ascii_str = '[0, 1, 4, 9, ...]' ucode_str = u'[0, 1, 4, 9, …]' assert pretty(s1) == ascii_str assert upretty(s1) == ucode_str ascii_str = '[1, 2, 1, 2, ...]' ucode_str = u'[1, 2, 1, 2, …]' assert pretty(s2) == ascii_str assert upretty(s2) == ucode_str s3 = SeqFormula(a**2, (0, 2)) s4 = SeqPer((1, 2), (0, 2)) ascii_str = '[0, 1, 4]' ucode_str = u'[0, 1, 4]' assert pretty(s3) == ascii_str assert upretty(s3) == ucode_str ascii_str = '[1, 2, 1]' ucode_str = u'[1, 2, 1]' assert pretty(s4) == ascii_str assert upretty(s4) == ucode_str s5 = SeqFormula(a**2, (-oo, 0)) s6 = SeqPer((1, 2), (-oo, 0)) ascii_str = '[..., 9, 4, 1, 0]' ucode_str = u'[…, 9, 4, 1, 0]' assert pretty(s5) == ascii_str assert upretty(s5) == ucode_str ascii_str = '[..., 2, 1, 2, 1]' ucode_str = u'[…, 2, 1, 2, 1]' assert pretty(s6) == ascii_str assert upretty(s6) == ucode_str ascii_str = '[1, 3, 5, 11, ...]' ucode_str = u'[1, 3, 5, 11, …]' assert pretty(SeqAdd(s1, s2)) == ascii_str assert upretty(SeqAdd(s1, s2)) == ucode_str ascii_str = '[1, 3, 5]' ucode_str = u'[1, 3, 5]' assert pretty(SeqAdd(s3, s4)) == ascii_str assert upretty(SeqAdd(s3, s4)) == ucode_str ascii_str = '[..., 11, 5, 3, 1]' ucode_str = u'[…, 11, 5, 3, 1]' assert pretty(SeqAdd(s5, s6)) == ascii_str assert upretty(SeqAdd(s5, s6)) == ucode_str ascii_str = '[0, 2, 4, 18, ...]' ucode_str = u'[0, 2, 4, 18, …]' assert pretty(SeqMul(s1, s2)) == ascii_str assert upretty(SeqMul(s1, s2)) == ucode_str ascii_str = '[0, 2, 4]' ucode_str = u'[0, 2, 4]' assert pretty(SeqMul(s3, s4)) == ascii_str assert upretty(SeqMul(s3, s4)) == ucode_str ascii_str = '[..., 18, 4, 2, 0]' ucode_str = u'[…, 18, 4, 2, 0]' assert pretty(SeqMul(s5, s6)) == ascii_str assert upretty(SeqMul(s5, s6)) == ucode_str # Sequences with symbolic limits, issue 12629 s7 = SeqFormula(a**2, (a, 0, x)) raises(NotImplementedError, lambda: pretty(s7)) raises(NotImplementedError, lambda: upretty(s7)) b = Symbol('b') s8 = SeqFormula(b*a**2, (a, 0, 2)) ascii_str = u'[0, b, 4*b]' ucode_str = u'[0, b, 4⋅b]' assert pretty(s8) == ascii_str assert upretty(s8) == ucode_str def test_pretty_FourierSeries(): f = fourier_series(x, (x, -pi, pi)) ascii_str = \ """\ 2*sin(3*x) \n\ 2*sin(x) - sin(2*x) + ---------- + ...\n\ 3 \ """ ucode_str = \ u("""\ 2⋅sin(3⋅x) \n\ 2⋅sin(x) - sin(2⋅x) + ────────── + …\n\ 3 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_FormalPowerSeries(): f = fps(log(1 + x)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -k k \n\ \\ -(-1) *x \n\ / -----------\n\ / k \n\ /___, \n\ k = 1 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -k k \n\ ╲ -(-1) ⋅x \n\ ╱ ───────────\n\ ╱ k \n\ ╱ \n\ ‾‾‾‾ \n\ k = 1 \ """) assert pretty(f) == ascii_str assert upretty(f) == ucode_str def test_pretty_limits(): expr = Limit(x, x, oo) ascii_str = \ """\ lim x\n\ x->oo \ """ ucode_str = \ u("""\ lim x\n\ x─→∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x**2, x, 0) ascii_str = \ """\ 2\n\ lim x \n\ x->0+ \ """ ucode_str = \ u("""\ 2\n\ lim x \n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(1/x, x, 0) ascii_str = \ """\ 1\n\ lim -\n\ x->0+x\ """ ucode_str = \ u("""\ 1\n\ lim ─\n\ x─→0⁺x\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0) ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0+\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁺⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x)/x, x, 0, "-") ascii_str = \ """\ /sin(x)\\\n\ lim |------|\n\ x->0-\\ x /\ """ ucode_str = \ u("""\ ⎛sin(x)⎞\n\ lim ⎜──────⎟\n\ x─→0⁻⎝ x ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x + sin(x), x, 0) ascii_str = \ """\ lim (x + sin(x))\n\ x->0+ \ """ ucode_str = \ u("""\ lim (x + sin(x))\n\ x─→0⁺ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x, x, 0)**2 ascii_str = \ """\ 2\n\ / lim x\\ \n\ \\x->0+ / \ """ ucode_str = \ u("""\ 2\n\ ⎛ lim x⎞ \n\ ⎝x─→0⁺ ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = 2*Limit(x*Limit(y/2,y,0), x, 0) ascii_str = \ """\ / /y\\\\\n\ 2* lim |x* lim |-||\n\ x->0+\\ y->0+\\2//\ """ ucode_str = \ u("""\ ⎛ ⎛y⎞⎞\n\ 2⋅ lim ⎜x⋅ lim ⎜─⎟⎟\n\ x─→0⁺⎝ y─→0⁺⎝2⎠⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Limit(sin(x), x, 0, dir='+-') ascii_str = \ """\ lim sin(x)\n\ x->0 \ """ ucode_str = \ u("""\ lim sin(x)\n\ x─→0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_ComplexRootOf(): expr = rootof(x**5 + 11*x - 2, 0) ascii_str = \ """\ / 5 \\\n\ CRootOf\\x + 11*x - 2, 0/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ CRootOf⎝x + 11⋅x - 2, 0⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_RootSum(): expr = RootSum(x**5 + 11*x - 2, auto=False) ascii_str = \ """\ / 5 \\\n\ RootSum\\x + 11*x - 2/\ """ ucode_str = \ u("""\ ⎛ 5 ⎞\n\ RootSum⎝x + 11⋅x - 2⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = RootSum(x**5 + 11*x - 2, Lambda(z, exp(z))) ascii_str = \ """\ / 5 z\\\n\ RootSum\\x + 11*x - 2, z -> e /\ """ ucode_str = \ u("""\ ⎛ 5 z⎞\n\ RootSum⎝x + 11⋅x - 2, z ↦ ℯ ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_GroebnerBasis(): expr = groebner([], x, y) ascii_str = \ """\ GroebnerBasis([], x, y, domain=ZZ, order=lex)\ """ ucode_str = \ u("""\ GroebnerBasis([], x, y, domain=ℤ, order=lex)\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1] expr = groebner(F, x, y, order='grlex') ascii_str = \ """\ /[ 2 2 ] \\\n\ GroebnerBasis\\[x - x - 3*y + 1, y - 2*x + y - 1], x, y, domain=ZZ, order=grlex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣x - x - 3⋅y + 1, y - 2⋅x + y - 1⎦, x, y, domain=ℤ, order=grlex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = expr.fglm('lex') ascii_str = \ """\ /[ 2 4 3 2 ] \\\n\ GroebnerBasis\\[2*x - y - y + 1, y + 2*y - 3*y - 16*y + 7], x, y, domain=ZZ, order=lex/\ """ ucode_str = \ u("""\ ⎛⎡ 2 4 3 2 ⎤ ⎞\n\ GroebnerBasis⎝⎣2⋅x - y - y + 1, y + 2⋅y - 3⋅y - 16⋅y + 7⎦, x, y, domain=ℤ, order=lex⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_UniversalSet(): assert pretty(S.UniversalSet) == "UniversalSet" assert upretty(S.UniversalSet) == u'𝕌' def test_pretty_Boolean(): expr = Not(x, evaluate=False) assert pretty(expr) == "Not(x)" assert upretty(expr) == u"¬x" expr = And(x, y) assert pretty(expr) == "And(x, y)" assert upretty(expr) == u"x ∧ y" expr = Or(x, y) assert pretty(expr) == "Or(x, y)" assert upretty(expr) == u"x ∨ y" syms = symbols('a:f') expr = And(*syms) assert pretty(expr) == "And(a, b, c, d, e, f)" assert upretty(expr) == u"a ∧ b ∧ c ∧ d ∧ e ∧ f" expr = Or(*syms) assert pretty(expr) == "Or(a, b, c, d, e, f)" assert upretty(expr) == u"a ∨ b ∨ c ∨ d ∨ e ∨ f" expr = Xor(x, y, evaluate=False) assert pretty(expr) == "Xor(x, y)" assert upretty(expr) == u"x ⊻ y" expr = Nand(x, y, evaluate=False) assert pretty(expr) == "Nand(x, y)" assert upretty(expr) == u"x ⊼ y" expr = Nor(x, y, evaluate=False) assert pretty(expr) == "Nor(x, y)" assert upretty(expr) == u"x ⊽ y" expr = Implies(x, y, evaluate=False) assert pretty(expr) == "Implies(x, y)" assert upretty(expr) == u"x → y" # don't sort args expr = Implies(y, x, evaluate=False) assert pretty(expr) == "Implies(y, x)" assert upretty(expr) == u"y → x" expr = Equivalent(x, y, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" expr = Equivalent(y, x, evaluate=False) assert pretty(expr) == "Equivalent(x, y)" assert upretty(expr) == u"x ⇔ y" def test_pretty_Domain(): expr = FF(23) assert pretty(expr) == "GF(23)" assert upretty(expr) == u"ℤ₂₃" expr = ZZ assert pretty(expr) == "ZZ" assert upretty(expr) == u"ℤ" expr = QQ assert pretty(expr) == "QQ" assert upretty(expr) == u"ℚ" expr = RR assert pretty(expr) == "RR" assert upretty(expr) == u"ℝ" expr = QQ[x] assert pretty(expr) == "QQ[x]" assert upretty(expr) == u"ℚ[x]" expr = QQ[x, y] assert pretty(expr) == "QQ[x, y]" assert upretty(expr) == u"ℚ[x, y]" expr = ZZ.frac_field(x) assert pretty(expr) == "ZZ(x)" assert upretty(expr) == u"ℤ(x)" expr = ZZ.frac_field(x, y) assert pretty(expr) == "ZZ(x, y)" assert upretty(expr) == u"ℤ(x, y)" expr = QQ.poly_ring(x, y, order=grlex) assert pretty(expr) == "QQ[x, y, order=grlex]" assert upretty(expr) == u"ℚ[x, y, order=grlex]" expr = QQ.poly_ring(x, y, order=ilex) assert pretty(expr) == "QQ[x, y, order=ilex]" assert upretty(expr) == u"ℚ[x, y, order=ilex]" def test_pretty_prec(): assert xpretty(S("0.3"), full_prec=True, wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec="auto", wrap_line=False) == "0.300000000000000" assert xpretty(S("0.3"), full_prec=False, wrap_line=False) == "0.3" assert xpretty(S("0.3")*x, full_prec=True, use_unicode=False, wrap_line=False) in [ "0.300000000000000*x", "x*0.300000000000000" ] assert xpretty(S("0.3")*x, full_prec="auto", use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] assert xpretty(S("0.3")*x, full_prec=False, use_unicode=False, wrap_line=False) in [ "0.3*x", "x*0.3" ] def test_pprint(): import sys from sympy.core.compatibility import StringIO fd = StringIO() sso = sys.stdout sys.stdout = fd try: pprint(pi, use_unicode=False, wrap_line=False) finally: sys.stdout = sso assert fd.getvalue() == 'pi\n' def test_pretty_class(): """Test that the printer dispatcher correctly handles classes.""" class C: pass # C has no .__class__ and this was causing problems class D(object): pass assert pretty( C ) == str( C ) assert pretty( D ) == str( D ) def test_pretty_no_wrap_line(): huge_expr = 0 for i in range(20): huge_expr += i*sin(i + x) assert xpretty(huge_expr ).find('\n') != -1 assert xpretty(huge_expr, wrap_line=False).find('\n') == -1 def test_settings(): raises(TypeError, lambda: pretty(S(4), method="garbage")) def test_pretty_sum(): from sympy.abc import x, a, b, k, m, n expr = Sum(k**k, (k, 0, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**k, (k, oo, n)) ascii_str = \ """\ n \n\ ___ \n\ \\ ` \n\ \\ k\n\ / k \n\ /__, \n\ k = oo \ """ ucode_str = \ u("""\ n \n\ ___ \n\ ╲ \n\ ╲ k\n\ ╱ k \n\ ╱ \n\ ‾‾‾ \n\ k = ∞ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), (k, 0, n**n)) ascii_str = \ """\ n \n\ n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ n \n\ n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**(Integral(x**n, (x, -oo, oo))), ( k, x + n + x**2 + n**2 + (x/n) + (1/x), Integral(x**x, (x, -oo, oo)))) ascii_str = \ """\ oo \n\ / \n\ | \n\ | x \n\ | x dx \n\ | \n\ / \n\ -oo \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ 2 2 1 x \n\ k = n + n + x + x + - + - \n\ x n \ """ ucode_str = \ u("""\ ∞ \n\ ⌠ \n\ ⎮ x \n\ ⎮ x dx \n\ ⌡ \n\ -∞ \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ 2 2 1 x \n\ k = n + n + x + x + ─ + ─ \n\ x n \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(k**( Integral(x**n, (x, -oo, oo))), (k, 0, x + n + x**2 + n**2 + (x/n) + (1/x))) ascii_str = \ """\ 2 2 1 x \n\ n + n + x + x + - + - \n\ x n \n\ ______ \n\ \\ ` \n\ \\ oo \n\ \\ / \n\ \\ | \n\ \\ | n \n\ ) | x dx\n\ / | \n\ / / \n\ / -oo \n\ / k \n\ /_____, \n\ k = 0 \ """ ucode_str = \ u("""\ 2 2 1 x \n\ n + n + x + x + ─ + ─ \n\ x n \n\ ______ \n\ ╲ \n\ ╲ \n\ ╲ ∞ \n\ ╲ ⌠ \n\ ╲ ⎮ n \n\ ╱ ⎮ x dx\n\ ╱ ⌡ \n\ ╱ -∞ \n\ ╱ k \n\ ╱ \n\ ‾‾‾‾‾‾ \n\ k = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x, (x, 0, oo)) ascii_str = \ """\ oo \n\ __ \n\ \\ ` \n\ ) x\n\ /_, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ x\n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**2, (x, 0, oo)) ascii_str = \ u("""\ oo \n\ ___ \n\ \\ ` \n\ \\ 2\n\ / x \n\ /__, \n\ x = 0 \ """) ucode_str = \ u("""\ ∞ \n\ ___ \n\ ╲ \n\ ╲ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ___ \n\ \\ ` \n\ \\ x\n\ ) -\n\ / 2\n\ /__, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ \n\ ╲ x\n\ ╱ ─\n\ ╱ 2\n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(x**3/2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 3\n\ \\ x \n\ / --\n\ / 2 \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 3\n\ ╲ x \n\ ╱ ──\n\ ╱ 2 \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum((x**3*y**(x/2))**n, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ n\n\ \\ / x\\ \n\ ) | -| \n\ / | 3 2| \n\ / \\x *y / \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ _____ \n\ ╲ \n\ ╲ \n\ ╲ n\n\ ╲ ⎛ x⎞ \n\ ╱ ⎜ ─⎟ \n\ ╱ ⎜ 3 2⎟ \n\ ╱ ⎝x ⋅y ⎠ \n\ ╱ \n\ ‾‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/x**2, (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ 1 \n\ \\ --\n\ / 2\n\ / x \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ 1 \n\ ╲ ──\n\ ╱ 2\n\ ╱ x \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo)) ascii_str = \ """\ oo \n\ ____ \n\ \\ ` \n\ \\ -a \n\ \\ ---\n\ / b \n\ / y \n\ /___, \n\ x = 0 \ """ ucode_str = \ u("""\ ∞ \n\ ____ \n\ ╲ \n\ ╲ -a \n\ ╲ ───\n\ ╱ b \n\ ╱ y \n\ ╱ \n\ ‾‾‾‾ \n\ x = 0 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Sum(1/y**(a/b), (x, 0, oo), (y, 1, 2)) ascii_str = \ """\ 2 oo \n\ ____ ____ \n\ \\ ` \\ ` \n\ \\ \\ -a\n\ \\ \\ --\n\ / / b \n\ / / y \n\ /___, /___, \n\ y = 1 x = 0 \ """ ucode_str = \ u("""\ 2 ∞ \n\ ____ ____ \n\ ╲ ╲ \n\ ╲ ╲ -a\n\ ╲ ╲ ──\n\ ╱ ╱ b \n\ ╱ ╱ y \n\ ╱ ╱ \n\ ‾‾‾‾ ‾‾‾‾ \n\ y = 1 x = 0 \ """) expr = Sum(1/(1 + 1/( 1 + 1/k)) + 1, (k, 111, 1 + 1/n), (k, 1/(1 + m), oo)) + 1/(1 + 1/k) ascii_str = \ """\ 1 \n\ 1 + - \n\ oo n \n\ _____ _____ \n\ \\ ` \\ ` \n\ \\ \\ / 1 \\ \n\ \\ \\ |1 + ---------| \n\ \\ \\ | 1 | 1 \n\ ) ) | 1 + -----| + -----\n\ / / | 1| 1\n\ / / | 1 + -| 1 + -\n\ / / \\ k/ k\n\ /____, /____, \n\ 1 k = 111 \n\ k = ----- \n\ m + 1 \ """ ucode_str = \ u("""\ 1 \n\ 1 + ─ \n\ ∞ n \n\ ______ ______ \n\ ╲ ╲ \n\ ╲ ╲ \n\ ╲ ╲ ⎛ 1 ⎞ \n\ ╲ ╲ ⎜1 + ─────────⎟ \n\ ╲ ╲ ⎜ 1 ⎟ 1 \n\ ╱ ╱ ⎜ 1 + ─────⎟ + ─────\n\ ╱ ╱ ⎜ 1⎟ 1\n\ ╱ ╱ ⎜ 1 + ─⎟ 1 + ─\n\ ╱ ╱ ⎝ k⎠ k\n\ ╱ ╱ \n\ ‾‾‾‾‾‾ ‾‾‾‾‾‾ \n\ 1 k = 111 \n\ k = ───── \n\ m + 1 \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_units(): expr = joule ascii_str1 = \ """\ 2\n\ kilogram*meter \n\ ---------------\n\ 2 \n\ second \ """ unicode_str1 = \ u("""\ 2\n\ kilogram⋅meter \n\ ───────────────\n\ 2 \n\ second \ """) ascii_str2 = \ """\ 2\n\ 3*x*y*kilogram*meter \n\ ---------------------\n\ 2 \n\ second \ """ unicode_str2 = \ u("""\ 2\n\ 3⋅x⋅y⋅kilogram⋅meter \n\ ─────────────────────\n\ 2 \n\ second \ """) from sympy.physics.units import kg, m, s assert upretty(expr) == u("joule") assert pretty(expr) == "joule" assert upretty(expr.convert_to(kg*m**2/s**2)) == unicode_str1 assert pretty(expr.convert_to(kg*m**2/s**2)) == ascii_str1 assert upretty(3*kg*x*m**2*y/s**2) == unicode_str2 assert pretty(3*kg*x*m**2*y/s**2) == ascii_str2 def test_pretty_Subs(): f = Function('f') expr = Subs(f(x), x, ph**2) ascii_str = \ """\ (f(x))| 2\n\ |x=phi \ """ unicode_str = \ u("""\ (f(x))│ 2\n\ │x=φ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x), x, 0) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ \\dx /|x=0\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎝dx ⎠│x=0\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str expr = Subs(f(x).diff(x)/y, (x, y), (0, Rational(1, 2))) ascii_str = \ """\ /d \\| \n\ |--(f(x))|| \n\ |dx || \n\ |--------|| \n\ \\ y /|x=0, y=1/2\ """ unicode_str = \ u("""\ ⎛d ⎞│ \n\ ⎜──(f(x))⎟│ \n\ ⎜dx ⎟│ \n\ ⎜────────⎟│ \n\ ⎝ y ⎠│x=0, y=1/2\ """) assert pretty(expr) == ascii_str assert upretty(expr) == unicode_str def test_gammas(): assert upretty(lowergamma(x, y)) == u"γ(x, y)" assert upretty(uppergamma(x, y)) == u"Γ(x, y)" assert xpretty(gamma(x), use_unicode=True) == u'Γ(x)' assert xpretty(gamma, use_unicode=True) == u'Γ' assert xpretty(symbols('gamma', cls=Function)(x), use_unicode=True) == u'γ(x)' assert xpretty(symbols('gamma', cls=Function), use_unicode=True) == u'γ' def test_beta(): assert xpretty(beta(x,y), use_unicode=True) == u'Β(x, y)' assert xpretty(beta(x,y), use_unicode=False) == u'B(x, y)' assert xpretty(beta, use_unicode=True) == u'Β' assert xpretty(beta, use_unicode=False) == u'B' mybeta = Function('beta') assert xpretty(mybeta(x), use_unicode=True) == u'β(x)' assert xpretty(mybeta(x, y, z), use_unicode=False) == u'beta(x, y, z)' assert xpretty(mybeta, use_unicode=True) == u'β' # test that notation passes to subclasses of the same name only def test_function_subclass_different_name(): class mygamma(gamma): pass assert xpretty(mygamma, use_unicode=True) == r"mygamma" assert xpretty(mygamma(x), use_unicode=True) == r"mygamma(x)" def test_SingularityFunction(): assert xpretty(SingularityFunction(x, 0, n), use_unicode=True) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=True) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=True) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=True) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=True) == ( """\ n\n\ <x - y> \ """) assert xpretty(SingularityFunction(x, 0, n), use_unicode=False) == ( """\ n\n\ <x> \ """) assert xpretty(SingularityFunction(x, 1, n), use_unicode=False) == ( """\ n\n\ <x - 1> \ """) assert xpretty(SingularityFunction(x, -1, n), use_unicode=False) == ( """\ n\n\ <x + 1> \ """) assert xpretty(SingularityFunction(x, a, n), use_unicode=False) == ( """\ n\n\ <-a + x> \ """) assert xpretty(SingularityFunction(x, y, n), use_unicode=False) == ( """\ n\n\ <x - y> \ """) def test_deltas(): assert xpretty(DiracDelta(x), use_unicode=True) == u'δ(x)' assert xpretty(DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ δ (x)\ """) assert xpretty(x*DiracDelta(x, 1), use_unicode=True) == \ u("""\ (1) \n\ x⋅δ (x)\ """) def test_hyper(): expr = hyper((), (), z) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ z⎟\n\ 0╵ 0 ⎝ │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | z|\n\ 0 0 \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((), (1,), x) ucode_str = \ u("""\ ┌─ ⎛ │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 0╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ / | \\\n\ | | | x|\n\ 0 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([2], [1], x) ucode_str = \ u("""\ ┌─ ⎛2 │ ⎞\n\ ├─ ⎜ │ x⎟\n\ 1╵ 1 ⎝1 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /2 | \\\n\ | | | x|\n\ 1 1 \\1 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi/3, -2*k), (3, 4, 5, -3), x) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ┌─ ⎜ ─, -2⋅k │ ⎟\n\ ├─ ⎜ 3 │ x⎟\n\ 2╵ 4 ⎜ │ ⎟\n\ ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ \n\ _ / pi | \\\n\ |_ | --, -2*k | |\n\ | | 3 | x|\n\ 2 4 | | |\n\ \\3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper((pi, S('2/3'), -2*k), (3, 4, 5, -3), x**2) ucode_str = \ u("""\ ┌─ ⎛π, 2/3, -2⋅k │ 2⎞\n\ ├─ ⎜ │ x ⎟\n\ 3╵ 4 ⎝3, 4, 5, -3 │ ⎠\ """) ascii_str = \ """\ _ \n\ |_ /pi, 2/3, -2*k | 2\\\n\ | | | x |\n\ 3 4 \\ 3, 4, 5, -3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hyper([1, 2], [3, 4], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ┌─ ⎜1, 2 │ 1 + ─────────⎟\n\ ├─ ⎜ │ 1 ⎟\n\ 2╵ 2 ⎜3, 4 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ \n\ / | 1 \\\n\ | | -------------|\n\ _ | | 1 |\n\ |_ |1, 2 | 1 + ---------|\n\ | | | 1 |\n\ 2 2 |3, 4 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_meijerg(): expr = meijerg([pi, pi, x], [1], [0, 1], [1, 2, 3], z) ucode_str = \ u("""\ ╭─╮2, 3 ⎛π, π, x 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯4, 5 ⎝ 0, 1 1, 2, 3 │ ⎠\ """) ascii_str = \ """\ __2, 3 /pi, pi, x 1 | \\\n\ /__ | | z|\n\ \\_|4, 5 \\ 0, 1 1, 2, 3 | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, pi/7], [2, pi, 5], [], [], z**2) ucode_str = \ u("""\ ⎛ π │ ⎞\n\ ╭─╮0, 2 ⎜1, ─ 2, π, 5 │ 2⎟\n\ │╶┐ ⎜ 7 │ z ⎟\n\ ╰─╯5, 0 ⎜ │ ⎟\n\ ⎝ │ ⎠\ """) ascii_str = \ """\ / pi | \\\n\ __0, 2 |1, -- 2, pi, 5 | 2|\n\ /__ | 7 | z |\n\ \\_|5, 0 | | |\n\ \\ | /\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ucode_str = \ u("""\ ╭─╮ 1, 10 ⎛1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 │ ⎞\n\ │╶┐ ⎜ │ z⎟\n\ ╰─╯11, 2 ⎝ 1 1 │ ⎠\ """) ascii_str = \ """\ __ 1, 10 /1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1 | \\\n\ /__ | | z|\n\ \\_|11, 2 \\ 1 1 | /\ """ expr = meijerg([1]*10, [1], [1], [1], z) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = meijerg([1, 2, ], [4, 3], [3], [4, 5], 1/(1/(1/(1/x + 1) + 1) + 1)) ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ ⎜ │ ─────────────⎟\n\ ⎜ │ 1 ⎟\n\ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟\n\ │╶┐ ⎜ │ 1 ⎟\n\ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟\n\ ⎜ │ 1⎟\n\ ⎜ │ 1 + ─⎟\n\ ⎝ │ x⎠\ """) ascii_str = \ """\ / | 1 \\\n\ | | -------------|\n\ | | 1 |\n\ __1, 2 |1, 2 4, 3 | 1 + ---------|\n\ /__ | | 1 |\n\ \\_|4, 3 | 3 4, 5 | 1 + -----|\n\ | | 1|\n\ | | 1 + -|\n\ \\ | x/\ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = Integral(expr, x) ucode_str = \ u("""\ ⌠ \n\ ⎮ ⎛ │ 1 ⎞ \n\ ⎮ ⎜ │ ─────────────⎟ \n\ ⎮ ⎜ │ 1 ⎟ \n\ ⎮ ╭─╮1, 2 ⎜1, 2 4, 3 │ 1 + ─────────⎟ \n\ ⎮ │╶┐ ⎜ │ 1 ⎟ dx\n\ ⎮ ╰─╯4, 3 ⎜ 3 4, 5 │ 1 + ─────⎟ \n\ ⎮ ⎜ │ 1⎟ \n\ ⎮ ⎜ │ 1 + ─⎟ \n\ ⎮ ⎝ │ x⎠ \n\ ⌡ \ """) ascii_str = \ """\ / \n\ | \n\ | / | 1 \\ \n\ | | | -------------| \n\ | | | 1 | \n\ | __1, 2 |1, 2 4, 3 | 1 + ---------| \n\ | /__ | | 1 | dx\n\ | \\_|4, 3 | 3 4, 5 | 1 + -----| \n\ | | | 1| \n\ | | | 1 + -| \n\ | \\ | x/ \n\ | \n\ / \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_noncommutative(): A, B, C = symbols('A,B,C', commutative=False) expr = A*B*C**-1 ascii_str = \ """\ -1\n\ A*B*C \ """ ucode_str = \ u("""\ -1\n\ A⋅B⋅C \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = C**-1*A*B ascii_str = \ """\ -1 \n\ C *A*B\ """ ucode_str = \ u("""\ -1 \n\ C ⋅A⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B ascii_str = \ """\ -1 \n\ A*C *B\ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A*C**-1*B/x ascii_str = \ """\ -1 \n\ A*C *B\n\ -------\n\ x \ """ ucode_str = \ u("""\ -1 \n\ A⋅C ⋅B\n\ ───────\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_special_functions(): x, y = symbols("x y") # atan2 expr = atan2(y/sqrt(200), sqrt(x)) ascii_str = \ """\ / ___ \\\n\ |\\/ 2 *y ___|\n\ atan2|-------, \\/ x |\n\ \\ 20 /\ """ ucode_str = \ u("""\ ⎛√2⋅y ⎞\n\ atan2⎜────, √x⎟\n\ ⎝ 20 ⎠\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_geometry(): e = Segment((0, 1), (0, 2)) assert pretty(e) == 'Segment2D(Point2D(0, 1), Point2D(0, 2))' e = Ray((1, 1), angle=4.02*pi) assert pretty(e) == 'Ray2D(Point2D(1, 1), Point2D(2, tan(pi/50) + 1))' def test_expint(): expr = Ei(x) string = 'Ei(x)' assert pretty(expr) == string assert upretty(expr) == string expr = expint(1, z) ucode_str = u"E₁(z)" ascii_str = "expint(1, z)" assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert pretty(Shi(x)) == 'Shi(x)' assert pretty(Si(x)) == 'Si(x)' assert pretty(Ci(x)) == 'Ci(x)' assert pretty(Chi(x)) == 'Chi(x)' assert upretty(Shi(x)) == 'Shi(x)' assert upretty(Si(x)) == 'Si(x)' assert upretty(Ci(x)) == 'Ci(x)' assert upretty(Chi(x)) == 'Chi(x)' def test_elliptic_functions(): ascii_str = \ """\ / 1 \\\n\ K|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ K⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_k(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ F|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ F⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_f(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 1 \\\n\ E|-----|\n\ \\z + 1/\ """ ucode_str = \ u("""\ ⎛ 1 ⎞\n\ E⎜─────⎟\n\ ⎝z + 1⎠\ """) expr = elliptic_e(1/(z + 1)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / | 1 \\\n\ E|1|-----|\n\ \\ |z + 1/\ """ ucode_str = \ u("""\ ⎛ │ 1 ⎞\n\ E⎜1│─────⎟\n\ ⎝ │z + 1⎠\ """) expr = elliptic_e(1, 1/(1 + z)) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / |4\\\n\ Pi|3|-|\n\ \\ |x/\ """ ucode_str = \ u("""\ ⎛ │4⎞\n\ Π⎜3│─⎟\n\ ⎝ │x⎠\ """) expr = elliptic_pi(3, 4/x) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str ascii_str = \ """\ / 4| \\\n\ Pi|3; -|6|\n\ \\ x| /\ """ ucode_str = \ u("""\ ⎛ 4│ ⎞\n\ Π⎜3; ─│6⎟\n\ ⎝ x│ ⎠\ """) expr = elliptic_pi(3, 4/x, 6) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_RandomDomain(): from sympy.stats import Normal, Die, Exponential, pspace, where X = Normal('x1', 0, 1) assert upretty(where(X > 0)) == u"Domain: 0 < x₁ ∧ x₁ < ∞" D = Die('d1', 6) assert upretty(where(D > 4)) == u'Domain: d₁ = 5 ∨ d₁ = 6' A = Exponential('a', 1) B = Exponential('b', 1) assert upretty(pspace(Tuple(A, B)).domain) == \ u'Domain: 0 ≤ a ∧ 0 ≤ b ∧ a < ∞ ∧ b < ∞' def test_PrettyPoly(): F = QQ.frac_field(x, y) R = QQ.poly_ring(x, y) expr = F.convert(x/(x + y)) assert pretty(expr) == "x/(x + y)" assert upretty(expr) == u"x/(x + y)" expr = R.convert(x + y) assert pretty(expr) == "x + y" assert upretty(expr) == u"x + y" def test_issue_6285(): assert pretty(Pow(2, -5, evaluate=False)) == '1 \n--\n 5\n2 ' assert pretty(Pow(x, (1/pi))) == 'pi___\n\\/ x ' def test_issue_6359(): assert pretty(Integral(x**2, x)**2) == \ """\ 2 / / \\ \n\ | | | \n\ | | 2 | \n\ | | x dx| \n\ | | | \n\ \\/ / \ """ assert upretty(Integral(x**2, x)**2) == \ u("""\ 2 ⎛⌠ ⎞ \n\ ⎜⎮ 2 ⎟ \n\ ⎜⎮ x dx⎟ \n\ ⎝⌡ ⎠ \ """) assert pretty(Sum(x**2, (x, 0, 1))**2) == \ """\ 2 / 1 \\ \n\ | ___ | \n\ | \\ ` | \n\ | \\ 2| \n\ | / x | \n\ | /__, | \n\ \\x = 0 / \ """ assert upretty(Sum(x**2, (x, 0, 1))**2) == \ u("""\ 2 ⎛ 1 ⎞ \n\ ⎜ ___ ⎟ \n\ ⎜ ╲ ⎟ \n\ ⎜ ╲ 2⎟ \n\ ⎜ ╱ x ⎟ \n\ ⎜ ╱ ⎟ \n\ ⎜ ‾‾‾ ⎟ \n\ ⎝x = 0 ⎠ \ """) assert pretty(Product(x**2, (x, 1, 2))**2) == \ """\ 2 / 2 \\ \n\ |______ | \n\ | | | 2| \n\ | | | x | \n\ | | | | \n\ \\x = 1 / \ """ assert upretty(Product(x**2, (x, 1, 2))**2) == \ u("""\ 2 ⎛ 2 ⎞ \n\ ⎜─┬──┬─ ⎟ \n\ ⎜ │ │ 2⎟ \n\ ⎜ │ │ x ⎟ \n\ ⎜ │ │ ⎟ \n\ ⎝x = 1 ⎠ \ """) f = Function('f') assert pretty(Derivative(f(x), x)**2) == \ """\ 2 /d \\ \n\ |--(f(x))| \n\ \\dx / \ """ assert upretty(Derivative(f(x), x)**2) == \ u("""\ 2 ⎛d ⎞ \n\ ⎜──(f(x))⎟ \n\ ⎝dx ⎠ \ """) def test_issue_6739(): ascii_str = \ """\ 1 \n\ -----\n\ ___\n\ \\/ x \ """ ucode_str = \ u("""\ 1 \n\ ──\n\ √x\ """) assert pretty(1/sqrt(x)) == ascii_str assert upretty(1/sqrt(x)) == ucode_str def test_complicated_symbol_unchanged(): for symb_name in ["dexpr2_d1tau", "dexpr2^d1tau"]: assert pretty(Symbol(symb_name)) == symb_name def test_categories(): from sympy.categories import (Object, IdentityMorphism, NamedMorphism, Category, Diagram, DiagramGrid) A1 = Object("A1") A2 = Object("A2") A3 = Object("A3") f1 = NamedMorphism(A1, A2, "f1") f2 = NamedMorphism(A2, A3, "f2") id_A1 = IdentityMorphism(A1) K1 = Category("K1") assert pretty(A1) == "A1" assert upretty(A1) == u"A₁" assert pretty(f1) == "f1:A1-->A2" assert upretty(f1) == u"f₁:A₁——▶A₂" assert pretty(id_A1) == "id:A1-->A1" assert upretty(id_A1) == u"id:A₁——▶A₁" assert pretty(f2*f1) == "f2*f1:A1-->A3" assert upretty(f2*f1) == u"f₂∘f₁:A₁——▶A₃" assert pretty(K1) == "K1" assert upretty(K1) == u"K₁" # Test how diagrams are printed. d = Diagram() assert pretty(d) == "EmptySet" assert upretty(d) == u"∅" d = Diagram({f1: "unique", f2: S.EmptySet}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, " \ "id:A₂——▶A₂: ∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}") d = Diagram({f1: "unique", f2: S.EmptySet}, {f2 * f1: "unique"}) assert pretty(d) == "{f2*f1:A1-->A3: EmptySet, id:A1-->A1: " \ "EmptySet, id:A2-->A2: EmptySet, id:A3-->A3: " \ "EmptySet, f1:A1-->A2: {unique}, f2:A2-->A3: EmptySet}" \ " ==> {f2*f1:A1-->A3: {unique}}" assert upretty(d) == u("{f₂∘f₁:A₁——▶A₃: ∅, id:A₁——▶A₁: ∅, id:A₂——▶A₂: " \ "∅, id:A₃——▶A₃: ∅, f₁:A₁——▶A₂: {unique}, f₂:A₂——▶A₃: ∅}" \ " ══▶ {f₂∘f₁:A₁——▶A₃: {unique}}") grid = DiagramGrid(d) assert pretty(grid) == "A1 A2\n \nA3 " assert upretty(grid) == u"A₁ A₂\n \nA₃ " def test_PrettyModules(): R = QQ.old_poly_ring(x, y) F = R.free_module(2) M = F.submodule([x, y], [1, x**2]) ucode_str = \ u("""\ 2\n\ ℚ[x, y] \ """) ascii_str = \ """\ 2\n\ QQ[x, y] \ """ assert upretty(F) == ucode_str assert pretty(F) == ascii_str ucode_str = \ u("""\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(M) == ucode_str assert pretty(M) == ascii_str I = R.ideal(x**2, y) ucode_str = \ u("""\ ╱ 2 ╲\n\ ╲x , y╱\ """) ascii_str = \ """\ 2 \n\ <x , y>\ """ assert upretty(I) == ucode_str assert pretty(I) == ascii_str Q = F / M ucode_str = \ u("""\ 2 \n\ ℚ[x, y] \n\ ─────────────────\n\ ╱ ⎡ 2⎤╲\n\ ╲[x, y], ⎣1, x ⎦╱\ """) ascii_str = \ """\ 2 \n\ QQ[x, y] \n\ -----------------\n\ 2 \n\ <[x, y], [1, x ]>\ """ assert upretty(Q) == ucode_str assert pretty(Q) == ascii_str ucode_str = \ u("""\ ╱⎡ 3⎤ ╲\n\ │⎢ x ⎥ ╱ ⎡ 2⎤╲ ╱ ⎡ 2⎤╲│\n\ │⎢1, ──⎥ + ╲[x, y], ⎣1, x ⎦╱, [2, y] + ╲[x, y], ⎣1, x ⎦╱│\n\ ╲⎣ 2 ⎦ ╱\ """) ascii_str = \ """\ 3 \n\ x 2 2 \n\ <[1, --] + <[x, y], [1, x ]>, [2, y] + <[x, y], [1, x ]>>\n\ 2 \ """ def test_QuotientRing(): R = QQ.old_poly_ring(x)/[x**2 + 1] ucode_str = \ u("""\ ℚ[x] \n\ ────────\n\ ╱ 2 ╲\n\ ╲x + 1╱\ """) ascii_str = \ """\ QQ[x] \n\ --------\n\ 2 \n\ <x + 1>\ """ assert upretty(R) == ucode_str assert pretty(R) == ascii_str ucode_str = \ u("""\ ╱ 2 ╲\n\ 1 + ╲x + 1╱\ """) ascii_str = \ """\ 2 \n\ 1 + <x + 1>\ """ assert upretty(R.one) == ucode_str assert pretty(R.one) == ascii_str def test_Homomorphism(): from sympy.polys.agca import homomorphism R = QQ.old_poly_ring(x) expr = homomorphism(R.free_module(1), R.free_module(1), [0]) ucode_str = \ u("""\ 1 1\n\ [0] : ℚ[x] ──> ℚ[x] \ """) ascii_str = \ """\ 1 1\n\ [0] : QQ[x] --> QQ[x] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(2), R.free_module(2), [0, 0]) ucode_str = \ u("""\ ⎡0 0⎤ 2 2\n\ ⎢ ⎥ : ℚ[x] ──> ℚ[x] \n\ ⎣0 0⎦ \ """) ascii_str = \ """\ [0 0] 2 2\n\ [ ] : QQ[x] --> QQ[x] \n\ [0 0] \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str expr = homomorphism(R.free_module(1), R.free_module(1) / [[x]], [0]) ucode_str = \ u("""\ 1\n\ 1 ℚ[x] \n\ [0] : ℚ[x] ──> ─────\n\ <[x]>\ """) ascii_str = \ """\ 1\n\ 1 QQ[x] \n\ [0] : QQ[x] --> ------\n\ <[x]> \ """ assert upretty(expr) == ucode_str assert pretty(expr) == ascii_str def test_Tr(): A, B = symbols('A B', commutative=False) t = Tr(A*B) assert pretty(t) == r'Tr(A*B)' assert upretty(t) == u'Tr(A⋅B)' def test_pretty_Add(): eq = Mul(-2, x - 2, evaluate=False) + 5 assert pretty(eq) == '5 - 2*(x - 2)' def test_issue_7179(): assert upretty(Not(Equivalent(x, y))) == u'x ⇎ y' assert upretty(Not(Implies(x, y))) == u'x ↛ y' def test_issue_7180(): assert upretty(Equivalent(x, y)) == u'x ⇔ y' def test_pretty_Complement(): assert pretty(S.Reals - S.Naturals) == '(-oo, oo) \\ Naturals' assert upretty(S.Reals - S.Naturals) == u'ℝ \\ ℕ' assert pretty(S.Reals - S.Naturals0) == '(-oo, oo) \\ Naturals0' assert upretty(S.Reals - S.Naturals0) == u'ℝ \\ ℕ₀' def test_pretty_SymmetricDifference(): from sympy import SymmetricDifference, Interval from sympy.utilities.pytest import raises assert upretty(SymmetricDifference(Interval(2,3), Interval(3,5), \ evaluate = False)) == u'[2, 3] ∆ [3, 5]' with raises(NotImplementedError): pretty(SymmetricDifference(Interval(2,3), Interval(3,5), evaluate = False)) def test_pretty_Contains(): assert pretty(Contains(x, S.Integers)) == 'Contains(x, Integers)' assert upretty(Contains(x, S.Integers)) == u'x ∈ ℤ' def test_issue_8292(): from sympy.core import sympify e = sympify('((x+x**4)/(x-1))-(2*(x-1)**4/(x-1)**4)', evaluate=False) ucode_str = \ u("""\ 4 4 \n\ 2⋅(x - 1) x + x\n\ - ────────── + ──────\n\ 4 x - 1 \n\ (x - 1) \ """) ascii_str = \ """\ 4 4 \n\ 2*(x - 1) x + x\n\ - ---------- + ------\n\ 4 x - 1 \n\ (x - 1) \ """ assert pretty(e) == ascii_str assert upretty(e) == ucode_str def test_issue_4335(): y = Function('y') expr = -y(x).diff(x) ucode_str = \ u("""\ d \n\ -──(y(x))\n\ dx \ """) ascii_str = \ """\ d \n\ - --(y(x))\n\ dx \ """ assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_8344(): from sympy.core import sympify e = sympify('2*x*y**2/1**2 + 1', evaluate=False) ucode_str = \ u("""\ 2 \n\ 2⋅x⋅y \n\ ────── + 1\n\ 2 \n\ 1 \ """) assert upretty(e) == ucode_str def test_issue_6324(): x = Pow(2, 3, evaluate=False) y = Pow(10, -2, evaluate=False) e = Mul(x, y, evaluate=False) ucode_str = \ u("""\ 3\n\ 2 \n\ ───\n\ 2\n\ 10 \ """) assert upretty(e) == ucode_str def test_issue_7927(): e = sin(x/2)**cos(x/2) ucode_str = \ u("""\ ⎛x⎞\n\ cos⎜─⎟\n\ ⎝2⎠\n\ ⎛ ⎛x⎞⎞ \n\ ⎜sin⎜─⎟⎟ \n\ ⎝ ⎝2⎠⎠ \ """) assert upretty(e) == ucode_str e = sin(x)**(S(11)/13) ucode_str = \ u("""\ 11\n\ ──\n\ 13\n\ (sin(x)) \ """) assert upretty(e) == ucode_str def test_issue_6134(): from sympy.abc import lamda, t phi = Function('phi') e = lamda*x*Integral(phi(t)*pi*sin(pi*t), (t, 0, 1)) + lamda*x**2*Integral(phi(t)*2*pi*sin(2*pi*t), (t, 0, 1)) ucode_str = \ u("""\ 1 1 \n\ 2 ⌠ ⌠ \n\ λ⋅x ⋅⎮ 2⋅π⋅φ(t)⋅sin(2⋅π⋅t) dt + λ⋅x⋅⎮ π⋅φ(t)⋅sin(π⋅t) dt\n\ ⌡ ⌡ \n\ 0 0 \ """) assert upretty(e) == ucode_str def test_issue_9877(): ucode_str1 = u'(2, 3) ∪ ([1, 2] \\ {x})' a, b, c = Interval(2, 3, True, True), Interval(1, 2), FiniteSet(x) assert upretty(Union(a, Complement(b, c))) == ucode_str1 ucode_str2 = u'{x} ∩ {y} ∩ ({z} \\ [1, 2])' d, e, f, g = FiniteSet(x), FiniteSet(y), FiniteSet(z), Interval(1, 2) assert upretty(Intersection(d, e, Complement(f, g))) == ucode_str2 def test_issue_13651(): expr1 = c + Mul(-1, a + b, evaluate=False) assert pretty(expr1) == 'c - (a + b)' expr2 = c + Mul(-1, a - b + d, evaluate=False) assert pretty(expr2) == 'c - (a - b + d)' def test_pretty_primenu(): from sympy.ntheory.factor_ import primenu ascii_str1 = "nu(n)" ucode_str1 = u("ν(n)") n = symbols('n', integer=True) assert pretty(primenu(n)) == ascii_str1 assert upretty(primenu(n)) == ucode_str1 def test_pretty_primeomega(): from sympy.ntheory.factor_ import primeomega ascii_str1 = "Omega(n)" ucode_str1 = u("Ω(n)") n = symbols('n', integer=True) assert pretty(primeomega(n)) == ascii_str1 assert upretty(primeomega(n)) == ucode_str1 def test_pretty_Mod(): from sympy.core import Mod ascii_str1 = "x mod 7" ucode_str1 = u("x mod 7") ascii_str2 = "(x + 1) mod 7" ucode_str2 = u("(x + 1) mod 7") ascii_str3 = "2*x mod 7" ucode_str3 = u("2⋅x mod 7") ascii_str4 = "(x mod 7) + 1" ucode_str4 = u("(x mod 7) + 1") ascii_str5 = "2*(x mod 7)" ucode_str5 = u("2⋅(x mod 7)") x = symbols('x', integer=True) assert pretty(Mod(x, 7)) == ascii_str1 assert upretty(Mod(x, 7)) == ucode_str1 assert pretty(Mod(x + 1, 7)) == ascii_str2 assert upretty(Mod(x + 1, 7)) == ucode_str2 assert pretty(Mod(2 * x, 7)) == ascii_str3 assert upretty(Mod(2 * x, 7)) == ucode_str3 assert pretty(Mod(x, 7) + 1) == ascii_str4 assert upretty(Mod(x, 7) + 1) == ucode_str4 assert pretty(2 * Mod(x, 7)) == ascii_str5 assert upretty(2 * Mod(x, 7)) == ucode_str5 def test_issue_11801(): assert pretty(Symbol("")) == "" assert upretty(Symbol("")) == "" def test_pretty_UnevaluatedExpr(): x = symbols('x') he = UnevaluatedExpr(1/x) ucode_str = \ u("""\ 1\n\ ─\n\ x\ """) assert upretty(he) == ucode_str ucode_str = \ u("""\ 2\n\ ⎛1⎞ \n\ ⎜─⎟ \n\ ⎝x⎠ \ """) assert upretty(he**2) == ucode_str ucode_str = \ u("""\ 1\n\ 1 + ─\n\ x\ """) assert upretty(he + 1) == ucode_str ucode_str = \ u('''\ 1\n\ x⋅─\n\ x\ ''') assert upretty(x*he) == ucode_str def test_issue_10472(): M = (Matrix([[0, 0], [0, 0]]), Matrix([0, 0])) ucode_str = \ u("""\ ⎛⎡0 0⎤ ⎡0⎤⎞ ⎜⎢ ⎥, ⎢ ⎥⎟ ⎝⎣0 0⎦ ⎣0⎦⎠\ """) assert upretty(M) == ucode_str def test_MatrixElement_printing(): # test cases for issue #11821 A = MatrixSymbol("A", 1, 3) B = MatrixSymbol("B", 1, 3) C = MatrixSymbol("C", 1, 3) ascii_str1 = "A_00" ucode_str1 = u("A₀₀") assert pretty(A[0, 0]) == ascii_str1 assert upretty(A[0, 0]) == ucode_str1 ascii_str1 = "3*A_00" ucode_str1 = u("3⋅A₀₀") assert pretty(3*A[0, 0]) == ascii_str1 assert upretty(3*A[0, 0]) == ucode_str1 ascii_str1 = "(-B + A)[0, 0]" ucode_str1 = u("(-B + A)[0, 0]") F = C[0, 0].subs(C, A - B) assert pretty(F) == ascii_str1 assert upretty(F) == ucode_str1 def test_issue_12675(): from sympy.vector import CoordSys3D x, y, t, j = symbols('x y t j') e = CoordSys3D('e') ucode_str = \ u("""\ ⎛ t⎞ \n\ ⎜⎛x⎞ ⎟ j_e\n\ ⎜⎜─⎟ ⎟ \n\ ⎝⎝y⎠ ⎠ \ """) assert upretty((x/y)**t*e.j) == ucode_str ucode_str = \ u("""\ ⎛1⎞ \n\ ⎜─⎟ j_e\n\ ⎝y⎠ \ """) assert upretty((1/y)*e.j) == ucode_str def test_MatrixSymbol_printing(): # test cases for issue #14237 A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert pretty(-A*B*C) == "-A*B*C" assert pretty(A - B) == "-B + A" assert pretty(A*B*C - A*B - B*C) == "-A*B -B*C + A*B*C" # issue #14814 x = MatrixSymbol('x', n, n) y = MatrixSymbol('y*', n, n) assert pretty(x + y) == "x + y*" ascii_str = \ """\ 2 \n\ -2*y* -a*x\ """ assert pretty(-a*x + -2*y*y) == ascii_str def test_degree_printing(): expr1 = 90*degree assert pretty(expr1) == u'90°' expr2 = x*degree assert pretty(expr2) == u'x°' expr3 = cos(x*degree + 90*degree) assert pretty(expr3) == u'cos(x° + 90°)' def test_vector_expr_pretty_printing(): A = CoordSys3D('A') assert upretty(Cross(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)×((x_A) i_A + (3⋅y_A) j_A)") assert upretty(x*Cross(A.i, A.j)) == u('x⋅(i_A)×(j_A)') assert upretty(Curl(A.x*A.i + 3*A.y*A.j)) == u("∇×((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Divergence(A.x*A.i + 3*A.y*A.j)) == u("∇⋅((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Dot(A.i, A.x*A.i+3*A.y*A.j)) == u("(i_A)⋅((x_A) i_A + (3⋅y_A) j_A)") assert upretty(Gradient(A.x+3*A.y)) == u("∇(x_A + 3⋅y_A)") assert upretty(Laplacian(A.x+3*A.y)) == u("∆(x_A + 3⋅y_A)") # TODO: add support for ASCII pretty. def test_pretty_print_tensor_expr(): L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) i0 = tensor_indices("i_0", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = -i ascii_str = \ """\ -i\ """ ucode_str = \ u("""\ -i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) ascii_str = \ """\ i\n\ A \n\ \ """ ucode_str = \ u("""\ i\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i0) ascii_str = \ """\ i_0\n\ A \n\ \ """ ucode_str = \ u("""\ i₀\n\ A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(-i) ascii_str = \ """\ \n\ A \n\ i\ """ ucode_str = \ u("""\ \n\ A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = -3*A(-i) ascii_str = \ """\ \n\ -3*A \n\ i\ """ ucode_str = \ u("""\ \n\ -3⋅A \n\ i\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j) ascii_str = \ """\ i \n\ H \n\ j\ """ ucode_str = \ u("""\ i \n\ H \n\ j\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -i) ascii_str = \ """\ L_0 \n\ H \n\ L_0\ """ ucode_str = \ u("""\ L₀ \n\ H \n\ L₀\ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = H(i, -j)*A(j)*B(k) ascii_str = \ """\ i L_0 k\n\ H *A *B \n\ L_0 \ """ ucode_str = \ u("""\ i L₀ k\n\ H ⋅A ⋅B \n\ L₀ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (1+x)*A(i) ascii_str = \ """\ i\n\ (x + 1)*A \n\ \ """ ucode_str = \ u("""\ i\n\ (x + 1)⋅A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i) + 3*B(i) ascii_str = \ """\ i i\n\ A + 3*B \n\ \ """ ucode_str = \ u("""\ i i\n\ A + 3⋅B \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_pretty_print_tensor_partial_deriv(): from sympy.tensor.toperators import PartialDerivative from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, tensor_heads L = TensorIndexType("L") i, j, k = tensor_indices("i j k", L) A, B, C, D = tensor_heads("A B C D", [L]) H = TensorHead("H", [L, L]) expr = PartialDerivative(A(i), A(j)) ascii_str = \ """\ d / i\\\n\ ---|A |\n\ j\\ /\n\ dA \n\ \ """ ucode_str = \ u("""\ ∂ ⎛ i⎞\n\ ───⎜A ⎟\n\ j⎝ ⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k \\\n\ A *---|H |\n\ j\\ L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k ⎞\n\ A ⋅───⎜H ⎟\n\ j⎝ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = A(i)*PartialDerivative(B(k)*C(-i) + 3*H(k, -i), A(j)) ascii_str = \ """\ L_0 d / k k \\\n\ A *---|B *C + 3*H |\n\ j\\ L_0 L_0/\n\ dA \n\ \ """ ucode_str = \ u("""\ L₀ ∂ ⎛ k k ⎞\n\ A ⋅───⎜B ⋅C + 3⋅H ⎟\n\ j⎝ L₀ L₀⎠\n\ ∂A \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(j), D(j)) ascii_str = \ """\ / i i\\ d / L_0\\\n\ |A + B |*-----|C |\n\ \\ / L_0\\ /\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ i i⎞ ∂ ⎛ L₀⎞\n\ ⎜A + B ⎟⋅────⎜C ⎟\n\ ⎝ ⎠ L₀⎝ ⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = (A(i) + B(i))*PartialDerivative(C(-i), D(j)) ascii_str = \ """\ / L_0 L_0\\ d / \\\n\ |A + B |*---|C |\n\ \\ / j\\ L_0/\n\ dD \n\ \ """ ucode_str = \ u("""\ ⎛ L₀ L₀⎞ ∂ ⎛ ⎞\n\ ⎜A + B ⎟⋅───⎜C ⎟\n\ ⎝ ⎠ j⎝ L₀⎠\n\ ∂D \n\ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = PartialDerivative(B(-i) + A(-i), A(-j), A(-n)) ucode_str = u("""\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜A + B ⎟\n\ ⎝ i i⎠\n\ ∂A ∂A \n\ n j \ """) assert upretty(expr) == ucode_str expr = PartialDerivative(3*A(-i), A(-j), A(-n)) ucode_str = u("""\ 2 \n\ ∂ ⎛ ⎞\n\ ───────⎜3⋅A ⎟\n\ ⎝ i⎠\n\ ∂A ∂A \n\ n j \ """) assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i:1}) ascii_str = \ """\ i=1,j\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {i: 1, j: 1}) ascii_str = \ """\ i=1,j=1\n\ H \n\ \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = TensorElement(H(i, j), {j: 1}) ascii_str = \ """\ i,j=1\n\ H \n\ \ """ ucode_str = ascii_str expr = TensorElement(H(-i, j), {-i: 1}) ascii_str = \ """\ j\n\ H \n\ i=1 \ """ ucode_str = ascii_str assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_15560(): a = MatrixSymbol('a', 1, 1) e = pretty(a*(KroneckerProduct(a, a))) result = 'a*(a x a)' assert e == result def test_print_lerchphi(): # Part of issue 6013 a = Symbol('a') pretty(lerchphi(a, 1, 2)) uresult = u'Φ(a, 1, 2)' aresult = 'lerchphi(a, 1, 2)' assert pretty(lerchphi(a, 1, 2)) == aresult assert upretty(lerchphi(a, 1, 2)) == uresult def test_issue_15583(): N = mechanics.ReferenceFrame('N') result = '(n_x, n_y, n_z)' e = pretty((N.x, N.y, N.z)) assert e == result def test_matrixSymbolBold(): # Issue 15871 def boldpretty(expr): return xpretty(expr, use_unicode=True, wrap_line=False, mat_symbol_style="bold") from sympy import trace A = MatrixSymbol("A", 2, 2) assert boldpretty(trace(A)) == u'tr(𝐀)' A = MatrixSymbol("A", 3, 3) B = MatrixSymbol("B", 3, 3) C = MatrixSymbol("C", 3, 3) assert boldpretty(-A) == u'-𝐀' assert boldpretty(A - A*B - B) == u'-𝐁 -𝐀⋅𝐁 + 𝐀' assert boldpretty(-A*B - A*B*C - B) == u'-𝐁 -𝐀⋅𝐁 -𝐀⋅𝐁⋅𝐂' A = MatrixSymbol("Addot", 3, 3) assert boldpretty(A) == u'𝐀̈' omega = MatrixSymbol("omega", 3, 3) assert boldpretty(omega) == u'ω' omega = MatrixSymbol("omeganorm", 3, 3) assert boldpretty(omega) == u'‖ω‖' a = Symbol('alpha') b = Symbol('b') c = MatrixSymbol("c", 3, 1) d = MatrixSymbol("d", 3, 1) assert boldpretty(a*B*c+b*d) == u'b⋅𝐝 + α⋅𝐁⋅𝐜' d = MatrixSymbol("delta", 3, 1) B = MatrixSymbol("Beta", 3, 3) assert boldpretty(a*B*c+b*d) == u'b⋅δ + α⋅Β⋅𝐜' A = MatrixSymbol("A_2", 3, 3) assert boldpretty(A) == u'𝐀₂' def test_center_accent(): assert center_accent('a', u'\N{COMBINING TILDE}') == u'ã' assert center_accent('aa', u'\N{COMBINING TILDE}') == u'aã' assert center_accent('aaa', u'\N{COMBINING TILDE}') == u'aãa' assert center_accent('aaaa', u'\N{COMBINING TILDE}') == u'aaãa' assert center_accent('aaaaa', u'\N{COMBINING TILDE}') == u'aaãaa' assert center_accent('abcdefg', u'\N{COMBINING FOUR DOTS ABOVE}') == u'abcd⃜efg' def test_imaginary_unit(): from sympy import pretty # As it is redefined above assert pretty(1 + I, use_unicode=False) == '1 + I' assert pretty(1 + I, use_unicode=True) == u'1 + ⅈ' assert pretty(1 + I, use_unicode=False, imaginary_unit='j') == '1 + I' assert pretty(1 + I, use_unicode=True, imaginary_unit='j') == u'1 + ⅉ' raises(TypeError, lambda: pretty(I, imaginary_unit=I)) raises(ValueError, lambda: pretty(I, imaginary_unit="kkk")) def test_str_special_matrices(): from sympy.matrices import Identity, ZeroMatrix, OneMatrix assert pretty(Identity(4)) == 'I' assert upretty(Identity(4)) == u'𝕀' assert pretty(ZeroMatrix(2, 2)) == '0' assert upretty(ZeroMatrix(2, 2)) == u'𝟘' assert pretty(OneMatrix(2, 2)) == '1' assert upretty(OneMatrix(2, 2)) == u'𝟙' def test_pretty_misc_functions(): assert pretty(LambertW(x)) == 'W(x)' assert upretty(LambertW(x)) == u'W(x)' assert pretty(LambertW(x, y)) == 'W(x, y)' assert upretty(LambertW(x, y)) == u'W(x, y)' assert pretty(airyai(x)) == 'Ai(x)' assert upretty(airyai(x)) == u'Ai(x)' assert pretty(airybi(x)) == 'Bi(x)' assert upretty(airybi(x)) == u'Bi(x)' assert pretty(airyaiprime(x)) == "Ai'(x)" assert upretty(airyaiprime(x)) == u"Ai'(x)" assert pretty(airybiprime(x)) == "Bi'(x)" assert upretty(airybiprime(x)) == u"Bi'(x)" assert pretty(fresnelc(x)) == 'C(x)' assert upretty(fresnelc(x)) == u'C(x)' assert pretty(fresnels(x)) == 'S(x)' assert upretty(fresnels(x)) == u'S(x)' assert pretty(Heaviside(x)) == 'Heaviside(x)' assert upretty(Heaviside(x)) == u'θ(x)' assert pretty(Heaviside(x, y)) == 'Heaviside(x, y)' assert upretty(Heaviside(x, y)) == u'θ(x, y)' assert pretty(dirichlet_eta(x)) == 'dirichlet_eta(x)' assert upretty(dirichlet_eta(x)) == u'η(x)' def test_hadamard_power(): m, n, p = symbols('m, n, p', integer=True) A = MatrixSymbol('A', m, n) B = MatrixSymbol('B', m, n) # Testing printer: expr = hadamard_power(A, n) ascii_str = \ """\ .n\n\ A \ """ ucode_str = \ u("""\ ∘n\n\ A \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A, 1+n) ascii_str = \ """\ .(n + 1)\n\ A \ """ ucode_str = \ u("""\ ∘(n + 1)\n\ A \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str expr = hadamard_power(A*B.T, 1+n) ascii_str = \ """\ .(n + 1)\n\ / T\\ \n\ \\A*B / \ """ ucode_str = \ u("""\ ∘(n + 1)\n\ ⎛ T⎞ \n\ ⎝A⋅B ⎠ \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str def test_issue_17258(): n = Symbol('n', integer=True) assert pretty(Sum(n, (n, -oo, 1))) == \ ' 1 \n'\ ' __ \n'\ ' \\ ` \n'\ ' ) n\n'\ ' /_, \n'\ 'n = -oo ' assert upretty(Sum(n, (n, -oo, 1))) == \ u("""\ 1 \n\ ___ \n\ ╲ \n\ ╲ \n\ ╱ n\n\ ╱ \n\ ‾‾‾ \n\ n = -∞ \ """) def test_is_combining(): line = u("v̇_m") assert [is_combining(sym) for sym in line] == \ [False, True, False, False] def test_issue_17857(): assert pretty(Range(-oo, oo)) == '{..., -1, 0, 1, ...}' assert pretty(Range(oo, -oo, -1)) == '{..., 1, 0, -1, ...}'
77bbf1b3767b929eeff454e884e6fa979e3138a42db4c4739b64663a820a9bac
"""Most of these tests come from the examples in Bronstein's book.""" from sympy import Poly, symbols, oo, I, Rational from sympy.core.compatibility import PY3 from sympy.integrals.risch import (DifferentialExtension, NonElementaryIntegralException) from sympy.integrals.rde import (order_at, order_at_oo, weak_normalizer, normal_denom, special_denom, bound_degree, spde, solve_poly_rde, no_cancel_equal, cancel_primitive, cancel_exp, rischDE) from sympy.utilities.pytest import raises, XFAIL from sympy.abc import x, t, z, n t0, t1, t2, k = symbols('t:3 k') def test_order_at(): a = Poly(t**4, t) b = Poly((t**2 + 1)**3*t, t) c = Poly((t**2 + 1)**6*t, t) d = Poly((t**2 + 1)**10*t**10, t) e = Poly((t**2 + 1)**100*t**37, t) p1 = Poly(t, t) p2 = Poly(1 + t**2, t) assert order_at(a, p1, t) == 4 assert order_at(b, p1, t) == 1 assert order_at(c, p1, t) == 1 assert order_at(d, p1, t) == 10 assert order_at(e, p1, t) == 37 assert order_at(a, p2, t) == 0 assert order_at(b, p2, t) == 3 assert order_at(c, p2, t) == 6 assert order_at(d, p1, t) == 10 assert order_at(e, p2, t) == 100 assert order_at(Poly(0, t), Poly(t, t), t) is oo assert order_at_oo(Poly(t**2 - 1, t), Poly(t + 1), t) == \ order_at_oo(Poly(t - 1, t), Poly(1, t), t) == -1 assert order_at_oo(Poly(0, t), Poly(1, t), t) is oo def test_weak_normalizer(): a = Poly((1 + x)*t**5 + 4*t**4 + (-1 - 3*x)*t**3 - 4*t**2 + (-2 + 2*x)*t, t) d = Poly(t**4 - 3*t**2 + 2, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) r = weak_normalizer(a, d, DE, z) assert r == (Poly(t**5 - t**4 - 4*t**3 + 4*t**2 + 4*t - 4, t), (Poly((1 + x)*t**2 + x*t, t), Poly(t + 1, t))) assert weak_normalizer(r[1][0], r[1][1], DE) == (Poly(1, t), r[1]) r = weak_normalizer(Poly(1 + t**2), Poly(t**2 - 1, t), DE, z) assert r == (Poly(t**4 - 2*t**2 + 1, t), (Poly(-3*t**2 + 1, t), Poly(t**2 - 1, t))) assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1]) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2)]}) r = weak_normalizer(Poly(1 + t**2), Poly(t, t), DE, z) assert r == (Poly(t, t), (Poly(0, t), Poly(1, t))) assert weak_normalizer(r[1][0], r[1][1], DE, z) == (Poly(1, t), r[1]) def test_normal_denom(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) raises(NonElementaryIntegralException, lambda: normal_denom(Poly(1, x), Poly(1, x), Poly(1, x), Poly(x, x), DE)) fa, fd = Poly(t**2 + 1, t), Poly(1, t) ga, gd = Poly(1, t), Poly(t**2, t) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert normal_denom(fa, fd, ga, gd, DE) == \ (Poly(t, t), (Poly(t**3 - t**2 + t - 1, t), Poly(1, t)), (Poly(1, t), Poly(1, t)), Poly(t, t)) def test_special_denom(): # TODO: add more tests here DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t), Poly(t, t), DE) == \ (Poly(1, t), Poly(t**2 - 1, t), Poly(t**2 - 1, t), Poly(t, t)) # assert special_denom(Poly(1, t), Poly(2*x, t), Poly((1 + 2*x)*t, t), DE) == 1 # issue 3940 # Note, this isn't a very good test, because the denominator is just 1, # but at least it tests the exp cancellation case DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0), Poly(I*k*t1, t1)]}) DE.decrement_level() assert special_denom(Poly(1, t0), Poly(I*k, t0), Poly(1, t0), Poly(t0, t0), Poly(1, t0), DE) == \ (Poly(1, t0), Poly(I*k, t0), Poly(t0, t0), Poly(1, t0)) assert special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t), Poly(t, t), DE, case='tan') == \ (Poly(1, t, t0, domain='ZZ'), Poly(t**2, t0, t, domain='ZZ[x]'), Poly(t, t, t0, domain='ZZ'), Poly(1, t0, domain='ZZ')) raises(ValueError, lambda: special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), Poly(t**2 - 1, t), Poly(t, t), DE, case='unrecognized_case')) # @XFAIL # Probably only fails in Python 2.7 def test_bound_degree_fail(): # Primitive DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]}) assert bound_degree(Poly(t**2, t), Poly(-(1/x**2*t**2 + 1/x), t), Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/2*x*t**2 + x*t, t), DE) == 3 if not PY3: test_bound_degree_fail = XFAIL(test_bound_degree_fail) def test_bound_degree(): # Base DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert bound_degree(Poly(1, x), Poly(-2*x, x), Poly(1, x), DE) == 0 # Primitive (see above test_bound_degree_fail) # TODO: Add test for when the degree bound becomes larger after limited_integrate # TODO: Add test for db == da - 1 case # Exp # TODO: Add tests # TODO: Add test for when the degree becomes larger after parametric_log_deriv() # Nonlinear DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert bound_degree(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), DE) == 0 def test_spde(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) raises(NonElementaryIntegralException, lambda: spde(Poly(t, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert spde(Poly(t**2 + x*t*2 + x**2, t), Poly(t**2/x**2 + (2/x - 1)*t, t), Poly(t**2/x**2 + (2/x - 1)*t, t), 0, DE) == \ (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(1, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0/x**2, t0), Poly(1/x, t)]}) assert spde(Poly(t**2, t), Poly(-t**2/x**2 - 1/x, t), Poly((2*x - 1)*t**4 + (t0 + x)/x*t**3 - (t0 + 4*x**2)/(2*x)*t**2 + x*t, t), 3, DE) == \ (Poly(0, t), Poly(0, t), 0, Poly(0, t), Poly(t0*t**2/2 + x**2*t**2 - x**2*t, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 + 3*x**4/4 + x**3 - x**2 + 1, x), 4, DE) == \ (Poly(0, x), Poly(x/2 - Rational(1, 4), x), 2, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x)) assert spde(Poly(x**2 + x + 1, x), Poly(-2*x - 1, x), Poly(x**5/2 + 3*x**4/4 + x**3 - x**2 + 1, x), n, DE) == \ (Poly(0, x), Poly(x/2 - Rational(1, 4), x), -2 + n, Poly(x**2 + x + 1, x), Poly(x*Rational(5, 4), x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1, t)]}) raises(NonElementaryIntegralException, lambda: spde(Poly((t - 1)*(t**2 + 1)**2, t), Poly((t - 1)*(t**2 + 1), t), Poly(1, t), 0, DE)) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert spde(Poly(x**2 - x, x), Poly(1, x), Poly(9*x**4 - 10*x**3 + 2*x**2, x), 4, DE) == (Poly(0, x), Poly(0, x), 0, Poly(0, x), Poly(3*x**3 - 2*x**2, x)) assert spde(Poly(x**2 - x, x), Poly(x**2 - 5*x + 3, x), Poly(x**7 - x**6 - 2*x**4 + 3*x**3 - x**2, x), 5, DE) == \ (Poly(1, x), Poly(x + 1, x), 1, Poly(x**4 - x**3, x), Poly(x**3 - x**2, x)) def test_solve_poly_rde_no_cancel(): # deg(b) large DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) assert solve_poly_rde(Poly(t**2 + 1, t), Poly(t**3 + (x + 1)*t**2 + t + x + 2, t), oo, DE) == Poly(t + x, t) # deg(b) small DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert solve_poly_rde(Poly(0, x), Poly(x/2 - Rational(1, 4), x), oo, DE) == \ Poly(x**2/4 - x/4, x) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert solve_poly_rde(Poly(2, t), Poly(t**2 + 2*t + 3, t), 1, DE) == \ Poly(t + 1, t, x) # deg(b) == deg(D) - 1 DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**2 + 1, t)]}) assert no_cancel_equal(Poly(1 - t, t), Poly(t**3 + t**2 - 2*x*t - 2*x, t), oo, DE) == \ (Poly(t**2, t), 1, Poly((-2 - 2*x)*t - 2*x, t)) def test_solve_poly_rde_cancel(): # exp DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert cancel_exp(Poly(2*x, t), Poly(2*x, t), 0, DE) == \ Poly(1, t) assert cancel_exp(Poly(2*x, t), Poly((1 + 2*x)*t, t), 1, DE) == \ Poly(t, t) # TODO: Add more exp tests, including tests that require is_deriv_in_field() # primitive DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) # If the DecrementLevel context manager is working correctly, this shouldn't # cause any problems with the further tests. raises(NonElementaryIntegralException, lambda: cancel_primitive(Poly(1, t), Poly(t, t), oo, DE)) assert cancel_primitive(Poly(1, t), Poly(t + 1/x, t), 2, DE) == \ Poly(t, t) assert cancel_primitive(Poly(4*x, t), Poly(4*x*t**2 + 2*t/x, t), 3, DE) == \ Poly(t**2, t) # TODO: Add more primitive tests, including tests that require is_deriv_in_field() def test_rischDE(): # TODO: Add more tests for rischDE, including ones from the text DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) DE.decrement_level() assert rischDE(Poly(-2*x, x), Poly(1, x), Poly(1 - 2*x - 2*x**2, x), Poly(1, x), DE) == \ (Poly(x + 1, x), Poly(1, x))
98222284e8cbdbfcc5ac452696c404c16691ad0b1de450938431c5b96de1ee93
from sympy import ( Abs, acos, acosh, Add, And, asin, asinh, atan, Ci, cos, sinh, cosh, tanh, Derivative, diff, DiracDelta, E, Ei, Eq, exp, erf, erfc, erfi, EulerGamma, Expr, factor, Function, gamma, gammasimp, I, Idx, im, IndexedBase, integrate, Interval, Lambda, LambertW, log, Matrix, Max, meijerg, Min, nan, Ne, O, oo, pi, Piecewise, polar_lift, Poly, polygamma, Rational, re, S, Si, sign, simplify, sin, sinc, SingularityFunction, sqrt, sstr, Sum, Symbol, symbols, sympify, tan, trigsimp, Tuple, lerchphi, exp_polar, li, hyper ) from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.functions.elementary.complexes import periodic_argument from sympy.functions.elementary.integers import floor from sympy.integrals.integrals import Integral from sympy.integrals.risch import NonElementaryIntegral from sympy.physics import units from sympy.utilities.pytest import raises, slow, skip, ON_TRAVIS from sympy.utilities.randtest import verify_numerically x, y, a, t, x_1, x_2, z, s, b = symbols('x y a t x_1 x_2 z s b') n = Symbol('n', integer=True) f = Function('f') def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_principal_value(): g = 1 / x assert Integral(g, (x, -oo, oo)).principal_value() == 0 assert Integral(g, (y, -oo, oo)).principal_value() == oo * sign(1 / x) raises(ValueError, lambda: Integral(g, (x)).principal_value()) raises(ValueError, lambda: Integral(g).principal_value()) l = 1 / ((x ** 3) - 1) assert Integral(l, (x, -oo, oo)).principal_value() == -sqrt(3)*pi/3 raises(ValueError, lambda: Integral(l, (x, -oo, 1)).principal_value()) d = 1 / (x ** 2 - 1) assert Integral(d, (x, -oo, oo)).principal_value() == 0 assert Integral(d, (x, -2, 2)).principal_value() == -log(3) v = x / (x ** 2 - 1) assert Integral(v, (x, -oo, oo)).principal_value() == 0 assert Integral(v, (x, -2, 2)).principal_value() == 0 s = x ** 2 / (x ** 2 - 1) assert Integral(s, (x, -oo, oo)).principal_value() is oo assert Integral(s, (x, -2, 2)).principal_value() == -log(3) + 4 f = 1 / ((x ** 2 - 1) * (1 + x ** 2)) assert Integral(f, (x, -oo, oo)).principal_value() == -pi / 2 assert Integral(f, (x, -2, 2)).principal_value() == -atan(2) - log(3) / 2 def diff_test(i): """Return the set of symbols, s, which were used in testing that i.diff(s) agrees with i.doit().diff(s). If there is an error then the assertion will fail, causing the test to fail.""" syms = i.free_symbols for s in syms: assert (i.diff(s).doit() - i.doit().diff(s)).expand() == 0 return syms def test_improper_integral(): assert integrate(log(x), (x, 0, 1)) == -1 assert integrate(x**(-2), (x, 1, oo)) == 1 assert integrate(1/(1 + exp(x)), (x, 0, oo)) == log(2) def test_constructor(): # this is shared by Sum, so testing Integral's constructor # is equivalent to testing Sum's s1 = Integral(n, n) assert s1.limits == (Tuple(n),) s2 = Integral(n, (n,)) assert s2.limits == (Tuple(n),) s3 = Integral(Sum(x, (x, 1, y))) assert s3.limits == (Tuple(y),) s4 = Integral(n, Tuple(n,)) assert s4.limits == (Tuple(n),) s5 = Integral(n, (n, Interval(1, 2))) assert s5.limits == (Tuple(n, 1, 2),) # Testing constructor with inequalities: s6 = Integral(n, n > 10) assert s6.limits == (Tuple(n, 10, oo),) s7 = Integral(n, (n > 2) & (n < 5)) assert s7.limits == (Tuple(n, 2, 5),) def test_basics(): assert Integral(0, x) != 0 assert Integral(x, (x, 1, 1)) != 0 assert Integral(oo, x) != oo assert Integral(S.NaN, x) is S.NaN assert diff(Integral(y, y), x) == 0 assert diff(Integral(x, (x, 0, 1)), x) == 0 assert diff(Integral(x, x), x) == x assert diff(Integral(t, (t, 0, x)), x) == x e = (t + 1)**2 assert diff(integrate(e, (t, 0, x)), x) == \ diff(Integral(e, (t, 0, x)), x).doit().expand() == \ ((1 + x)**2).expand() assert diff(integrate(e, (t, 0, x)), t) == \ diff(Integral(e, (t, 0, x)), t) == 0 assert diff(integrate(e, (t, 0, x)), a) == \ diff(Integral(e, (t, 0, x)), a) == 0 assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0 assert integrate(e, (t, a, x)).diff(x) == \ Integral(e, (t, a, x)).diff(x).doit().expand() assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2) assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand() assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2 assert Integral(x, x).atoms() == {x} assert Integral(f(x), (x, 0, 1)).atoms() == {S.Zero, S.One, x} assert diff_test(Integral(x, (x, 3*y))) == {y} assert diff_test(Integral(x, (a, 3*y))) == {x, y} assert integrate(x, (x, oo, oo)) == 0 #issue 8171 assert integrate(x, (x, -oo, -oo)) == 0 # sum integral of terms assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x) assert Integral(x).is_commutative n = Symbol('n', commutative=False) assert Integral(n + x, x).is_commutative is False def test_diff_wrt(): class Test(Expr): _diff_wrt = True is_commutative = True t = Test() assert integrate(t + 1, t) == t**2/2 + t assert integrate(t + 1, (t, 0, 1)) == Rational(3, 2) raises(ValueError, lambda: integrate(x + 1, x + 1)) raises(ValueError, lambda: integrate(x + 1, (x + 1, 0, 1))) def test_basics_multiple(): assert diff_test(Integral(x, (x, 3*x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, x, 2*x))) == {x} assert diff_test(Integral(x, (x, 5*y), (y, y, 2*x))) == {x, y} assert diff_test(Integral(y, y, x)) == {x, y} assert diff_test(Integral(y*x, x, y)) == {x, y} assert diff_test(Integral(x + y, y, (y, 1, x))) == {x} assert diff_test(Integral(x + y, (x, x, y), (y, y, x))) == {x, y} def test_conjugate_transpose(): A, B = symbols("A B", commutative=False) x = Symbol("x", complex=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() x = Symbol("x", real=True) p = Integral(A*B, (x,)) assert p.adjoint().doit() == p.doit().adjoint() assert p.conjugate().doit() == p.doit().conjugate() assert p.transpose().doit() == p.doit().transpose() def test_integration(): assert integrate(0, (t, 0, x)) == 0 assert integrate(3, (t, 0, x)) == 3*x assert integrate(t, (t, 0, x)) == x**2/2 assert integrate(3*t, (t, 0, x)) == 3*x**2/2 assert integrate(3*t**2, (t, 0, x)) == x**3 assert integrate(1/t, (t, 1, x)) == log(x) assert integrate(-1/t**2, (t, 1, x)) == 1/x - 1 assert integrate(t**2 + 5*t - 8, (t, 0, x)) == x**3/3 + 5*x**2/2 - 8*x assert integrate(x**2, x) == x**3/3 assert integrate((3*t*x)**5, x) == (3*t)**5 * x**6 / 6 b = Symbol("b") c = Symbol("c") assert integrate(a*t, (t, 0, x)) == a*x**2/2 assert integrate(a*t**4, (t, 0, x)) == a*x**5/5 assert integrate(a*t**2 + b*t + c, (t, 0, x)) == a*x**3/3 + b*x**2/2 + c*x def test_multiple_integration(): assert integrate((x**2)*(y**2), (x, 0, 1), (y, -1, 2)) == Rational(1) assert integrate((y**2)*(x**2), x, y) == Rational(1, 9)*(x**3)*(y**3) assert integrate(1/(x + 3)/(1 + x)**3, x) == \ log(3 + x)*Rational(-1, 8) + log(1 + x)*Rational(1, 8) + x/(4 + 8*x + 4*x**2) assert integrate(sin(x*y)*y, (x, 0, 1), (y, 0, 1)) == -sin(1) + 1 def test_issue_3532(): assert integrate(exp(-x), (x, 0, oo)) == 1 def test_issue_3560(): assert integrate(sqrt(x)**3, x) == 2*sqrt(x)**5/5 assert integrate(sqrt(x), x) == 2*sqrt(x)**3/3 assert integrate(1/sqrt(x)**3, x) == -2/sqrt(x) def test_issue_18038(): raises(AttributeError, lambda: integrate((x, x))) def test_integrate_poly(): p = Poly(x + x**2*y + y**3, x, y) qx = integrate(p, x) qy = integrate(p, y) assert isinstance(qx, Poly) is True assert isinstance(qy, Poly) is True assert qx.gens == (x, y) assert qy.gens == (x, y) assert qx.as_expr() == x**2/2 + x**3*y/3 + x*y**3 assert qy.as_expr() == x*y + x**2*y**2/2 + y**4/4 def test_integrate_poly_defined(): p = Poly(x + x**2*y + y**3, x, y) Qx = integrate(p, (x, 0, 1)) Qy = integrate(p, (y, 0, pi)) assert isinstance(Qx, Poly) is True assert isinstance(Qy, Poly) is True assert Qx.gens == (y,) assert Qy.gens == (x,) assert Qx.as_expr() == S.Half + y/3 + y**3 assert Qy.as_expr() == pi**4/4 + pi*x + pi**2*x**2/2 def test_integrate_omit_var(): y = Symbol('y') assert integrate(x) == x**2/2 raises(ValueError, lambda: integrate(2)) raises(ValueError, lambda: integrate(x*y)) def test_integrate_poly_accurately(): y = Symbol('y') assert integrate(x*sin(y), x) == x**2*sin(y)/2 # when passed to risch_norman, this will be a CPU hog, so this really # checks, that integrated function is recognized as polynomial assert integrate(x**1000*sin(y), x) == x**1001*sin(y)/1001 def test_issue_3635(): y = Symbol('y') assert integrate(x**2, y) == x**2*y assert integrate(x**2, (y, -1, 1)) == 2*x**2 # works in sympy and py.test but hangs in `setup.py test` def test_integrate_linearterm_pow(): # check integrate((a*x+b)^c, x) -- issue 3499 y = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(x**y, x, conds='none') == x**(y + 1)/(y + 1) assert integrate((exp(y)*x + 1/y)**(1 + sin(y)), x, conds='none') == \ exp(-y)*(exp(y)*x + 1/y)**(2 + sin(y)) / (2 + sin(y)) def test_issue_3618(): assert integrate(pi*sqrt(x), x) == 2*pi*sqrt(x)**3/3 assert integrate(pi*sqrt(x) + E*sqrt(x)**3, x) == \ 2*pi*sqrt(x)**3/3 + 2*E *sqrt(x)**5/5 def test_issue_3623(): assert integrate(cos((n + 1)*x), x) == Piecewise( (sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) assert integrate(cos((n - 1)*x), x) == Piecewise( (sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) assert integrate(cos((n + 1)*x) + cos((n - 1)*x), x) == \ Piecewise((sin(x*(n - 1))/(n - 1), Ne(n - 1, 0)), (x, True)) + \ Piecewise((sin(x*(n + 1))/(n + 1), Ne(n + 1, 0)), (x, True)) def test_issue_3664(): n = Symbol('n', integer=True, nonzero=True) assert integrate(-1./2 * x * sin(n * pi * x/2), [x, -2, 0]) == \ 2.0*cos(pi*n)/(pi*n) assert integrate(x * sin(n * pi * x/2) * Rational(-1, 2), [x, -2, 0]) == \ 2*cos(pi*n)/(pi*n) def test_issue_3679(): # definite integration of rational functions gives wrong answers assert NS(Integral(1/(x**2 - 8*x + 17), (x, 2, 4))) == '1.10714871779409' def test_issue_3686(): # remove this when fresnel itegrals are implemented from sympy import expand_func, fresnels assert expand_func(integrate(sin(x**2), x)) == \ sqrt(2)*sqrt(pi)*fresnels(sqrt(2)*x/sqrt(pi))/2 def test_integrate_units(): m = units.m s = units.s assert integrate(x * m/s, (x, 1*s, 5*s)) == 12*m*s def test_transcendental_functions(): assert integrate(LambertW(2*x), x) == \ -x + x*LambertW(2*x) + x/LambertW(2*x) def test_log_polylog(): assert integrate(log(1 - x)/x, (x, 0, 1)) == -pi**2/6 assert integrate(log(x)*(1 - x)**(-1), (x, 0, 1)) == -pi**2/6 def test_issue_3740(): f = 4*log(x) - 2*log(x)**2 fid = diff(integrate(f, x), x) assert abs(f.subs(x, 42).evalf() - fid.subs(x, 42).evalf()) < 1e-10 def test_issue_3788(): assert integrate(1/(1 + x**2), x) == atan(x) def test_issue_3952(): f = sin(x) assert integrate(f, x) == -cos(x) raises(ValueError, lambda: integrate(f, 2*x)) def test_issue_4516(): assert integrate(2**x - 2*x, x) == 2**x/log(2) - x**2 def test_issue_7450(): ans = integrate(exp(-(1 + I)*x), (x, 0, oo)) assert re(ans) == S.Half and im(ans) == Rational(-1, 2) def test_issue_8623(): assert integrate((1 + cos(2*x)) / (3 - 2*cos(2*x)), (x, 0, pi)) == -pi/2 + sqrt(5)*pi/2 assert integrate((1 + cos(2*x))/(3 - 2*cos(2*x))) == -x/2 + sqrt(5)*(atan(sqrt(5)*tan(x)) + \ pi*floor((x - pi/2)/pi))/2 def test_issue_9569(): assert integrate(1 / (2 - cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 - cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_13749(): assert integrate(1 / (2 + cos(x)), (x, 0, pi)) == pi/sqrt(3) assert integrate(1/(2 + cos(x))) == 2*sqrt(3)*(atan(sqrt(3)*tan(x/2)/3) + pi*floor((x/2 - pi/2)/pi))/3 def test_issue_18133(): assert integrate(exp(x)/(1 + x)**2, x) == NonElementaryIntegral(exp(x)/(x + 1)**2, x) def test_matrices(): M = Matrix(2, 2, lambda i, j: (i + j + 1)*sin((i + j + 1)*x)) assert integrate(M, x) == Matrix([ [-cos(x), -cos(2*x)], [-cos(2*x), -cos(3*x)], ]) def test_integrate_functions(): # issue 4111 assert integrate(f(x), x) == Integral(f(x), x) assert integrate(f(x), (x, 0, 1)) == Integral(f(x), (x, 0, 1)) assert integrate(f(x)*diff(f(x), x), x) == f(x)**2/2 assert integrate(diff(f(x), x) / f(x), x) == log(f(x)) def test_integrate_derivatives(): assert integrate(Derivative(f(x), x), x) == f(x) assert integrate(Derivative(f(y), y), x) == x*Derivative(f(y), y) assert integrate(Derivative(f(x), x)**2, x) == \ Integral(Derivative(f(x), x)**2, x) def test_transform(): a = Integral(x**2 + 1, (x, -1, 2)) fx = x fy = 3*y + 1 assert a.doit() == a.transform(fx, fy).doit() assert a.transform(fx, fy).transform(fy, fx) == a fx = 3*x + 1 fy = y assert a.transform(fx, fy).transform(fy, fx) == a a = Integral(sin(1/x), (x, 0, 1)) assert a.transform(x, 1/y) == Integral(sin(y)/y**2, (y, 1, oo)) assert a.transform(x, 1/y).transform(y, 1/x) == a a = Integral(exp(-x**2), (x, -oo, oo)) assert a.transform(x, 2*y) == Integral(2*exp(-4*y**2), (y, -oo, oo)) # < 3 arg limit handled properly assert Integral(x, x).transform(x, a*y).doit() == \ Integral(y*a**2, y).doit() _3 = S(3) assert Integral(x, (x, 0, -_3)).transform(x, 1/y).doit() == \ Integral(-1/x**3, (x, -oo, -1/_3)).doit() assert Integral(x, (x, 0, _3)).transform(x, 1/y) == \ Integral(y**(-3), (y, 1/_3, oo)) # issue 8400 i = Integral(x + y, (x, 1, 2), (y, 1, 2)) assert i.transform(x, (x + 2*y, x)).doit() == \ i.transform(x, (x + 2*z, x)).doit() == 3 i = Integral(x, (x, a, b)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2, b/2)) raises(ValueError, lambda: i.transform(x, 1)) raises(ValueError, lambda: i.transform(x, s*t)) raises(ValueError, lambda: i.transform(x, -s)) raises(ValueError, lambda: i.transform(x, (s, t))) raises(ValueError, lambda: i.transform(2*x, 2*s)) i = Integral(x**2, (x, 1, 2)) raises(ValueError, lambda: i.transform(x**2, s)) am = Symbol('a', negative=True) bp = Symbol('b', positive=True) i = Integral(x, (x, bp, am)) i.transform(x, 2*s) assert i.transform(x, 2*s) == Integral(-4*s, (s, am/2, bp/2)) i = Integral(x, (x, a)) assert i.transform(x, 2*s) == Integral(4*s, (s, a/2)) def test_issue_4052(): f = S.Half*asin(x) + x*sqrt(1 - x**2)/2 assert integrate(cos(asin(x)), x) == f assert integrate(sin(acos(x)), x) == f @slow def test_evalf_integrals(): assert NS(Integral(x, (x, 2, 5)), 15) == '10.5000000000000' gauss = Integral(exp(-x**2), (x, -oo, oo)) assert NS(gauss, 15) == '1.77245385090552' assert NS(gauss**2 - pi + E*Rational( 1, 10**20), 15) in ('2.71828182845904e-20', '2.71828182845905e-20') # A monster of an integral from http://mathworld.wolfram.com/DefiniteIntegral.html t = Symbol('t') a = 8*sqrt(3)/(1 + 3*t**2) b = 16*sqrt(2)*(3*t + 1)*sqrt(4*t**2 + t + 1)**3 c = (3*t**2 + 1)*(11*t**2 + 2*t + 3)**2 d = sqrt(2)*(249*t**2 + 54*t + 65)/(11*t**2 + 2*t + 3)**2 f = a - b/c - d assert NS(Integral(f, (t, 0, 1)), 50) == \ NS((3*sqrt(2) - 49*pi + 162*atan(sqrt(2)))/12, 50) # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(1/x))/(1 + x + x**2), (x, 0, 1)), 15) == \ NS('pi/sqrt(3) * log(2*pi**(5/6) / gamma(1/6))', 15) # http://mathworld.wolfram.com/AhmedsIntegral.html assert NS(Integral(atan(sqrt(x**2 + 2))/(sqrt(x**2 + 2)*(x**2 + 1)), (x, 0, 1)), 15) == NS(5*pi**2/96, 15) # http://mathworld.wolfram.com/AbelsIntegral.html assert NS(Integral(x/((exp(pi*x) - exp( -pi*x))*(x**2 + 1)), (x, 0, oo)), 15) == NS('log(2)/2-1/4', 15) # Complex part trimming # http://mathworld.wolfram.com/VardisIntegral.html assert NS(Integral(log(log(sin(x)/cos(x))), (x, pi/4, pi/2)), 15, chop=True) == \ NS('pi/4*log(4*pi**3/gamma(1/4)**4)', 15) # # Endpoints causing trouble (rounding error in integration points -> complex log) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 17, chop=True) == NS(2, 17) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 20, chop=True) == NS(2, 20) assert NS( 2 + Integral(log(2*cos(x/2)), (x, -pi, pi)), 22, chop=True) == NS(2, 22) # Needs zero handling assert NS(pi - 4*Integral( 'sqrt(1-x**2)', (x, 0, 1)), 15, maxn=30, chop=True) in ('0.0', '0') # Oscillatory quadrature a = Integral(sin(x)/x**2, (x, 1, oo)).evalf(maxn=15) assert 0.49 < a < 0.51 assert NS( Integral(sin(x)/x**2, (x, 1, oo)), quad='osc') == '0.504067061906928' assert NS(Integral( cos(pi*x + 1)/x, (x, -oo, -1)), quad='osc') == '0.276374705640365' # indefinite integrals aren't evaluated assert NS(Integral(x, x)) == 'Integral(x, x)' assert NS(Integral(x, (x, y))) == 'Integral(x, (x, y))' def test_evalf_issue_939(): # https://github.com/sympy/sympy/issues/4038 # The output form of an integral may differ by a step function between # revisions, making this test a bit useless. This can't be said about # other two tests. For now, all values of this evaluation are used here, # but in future this should be reconsidered. assert NS(integrate(1/(x**5 + 1), x).subs(x, 4), chop=True) in \ ['-0.000976138910649103', '0.965906660135753', '1.93278945918216'] assert NS(Integral(1/(x**5 + 1), (x, 2, 4))) == '0.0144361088886740' assert NS( integrate(1/(x**5 + 1), (x, 2, 4)), chop=True) == '0.0144361088886740' def test_double_previously_failing_integrals(): # Double integrals not implemented <- Sure it is! res = integrate(sqrt(x) + x*y, (x, 1, 2), (y, -1, 1)) # Old numerical test assert NS(res, 15) == '2.43790283299492' # Symbolic test assert res == Rational(-4, 3) + 8*sqrt(2)/3 # double integral + zero detection assert integrate(sin(x + x*y), (x, -1, 1), (y, -1, 1)) is S.Zero def test_integrate_SingularityFunction(): in_1 = SingularityFunction(x, a, 3) + SingularityFunction(x, 5, -1) out_1 = SingularityFunction(x, a, 4)/4 + SingularityFunction(x, 5, 0) assert integrate(in_1, x) == out_1 in_2 = 10*SingularityFunction(x, 4, 0) - 5*SingularityFunction(x, -6, -2) out_2 = 10*SingularityFunction(x, 4, 1) - 5*SingularityFunction(x, -6, -1) assert integrate(in_2, x) == out_2 in_3 = 2*x**2*y -10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -2) out_3_1 = 2*x**3*y/3 - 2*x*SingularityFunction(y, 10, -2) - 5*SingularityFunction(x, -4, 8)/4 out_3_2 = x**2*y**2 - 10*y*SingularityFunction(x, -4, 7) - 2*SingularityFunction(y, 10, -1) assert integrate(in_3, x) == out_3_1 assert integrate(in_3, y) == out_3_2 assert unchanged(Integral, in_3, (x,)) assert Integral(in_3, x) == Integral(in_3, (x,)) assert Integral(in_3, x).doit() == out_3_1 in_4 = 10*SingularityFunction(x, -4, 7) - 2*SingularityFunction(x, 10, -2) out_4 = 5*SingularityFunction(x, -4, 8)/4 - 2*SingularityFunction(x, 10, -1) assert integrate(in_4, (x, -oo, x)) == out_4 assert integrate(SingularityFunction(x, 5, -1), x) == SingularityFunction(x, 5, 0) assert integrate(SingularityFunction(x, 0, -1), (x, -oo, oo)) == 1 assert integrate(5*SingularityFunction(x, 5, -1), (x, -oo, oo)) == 5 assert integrate(SingularityFunction(x, 5, -1) * f(x), (x, -oo, oo)) == f(5) def test_integrate_DiracDelta(): # This is here to check that deltaintegrate is being called, but also # to test definite integrals. More tests are in test_deltafunctions.py assert integrate(DiracDelta(x) * f(x), (x, -oo, oo)) == f(0) assert integrate(DiracDelta(x)**2, (x, -oo, oo)) == DiracDelta(0) # issue 4522 assert integrate(integrate((4 - 4*x + x*y - 4*y) * \ DiracDelta(x)*DiracDelta(y - 1), (x, 0, 1)), (y, 0, 1)) == 0 # issue 5729 p = exp(-(x**2 + y**2))/pi assert integrate(p*DiracDelta(x - 10*y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(x - 10*y), (y, -oo, oo), (x, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (x, -oo, oo), (y, -oo, oo)) == \ integrate(p*DiracDelta(10*x - y), (y, -oo, oo), (x, -oo, oo)) == \ 1/sqrt(101*pi) def test_integrate_returns_piecewise(): assert integrate(x**y, x) == Piecewise( (x**(y + 1)/(y + 1), Ne(y, -1)), (log(x), True)) assert integrate(x**y, y) == Piecewise( (x**y/log(x), Ne(log(x), 0)), (y, True)) assert integrate(exp(n*x), x) == Piecewise( (exp(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(x*exp(n*x), x) == Piecewise( ((n*x - 1)*exp(n*x)/n**2, Ne(n**2, 0)), (x**2/2, True)) assert integrate(x**(n*y), x) == Piecewise( (x**(n*y + 1)/(n*y + 1), Ne(n*y, -1)), (log(x), True)) assert integrate(x**(n*y), y) == Piecewise( (x**(n*y)/(n*log(x)), Ne(n*log(x), 0)), (y, True)) assert integrate(cos(n*x), x) == Piecewise( (sin(n*x)/n, Ne(n, 0)), (x, True)) assert integrate(cos(n*x)**2, x) == Piecewise( ((n*x/2 + sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (x, True)) assert integrate(x*cos(n*x), x) == Piecewise( (x*sin(n*x)/n + cos(n*x)/n**2, Ne(n, 0)), (x**2/2, True)) assert integrate(sin(n*x), x) == Piecewise( (-cos(n*x)/n, Ne(n, 0)), (0, True)) assert integrate(sin(n*x)**2, x) == Piecewise( ((n*x/2 - sin(n*x)*cos(n*x)/2)/n, Ne(n, 0)), (0, True)) assert integrate(x*sin(n*x), x) == Piecewise( (-x*cos(n*x)/n + sin(n*x)/n**2, Ne(n, 0)), (0, True)) assert integrate(exp(x*y), (x, 0, z)) == Piecewise( (exp(y*z)/y - 1/y, (y > -oo) & (y < oo) & Ne(y, 0)), (z, True)) def test_integrate_max_min(): x = symbols('x', real=True) assert integrate(Min(x, 2), (x, 0, 3)) == 4 assert integrate(Max(x**2, x**3), (x, 0, 2)) == Rational(49, 12) assert integrate(Min(exp(x), exp(-x))**2, x) == Piecewise( \ (exp(2*x)/2, x <= 0), (1 - exp(-2*x)/2, True)) # issue 7907 c = symbols('c', extended_real=True) int1 = integrate(Max(c, x)*exp(-x**2), (x, -oo, oo)) int2 = integrate(c*exp(-x**2), (x, -oo, c)) int3 = integrate(x*exp(-x**2), (x, c, oo)) assert int1 == int2 + int3 == sqrt(pi)*c*erf(c)/2 + \ sqrt(pi)*c/2 + exp(-c**2)/2 def test_integrate_Abs_sign(): assert integrate(Abs(x), (x, -2, 1)) == Rational(5, 2) assert integrate(Abs(x), (x, 0, 1)) == S.Half assert integrate(Abs(x + 1), (x, 0, 1)) == Rational(3, 2) assert integrate(Abs(x**2 - 1), (x, -2, 2)) == 4 assert integrate(Abs(x**2 - 3*x), (x, -15, 15)) == 2259 assert integrate(sign(x), (x, -1, 2)) == 1 assert integrate(sign(x)*sin(x), (x, -pi, pi)) == 4 assert integrate(sign(x - 2) * x**2, (x, 0, 3)) == Rational(11, 3) t, s = symbols('t s', real=True) assert integrate(Abs(t), t) == Piecewise( (-t**2/2, t <= 0), (t**2/2, True)) assert integrate(Abs(2*t - 6), t) == Piecewise( (-t**2 + 6*t, t <= 3), (t**2 - 6*t + 18, True)) assert (integrate(abs(t - s**2), (t, 0, 2)) == 2*s**2*Min(2, s**2) - 2*s**2 - Min(2, s**2)**2 + 2) assert integrate(exp(-Abs(t)), t) == Piecewise( (exp(t), t <= 0), (2 - exp(-t), True)) assert integrate(sign(2*t - 6), t) == Piecewise( (-t, t < 3), (t - 6, True)) assert integrate(2*t*sign(t**2 - 1), t) == Piecewise( (t**2, t < -1), (-t**2 + 2, t < 1), (t**2, True)) assert integrate(sign(t), (t, s + 1)) == Piecewise( (s + 1, s + 1 > 0), (-s - 1, s + 1 < 0), (0, True)) def test_subs1(): e = Integral(exp(x - y), x) assert e.subs(y, 3) == Integral(exp(x - 3), x) e = Integral(exp(x - y), (x, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo)) def test_subs2(): e = Integral(exp(x - y), x, t) assert e.subs(y, 3) == Integral(exp(x - 3), x, t) e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs3(): e = Integral(exp(x - y), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x - 3), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs4(): e = Integral(exp(x), (x, 0, y), (t, y, 1)) assert e.subs(y, 3) == Integral(exp(x), (x, 0, 3), (t, 3, 1)) f = Lambda(x, exp(-x**2)) conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1)) assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1)) def test_subs5(): e = Integral(exp(-x**2), (x, -oo, oo)) assert e.subs(x, 5) == e e = Integral(exp(-x**2 + y), x) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (x, x)) assert e.subs(x, 5) == Integral(exp(y - x**2), (x, 5)) assert e.subs(y, 5) == Integral(exp(-x**2 + 5), x) e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo)) assert e.subs(x, 5) == e assert e.subs(y, 5) == e # Test evaluation of antiderivatives e = Integral(exp(-x**2), (x, x)) assert e.subs(x, 5) == Integral(exp(-x**2), (x, 5)) e = Integral(exp(x), x) assert (e.subs(x,1) - e.subs(x,0) - Integral(exp(x), (x, 0, 1)) ).doit().is_zero def test_subs6(): a, b = symbols('a b') e = Integral(x*y, (x, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y))) assert e.subs(y, 1) == Integral(x, (x, f(x), f(1))) e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y))) assert e.subs(x, 1) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y))) assert e.subs(y, 1) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1))) e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a))) assert e.subs(a, 1) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1))) def test_subs7(): e = Integral(x, (x, 1, y), (y, 1, 2)) assert e.subs({x: 1, y: 2}) == e e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)), (y, 1, 2)) assert e.subs(sin(y), 1) == e assert e.subs(sin(x), 1) == Integral(sin(x) + sin(y), (x, 1, sin(y)), (y, 1, 2)) def test_expand(): e = Integral(f(x)+f(x**2), (x, 1, y)) assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y)) def test_integration_variable(): raises(ValueError, lambda: Integral(exp(-x**2), 3)) raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo))) def test_expand_integral(): assert Integral(cos(x**2)*(sin(x**2) + 1), (x, 0, 1)).expand() == \ Integral(cos(x**2)*sin(x**2), (x, 0, 1)) + \ Integral(cos(x**2), (x, 0, 1)) assert Integral(cos(x**2)*(sin(x**2) + 1), x).expand() == \ Integral(cos(x**2)*sin(x**2), x) + \ Integral(cos(x**2), x) def test_as_sum_midpoint1(): e = Integral(sqrt(x**3 + 1), (x, 2, 10)) assert e.as_sum(1, method="midpoint") == 8*sqrt(217) assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57) assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \ 8*sqrt(3081)/27 + 8*sqrt(52809)/27 assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \ 4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14) assert abs(e.as_sum(4, method="midpoint").n() - e.n()) < 0.5 e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10)) raises(NotImplementedError, lambda: e.as_sum(4)) def test_as_sum_midpoint2(): e = Integral((x + y)**2, (x, 0, 1)) n = Symbol('n', positive=True, integer=True) assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2 assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2 assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2 assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2 assert e.as_sum(n, method="midpoint").expand() == \ y**2 + y + Rational(1, 3) - 1/(12*n**2) def test_as_sum_left(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="left").expand() == y**2 assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2 assert e.as_sum(3, method="left").expand() == Rational(5, 27) + y*Rational(2, 3) + y**2 assert e.as_sum(4, method="left").expand() == Rational(7, 32) + y*Rational(3, 4) + y**2 assert e.as_sum(n, method="left").expand() == \ y**2 + y + Rational(1, 3) - y/n - 1/(2*n) + 1/(6*n**2) assert e.as_sum(10, method="left", evaluate=False).has(Sum) def test_as_sum_right(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2 assert e.as_sum(2, method="right").expand() == Rational(5, 8) + y*Rational(3, 2) + y**2 assert e.as_sum(3, method="right").expand() == Rational(14, 27) + y*Rational(4, 3) + y**2 assert e.as_sum(4, method="right").expand() == Rational(15, 32) + y*Rational(5, 4) + y**2 assert e.as_sum(n, method="right").expand() == \ y**2 + y + Rational(1, 3) + y/n + 1/(2*n) + 1/(6*n**2) def test_as_sum_trapezoid(): e = Integral((x + y)**2, (x, 0, 1)) assert e.as_sum(1, method="trapezoid").expand() == y**2 + y + S.Half assert e.as_sum(2, method="trapezoid").expand() == y**2 + y + Rational(3, 8) assert e.as_sum(3, method="trapezoid").expand() == y**2 + y + Rational(19, 54) assert e.as_sum(4, method="trapezoid").expand() == y**2 + y + Rational(11, 32) assert e.as_sum(n, method="trapezoid").expand() == \ y**2 + y + Rational(1, 3) + 1/(6*n**2) assert Integral(sign(x), (x, 0, 1)).as_sum(1, 'trapezoid') == S.Half def test_as_sum_raises(): e = Integral((x + y)**2, (x, 0, 1)) raises(ValueError, lambda: e.as_sum(-1)) raises(ValueError, lambda: e.as_sum(0)) raises(ValueError, lambda: Integral(x).as_sum(3)) raises(ValueError, lambda: e.as_sum(oo)) raises(ValueError, lambda: e.as_sum(3, method='xxxx2')) def test_nested_doit(): e = Integral(Integral(x, x), x) f = Integral(x, x, x) assert e.doit() == f.doit() def test_issue_4665(): # Allow only upper or lower limit evaluation e = Integral(x**2, (x, None, 1)) f = Integral(x**2, (x, 1, None)) assert e.doit() == Rational(1, 3) assert f.doit() == Rational(-1, 3) assert Integral(x*y, (x, None, y)).subs(y, t) == Integral(x*t, (x, None, t)) assert Integral(x*y, (x, y, None)).subs(y, t) == Integral(x*t, (x, t, None)) assert integrate(x**2, (x, None, 1)) == Rational(1, 3) assert integrate(x**2, (x, 1, None)) == Rational(-1, 3) assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3) def test_integral_reconstruct(): e = Integral(x**2, (x, -1, 1)) assert e == Integral(*e.args) def test_doit_integrals(): e = Integral(Integral(2*x), (x, 0, 1)) assert e.doit() == Rational(1, 3) assert e.doit(deep=False) == Rational(1, 3) f = Function('f') # doesn't matter if the integral can't be performed assert Integral(f(x), (x, 1, 1)).doit() == 0 # doesn't matter if the limits can't be evaluated assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0 assert Integral(x, (a, 0)).doit() == 0 limits = ((a, 1, exp(x)), (x, 0)) assert Integral(a, *limits).doit() == Rational(1, 4) assert Integral(a, *list(reversed(limits))).doit() == 0 def test_issue_4884(): assert integrate(sqrt(x)*(1 + x)) == \ Piecewise( (2*sqrt(x)*(x + 1)**2/5 - 2*sqrt(x)*(x + 1)/15 - 4*sqrt(x)/15, Abs(x + 1) > 1), (2*I*sqrt(-x)*(x + 1)**2/5 - 2*I*sqrt(-x)*(x + 1)/15 - 4*I*sqrt(-x)/15, True)) assert integrate(x**x*(1 + log(x))) == x**x def test_issue_18153(): assert integrate(x**n*log(x),x) == \ Piecewise( (n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - x*x**n/(n**2 + 2*n + 1) , Ne(n, -1)), (log(x)**2/2, True) ) def test_is_number(): from sympy.abc import x, y, z from sympy import cos, sin assert Integral(x).is_number is False assert Integral(1, x).is_number is False assert Integral(1, (x, 1)).is_number is True assert Integral(1, (x, 1, 2)).is_number is True assert Integral(1, (x, 1, y)).is_number is False assert Integral(1, (x, y)).is_number is False assert Integral(x, y).is_number is False assert Integral(x, (y, 1, x)).is_number is False assert Integral(x, (y, 1, 2)).is_number is False assert Integral(x, (x, 1, 2)).is_number is True # `foo.is_number` should always be equivalent to `not foo.free_symbols` # in each of these cases, there are pseudo-free symbols i = Integral(x, (y, 1, 1)) assert i.is_number is False and i.n() == 0 i = Integral(x, (y, z, z)) assert i.is_number is False and i.n() == 0 i = Integral(1, (y, z, z + 2)) assert i.is_number is False and i.n() == 2 assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False assert Integral(x, (x, 1)).is_number is True assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True # it is possible to get a false negative if the integrand is # actually an unsimplified zero, but this is true of is_number in general. assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False assert Integral(f(x), (x, 0, 1)).is_number is True def test_symbols(): from sympy.abc import x, y, z assert Integral(0, x).free_symbols == {x} assert Integral(x).free_symbols == {x} assert Integral(x, (x, None, y)).free_symbols == {y} assert Integral(x, (x, y, None)).free_symbols == {y} assert Integral(x, (x, 1, y)).free_symbols == {y} assert Integral(x, (x, y, 1)).free_symbols == {y} assert Integral(x, (x, x, y)).free_symbols == {x, y} assert Integral(x, x, y).free_symbols == {x, y} assert Integral(x, (x, 1, 2)).free_symbols == set() assert Integral(x, (y, 1, 2)).free_symbols == {x} # pseudo-free in this case assert Integral(x, (y, z, z)).free_symbols == {x, z} assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y} assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y} assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set() assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \ {x} def test_is_zero(): from sympy.abc import x, m assert Integral(0, (x, 1, x)).is_zero assert Integral(1, (x, 1, 1)).is_zero assert Integral(1, (x, 1, 2), (y, 2)).is_zero is False assert Integral(x, (m, 0)).is_zero assert Integral(x + m, (m, 0)).is_zero is None i = Integral(m, (m, 1, exp(x)), (x, 0)) assert i.is_zero is None assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero is True assert Integral(x, (x, oo, oo)).is_zero # issue 8171 assert Integral(x, (x, -oo, -oo)).is_zero # this is zero but is beyond the scope of what is_zero # should be doing assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None def test_series(): from sympy.abc import x i = Integral(cos(x), (x, x)) e = i.lseries(x) assert i.nseries(x, n=8).removeO() == Add(*[next(e) for j in range(4)]) def test_trig_nonelementary_integrals(): x = Symbol('x') assert integrate((1 + sin(x))/x, x) == log(x) + Si(x) # next one comes out as log(x) + log(x**2)/2 + Ci(x) # so not hardcoding this log ugliness assert integrate((cos(x) + 2)/x, x).has(Ci) def test_issue_4403(): x = Symbol('x') y = Symbol('y') z = Symbol('z', positive=True) assert integrate(sqrt(x**2 + z**2), x) == \ z**2*asinh(x/z)/2 + x*sqrt(x**2 + z**2)/2 assert integrate(sqrt(x**2 - z**2), x) == \ -z**2*acosh(x/z)/2 + x*sqrt(x**2 - z**2)/2 x = Symbol('x', real=True) y = Symbol('y', positive=True) assert integrate(1/(x**2 + y**2)**S('3/2'), x) == \ x/(y**2*sqrt(x**2 + y**2)) # If y is real and nonzero, we get x*Abs(y)/(y**3*sqrt(x**2 + y**2)), # which results from sqrt(1 + x**2/y**2) = sqrt(x**2 + y**2)/|y|. def test_issue_4403_2(): assert integrate(sqrt(-x**2 - 4), x) == \ -2*atan(x/sqrt(-4 - x**2)) + x*sqrt(-4 - x**2)/2 def test_issue_4100(): R = Symbol('R', positive=True) assert integrate(sqrt(R**2 - x**2), (x, 0, R)) == pi*R**2/4 def test_issue_5167(): from sympy.abc import w, x, y, z f = Function('f') assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x) assert Integral(f(x)).args == (f(x), Tuple(x)) assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x)) assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y)) assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y)) assert Integral(Integral(Integral(f(x), x), y), z).args == \ (f(x), Tuple(x), Tuple(y), Tuple(z)) assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x) assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x) assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)] assert integrate(Integral(2, x), x) == x**2 assert integrate(Integral(2, x), y) == 2*x*y # don't re-order given limits assert Integral(1, x, y).args != Integral(1, y, x).args # do as many as possible assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2 assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \ y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2)) def test_issue_4890(): z = Symbol('z', positive=True) assert integrate(exp(-log(x)**2), x) == \ sqrt(pi)*exp(Rational(1, 4))*erf(log(x) - S.Half)/2 assert integrate(exp(log(x)**2), x) == \ sqrt(pi)*exp(Rational(-1, 4))*erfi(log(x)+S.Half)/2 assert integrate(exp(-z*log(x)**2), x) == \ sqrt(pi)*exp(1/(4*z))*erf(sqrt(z)*log(x) - 1/(2*sqrt(z)))/(2*sqrt(z)) def test_issue_4551(): assert not integrate(1/(x*sqrt(1 - x**2)), x).has(Integral) def test_issue_4376(): n = Symbol('n', integer=True, positive=True) assert simplify(integrate(n*(x**(1/n) - 1), (x, 0, S.Half)) - (n**2 - 2**(1/n)*n**2 - n*2**(1/n))/(2**(1 + 1/n) + n*2**(1 + 1/n))) == 0 def test_issue_4517(): assert integrate((sqrt(x) - x**3)/x**Rational(1, 3), x) == \ 6*x**Rational(7, 6)/7 - 3*x**Rational(11, 3)/11 def test_issue_4527(): k, m = symbols('k m', integer=True) assert integrate(sin(k*x)*sin(m*x), (x, 0, pi)).simplify() == \ Piecewise((0, Eq(k, 0) | Eq(m, 0)), (-pi/2, Eq(k, -m) | (Eq(k, 0) & Eq(m, 0))), (pi/2, Eq(k, m) | (Eq(k, 0) & Eq(m, 0))), (0, True)) # Should be possible to further simplify to: # Piecewise( # (0, Eq(k, 0) | Eq(m, 0)), # (-pi/2, Eq(k, -m)), # (pi/2, Eq(k, m)), # (0, True)) assert integrate(sin(k*x)*sin(m*x), (x,)) == Piecewise( (0, And(Eq(k, 0), Eq(m, 0))), (-x*sin(m*x)**2/2 - x*cos(m*x)**2/2 + sin(m*x)*cos(m*x)/(2*m), Eq(k, -m)), (x*sin(m*x)**2/2 + x*cos(m*x)**2/2 - sin(m*x)*cos(m*x)/(2*m), Eq(k, m)), (m*sin(k*x)*cos(m*x)/(k**2 - m**2) - k*sin(m*x)*cos(k*x)/(k**2 - m**2), True)) def test_issue_4199(): ypos = Symbol('y', positive=True) # TODO: Remove conds='none' below, let the assumption take care of it. assert integrate(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo), conds='none') == \ Integral(exp(-I*2*pi*ypos*x)*x, (x, -oo, oo)) @slow def test_issue_3940(): a, b, c, d = symbols('a:d', positive=True, finite=True) assert integrate(exp(-x**2 + I*c*x), x) == \ -sqrt(pi)*exp(-c**2/4)*erf(I*c/2 - x)/2 assert integrate(exp(a*x**2 + b*x + c), x) == \ sqrt(pi)*exp(c)*exp(-b**2/(4*a))*erfi(sqrt(a)*x + b/(2*sqrt(a)))/(2*sqrt(a)) from sympy import expand_mul from sympy.abc import k assert expand_mul(integrate(exp(-x**2)*exp(I*k*x), (x, -oo, oo))) == \ sqrt(pi)*exp(-k**2/4) a, d = symbols('a d', positive=True) assert expand_mul(integrate(exp(-a*x**2 + 2*d*x), (x, -oo, oo))) == \ sqrt(pi)*exp(d**2/a)/sqrt(a) def test_issue_5413(): # Note that this is not the same as testing ratint() because integrate() # pulls out the coefficient. assert integrate(-a/(a**2 + x**2), x) == I*log(-I*a + x)/2 - I*log(I*a + x)/2 def test_issue_4892a(): A, z = symbols('A z') c = Symbol('c', nonzero=True) P1 = -A*exp(-z) P2 = -A/(c*t)*(sin(x)**2 + cos(y)**2) h1 = -sin(x)**2 - cos(y)**2 h2 = -sin(x)**2 + sin(y)**2 - 1 # there is still some non-deterministic behavior in integrate # or trigsimp which permits one of the following assert integrate(c*(P2 - P1), t) in [ c*(-A*(-h1)*log(c*t)/c + A*t*exp(-z)), c*(-A*(-h2)*log(c*t)/c + A*t*exp(-z)), c*( A* h1 *log(c*t)/c + A*t*exp(-z)), c*( A* h2 *log(c*t)/c + A*t*exp(-z)), (A*c*t - A*(-h1)*log(t)*exp(z))*exp(-z), (A*c*t - A*(-h2)*log(t)*exp(z))*exp(-z), ] def test_issue_4892b(): # Issues relating to issue 4596 are making the actual result of this hard # to test. The answer should be something like # # (-sin(y) + sqrt(-72 + 48*cos(y) - 8*cos(y)**2)/2)*log(x + sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/(2*(3 - cos(y)))) + (-sin(y) - sqrt(-72 + # 48*cos(y) - 8*cos(y)**2)/2)*log(x - sqrt(-72 + 48*cos(y) - # 8*cos(y)**2)/(2*(3 - cos(y)))) + x**2*sin(y)/2 + 2*x*cos(y) expr = (sin(y)*x**3 + 2*cos(y)*x**2 + 12)/(x**2 + 2) assert trigsimp(factor(integrate(expr, x).diff(x) - expr)) == 0 def test_issue_5178(): assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \ 2*Integral(f(y, z), (y, 0, pi), (z, 0, pi)) def test_integrate_series(): f = sin(x).series(x, 0, 10) g = x**2/2 - x**4/24 + x**6/720 - x**8/40320 + x**10/3628800 + O(x**11) assert integrate(f, x) == g assert diff(integrate(f, x), x) == f assert integrate(O(x**5), x) == O(x**6) def test_atom_bug(): from sympy import meijerg from sympy.integrals.heurisch import heurisch assert heurisch(meijerg([], [], [1], [], x), x) is None def test_limit_bug(): z = Symbol('z', zero=False) assert integrate(sin(x*y*z), (x, 0, pi), (y, 0, pi)) == \ (log(z) + EulerGamma + log(pi))/z - Ci(pi**2*z)/z + log(pi)/z def test_issue_4703(): g = Function('g') assert integrate(exp(x)*g(x), x).has(Integral) def test_issue_1888(): f = Function('f') assert integrate(f(x).diff(x)**2, x).has(Integral) # The following tests work using meijerint. def test_issue_3558(): from sympy import Si assert integrate(cos(x*y), (x, -pi/2, pi/2), (y, 0, pi)) == 2*Si(pi**2/2) def test_issue_4422(): assert integrate(1/sqrt(16 + 4*x**2), x) == asinh(x/2) / 2 def test_issue_4493(): from sympy import simplify assert simplify(integrate(x*sqrt(1 + 2*x), x)) == \ sqrt(2*x + 1)*(6*x**2 + x - 1)/15 def test_issue_4737(): assert integrate(sin(x)/x, (x, -oo, oo)) == pi assert integrate(sin(x)/x, (x, 0, oo)) == pi/2 assert integrate(sin(x)/x, x) == Si(x) def test_issue_4992(): # Note: psi in _check_antecedents becomes NaN. from sympy import simplify, expand_func, polygamma, gamma a = Symbol('a', positive=True) assert simplify(expand_func(integrate(exp(-x)*log(x)*x**a, (x, 0, oo)))) == \ (a*polygamma(0, a) + 1)*gamma(a) def test_issue_4487(): from sympy import lowergamma, simplify assert simplify(integrate(exp(-x)*x**y, x)) == lowergamma(y + 1, x) def test_issue_4215(): x = Symbol("x") assert integrate(1/(x**2), (x, -1, 1)) is oo def test_issue_4400(): n = Symbol('n', integer=True, positive=True) assert integrate((x**n)*log(x), x) == \ n*x*x**n*log(x)/(n**2 + 2*n + 1) + x*x**n*log(x)/(n**2 + 2*n + 1) - \ x*x**n/(n**2 + 2*n + 1) def test_issue_6253(): # Note: this used to raise NotImplementedError # Note: psi in _check_antecedents becomes NaN. assert integrate((sqrt(1 - x) + sqrt(1 + x))**2/x, x, meijerg=True) == \ Integral((sqrt(-x + 1) + sqrt(x + 1))**2/x, x) def test_issue_4153(): assert integrate(1/(1 + x + y + z), (x, 0, 1), (y, 0, 1), (z, 0, 1)) in [ -12*log(3) - 3*log(6)/2 + 3*log(8)/2 + 5*log(2) + 7*log(4), 6*log(2) + 8*log(4) - 27*log(3)/2, 22*log(2) - 27*log(3)/2, -12*log(3) - 3*log(6)/2 + 47*log(2)/2] def test_issue_4326(): R, b, h = symbols('R b h') # It doesn't matter if we can do the integral. Just make sure the result # doesn't contain nan. This is really a test against _eval_interval. e = integrate(((h*(x - R + b))/b)*sqrt(R**2 - x**2), (x, R - b, R)) assert not e.has(nan) # See that it evaluates assert not e.has(Integral) def test_powers(): assert integrate(2**x + 3**x, x) == 2**x/log(2) + 3**x/log(3) def test_manual_option(): raises(ValueError, lambda: integrate(1/x, x, manual=True, meijerg=True)) # an example of a function that manual integration cannot handle assert integrate(log(1+x)/x, (x, 0, 1), manual=True).has(Integral) def test_meijerg_option(): raises(ValueError, lambda: integrate(1/x, x, meijerg=True, risch=True)) # an example of a function that meijerg integration cannot handle assert integrate(tan(x), x, meijerg=True) == Integral(tan(x), x) def test_risch_option(): # risch=True only allowed on indefinite integrals raises(ValueError, lambda: integrate(1/log(x), (x, 0, oo), risch=True)) assert integrate(exp(-x**2), x, risch=True) == NonElementaryIntegral(exp(-x**2), x) assert integrate(log(1/x)*y, x, y, risch=True) == y**2*(x*log(1/x)/2 + x/2) assert integrate(erf(x), x, risch=True) == Integral(erf(x), x) # TODO: How to test risch=False? def test_heurisch_option(): raises(ValueError, lambda: integrate(1/x, x, risch=True, heurisch=True)) # an integral that heurisch can handle assert integrate(exp(x**2), x, heurisch=True) == sqrt(pi)*erfi(x)/2 # an integral that heurisch currently cannot handle assert integrate(exp(x)/x, x, heurisch=True) == Integral(exp(x)/x, x) # an integral where heurisch currently hangs, issue 15471 assert integrate(log(x)*cos(log(x))/x**Rational(3, 4), x, heurisch=False) == ( -128*x**Rational(1, 4)*sin(log(x))/289 + 240*x**Rational(1, 4)*cos(log(x))/289 + (16*x**Rational(1, 4)*sin(log(x))/17 + 4*x**Rational(1, 4)*cos(log(x))/17)*log(x)) def test_issue_6828(): f = 1/(1.08*x**2 - 4.3) g = integrate(f, x).diff(x) assert verify_numerically(f, g, tol=1e-12) def test_issue_4803(): x_max = Symbol("x_max") assert integrate(y/pi*exp(-(x_max - x)/cos(a)), x) == \ y*exp((x - x_max)/cos(a))*cos(a)/pi def test_issue_4234(): assert integrate(1/sqrt(1 + tan(x)**2)) == tan(x)/sqrt(1 + tan(x)**2) def test_issue_4492(): assert simplify(integrate(x**2 * sqrt(5 - x**2), x)) == Piecewise( (I*(2*x**5 - 15*x**3 + 25*x - 25*sqrt(x**2 - 5)*acosh(sqrt(5)*x/5)) / (8*sqrt(x**2 - 5)), 1 < Abs(x**2)/5), ((-2*x**5 + 15*x**3 - 25*x + 25*sqrt(-x**2 + 5)*asin(sqrt(5)*x/5)) / (8*sqrt(-x**2 + 5)), True)) def test_issue_2708(): # This test needs to use an integration function that can # not be evaluated in closed form. Update as needed. f = 1/(a + z + log(z)) integral_f = NonElementaryIntegral(f, (z, 2, 3)) assert Integral(f, (z, 2, 3)).doit() == integral_f assert integrate(f + exp(z), (z, 2, 3)) == integral_f - exp(2) + exp(3) assert integrate(2*f + exp(z), (z, 2, 3)) == \ 2*integral_f - exp(2) + exp(3) assert integrate(exp(1.2*n*s*z*(-t + z)/t), (z, 0, x)) == \ NonElementaryIntegral(exp(-1.2*n*s*z)*exp(1.2*n*s*z**2/t), (z, 0, x)) def test_issue_2884(): f = (4.000002016020*x + 4.000002016020*y + 4.000006024032)*exp(10.0*x) e = integrate(f, (x, 0.1, 0.2)) assert str(e) == '1.86831064982608*y + 2.16387491480008' def test_issue_8368(): assert integrate(exp(-s*x)*cosh(x), (x, 0, oo)) == \ Piecewise( ( pi*Piecewise( ( -s/(pi*(-s**2 + 1)), Abs(s**2) < 1), ( 1/(pi*s*(1 - 1/s**2)), Abs(s**(-2)) < 1), ( meijerg( ((S.Half,), (0, 0)), ((0, S.Half), (0,)), polar_lift(s)**2), True) ), And( Abs(periodic_argument(polar_lift(s)**2, oo)) < pi, cos(Abs(periodic_argument(polar_lift(s)**2, oo))/2)*sqrt(Abs(s**2)) - 1 > 0, Ne(s**2, 1)) ), ( Integral(exp(-s*x)*cosh(x), (x, 0, oo)), True)) assert integrate(exp(-s*x)*sinh(x), (x, 0, oo)) == \ Piecewise( ( -1/(s + 1)/2 - 1/(-s + 1)/2, And( Ne(1/s, 1), Abs(periodic_argument(s, oo)) < pi/2, Abs(periodic_argument(s, oo)) <= pi/2, cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1 > 0)), ( Integral(exp(-s*x)*sinh(x), (x, 0, oo)), True)) def test_issue_8901(): assert integrate(sinh(1.0*x)) == 1.0*cosh(1.0*x) assert integrate(tanh(1.0*x)) == 1.0*x - 1.0*log(tanh(1.0*x) + 1) assert integrate(tanh(x)) == x - log(tanh(x) + 1) @slow def test_issue_8945(): assert integrate(sin(x)**3/x, (x, 0, 1)) == -Si(3)/4 + 3*Si(1)/4 assert integrate(sin(x)**3/x, (x, 0, oo)) == pi/4 assert integrate(cos(x)**2/x**2, x) == -Si(2*x) - cos(2*x)/(2*x) - 1/(2*x) @slow def test_issue_7130(): if ON_TRAVIS: skip("Too slow for travis.") i, L, a, b = symbols('i L a b') integrand = (cos(pi*i*x/L)**2 / (a + b*x)).rewrite(exp) assert x not in integrate(integrand, (x, 0, L)).free_symbols def test_issue_10567(): a, b, c, t = symbols('a b c t') vt = Matrix([a*t, b, c]) assert integrate(vt, t) == Integral(vt, t).doit() assert integrate(vt, t) == Matrix([[a*t**2/2], [b*t], [c*t]]) def test_issue_11856(): t = symbols('t') assert integrate(sinc(pi*t), t) == Si(pi*t)/pi @slow def test_issue_11876(): assert integrate(sqrt(log(1/x)), (x, 0, 1)) == sqrt(pi)/2 def test_issue_4950(): assert integrate((-60*exp(x) - 19.2*exp(4*x))*exp(4*x), x) ==\ -2.4*exp(8*x) - 12.0*exp(5*x) def test_issue_4968(): assert integrate(sin(log(x**2))) == x*sin(2*log(x))/5 - 2*x*cos(2*log(x))/5 def test_singularities(): assert integrate(1/x**2, (x, -oo, oo)) is oo assert integrate(1/x**2, (x, -1, 1)) is oo assert integrate(1/(x - 1)**2, (x, -2, 2)) is oo assert integrate(1/x**2, (x, 1, -1)) is -oo assert integrate(1/(x - 1)**2, (x, 2, -2)) is -oo def test_issue_12645(): x, y = symbols('x y', real=True) assert (integrate(sin(x*x*x + y*y), (x, -sqrt(pi - y*y), sqrt(pi - y*y)), (y, -sqrt(pi), sqrt(pi))) == Integral(sin(x**3 + y**2), (x, -sqrt(-y**2 + pi), sqrt(-y**2 + pi)), (y, -sqrt(pi), sqrt(pi)))) def test_issue_12677(): assert integrate(sin(x) / (cos(x)**3) , (x, 0, pi/6)) == Rational(1,6) def test_issue_14078(): assert integrate((cos(3*x)-cos(x))/x, (x, 0, oo)) == -log(3) def test_issue_14064(): assert integrate(1/cosh(x), (x, 0, oo)) == pi/2 def test_issue_14027(): assert integrate(1/(1 + exp(x - S.Half)/(1 + exp(x))), x) == \ x - exp(S.Half)*log(exp(x) + exp(S.Half)/(1 + exp(S.Half)))/(exp(S.Half) + E) def test_issue_8170(): assert integrate(tan(x), (x, 0, pi/2)) is S.Infinity def test_issue_8440_14040(): assert integrate(1/x, (x, -1, 1)) is S.NaN assert integrate(1/(x + 1), (x, -2, 3)) is S.NaN def test_issue_14096(): assert integrate(1/(x + y)**2, (x, 0, 1)) == -1/(y + 1) + 1/y assert integrate(1/(1 + x + y + z)**2, (x, 0, 1), (y, 0, 1), (z, 0, 1)) == \ -4*log(4) - 6*log(2) + 9*log(3) def test_issue_14144(): assert Abs(integrate(1/sqrt(1 - x**3), (x, 0, 1)).n() - 1.402182) < 1e-6 assert Abs(integrate(sqrt(1 - x**3), (x, 0, 1)).n() - 0.841309) < 1e-6 def test_issue_14375(): # This raised a TypeError. The antiderivative has exp_polar, which # may be possible to unpolarify, so the exact output is not asserted here. assert integrate(exp(I*x)*log(x), x).has(Ei) def test_issue_14437(): f = Function('f')(x, y, z) assert integrate(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) == \ Integral(f, (x, 0, 1), (y, 0, 2), (z, 0, 3)) def test_issue_14470(): assert integrate(1/sqrt(exp(x) + 1), x) == \ log(-1 + 1/sqrt(exp(x) + 1)) - log(1 + 1/sqrt(exp(x) + 1)) def test_issue_14877(): f = exp(1 - exp(x**2)*x + 2*x**2)*(2*x**3 + x)/(1 - exp(x**2)*x)**2 assert integrate(f, x) == \ -exp(2*x**2 - x*exp(x**2) + 1)/(x*exp(3*x**2) - exp(2*x**2)) def test_issue_14782(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, -1, 1]) == - pi / 8 @slow def test_issue_14782_slow(): f = sqrt(-x**2 + 1)*(-x**2 + x) assert integrate(f, [x, 0, 1]) == S.One / 3 - pi / 16 def test_issue_12081(): f = x**(Rational(-3, 2))*exp(-x) assert integrate(f, [x, 0, oo]) is oo def test_issue_15285(): y = 1/x - 1 f = 4*y*exp(-2*y)/x**2 assert integrate(f, [x, 0, 1]) == 1 def test_issue_15432(): assert integrate(x**n * exp(-x) * log(x), (x, 0, oo)).gammasimp() == Piecewise( (gamma(n + 1)*polygamma(0, n) + gamma(n + 1)/n, re(n) + 1 > 0), (Integral(x**n*exp(-x)*log(x), (x, 0, oo)), True)) def test_issue_15124(): omega = IndexedBase('omega') m, p = symbols('m p', cls=Idx) assert integrate(exp(x*I*(omega[m] + omega[p])), x, conds='none') == \ -I*exp(I*x*omega[m])*exp(I*x*omega[p])/(omega[m] + omega[p]) def test_issue_15218(): assert Eq(x, y).integrate(x) == Eq(x**2/2, x*y) assert Integral(Eq(x, y), x) == Eq(Integral(x, x), Integral(y, x)) assert Integral(Eq(x, y), x).doit() == Eq(x**2/2, x*y) def test_issue_15292(): res = integrate(exp(-x**2*cos(2*t)) * cos(x**2*sin(2*t)), (x, 0, oo)) assert isinstance(res, Piecewise) assert gammasimp((res - sqrt(pi)/2 * cos(t)).subs(t, pi/6)) == 0 def test_issue_4514(): assert integrate(sin(2*x)/sin(x), x) == 2*sin(x) def test_issue_15457(): x, a, b = symbols('x a b', real=True) definite = integrate(exp(Abs(x-2)), (x, a, b)) indefinite = integrate(exp(Abs(x-2)), x) assert definite.subs({a: 1, b: 3}) == -2 + 2*E assert indefinite.subs(x, 3) - indefinite.subs(x, 1) == -2 + 2*E assert definite.subs({a: -3, b: -1}) == -exp(3) + exp(5) assert indefinite.subs(x, -1) - indefinite.subs(x, -3) == -exp(3) + exp(5) def test_issue_15431(): assert integrate(x*exp(x)*log(x), x) == \ (x*exp(x) - exp(x))*log(x) - exp(x) + Ei(x) def test_issue_15640_log_substitutions(): f = x/log(x) F = Ei(2*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = x**3/log(x)**2 F = -x**4/log(x) + 4*Ei(4*log(x)) assert integrate(f, x) == F and F.diff(x) == f f = sqrt(log(x))/x**2 F = -sqrt(pi)*erfc(sqrt(log(x)))/2 - sqrt(log(x))/x assert integrate(f, x) == F and F.diff(x) == f def test_issue_15509(): from sympy.vector import CoordSys3D N = CoordSys3D('N') x = N.x assert integrate(cos(a*x + b), (x, x_1, x_2), heurisch=True) == Piecewise( (-sin(a*x_1 + b)/a + sin(a*x_2 + b)/a, (a > -oo) & (a < oo) & Ne(a, 0)), \ (-x_1*cos(b) + x_2*cos(b), True)) def test_issue_4311_fast(): x = symbols('x', real=True) assert integrate(x*abs(9-x**2), x) == Piecewise( (x**4/4 - 9*x**2/2, x <= -3), (-x**4/4 + 9*x**2/2 - Rational(81, 2), x <= 3), (x**4/4 - 9*x**2/2, True)) def test_integrate_with_complex_constants(): K = Symbol('K', real=True, positive=True) x = Symbol('x', real=True) m = Symbol('m', real=True) assert integrate(exp(-I*K*x**2+m*x), x) == sqrt(I)*sqrt(pi)*exp(-I*m**2 /(4*K))*erfi((-2*I*K*x + m)/(2*sqrt(K)*sqrt(-I)))/(2*sqrt(K)) assert integrate(1/(1 + I*x**2), x) == -sqrt(I)*log(x - sqrt(I))/2 +\ sqrt(I)*log(x + sqrt(I))/2 assert integrate(exp(-I*x**2), x) == sqrt(pi)*erf(sqrt(I)*x)/(2*sqrt(I)) def test_issue_14241(): x = Symbol('x') n = Symbol('n', positive=True, integer=True) assert integrate(n * x ** (n - 1) / (x + 1), x) == \ n**2*x**n*lerchphi(x*exp_polar(I*pi), 1, n)*gamma(n)/gamma(n + 1) def test_issue_13112(): assert integrate(sin(t)**2 / (5 - 4*cos(t)), [t, 0, 2*pi]) == pi / 4 def test_issue_14709b(): h = Symbol('h', positive=True) i = integrate(x*acos(1 - 2*x/h), (x, 0, h)) assert i == 5*h**2*pi/16 def test_issue_8614(): x = Symbol('x') t = Symbol('t') assert integrate(exp(t)/t, (t, -oo, x)) == Ei(x) assert integrate((exp(-x) - exp(-2*x))/x, (x, 0, oo)) == log(2) def test_issue_15494(): s = symbols('s', real=True, positive=True) integrand = (exp(s/2) - 2*exp(1.6*s) + exp(s))*exp(s) solution = integrate(integrand, s) assert solution != S.NaN # Not sure how to test this properly as it is a symbolic expression with floats # assert str(solution) == '0.666666666666667*exp(1.5*s) + 0.5*exp(2.0*s) - 0.769230769230769*exp(2.6*s)' # Maybe assert abs(solution.subs(s, 1) - (-3.67440080236188)) <= 1e-8 integrand = (exp(s/2) - 2*exp(S(8)/5*s) + exp(s))*exp(s) assert integrate(integrand, s) == -10*exp(13*s/5)/13 + 2*exp(3*s/2)/3 + exp(2*s)/2 def test_li_integral(): y = Symbol('y') assert Integral(li(y*x**2), x).doit() == Piecewise( (x*li(x**2*y) - x*Ei(3*log(x) + 3*log(y)/2)/(sqrt(y)*sqrt(x**2)), Ne(y, 0)), (0, True)) def test_issue_17473(): x = Symbol('x') n = Symbol('n') assert integrate(sin(x**n), x) == \ x*x**n*gamma(S(1)/2 + 1/(2*n))*hyper((S(1)/2 + 1/(2*n),), (S(3)/2, S(3)/2 + 1/(2*n)), -x**(2*n)/4)/(2*n*gamma(S(3)/2 + 1/(2*n))) def test_issue_17671(): assert integrate(log(log(x)) / x**2, [x, 1, oo]) == -EulerGamma assert integrate(log(log(x)) / x**3, [x, 1, oo]) == -log(2)/2 - EulerGamma/2 assert integrate(log(log(x)) / x**10, [x, 1, oo]) == -2*log(3)/9 - EulerGamma/9
23530fa1e62cdbb94468b59bb5f448555ef357cbd3118c6254d5a5ee343037f7
# A collection of failing integrals from the issues. from sympy import ( integrate, I, Integral, exp, oo, pi, sign, sqrt, sin, cos, Piecewise, tan, S, log, gamma, sinh, sec, acos, atan, sech, csch, DiracDelta, Rational ) from sympy.utilities.pytest import XFAIL, SKIP, slow, skip, ON_TRAVIS from sympy.abc import x, k, c, y, b, h, a, m, z, n, t @SKIP("Too slow for @slow") @XFAIL def test_issue_3880(): # integrate_hyperexponential(Poly(t*2*(1 - t0**2)*t0*(x**3 + x**2), t), Poly((1 + t0**2)**2*2*(x**2 + x + 1), t), [Poly(1, x), Poly(1 + t0**2, t0), Poly(t, t)], [x, t0, t], [exp, tan]) assert not integrate(exp(x)*cos(2*x)*sin(2*x) * (x**3 + x**2)/(2*(x**2 + x + 1)), x).has(Integral) @XFAIL def test_issue_4212(): assert not integrate(sign(x), x).has(Integral) @XFAIL def test_issue_4491(): # Can be solved via variable transformation x = y - 1 assert not integrate(x*sqrt(x**2 + 2*x + 4), x).has(Integral) @XFAIL def test_issue_4511(): # This works, but gives a complicated answer. The correct answer is x - cos(x). # If current answer is simplified, 1 - cos(x) + x is obtained. # The last one is what Maple gives. It is also quite slow. assert integrate(cos(x)**2 / (1 - sin(x))) in [x - cos(x), 1 - cos(x) + x, -2/(tan((S.Half)*x)**2 + 1) + x] @XFAIL def test_integrate_DiracDelta_fails(): # issue 6427 assert integrate(integrate(integrate( DiracDelta(x - y - z), (z, 0, oo)), (y, 0, 1)), (x, 0, 1)) == S.Half @XFAIL @slow def test_issue_4525(): # Warning: takes a long time assert not integrate((x**m * (1 - x)**n * (a + b*x + c*x**2))/(1 + x**2), (x, 0, 1)).has(Integral) @XFAIL @slow def test_issue_4540(): if ON_TRAVIS: skip("Too slow for travis.") # Note, this integral is probably nonelementary assert not integrate( (sin(1/x) - x*exp(x)) / ((-sin(1/x) + x*exp(x))*x + x*sin(1/x)), x).has(Integral) @XFAIL @slow def test_issue_4891(): # Requires the hypergeometric function. assert not integrate(cos(x)**y, x).has(Integral) @XFAIL @slow def test_issue_1796a(): assert not integrate(exp(2*b*x)*exp(-a*x**2), x).has(Integral) @XFAIL def test_issue_4895b(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, 0)).has(Integral) @XFAIL def test_issue_4895c(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, -oo, oo)).has(Integral) @XFAIL def test_issue_4895d(): assert not integrate(exp(2*b*x)*exp(-a*x**2), (x, 0, oo)).has(Integral) @XFAIL @slow def test_issue_4941(): if ON_TRAVIS: skip("Too slow for travis.") assert not integrate(sqrt(1 + sinh(x/20)**2), (x, -25, 25)).has(Integral) @XFAIL def test_issue_4992(): # Nonelementary integral. Requires hypergeometric/Meijer-G handling. assert not integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k), (x, 0, oo)).has(Integral) @XFAIL def test_issue_16396a(): i = integrate(1/(1+sqrt(tan(x))), (x, pi/3, pi/6)) assert not i.has(Integral) @XFAIL def test_issue_16396b(): i = integrate(x*sin(x)/(1+cos(x)**2), (x, 0, pi)) assert not i.has(Integral) @XFAIL def test_issue_16161(): i = integrate(x*sec(x)**2, x) assert not i.has(Integral) # assert i == x*tan(x) + log(cos(x)) @XFAIL def test_issue_16046(): assert integrate(exp(exp(I*x)), [x, 0, 2*pi]) == 2*pi @XFAIL def test_issue_15925a(): assert not integrate(sqrt((1+sin(x))**2+(cos(x))**2), (x, -pi/2, pi/2)).has(Integral) @XFAIL @slow def test_issue_15925b(): if ON_TRAVIS: skip("Too slow for travis.") assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2), (x, 0, pi/6)).has(Integral) @XFAIL def test_issue_15925b_manual(): assert not integrate(sqrt((-12*cos(x)**2*sin(x))**2+(12*cos(x)*sin(x)**2)**2), (x, 0, pi/6), manual=True).has(Integral) @XFAIL @slow def test_issue_15227(): if ON_TRAVIS: skip("Too slow for travis.") i = integrate(log(1-x)*log((1+x)**2)/x, (x, 0, 1)) assert not i.has(Integral) # assert i == -5*zeta(3)/4 @XFAIL @slow def test_issue_14716(): i = integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1)) assert not i.has(Integral) # Mathematica can not solve it either, but # integrate(log(x + 5)*cos(pi*x),(x, S.Half, 1)).transform(x, y - 5).doit() # works # assert i == -log(Rational(11, 2))/pi - Si(pi*Rational(11, 2))/pi + Si(6*pi)/pi @XFAIL def test_issue_14709a(): i = integrate(x*acos(1 - 2*x/h), (x, 0, h)) assert not i.has(Integral) # assert i == 5*h**2*pi/16 @slow @XFAIL def test_issue_14398(): assert not integrate(exp(x**2)*cos(x), x).has(Integral) @XFAIL def test_issue_14074(): i = integrate(log(sin(x)), (x, 0, pi/2)) assert not i.has(Integral) # assert i == -pi*log(2)/2 @XFAIL @slow def test_issue_14078b(): i = integrate((atan(4*x)-atan(2*x))/x, (x, 0, oo)) assert not i.has(Integral) # assert i == pi*log(2)/2 @XFAIL def test_issue_13792(): i = integrate(log(1/x) / (1 - x), (x, 0, 1)) assert not i.has(Integral) # assert i in [polylog(2, -exp_polar(I*pi)), pi**2/6] @XFAIL def test_issue_11845a(): assert not integrate(exp(y - x**3), (x, 0, 1)).has(Integral) @XFAIL def test_issue_11845b(): assert not integrate(exp(-y - x**3), (x, 0, 1)).has(Integral) @XFAIL def test_issue_11813(): assert not integrate((a - x)**Rational(-1, 2)*x, (x, 0, a)).has(Integral) @XFAIL def test_issue_11742(): i = integrate(sqrt(-x**2 + 8*x + 48), (x, 4, 12)) assert not i.has(Integral) # assert i == 16*pi @XFAIL def test_issue_11254a(): assert not integrate(sech(x), (x, 0, 1)).has(Integral) @XFAIL def test_issue_11254b(): assert not integrate(csch(x), (x, 0, 1)).has(Integral) @XFAIL def test_issue_10584(): assert not integrate(sqrt(x**2 + 1/x**2), x).has(Integral) @XFAIL def test_issue_9723(): assert not integrate(sqrt(x + sqrt(x))).has(Integral) @XFAIL def test_issue_9101(): assert not integrate(log(x + sqrt(x**2 + y**2 + z**2)), z).has(Integral) @XFAIL def test_issue_7264(): assert not integrate(exp(x)*sqrt(1 + exp(2*x))).has(Integral) @XFAIL def test_issue_7147(): assert not integrate(x/sqrt(a*x**2 + b*x + c)**3, x).has(Integral) @XFAIL def test_issue_7109(): assert not integrate(sqrt(a**2/(a**2 - x**2)), x).has(Integral) @XFAIL def test_integrate_Piecewise_rational_over_reals(): f = Piecewise( (0, t - 478.515625*pi < 0), (13.2075145209219*pi/(0.000871222*t + 0.995)**2, t - 478.515625*pi >= 0)) assert abs((integrate(f, (t, 0, oo)) - 15235.9375*pi).evalf()) <= 1e-7 @XFAIL def test_issue_4311_slow(): # Not slow when bypassing heurish assert not integrate(x*abs(9-x**2), x).has(Integral)
e713dfa38c17923cb5c4a1b90d6362d340c72a477cad4a017061d4bcbc314a26
from sympy import (meijerg, I, S, integrate, Integral, oo, gamma, cosh, sinc, hyperexpand, exp, simplify, sqrt, pi, erf, erfc, sin, cos, exp_polar, polygamma, hyper, log, expand_func, Rational) from sympy.integrals.meijerint import (_rewrite_single, _rewrite1, meijerint_indefinite, _inflate_g, _create_lookup_table, meijerint_definite, meijerint_inversion) from sympy.utilities import default_sort_key from sympy.utilities.pytest import slow from sympy.utilities.randtest import (verify_numerically, random_complex_number as randcplx) from sympy.core.compatibility import range from sympy.abc import x, y, a, b, c, d, s, t, z def test_rewrite_single(): def t(expr, c, m): e = _rewrite_single(meijerg([a], [b], [c], [d], expr), x) assert e is not None assert isinstance(e[0][0][2], meijerg) assert e[0][0][2].argument.as_coeff_mul(x) == (c, (m,)) def tn(expr): assert _rewrite_single(meijerg([a], [b], [c], [d], expr), x) is None t(x, 1, x) t(x**2, 1, x**2) t(x**2 + y*x**2, y + 1, x**2) tn(x**2 + x) tn(x**y) def u(expr, x): from sympy import Add, exp, exp_polar r = _rewrite_single(expr, x) e = Add(*[res[0]*res[2] for res in r[0]]).replace( exp_polar, exp) # XXX Hack? assert verify_numerically(e, expr, x) u(exp(-x)*sin(x), x) # The following has stopped working because hyperexpand changed slightly. # It is probably not worth fixing #u(exp(-x)*sin(x)*cos(x), x) # This one cannot be done numerically, since it comes out as a g-function # of argument 4*pi # NOTE This also tests a bug in inverse mellin transform (which used to # turn exp(4*pi*I*t) into a factor of exp(4*pi*I)**t instead of # exp_polar). #u(exp(x)*sin(x), x) assert _rewrite_single(exp(x)*sin(x), x) == \ ([(-sqrt(2)/(2*sqrt(pi)), 0, meijerg(((Rational(-1, 2), 0, Rational(1, 4), S.Half, Rational(3, 4)), (1,)), ((), (Rational(-1, 2), 0)), 64*exp_polar(-4*I*pi)/x**4))], True) def test_rewrite1(): assert _rewrite1(x**3*meijerg([a], [b], [c], [d], x**2 + y*x**2)*5, x) == \ (5, x**3, [(1, 0, meijerg([a], [b], [c], [d], x**2*(y + 1)))], True) def test_meijerint_indefinite_numerically(): def t(fac, arg): g = meijerg([a], [b], [c], [d], arg)*fac subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(), d: randcplx()} integral = meijerint_indefinite(g, x) assert integral is not None assert verify_numerically(g.subs(subs), integral.diff(x).subs(subs), x) t(1, x) t(2, x) t(1, 2*x) t(1, x**2) t(5, x**S('3/2')) t(x**3, x) t(3*x**S('3/2'), 4*x**S('7/3')) def test_meijerint_definite(): v, b = meijerint_definite(x, x, 0, 0) assert v.is_zero and b is True v, b = meijerint_definite(x, x, oo, oo) assert v.is_zero and b is True def test_inflate(): subs = {a: randcplx()/10, b: randcplx()/10 + I, c: randcplx(), d: randcplx(), y: randcplx()/10} def t(a, b, arg, n): from sympy import Mul m1 = meijerg(a, b, arg) m2 = Mul(*_inflate_g(m1, n)) # NOTE: (the random number)**9 must still be on the principal sheet. # Thus make b&d small to create random numbers of small imaginary part. return verify_numerically(m1.subs(subs), m2.subs(subs), x, b=0.1, d=-0.1) assert t([[a], [b]], [[c], [d]], x, 3) assert t([[a, y], [b]], [[c], [d]], x, 3) assert t([[a], [b]], [[c, y], [d]], 2*x**3, 3) def test_recursive(): from sympy import symbols a, b, c = symbols('a b c', positive=True) r = exp(-(x - a)**2)*exp(-(x - b)**2) e = integrate(r, (x, 0, oo), meijerg=True) assert simplify(e.expand()) == ( sqrt(2)*sqrt(pi)*( (erf(sqrt(2)*(a + b)/2) + 1)*exp(-a**2/2 + a*b - b**2/2))/4) e = integrate(exp(-(x - a)**2)*exp(-(x - b)**2)*exp(c*x), (x, 0, oo), meijerg=True) assert simplify(e) == ( sqrt(2)*sqrt(pi)*(erf(sqrt(2)*(2*a + 2*b + c)/4) + 1)*exp(-a**2 - b**2 + (2*a + 2*b + c)**2/8)/4) assert simplify(integrate(exp(-(x - a - b - c)**2), (x, 0, oo), meijerg=True)) == \ sqrt(pi)/2*(1 + erf(a + b + c)) assert simplify(integrate(exp(-(x + a + b + c)**2), (x, 0, oo), meijerg=True)) == \ sqrt(pi)/2*(1 - erf(a + b + c)) @slow def test_meijerint(): from sympy import symbols, expand, arg s, t, mu = symbols('s t mu', real=True) assert integrate(meijerg([], [], [0], [], s*t) *meijerg([], [], [mu/2], [-mu/2], t**2/4), (t, 0, oo)).is_Piecewise s = symbols('s', positive=True) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \ gamma(s + 1) assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=True) == gamma(s + 1) assert isinstance(integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo), meijerg=False), Integral) assert meijerint_indefinite(exp(x), x) == exp(x) # TODO what simplifications should be done automatically? # This tests "extra case" for antecedents_1. a, b = symbols('a b', positive=True) assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \ b**(a + 1)/(a + 1) # This tests various conditions and expansions: meijerint_definite((x + 1)**3*exp(-x), x, 0, oo) == (16, True) # Again, how about simplifications? sigma, mu = symbols('sigma mu', positive=True) i, c = meijerint_definite(exp(-((x - mu)/(2*sigma))**2), x, 0, oo) assert simplify(i) == sqrt(pi)*sigma*(2 - erfc(mu/(2*sigma))) assert c == True i, _ = meijerint_definite(exp(-mu*x)*exp(sigma*x), x, 0, oo) # TODO it would be nice to test the condition assert simplify(i) == 1/(mu - sigma) # Test substitutions to change limits assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True) # Note: causes a NaN in _check_antecedents assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1 assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \ 1 - exp(-exp(I*arg(x))*abs(x)) # Test -oo to oo assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True) assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True) assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \ (sqrt(pi)/2, True) assert meijerint_definite(exp(-abs(2*x - 3)), x, -oo, oo) == (1, True) assert meijerint_definite(exp(-((x - mu)/sigma)**2/2)/sqrt(2*pi*sigma**2), x, -oo, oo) == (1, True) assert meijerint_definite(sinc(x)**2, x, -oo, oo) == (pi, True) # Test one of the extra conditions for 2 g-functinos assert meijerint_definite(exp(-x)*sin(x), x, 0, oo) == (S.Half, True) # Test a bug def res(n): return (1/(1 + x**2)).diff(x, n).subs(x, 1)*(-1)**n for n in range(6): assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \ res(n) # This used to test trigexpand... now it is done by linear substitution assert simplify(integrate(exp(-x)*sin(x + a), (x, 0, oo), meijerg=True) ) == sqrt(2)*sin(a + pi/4)/2 # Test the condition 14 from prudnikov. # (This is besselj*besselj in disguise, to stop the product from being # recognised in the tables.) a, b, s = symbols('a b s') from sympy import And, re assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4) *meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \ (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) /(gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1)) # test a bug assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \ Integral(sin(x**a)*sin(x**b), (x, 0, oo)) # test better hyperexpand assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \ (sqrt(pi)*polygamma(0, S.Half)/4).expand() # Test hyperexpand bug. from sympy import lowergamma n = symbols('n', integer=True) assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \ lowergamma(n + 1, x) # Test a bug with argument 1/x alpha = symbols('alpha', positive=True) assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \ (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + S.Half, alpha/2 + 1)), ((0, 0, S.Half), (Rational(-1, 2),)), alpha**2/16)/4, True) # test a bug related to 3016 a, s = symbols('a s', positive=True) assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \ a**(-s/2 - S.Half)*((-1)**s + 1)*gamma(s/2 + S.Half)/2 def test_bessel(): from sympy import besselj, besseli assert simplify(integrate(besselj(a, z)*besselj(b, z)/z, (z, 0, oo), meijerg=True, conds='none')) == \ 2*sin(pi*(a/2 - b/2))/(pi*(a - b)*(a + b)) assert simplify(integrate(besselj(a, z)*besselj(a, z)/z, (z, 0, oo), meijerg=True, conds='none')) == 1/(2*a) # TODO more orthogonality integrals assert simplify(integrate(sin(z*x)*(x**2 - 1)**(-(y + S.Half)), (x, 1, oo), meijerg=True, conds='none') *2/((z/2)**y*sqrt(pi)*gamma(S.Half - y))) == \ besselj(y, z) # Werner Rosenheinrich # SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS assert integrate(x*besselj(0, x), x, meijerg=True) == x*besselj(1, x) assert integrate(x*besseli(0, x), x, meijerg=True) == x*besseli(1, x) # TODO can do higher powers, but come out as high order ... should they be # reduced to order 0, 1? assert integrate(besselj(1, x), x, meijerg=True) == -besselj(0, x) assert integrate(besselj(1, x)**2/x, x, meijerg=True) == \ -(besselj(0, x)**2 + besselj(1, x)**2)/2 # TODO more besseli when tables are extended or recursive mellin works assert integrate(besselj(0, x)**2/x**2, x, meijerg=True) == \ -2*x*besselj(0, x)**2 - 2*x*besselj(1, x)**2 \ + 2*besselj(0, x)*besselj(1, x) - besselj(0, x)**2/x assert integrate(besselj(0, x)*besselj(1, x), x, meijerg=True) == \ -besselj(0, x)**2/2 assert integrate(x**2*besselj(0, x)*besselj(1, x), x, meijerg=True) == \ x**2*besselj(1, x)**2/2 assert integrate(besselj(0, x)*besselj(1, x)/x, x, meijerg=True) == \ (x*besselj(0, x)**2 + x*besselj(1, x)**2 - besselj(0, x)*besselj(1, x)) # TODO how does besselj(0, a*x)*besselj(0, b*x) work? # TODO how does besselj(0, x)**2*besselj(1, x)**2 work? # TODO sin(x)*besselj(0, x) etc come out a mess # TODO can x*log(x)*besselj(0, x) be done? # TODO how does besselj(1, x)*besselj(0, x+a) work? # TODO more indefinite integrals when struve functions etc are implemented # test a substitution assert integrate(besselj(1, x**2)*x, x, meijerg=True) == \ -besselj(0, x**2)/2 def test_inversion(): from sympy import piecewise_fold, besselj, sqrt, sin, cos, Heaviside def inv(f): return piecewise_fold(meijerint_inversion(f, s, t)) assert inv(1/(s**2 + 1)) == sin(t)*Heaviside(t) assert inv(s/(s**2 + 1)) == cos(t)*Heaviside(t) assert inv(exp(-s)/s) == Heaviside(t - 1) assert inv(1/sqrt(1 + s**2)) == besselj(0, t)*Heaviside(t) # Test some antcedents checking. assert meijerint_inversion(sqrt(s)/sqrt(1 + s**2), s, t) is None assert inv(exp(s**2)) is None assert meijerint_inversion(exp(-s**2), s, t) is None def test_inversion_conditional_output(): from sympy import Symbol, InverseLaplaceTransform a = Symbol('a', positive=True) F = sqrt(pi/a)*exp(-2*sqrt(a)*sqrt(s)) f = meijerint_inversion(F, s, t) assert not f.is_Piecewise b = Symbol('b', real=True) F = F.subs(a, b) f2 = meijerint_inversion(F, s, t) assert f2.is_Piecewise # first piece is same as f assert f2.args[0][0] == f.subs(a, b) # last piece is an unevaluated transform assert f2.args[-1][1] ILT = InverseLaplaceTransform(F, s, t, None) assert f2.args[-1][0] == ILT or f2.args[-1][0] == ILT.as_integral def test_inversion_exp_real_nonreal_shift(): from sympy import Symbol, DiracDelta r = Symbol('r', real=True) c = Symbol('c', extended_real=False) a = 1 + 2*I z = Symbol('z') assert not meijerint_inversion(exp(r*s), s, t).is_Piecewise assert meijerint_inversion(exp(a*s), s, t) is None assert meijerint_inversion(exp(c*s), s, t) is None f = meijerint_inversion(exp(z*s), s, t) assert f.is_Piecewise assert isinstance(f.args[0][0], DiracDelta) @slow def test_lookup_table(): from random import uniform, randrange from sympy import Add from sympy.integrals.meijerint import z as z_dummy table = {} _create_lookup_table(table) for _, l in sorted(table.items()): for formula, terms, cond, hint in sorted(l, key=default_sort_key): subs = {} for ai in list(formula.free_symbols) + [z_dummy]: if hasattr(ai, 'properties') and ai.properties: # these Wilds match positive integers subs[ai] = randrange(1, 10) else: subs[ai] = uniform(1.5, 2.0) if not isinstance(terms, list): terms = terms(subs) # First test that hyperexpand can do this. expanded = [hyperexpand(g) for (_, g) in terms] assert all(x.is_Piecewise or not x.has(meijerg) for x in expanded) # Now test that the meijer g-function is indeed as advertised. expanded = Add(*[f*x for (f, x) in terms]) a, b = formula.n(subs=subs), expanded.n(subs=subs) r = min(abs(a), abs(b)) if r < 1: assert abs(a - b).n() <= 1e-10 else: assert (abs(a - b)/r).n() <= 1e-10 def test_branch_bug(): from sympy import powdenest, lowergamma # TODO gammasimp cannot prove that the factor is unity assert powdenest(integrate(erf(x**3), x, meijerg=True).diff(x), polar=True) == 2*erf(x**3)*gamma(Rational(2, 3))/3/gamma(Rational(5, 3)) assert integrate(erf(x**3), x, meijerg=True) == \ 2*x*erf(x**3)*gamma(Rational(2, 3))/(3*gamma(Rational(5, 3))) \ - 2*gamma(Rational(2, 3))*lowergamma(Rational(2, 3), x**6)/(3*sqrt(pi)*gamma(Rational(5, 3))) def test_linear_subs(): from sympy import besselj assert integrate(sin(x - 1), x, meijerg=True) == -cos(1 - x) assert integrate(besselj(1, x - 1), x, meijerg=True) == -besselj(0, 1 - x) @slow def test_probability(): # various integrals from probability theory from sympy.abc import x, y from sympy import symbols, Symbol, Abs, expand_mul, gammasimp, powsimp, sin mu1, mu2 = symbols('mu1 mu2', nonzero=True) sigma1, sigma2 = symbols('sigma1 sigma2', positive=True) rate = Symbol('lambda', positive=True) def normal(x, mu, sigma): return 1/sqrt(2*pi*sigma**2)*exp(-(x - mu)**2/2/sigma**2) def exponential(x, rate): return rate*exp(-rate*x) assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1 assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \ mu1 assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ == mu1**2 + sigma1**2 assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \ == mu1**3 + 3*mu1*sigma1**2 assert integrate(normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 assert integrate(x*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1 assert integrate(y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu2 assert integrate(x*y*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == mu1*mu2 assert integrate((x + y + 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == 1 + mu1 + mu2 assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == \ -1 + mu1 + mu2 i = integrate(x**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) assert not i.has(Abs) assert simplify(i) == mu1**2 + sigma1**2 assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2), (x, -oo, oo), (y, -oo, oo), meijerg=True) == \ sigma2**2 + mu2**2 assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1 assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \ 1/rate assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \ 2/rate**2 def E(expr): res1 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), (x, 0, oo), (y, -oo, oo), meijerg=True) res2 = integrate(expr*exponential(x, rate)*normal(y, mu1, sigma1), (y, -oo, oo), (x, 0, oo), meijerg=True) assert expand_mul(res1) == expand_mul(res2) return res1 assert E(1) == 1 assert E(x*y) == mu1/rate assert E(x*y**2) == mu1**2/rate + sigma1**2/rate ans = sigma1**2 + 1/rate**2 assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans assert simplify(E((x + y)**2) - E(x + y)**2) == ans # Beta' distribution alpha, beta = symbols('alpha beta', positive=True) betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \ /gamma(alpha)/gamma(beta) assert integrate(betadist, (x, 0, oo), meijerg=True) == 1 i = integrate(x*betadist, (x, 0, oo), meijerg=True, conds='separate') assert (gammasimp(i[0]), i[1]) == (alpha/(beta - 1), 1 < beta) j = integrate(x**2*betadist, (x, 0, oo), meijerg=True, conds='separate') assert j[1] == (1 < beta - 1) assert gammasimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \ /(beta - 2)/(beta - 1)**2 # Beta distribution # NOTE: this is evaluated using antiderivatives. It also tests that # meijerint_indefinite returns the simplest possible answer. a, b = symbols('a b', positive=True) betadist = x**(a - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b)) assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1 assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \ a/(a + b) assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \ a*(a + 1)/(a + b)/(a + b + 1) assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \ gamma(a + b)*gamma(a + y)/gamma(a)/gamma(a + b + y) # Chi distribution k = Symbol('k', integer=True, positive=True) chi = 2**(1 - k/2)*x**(k - 1)*exp(-x**2/2)/gamma(k/2) assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1 assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \ sqrt(2)*gamma((k + 1)/2)/gamma(k/2) assert simplify(integrate(x**2*chi, (x, 0, oo), meijerg=True)) == k # Chi^2 distribution chisquared = 2**(-k/2)/gamma(k/2)*x**(k/2 - 1)*exp(-x/2) assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1 assert simplify(integrate(x*chisquared, (x, 0, oo), meijerg=True)) == k assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \ k*(k + 2) assert gammasimp(integrate(((x - k)/sqrt(2*k))**3*chisquared, (x, 0, oo), meijerg=True)) == 2*sqrt(2)/sqrt(k) # Dagum distribution a, b, p = symbols('a b p', positive=True) # XXX (x/b)**a does not work dagum = a*p/x*(x/b)**(a*p)/(1 + x**a/b**a)**(p + 1) assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1 # XXX conditions are a mess arg = x*dagum assert simplify(integrate(arg, (x, 0, oo), meijerg=True, conds='none') ) == a*b*gamma(1 - 1/a)*gamma(p + 1 + 1/a)/( (a*p + 1)*gamma(p)) assert simplify(integrate(x*arg, (x, 0, oo), meijerg=True, conds='none') ) == a*b**2*gamma(1 - 2/a)*gamma(p + 1 + 2/a)/( (a*p + 2)*gamma(p)) # F-distribution d1, d2 = symbols('d1 d2', positive=True) f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \ /gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2) assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1 # TODO conditions are a mess assert simplify(integrate(x*f, (x, 0, oo), meijerg=True, conds='none') ) == d2/(d2 - 2) assert simplify(integrate(x**2*f, (x, 0, oo), meijerg=True, conds='none') ) == d2**2*(d1 + 2)/d1/(d2 - 4)/(d2 - 2) # TODO gamma, rayleigh # inverse gaussian lamda, mu = symbols('lamda mu', positive=True) dist = sqrt(lamda/2/pi)*x**(Rational(-3, 2))*exp(-lamda*(x - mu)**2/x/2/mu**2) mysimp = lambda expr: simplify(expr.rewrite(exp)) assert mysimp(integrate(dist, (x, 0, oo))) == 1 assert mysimp(integrate(x*dist, (x, 0, oo))) == mu assert mysimp(integrate((x - mu)**2*dist, (x, 0, oo))) == mu**3/lamda assert mysimp(integrate((x - mu)**3*dist, (x, 0, oo))) == 3*mu**5/lamda**2 # Levi c = Symbol('c', positive=True) assert integrate(sqrt(c/2/pi)*exp(-c/2/(x - mu))/(x - mu)**S('3/2'), (x, mu, oo)) == 1 # higher moments oo # log-logistic alpha, beta = symbols('alpha beta', positive=True) distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1)/ \ (1 + x**beta/alpha**beta)**2 # FIXME: If alpha, beta are not declared as finite the line below hangs # after the changes in: # https://github.com/sympy/sympy/pull/16603 assert simplify(integrate(distn, (x, 0, oo))) == 1 # NOTE the conditions are a mess, but correctly state beta > 1 assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \ pi*alpha/beta/sin(pi/beta) # (similar comment for conditions applies) assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \ pi*alpha**y*y/beta/sin(pi*y/beta) # weibull k = Symbol('k', positive=True) n = Symbol('n', positive=True) distn = k/lamda*(x/lamda)**(k - 1)*exp(-(x/lamda)**k) assert simplify(integrate(distn, (x, 0, oo))) == 1 assert simplify(integrate(x**n*distn, (x, 0, oo))) == \ lamda**n*gamma(1 + n/k) # rice distribution from sympy import besseli nu, sigma = symbols('nu sigma', positive=True) rice = x/sigma**2*exp(-(x**2 + nu**2)/2/sigma**2)*besseli(0, x*nu/sigma**2) assert integrate(rice, (x, 0, oo), meijerg=True) == 1 # can someone verify higher moments? # Laplace distribution mu = Symbol('mu', real=True) b = Symbol('b', positive=True) laplace = exp(-abs(x - mu)/b)/2/b assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1 assert integrate(x*laplace, (x, -oo, oo), meijerg=True) == mu assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \ 2*b**2 + mu**2 # TODO are there other distributions supported on (-oo, oo) that we can do? # misc tests k = Symbol('k', positive=True) assert gammasimp(expand_mul(integrate(log(x)*x**(k - 1)*exp(-x)/gamma(k), (x, 0, oo)))) == polygamma(0, k) @slow def test_expint(): """ Test various exponential integrals. """ from sympy import (expint, unpolarify, Symbol, Ci, Si, Shi, Chi, sin, cos, sinh, cosh, Ei) assert simplify(unpolarify(integrate(exp(-z*x)/x**y, (x, 1, oo), meijerg=True, conds='none' ).rewrite(expint).expand(func=True))) == expint(y, z) assert integrate(exp(-z*x)/x, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(1, z) assert integrate(exp(-z*x)/x**2, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(2, z).rewrite(Ei).rewrite(expint) assert integrate(exp(-z*x)/x**3, (x, 1, oo), meijerg=True, conds='none').rewrite(expint).expand() == \ expint(3, z).rewrite(Ei).rewrite(expint).expand() t = Symbol('t', positive=True) assert integrate(-cos(x)/x, (x, t, oo), meijerg=True).expand() == Ci(t) assert integrate(-sin(x)/x, (x, t, oo), meijerg=True).expand() == \ Si(t) - pi/2 assert integrate(sin(x)/x, (x, 0, z), meijerg=True) == Si(z) assert integrate(sinh(x)/x, (x, 0, z), meijerg=True) == Shi(z) assert integrate(exp(-x)/x, x, meijerg=True).expand().rewrite(expint) == \ I*pi - expint(1, x) assert integrate(exp(-x)/x**2, x, meijerg=True).rewrite(expint).expand() \ == expint(1, x) - exp(-x)/x - I*pi u = Symbol('u', polar=True) assert integrate(cos(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ == Ci(u) assert integrate(cosh(u)/u, u, meijerg=True).expand().as_independent(u)[1] \ == Chi(u) assert integrate(expint(1, x), x, meijerg=True ).rewrite(expint).expand() == x*expint(1, x) - exp(-x) assert integrate(expint(2, x), x, meijerg=True ).rewrite(expint).expand() == \ -x**2*expint(1, x)/2 + x*exp(-x)/2 - exp(-x)/2 assert simplify(unpolarify(integrate(expint(y, x), x, meijerg=True).rewrite(expint).expand(func=True))) == \ -expint(y + 1, x) assert integrate(Si(x), x, meijerg=True) == x*Si(x) + cos(x) assert integrate(Ci(u), u, meijerg=True).expand() == u*Ci(u) - sin(u) assert integrate(Shi(x), x, meijerg=True) == x*Shi(x) - cosh(x) assert integrate(Chi(u), u, meijerg=True).expand() == u*Chi(u) - sinh(u) assert integrate(Si(x)*exp(-x), (x, 0, oo), meijerg=True) == pi/4 assert integrate(expint(1, x)*sin(x), (x, 0, oo), meijerg=True) == log(2)/2 def test_messy(): from sympy import (laplace_transform, Si, Shi, Chi, atan, Piecewise, acoth, E1, besselj, acosh, asin, And, re, fourier_transform, sqrt) assert laplace_transform(Si(x), x, s) == ((-atan(s) + pi/2)/s, 0, True) assert laplace_transform(Shi(x), x, s) == (acoth(s)/s, 1, True) # where should the logs be simplified? assert laplace_transform(Chi(x), x, s) == \ ((log(s**(-2)) - log((s**2 - 1)/s**2))/(2*s), 1, True) # TODO maybe simplify the inequalities? assert laplace_transform(besselj(a, x), x, s)[1:] == \ (0, And(re(a/2) + S.Half > S.Zero, re(a/2) + 1 > S.Zero)) # NOTE s < 0 can be done, but argument reduction is not good enough yet assert fourier_transform(besselj(1, x)/x, x, s, noconds=False) == \ (Piecewise((0, 4*abs(pi**2*s**2) > 1), (2*sqrt(-4*pi**2*s**2 + 1), True)), s > 0) # TODO FT(besselj(0,x)) - conditions are messy (but for acceptable reasons) # - folding could be better assert integrate(E1(x)*besselj(0, x), (x, 0, oo), meijerg=True) == \ log(1 + sqrt(2)) assert integrate(E1(x)*besselj(1, x), (x, 0, oo), meijerg=True) == \ log(S.Half + sqrt(2)/2) assert integrate(1/x/sqrt(1 - x**2), x, meijerg=True) == \ Piecewise((-acosh(1/x), abs(x**(-2)) > 1), (I*asin(1/x), True)) def test_issue_6122(): assert integrate(exp(-I*x**2), (x, -oo, oo), meijerg=True) == \ -I*sqrt(pi)*exp(I*pi/4) def test_issue_6252(): expr = 1/x/(a + b*x)**Rational(1, 3) anti = integrate(expr, x, meijerg=True) assert not anti.has(hyper) # XXX the expression is a mess, but actually upon differentiation and # putting in numerical values seems to work... def test_issue_6348(): assert integrate(exp(I*x)/(1 + x**2), (x, -oo, oo)).simplify().rewrite(exp) \ == pi*exp(-1) def test_fresnel(): from sympy import fresnels, fresnelc assert expand_func(integrate(sin(pi*x**2/2), x)) == fresnels(x) assert expand_func(integrate(cos(pi*x**2/2), x)) == fresnelc(x) def test_issue_6860(): assert meijerint_indefinite(x**x**x, x) is None def test_issue_7337(): f = meijerint_indefinite(x*sqrt(2*x + 3), x).together() assert f == sqrt(2*x + 3)*(2*x**2 + x - 3)/5 assert f._eval_interval(x, S.NegativeOne, S.One) == Rational(2, 5) def test_issue_8368(): assert meijerint_indefinite(cosh(x)*exp(-x*t), x) == ( (-t - 1)*exp(x) + (-t + 1)*exp(-x))*exp(-t*x)/2/(t**2 - 1) def test_issue_10211(): from sympy.abc import h, w assert integrate((1/sqrt(((y-x)**2 + h**2))**3), (x,0,w), (y,0,w)) == \ 2*sqrt(1 + w**2/h**2)/h - 2/h def test_issue_11806(): from sympy import symbols y, L = symbols('y L', positive=True) assert integrate(1/sqrt(x**2 + y**2)**3, (x, -L, L)) == \ 2*L/(y**2*sqrt(L**2 + y**2)) def test_issue_10681(): from sympy import RR from sympy.abc import R, r f = integrate(r**2*(R**2-r**2)**0.5, r, meijerg=True) g = (1.0/3)*R**1.0*r**3*hyper((-0.5, Rational(3, 2)), (Rational(5, 2),), r**2*exp_polar(2*I*pi)/R**2) assert RR.almosteq((f/g).n(), 1.0, 1e-12) def test_issue_13536(): from sympy import Symbol a = Symbol('a', real=True, positive=True) assert integrate(1/x**2, (x, oo, a)) == -1/a def test_issue_6462(): from sympy import Symbol x = Symbol('x') n = Symbol('n') # Not the actual issue, still wrong answer for n = 1, but that there is no # exception assert integrate(cos(x**n)/x**n, x, meijerg=True).subs(n, 2).equals( integrate(cos(x**2)/x**2, x, meijerg=True))
458fa942d0f0e9457100091f3c3454a9338e2130c6671fe8f3234eda1ce43a86
from sympy.integrals.transforms import (mellin_transform, inverse_mellin_transform, laplace_transform, inverse_laplace_transform, fourier_transform, inverse_fourier_transform, sine_transform, inverse_sine_transform, cosine_transform, inverse_cosine_transform, hankel_transform, inverse_hankel_transform, LaplaceTransform, FourierTransform, SineTransform, CosineTransform, InverseLaplaceTransform, InverseFourierTransform, InverseSineTransform, InverseCosineTransform, IntegralTransformError) from sympy import ( gamma, exp, oo, Heaviside, symbols, Symbol, re, factorial, pi, arg, cos, S, Abs, And, sin, sqrt, I, log, tan, hyperexpand, meijerg, EulerGamma, erf, erfc, besselj, bessely, besseli, besselk, exp_polar, unpolarify, Function, expint, expand_mul, Rational, gammasimp, trigsimp, atan, sinh, cosh, Ne, periodic_argument, atan2) from sympy.utilities.pytest import XFAIL, slow, skip, raises from sympy.matrices import Matrix, eye from sympy.abc import x, s, a, b, c, d nu, beta, rho = symbols('nu beta rho') def test_undefined_function(): from sympy import Function, MellinTransform f = Function('f') assert mellin_transform(f(x), x, s) == MellinTransform(f(x), x, s) assert mellin_transform(f(x) + exp(-x), x, s) == \ (MellinTransform(f(x), x, s) + gamma(s), (0, oo), True) assert laplace_transform(2*f(x), x, s) == 2*LaplaceTransform(f(x), x, s) # TODO test derivative and other rules when implemented def test_free_symbols(): from sympy import Function f = Function('f') assert mellin_transform(f(x), x, s).free_symbols == {s} assert mellin_transform(f(x)*a, x, s).free_symbols == {s, a} def test_as_integral(): from sympy import Function, Integral f = Function('f') assert mellin_transform(f(x), x, s).rewrite('Integral') == \ Integral(x**(s - 1)*f(x), (x, 0, oo)) assert fourier_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-2*I*pi*s*x), (x, -oo, oo)) assert laplace_transform(f(x), x, s).rewrite('Integral') == \ Integral(f(x)*exp(-s*x), (x, 0, oo)) assert str(2*pi*I*inverse_mellin_transform(f(s), s, x, (a, b)).rewrite('Integral')) \ == "Integral(x**(-s)*f(s), (s, _c - oo*I, _c + oo*I))" assert str(2*pi*I*inverse_laplace_transform(f(s), s, x).rewrite('Integral')) == \ "Integral(f(s)*exp(s*x), (s, _c - oo*I, _c + oo*I))" assert inverse_fourier_transform(f(s), s, x).rewrite('Integral') == \ Integral(f(s)*exp(2*I*pi*s*x), (s, -oo, oo)) # NOTE this is stuck in risch because meijerint cannot handle it @slow @XFAIL def test_mellin_transform_fail(): skip("Risch takes forever.") MT = mellin_transform bpos = symbols('b', positive=True) # bneg = symbols('b', negative=True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) # TODO does not work with bneg, argument wrong. Needs changes to matching. assert MT(expr.subs(b, -bpos), x, s) == \ ((-1)**(a + 1)*2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(a + s) *gamma(1 - a - 2*s)/gamma(1 - s), (-re(a), -re(a)/2 + S.Half), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, -bpos), x, s) == \ ( 2**(a + 2*s)*a*bpos**(a + 2*s)*gamma(-a - 2* s)*gamma(a + s)/gamma(-s + 1), (-re(a), -re(a)/2), True) # Test exponent 1: assert MT(expr.subs({b: -bpos, a: 1}), x, s) == \ (-bpos**(2*s + 1)*gamma(s)*gamma(-s - S.Half)/(2*sqrt(pi)), (-1, Rational(-1, 2)), True) def test_mellin_transform(): from sympy import Max, Min MT = mellin_transform bpos = symbols('b', positive=True) # 8.4.2 assert MT(x**nu*Heaviside(x - 1), x, s) == \ (-1/(nu + s), (-oo, -re(nu)), True) assert MT(x**nu*Heaviside(1 - x), x, s) == \ (1/(nu + s), (-re(nu), oo), True) assert MT((1 - x)**(beta - 1)*Heaviside(1 - x), x, s) == \ (gamma(beta)*gamma(s)/gamma(beta + s), (0, oo), re(beta) > 0) assert MT((x - 1)**(beta - 1)*Heaviside(x - 1), x, s) == \ (gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), (-oo, -re(beta) + 1), re(beta) > 0) assert MT((1 + x)**(-rho), x, s) == \ (gamma(s)*gamma(rho - s)/gamma(rho), (0, re(rho)), True) # TODO also the conditions should be simplified, e.g. # And(re(rho) - 1 < 0, re(rho) < 1) should just be # re(rho) < 1 assert MT(abs(1 - x)**(-rho), x, s) == ( 2*sin(pi*rho/2)*gamma(1 - rho)* cos(pi*(rho/2 - s))*gamma(s)*gamma(rho-s)/pi, (0, re(rho)), And(re(rho) - 1 < 0, re(rho) < 1)) mt = MT((1 - x)**(beta - 1)*Heaviside(1 - x) + a*(x - 1)**(beta - 1)*Heaviside(x - 1), x, s) assert mt[1], mt[2] == ((0, -re(beta) + 1), re(beta) > 0) assert MT((x**a - b**a)/(x - b), x, s)[0] == \ pi*b**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))) assert MT((x**a - bpos**a)/(x - bpos), x, s) == \ (pi*bpos**(a + s - 1)*sin(pi*a)/(sin(pi*s)*sin(pi*(a + s))), (Max(-re(a), 0), Min(1 - re(a), 1)), True) expr = (sqrt(x + b**2) + b)**a assert MT(expr.subs(b, bpos), x, s) == \ (-a*(2*bpos)**(a + 2*s)*gamma(s)*gamma(-a - 2*s)/gamma(-a - s + 1), (0, -re(a)/2), True) expr = (sqrt(x + b**2) + b)**a/sqrt(x + b**2) assert MT(expr.subs(b, bpos), x, s) == \ (2**(a + 2*s)*bpos**(a + 2*s - 1)*gamma(s) *gamma(1 - a - 2*s)/gamma(1 - a - s), (0, -re(a)/2 + S.Half), True) # 8.4.2 assert MT(exp(-x), x, s) == (gamma(s), (0, oo), True) assert MT(exp(-1/x), x, s) == (gamma(-s), (-oo, 0), True) # 8.4.5 assert MT(log(x)**4*Heaviside(1 - x), x, s) == (24/s**5, (0, oo), True) assert MT(log(x)**3*Heaviside(x - 1), x, s) == (6/s**4, (-oo, 0), True) assert MT(log(x + 1), x, s) == (pi/(s*sin(pi*s)), (-1, 0), True) assert MT(log(1/x + 1), x, s) == (pi/(s*sin(pi*s)), (0, 1), True) assert MT(log(abs(1 - x)), x, s) == (pi/(s*tan(pi*s)), (-1, 0), True) assert MT(log(abs(1 - 1/x)), x, s) == (pi/(s*tan(pi*s)), (0, 1), True) # 8.4.14 assert MT(erf(sqrt(x)), x, s) == \ (-gamma(s + S.Half)/(sqrt(pi)*s), (Rational(-1, 2), 0), True) @slow def test_mellin_transform2(): MT = mellin_transform # TODO we cannot currently do these (needs summation of 3F2(-1)) # this also implies that they cannot be written as a single g-function # (although this is possible) mt = MT(log(x)/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)**2/(x + 1), x, s) assert mt[1:] == ((0, 1), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) mt = MT(log(x)/(x + 1)**2, x, s) assert mt[1:] == ((0, 2), True) assert not hyperexpand(mt[0], allow_hyper=True).has(meijerg) @slow def test_mellin_transform_bessel(): from sympy import Max MT = mellin_transform # 8.4.19 assert MT(besselj(a, 2*sqrt(x)), x, s) == \ (gamma(a/2 + s)/gamma(a/2 - s + 1), (-re(a)/2, Rational(3, 4)), True) assert MT(sin(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(-2*s + S.Half)*gamma(a/2 + s + S.Half)/( gamma(-a/2 - s + 1)*gamma(a - 2*s + 1)), ( -re(a)/2 - S.Half, Rational(1, 4)), True) assert MT(cos(sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (2**a*gamma(a/2 + s)*gamma(-2*s + S.Half)/( gamma(-a/2 - s + S.Half)*gamma(a - 2*s + 1)), ( -re(a)/2, Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))**2, x, s) == \ (gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), (-re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(-a, sqrt(x)), x, s) == \ (gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - a - s)*gamma(1 + a - s)), (0, S.Half), True) # NOTE: prudnikov gives the strip below as (1/2 - re(a), 1). As far as # I can see this is wrong (since besselj(z) ~ 1/sqrt(z) for z large) assert MT(besselj(a - 1, sqrt(x))*besselj(a, sqrt(x)), x, s) == \ (gamma(1 - s)*gamma(a + s - S.Half) / (sqrt(pi)*gamma(Rational(3, 2) - s)*gamma(a - s + S.Half)), (S.Half - re(a), S.Half), True) assert MT(besselj(a, sqrt(x))*besselj(b, sqrt(x)), x, s) == \ (4**s*gamma(1 - 2*s)*gamma((a + b)/2 + s) / (gamma(1 - s + (b - a)/2)*gamma(1 - s + (a - b)/2) *gamma( 1 - s + (a + b)/2)), (-(re(a) + re(b))/2, S.Half), True) assert MT(besselj(a, sqrt(x))**2 + besselj(-a, sqrt(x))**2, x, s)[1:] == \ ((Max(re(a), -re(a)), S.Half), True) # Section 8.4.20 assert MT(bessely(a, 2*sqrt(x)), x, s) == \ (-cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)/pi, (Max(-re(a)/2, re(a)/2), Rational(3, 4)), True) assert MT(sin(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*sin(pi*(a/2 - s))*gamma(S.Half - 2*s) * gamma((1 - a)/2 + s)*gamma((1 + a)/2 + s) / (sqrt(pi)*gamma(1 - s - a/2)*gamma(1 - s + a/2)), (Max(-(re(a) + 1)/2, (re(a) - 1)/2), Rational(1, 4)), True) assert MT(cos(sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - s))*gamma(s - a/2)*gamma(s + a/2)*gamma(S.Half - 2*s) / (sqrt(pi)*gamma(S.Half - s - a/2)*gamma(S.Half - s + a/2)), (Max(-re(a)/2, re(a)/2), Rational(1, 4)), True) assert MT(besselj(a, sqrt(x))*bessely(a, sqrt(x)), x, s) == \ (-cos(pi*s)*gamma(s)*gamma(a + s)*gamma(S.Half - s) / (pi**S('3/2')*gamma(1 + a - s)), (Max(-re(a), 0), S.Half), True) assert MT(besselj(a, sqrt(x))*bessely(b, sqrt(x)), x, s) == \ (-4**s*cos(pi*(a/2 - b/2 + s))*gamma(1 - 2*s) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), (Max((-re(a) + re(b))/2, (-re(a) - re(b))/2), S.Half), True) # NOTE bessely(a, sqrt(x))**2 and bessely(a, sqrt(x))*bessely(b, sqrt(x)) # are a mess (no matter what way you look at it ...) assert MT(bessely(a, sqrt(x))**2, x, s)[1:] == \ ((Max(-re(a), 0, re(a)), S.Half), True) # Section 8.4.22 # TODO we can't do any of these (delicate cancellation) # Section 8.4.23 assert MT(besselk(a, 2*sqrt(x)), x, s) == \ (gamma( s - a/2)*gamma(s + a/2)/2, (Max(-re(a)/2, re(a)/2), oo), True) assert MT(besselj(a, 2*sqrt(2*sqrt(x)))*besselk( a, 2*sqrt(2*sqrt(x))), x, s) == (4**(-s)*gamma(2*s)* gamma(a/2 + s)/(2*gamma(a/2 - s + 1)), (Max(0, -re(a)/2), oo), True) # TODO bessely(a, x)*besselk(a, x) is a mess assert MT(besseli(a, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (gamma(s)*gamma( a + s)*gamma(-s + S.Half)/(2*sqrt(pi)*gamma(a - s + 1)), (Max(-re(a), 0), S.Half), True) assert MT(besseli(b, sqrt(x))*besselk(a, sqrt(x)), x, s) == \ (2**(2*s - 1)*gamma(-2*s + 1)*gamma(-a/2 + b/2 + s)* \ gamma(a/2 + b/2 + s)/(gamma(-a/2 + b/2 - s + 1)* \ gamma(a/2 + b/2 - s + 1)), (Max(-re(a)/2 - re(b)/2, \ re(a)/2 - re(b)/2), S.Half), True) # TODO products of besselk are a mess mt = MT(exp(-x/2)*besselk(a, x/2), x, s) mt0 = gammasimp((trigsimp(gammasimp(mt[0].expand(func=True))))) assert mt0 == 2*pi**Rational(3, 2)*cos(pi*s)*gamma(-s + S.Half)/( (cos(2*pi*a) - cos(2*pi*s))*gamma(-a - s + 1)*gamma(a - s + 1)) assert mt[1:] == ((Max(-re(a), re(a)), oo), True) # TODO exp(x/2)*besselk(a, x/2) [etc] cannot currently be done # TODO various strange products of special orders @slow def test_expint(): from sympy import E1, expint, Max, re, lerchphi, Symbol, simplify, Si, Ci, Ei aneg = Symbol('a', negative=True) u = Symbol('u', polar=True) assert mellin_transform(E1(x), x, s) == (gamma(s)/s, (0, oo), True) assert inverse_mellin_transform(gamma(s)/s, s, x, (0, oo)).rewrite(expint).expand() == E1(x) assert mellin_transform(expint(a, x), x, s) == \ (gamma(s)/(a + s - 1), (Max(1 - re(a), 0), oo), True) # XXX IMT has hickups with complicated strips ... assert simplify(unpolarify( inverse_mellin_transform(gamma(s)/(aneg + s - 1), s, x, (1 - aneg, oo)).rewrite(expint).expand(func=True))) == \ expint(aneg, x) assert mellin_transform(Si(x), x, s) == \ (-2**s*sqrt(pi)*gamma(s/2 + S.Half)/( 2*s*gamma(-s/2 + 1)), (-1, 0), True) assert inverse_mellin_transform(-2**s*sqrt(pi)*gamma((s + 1)/2) /(2*s*gamma(-s/2 + 1)), s, x, (-1, 0)) \ == Si(x) assert mellin_transform(Ci(sqrt(x)), x, s) == \ (-2**(2*s - 1)*sqrt(pi)*gamma(s)/(s*gamma(-s + S.Half)), (0, 1), True) assert inverse_mellin_transform( -4**s*sqrt(pi)*gamma(s)/(2*s*gamma(-s + S.Half)), s, u, (0, 1)).expand() == Ci(sqrt(u)) # TODO LT of Si, Shi, Chi is a mess ... assert laplace_transform(Ci(x), x, s) == (-log(1 + s**2)/2/s, 0, True) assert laplace_transform(expint(a, x), x, s) == \ (lerchphi(s*exp_polar(I*pi), 1, a), 0, re(a) > S.Zero) assert laplace_transform(expint(1, x), x, s) == (log(s + 1)/s, 0, True) assert laplace_transform(expint(2, x), x, s) == \ ((s - log(s + 1))/s**2, 0, True) assert inverse_laplace_transform(-log(1 + s**2)/2/s, s, u).expand() == \ Heaviside(u)*Ci(u) assert inverse_laplace_transform(log(s + 1)/s, s, x).rewrite(expint) == \ Heaviside(x)*E1(x) assert inverse_laplace_transform((s - log(s + 1))/s**2, s, x).rewrite(expint).expand() == \ (expint(2, x)*Heaviside(x)).rewrite(Ei).rewrite(expint).expand() @slow def test_inverse_mellin_transform(): from sympy import (sin, simplify, Max, Min, expand, powsimp, exp_polar, cos, cot) IMT = inverse_mellin_transform assert IMT(gamma(s), s, x, (0, oo)) == exp(-x) assert IMT(gamma(-s), s, x, (-oo, 0)) == exp(-1/x) assert simplify(IMT(s/(2*s**2 - 2), s, x, (2, oo))) == \ (x**2 + 1)*Heaviside(1 - x)/(4*x) # test passing "None" assert IMT(1/(s**2 - 1), s, x, (-1, None)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) assert IMT(1/(s**2 - 1), s, x, (None, 1)) == \ -x*Heaviside(-x + 1)/2 - Heaviside(x - 1)/(2*x) # test expansion of sums assert IMT(gamma(s) + gamma(s - 1), s, x, (1, oo)) == (x + 1)*exp(-x)/x # test factorisation of polys r = symbols('r', real=True) assert IMT(1/(s**2 + 1), s, exp(-x), (None, oo) ).subs(x, r).rewrite(sin).simplify() \ == sin(r)*Heaviside(1 - exp(-r)) # test multiplicative substitution _a, _b = symbols('a b', positive=True) assert IMT(_b**(-s/_a)*factorial(s/_a)/s, s, x, (0, oo)) == exp(-_b*x**_a) assert IMT(factorial(_a/_b + s/_b)/(_a + s), s, x, (-_a, oo)) == x**_a*exp(-x**_b) def simp_pows(expr): return simplify(powsimp(expand_mul(expr, deep=False), force=True)).replace(exp_polar, exp) # Now test the inverses of all direct transforms tested above # Section 8.4.2 nu = symbols('nu', real=True) assert IMT(-1/(nu + s), s, x, (-oo, None)) == x**nu*Heaviside(x - 1) assert IMT(1/(nu + s), s, x, (None, oo)) == x**nu*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(s)/gamma(s + beta), s, x, (0, oo))) \ == (1 - x)**(beta - 1)*Heaviside(1 - x) assert simp_pows(IMT(gamma(beta)*gamma(1 - beta - s)/gamma(1 - s), s, x, (-oo, None))) \ == (x - 1)**(beta - 1)*Heaviside(x - 1) assert simp_pows(IMT(gamma(s)*gamma(rho - s)/gamma(rho), s, x, (0, None))) \ == (1/(x + 1))**rho assert simp_pows(IMT(d**c*d**(s - 1)*sin(pi*c) *gamma(s)*gamma(s + c)*gamma(1 - s)*gamma(1 - s - c)/pi, s, x, (Max(-re(c), 0), Min(1 - re(c), 1)))) \ == (x**c - d**c)/(x - d) assert simplify(IMT(1/sqrt(pi)*(-c/2)*gamma(s)*gamma((1 - c)/2 - s) *gamma(-c/2 - s)/gamma(1 - c - s), s, x, (0, -re(c)/2))) == \ (1 + sqrt(x + 1))**c assert simplify(IMT(2**(a + 2*s)*b**(a + 2*s - 1)*gamma(s)*gamma(1 - a - 2*s) /gamma(1 - a - s), s, x, (0, (-re(a) + 1)/2))) == \ b**(a - 1)*(sqrt(1 + x/b**2) + 1)**(a - 1)*(b**2*sqrt(1 + x/b**2) + b**2 + x)/(b**2 + x) assert simplify(IMT(-2**(c + 2*s)*c*b**(c + 2*s)*gamma(s)*gamma(-c - 2*s) / gamma(-c - s + 1), s, x, (0, -re(c)/2))) == \ b**c*(sqrt(1 + x/b**2) + 1)**c # Section 8.4.5 assert IMT(24/s**5, s, x, (0, oo)) == log(x)**4*Heaviside(1 - x) assert expand(IMT(6/s**4, s, x, (-oo, 0)), force=True) == \ log(x)**3*Heaviside(x - 1) assert IMT(pi/(s*sin(pi*s)), s, x, (-1, 0)) == log(x + 1) assert IMT(pi/(s*sin(pi*s/2)), s, x, (-2, 0)) == log(x**2 + 1) assert IMT(pi/(s*sin(2*pi*s)), s, x, (Rational(-1, 2), 0)) == log(sqrt(x) + 1) assert IMT(pi/(s*sin(pi*s)), s, x, (0, 1)) == log(1 + 1/x) # TODO def mysimp(expr): from sympy import expand, logcombine, powsimp return expand( powsimp(logcombine(expr, force=True), force=True, deep=True), force=True).replace(exp_polar, exp) assert mysimp(mysimp(IMT(pi/(s*tan(pi*s)), s, x, (-1, 0)))) in [ log(1 - x)*Heaviside(1 - x) + log(x - 1)*Heaviside(x - 1), log(x)*Heaviside(x - 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1)] # test passing cot assert mysimp(IMT(pi*cot(pi*s)/s, s, x, (0, 1))) in [ log(1/x - 1)*Heaviside(1 - x) + log(1 - 1/x)*Heaviside(x - 1), -log(x)*Heaviside(-x + 1) + log(1 - 1/x)*Heaviside(x - 1) + log(-x + 1)*Heaviside(-x + 1), ] # 8.4.14 assert IMT(-gamma(s + S.Half)/(sqrt(pi)*s), s, x, (Rational(-1, 2), 0)) == \ erf(sqrt(x)) # 8.4.19 assert simplify(IMT(gamma(a/2 + s)/gamma(a/2 - s + 1), s, x, (-re(a)/2, Rational(3, 4)))) \ == besselj(a, 2*sqrt(x)) assert simplify(IMT(2**a*gamma(S.Half - 2*s)*gamma(s + (a + 1)/2) / (gamma(1 - s - a/2)*gamma(1 - 2*s + a)), s, x, (-(re(a) + 1)/2, Rational(1, 4)))) == \ sin(sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(2**a*gamma(a/2 + s)*gamma(S.Half - 2*s) / (gamma(S.Half - s - a/2)*gamma(1 - 2*s + a)), s, x, (-re(a)/2, Rational(1, 4)))) == \ cos(sqrt(x))*besselj(a, sqrt(x)) # TODO this comes out as an amazing mess, but simplifies nicely assert simplify(IMT(gamma(a + s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s)*gamma(1 + a - s)), s, x, (-re(a), S.Half))) == \ besselj(a, sqrt(x))**2 assert simplify(IMT(gamma(s)*gamma(S.Half - s) / (sqrt(pi)*gamma(1 - s - a)*gamma(1 + a - s)), s, x, (0, S.Half))) == \ besselj(-a, sqrt(x))*besselj(a, sqrt(x)) assert simplify(IMT(4**s*gamma(-2*s + 1)*gamma(a/2 + b/2 + s) / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1) *gamma(a/2 + b/2 - s + 1)), s, x, (-(re(a) + re(b))/2, S.Half))) == \ besselj(a, sqrt(x))*besselj(b, sqrt(x)) # Section 8.4.20 # TODO this can be further simplified! assert simplify(IMT(-2**(2*s)*cos(pi*a/2 - pi*b/2 + pi*s)*gamma(-2*s + 1) * gamma(a/2 - b/2 + s)*gamma(a/2 + b/2 + s) / (pi*gamma(a/2 - b/2 - s + 1)*gamma(a/2 + b/2 - s + 1)), s, x, (Max(-re(a)/2 - re(b)/2, -re(a)/2 + re(b)/2), S.Half))) == \ besselj(a, sqrt(x))*-(besselj(-b, sqrt(x)) - besselj(b, sqrt(x))*cos(pi*b))/sin(pi*b) # TODO more # for coverage assert IMT(pi/cos(pi*s), s, x, (0, S.Half)) == sqrt(x)/(x + 1) @slow def test_laplace_transform(): from sympy import fresnels, fresnelc LT = laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') w = Symbol("w") f = Function("f") # Test unevaluated form assert laplace_transform(f(t), t, w) == LaplaceTransform(f(t), t, w) assert inverse_laplace_transform( f(w), w, t, plane=0) == InverseLaplaceTransform(f(w), w, t, 0) # test a bug spos = symbols('s', positive=True) assert LT(exp(t), t, spos)[:2] == (1/(spos - 1), 1) # basic tests from wikipedia assert LT((t - a)**b*exp(-c*(t - a))*Heaviside(t - a), t, s) == \ ((s + c)**(-b - 1)*exp(-a*s)*gamma(b + 1), -c, True) assert LT(t**a, t, s) == (s**(-a - 1)*gamma(a + 1), 0, True) assert LT(Heaviside(t), t, s) == (1/s, 0, True) assert LT(Heaviside(t - a), t, s) == (exp(-a*s)/s, 0, True) assert LT(1 - exp(-a*t), t, s) == (a/(s*(a + s)), 0, True) assert LT((exp(2*t) - 1)*exp(-b - t)*Heaviside(t)/2, t, s, noconds=True) \ == exp(-b)/(s**2 - 1) assert LT(exp(t), t, s)[:2] == (1/(s - 1), 1) assert LT(exp(2*t), t, s)[:2] == (1/(s - 2), 2) assert LT(exp(a*t), t, s)[:2] == (1/(s - a), a) assert LT(log(t/a), t, s) == ((log(a*s) + EulerGamma)/s/-1, 0, True) assert LT(erf(t), t, s) == (erfc(s/2)*exp(s**2/4)/s, 0, True) assert LT(sin(a*t), t, s) == (a/(a**2 + s**2), 0, True) assert LT(cos(a*t), t, s) == (s/(a**2 + s**2), 0, True) # TODO would be nice to have these come out better assert LT(exp(-a*t)*sin(b*t), t, s) == (b/(b**2 + (a + s)**2), -a, True) assert LT(exp(-a*t)*cos(b*t), t, s) == \ ((a + s)/(b**2 + (a + s)**2), -a, True) assert LT(besselj(0, t), t, s) == (1/sqrt(1 + s**2), 0, True) assert LT(besselj(1, t), t, s) == (1 - 1/sqrt(1 + 1/s**2), 0, True) # TODO general order works, but is a *mess* # TODO besseli also works, but is an even greater mess # test a bug in conditions processing # TODO the auxiliary condition should be recognised/simplified assert LT(exp(t)*cos(t), t, s)[:-1] in [ ((s - 1)/(s**2 - 2*s + 2), -oo), ((s - 1)/((s - 1)**2 + 1), -oo), ] # Fresnel functions assert laplace_transform(fresnels(t), t, s) == \ ((-sin(s**2/(2*pi))*fresnels(s/pi) + sin(s**2/(2*pi))/2 - cos(s**2/(2*pi))*fresnelc(s/pi) + cos(s**2/(2*pi))/2)/s, 0, True) assert laplace_transform(fresnelc(t), t, s) == ( ((2*sin(s**2/(2*pi))*fresnelc(s/pi) - 2*cos(s**2/(2*pi))*fresnels(s/pi) + sqrt(2)*cos(s**2/(2*pi) + pi/4))/(2*s), 0, True)) # What is this testing: Ne(1/s, 1) & (0 < cos(Abs(periodic_argument(s, oo)))*Abs(s) - 1) assert LT(Matrix([[exp(t), t*exp(-t)], [t*exp(-t), exp(t)]]), t, s) ==\ Matrix([ [(1/(s - 1), 1, True), ((s + 1)**(-2), 0, True)], [((s + 1)**(-2), 0, True), (1/(s - 1), 1, True)] ]) def test_issue_8368_7173(): LT = laplace_transform # hyperbolic assert LT(sinh(x), x, s) == (1/(s**2 - 1), 1, True) assert LT(cosh(x), x, s) == (s/(s**2 - 1), 1, True) assert LT(sinh(x + 3), x, s) == ( (-s + (s + 1)*exp(6) + 1)*exp(-3)/(s - 1)/(s + 1)/2, 1, True) assert LT(sinh(x)*cosh(x), x, s) == ( 1/(s**2 - 4), 2, Ne(s/2, 1)) # trig (make sure they are not being rewritten in terms of exp) assert LT(cos(x + 3), x, s) == ((s*cos(3) - sin(3))/(s**2 + 1), 0, True) def test_inverse_laplace_transform(): from sympy import sinh, cosh, besselj, besseli, simplify, factor_terms ILT = inverse_laplace_transform a, b, c, = symbols('a b c', positive=True) t = symbols('t') def simp_hyp(expr): return factor_terms(expand_mul(expr)).rewrite(sin) # just test inverses of all of the above assert ILT(1/s, s, t) == Heaviside(t) assert ILT(1/s**2, s, t) == t*Heaviside(t) assert ILT(1/s**5, s, t) == t**4*Heaviside(t)/24 assert ILT(exp(-a*s)/s, s, t) == Heaviside(t - a) assert ILT(exp(-a*s)/(s + b), s, t) == exp(b*(a - t))*Heaviside(-a + t) assert ILT(a/(s**2 + a**2), s, t) == sin(a*t)*Heaviside(t) assert ILT(s/(s**2 + a**2), s, t) == cos(a*t)*Heaviside(t) # TODO is there a way around simp_hyp? assert simp_hyp(ILT(a/(s**2 - a**2), s, t)) == sinh(a*t)*Heaviside(t) assert simp_hyp(ILT(s/(s**2 - a**2), s, t)) == cosh(a*t)*Heaviside(t) assert ILT(a/((s + b)**2 + a**2), s, t) == exp(-b*t)*sin(a*t)*Heaviside(t) assert ILT( (s + b)/((s + b)**2 + a**2), s, t) == exp(-b*t)*cos(a*t)*Heaviside(t) # TODO sinh/cosh shifted come out a mess. also delayed trig is a mess # TODO should this simplify further? assert ILT(exp(-a*s)/s**b, s, t) == \ (t - a)**(b - 1)*Heaviside(t - a)/gamma(b) assert ILT(exp(-a*s)/sqrt(1 + s**2), s, t) == \ Heaviside(t - a)*besselj(0, a - t) # note: besselj(0, x) is even # XXX ILT turns these branch factor into trig functions ... assert simplify(ILT(a**b*(s + sqrt(s**2 - a**2))**(-b)/sqrt(s**2 - a**2), s, t).rewrite(exp)) == \ Heaviside(t)*besseli(b, a*t) assert ILT(a**b*(s + sqrt(s**2 + a**2))**(-b)/sqrt(s**2 + a**2), s, t).rewrite(exp) == \ Heaviside(t)*besselj(b, a*t) assert ILT(1/(s*sqrt(s + 1)), s, t) == Heaviside(t)*erf(sqrt(t)) # TODO can we make erf(t) work? assert ILT(1/(s**2*(s**2 + 1)),s,t) == (t - sin(t))*Heaviside(t) assert ILT( (s * eye(2) - Matrix([[1, 0], [0, 2]])).inv(), s, t) ==\ Matrix([[exp(t)*Heaviside(t), 0], [0, exp(2*t)*Heaviside(t)]]) def test_inverse_laplace_transform_delta(): from sympy import DiracDelta ILT = inverse_laplace_transform t = symbols('t') assert ILT(2, s, t) == 2*DiracDelta(t) assert ILT(2*exp(3*s) - 5*exp(-7*s), s, t) == \ 2*DiracDelta(t + 3) - 5*DiracDelta(t - 7) a = cos(sin(7)/2) assert ILT(a*exp(-3*s), s, t) == a*DiracDelta(t - 3) assert ILT(exp(2*s), s, t) == DiracDelta(t + 2) r = Symbol('r', real=True) assert ILT(exp(r*s), s, t) == DiracDelta(t + r) def test_inverse_laplace_transform_delta_cond(): from sympy import DiracDelta, Eq, im, Heaviside ILT = inverse_laplace_transform t = symbols('t') r = Symbol('r', real=True) assert ILT(exp(r*s), s, t, noconds=False) == (DiracDelta(t + r), True) z = Symbol('z') assert ILT(exp(z*s), s, t, noconds=False) == \ (DiracDelta(t + z), Eq(im(z), 0)) # inversion does not exist: verify it doesn't evaluate to DiracDelta for z in (Symbol('z', extended_real=False), Symbol('z', imaginary=True, zero=False)): f = ILT(exp(z*s), s, t, noconds=False) f = f[0] if isinstance(f, tuple) else f assert f.func != DiracDelta # issue 15043 assert ILT(1/s + exp(r*s)/s, s, t, noconds=False) == ( Heaviside(t) + Heaviside(r + t), True) def test_fourier_transform(): from sympy import simplify, expand, expand_complex, factor, expand_trig FT = fourier_transform IFT = inverse_fourier_transform def simp(x): return simplify(expand_trig(expand_complex(expand(x)))) def sinc(x): return sin(pi*x)/(pi*x) k = symbols('k', real=True) f = Function("f") # TODO for this to work with real a, need to expand abs(a*x) to abs(a)*abs(x) a = symbols('a', positive=True) b = symbols('b', positive=True) posk = symbols('posk', positive=True) # Test unevaluated form assert fourier_transform(f(x), x, k) == FourierTransform(f(x), x, k) assert inverse_fourier_transform( f(k), k, x) == InverseFourierTransform(f(k), k, x) # basic examples from wikipedia assert simp(FT(Heaviside(1 - abs(2*a*x)), x, k)) == sinc(k/a)/a # TODO IFT is a *mess* assert simp(FT(Heaviside(1 - abs(a*x))*(1 - abs(a*x)), x, k)) == sinc(k/a)**2/a # TODO IFT assert factor(FT(exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k) # NOTE: the ift comes out in pieces assert IFT(1/(a + 2*pi*I*x), x, posk, noconds=False) == (exp(-a*posk), True) assert IFT(1/(a + 2*pi*I*x), x, -posk, noconds=False) == (0, True) assert IFT(1/(a + 2*pi*I*x), x, symbols('k', negative=True), noconds=False) == (0, True) # TODO IFT without factoring comes out as meijer g assert factor(FT(x*exp(-a*x)*Heaviside(x), x, k), extension=I) == \ 1/(a + 2*pi*I*k)**2 assert FT(exp(-a*x)*sin(b*x)*Heaviside(x), x, k) == \ b/(b**2 + (a + 2*I*pi*k)**2) assert FT(exp(-a*x**2), x, k) == sqrt(pi)*exp(-pi**2*k**2/a)/sqrt(a) assert IFT(sqrt(pi/a)*exp(-(pi*k)**2/a), k, x) == exp(-a*x**2) assert FT(exp(-a*abs(x)), x, k) == 2*a/(a**2 + 4*pi**2*k**2) # TODO IFT (comes out as meijer G) # TODO besselj(n, x), n an integer > 0 actually can be done... # TODO are there other common transforms (no distributions!)? def test_sine_transform(): from sympy import EulerGamma t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert sine_transform(f(t), t, w) == SineTransform(f(t), t, w) assert inverse_sine_transform( f(w), w, t) == InverseSineTransform(f(w), w, t) assert sine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_sine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert sine_transform((1/sqrt(t))**3, t, w) == 2*sqrt(w) assert sine_transform(t**(-a), t, w) == 2**( -a + S.Half)*w**(a - 1)*gamma(-a/2 + 1)/gamma((a + 1)/2) assert inverse_sine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + 1)/gamma(a/2 + S.Half), w, t) == t**(-a) assert sine_transform( exp(-a*t), t, w) == sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)) assert inverse_sine_transform( sqrt(2)*w/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert sine_transform( log(t)/t, t, w) == -sqrt(2)*sqrt(pi)*(log(w**2) + 2*EulerGamma)/4 assert sine_transform( t*exp(-a*t**2), t, w) == sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)) assert inverse_sine_transform( sqrt(2)*w*exp(-w**2/(4*a))/(4*a**Rational(3, 2)), w, t) == t*exp(-a*t**2) def test_cosine_transform(): from sympy import Si, Ci t = symbols("t") w = symbols("w") a = symbols("a") f = Function("f") # Test unevaluated form assert cosine_transform(f(t), t, w) == CosineTransform(f(t), t, w) assert inverse_cosine_transform( f(w), w, t) == InverseCosineTransform(f(w), w, t) assert cosine_transform(1/sqrt(t), t, w) == 1/sqrt(w) assert inverse_cosine_transform(1/sqrt(w), w, t) == 1/sqrt(t) assert cosine_transform(1/( a**2 + t**2), t, w) == sqrt(2)*sqrt(pi)*exp(-a*w)/(2*a) assert cosine_transform(t**( -a), t, w) == 2**(-a + S.Half)*w**(a - 1)*gamma((-a + 1)/2)/gamma(a/2) assert inverse_cosine_transform(2**(-a + S( 1)/2)*w**(a - 1)*gamma(-a/2 + S.Half)/gamma(a/2), w, t) == t**(-a) assert cosine_transform( exp(-a*t), t, w) == sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)) assert inverse_cosine_transform( sqrt(2)*a/(sqrt(pi)*(a**2 + w**2)), w, t) == exp(-a*t) assert cosine_transform(exp(-a*sqrt(t))*cos(a*sqrt( t)), t, w) == a*exp(-a**2/(2*w))/(2*w**Rational(3, 2)) assert cosine_transform(1/(a + t), t, w) == sqrt(2)*( (-2*Si(a*w) + pi)*sin(a*w)/2 - cos(a*w)*Ci(a*w))/sqrt(pi) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half, 0), ()), ( (S.Half, 0, 0), (S.Half,)), a**2*w**2/4)/(2*pi), w, t) == 1/(a + t) assert cosine_transform(1/sqrt(a**2 + t**2), t, w) == sqrt(2)*meijerg( ((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)) assert inverse_cosine_transform(sqrt(2)*meijerg(((S.Half,), ()), ((0, 0), (S.Half,)), a**2*w**2/4)/(2*sqrt(pi)), w, t) == 1/(t*sqrt(a**2/t**2 + 1)) def test_hankel_transform(): from sympy import gamma, sqrt, exp r = Symbol("r") k = Symbol("k") nu = Symbol("nu") m = Symbol("m") a = symbols("a") assert hankel_transform(1/r, r, k, 0) == 1/k assert inverse_hankel_transform(1/k, k, r, 0) == 1/r assert hankel_transform( 1/r**m, r, k, 0) == 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2) assert inverse_hankel_transform( 2**(-m + 1)*k**(m - 2)*gamma(-m/2 + 1)/gamma(m/2), k, r, 0) == r**(-m) assert hankel_transform(1/r**m, r, k, nu) == ( 2*2**(-m)*k**(m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2)) assert inverse_hankel_transform(2**(-m + 1)*k**( m - 2)*gamma(-m/2 + nu/2 + 1)/gamma(m/2 + nu/2), k, r, nu) == r**(-m) assert hankel_transform(r**nu*exp(-a*r), r, k, nu) == \ 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - S( 3)/2)*gamma(nu + Rational(3, 2))/sqrt(pi) assert inverse_hankel_transform( 2**(nu + 1)*a*k**(-nu - 3)*(a**2/k**2 + 1)**(-nu - Rational(3, 2))*gamma( nu + Rational(3, 2))/sqrt(pi), k, r, nu) == r**nu*exp(-a*r) def test_issue_7181(): assert mellin_transform(1/(1 - x), x, s) != None def test_issue_8882(): # This is the original test. # from sympy import diff, Integral, integrate # r = Symbol('r') # psi = 1/r*sin(r)*exp(-(a0*r)) # h = -1/2*diff(psi, r, r) - 1/r*psi # f = 4*pi*psi*h*r**2 # assert integrate(f, (r, -oo, 3), meijerg=True).has(Integral) == True # To save time, only the critical part is included. F = -a**(-s + 1)*(4 + 1/a**2)**(-s/2)*sqrt(1/a**2)*exp(-s*I*pi)* \ sin(s*atan(sqrt(1/a**2)/2))*gamma(s) raises(IntegralTransformError, lambda: inverse_mellin_transform(F, s, x, (-1, oo), **{'as_meijerg': True, 'needeval': True})) def test_issue_7173(): from sympy import cse x0, x1, x2, x3 = symbols('x:4') ans = laplace_transform(sinh(a*x)*cosh(a*x), x, s) r, e = cse(ans) assert r == [ (x0, arg(a)), (x1, Abs(x0)), (x2, pi/2), (x3, Abs(x0 + pi))] assert e == [ a/(-4*a**2 + s**2), 0, ((x1 <= x2) | (x1 < x2)) & ((x3 <= x2) | (x3 < x2))] def test_issue_8514(): from sympy import simplify a, b, c, = symbols('a b c', positive=True) t = symbols('t', positive=True) ft = simplify(inverse_laplace_transform(1/(a*s**2+b*s+c),s, t)) assert ft == (I*exp(t*cos(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/a)*sin(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs( 4*a*c - b**2))/(2*a)) + exp(t*cos(atan2(0, -4*a*c + b**2) /2)*sqrt(Abs(4*a*c - b**2))/a)*cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) + I*sin(t*sin( atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)) - cos(t*sin(atan2(0, -4*a*c + b**2)/2)*sqrt(Abs(4*a*c - b**2))/(2*a)))*exp(-t*(b + cos(atan2(0, -4*a*c + b**2)/2) *sqrt(Abs(4*a*c - b**2)))/(2*a))/sqrt(-4*a*c + b**2) def test_issue_12591(): x, y = symbols("x y", real=True) assert fourier_transform(exp(x), x, y) == FourierTransform(exp(x), x, y) def test_issue_14692(): b = Symbol('b', negative=True) assert laplace_transform(1/(I*x - b), x, s) == \ (-I*exp(I*b*s)*expint(1, b*s*exp_polar(I*pi/2)), 0, True)
b2413e6d9e9980c6ad31d9a453dea0556976042004fa9c65ccca7368421d44d0
"""Most of these tests come from the examples in Bronstein's book.""" from sympy.integrals.risch import DifferentialExtension, derivation from sympy.integrals.prde import (prde_normal_denom, prde_special_denom, prde_linear_constraints, constant_system, prde_spde, prde_no_cancel_b_large, prde_no_cancel_b_small, limited_integrate_reduce, limited_integrate, is_deriv_k, is_log_deriv_k_t_radical, parametric_log_deriv_heu, is_log_deriv_k_t_radical_in_field, param_poly_rischDE, param_rischDE, prde_cancel_liouvillian) from sympy.polys.polymatrix import PolyMatrix as Matrix from sympy import Poly, S, symbols, Rational from sympy.abc import x, t, n t0, t1, t2, t3, k = symbols('t:4 k') def test_prde_normal_denom(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) fa = Poly(1, t) fd = Poly(x, t) G = [(Poly(t, t), Poly(1 + t**2, t)), (Poly(1, t), Poly(x + x*t**2, t))] assert prde_normal_denom(fa, fd, G, DE) == \ (Poly(x, t), (Poly(1, t), Poly(1, t)), [(Poly(x*t, t), Poly(t**2 + 1, t)), (Poly(1, t), Poly(t**2 + 1, t))], Poly(1, t)) G = [(Poly(t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t, t), Poly(t**2 + 2*t + 1, t)), (Poly(x*t**2, t), Poly(t**2 + 2*t + 1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_normal_denom(Poly(x, t), Poly(1, t), G, DE) == \ (Poly(t + 1, t), (Poly((-1 + x)*t + x, t), Poly(1, t)), [(Poly(t, t), Poly(1, t)), (Poly(x*t, t), Poly(1, t)), (Poly(x*t**2, t), Poly(1, t))], Poly(t + 1, t)) def test_prde_special_denom(): a = Poly(t + 1, t) ba = Poly(t**2, t) bd = Poly(1, t) G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_special_denom(a, ba, bd, G, DE) == \ (Poly(t + 1, t), Poly(t**2, t), [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))], Poly(1, t)) G = [(Poly(t, t), Poly(1, t)), (Poly(1, t), Poly(t, t))] assert prde_special_denom(Poly(1, t), Poly(t**2, t), Poly(1, t), G, DE) == \ (Poly(1, t), Poly(t**2 - 1, t), [(Poly(t**2, t), Poly(1, t)), (Poly(1, t), Poly(1, t))], Poly(t, t)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-2*x*t0, t0)]}) DE.decrement_level() G = [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))] assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3 + 2, t), G, DE) == \ (Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t, t), Poly(t**2, t)), (Poly(2*t, t), Poly(t, t))], Poly(1, x)) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly((t**2 + 1)*2*x, t)]}) G = [(Poly(t + x, t), Poly(t*x, t)), (Poly(2*t, t), Poly(x**2, x))] assert prde_special_denom(Poly(5*x*t + 1, t), Poly(t**2 + 2*x**3*t, t), Poly(t**3, t), G, DE) == \ (Poly(5*x*t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t)) assert prde_special_denom(Poly(t + 1, t), Poly(t**2, t), Poly(t**3, t), G, DE) == \ (Poly(t + 1, t), Poly(0, t), [(Poly(t + x, t), Poly(x*t, t)), (Poly(2*t, t, x), Poly(x**2, t, x))], Poly(1, t)) def test_prde_linear_constraints(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) G = [(Poly(2*x**3 + 3*x + 1, x), Poly(x**2 - 1, x)), (Poly(1, x), Poly(x - 1, x)), (Poly(1, x), Poly(x + 1, x))] assert prde_linear_constraints(Poly(1, x), Poly(0, x), G, DE) == \ ((Poly(2*x, x), Poly(0, x), Poly(0, x)), Matrix([[1, 1, -1], [5, 1, 1]])) G = [(Poly(t, t), Poly(1, t)), (Poly(t**2, t), Poly(1, t)), (Poly(t**3, t), Poly(1, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) assert prde_linear_constraints(Poly(t + 1, t), Poly(t**2, t), G, DE) == \ ((Poly(t, t), Poly(t**2, t), Poly(t**3, t)), Matrix(0, 3, [])) G = [(Poly(2*x, t), Poly(t, t)), (Poly(-x, t), Poly(t, t))] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert prde_linear_constraints(Poly(1, t), Poly(0, t), G, DE) == \ ((Poly(0, t), Poly(0, t)), Matrix([[2*x, -x]])) def test_constant_system(): A = Matrix([[-(x + 3)/(x - 1), (x + 1)/(x - 1), 1], [-x - 3, x + 1, x - 1], [2*(x + 3)/(x - 1), 0, 0]]) u = Matrix([(x + 1)/(x - 1), x + 1, 0]) DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert constant_system(A, u, DE) == \ (Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 0], [0, 0, 1]]), Matrix([0, 1, 0, 0])) def test_prde_spde(): D = [Poly(x, t), Poly(-x*t, t)] DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) # TODO: when bound_degree() can handle this, test degree bound from that too assert prde_spde(Poly(t, t), Poly(-1/x, t), D, n, DE) == \ (Poly(t, t), Poly(0, t), [Poly(2*x, t), Poly(-x, t)], [Poly(-x**2, t), Poly(0, t)], n - 1) def test_prde_no_cancel(): # b large DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**2, x), Poly(1, x)], 2, DE) == \ ([Poly(x**2 - 2*x + 2, x), Poly(1, x)], Matrix([[1, 0, -1, 0], [0, 1, 0, -1]])) assert prde_no_cancel_b_large(Poly(1, x), [Poly(x**3, x), Poly(1, x)], 3, DE) == \ ([Poly(x**3 - 3*x**2 + 6*x - 6, x), Poly(1, x)], Matrix([[1, 0, -1, 0], [0, 1, 0, -1]])) assert prde_no_cancel_b_large(Poly(x, x), [Poly(x**2, x), Poly(1, x)], 1, DE) == \ ([Poly(x, x, domain='ZZ'), Poly(0, x, domain='ZZ')], Matrix([[1, -1, 0, 0], [1, 0, -1, 0], [0, 1, 0, -1]])) # b small # XXX: Is there a better example of a monomial with D.degree() > 2? DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t**3 + 1, t)]}) # My original q was t**4 + t + 1, but this solution implies q == t**4 # (c1 = 4), with some of the ci for the original q equal to 0. G = [Poly(t**6, t), Poly(x*t**5, t), Poly(t**3, t), Poly(x*t**2, t), Poly(1 + x, t)] assert prde_no_cancel_b_small(Poly(x*t, t), G, 4, DE) == \ ([Poly(t**4/4 - x/12*t**3 + x**2/24*t**2 + (Rational(-11, 12) - x**3/24)*t + x/24, t), Poly(x/3*t**3 - x**2/6*t**2 + (Rational(-1, 3) + x**3/6)*t - x/6, t), Poly(t, t), Poly(0, t), Poly(0, t)], Matrix([[1, 0, -1, 0, 0, 0, 0, 0, 0, 0], [0, 1, Rational(-1, 4), 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, -1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, -1, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, -1, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, -1]])) # TODO: Add test for deg(b) <= 0 with b small DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1 + t**2, t)]}) b = Poly(-1/x**2, t, field=True) # deg(b) == 0 q = [Poly(x**i*t**j, t, field=True) for i in range(2) for j in range(3)] h, A = prde_no_cancel_b_small(b, q, 3, DE) V = A.nullspace() assert len(V) == 1 assert V[0] == Matrix([Rational(-1, 2), 0, 0, 1, 0, 0]*3) assert (Matrix([h])*V[0][6:, :])[0] == Poly(x**2/2, t, domain='ZZ(x)') assert (Matrix([q])*V[0][:6, :])[0] == Poly(x - S.Half, t, domain='QQ(x)') def test_prde_cancel_liouvillian(): ### 1. case == 'primitive' # used when integrating f = log(x) - log(x - 1) # Not taken from 'the' book DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) p0 = Poly(0, t, field=True) h, A = prde_cancel_liouvillian(Poly(-1/(x - 1), t), [Poly(-x + 1, t), Poly(1, t)], 1, DE) V = A.nullspace() h == [p0, p0, Poly((x - 1)*t, t), p0, p0, p0, p0, p0, p0, p0, Poly(x - 1, t), Poly(-x**2 + x, t), p0, p0, p0, p0] assert A.rank() == 16 assert (Matrix([h])*V[0][:16, :]) == Matrix([[Poly(0, t, domain='QQ(x)')]]) ### 2. case == 'exp' # used when integrating log(x/exp(x) + 1) # Not taken from book DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t, t)]}) assert prde_cancel_liouvillian(Poly(0, t, domain='QQ[x]'), [Poly(1, t, domain='QQ(x)')], 0, DE) == \ ([Poly(1, t, domain='QQ'), Poly(x, t)], Matrix([[-1, 0, 1]])) def test_param_poly_rischDE(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) a = Poly(x**2 - x, x, field=True) b = Poly(1, x, field=True) q = [Poly(x, x, field=True), Poly(x**2, x, field=True)] h, A = param_poly_rischDE(a, b, q, 3, DE) assert A.nullspace() == [Matrix([0, 1, 1, 1])] # c1, c2, d1, d2 # Solution of a*Dp + b*p = c1*q1 + c2*q2 = q2 = x**2 # is d1*h1 + d2*h2 = h1 + h2 = x. assert h[0] + h[1] == Poly(x, x) # a*Dp + b*p = q1 = x has no solution. a = Poly(x**2 - x, x, field=True) b = Poly(x**2 - 5*x + 3, x, field=True) q = [Poly(1, x, field=True), Poly(x, x, field=True), Poly(x**2, x, field=True)] h, A = param_poly_rischDE(a, b, q, 3, DE) assert A.nullspace() == [Matrix([3, -5, 1, -5, 1, 1])] p = -5*h[0] + h[1] + h[2] # Poly(1, x) assert a*derivation(p, DE) + b*p == Poly(x**2 - 5*x + 3, x) def test_param_rischDE(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) p1, px = Poly(1, x, field=True), Poly(x, x, field=True) G = [(p1, px), (p1, p1), (px, p1)] # [1/x, 1, x] h, A = param_rischDE(-p1, Poly(x**2, x, field=True), G, DE) assert len(h) == 3 p = [hi[0].as_expr()/hi[1].as_expr() for hi in h] V = A.nullspace() assert len(V) == 2 assert V[0] == Matrix([-1, 1, 0, -1, 1, 0]) y = -p[0] + p[1] + 0*p[2] # x assert y.diff(x) - y/x**2 == 1 - 1/x # Dy + f*y == -G0 + G1 + 0*G2 # the below test computation takes place while computing the integral # of 'f = log(log(x + exp(x)))' DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t, t)]}) G = [(Poly(t + x, t, domain='ZZ(x)'), Poly(1, t, domain='QQ')), (Poly(0, t, domain='QQ'), Poly(1, t, domain='QQ'))] h, A = param_rischDE(Poly(-t - 1, t, field=True), Poly(t + x, t, field=True), G, DE) assert len(h) == 5 p = [hi[0].as_expr()/hi[1].as_expr() for hi in h] V = A.nullspace() assert len(V) == 3 assert V[0] == Matrix([0, 0, 0, 0, 1, 0, 0]) y = 0*p[0] + 0*p[1] + 1*p[2] + 0*p[3] + 0*p[4] assert y.diff(t) - y/(t + x) == 0 # Dy + f*y = 0*G0 + 0*G1 def test_limited_integrate_reduce(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert limited_integrate_reduce(Poly(x, t), Poly(t**2, t), [(Poly(x, t), Poly(t, t))], DE) == \ (Poly(t, t), Poly(-1/x, t), Poly(t, t), 1, (Poly(x, t), Poly(1, t)), [(Poly(-x*t, t), Poly(1, t))]) def test_limited_integrate(): DE = DifferentialExtension(extension={'D': [Poly(1, x)]}) G = [(Poly(x, x), Poly(x + 1, x))] assert limited_integrate(Poly(-(1 + x + 5*x**2 - 3*x**3), x), Poly(1 - x - x**2 + x**3, x), G, DE) == \ ((Poly(x**2 - x + 2, x), Poly(x - 1, x)), [2]) G = [(Poly(1, x), Poly(x, x))] assert limited_integrate(Poly(5*x**2, x), Poly(3, x), G, DE) == \ ((Poly(5*x**3/9, x), Poly(1, x)), [0]) def test_is_log_deriv_k_t_radical(): DE = DifferentialExtension(extension={'D': [Poly(1, x)], 'exts': [None], 'extargs': [None]}) assert is_log_deriv_k_t_radical(Poly(2*x, x), Poly(1, x), DE) is None DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2*t1, t1), Poly(1/x, t2)], 'exts': [None, 'exp', 'log'], 'extargs': [None, 2*x, x]}) assert is_log_deriv_k_t_radical(Poly(x + t2/2, t2), Poly(1, t2), DE) == \ ([(t1, 1), (x, 1)], t1*x, 2, 0) # TODO: Add more tests DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(t0, t0), Poly(1/x, t)], 'exts': [None, 'exp', 'log'], 'extargs': [None, x, x]}) assert is_log_deriv_k_t_radical(Poly(x + t/2 + 3, t), Poly(1, t), DE) == \ ([(t0, 2), (x, 1)], x*t0**2, 2, 3) def test_is_deriv_k(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(1/(x + 1), t2)], 'exts': [None, 'log', 'log'], 'extargs': [None, x, x + 1]}) assert is_deriv_k(Poly(2*x**2 + 2*x, t2), Poly(1, t2), DE) == \ ([(t1, 1), (t2, 1)], t1 + t2, 2) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t1), Poly(t2, t2)], 'exts': [None, 'log', 'exp'], 'extargs': [None, x, x]}) assert is_deriv_k(Poly(x**2*t2**3, t2), Poly(1, t2), DE) == \ ([(x, 3), (t1, 2)], 2*t1 + 3*x, 1) # TODO: Add more tests, including ones with exponentials DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/x, t1)], 'exts': [None, 'log'], 'extargs': [None, x**2]}) assert is_deriv_k(Poly(x, t1), Poly(1, t1), DE) == \ ([(t1, S.Half)], t1/2, 1) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(2/(1 + x), t0)], 'exts': [None, 'log'], 'extargs': [None, x**2 + 2*x + 1]}) assert is_deriv_k(Poly(1 + x, t0), Poly(1, t0), DE) == \ ([(t0, S.Half)], t0/2, 1) # Issue 10798 # DE = DifferentialExtension(log(1/x), x) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-1/x, t)], 'exts': [None, 'log'], 'extargs': [None, 1/x]}) assert is_deriv_k(Poly(1, t), Poly(x, t), DE) == ([(t, 1)], t, 1) def test_is_log_deriv_k_t_radical_in_field(): # NOTE: any potential constant factor in the second element of the result # doesn't matter, because it cancels in Da/a. DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert is_log_deriv_k_t_radical_in_field(Poly(5*t + 1, t), Poly(2*t*x, t), DE) == \ (2, t*x**5) assert is_log_deriv_k_t_radical_in_field(Poly(2 + 3*t, t), Poly(5*x*t, t), DE) == \ (5, x**3*t**2) DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(-t/x**2, t)]}) assert is_log_deriv_k_t_radical_in_field(Poly(-(1 + 2*t), t), Poly(2*x**2 + 2*x**2*t, t), DE) == \ (2, t + t**2) assert is_log_deriv_k_t_radical_in_field(Poly(-1, t), Poly(x**2, t), DE) == \ (1, t) assert is_log_deriv_k_t_radical_in_field(Poly(1, t), Poly(2*x**2, t), DE) == \ (2, 1/t) def test_parametric_log_deriv(): DE = DifferentialExtension(extension={'D': [Poly(1, x), Poly(1/x, t)]}) assert parametric_log_deriv_heu(Poly(5*t**2 + t - 6, t), Poly(2*x*t**2, t), Poly(-1, t), Poly(x*t**2, t), DE) == \ (2, 6, t*x**5)
26d5c43ca5b4a10ba4029686466bc593497cecc0492dc148e368ed0516f53b87
from sympy import ( Symbol, Wild, sin, cos, exp, sqrt, pi, Function, Derivative, Integer, Eq, symbols, Add, I, Float, log, Rational, Lambda, atan2, cse, cot, tan, S, Tuple, Basic, Dict, Piecewise, oo, Mul, factor, nsimplify, zoo, Subs, RootOf, AccumBounds, Matrix, zeros, ZeroMatrix) from sympy.core.basic import _aresame from sympy.utilities.pytest import XFAIL from sympy.abc import a, x, y, z def test_subs(): n3 = Rational(3) e = x e = e.subs(x, n3) assert e == Rational(3) e = 2*x assert e == 2*x e = e.subs(x, n3) assert e == Rational(6) def test_subs_Matrix(): z = zeros(2) z1 = ZeroMatrix(2, 2) assert (x*y).subs({x:z, y:0}) in [z, z1] assert (x*y).subs({y:z, x:0}) == 0 assert (x*y).subs({y:z, x:0}, simultaneous=True) in [z, z1] assert (x + y).subs({x: z, y: z}, simultaneous=True) in [z, z1] assert (x + y).subs({x: z, y: z}) in [z, z1] # Issue #15528 assert Mul(Matrix([[3]]), x).subs(x, 2.0) == Matrix([[6.0]]) # Does not raise a TypeError, see comment on the MatAdd postprocessor assert Add(Matrix([[3]]), x).subs(x, 2.0) == Add(Matrix([[3]]), 2.0) def test_subs_AccumBounds(): e = x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(1, 3) e = 2*x e = e.subs(x, AccumBounds(1, 3)) assert e == AccumBounds(2, 6) e = x + x**2 e = e.subs(x, AccumBounds(-1, 1)) assert e == AccumBounds(-1, 2) def test_trigonometric(): n3 = Rational(3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(x, n3) assert e == 2*cos(n3)*sin(n3) e = (sin(x)**2).diff(x) assert e == 2*sin(x)*cos(x) e = e.subs(sin(x), cos(x)) assert e == 2*cos(x)**2 assert exp(pi).subs(exp, sin) == 0 assert cos(exp(pi)).subs(exp, sin) == 1 i = Symbol('i', integer=True) zoo = S.ComplexInfinity assert tan(x).subs(x, pi/2) is zoo assert cot(x).subs(x, pi) is zoo assert cot(i*x).subs(x, pi) is zoo assert tan(i*x).subs(x, pi/2) == tan(i*pi/2) assert tan(i*x).subs(x, pi/2).subs(i, 1) is zoo o = Symbol('o', odd=True) assert tan(o*x).subs(x, pi/2) == tan(o*pi/2) def test_powers(): assert sqrt(1 - sqrt(x)).subs(x, 4) == I assert (sqrt(1 - x**2)**3).subs(x, 2) == - 3*I*sqrt(3) assert (x**Rational(1, 3)).subs(x, 27) == 3 assert (x**Rational(1, 3)).subs(x, -27) == 3*(-1)**Rational(1, 3) assert ((-x)**Rational(1, 3)).subs(x, 27) == 3*(-1)**Rational(1, 3) n = Symbol('n', negative=True) assert (x**n).subs(x, 0) is S.ComplexInfinity assert exp(-1).subs(S.Exp1, 0) is S.ComplexInfinity assert (x**(4.0*y)).subs(x**(2.0*y), n) == n**2.0 assert (2**(x + 2)).subs(2, 3) == 3**(x + 3) def test_logexppow(): # no eval() x = Symbol('x', real=True) w = Symbol('w') e = (3**(1 + x) + 2**(1 + x))/(3**x + 2**x) assert e.subs(2**x, w) != e assert e.subs(exp(x*log(Rational(2))), w) != e def test_bug(): x1 = Symbol('x1') x2 = Symbol('x2') y = x1*x2 assert y.subs(x1, Float(3.0)) == Float(3.0)*x2 def test_subbug1(): # see that they don't fail (x**x).subs(x, 1) (x**x).subs(x, 1.0) def test_subbug2(): # Ensure this does not cause infinite recursion assert Float(7.7).epsilon_eq(abs(x).subs(x, -7.7)) def test_dict_set(): a, b, c = map(Wild, 'abc') f = 3*cos(4*x) r = f.match(a*cos(b*x)) assert r == {a: 3, b: 4} e = a/b*sin(b*x) assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 s = set(r.items()) assert e.subs(s) == r[a]/r[b]*sin(r[b]*x) assert e.subs(s) == 3*sin(4*x) / 4 assert e.subs(r) == r[a]/r[b]*sin(r[b]*x) assert e.subs(r) == 3*sin(4*x) / 4 assert x.subs(Dict((x, 1))) == 1 def test_dict_ambigous(): # see issue 3566 f = x*exp(x) g = z*exp(z) df = {x: y, exp(x): y} dg = {z: y, exp(z): y} assert f.subs(df) == y**2 assert g.subs(dg) == y**2 # and this is how order can affect the result assert f.subs(x, y).subs(exp(x), y) == y*exp(y) assert f.subs(exp(x), y).subs(x, y) == y**2 # length of args and count_ops are the same so # default_sort_key resolves ordering...if one # doesn't want this result then an unordered # sequence should not be used. e = 1 + x*y assert e.subs({x: y, y: 2}) == 5 # here, there are no obviously clashing keys or values # but the results depend on the order assert exp(x/2 + y).subs({exp(y + 1): 2, x: 2}) == exp(y + 1) def test_deriv_sub_bug3(): f = Function('f') pat = Derivative(f(x), x, x) assert pat.subs(y, y**2) == Derivative(f(x), x, x) assert pat.subs(y, y**2) != Derivative(f(x), x) def test_equality_subs1(): f = Function('f') eq = Eq(f(x)**2, x) res = Eq(Integer(16), x) assert eq.subs(f(x), 4) == res def test_equality_subs2(): f = Function('f') eq = Eq(f(x)**2, 16) assert bool(eq.subs(f(x), 3)) is False assert bool(eq.subs(f(x), 4)) is True def test_issue_3742(): e = sqrt(x)*exp(y) assert e.subs(sqrt(x), 1) == exp(y) def test_subs_dict1(): assert (1 + x*y).subs(x, pi) == 1 + pi*y assert (1 + x*y).subs({x: pi, y: 2}) == 1 + 2*pi c2, c3, q1p, q2p, c1, s1, s2, s3 = symbols('c2 c3 q1p q2p c1 s1 s2 s3') test = (c2**2*q2p*c3 + c1**2*s2**2*q2p*c3 + s1**2*s2**2*q2p*c3 - c1**2*q1p*c2*s3 - s1**2*q1p*c2*s3) assert (test.subs({c1**2: 1 - s1**2, c2**2: 1 - s2**2, c3**3: 1 - s3**2}) == c3*q2p*(1 - s2**2) + c3*q2p*s2**2*(1 - s1**2) - c2*q1p*s3*(1 - s1**2) + c3*q2p*s1**2*s2**2 - c2*q1p*s3*s1**2) def test_mul(): x, y, z, a, b, c = symbols('x y z a b c') A, B, C = symbols('A B C', commutative=0) assert (x*y*z).subs(z*x, y) == y**2 assert (z*x).subs(1/x, z) == 1 assert (x*y/z).subs(1/z, a) == a*x*y assert (x*y/z).subs(x/z, a) == a*y assert (x*y/z).subs(y/z, a) == a*x assert (x*y/z).subs(x/z, 1/a) == y/a assert (x*y/z).subs(x, 1/a) == y/(z*a) assert (2*x*y).subs(5*x*y, z) != z*Rational(2, 5) assert (x*y*A).subs(x*y, a) == a*A assert (x**2*y**(x*Rational(3, 2))).subs(x*y**(x/2), 2) == 4*y**(x/2) assert (x*exp(x*2)).subs(x*exp(x), 2) == 2*exp(x) assert ((x**(2*y))**3).subs(x**y, 2) == 64 assert (x*A*B).subs(x*A, y) == y*B assert (x*y*(1 + x)*(1 + x*y)).subs(x*y, 2) == 6*(1 + x) assert ((1 + A*B)*A*B).subs(A*B, x*A*B) assert (x*a/z).subs(x/z, A) == a*A assert (x**3*A).subs(x**2*A, a) == a*x assert (x**2*A*B).subs(x**2*B, a) == a*A assert (x**2*A*B).subs(x**2*A, a) == a*B assert (b*A**3/(a**3*c**3)).subs(a**4*c**3*A**3/b**4, z) == \ b*A**3/(a**3*c**3) assert (6*x).subs(2*x, y) == 3*y assert (y*exp(x*Rational(3, 2))).subs(y*exp(x), 2) == 2*exp(x/2) assert (y*exp(x*Rational(3, 2))).subs(y*exp(x), 2) == 2*exp(x/2) assert (A**2*B*A**2*B*A**2).subs(A*B*A, C) == A*C**2*A assert (x*A**3).subs(x*A, y) == y*A**2 assert (x**2*A**3).subs(x*A, y) == y**2*A assert (x*A**3).subs(x*A, B) == B*A**2 assert (x*A*B*A*exp(x*A*B)).subs(x*A, B) == B**2*A*exp(B*B) assert (x**2*A*B*A*exp(x*A*B)).subs(x*A, B) == B**3*exp(B**2) assert (x**3*A*exp(x*A*B)*A*exp(x*A*B)).subs(x*A, B) == \ x*B*exp(B**2)*B*exp(B**2) assert (x*A*B*C*A*B).subs(x*A*B, C) == C**2*A*B assert (-I*a*b).subs(a*b, 2) == -2*I # issue 6361 assert (-8*I*a).subs(-2*a, 1) == 4*I assert (-I*a).subs(-a, 1) == I # issue 6441 assert (4*x**2).subs(2*x, y) == y**2 assert (2*4*x**2).subs(2*x, y) == 2*y**2 assert (-x**3/9).subs(-x/3, z) == -z**2*x assert (-x**3/9).subs(x/3, z) == -z**2*x assert (-2*x**3/9).subs(x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-x/3, z) == -2*x*z**2 assert (-2*x**3/9).subs(-2*x, z) == z*x**2/9 assert (-2*x**3/9).subs(2*x, z) == -z*x**2/9 assert (2*(3*x/5/7)**2).subs(3*x/5, z) == 2*(Rational(1, 7))**2*z**2 assert (4*x).subs(-2*x, z) == 4*x # try keep subs literal def test_subs_simple(): a = symbols('a', commutative=True) x = symbols('x', commutative=False) assert (2*a).subs(1, 3) == 2*a assert (2*a).subs(2, 3) == 3*a assert (2*a).subs(a, 3) == 6 assert sin(2).subs(1, 3) == sin(2) assert sin(2).subs(2, 3) == sin(3) assert sin(a).subs(a, 3) == sin(3) assert (2*x).subs(1, 3) == 2*x assert (2*x).subs(2, 3) == 3*x assert (2*x).subs(x, 3) == 6 assert sin(x).subs(x, 3) == sin(3) def test_subs_constants(): a, b = symbols('a b', commutative=True) x, y = symbols('x y', commutative=False) assert (a*b).subs(2*a, 1) == a*b assert (1.5*a*b).subs(a, 1) == 1.5*b assert (2*a*b).subs(2*a, 1) == b assert (2*a*b).subs(4*a, 1) == 2*a*b assert (x*y).subs(2*x, 1) == x*y assert (1.5*x*y).subs(x, 1) == 1.5*y assert (2*x*y).subs(2*x, 1) == y assert (2*x*y).subs(4*x, 1) == 2*x*y def test_subs_commutative(): a, b, c, d, K = symbols('a b c d K', commutative=True) assert (a*b).subs(a*b, K) == K assert (a*b*a*b).subs(a*b, K) == K**2 assert (a*a*b*b).subs(a*b, K) == K**2 assert (a*b*c*d).subs(a*b*c, K) == d*K assert (a*b**c).subs(a, K) == K*b**c assert (a*b**c).subs(b, K) == a*K**c assert (a*b**c).subs(c, K) == a*b**K assert (a*b*c*b*a).subs(a*b, K) == c*K**2 assert (a**3*b**2*a).subs(a*b, K) == a**2*K**2 def test_subs_noncommutative(): w, x, y, z, L = symbols('w x y z L', commutative=False) alpha = symbols('alpha', commutative=True) someint = symbols('someint', commutative=True, integer=True) assert (x*y).subs(x*y, L) == L assert (w*y*x).subs(x*y, L) == w*y*x assert (w*x*y*z).subs(x*y, L) == w*L*z assert (x*y*x*y).subs(x*y, L) == L**2 assert (x*x*y).subs(x*y, L) == x*L assert (x*x*y*y).subs(x*y, L) == x*L*y assert (w*x*y).subs(x*y*z, L) == w*x*y assert (x*y**z).subs(x, L) == L*y**z assert (x*y**z).subs(y, L) == x*L**z assert (x*y**z).subs(z, L) == x*y**L assert (w*x*y*z*x*y).subs(x*y*z, L) == w*L*x*y assert (w*x*y*y*w*x*x*y*x*y*y*x*y).subs(x*y, L) == w*L*y*w*x*L**2*y*L # Check fractional power substitutions. It should not do # substitutions that choose a value for noncommutative log, # or inverses that don't already appear in the expressions. assert (x*x*x).subs(x*x, L) == L*x assert (x*x*x*y*x*x*x*x).subs(x*x, L) == L*x*y*L**2 for p in range(1, 5): for k in range(10): assert (y * x**k).subs(x**p, L) == y * L**(k//p) * x**(k % p) assert (x**Rational(3, 2)).subs(x**S.Half, L) == x**Rational(3, 2) assert (x**S.Half).subs(x**S.Half, L) == L assert (x**Rational(-1, 2)).subs(x**S.Half, L) == x**Rational(-1, 2) assert (x**Rational(-1, 2)).subs(x**Rational(-1, 2), L) == L assert (x**(2*someint)).subs(x**someint, L) == L**2 assert (x**(2*someint + 3)).subs(x**someint, L) == L**2*x**3 assert (x**(3*someint + 3)).subs(x**someint, L) == L**3*x**3 assert (x**(3*someint)).subs(x**(2*someint), L) == L * x**someint assert (x**(4*someint)).subs(x**(2*someint), L) == L**2 assert (x**(4*someint + 1)).subs(x**(2*someint), L) == L**2 * x assert (x**(4*someint)).subs(x**(3*someint), L) == L * x**someint assert (x**(4*someint + 1)).subs(x**(3*someint), L) == L * x**(someint + 1) assert (x**(2*alpha)).subs(x**alpha, L) == x**(2*alpha) assert (x**(2*alpha + 2)).subs(x**2, L) == x**(2*alpha + 2) assert ((2*z)**alpha).subs(z**alpha, y) == (2*z)**alpha assert (x**(2*someint*alpha)).subs(x**someint, L) == x**(2*someint*alpha) assert (x**(2*someint + alpha)).subs(x**someint, L) == x**(2*someint + alpha) # This could in principle be substituted, but is not currently # because it requires recognizing that someint**2 is divisible by # someint. assert (x**(someint**2 + 3)).subs(x**someint, L) == x**(someint**2 + 3) # alpha**z := exp(log(alpha) z) is usually well-defined assert (4**z).subs(2**z, y) == y**2 # Negative powers assert (x**(-1)).subs(x**3, L) == x**(-1) assert (x**(-2)).subs(x**3, L) == x**(-2) assert (x**(-3)).subs(x**3, L) == L**(-1) assert (x**(-4)).subs(x**3, L) == L**(-1) * x**(-1) assert (x**(-5)).subs(x**3, L) == L**(-1) * x**(-2) assert (x**(-1)).subs(x**(-3), L) == x**(-1) assert (x**(-2)).subs(x**(-3), L) == x**(-2) assert (x**(-3)).subs(x**(-3), L) == L assert (x**(-4)).subs(x**(-3), L) == L * x**(-1) assert (x**(-5)).subs(x**(-3), L) == L * x**(-2) assert (x**1).subs(x**(-3), L) == x assert (x**2).subs(x**(-3), L) == x**2 assert (x**3).subs(x**(-3), L) == L**(-1) assert (x**4).subs(x**(-3), L) == L**(-1) * x assert (x**5).subs(x**(-3), L) == L**(-1) * x**2 def test_subs_basic_funcs(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) assert (x + y).subs(x + y, L) == L assert (x - y).subs(x - y, L) == L assert (x/y).subs(x, L) == L/y assert (x**y).subs(x, L) == L**y assert (x**y).subs(y, L) == x**L assert ((a - c)/b).subs(b, K) == (a - c)/K assert (exp(x*y - z)).subs(x*y, L) == exp(L - z) assert (a*exp(x*y - w*z) + b*exp(x*y + w*z)).subs(z, 0) == \ a*exp(x*y) + b*exp(x*y) assert ((a - b)/(c*d - a*b)).subs(c*d - a*b, K) == (a - b)/K assert (w*exp(a*b - c)*x*y/4).subs(x*y, L) == w*exp(a*b - c)*L/4 def test_subs_wild(): R, S, T, U = symbols('R S T U', cls=Wild) assert (R*S).subs(R*S, T) == T assert (S*R).subs(R*S, T) == T assert (R + S).subs(R + S, T) == T assert (R**S).subs(R, T) == T**S assert (R**S).subs(S, T) == R**T assert (R*S**T).subs(R, U) == U*S**T assert (R*S**T).subs(S, U) == R*U**T assert (R*S**T).subs(T, U) == R*S**U def test_subs_mixed(): a, b, c, d, K = symbols('a b c d K', commutative=True) w, x, y, z, L = symbols('w x y z L', commutative=False) R, S, T, U = symbols('R S T U', cls=Wild) assert (a*x*y).subs(x*y, L) == a*L assert (a*b*x*y*x).subs(x*y, L) == a*b*L*x assert (R*x*y*exp(x*y)).subs(x*y, L) == R*L*exp(L) assert (a*x*y*y*x - x*y*z*exp(a*b)).subs(x*y, L) == a*L*y*x - L*z*exp(a*b) e = c*y*x*y*x**(R*S - a*b) - T*(a*R*b*S) assert e.subs(x*y, L).subs(a*b, K).subs(R*S, U) == \ c*y*L*x**(U - K) - T*(U*K) def test_division(): a, b, c = symbols('a b c', commutative=True) x, y, z = symbols('x y z', commutative=True) assert (1/a).subs(a, c) == 1/c assert (1/a**2).subs(a, c) == 1/c**2 assert (1/a**2).subs(a, -2) == Rational(1, 4) assert (-(1/a**2)).subs(a, -2) == Rational(-1, 4) assert (1/x).subs(x, z) == 1/z assert (1/x**2).subs(x, z) == 1/z**2 assert (1/x**2).subs(x, -2) == Rational(1, 4) assert (-(1/x**2)).subs(x, -2) == Rational(-1, 4) #issue 5360 assert (1/x).subs(x, 0) == 1/S.Zero def test_add(): a, b, c, d, x, y, t = symbols('a b c d x y t') assert (a**2 - b - c).subs(a**2 - b, d) in [d - c, a**2 - b - c] assert (a**2 - c).subs(a**2 - c, d) == d assert (a**2 - b - c).subs(a**2 - c, d) in [d - b, a**2 - b - c] assert (a**2 - x - c).subs(a**2 - c, d) in [d - x, a**2 - x - c] assert (a**2 - b - sqrt(a)).subs(a**2 - sqrt(a), c) == c - b assert (a + b + exp(a + b)).subs(a + b, c) == c + exp(c) assert (c + b + exp(c + b)).subs(c + b, a) == a + exp(a) assert (a + b + c + d).subs(b + c, x) == a + d + x assert (a + b + c + d).subs(-b - c, x) == a + d - x assert ((x + 1)*y).subs(x + 1, t) == t*y assert ((-x - 1)*y).subs(x + 1, t) == -t*y assert ((x - 1)*y).subs(x + 1, t) == y*(t - 2) assert ((-x + 1)*y).subs(x + 1, t) == y*(-t + 2) # this should work every time: e = a**2 - b - c assert e.subs(Add(*e.args[:2]), d) == d + e.args[2] assert e.subs(a**2 - c, d) == d - b # the fallback should recognize when a change has # been made; while .1 == Rational(1, 10) they are not the same # and the change should be made assert (0.1 + a).subs(0.1, Rational(1, 10)) == Rational(1, 10) + a e = (-x*(-y + 1) - y*(y - 1)) ans = (-x*(x) - y*(-x)).expand() assert e.subs(-y + 1, x) == ans def test_subs_issue_4009(): assert (I*Symbol('a')).subs(1, 2) == I*Symbol('a') def test_functions_subs(): f, g = symbols('f g', cls=Function) l = Lambda((x, y), sin(x) + y) assert (g(y, x) + cos(x)).subs(g, l) == sin(y) + x + cos(x) assert (f(x)**2).subs(f, sin) == sin(x)**2 assert (f(x, y)).subs(f, log) == log(x, y) assert (f(x, y)).subs(f, sin) == f(x, y) assert (sin(x) + atan2(x, y)).subs([[atan2, f], [sin, g]]) == \ f(x, y) + g(x) assert (g(f(x + y, x))).subs([[f, l], [g, exp]]) == exp(x + sin(x + y)) def test_derivative_subs(): f = Function('f') g = Function('g') assert Derivative(f(x), x).subs(f(x), y) != 0 # need xreplace to put the function back, see #13803 assert Derivative(f(x), x).subs(f(x), y).xreplace({y: f(x)}) == \ Derivative(f(x), x) # issues 5085, 5037 assert cse(Derivative(f(x), x) + f(x))[1][0].has(Derivative) assert cse(Derivative(f(x, y), x) + Derivative(f(x, y), y))[1][0].has(Derivative) eq = Derivative(g(x), g(x)) assert eq.subs(g, f) == Derivative(f(x), f(x)) assert eq.subs(g(x), f(x)) == Derivative(f(x), f(x)) assert eq.subs(g, cos) == Subs(Derivative(y, y), y, cos(x)) def test_derivative_subs2(): f_func, g_func = symbols('f g', cls=Function) f, g = f_func(x, y, z), g_func(x, y, z) assert Derivative(f, x, y).subs(Derivative(f, x, y), g) == g assert Derivative(f, y, x).subs(Derivative(f, x, y), g) == g assert Derivative(f, x, y).subs(Derivative(f, x), g) == Derivative(g, y) assert Derivative(f, x, y).subs(Derivative(f, y), g) == Derivative(g, x) assert (Derivative(f, x, y, z).subs( Derivative(f, x, z), g) == Derivative(g, y)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y), g) == Derivative(g, x)) assert (Derivative(f, x, y, z).subs( Derivative(f, z, y, x), g) == g) # Issue 9135 assert (Derivative(f, x, x, y).subs( Derivative(f, y, y), g) == Derivative(f, x, x, y)) assert (Derivative(f, x, y, y, z).subs( Derivative(f, x, y, y, y), g) == Derivative(f, x, y, y, z)) assert Derivative(f, x, y).subs(Derivative(f_func(x), x, y), g) == Derivative(f, x, y) def test_derivative_subs3(): dex = Derivative(exp(x), x) assert Derivative(dex, x).subs(dex, exp(x)) == dex assert dex.subs(exp(x), dex) == Derivative(exp(x), x, x) def test_issue_5284(): A, B = symbols('A B', commutative=False) assert (x*A).subs(x**2*A, B) == x*A assert (A**2).subs(A**3, B) == A**2 assert (A**6).subs(A**3, B) == B**2 def test_subs_iter(): assert x.subs(reversed([[x, y]])) == y it = iter([[x, y]]) assert x.subs(it) == y assert x.subs(Tuple((x, y))) == y def test_subs_dict(): a, b, c, d, e = symbols('a b c d e') assert (2*x + y + z).subs(dict(x=1, y=2)) == 4 + z l = [(sin(x), 2), (x, 1)] assert (sin(x)).subs(l) == \ (sin(x)).subs(dict(l)) == 2 assert sin(x).subs(reversed(l)) == sin(1) expr = sin(2*x) + sqrt(sin(2*x))*cos(2*x)*sin(exp(x)*x) reps = dict([ (sin(2*x), c), (sqrt(sin(2*x)), a), (cos(2*x), b), (exp(x), e), (x, d), ]) assert expr.subs(reps) == c + a*b*sin(d*e) l = [(x, 3), (y, x**2)] assert (x + y).subs(l) == 3 + x**2 assert (x + y).subs(reversed(l)) == 12 # If changes are made to convert lists into dictionaries and do # a dictionary-lookup replacement, these tests will help to catch # some logical errors that might occur l = [(y, z + 2), (1 + z, 5), (z, 2)] assert (y - 1 + 3*x).subs(l) == 5 + 3*x l = [(y, z + 2), (z, 3)] assert (y - 2).subs(l) == 3 def test_no_arith_subs_on_floats(): assert (x + 3).subs(x + 3, a) == a assert (x + 3).subs(x + 2, a) == a + 1 assert (x + y + 3).subs(x + 3, a) == a + y assert (x + y + 3).subs(x + 2, a) == a + y + 1 assert (x + 3.0).subs(x + 3.0, a) == a assert (x + 3.0).subs(x + 2.0, a) == x + 3.0 assert (x + y + 3.0).subs(x + 3.0, a) == a + y assert (x + y + 3.0).subs(x + 2.0, a) == x + y + 3.0 def test_issue_5651(): a, b, c, K = symbols('a b c K', commutative=True) assert (a/(b*c)).subs(b*c, K) == a/K assert (a/(b**2*c**3)).subs(b*c, K) == a/(c*K**2) assert (1/(x*y)).subs(x*y, 2) == S.Half assert ((1 + x*y)/(x*y)).subs(x*y, 1) == 2 assert (x*y*z).subs(x*y, 2) == 2*z assert ((1 + x*y)/(x*y)/z).subs(x*y, 1) == 2/z def test_issue_6075(): assert Tuple(1, True).subs(1, 2) == Tuple(2, True) def test_issue_6079(): # since x + 2.0 == x + 2 we can't do a simple equality test assert _aresame((x + 2.0).subs(2, 3), x + 2.0) assert _aresame((x + 2.0).subs(2.0, 3), x + 3) assert not _aresame(x + 2, x + 2.0) assert not _aresame(Basic(cos, 1), Basic(cos, 1.)) assert _aresame(cos, cos) assert not _aresame(1, S.One) assert not _aresame(x, symbols('x', positive=True)) def test_issue_4680(): N = Symbol('N') assert N.subs(dict(N=3)) == 3 def test_issue_6158(): assert (x - 1).subs(1, y) == x - y assert (x - 1).subs(-1, y) == x + y assert (x - oo).subs(oo, y) == x - y assert (x - oo).subs(-oo, y) == x + y def test_Function_subs(): f, g, h, i = symbols('f g h i', cls=Function) p = Piecewise((g(f(x, y)), x < -1), (g(x), x <= 1)) assert p.subs(g, h) == Piecewise((h(f(x, y)), x < -1), (h(x), x <= 1)) assert (f(y) + g(x)).subs({f: h, g: i}) == i(x) + h(y) def test_simultaneous_subs(): reps = {x: 0, y: 0} assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) reps = reps.items() assert (x/y).subs(reps) != (y/x).subs(reps) assert (x/y).subs(reps, simultaneous=True) == \ (y/x).subs(reps, simultaneous=True) assert Derivative(x, y, z).subs(reps, simultaneous=True) == \ Subs(Derivative(0, y, z), y, 0) def test_issue_6419_6421(): assert (1/(1 + x/y)).subs(x/y, x) == 1/(1 + x) assert (-2*I).subs(2*I, x) == -x assert (-I*x).subs(I*x, x) == -x assert (-3*I*y**4).subs(3*I*y**2, x) == -x*y**2 def test_issue_6559(): assert (-12*x + y).subs(-x, 1) == 12 + y # though this involves cse it generated a failure in Mul._eval_subs x0, x1 = symbols('x0 x1') e = -log(-12*sqrt(2) + 17)/24 - log(-2*sqrt(2) + 3)/12 + sqrt(2)/3 # XXX modify cse so x1 is eliminated and x0 = -sqrt(2)? assert cse(e) == ( [(x0, sqrt(2))], [x0/3 - log(-12*x0 + 17)/24 - log(-2*x0 + 3)/12]) def test_issue_5261(): x = symbols('x', real=True) e = I*x assert exp(e).subs(exp(x), y) == y**I assert (2**e).subs(2**x, y) == y**I eq = (-2)**e assert eq.subs((-2)**x, y) == eq def test_issue_6923(): assert (-2*x*sqrt(2)).subs(2*x, y) == -sqrt(2)*y def test_2arg_hack(): N = Symbol('N', commutative=False) ans = Mul(2, y + 1, evaluate=False) assert (2*x*(y + 1)).subs(x, 1, hack2=True) == ans assert (2*(y + 1 + N)).subs(N, 0, hack2=True) == ans @XFAIL def test_mul2(): """When this fails, remove things labelled "2-arg hack" 1) remove special handling in the fallback of subs that was added in the same commit as this test 2) remove the special handling in Mul.flatten """ assert (2*(x + 1)).is_Mul def test_noncommutative_subs(): x,y = symbols('x,y', commutative=False) assert (x*y*x).subs([(x, x*y), (y, x)], simultaneous=True) == (x*y*x**2*y) def test_issue_2877(): f = Float(2.0) assert (x + f).subs({f: 2}) == x + 2 def r(a, b, c): return factor(a*x**2 + b*x + c) e = r(5.0/6, 10, 5) assert nsimplify(e) == 5*x**2/6 + 10*x + 5 def test_issue_5910(): t = Symbol('t') assert (1/(1 - t)).subs(t, 1) is zoo n = t d = t - 1 assert (n/d).subs(t, 1) is zoo assert (-n/-d).subs(t, 1) is zoo def test_issue_5217(): s = Symbol('s') z = (1 - 2*x*x) w = (1 + 2*x*x) q = 2*x*x*2*y*y sub = {2*x*x: s} assert w.subs(sub) == 1 + s assert z.subs(sub) == 1 - s assert q == 4*x**2*y**2 assert q.subs(sub) == 2*y**2*s def test_issue_10829(): assert (4**x).subs(2**x, y) == y**2 assert (9**x).subs(3**x, y) == y**2 def test_pow_eval_subs_no_cache(): # Tests pull request 9376 is working from sympy.core.cache import clear_cache s = 1/sqrt(x**2) # This bug only appeared when the cache was turned off. # We need to approximate running this test without the cache. # This creates approximately the same situation. clear_cache() # This used to fail with a wrong result. # It incorrectly returned 1/sqrt(x**2) before this pull request. result = s.subs(sqrt(x**2), y) assert result == 1/y def test_RootOf_issue_10092(): x = Symbol('x', real=True) eq = x**3 - 17*x**2 + 81*x - 118 r = RootOf(eq, 0) assert (x < r).subs(x, r) is S.false def test_issue_8886(): from sympy.physics.mechanics import ReferenceFrame as R # if something can't be sympified we assume that it # doesn't play well with SymPy and disallow the # substitution v = R('A').x assert x.subs(x, v) == x assert v.subs(v, x) == v assert v.__eq__(x) is False def test_issue_12657(): # treat -oo like the atom that it is reps = [(-oo, 1), (oo, 2)] assert (x < -oo).subs(reps) == (x < 1) assert (x < -oo).subs(list(reversed(reps))) == (x < 1) reps = [(-oo, 2), (oo, 1)] assert (x < oo).subs(reps) == (x < 1) assert (x < oo).subs(list(reversed(reps))) == (x < 1) def test_recurse_Application_args(): F = Lambda((x, y), exp(2*x + 3*y)) f = Function('f') A = f(x, f(x, x)) C = F(x, F(x, x)) assert A.subs(f, F) == A.replace(f, F) == C def test_Subs_subs(): assert Subs(x*y, x, x).subs(x, y) == Subs(x*y, x, y) assert Subs(x*y, x, x + 1).subs(x, y) == \ Subs(x*y, x, y + 1) assert Subs(x*y, y, x + 1).subs(x, y) == \ Subs(y**2, y, y + 1) a = Subs(x*y*z, (y, x, z), (x + 1, x + z, x)) b = Subs(x*y*z, (y, x, z), (x + 1, y + z, y)) assert a.subs(x, y) == b and \ a.doit().subs(x, y) == a.subs(x, y).doit() f = Function('f') g = Function('g') assert Subs(2*f(x, y) + g(x), f(x, y), 1).subs(y, 2) == Subs( 2*f(x, y) + g(x), (f(x, y), y), (1, 2)) def test_issue_13333(): eq = 1/x assert eq.subs(dict(x='1/2')) == 2 assert eq.subs(dict(x='(1/2)')) == 2 def test_issue_15234(): x, y = symbols('x y', real=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed x, y = symbols('x y', complex=True) p = 6*x**5 + x**4 - 4*x**3 + 4*x**2 - 2*x + 3 p_subbed = 6*x**5 - 4*x**3 - 2*x + y**4 + 4*y**2 + 3 assert p.subs([(x**i, y**i) for i in [2, 4]]) == p_subbed def test_issue_6976(): x, y = symbols('x y') assert (sqrt(x)**3 + sqrt(x) + x + x**2).subs(sqrt(x), y) == \ y**4 + y**3 + y**2 + y assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ sqrt(x) + x**3 + x + y**2 + y assert x.subs(x**3, y) == x assert x.subs(x**Rational(1, 3), y) == y**3 # More substitutions are possible with nonnegative symbols x, y = symbols('x y', nonnegative=True) assert (x**4 + x**3 + x**2 + x + sqrt(x)).subs(x**2, y) == \ y**Rational(1, 4) + y**Rational(3, 2) + sqrt(y) + y**2 + y assert x.subs(x**3, y) == y**Rational(1, 3) def test_issue_11746(): assert (1/x).subs(x**2, 1) == 1/x assert (1/(x**3)).subs(x**2, 1) == x**(-3) assert (1/(x**4)).subs(x**2, 1) == 1 assert (1/(x**3)).subs(x**4, 1) == x**(-3) assert (1/(y**5)).subs(x**5, 1) == y**(-5)
dce4ebd854dfa60b864997856f9e7d652052d7e0ad675a9ab1288ef022b77c98
from sympy.abc import x, y from sympy.core.evaluate import evaluate from sympy.core import Mul, Add, Pow, S from sympy import sqrt, oo def test_add(): with evaluate(False): p = oo - oo assert isinstance(p, Add) and p.args == (oo, -oo) p = 5 - oo assert isinstance(p, Add) and p.args == (-oo, 5) p = oo - 5 assert isinstance(p, Add) and p.args == (oo, -5) p = oo + 5 assert isinstance(p, Add) and p.args == (oo, 5) p = 5 + oo assert isinstance(p, Add) and p.args == (oo, 5) p = -oo + 5 assert isinstance(p, Add) and p.args == (-oo, 5) p = -5 - oo assert isinstance(p, Add) and p.args == (-oo, -5) with evaluate(False): expr = x + x assert isinstance(expr, Add) assert expr.args == (x, x) with evaluate(True): assert (x + x).args == (2, x) assert (x + x).args == (x, x) assert isinstance(x + x, Mul) with evaluate(False): assert S.One + 1 == Add(1, 1) assert 1 + S.One == Add(1, 1) assert S(4) - 3 == Add(4, -3) assert -3 + S(4) == Add(4, -3) assert S(2) * 4 == Mul(2, 4) assert 4 * S(2) == Mul(2, 4) assert S(6) / 3 == Mul(6, S.One / 3) assert S.One / 3 * 6 == Mul(S.One / 3, 6) assert 9 ** S(2) == Pow(9, 2) assert S(2) ** 9 == Pow(2, 9) assert S(2) / 2 == Mul(2, S.One / 2) assert S.One / 2 * 2 == Mul(S.One / 2, 2) assert S(2) / 3 + 1 == Add(S(2) / 3, 1) assert 1 + S(2) / 3 == Add(1, S(2) / 3) assert S(4) / 7 - 3 == Add(S(4) / 7, -3) assert -3 + S(4) / 7 == Add(-3, S(4) / 7) assert S(2) / 4 * 4 == Mul(S(2) / 4, 4) assert 4 * (S(2) / 4) == Mul(4, S(2) / 4) assert S(6) / 3 == Mul(6, S.One / 3) assert S.One / 3 * 6 == Mul(S.One / 3, 6) assert S.One / 3 + sqrt(3) == Add(S.One / 3, sqrt(3)) assert sqrt(3) + S.One / 3 == Add(sqrt(3), S.One / 3) assert S.One / 2 * 10.333 == Mul(S.One / 2, 10.333) assert 10.333 * S.One / 2 == Mul(10.333, S.One / 2) assert sqrt(2) * sqrt(2) == Mul(sqrt(2), sqrt(2)) assert S.One / 2 + x == Add(S.One / 2, x) assert x + S.One / 2 == Add(x, S.One / 2) assert S.One / x * x == Mul(S.One / x, x) assert x * S.One / x == Mul(x, S.One / x) def test_nested(): with evaluate(False): expr = (x + x) + (y + y) assert expr.args == ((x + x), (y + y)) assert expr.args[0].args == (x, x)
64ed4f577d63e7b36fe0012d147edb7dcc8b3d9ad185426a01ddfd6c2d7e6cac
from sympy import (Add, Basic, Expr, S, Symbol, Wild, Float, Integer, Rational, I, sin, cos, tan, exp, log, nan, oo, sqrt, symbols, Integral, sympify, WildFunction, Poly, Function, Derivative, Number, pi, NumberSymbol, zoo, Piecewise, Mul, Pow, nsimplify, ratsimp, trigsimp, radsimp, powsimp, simplify, together, collect, factorial, apart, combsimp, factor, refine, cancel, Tuple, default_sort_key, DiracDelta, gamma, Dummy, Sum, E, exp_polar, expand, diff, O, Heaviside, Si, Max, UnevaluatedExpr, integrate, gammasimp, Gt) from sympy.core.expr import ExprBuilder, unchanged from sympy.core.function import AppliedUndef from sympy.core.compatibility import range, round, PY3 from sympy.physics.secondquant import FockState from sympy.physics.units import meter from sympy.utilities.pytest import raises, XFAIL from sympy.abc import a, b, c, n, t, u, x, y, z # replace 3 instances with int when PY2 is dropped and # delete this line _rint = int if PY3 else float class DummyNumber(object): """ Minimal implementation of a number that works with SymPy. If one has a Number class (e.g. Sage Integer, or some other custom class) that one wants to work well with SymPy, one has to implement at least the methods of this class DummyNumber, resp. its subclasses I5 and F1_1. Basically, one just needs to implement either __int__() or __float__() and then one needs to make sure that the class works with Python integers and with itself. """ def __radd__(self, a): if isinstance(a, (int, float)): return a + self.number return NotImplemented def __truediv__(a, b): return a.__div__(b) def __rtruediv__(a, b): return a.__rdiv__(b) def __add__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number + a return NotImplemented def __rsub__(self, a): if isinstance(a, (int, float)): return a - self.number return NotImplemented def __sub__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number - a return NotImplemented def __rmul__(self, a): if isinstance(a, (int, float)): return a * self.number return NotImplemented def __mul__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number * a return NotImplemented def __rdiv__(self, a): if isinstance(a, (int, float)): return a / self.number return NotImplemented def __div__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number / a return NotImplemented def __rpow__(self, a): if isinstance(a, (int, float)): return a ** self.number return NotImplemented def __pow__(self, a): if isinstance(a, (int, float, DummyNumber)): return self.number ** a return NotImplemented def __pos__(self): return self.number def __neg__(self): return - self.number class I5(DummyNumber): number = 5 def __int__(self): return self.number class F1_1(DummyNumber): number = 1.1 def __float__(self): return self.number i5 = I5() f1_1 = F1_1() # basic sympy objects basic_objs = [ Rational(2), Float("1.3"), x, y, pow(x, y)*y, ] # all supported objects all_objs = basic_objs + [ 5, 5.5, i5, f1_1 ] def dotest(s): for xo in all_objs: for yo in all_objs: s(xo, yo) return True def test_basic(): def j(a, b): x = a x = +a x = -a x = a + b x = a - b x = a*b x = a/b x = a**b del x assert dotest(j) def test_ibasic(): def s(a, b): x = a x += b x = a x -= b x = a x *= b x = a x /= b assert dotest(s) class NonBasic(object): '''This class represents an object that knows how to implement binary operations like +, -, etc with Expr but is not a subclass of Basic itself. The NonExpr subclass below does subclass Basic but not Expr. For both NonBasic and NonExpr it should be possible for them to override Expr.__add__ etc because Expr.__add__ should be returning NotImplemented for non Expr classes. Otherwise Expr.__add__ would create meaningless objects like Add(Integer(1), FiniteSet(2)) and it wouldn't be possible for other classes to override these operations when interacting with Expr. ''' def __add__(self, other): return SpecialOp('+', self, other) def __radd__(self, other): return SpecialOp('+', other, self) def __sub__(self, other): return SpecialOp('-', self, other) def __rsub__(self, other): return SpecialOp('-', other, self) def __mul__(self, other): return SpecialOp('*', self, other) def __rmul__(self, other): return SpecialOp('*', other, self) def __div__(self, other): return SpecialOp('/', self, other) def __rdiv__(self, other): return SpecialOp('/', other, self) __truediv__ = __div__ __rtruediv__ = __rdiv__ def __floordiv__(self, other): return SpecialOp('//', self, other) def __rfloordiv__(self, other): return SpecialOp('//', other, self) def __mod__(self, other): return SpecialOp('%', self, other) def __rmod__(self, other): return SpecialOp('%', other, self) def __divmod__(self, other): return SpecialOp('divmod', self, other) def __rdivmod__(self, other): return SpecialOp('divmod', other, self) def __pow__(self, other): return SpecialOp('**', self, other) def __rpow__(self, other): return SpecialOp('**', other, self) def __lt__(self, other): return SpecialOp('<', self, other) def __gt__(self, other): return SpecialOp('>', self, other) def __le__(self, other): return SpecialOp('<=', self, other) def __ge__(self, other): return SpecialOp('>=', self, other) class NonExpr(Basic, NonBasic): '''Like NonBasic above except this is a subclass of Basic but not Expr''' pass class SpecialOp(Basic): '''Represents the results of operations with NonBasic and NonExpr''' def __new__(cls, op, arg1, arg2): return Basic.__new__(cls, op, arg1, arg2) class NonArithmetic(Basic): '''Represents a Basic subclass that does not support arithmetic operations''' pass def test_cooperative_operations(): '''Tests that Expr uses binary operations cooperatively. In particular it should be possible for non-Expr classes to override binary operators like +, - etc when used with Expr instances. This should work for non-Expr classes whether they are Basic subclasses or not. Also non-Expr classes that do not define binary operators with Expr should give TypeError. ''' # A bunch of instances of Expr subclasses exprs = [ Expr(), S.Zero, S.One, S.Infinity, S.NegativeInfinity, S.ComplexInfinity, S.Half, Float(0.5), Integer(2), Symbol('x'), Mul(2, Symbol('x')), Add(2, Symbol('x')), Pow(2, Symbol('x')), ] for e in exprs: # Test that these classes can override arithmetic operations in # combination with various Expr types. for ne in [NonBasic(), NonExpr()]: results = [ (ne + e, ('+', ne, e)), (e + ne, ('+', e, ne)), (ne - e, ('-', ne, e)), (e - ne, ('-', e, ne)), (ne * e, ('*', ne, e)), (e * ne, ('*', e, ne)), (ne / e, ('/', ne, e)), (e / ne, ('/', e, ne)), (ne // e, ('//', ne, e)), (e // ne, ('//', e, ne)), (ne % e, ('%', ne, e)), (e % ne, ('%', e, ne)), (divmod(ne, e), ('divmod', ne, e)), (divmod(e, ne), ('divmod', e, ne)), (ne ** e, ('**', ne, e)), (e ** ne, ('**', e, ne)), (e < ne, ('>', ne, e)), (ne < e, ('<', ne, e)), (e > ne, ('<', ne, e)), (ne > e, ('>', ne, e)), (e <= ne, ('>=', ne, e)), (ne <= e, ('<=', ne, e)), (e >= ne, ('<=', ne, e)), (ne >= e, ('>=', ne, e)), ] for res, args in results: assert type(res) is SpecialOp and res.args == args # These classes do not support binary operators with Expr. Every # operation should raise in combination with any of the Expr types. for na in [NonArithmetic(), object()]: raises(TypeError, lambda : e + na) raises(TypeError, lambda : na + e) raises(TypeError, lambda : e - na) raises(TypeError, lambda : na - e) raises(TypeError, lambda : e * na) raises(TypeError, lambda : na * e) raises(TypeError, lambda : e / na) raises(TypeError, lambda : na / e) raises(TypeError, lambda : e // na) raises(TypeError, lambda : na // e) raises(TypeError, lambda : e % na) raises(TypeError, lambda : na % e) raises(TypeError, lambda : divmod(e, na)) raises(TypeError, lambda : divmod(na, e)) raises(TypeError, lambda : e ** na) raises(TypeError, lambda : na ** e) # XXX: Remove the if when PY2 support is dropped: if PY3: raises(TypeError, lambda : e > na) raises(TypeError, lambda : na > e) raises(TypeError, lambda : e < na) raises(TypeError, lambda : na < e) raises(TypeError, lambda : e >= na) raises(TypeError, lambda : na >= e) raises(TypeError, lambda : e <= na) raises(TypeError, lambda : na <= e) def test_relational(): from sympy import Lt assert (pi < 3) is S.false assert (pi <= 3) is S.false assert (pi > 3) is S.true assert (pi >= 3) is S.true assert (-pi < 3) is S.true assert (-pi <= 3) is S.true assert (-pi > 3) is S.false assert (-pi >= 3) is S.false r = Symbol('r', real=True) assert (r - 2 < r - 3) is S.false assert Lt(x + I, x + I + 2).func == Lt # issue 8288 def test_relational_assumptions(): from sympy import Lt, Gt, Le, Ge m1 = Symbol("m1", nonnegative=False) m2 = Symbol("m2", positive=False) m3 = Symbol("m3", nonpositive=False) m4 = Symbol("m4", negative=False) assert (m1 < 0) == Lt(m1, 0) assert (m2 <= 0) == Le(m2, 0) assert (m3 > 0) == Gt(m3, 0) assert (m4 >= 0) == Ge(m4, 0) m1 = Symbol("m1", nonnegative=False, real=True) m2 = Symbol("m2", positive=False, real=True) m3 = Symbol("m3", nonpositive=False, real=True) m4 = Symbol("m4", negative=False, real=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=True) m2 = Symbol("m2", nonpositive=True) m3 = Symbol("m3", positive=True) m4 = Symbol("m4", nonnegative=True) assert (m1 < 0) is S.true assert (m2 <= 0) is S.true assert (m3 > 0) is S.true assert (m4 >= 0) is S.true m1 = Symbol("m1", negative=False, real=True) m2 = Symbol("m2", nonpositive=False, real=True) m3 = Symbol("m3", positive=False, real=True) m4 = Symbol("m4", nonnegative=False, real=True) assert (m1 < 0) is S.false assert (m2 <= 0) is S.false assert (m3 > 0) is S.false assert (m4 >= 0) is S.false # See https://github.com/sympy/sympy/issues/17708 #def test_relational_noncommutative(): # from sympy import Lt, Gt, Le, Ge # A, B = symbols('A,B', commutative=False) # assert (A < B) == Lt(A, B) # assert (A <= B) == Le(A, B) # assert (A > B) == Gt(A, B) # assert (A >= B) == Ge(A, B) def test_basic_nostr(): for obj in basic_objs: raises(TypeError, lambda: obj + '1') raises(TypeError, lambda: obj - '1') if obj == 2: assert obj * '1' == '11' else: raises(TypeError, lambda: obj * '1') raises(TypeError, lambda: obj / '1') raises(TypeError, lambda: obj ** '1') def test_series_expansion_for_uniform_order(): assert (1/x + y + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + x).series(x, 0, 1) == 1/x + y + O(x) assert (1/x + 1 + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + 1 + x).series(x, 0, 1) == 1/x + 1 + O(x) assert (1/x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 0) == 1/x + O(1, x) assert (1/x + y + y*x + x).series(x, 0, 1) == 1/x + y + O(x) def test_leadterm(): assert (3 + 2*x**(log(3)/log(2) - 1)).leadterm(x) == (3, 0) assert (1/x**2 + 1 + x + x**2).leadterm(x)[1] == -2 assert (1/x + 1 + x + x**2).leadterm(x)[1] == -1 assert (x**2 + 1/x).leadterm(x)[1] == -1 assert (1 + x**2).leadterm(x)[1] == 0 assert (x + 1).leadterm(x)[1] == 0 assert (x + x**2).leadterm(x)[1] == 1 assert (x**2).leadterm(x)[1] == 2 def test_as_leading_term(): assert (3 + 2*x**(log(3)/log(2) - 1)).as_leading_term(x) == 3 assert (1/x**2 + 1 + x + x**2).as_leading_term(x) == 1/x**2 assert (1/x + 1 + x + x**2).as_leading_term(x) == 1/x assert (x**2 + 1/x).as_leading_term(x) == 1/x assert (1 + x**2).as_leading_term(x) == 1 assert (x + 1).as_leading_term(x) == 1 assert (x + x**2).as_leading_term(x) == x assert (x**2).as_leading_term(x) == x**2 assert (x + oo).as_leading_term(x) is oo raises(ValueError, lambda: (x + 1).as_leading_term(1)) def test_leadterm2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).leadterm(x) == \ (sin(1 + sin(1)), 0) def test_leadterm3(): assert (y + z + x).leadterm(x) == (y + z, 0) def test_as_leading_term2(): assert (x*cos(1)*cos(1 + sin(1)) + sin(1 + sin(1))).as_leading_term(x) == \ sin(1 + sin(1)) def test_as_leading_term3(): assert (2 + pi + x).as_leading_term(x) == 2 + pi assert (2*x + pi*x + x**2).as_leading_term(x) == (2 + pi)*x def test_as_leading_term4(): # see issue 6843 n = Symbol('n', integer=True, positive=True) r = -n**3/(2*n**2 + 4*n + 2) - n**2/(n**2 + 2*n + 1) + \ n**2/(n + 1) - n/(2*n**2 + 4*n + 2) + n/(n*x + x) + 2*n/(n + 1) - \ 1 + 1/(n*x + x) + 1/(n + 1) - 1/x assert r.as_leading_term(x).cancel() == n/2 def test_as_leading_term_stub(): class foo(Function): pass assert foo(1/x).as_leading_term(x) == foo(1/x) assert foo(1).as_leading_term(x) == foo(1) raises(NotImplementedError, lambda: foo(x).as_leading_term(x)) def test_as_leading_term_deriv_integral(): # related to issue 11313 assert Derivative(x ** 3, x).as_leading_term(x) == 3*x**2 assert Derivative(x ** 3, y).as_leading_term(x) == 0 assert Integral(x ** 3, x).as_leading_term(x) == x**4/4 assert Integral(x ** 3, y).as_leading_term(x) == y*x**3 assert Derivative(exp(x), x).as_leading_term(x) == 1 assert Derivative(log(x), x).as_leading_term(x) == (1/x).as_leading_term(x) def test_atoms(): assert x.atoms() == {x} assert (1 + x).atoms() == {x, S.One} assert (1 + 2*cos(x)).atoms(Symbol) == {x} assert (1 + 2*cos(x)).atoms(Symbol, Number) == {S.One, S(2), x} assert (2*(x**(y**x))).atoms() == {S(2), x, y} assert S.Half.atoms() == {S.Half} assert S.Half.atoms(Symbol) == set([]) assert sin(oo).atoms(oo) == set() assert Poly(0, x).atoms() == {S.Zero} assert Poly(1, x).atoms() == {S.One} assert Poly(x, x).atoms() == {x} assert Poly(x, x, y).atoms() == {x} assert Poly(x + y, x, y).atoms() == {x, y} assert Poly(x + y, x, y, z).atoms() == {x, y} assert Poly(x + y*t, x, y, z).atoms() == {t, x, y} assert (I*pi).atoms(NumberSymbol) == {pi} assert (I*pi).atoms(NumberSymbol, I) == \ (I*pi).atoms(I, NumberSymbol) == {pi, I} assert exp(exp(x)).atoms(exp) == {exp(exp(x)), exp(x)} assert (1 + x*(2 + y) + exp(3 + z)).atoms(Add) == \ {1 + x*(2 + y) + exp(3 + z), 2 + y, 3 + z} # issue 6132 f = Function('f') e = (f(x) + sin(x) + 2) assert e.atoms(AppliedUndef) == \ {f(x)} assert e.atoms(AppliedUndef, Function) == \ {f(x), sin(x)} assert e.atoms(Function) == \ {f(x), sin(x)} assert e.atoms(AppliedUndef, Number) == \ {f(x), S(2)} assert e.atoms(Function, Number) == \ {S(2), sin(x), f(x)} def test_is_polynomial(): k = Symbol('k', nonnegative=True, integer=True) assert Rational(2).is_polynomial(x, y, z) is True assert (S.Pi).is_polynomial(x, y, z) is True assert x.is_polynomial(x) is True assert x.is_polynomial(y) is True assert (x**2).is_polynomial(x) is True assert (x**2).is_polynomial(y) is True assert (x**(-2)).is_polynomial(x) is False assert (x**(-2)).is_polynomial(y) is True assert (2**x).is_polynomial(x) is False assert (2**x).is_polynomial(y) is True assert (x**k).is_polynomial(x) is False assert (x**k).is_polynomial(k) is False assert (x**x).is_polynomial(x) is False assert (k**k).is_polynomial(k) is False assert (k**x).is_polynomial(k) is False assert (x**(-k)).is_polynomial(x) is False assert ((2*x)**k).is_polynomial(x) is False assert (x**2 + 3*x - 8).is_polynomial(x) is True assert (x**2 + 3*x - 8).is_polynomial(y) is True assert (x**2 + 3*x - 8).is_polynomial() is True assert sqrt(x).is_polynomial(x) is False assert (sqrt(x)**3).is_polynomial(x) is False assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(x) is True assert (x**2 + 3*x*sqrt(y) - 8).is_polynomial(y) is False assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial() is True assert ((x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial() is False assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(2)).is_polynomial(x, y) is True assert ( (x**2)*(y**2) + x*(y**2) + y*x + exp(x)).is_polynomial(x, y) is False def test_is_rational_function(): assert Integer(1).is_rational_function() is True assert Integer(1).is_rational_function(x) is True assert Rational(17, 54).is_rational_function() is True assert Rational(17, 54).is_rational_function(x) is True assert (12/x).is_rational_function() is True assert (12/x).is_rational_function(x) is True assert (x/y).is_rational_function() is True assert (x/y).is_rational_function(x) is True assert (x/y).is_rational_function(x, y) is True assert (x**2 + 1/x/y).is_rational_function() is True assert (x**2 + 1/x/y).is_rational_function(x) is True assert (x**2 + 1/x/y).is_rational_function(x, y) is True assert (sin(y)/x).is_rational_function() is False assert (sin(y)/x).is_rational_function(y) is False assert (sin(y)/x).is_rational_function(x) is True assert (sin(y)/x).is_rational_function(x, y) is False assert (S.NaN).is_rational_function() is False assert (S.Infinity).is_rational_function() is False assert (S.NegativeInfinity).is_rational_function() is False assert (S.ComplexInfinity).is_rational_function() is False def test_is_algebraic_expr(): assert sqrt(3).is_algebraic_expr(x) is True assert sqrt(3).is_algebraic_expr() is True eq = ((1 + x**2)/(1 - y**2))**(S.One/3) assert eq.is_algebraic_expr(x) is True assert eq.is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(x) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr(y) is True assert (sqrt(x) + y**(S(2)/3)).is_algebraic_expr() is True assert (cos(y)/sqrt(x)).is_algebraic_expr() is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x) is True assert (cos(y)/sqrt(x)).is_algebraic_expr(y) is False assert (cos(y)/sqrt(x)).is_algebraic_expr(x, y) is False def test_SAGE1(): #see https://github.com/sympy/sympy/issues/3346 class MyInt: def _sympy_(self): return Integer(5) m = MyInt() e = Rational(2)*m assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE2(): class MyInt(object): def __int__(self): return 5 assert sympify(MyInt()) == 5 e = Rational(2)*MyInt() assert e == 10 raises(TypeError, lambda: Rational(2)*MyInt) def test_SAGE3(): class MySymbol: def __rmul__(self, other): return ('mys', other, self) o = MySymbol() e = x*o assert e == ('mys', x, o) def test_len(): e = x*y assert len(e.args) == 2 e = x + y + z assert len(e.args) == 3 def test_doit(): a = Integral(x**2, x) assert isinstance(a.doit(), Integral) is False assert isinstance(a.doit(integrals=True), Integral) is False assert isinstance(a.doit(integrals=False), Integral) is True assert (2*Integral(x, x)).doit() == x**2 def test_attribute_error(): raises(AttributeError, lambda: x.cos()) raises(AttributeError, lambda: x.sin()) raises(AttributeError, lambda: x.exp()) def test_args(): assert (x*y).args in ((x, y), (y, x)) assert (x + y).args in ((x, y), (y, x)) assert (x*y + 1).args in ((x*y, 1), (1, x*y)) assert sin(x*y).args == (x*y,) assert sin(x*y).args[0] == x*y assert (x**y).args == (x, y) assert (x**y).args[0] == x assert (x**y).args[1] == y def test_noncommutative_expand_issue_3757(): A, B, C = symbols('A,B,C', commutative=False) assert A*B - B*A != 0 assert (A*(A + B)*B).expand() == A**2*B + A*B**2 assert (A*(A + B + C)*B).expand() == A**2*B + A*B**2 + A*C*B def test_as_numer_denom(): a, b, c = symbols('a, b, c') assert nan.as_numer_denom() == (nan, 1) assert oo.as_numer_denom() == (oo, 1) assert (-oo).as_numer_denom() == (-oo, 1) assert zoo.as_numer_denom() == (zoo, 1) assert (-zoo).as_numer_denom() == (zoo, 1) assert x.as_numer_denom() == (x, 1) assert (1/x).as_numer_denom() == (1, x) assert (x/y).as_numer_denom() == (x, y) assert (x/2).as_numer_denom() == (x, 2) assert (x*y/z).as_numer_denom() == (x*y, z) assert (x/(y*z)).as_numer_denom() == (x, y*z) assert S.Half.as_numer_denom() == (1, 2) assert (1/y**2).as_numer_denom() == (1, y**2) assert (x/y**2).as_numer_denom() == (x, y**2) assert ((x**2 + 1)/y).as_numer_denom() == (x**2 + 1, y) assert (x*(y + 1)/y**7).as_numer_denom() == (x*(y + 1), y**7) assert (x**-2).as_numer_denom() == (1, x**2) assert (a/x + b/2/x + c/3/x).as_numer_denom() == \ (6*a + 3*b + 2*c, 6*x) assert (a/x + b/2/x + c/3/y).as_numer_denom() == \ (2*c*x + y*(6*a + 3*b), 6*x*y) assert (a/x + b/2/x + c/.5/x).as_numer_denom() == \ (2*a + b + 4.0*c, 2*x) # this should take no more than a few seconds assert int(log(Add(*[Dummy()/i/x for i in range(1, 705)] ).as_numer_denom()[1]/x).n(4)) == 705 for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).as_numer_denom() == \ (x + i, 3) assert (S.Infinity + x/3 + y/4).as_numer_denom() == \ (4*x + 3*y + S.Infinity, 12) assert (oo*x + zoo*y).as_numer_denom() == \ (zoo*y + oo*x, 1) A, B, C = symbols('A,B,C', commutative=False) assert (A*B*C**-1).as_numer_denom() == (A*B*C**-1, 1) assert (A*B*C**-1/x).as_numer_denom() == (A*B*C**-1, x) assert (C**-1*A*B).as_numer_denom() == (C**-1*A*B, 1) assert (C**-1*A*B/x).as_numer_denom() == (C**-1*A*B, x) assert ((A*B*C)**-1).as_numer_denom() == ((A*B*C)**-1, 1) assert ((A*B*C)**-1/x).as_numer_denom() == ((A*B*C)**-1, x) def test_trunc(): import math x, y = symbols('x y') assert math.trunc(2) == 2 assert math.trunc(4.57) == 4 assert math.trunc(-5.79) == -5 assert math.trunc(pi) == 3 assert math.trunc(log(7)) == 1 assert math.trunc(exp(5)) == 148 assert math.trunc(cos(pi)) == -1 assert math.trunc(sin(5)) == 0 raises(TypeError, lambda: math.trunc(x)) raises(TypeError, lambda: math.trunc(x + y**2)) raises(TypeError, lambda: math.trunc(oo)) def test_as_independent(): assert S.Zero.as_independent(x, as_Add=True) == (0, 0) assert S.Zero.as_independent(x, as_Add=False) == (0, 0) assert (2*x*sin(x) + y + x).as_independent(x) == (y, x + 2*x*sin(x)) assert (2*x*sin(x) + y + x).as_independent(y) == (x + 2*x*sin(x), y) assert (2*x*sin(x) + y + x).as_independent(x, y) == (0, y + x + 2*x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(x) == (cos(y), x*sin(x)) assert (x*sin(x)*cos(y)).as_independent(y) == (x*sin(x), cos(y)) assert (x*sin(x)*cos(y)).as_independent(x, y) == (1, x*sin(x)*cos(y)) assert (sin(x)).as_independent(x) == (1, sin(x)) assert (sin(x)).as_independent(y) == (sin(x), 1) assert (2*sin(x)).as_independent(x) == (2, sin(x)) assert (2*sin(x)).as_independent(y) == (2*sin(x), 1) # issue 4903 = 1766b n1, n2, n3 = symbols('n1 n2 n3', commutative=False) assert (n1 + n1*n2).as_independent(n2) == (n1, n1*n2) assert (n2*n1 + n1*n2).as_independent(n2) == (0, n1*n2 + n2*n1) assert (n1*n2*n1).as_independent(n2) == (n1, n2*n1) assert (n1*n2*n1).as_independent(n1) == (1, n1*n2*n1) assert (3*x).as_independent(x, as_Add=True) == (0, 3*x) assert (3*x).as_independent(x, as_Add=False) == (3, x) assert (3 + x).as_independent(x, as_Add=True) == (3, x) assert (3 + x).as_independent(x, as_Add=False) == (1, 3 + x) # issue 5479 assert (3*x).as_independent(Symbol) == (3, x) # issue 5648 assert (n1*x*y).as_independent(x) == (n1*y, x) assert ((x + n1)*(x - y)).as_independent(x) == (1, (x + n1)*(x - y)) assert ((x + n1)*(x - y)).as_independent(y) == (x + n1, x - y) assert (DiracDelta(x - n1)*DiracDelta(x - y)).as_independent(x) \ == (1, DiracDelta(x - n1)*DiracDelta(x - y)) assert (x*y*n1*n2*n3).as_independent(n2) == (x*y*n1, n2*n3) assert (x*y*n1*n2*n3).as_independent(n1) == (x*y, n1*n2*n3) assert (x*y*n1*n2*n3).as_independent(n3) == (x*y*n1*n2, n3) assert (DiracDelta(x - n1)*DiracDelta(y - n1)*DiracDelta(x - n2)).as_independent(y) == \ (DiracDelta(x - n1)*DiracDelta(x - n2), DiracDelta(y - n1)) # issue 5784 assert (x + Integral(x, (x, 1, 2))).as_independent(x, strict=True) == \ (Integral(x, (x, 1, 2)), x) eq = Add(x, -x, 2, -3, evaluate=False) assert eq.as_independent(x) == (-1, Add(x, -x, evaluate=False)) eq = Mul(x, 1/x, 2, -3, evaluate=False) eq.as_independent(x) == (-6, Mul(x, 1/x, evaluate=False)) assert (x*y).as_independent(z, as_Add=True) == (x*y, 0) @XFAIL def test_call_2(): # TODO UndefinedFunction does not subclass Expr f = Function('f') assert (2*f)(x) == 2*f(x) def test_replace(): f = log(sin(x)) + tan(sin(x**2)) assert f.replace(sin, cos) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin, lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) a = Wild('a') b = Wild('b') assert f.replace(sin(a), cos(a)) == log(cos(x)) + tan(cos(x**2)) assert f.replace( sin(a), lambda a: sin(2*a)) == log(sin(2*x)) + tan(sin(2*x**2)) # test exact assert (2*x).replace(a*x + b, b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, b - a) == 2*x assert (2*x).replace(a*x + b, b - a, exact=False) == 2/x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=True) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a) == 2*x assert (2*x).replace(a*x + b, lambda a, b: b - a, exact=False) == 2/x g = 2*sin(x**3) assert g.replace( lambda expr: expr.is_Number, lambda expr: expr**2) == 4*sin(x**9) assert cos(x).replace(cos, sin, map=True) == (sin(x), {cos(x): sin(x)}) assert sin(x).replace(cos, sin) == sin(x) cond, func = lambda x: x.is_Mul, lambda x: 2*x assert (x*y).replace(cond, func, map=True) == (2*x*y, {x*y: 2*x*y}) assert (x*(1 + x*y)).replace(cond, func, map=True) == \ (2*x*(2*x*y + 1), {x*(2*x*y + 1): 2*x*(2*x*y + 1), x*y: 2*x*y}) assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, map=True) == \ (sin(x), {sin(x): sin(x)/y}) # if not simultaneous then y*sin(x) -> y*sin(x)/y = sin(x) -> sin(x)/y assert (y*sin(x)).replace(sin, lambda expr: sin(expr)/y, simultaneous=False) == sin(x)/y assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e) == O(1, x) assert (x**2 + O(x**3)).replace(Pow, lambda b, e: b**e/e, simultaneous=False) == x**2/2 + O(x**3) assert (x*(x*y + 3)).replace(lambda x: x.is_Mul, lambda x: 2 + x) == \ x*(x*y + 5) + 2 e = (x*y + 1)*(2*x*y + 1) + 1 assert e.replace(cond, func, map=True) == ( 2*((2*x*y + 1)*(4*x*y + 1)) + 1, {2*x*y: 4*x*y, x*y: 2*x*y, (2*x*y + 1)*(4*x*y + 1): 2*((2*x*y + 1)*(4*x*y + 1))}) assert x.replace(x, y) == y assert (x + 1).replace(1, 2) == x + 2 # https://groups.google.com/forum/#!topic/sympy/8wCgeC95tz0 n1, n2, n3 = symbols('n1:4', commutative=False) f = Function('f') assert (n1*f(n2)).replace(f, lambda x: x) == n1*n2 assert (n3*f(n2)).replace(f, lambda x: x) == n3*n2 # issue 16725 assert S.Zero.replace(Wild('x'), 1) == 1 # let the user override the default decision of False assert S.Zero.replace(Wild('x'), 1, exact=True) == 0 def test_find(): expr = (x + y + 2 + sin(3*x)) assert expr.find(lambda u: u.is_Integer) == {S(2), S(3)} assert expr.find(lambda u: u.is_Symbol) == {x, y} assert expr.find(lambda u: u.is_Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(lambda u: u.is_Symbol, group=True) == {x: 2, y: 1} assert expr.find(Integer) == {S(2), S(3)} assert expr.find(Symbol) == {x, y} assert expr.find(Integer, group=True) == {S(2): 1, S(3): 1} assert expr.find(Symbol, group=True) == {x: 2, y: 1} a = Wild('a') expr = sin(sin(x)) + sin(x) + cos(x) + x assert expr.find(lambda u: type(u) is sin) == {sin(x), sin(sin(x))} assert expr.find( lambda u: type(u) is sin, group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin(a)) == {sin(x), sin(sin(x))} assert expr.find(sin(a), group=True) == {sin(x): 2, sin(sin(x)): 1} assert expr.find(sin) == {sin(x), sin(sin(x))} assert expr.find(sin, group=True) == {sin(x): 2, sin(sin(x)): 1} def test_count(): expr = (x + y + 2 + sin(3*x)) assert expr.count(lambda u: u.is_Integer) == 2 assert expr.count(lambda u: u.is_Symbol) == 3 assert expr.count(Integer) == 2 assert expr.count(Symbol) == 3 assert expr.count(2) == 1 a = Wild('a') assert expr.count(sin) == 1 assert expr.count(sin(a)) == 1 assert expr.count(lambda u: type(u) is sin) == 1 f = Function('f') assert f(x).count(f(x)) == 1 assert f(x).diff(x).count(f(x)) == 1 assert f(x).diff(x).count(x) == 2 def test_has_basics(): f = Function('f') g = Function('g') p = Wild('p') assert sin(x).has(x) assert sin(x).has(sin) assert not sin(x).has(y) assert not sin(x).has(cos) assert f(x).has(x) assert f(x).has(f) assert not f(x).has(y) assert not f(x).has(g) assert f(x).diff(x).has(x) assert f(x).diff(x).has(f) assert f(x).diff(x).has(Derivative) assert not f(x).diff(x).has(y) assert not f(x).diff(x).has(g) assert not f(x).diff(x).has(sin) assert (x**2).has(Symbol) assert not (x**2).has(Wild) assert (2*p).has(Wild) assert not x.has() def test_has_multiple(): f = x**2*y + sin(2**t + log(z)) assert f.has(x) assert f.has(y) assert f.has(z) assert f.has(t) assert not f.has(u) assert f.has(x, y, z, t) assert f.has(x, y, z, t, u) i = Integer(4400) assert not i.has(x) assert (i*x**i).has(x) assert not (i*y**i).has(x) assert (i*y**i).has(x, y) assert not (i*y**i).has(x, z) def test_has_piecewise(): f = (x*y + 3/y)**(3 + 2) g = Function('g') h = Function('h') p = Piecewise((g(x), x < -1), (1, x <= 1), (f, True)) assert p.has(x) assert p.has(y) assert not p.has(z) assert p.has(1) assert p.has(3) assert not p.has(4) assert p.has(f) assert p.has(g) assert not p.has(h) def test_has_iterative(): A, B, C = symbols('A,B,C', commutative=False) f = x*gamma(x)*sin(x)*exp(x*y)*A*B*C*cos(x*A*B) assert f.has(x) assert f.has(x*y) assert f.has(x*sin(x)) assert not f.has(x*sin(y)) assert f.has(x*A) assert f.has(x*A*B) assert not f.has(x*A*C) assert f.has(x*A*B*C) assert not f.has(x*A*C*B) assert f.has(x*sin(x)*A*B*C) assert not f.has(x*sin(x)*A*C*B) assert not f.has(x*sin(y)*A*B*C) assert f.has(x*gamma(x)) assert not f.has(x + sin(x)) assert (x & y & z).has(x & z) def test_has_integrals(): f = Integral(x**2 + sin(x*y*z), (x, 0, x + y + z)) assert f.has(x + y) assert f.has(x + z) assert f.has(y + z) assert f.has(x*y) assert f.has(x*z) assert f.has(y*z) assert not f.has(2*x + y) assert not f.has(2*x*y) def test_has_tuple(): f = Function('f') g = Function('g') h = Function('h') assert Tuple(x, y).has(x) assert not Tuple(x, y).has(z) assert Tuple(f(x), g(x)).has(x) assert not Tuple(f(x), g(x)).has(y) assert Tuple(f(x), g(x)).has(f) assert Tuple(f(x), g(x)).has(f(x)) assert not Tuple(f, g).has(x) assert Tuple(f, g).has(f) assert not Tuple(f, g).has(h) assert Tuple(True).has(True) is True # .has(1) will also be True def test_has_units(): from sympy.physics.units import m, s assert (x*m/s).has(x) assert (x*m/s).has(y, z) is False def test_has_polys(): poly = Poly(x**2 + x*y*sin(z), x, y, t) assert poly.has(x) assert poly.has(x, y, z) assert poly.has(x, y, z, t) def test_has_physics(): assert FockState((x, y)).has(x) def test_as_poly_as_expr(): f = x**2 + 2*x*y assert f.as_poly().as_expr() == f assert f.as_poly(x, y).as_expr() == f assert (f + sin(x)).as_poly(x, y) is None p = Poly(f, x, y) assert p.as_poly() == p raises(AttributeError, lambda: Tuple(x, x).as_poly(x)) raises(AttributeError, lambda: Tuple(x ** 2, x, y).as_poly(x)) def test_nonzero(): assert bool(S.Zero) is False assert bool(S.One) is True assert bool(x) is True assert bool(x + y) is True assert bool(x - x) is False assert bool(x*y) is True assert bool(x*1) is True assert bool(x*0) is False def test_is_number(): assert Float(3.14).is_number is True assert Integer(737).is_number is True assert Rational(3, 2).is_number is True assert Rational(8).is_number is True assert x.is_number is False assert (2*x).is_number is False assert (x + y).is_number is False assert log(2).is_number is True assert log(x).is_number is False assert (2 + log(2)).is_number is True assert (8 + log(2)).is_number is True assert (2 + log(x)).is_number is False assert (8 + log(2) + x).is_number is False assert (1 + x**2/x - x).is_number is True assert Tuple(Integer(1)).is_number is False assert Add(2, x).is_number is False assert Mul(3, 4).is_number is True assert Pow(log(2), 2).is_number is True assert oo.is_number is True g = WildFunction('g') assert g.is_number is False assert (2*g).is_number is False assert (x**2).subs(x, 3).is_number is True # test extensibility of .is_number # on subinstances of Basic class A(Basic): pass a = A() assert a.is_number is False def test_as_coeff_add(): assert S(2).as_coeff_add() == (2, ()) assert S(3.0).as_coeff_add() == (0, (S(3.0),)) assert S(-3.0).as_coeff_add() == (0, (S(-3.0),)) assert x.as_coeff_add() == (0, (x,)) assert (x - 1).as_coeff_add() == (-1, (x,)) assert (x + 1).as_coeff_add() == (1, (x,)) assert (x + 2).as_coeff_add() == (2, (x,)) assert (x + y).as_coeff_add(y) == (x, (y,)) assert (3*x).as_coeff_add(y) == (3*x, ()) # don't do expansion e = (x + y)**2 assert e.as_coeff_add(y) == (0, (e,)) def test_as_coeff_mul(): assert S(2).as_coeff_mul() == (2, ()) assert S(3.0).as_coeff_mul() == (1, (S(3.0),)) assert S(-3.0).as_coeff_mul() == (-1, (S(3.0),)) assert S(-3.0).as_coeff_mul(rational=False) == (-S(3.0), ()) assert x.as_coeff_mul() == (1, (x,)) assert (-x).as_coeff_mul() == (-1, (x,)) assert (2*x).as_coeff_mul() == (2, (x,)) assert (x*y).as_coeff_mul(y) == (x, (y,)) assert (3 + x).as_coeff_mul() == (1, (3 + x,)) assert (3 + x).as_coeff_mul(y) == (3 + x, ()) # don't do expansion e = exp(x + y) assert e.as_coeff_mul(y) == (1, (e,)) e = 2**(x + y) assert e.as_coeff_mul(y) == (1, (e,)) assert (1.1*x).as_coeff_mul(rational=False) == (1.1, (x,)) assert (1.1*x).as_coeff_mul() == (1, (1.1, x)) assert (-oo*x).as_coeff_mul(rational=True) == (-1, (oo, x)) def test_as_coeff_exponent(): assert (3*x**4).as_coeff_exponent(x) == (3, 4) assert (2*x**3).as_coeff_exponent(x) == (2, 3) assert (4*x**2).as_coeff_exponent(x) == (4, 2) assert (6*x**1).as_coeff_exponent(x) == (6, 1) assert (3*x**0).as_coeff_exponent(x) == (3, 0) assert (2*x**0).as_coeff_exponent(x) == (2, 0) assert (1*x**0).as_coeff_exponent(x) == (1, 0) assert (0*x**0).as_coeff_exponent(x) == (0, 0) assert (-1*x**0).as_coeff_exponent(x) == (-1, 0) assert (-2*x**0).as_coeff_exponent(x) == (-2, 0) assert (2*x**3 + pi*x**3).as_coeff_exponent(x) == (2 + pi, 3) assert (x*log(2)/(2*x + pi*x)).as_coeff_exponent(x) == \ (log(2)/(2 + pi), 0) # issue 4784 D = Derivative f = Function('f') fx = D(f(x), x) assert fx.as_coeff_exponent(f(x)) == (fx, 0) def test_extractions(): assert ((x*y)**3).extract_multiplicatively(x**2 * y) == x*y**2 assert ((x*y)**3).extract_multiplicatively(x**4 * y) is None assert (2*x).extract_multiplicatively(2) == x assert (2*x).extract_multiplicatively(3) is None assert (2*x).extract_multiplicatively(-1) is None assert (S.Half*x).extract_multiplicatively(3) == x/6 assert (sqrt(x)).extract_multiplicatively(x) is None assert (sqrt(x)).extract_multiplicatively(1/x) is None assert x.extract_multiplicatively(-x) is None assert (-2 - 4*I).extract_multiplicatively(-2) == 1 + 2*I assert (-2 - 4*I).extract_multiplicatively(3) is None assert (-2*x - 4*y - 8).extract_multiplicatively(-2) == x + 2*y + 4 assert (-2*x*y - 4*x**2*y).extract_multiplicatively(-2*y) == 2*x**2 + x assert (2*x*y + 4*x**2*y).extract_multiplicatively(2*y) == 2*x**2 + x assert (-4*y**2*x).extract_multiplicatively(-3*y) is None assert (2*x).extract_multiplicatively(1) == 2*x assert (-oo).extract_multiplicatively(5) is -oo assert (oo).extract_multiplicatively(5) is oo assert ((x*y)**3).extract_additively(1) is None assert (x + 1).extract_additively(x) == 1 assert (x + 1).extract_additively(2*x) is None assert (x + 1).extract_additively(-x) is None assert (-x + 1).extract_additively(2*x) is None assert (2*x + 3).extract_additively(x) == x + 3 assert (2*x + 3).extract_additively(2) == 2*x + 1 assert (2*x + 3).extract_additively(3) == 2*x assert (2*x + 3).extract_additively(-2) is None assert (2*x + 3).extract_additively(3*x) is None assert (2*x + 3).extract_additively(2*x) == 3 assert x.extract_additively(0) == x assert S(2).extract_additively(x) is None assert S(2.).extract_additively(2) is S.Zero assert S(2*x + 3).extract_additively(x + 1) == x + 2 assert S(2*x + 3).extract_additively(y + 1) is None assert S(2*x - 3).extract_additively(x + 1) is None assert S(2*x - 3).extract_additively(y + z) is None assert ((a + 1)*x*4 + y).extract_additively(x).expand() == \ 4*a*x + 3*x + y assert ((a + 1)*x*4 + 3*y).extract_additively(x + 2*y).expand() == \ 4*a*x + 3*x + y assert (y*(x + 1)).extract_additively(x + 1) is None assert ((y + 1)*(x + 1) + 3).extract_additively(x + 1) == \ y*(x + 1) + 3 assert ((x + y)*(x + 1) + x + y + 3).extract_additively(x + y) == \ x*(x + y) + 3 assert (x + y + 2*((x + y)*(x + 1)) + 3).extract_additively((x + y)*(x + 1)) == \ x + y + (x + 1)*(x + y) + 3 assert ((y + 1)*(x + 2*y + 1) + 3).extract_additively(y + 1) == \ (x + 2*y)*(y + 1) + 3 n = Symbol("n", integer=True) assert (Integer(-3)).could_extract_minus_sign() is True assert (-n*x + x).could_extract_minus_sign() != \ (n*x - x).could_extract_minus_sign() assert (x - y).could_extract_minus_sign() != \ (-x + y).could_extract_minus_sign() assert (1 - x - y).could_extract_minus_sign() is True assert (1 - x + y).could_extract_minus_sign() is False assert ((-x - x*y)/y).could_extract_minus_sign() is True assert (-(x + x*y)/y).could_extract_minus_sign() is True assert ((x + x*y)/(-y)).could_extract_minus_sign() is True assert ((x + x*y)/y).could_extract_minus_sign() is False assert (x*(-x - x**3)).could_extract_minus_sign() is True assert ((-x - y)/(x + y)).could_extract_minus_sign() is True class sign_invariant(Function, Expr): nargs = 1 def __neg__(self): return self foo = sign_invariant(x) assert foo == -foo assert foo.could_extract_minus_sign() is False # The results of each of these will vary on different machines, e.g. # the first one might be False and the other (then) is true or vice versa, # so both are included. assert ((-x - y)/(x - y)).could_extract_minus_sign() is False or \ ((-x - y)/(y - x)).could_extract_minus_sign() is False assert (x - y).could_extract_minus_sign() is False assert (-x + y).could_extract_minus_sign() is True # check that result is canonical eq = (3*x + 15*y).extract_multiplicatively(3) assert eq.args == eq.func(*eq.args).args def test_nan_extractions(): for r in (1, 0, I, nan): assert nan.extract_additively(r) is None assert nan.extract_multiplicatively(r) is None def test_coeff(): assert (x + 1).coeff(x + 1) == 1 assert (3*x).coeff(0) == 0 assert (z*(1 + x)*x**2).coeff(1 + x) == z*x**2 assert (1 + 2*x*x**(1 + x)).coeff(x*x**(1 + x)) == 2 assert (1 + 2*x**(y + z)).coeff(x**(y + z)) == 2 assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (3 + 2*x + 4*x**2).coeff(-1) == 0 assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (-x/8 + x*y).coeff(x) == Rational(-1, 8) + y assert (-x/8 + x*y).coeff(-x) == S.One/8 assert (4*x).coeff(2*x) == 0 assert (2*x).coeff(2*x) == 1 assert (-oo*x).coeff(x*oo) == -1 assert (10*x).coeff(x, 0) == 0 assert (10*x).coeff(10*x, 0) == 0 n1, n2 = symbols('n1 n2', commutative=False) assert (n1*n2).coeff(n1) == 1 assert (n1*n2).coeff(n2) == n1 assert (n1*n2 + x*n1).coeff(n1) == 1 # 1*n1*(n2+x) assert (n2*n1 + x*n1).coeff(n1) == n2 + x assert (n2*n1 + x*n1**2).coeff(n1) == n2 assert (n1**x).coeff(n1) == 0 assert (n1*n2 + n2*n1).coeff(n1) == 0 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=1) == n2 assert (2*(n1 + n2)*n2).coeff(n1 + n2, right=0) == 2 f = Function('f') assert (2*f(x) + 3*f(x).diff(x)).coeff(f(x)) == 2 expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr.coeff(x + y) == 0 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 assert (x + y + 3*z).coeff(1) == x + y assert (-x + 2*y).coeff(-1) == x assert (x - 2*y).coeff(-1) == 2*y assert (3 + 2*x + 4*x**2).coeff(1) == 0 assert (-x - 2*y).coeff(2) == -y assert (x + sqrt(2)*x).coeff(sqrt(2)) == x assert (3 + 2*x + 4*x**2).coeff(x) == 2 assert (3 + 2*x + 4*x**2).coeff(x**2) == 4 assert (3 + 2*x + 4*x**2).coeff(x**3) == 0 assert (z*(x + y)**2).coeff((x + y)**2) == z assert (z*(x + y)**2).coeff(x + y) == 0 assert (2 + 2*x + (x + 1)*y).coeff(x + 1) == y assert (x + 2*y + 3).coeff(1) == x assert (x + 2*y + 3).coeff(x, 0) == 2*y + 3 assert (x**2 + 2*y + 3*x).coeff(x**2, 0) == 2*y + 3*x assert x.coeff(0, 0) == 0 assert x.coeff(x, 0) == 0 n, m, o, l = symbols('n m o l', commutative=False) assert n.coeff(n) == 1 assert y.coeff(n) == 0 assert (3*n).coeff(n) == 3 assert (2 + n).coeff(x*m) == 0 assert (2*x*n*m).coeff(x) == 2*n*m assert (2 + n).coeff(x*m*n + y) == 0 assert (2*x*n*m).coeff(3*n) == 0 assert (n*m + m*n*m).coeff(n) == 1 + m assert (n*m + m*n*m).coeff(n, right=True) == m # = (1 + m)*n*m assert (n*m + m*n).coeff(n) == 0 assert (n*m + o*m*n).coeff(m*n) == o assert (n*m + o*m*n).coeff(m*n, right=1) == 1 assert (n*m + n*m*n).coeff(n*m, right=1) == 1 + n # = n*m*(n + 1) assert (x*y).coeff(z, 0) == x*y def test_coeff2(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff((psi(r).diff(r))) == 2/r def test_coeff2_0(): r, kappa = symbols('r, kappa') psi = Function("psi") g = 1/r**2 * (2*r*psi(r).diff(r, 1) + r**2 * psi(r).diff(r, 2)) g = g.expand() assert g.coeff(psi(r).diff(r, 2)) == 1 def test_coeff_expand(): expr = z*(x + y)**2 expr2 = z*(x + y)**2 + z*(2*x + 2*y)**2 assert expr.coeff(z) == (x + y)**2 assert expr2.coeff(z) == (x + y)**2 + (2*x + 2*y)**2 def test_integrate(): assert x.integrate(x) == x**2/2 assert x.integrate((x, 0, 1)) == S.Half def test_as_base_exp(): assert x.as_base_exp() == (x, S.One) assert (x*y*z).as_base_exp() == (x*y*z, S.One) assert (x + y + z).as_base_exp() == (x + y + z, S.One) assert ((x + y)**z).as_base_exp() == (x + y, z) def test_issue_4963(): assert hasattr(Mul(x, y), "is_commutative") assert hasattr(Mul(x, y, evaluate=False), "is_commutative") assert hasattr(Pow(x, y), "is_commutative") assert hasattr(Pow(x, y, evaluate=False), "is_commutative") expr = Mul(Pow(2, 2, evaluate=False), 3, evaluate=False) + 1 assert hasattr(expr, "is_commutative") def test_action_verbs(): assert nsimplify((1/(exp(3*pi*x/5) + 1))) == \ (1/(exp(3*pi*x/5) + 1)).nsimplify() assert ratsimp(1/x + 1/y) == (1/x + 1/y).ratsimp() assert trigsimp(log(x), deep=True) == (log(x)).trigsimp(deep=True) assert radsimp(1/(2 + sqrt(2))) == (1/(2 + sqrt(2))).radsimp() assert radsimp(1/(a + b*sqrt(c)), symbolic=False) == \ (1/(a + b*sqrt(c))).radsimp(symbolic=False) assert powsimp(x**y*x**z*y**z, combine='all') == \ (x**y*x**z*y**z).powsimp(combine='all') assert (x**t*y**t).powsimp(force=True) == (x*y)**t assert simplify(x**y*x**z*y**z) == (x**y*x**z*y**z).simplify() assert together(1/x + 1/y) == (1/x + 1/y).together() assert collect(a*x**2 + b*x**2 + a*x - b*x + c, x) == \ (a*x**2 + b*x**2 + a*x - b*x + c).collect(x) assert apart(y/(y + 2)/(y + 1), y) == (y/(y + 2)/(y + 1)).apart(y) assert combsimp(y/(x + 2)/(x + 1)) == (y/(x + 2)/(x + 1)).combsimp() assert gammasimp(gamma(x)/gamma(x-5)) == (gamma(x)/gamma(x-5)).gammasimp() assert factor(x**2 + 5*x + 6) == (x**2 + 5*x + 6).factor() assert refine(sqrt(x**2)) == sqrt(x**2).refine() assert cancel((x**2 + 5*x + 6)/(x + 2)) == ((x**2 + 5*x + 6)/(x + 2)).cancel() def test_as_powers_dict(): assert x.as_powers_dict() == {x: 1} assert (x**y*z).as_powers_dict() == {x: y, z: 1} assert Mul(2, 2, evaluate=False).as_powers_dict() == {S(2): S(2)} assert (x*y).as_powers_dict()[z] == 0 assert (x + y).as_powers_dict()[z] == 0 def test_as_coefficients_dict(): check = [S.One, x, y, x*y, 1] assert [Add(3*x, 2*x, y, 3).as_coefficients_dict()[i] for i in check] == \ [3, 5, 1, 0, 3] assert [Add(3*x, 2*x, y, 3, evaluate=False).as_coefficients_dict()[i] for i in check] == [3, 5, 1, 0, 3] assert [(3*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3, 0] assert [(3.0*x*y).as_coefficients_dict()[i] for i in check] == \ [0, 0, 0, 3.0, 0] assert (3.0*x*y).as_coefficients_dict()[3.0*x*y] == 0 def test_args_cnc(): A = symbols('A', commutative=False) assert (x + A).args_cnc() == \ [[], [x + A]] assert (x + a).args_cnc() == \ [[a + x], []] assert (x*a).args_cnc() == \ [[a, x], []] assert (x*y*A*(A + 1)).args_cnc(cset=True) == \ [{x, y}, [A, 1 + A]] assert Mul(x, x, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x}, []] assert Mul(x, x**2, evaluate=False).args_cnc(cset=True, warn=False) == \ [{x, x**2}, []] raises(ValueError, lambda: Mul(x, x, evaluate=False).args_cnc(cset=True)) assert Mul(x, y, x, evaluate=False).args_cnc() == \ [[x, y, x], []] # always split -1 from leading number assert (-1.*x).args_cnc() == [[-1, 1.0, x], []] def test_new_rawargs(): n = Symbol('n', commutative=False) a = x + n assert a.is_commutative is False assert a._new_rawargs(x).is_commutative assert a._new_rawargs(x, y).is_commutative assert a._new_rawargs(x, n).is_commutative is False assert a._new_rawargs(x, y, n).is_commutative is False m = x*n assert m.is_commutative is False assert m._new_rawargs(x).is_commutative assert m._new_rawargs(n).is_commutative is False assert m._new_rawargs(x, y).is_commutative assert m._new_rawargs(x, n).is_commutative is False assert m._new_rawargs(x, y, n).is_commutative is False assert m._new_rawargs(x, n, reeval=False).is_commutative is False assert m._new_rawargs(S.One) is S.One def test_issue_5226(): assert Add(evaluate=False) == 0 assert Mul(evaluate=False) == 1 assert Mul(x + y, evaluate=False).is_Add def test_free_symbols(): # free_symbols should return the free symbols of an object assert S.One.free_symbols == set() assert x.free_symbols == {x} assert Integral(x, (x, 1, y)).free_symbols == {y} assert (-Integral(x, (x, 1, y))).free_symbols == {y} assert meter.free_symbols == set() assert (meter**x).free_symbols == {x} def test_issue_5300(): x = Symbol('x', commutative=False) assert x*sqrt(2)/sqrt(6) == x*sqrt(3)/3 def test_floordiv(): from sympy.functions.elementary.integers import floor assert x // y == floor(x / y) def test_as_coeff_Mul(): assert S.Zero.as_coeff_Mul() == (S.One, S.Zero) assert Integer(3).as_coeff_Mul() == (Integer(3), Integer(1)) assert Rational(3, 4).as_coeff_Mul() == (Rational(3, 4), Integer(1)) assert Float(5.0).as_coeff_Mul() == (Float(5.0), Integer(1)) assert (Integer(3)*x).as_coeff_Mul() == (Integer(3), x) assert (Rational(3, 4)*x).as_coeff_Mul() == (Rational(3, 4), x) assert (Float(5.0)*x).as_coeff_Mul() == (Float(5.0), x) assert (Integer(3)*x*y).as_coeff_Mul() == (Integer(3), x*y) assert (Rational(3, 4)*x*y).as_coeff_Mul() == (Rational(3, 4), x*y) assert (Float(5.0)*x*y).as_coeff_Mul() == (Float(5.0), x*y) assert (x).as_coeff_Mul() == (S.One, x) assert (x*y).as_coeff_Mul() == (S.One, x*y) assert (-oo*x).as_coeff_Mul(rational=True) == (-1, oo*x) def test_as_coeff_Add(): assert Integer(3).as_coeff_Add() == (Integer(3), Integer(0)) assert Rational(3, 4).as_coeff_Add() == (Rational(3, 4), Integer(0)) assert Float(5.0).as_coeff_Add() == (Float(5.0), Integer(0)) assert (Integer(3) + x).as_coeff_Add() == (Integer(3), x) assert (Rational(3, 4) + x).as_coeff_Add() == (Rational(3, 4), x) assert (Float(5.0) + x).as_coeff_Add() == (Float(5.0), x) assert (Float(5.0) + x).as_coeff_Add(rational=True) == (0, Float(5.0) + x) assert (Integer(3) + x + y).as_coeff_Add() == (Integer(3), x + y) assert (Rational(3, 4) + x + y).as_coeff_Add() == (Rational(3, 4), x + y) assert (Float(5.0) + x + y).as_coeff_Add() == (Float(5.0), x + y) assert (x).as_coeff_Add() == (S.Zero, x) assert (x*y).as_coeff_Add() == (S.Zero, x*y) def test_expr_sorting(): f, g = symbols('f,g', cls=Function) exprs = [1/x**2, 1/x, sqrt(sqrt(x)), sqrt(x), x, sqrt(x)**3, x**2] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x, 2*x, 2*x**2, 2*x**3, x**n, 2*x**n, sin(x), sin(x)**n, sin(x**2), cos(x), cos(x**2), tan(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [x + 1, x**2 + x + 1, x**3 + x**2 + x + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [S(4), x - 3*I/2, x + 3*I/2, x - 4*I + 1, x + 4*I + 1] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [f(x), g(x), exp(x), sin(x), cos(x), factorial(x)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [Tuple(x, y), Tuple(x, z), Tuple(x, y, z)] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[3], [1, 2]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [[1, 2], [1, 2, 3]] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{x: -y}, {x: y}] assert sorted(exprs, key=default_sort_key) == exprs exprs = [{1}, {1, 2}] assert sorted(exprs, key=default_sort_key) == exprs a, b = exprs = [Dummy('x'), Dummy('x')] assert sorted([b, a], key=default_sort_key) == exprs def test_as_ordered_factors(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_factors() == [x] assert (2*x*x**n*sin(x)*cos(x)).as_ordered_factors() \ == [Integer(2), x, x**n, sin(x), cos(x)] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Mul(*args) assert expr.as_ordered_factors() == args A, B = symbols('A,B', commutative=False) assert (A*B).as_ordered_factors() == [A, B] assert (B*A).as_ordered_factors() == [B, A] def test_as_ordered_terms(): f, g = symbols('f,g', cls=Function) assert x.as_ordered_terms() == [x] assert (sin(x)**2*cos(x) + sin(x)*cos(x)**2 + 1).as_ordered_terms() \ == [sin(x)**2*cos(x), sin(x)*cos(x)**2, 1] args = [f(1), f(2), f(3), f(1, 2, 3), g(1), g(2), g(3), g(1, 2, 3)] expr = Add(*args) assert expr.as_ordered_terms() == args assert (1 + 4*sqrt(3)*pi*x).as_ordered_terms() == [4*pi*x*sqrt(3), 1] assert ( 2 + 3*I).as_ordered_terms() == [2, 3*I] assert (-2 + 3*I).as_ordered_terms() == [-2, 3*I] assert ( 2 - 3*I).as_ordered_terms() == [2, -3*I] assert (-2 - 3*I).as_ordered_terms() == [-2, -3*I] assert ( 4 + 3*I).as_ordered_terms() == [4, 3*I] assert (-4 + 3*I).as_ordered_terms() == [-4, 3*I] assert ( 4 - 3*I).as_ordered_terms() == [4, -3*I] assert (-4 - 3*I).as_ordered_terms() == [-4, -3*I] f = x**2*y**2 + x*y**4 + y + 2 assert f.as_ordered_terms(order="lex") == [x**2*y**2, x*y**4, y, 2] assert f.as_ordered_terms(order="grlex") == [x*y**4, x**2*y**2, y, 2] assert f.as_ordered_terms(order="rev-lex") == [2, y, x*y**4, x**2*y**2] assert f.as_ordered_terms(order="rev-grlex") == [2, y, x**2*y**2, x*y**4] k = symbols('k') assert k.as_ordered_terms(data=True) == ([(k, ((1.0, 0.0), (1,), ()))], [k]) def test_sort_key_atomic_expr(): from sympy.physics.units import m, s assert sorted([-m, s], key=lambda arg: arg.sort_key()) == [-m, s] def test_eval_interval(): assert exp(x)._eval_interval(*Tuple(x, 0, 1)) == exp(1) - exp(0) # issue 4199 # first subs and limit gives NaN a = x/y assert a._eval_interval(x, S.Zero, oo)._eval_interval(y, oo, S.Zero) is S.NaN # second subs and limit gives NaN assert a._eval_interval(x, S.Zero, oo)._eval_interval(y, S.Zero, oo) is S.NaN # difference gives S.NaN a = x - y assert a._eval_interval(x, S.One, oo)._eval_interval(y, oo, S.One) is S.NaN raises(ValueError, lambda: x._eval_interval(x, None, None)) a = -y*Heaviside(x - y) assert a._eval_interval(x, -oo, oo) == -y assert a._eval_interval(x, oo, -oo) == y def test_eval_interval_zoo(): # Test that limit is used when zoo is returned assert Si(1/x)._eval_interval(x, S.Zero, S.One) == -pi/2 + Si(1) def test_primitive(): assert (3*(x + 1)**2).primitive() == (3, (x + 1)**2) assert (6*x + 2).primitive() == (2, 3*x + 1) assert (x/2 + 3).primitive() == (S.Half, x + 6) eq = (6*x + 2)*(x/2 + 3) assert eq.primitive()[0] == 1 eq = (2 + 2*x)**2 assert eq.primitive()[0] == 1 assert (4.0*x).primitive() == (1, 4.0*x) assert (4.0*x + y/2).primitive() == (S.Half, 8.0*x + y) assert (-2*x).primitive() == (2, -x) assert Add(5*z/7, 0.5*x, 3*y/2, evaluate=False).primitive() == \ (S.One/14, 7.0*x + 21*y + 10*z) for i in [S.Infinity, S.NegativeInfinity, S.ComplexInfinity]: assert (i + x/3).primitive() == \ (S.One/3, i + x) assert (S.Infinity + 2*x/3 + 4*y/7).primitive() == \ (S.One/21, 14*x + 12*y + oo) assert S.Zero.primitive() == (S.One, S.Zero) def test_issue_5843(): a = 1 + x assert (2*a).extract_multiplicatively(a) == 2 assert (4*a).extract_multiplicatively(2*a) == 2 assert ((3*a)*(2*a)).extract_multiplicatively(a) == 6*a def test_is_constant(): from sympy.solvers.solvers import checksol Sum(x, (x, 1, 10)).is_constant() is True Sum(x, (x, 1, n)).is_constant() is False Sum(x, (x, 1, n)).is_constant(y) is True Sum(x, (x, 1, n)).is_constant(n) is False Sum(x, (x, 1, n)).is_constant(x) is True eq = a*cos(x)**2 + a*sin(x)**2 - a eq.is_constant() is True assert eq.subs({x: pi, a: 2}) == eq.subs({x: pi, a: 3}) == 0 assert x.is_constant() is False assert x.is_constant(y) is True assert checksol(x, x, Sum(x, (x, 1, n))) is False assert checksol(x, x, Sum(x, (x, 1, n))) is False f = Function('f') assert f(1).is_constant assert checksol(x, x, f(x)) is False assert Pow(x, S.Zero, evaluate=False).is_constant() is True # == 1 assert Pow(S.Zero, x, evaluate=False).is_constant() is False # == 0 or 1 assert (2**x).is_constant() is False assert Pow(S(2), S(3), evaluate=False).is_constant() is True z1, z2 = symbols('z1 z2', zero=True) assert (z1 + 2*z2).is_constant() is True assert meter.is_constant() is True assert (3*meter).is_constant() is True assert (x*meter).is_constant() is False assert Poly(3, x).is_constant() is True def test_equals(): assert (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2).equals(0) assert (x**2 - 1).equals((x + 1)*(x - 1)) assert (cos(x)**2 + sin(x)**2).equals(1) assert (a*cos(x)**2 + a*sin(x)**2).equals(a) r = sqrt(2) assert (-1/(r + r*x) + 1/r/(1 + x)).equals(0) assert factorial(x + 1).equals((x + 1)*factorial(x)) assert sqrt(3).equals(2*sqrt(3)) is False assert (sqrt(5)*sqrt(3)).equals(sqrt(3)) is False assert (sqrt(5) + sqrt(3)).equals(0) is False assert (sqrt(5) + pi).equals(0) is False assert meter.equals(0) is False assert (3*meter**2).equals(0) is False eq = -(-1)**(S(3)/4)*6**(S.One/4) + (-6)**(S.One/4)*I if eq != 0: # if canonicalization makes this zero, skip the test assert eq.equals(0) assert sqrt(x).equals(0) is False # from integrate(x*sqrt(1 + 2*x), x); # diff is zero only when assumptions allow i = 2*sqrt(2)*x**(S(5)/2)*(1 + 1/(2*x))**(S(5)/2)/5 + \ 2*sqrt(2)*x**(S(3)/2)*(1 + 1/(2*x))**(S(5)/2)/(-6 - 3/x) ans = sqrt(2*x + 1)*(6*x**2 + x - 1)/15 diff = i - ans assert diff.equals(0) is False assert diff.subs(x, Rational(-1, 2)/2) == 7*sqrt(2)/120 # there are regions for x for which the expression is True, for # example, when x < -1/2 or x > 0 the expression is zero p = Symbol('p', positive=True) assert diff.subs(x, p).equals(0) is True assert diff.subs(x, -1).equals(0) is True # prove via minimal_polynomial or self-consistency eq = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert eq.equals(0) q = 3**Rational(1, 3) + 3 p = expand(q**3)**Rational(1, 3) assert (p - q).equals(0) # issue 6829 # eq = q*x + q/4 + x**4 + x**3 + 2*x**2 - S.One/3 # z = eq.subs(x, solve(eq, x)[0]) q = symbols('q') z = (q*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4) + q/4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**4 + (-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**3 + 2*(-sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12)/2 - sqrt((2*q - S(7)/4)/sqrt(-2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/12) + 2*(-(q - S(7)/8)**S(2)/8 - S(2197)/13824)**(S.One/3) - S(13)/6)/2 - S.One/4)**2 - Rational(1, 3)) assert z.equals(0) def test_random(): from sympy import posify, lucas assert posify(x)[0]._random() is not None assert lucas(n)._random(2, -2, 0, -1, 1) is None # issue 8662 assert Piecewise((Max(x, y), z))._random() is None def test_round(): from sympy.abc import x assert str(Float('0.1249999').round(2)) == '0.12' d20 = 12345678901234567890 ans = S(d20).round(2) assert ans.is_Integer and ans == d20 ans = S(d20).round(-2) assert ans.is_Integer and ans == 12345678901234567900 assert str(S('1/7').round(4)) == '0.1429' assert str(S('.[12345]').round(4)) == '0.1235' assert str(S('.1349').round(2)) == '0.13' n = S(12345) ans = n.round() assert ans.is_Integer assert ans == n ans = n.round(1) assert ans.is_Integer assert ans == n ans = n.round(4) assert ans.is_Integer assert ans == n assert n.round(-1) == 12340 r = Float(str(n)).round(-4) assert r == 10000 assert n.round(-5) == 0 assert str((pi + sqrt(2)).round(2)) == '4.56' assert (10*(pi + sqrt(2))).round(-1) == 50 raises(TypeError, lambda: round(x + 2, 2)) assert str(S(2.3).round(1)) == '2.3' # rounding in SymPy (as in Decimal) should be # exact for the given precision; we check here # that when a 5 follows the last digit that # the rounded digit will be even. for i in range(-99, 100): # construct a decimal that ends in 5, e.g. 123 -> 0.1235 s = str(abs(i)) p = len(s) # we are going to round to the last digit of i n = '0.%s5' % s # put a 5 after i's digits j = p + 2 # 2 for '0.' if i < 0: # 1 for '-' j += 1 n = '-' + n v = str(Float(n).round(p))[:j] # pertinent digits if v.endswith('.'): continue # it ends with 0 which is even L = int(v[-1]) # last digit assert L % 2 == 0, (n, '->', v) assert (Float(.3, 3) + 2*pi).round() == 7 assert (Float(.3, 3) + 2*pi*100).round() == 629 assert (pi + 2*E*I).round() == 3 + 5*I # don't let request for extra precision give more than # what is known (in this case, only 3 digits) assert str((Float(.03, 3) + 2*pi/100).round(5)) == '0.0928' assert str((Float(.03, 3) + 2*pi/100).round(4)) == '0.0928' assert S.Zero.round() == 0 a = (Add(1, Float('1.' + '9'*27, ''), evaluate=0)) assert a.round(10) == Float('3.0000000000', '') assert a.round(25) == Float('3.0000000000000000000000000', '') assert a.round(26) == Float('3.00000000000000000000000000', '') assert a.round(27) == Float('2.999999999999999999999999999', '') assert a.round(30) == Float('2.999999999999999999999999999', '') raises(TypeError, lambda: x.round()) f = Function('f') raises(TypeError, lambda: f(1).round()) # exact magnitude of 10 assert str(S.One.round()) == '1' assert str(S(100).round()) == '100' # applied to real and imaginary portions assert (2*pi + E*I).round() == 6 + 3*I assert (2*pi + I/10).round() == 6 assert (pi/10 + 2*I).round() == 2*I # the lhs re and im parts are Float with dps of 2 # and those on the right have dps of 15 so they won't compare # equal unless we use string or compare components (which will # then coerce the floats to the same precision) or re-create # the floats assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' assert str((pi/10 + E*I).round(2).as_real_imag()) == '(0.31, 2.72)' assert str((pi/10 + E*I).round(2)) == '0.31 + 2.72*I' # issue 6914 assert (I**(I + 3)).round(3) == Float('-0.208', '')*I # issue 8720 assert S(-123.6).round() == -124 assert S(-1.5).round() == -2 assert S(-100.5).round() == -100 assert S(-1.5 - 10.5*I).round() == -2 - 10*I # issue 7961 assert str(S(0.006).round(2)) == '0.01' assert str(S(0.00106).round(4)) == '0.0011' # issue 8147 assert S.NaN.round() is S.NaN assert S.Infinity.round() is S.Infinity assert S.NegativeInfinity.round() is S.NegativeInfinity assert S.ComplexInfinity.round() is S.ComplexInfinity # check that types match for i in range(2): f = float(i) # 2 args assert all(type(round(i, p)) is _rint for p in (-1, 0, 1)) assert all(S(i).round(p).is_Integer for p in (-1, 0, 1)) assert all(type(round(f, p)) is float for p in (-1, 0, 1)) assert all(S(f).round(p).is_Float for p in (-1, 0, 1)) # 1 arg (p is None) assert type(round(i)) is _rint assert S(i).round().is_Integer assert type(round(f)) is _rint assert S(f).round().is_Integer def test_held_expression_UnevaluatedExpr(): x = symbols("x") he = UnevaluatedExpr(1/x) e1 = x*he assert isinstance(e1, Mul) assert e1.args == (x, he) assert e1.doit() == 1 assert UnevaluatedExpr(Derivative(x, x)).doit(deep=False ) == Derivative(x, x) assert UnevaluatedExpr(Derivative(x, x)).doit() == 1 xx = Mul(x, x, evaluate=False) assert xx != x**2 ue2 = UnevaluatedExpr(xx) assert isinstance(ue2, UnevaluatedExpr) assert ue2.args == (xx,) assert ue2.doit() == x**2 assert ue2.doit(deep=False) == xx x2 = UnevaluatedExpr(2)*2 assert type(x2) is Mul assert x2.args == (2, UnevaluatedExpr(2)) def test_round_exception_nostr(): # Don't use the string form of the expression in the round exception, as # it's too slow s = Symbol('bad') try: s.round() except TypeError as e: assert 'bad' not in str(e) else: # Did not raise raise AssertionError("Did not raise") def test_extract_branch_factor(): assert exp_polar(2.0*I*pi).extract_branch_factor() == (1, 1) def test_identity_removal(): assert Add.make_args(x + 0) == (x,) assert Mul.make_args(x*1) == (x,) def test_float_0(): assert Float(0.0) + 1 == Float(1.0) @XFAIL def test_float_0_fail(): assert Float(0.0)*x == Float(0.0) assert (x + Float(0.0)).is_Add def test_issue_6325(): ans = (b**2 + z**2 - (b*(a + b*t) + z*(c + t*z))**2/( (a + b*t)**2 + (c + t*z)**2))/sqrt((a + b*t)**2 + (c + t*z)**2) e = sqrt((a + b*t)**2 + (c + z*t)**2) assert diff(e, t, 2) == ans e.diff(t, 2) == ans assert diff(e, t, 2, simplify=False) != ans def test_issue_7426(): f1 = a % c f2 = x % z assert f1.equals(f2) is None def test_issue_11122(): x = Symbol('x', extended_positive=False) assert unchanged(Gt, x, 0) # (x > 0) # (x > 0) should remain unevaluated after PR #16956 x = Symbol('x', positive=False, real=True) assert (x > 0) is S.false def test_issue_10651(): x = Symbol('x', real=True) e1 = (-1 + x)/(1 - x) e3 = (4*x**2 - 4)/((1 - x)*(1 + x)) e4 = 1/(cos(x)**2) - (tan(x))**2 x = Symbol('x', positive=True) e5 = (1 + x)/x assert e1.is_constant() is None assert e3.is_constant() is None assert e4.is_constant() is None assert e5.is_constant() is False def test_issue_10161(): x = symbols('x', real=True) assert x*abs(x)*abs(x) == x**3 def test_issue_10755(): x = symbols('x') raises(TypeError, lambda: int(log(x))) raises(TypeError, lambda: log(x).round(2)) def test_issue_11877(): x = symbols('x') assert integrate(log(S.Half - x), (x, 0, S.Half)) == Rational(-1, 2) -log(2)/2 def test_normal(): x = symbols('x') e = Mul(S.Half, 1 + x, evaluate=False) assert e.normal() == e def test_expr(): x = symbols('x') raises(TypeError, lambda: tan(x).series(x, 2, oo, "+")) def test_ExprBuilder(): eb = ExprBuilder(Mul) eb.args.extend([x, x]) assert eb.build() == x**2 def test_non_string_equality(): # Expressions should not compare equal to strings x = symbols('x') one = sympify(1) assert (x == 'x') is False assert (x != 'x') is True assert (one == '1') is False assert (one != '1') is True assert (x + 1 == 'x + 1') is False assert (x + 1 != 'x + 1') is True # Make sure == doesn't try to convert the resulting expression to a string # (e.g., by calling sympify() instead of _sympify()) class BadRepr(object): def __repr__(self): raise RuntimeError assert (x == BadRepr()) is False assert (x != BadRepr()) is True
f9324a3e379a40c74d14eb7ee66287992ee13d6518ea5207eab7cd64b260e407
"""Test whether all elements of cls.args are instances of Basic. """ # NOTE: keep tests sorted by (module, class name) key. If a class can't # be instantiated, add it here anyway with @SKIP("abstract class) (see # e.g. Function). import os import re import io from sympy import (Basic, S, symbols, sqrt, sin, oo, Interval, exp, Lambda, pi, Eq, log, Function, Rational) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, SKIP x, y, z = symbols('x,y,z') def test_all_classes_are_tested(): this = os.path.split(__file__)[0] path = os.path.join(this, os.pardir, os.pardir) sympy_path = os.path.abspath(path) prefix = os.path.split(sympy_path)[0] + os.sep re_cls = re.compile(r"^class ([A-Za-z][A-Za-z0-9_]*)\s*\(", re.MULTILINE) modules = {} for root, dirs, files in os.walk(sympy_path): module = root.replace(prefix, "").replace(os.sep, ".") for file in files: if file.startswith(("_", "test_", "bench_")): continue if not file.endswith(".py"): continue with io.open(os.path.join(root, file), "r", encoding='utf-8') as f: text = f.read() submodule = module + '.' + file[:-3] names = re_cls.findall(text) if not names: continue try: mod = __import__(submodule, fromlist=names) except ImportError: continue def is_Basic(name): cls = getattr(mod, name) if hasattr(cls, '_sympy_deprecated_func'): cls = cls._sympy_deprecated_func return issubclass(cls, Basic) names = list(filter(is_Basic, names)) if names: modules[submodule] = names ns = globals() failed = [] for module, names in modules.items(): mod = module.replace('.', '__') for name in names: test = 'test_' + mod + '__' + name if test not in ns: failed.append(module + '.' + name) assert not failed, "Missing classes: %s. Please add tests for these to sympy/core/tests/test_args.py." % ", ".join(failed) def _test_args(obj): return all(isinstance(arg, Basic) for arg in obj.args) def test_sympy__assumptions__assume__AppliedPredicate(): from sympy.assumptions.assume import AppliedPredicate, Predicate from sympy import Q assert _test_args(AppliedPredicate(Predicate("test"), 2)) assert _test_args(Q.is_true(True)) def test_sympy__assumptions__assume__Predicate(): from sympy.assumptions.assume import Predicate assert _test_args(Predicate("test")) def test_sympy__assumptions__sathandlers__UnevaluatedOnFree(): from sympy.assumptions.sathandlers import UnevaluatedOnFree from sympy import Q assert _test_args(UnevaluatedOnFree(Q.positive)) def test_sympy__assumptions__sathandlers__AllArgs(): from sympy.assumptions.sathandlers import AllArgs from sympy import Q assert _test_args(AllArgs(Q.positive)) def test_sympy__assumptions__sathandlers__AnyArgs(): from sympy.assumptions.sathandlers import AnyArgs from sympy import Q assert _test_args(AnyArgs(Q.positive)) def test_sympy__assumptions__sathandlers__ExactlyOneArg(): from sympy.assumptions.sathandlers import ExactlyOneArg from sympy import Q assert _test_args(ExactlyOneArg(Q.positive)) def test_sympy__assumptions__sathandlers__CheckOldAssump(): from sympy.assumptions.sathandlers import CheckOldAssump from sympy import Q assert _test_args(CheckOldAssump(Q.positive)) def test_sympy__assumptions__sathandlers__CheckIsPrime(): from sympy.assumptions.sathandlers import CheckIsPrime from sympy import Q # Input must be a number assert _test_args(CheckIsPrime(Q.positive)) @SKIP("abstract Class") def test_sympy__codegen__ast__AssignmentBase(): from sympy.codegen.ast import AssignmentBase assert _test_args(AssignmentBase(x, 1)) @SKIP("abstract Class") def test_sympy__codegen__ast__AugmentedAssignment(): from sympy.codegen.ast import AugmentedAssignment assert _test_args(AugmentedAssignment(x, 1)) def test_sympy__codegen__ast__AddAugmentedAssignment(): from sympy.codegen.ast import AddAugmentedAssignment assert _test_args(AddAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__SubAugmentedAssignment(): from sympy.codegen.ast import SubAugmentedAssignment assert _test_args(SubAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__MulAugmentedAssignment(): from sympy.codegen.ast import MulAugmentedAssignment assert _test_args(MulAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__DivAugmentedAssignment(): from sympy.codegen.ast import DivAugmentedAssignment assert _test_args(DivAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__ModAugmentedAssignment(): from sympy.codegen.ast import ModAugmentedAssignment assert _test_args(ModAugmentedAssignment(x, 1)) def test_sympy__codegen__ast__CodeBlock(): from sympy.codegen.ast import CodeBlock, Assignment assert _test_args(CodeBlock(Assignment(x, 1), Assignment(y, 2))) def test_sympy__codegen__ast__For(): from sympy.codegen.ast import For, CodeBlock, AddAugmentedAssignment from sympy import Range assert _test_args(For(x, Range(10), CodeBlock(AddAugmentedAssignment(y, 1)))) def test_sympy__codegen__ast__Token(): from sympy.codegen.ast import Token assert _test_args(Token()) def test_sympy__codegen__ast__ContinueToken(): from sympy.codegen.ast import ContinueToken assert _test_args(ContinueToken()) def test_sympy__codegen__ast__BreakToken(): from sympy.codegen.ast import BreakToken assert _test_args(BreakToken()) def test_sympy__codegen__ast__NoneToken(): from sympy.codegen.ast import NoneToken assert _test_args(NoneToken()) def test_sympy__codegen__ast__String(): from sympy.codegen.ast import String assert _test_args(String('foobar')) def test_sympy__codegen__ast__QuotedString(): from sympy.codegen.ast import QuotedString assert _test_args(QuotedString('foobar')) def test_sympy__codegen__ast__Comment(): from sympy.codegen.ast import Comment assert _test_args(Comment('this is a comment')) def test_sympy__codegen__ast__Node(): from sympy.codegen.ast import Node assert _test_args(Node()) assert _test_args(Node(attrs={1, 2, 3})) def test_sympy__codegen__ast__Type(): from sympy.codegen.ast import Type assert _test_args(Type('float128')) def test_sympy__codegen__ast__IntBaseType(): from sympy.codegen.ast import IntBaseType assert _test_args(IntBaseType('bigint')) def test_sympy__codegen__ast___SizedIntType(): from sympy.codegen.ast import _SizedIntType assert _test_args(_SizedIntType('int128', 128)) def test_sympy__codegen__ast__SignedIntType(): from sympy.codegen.ast import SignedIntType assert _test_args(SignedIntType('int128_with_sign', 128)) def test_sympy__codegen__ast__UnsignedIntType(): from sympy.codegen.ast import UnsignedIntType assert _test_args(UnsignedIntType('unt128', 128)) def test_sympy__codegen__ast__FloatBaseType(): from sympy.codegen.ast import FloatBaseType assert _test_args(FloatBaseType('positive_real')) def test_sympy__codegen__ast__FloatType(): from sympy.codegen.ast import FloatType assert _test_args(FloatType('float242', 242, nmant=142, nexp=99)) def test_sympy__codegen__ast__ComplexBaseType(): from sympy.codegen.ast import ComplexBaseType assert _test_args(ComplexBaseType('positive_cmplx')) def test_sympy__codegen__ast__ComplexType(): from sympy.codegen.ast import ComplexType assert _test_args(ComplexType('complex42', 42, nmant=15, nexp=5)) def test_sympy__codegen__ast__Attribute(): from sympy.codegen.ast import Attribute assert _test_args(Attribute('noexcept')) def test_sympy__codegen__ast__Variable(): from sympy.codegen.ast import Variable, Type, value_const assert _test_args(Variable(x)) assert _test_args(Variable(y, Type('float32'), {value_const})) assert _test_args(Variable(z, type=Type('float64'))) def test_sympy__codegen__ast__Pointer(): from sympy.codegen.ast import Pointer, Type, pointer_const assert _test_args(Pointer(x)) assert _test_args(Pointer(y, type=Type('float32'))) assert _test_args(Pointer(z, Type('float64'), {pointer_const})) def test_sympy__codegen__ast__Declaration(): from sympy.codegen.ast import Declaration, Variable, Type vx = Variable(x, type=Type('float')) assert _test_args(Declaration(vx)) def test_sympy__codegen__ast__While(): from sympy.codegen.ast import While, AddAugmentedAssignment assert _test_args(While(abs(x) < 1, [AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Scope(): from sympy.codegen.ast import Scope, AddAugmentedAssignment assert _test_args(Scope([AddAugmentedAssignment(x, -1)])) def test_sympy__codegen__ast__Stream(): from sympy.codegen.ast import Stream assert _test_args(Stream('stdin')) def test_sympy__codegen__ast__Print(): from sympy.codegen.ast import Print assert _test_args(Print([x, y])) assert _test_args(Print([x, y], "%d %d")) def test_sympy__codegen__ast__FunctionPrototype(): from sympy.codegen.ast import FunctionPrototype, real, Declaration, Variable inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionPrototype(real, 'pwer', [inp_x])) def test_sympy__codegen__ast__FunctionDefinition(): from sympy.codegen.ast import FunctionDefinition, real, Declaration, Variable, Assignment inp_x = Declaration(Variable(x, type=real)) assert _test_args(FunctionDefinition(real, 'pwer', [inp_x], [Assignment(x, x**2)])) def test_sympy__codegen__ast__Return(): from sympy.codegen.ast import Return assert _test_args(Return(x)) def test_sympy__codegen__ast__FunctionCall(): from sympy.codegen.ast import FunctionCall assert _test_args(FunctionCall('pwer', [x])) def test_sympy__codegen__ast__Element(): from sympy.codegen.ast import Element assert _test_args(Element('x', range(3))) def test_sympy__codegen__cnodes__CommaOperator(): from sympy.codegen.cnodes import CommaOperator assert _test_args(CommaOperator(1, 2)) def test_sympy__codegen__cnodes__goto(): from sympy.codegen.cnodes import goto assert _test_args(goto('early_exit')) def test_sympy__codegen__cnodes__Label(): from sympy.codegen.cnodes import Label assert _test_args(Label('early_exit')) def test_sympy__codegen__cnodes__PreDecrement(): from sympy.codegen.cnodes import PreDecrement assert _test_args(PreDecrement(x)) def test_sympy__codegen__cnodes__PostDecrement(): from sympy.codegen.cnodes import PostDecrement assert _test_args(PostDecrement(x)) def test_sympy__codegen__cnodes__PreIncrement(): from sympy.codegen.cnodes import PreIncrement assert _test_args(PreIncrement(x)) def test_sympy__codegen__cnodes__PostIncrement(): from sympy.codegen.cnodes import PostIncrement assert _test_args(PostIncrement(x)) def test_sympy__codegen__cnodes__struct(): from sympy.codegen.ast import real, Variable from sympy.codegen.cnodes import struct assert _test_args(struct(declarations=[ Variable(x, type=real), Variable(y, type=real) ])) def test_sympy__codegen__cnodes__union(): from sympy.codegen.ast import float32, int32, Variable from sympy.codegen.cnodes import union assert _test_args(union(declarations=[ Variable(x, type=float32), Variable(y, type=int32) ])) def test_sympy__codegen__cxxnodes__using(): from sympy.codegen.cxxnodes import using assert _test_args(using('std::vector')) assert _test_args(using('std::vector', 'vec')) def test_sympy__codegen__fnodes__Program(): from sympy.codegen.fnodes import Program assert _test_args(Program('foobar', [])) def test_sympy__codegen__fnodes__Module(): from sympy.codegen.fnodes import Module assert _test_args(Module('foobar', [], [])) def test_sympy__codegen__fnodes__Subroutine(): from sympy.codegen.fnodes import Subroutine x = symbols('x', real=True) assert _test_args(Subroutine('foo', [x], [])) def test_sympy__codegen__fnodes__GoTo(): from sympy.codegen.fnodes import GoTo assert _test_args(GoTo([10])) assert _test_args(GoTo([10, 20], x > 1)) def test_sympy__codegen__fnodes__FortranReturn(): from sympy.codegen.fnodes import FortranReturn assert _test_args(FortranReturn(10)) def test_sympy__codegen__fnodes__Extent(): from sympy.codegen.fnodes import Extent assert _test_args(Extent()) assert _test_args(Extent(None)) assert _test_args(Extent(':')) assert _test_args(Extent(-3, 4)) assert _test_args(Extent(x, y)) def test_sympy__codegen__fnodes__use_rename(): from sympy.codegen.fnodes import use_rename assert _test_args(use_rename('loc', 'glob')) def test_sympy__codegen__fnodes__use(): from sympy.codegen.fnodes import use assert _test_args(use('modfoo', only='bar')) def test_sympy__codegen__fnodes__SubroutineCall(): from sympy.codegen.fnodes import SubroutineCall assert _test_args(SubroutineCall('foo', ['bar', 'baz'])) def test_sympy__codegen__fnodes__Do(): from sympy.codegen.fnodes import Do assert _test_args(Do([], 'i', 1, 42)) def test_sympy__codegen__fnodes__ImpliedDoLoop(): from sympy.codegen.fnodes import ImpliedDoLoop assert _test_args(ImpliedDoLoop('i', 'i', 1, 42)) def test_sympy__codegen__fnodes__ArrayConstructor(): from sympy.codegen.fnodes import ArrayConstructor assert _test_args(ArrayConstructor([1, 2, 3])) from sympy.codegen.fnodes import ImpliedDoLoop idl = ImpliedDoLoop('i', 'i', 1, 42) assert _test_args(ArrayConstructor([1, idl, 3])) def test_sympy__codegen__fnodes__sum_(): from sympy.codegen.fnodes import sum_ assert _test_args(sum_('arr')) def test_sympy__codegen__fnodes__product_(): from sympy.codegen.fnodes import product_ assert _test_args(product_('arr')) @XFAIL def test_sympy__combinatorics__graycode__GrayCode(): from sympy.combinatorics.graycode import GrayCode # an integer is given and returned from GrayCode as the arg assert _test_args(GrayCode(3, start='100')) assert _test_args(GrayCode(3, rank=1)) def test_sympy__combinatorics__subsets__Subset(): from sympy.combinatorics.subsets import Subset assert _test_args(Subset([0, 1], [0, 1, 2, 3])) assert _test_args(Subset(['c', 'd'], ['a', 'b', 'c', 'd'])) def test_sympy__combinatorics__permutations__Permutation(): from sympy.combinatorics.permutations import Permutation assert _test_args(Permutation([0, 1, 2, 3])) def test_sympy__combinatorics__permutations__AppliedPermutation(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.permutations import AppliedPermutation p = Permutation([0, 1, 2, 3]) assert _test_args(AppliedPermutation(p, 1)) def test_sympy__combinatorics__perm_groups__PermutationGroup(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.perm_groups import PermutationGroup assert _test_args(PermutationGroup([Permutation([0, 1])])) def test_sympy__combinatorics__polyhedron__Polyhedron(): from sympy.combinatorics.permutations import Permutation from sympy.combinatorics.polyhedron import Polyhedron from sympy.abc import w, x, y, z pgroup = [Permutation([[0, 1, 2], [3]]), Permutation([[0, 1, 3], [2]]), Permutation([[0, 2, 3], [1]]), Permutation([[1, 2, 3], [0]]), Permutation([[0, 1], [2, 3]]), Permutation([[0, 2], [1, 3]]), Permutation([[0, 3], [1, 2]]), Permutation([[0, 1, 2, 3]])] corners = [w, x, y, z] faces = [(w, x, y), (w, y, z), (w, z, x), (x, y, z)] assert _test_args(Polyhedron(corners, faces, pgroup)) @XFAIL def test_sympy__combinatorics__prufer__Prufer(): from sympy.combinatorics.prufer import Prufer assert _test_args(Prufer([[0, 1], [0, 2], [0, 3]], 4)) def test_sympy__combinatorics__partitions__Partition(): from sympy.combinatorics.partitions import Partition assert _test_args(Partition([1])) @XFAIL def test_sympy__combinatorics__partitions__IntegerPartition(): from sympy.combinatorics.partitions import IntegerPartition assert _test_args(IntegerPartition([1])) def test_sympy__concrete__products__Product(): from sympy.concrete.products import Product assert _test_args(Product(x, (x, 0, 10))) assert _test_args(Product(x, (x, 0, y), (y, 0, 10))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__ExprWithLimits(): from sympy.concrete.expr_with_limits import ExprWithLimits assert _test_args(ExprWithLimits(x, (x, 0, 10))) assert _test_args(ExprWithLimits(x*y, (x, 0, 10.),(y,1.,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_limits__AddWithLimits(): from sympy.concrete.expr_with_limits import AddWithLimits assert _test_args(AddWithLimits(x, (x, 0, 10))) assert _test_args(AddWithLimits(x*y, (x, 0, 10),(y,1,3))) @SKIP("abstract Class") def test_sympy__concrete__expr_with_intlimits__ExprWithIntLimits(): from sympy.concrete.expr_with_intlimits import ExprWithIntLimits assert _test_args(ExprWithIntLimits(x, (x, 0, 10))) assert _test_args(ExprWithIntLimits(x*y, (x, 0, 10),(y,1,3))) def test_sympy__concrete__summations__Sum(): from sympy.concrete.summations import Sum assert _test_args(Sum(x, (x, 0, 10))) assert _test_args(Sum(x, (x, 0, y), (y, 0, 10))) def test_sympy__core__add__Add(): from sympy.core.add import Add assert _test_args(Add(x, y, z, 2)) def test_sympy__core__basic__Atom(): from sympy.core.basic import Atom assert _test_args(Atom()) def test_sympy__core__basic__Basic(): from sympy.core.basic import Basic assert _test_args(Basic()) def test_sympy__core__containers__Dict(): from sympy.core.containers import Dict assert _test_args(Dict({x: y, y: z})) def test_sympy__core__containers__Tuple(): from sympy.core.containers import Tuple assert _test_args(Tuple(x, y, z, 2)) def test_sympy__core__expr__AtomicExpr(): from sympy.core.expr import AtomicExpr assert _test_args(AtomicExpr()) def test_sympy__core__expr__Expr(): from sympy.core.expr import Expr assert _test_args(Expr()) def test_sympy__core__expr__UnevaluatedExpr(): from sympy.core.expr import UnevaluatedExpr from sympy.abc import x assert _test_args(UnevaluatedExpr(x)) def test_sympy__core__function__Application(): from sympy.core.function import Application assert _test_args(Application(1, 2, 3)) def test_sympy__core__function__AppliedUndef(): from sympy.core.function import AppliedUndef assert _test_args(AppliedUndef(1, 2, 3)) def test_sympy__core__function__Derivative(): from sympy.core.function import Derivative assert _test_args(Derivative(2, x, y, 3)) @SKIP("abstract class") def test_sympy__core__function__Function(): pass def test_sympy__core__function__Lambda(): assert _test_args(Lambda((x, y), x + y + z)) def test_sympy__core__function__Subs(): from sympy.core.function import Subs assert _test_args(Subs(x + y, x, 2)) def test_sympy__core__function__WildFunction(): from sympy.core.function import WildFunction assert _test_args(WildFunction('f')) def test_sympy__core__mod__Mod(): from sympy.core.mod import Mod assert _test_args(Mod(x, 2)) def test_sympy__core__mul__Mul(): from sympy.core.mul import Mul assert _test_args(Mul(2, x, y, z)) def test_sympy__core__numbers__Catalan(): from sympy.core.numbers import Catalan assert _test_args(Catalan()) def test_sympy__core__numbers__ComplexInfinity(): from sympy.core.numbers import ComplexInfinity assert _test_args(ComplexInfinity()) def test_sympy__core__numbers__EulerGamma(): from sympy.core.numbers import EulerGamma assert _test_args(EulerGamma()) def test_sympy__core__numbers__Exp1(): from sympy.core.numbers import Exp1 assert _test_args(Exp1()) def test_sympy__core__numbers__Float(): from sympy.core.numbers import Float assert _test_args(Float(1.23)) def test_sympy__core__numbers__GoldenRatio(): from sympy.core.numbers import GoldenRatio assert _test_args(GoldenRatio()) def test_sympy__core__numbers__TribonacciConstant(): from sympy.core.numbers import TribonacciConstant assert _test_args(TribonacciConstant()) def test_sympy__core__numbers__Half(): from sympy.core.numbers import Half assert _test_args(Half()) def test_sympy__core__numbers__ImaginaryUnit(): from sympy.core.numbers import ImaginaryUnit assert _test_args(ImaginaryUnit()) def test_sympy__core__numbers__Infinity(): from sympy.core.numbers import Infinity assert _test_args(Infinity()) def test_sympy__core__numbers__Integer(): from sympy.core.numbers import Integer assert _test_args(Integer(7)) @SKIP("abstract class") def test_sympy__core__numbers__IntegerConstant(): pass def test_sympy__core__numbers__NaN(): from sympy.core.numbers import NaN assert _test_args(NaN()) def test_sympy__core__numbers__NegativeInfinity(): from sympy.core.numbers import NegativeInfinity assert _test_args(NegativeInfinity()) def test_sympy__core__numbers__NegativeOne(): from sympy.core.numbers import NegativeOne assert _test_args(NegativeOne()) def test_sympy__core__numbers__Number(): from sympy.core.numbers import Number assert _test_args(Number(1, 7)) def test_sympy__core__numbers__NumberSymbol(): from sympy.core.numbers import NumberSymbol assert _test_args(NumberSymbol()) def test_sympy__core__numbers__One(): from sympy.core.numbers import One assert _test_args(One()) def test_sympy__core__numbers__Pi(): from sympy.core.numbers import Pi assert _test_args(Pi()) def test_sympy__core__numbers__Rational(): from sympy.core.numbers import Rational assert _test_args(Rational(1, 7)) @SKIP("abstract class") def test_sympy__core__numbers__RationalConstant(): pass def test_sympy__core__numbers__Zero(): from sympy.core.numbers import Zero assert _test_args(Zero()) @SKIP("abstract class") def test_sympy__core__operations__AssocOp(): pass @SKIP("abstract class") def test_sympy__core__operations__LatticeOp(): pass def test_sympy__core__power__Pow(): from sympy.core.power import Pow assert _test_args(Pow(x, 2)) def test_sympy__algebras__quaternion__Quaternion(): from sympy.algebras.quaternion import Quaternion assert _test_args(Quaternion(x, 1, 2, 3)) def test_sympy__core__relational__Equality(): from sympy.core.relational import Equality assert _test_args(Equality(x, 2)) def test_sympy__core__relational__GreaterThan(): from sympy.core.relational import GreaterThan assert _test_args(GreaterThan(x, 2)) def test_sympy__core__relational__LessThan(): from sympy.core.relational import LessThan assert _test_args(LessThan(x, 2)) @SKIP("abstract class") def test_sympy__core__relational__Relational(): pass def test_sympy__core__relational__StrictGreaterThan(): from sympy.core.relational import StrictGreaterThan assert _test_args(StrictGreaterThan(x, 2)) def test_sympy__core__relational__StrictLessThan(): from sympy.core.relational import StrictLessThan assert _test_args(StrictLessThan(x, 2)) def test_sympy__core__relational__Unequality(): from sympy.core.relational import Unequality assert _test_args(Unequality(x, 2)) def test_sympy__sandbox__indexed_integrals__IndexedIntegral(): from sympy.tensor import IndexedBase, Idx from sympy.sandbox.indexed_integrals import IndexedIntegral A = IndexedBase('A') i, j = symbols('i j', integer=True) a1, a2 = symbols('a1:3', cls=Idx) assert _test_args(IndexedIntegral(A[a1], A[a2])) assert _test_args(IndexedIntegral(A[i], A[j])) def test_sympy__calculus__util__AccumulationBounds(): from sympy.calculus.util import AccumulationBounds assert _test_args(AccumulationBounds(0, 1)) def test_sympy__sets__ordinals__OmegaPower(): from sympy.sets.ordinals import OmegaPower assert _test_args(OmegaPower(1, 1)) def test_sympy__sets__ordinals__Ordinal(): from sympy.sets.ordinals import Ordinal, OmegaPower assert _test_args(Ordinal(OmegaPower(2, 1))) def test_sympy__sets__ordinals__OrdinalOmega(): from sympy.sets.ordinals import OrdinalOmega assert _test_args(OrdinalOmega()) def test_sympy__sets__ordinals__OrdinalZero(): from sympy.sets.ordinals import OrdinalZero assert _test_args(OrdinalZero()) def test_sympy__sets__powerset__PowerSet(): from sympy.sets.powerset import PowerSet from sympy.core.singleton import S assert _test_args(PowerSet(S.EmptySet)) def test_sympy__sets__sets__EmptySet(): from sympy.sets.sets import EmptySet assert _test_args(EmptySet()) def test_sympy__sets__sets__UniversalSet(): from sympy.sets.sets import UniversalSet assert _test_args(UniversalSet()) def test_sympy__sets__sets__FiniteSet(): from sympy.sets.sets import FiniteSet assert _test_args(FiniteSet(x, y, z)) def test_sympy__sets__sets__Interval(): from sympy.sets.sets import Interval assert _test_args(Interval(0, 1)) def test_sympy__sets__sets__ProductSet(): from sympy.sets.sets import ProductSet, Interval assert _test_args(ProductSet(Interval(0, 1), Interval(0, 1))) @SKIP("does it make sense to test this?") def test_sympy__sets__sets__Set(): from sympy.sets.sets import Set assert _test_args(Set()) def test_sympy__sets__sets__Intersection(): from sympy.sets.sets import Intersection, Interval assert _test_args(Intersection(Interval(0, 3), Interval(2, 4), evaluate=False)) def test_sympy__sets__sets__Union(): from sympy.sets.sets import Union, Interval assert _test_args(Union(Interval(0, 1), Interval(2, 3))) def test_sympy__sets__sets__Complement(): from sympy.sets.sets import Complement assert _test_args(Complement(Interval(0, 2), Interval(0, 1))) def test_sympy__sets__sets__SymmetricDifference(): from sympy.sets.sets import FiniteSet, SymmetricDifference assert _test_args(SymmetricDifference(FiniteSet(1, 2, 3), \ FiniteSet(2, 3, 4))) def test_sympy__core__trace__Tr(): from sympy.core.trace import Tr a, b = symbols('a b') assert _test_args(Tr(a + b)) def test_sympy__sets__setexpr__SetExpr(): from sympy.sets.setexpr import SetExpr assert _test_args(SetExpr(Interval(0, 1))) def test_sympy__sets__fancysets__Rationals(): from sympy.sets.fancysets import Rationals assert _test_args(Rationals()) def test_sympy__sets__fancysets__Naturals(): from sympy.sets.fancysets import Naturals assert _test_args(Naturals()) def test_sympy__sets__fancysets__Naturals0(): from sympy.sets.fancysets import Naturals0 assert _test_args(Naturals0()) def test_sympy__sets__fancysets__Integers(): from sympy.sets.fancysets import Integers assert _test_args(Integers()) def test_sympy__sets__fancysets__Reals(): from sympy.sets.fancysets import Reals assert _test_args(Reals()) def test_sympy__sets__fancysets__Complexes(): from sympy.sets.fancysets import Complexes assert _test_args(Complexes()) def test_sympy__sets__fancysets__ComplexRegion(): from sympy.sets.fancysets import ComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) theta = Interval(0, 2*S.Pi) assert _test_args(ComplexRegion(a*b)) assert _test_args(ComplexRegion(a*theta, polar=True)) def test_sympy__sets__fancysets__CartesianComplexRegion(): from sympy.sets.fancysets import CartesianComplexRegion from sympy.sets import Interval a = Interval(0, 1) b = Interval(2, 3) assert _test_args(CartesianComplexRegion(a*b)) def test_sympy__sets__fancysets__PolarComplexRegion(): from sympy.sets.fancysets import PolarComplexRegion from sympy import S from sympy.sets import Interval a = Interval(0, 1) theta = Interval(0, 2*S.Pi) assert _test_args(PolarComplexRegion(a*theta)) def test_sympy__sets__fancysets__ImageSet(): from sympy.sets.fancysets import ImageSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ImageSet(Lambda(x, x**2), S.Naturals)) def test_sympy__sets__fancysets__Range(): from sympy.sets.fancysets import Range assert _test_args(Range(1, 5, 1)) def test_sympy__sets__conditionset__ConditionSet(): from sympy.sets.conditionset import ConditionSet from sympy import S, Symbol x = Symbol('x') assert _test_args(ConditionSet(x, Eq(x**2, 1), S.Reals)) def test_sympy__sets__contains__Contains(): from sympy.sets.fancysets import Range from sympy.sets.contains import Contains assert _test_args(Contains(x, Range(0, 10, 2))) # STATS from sympy.stats.crv_types import NormalDistribution nd = NormalDistribution(0, 1) from sympy.stats.frv_types import DieDistribution die = DieDistribution(6) def test_sympy__stats__crv__ContinuousDomain(): from sympy.stats.crv import ContinuousDomain assert _test_args(ContinuousDomain({x}, Interval(-oo, oo))) def test_sympy__stats__crv__SingleContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain assert _test_args(SingleContinuousDomain(x, Interval(-oo, oo))) def test_sympy__stats__crv__ProductContinuousDomain(): from sympy.stats.crv import SingleContinuousDomain, ProductContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) E = SingleContinuousDomain(y, Interval(0, oo)) assert _test_args(ProductContinuousDomain(D, E)) def test_sympy__stats__crv__ConditionalContinuousDomain(): from sympy.stats.crv import (SingleContinuousDomain, ConditionalContinuousDomain) D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ConditionalContinuousDomain(D, x > 0)) def test_sympy__stats__crv__ContinuousPSpace(): from sympy.stats.crv import ContinuousPSpace, SingleContinuousDomain D = SingleContinuousDomain(x, Interval(-oo, oo)) assert _test_args(ContinuousPSpace(D, nd)) def test_sympy__stats__crv__SingleContinuousPSpace(): from sympy.stats.crv import SingleContinuousPSpace assert _test_args(SingleContinuousPSpace(x, nd)) @SKIP("abstract class") def test_sympy__stats__crv__SingleContinuousDistribution(): pass def test_sympy__stats__drv__SingleDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain assert _test_args(SingleDiscreteDomain(x, S.Naturals)) def test_sympy__stats__drv__ProductDiscreteDomain(): from sympy.stats.drv import SingleDiscreteDomain, ProductDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals) Y = SingleDiscreteDomain(y, S.Integers) assert _test_args(ProductDiscreteDomain(X, Y)) def test_sympy__stats__drv__SingleDiscretePSpace(): from sympy.stats.drv import SingleDiscretePSpace from sympy.stats.drv_types import PoissonDistribution assert _test_args(SingleDiscretePSpace(x, PoissonDistribution(1))) def test_sympy__stats__drv__DiscretePSpace(): from sympy.stats.drv import DiscretePSpace, SingleDiscreteDomain density = Lambda(x, 2**(-x)) domain = SingleDiscreteDomain(x, S.Naturals) assert _test_args(DiscretePSpace(domain, density)) def test_sympy__stats__drv__ConditionalDiscreteDomain(): from sympy.stats.drv import ConditionalDiscreteDomain, SingleDiscreteDomain X = SingleDiscreteDomain(x, S.Naturals0) assert _test_args(ConditionalDiscreteDomain(X, x > 2)) def test_sympy__stats__joint_rv__JointPSpace(): from sympy.stats.joint_rv import JointPSpace, JointDistribution assert _test_args(JointPSpace('X', JointDistribution(1))) def test_sympy__stats__joint_rv__JointRandomSymbol(): from sympy.stats.joint_rv import JointRandomSymbol assert _test_args(JointRandomSymbol(x)) def test_sympy__stats__joint_rv__JointDistributionHandmade(): from sympy import Indexed from sympy.stats.joint_rv import JointDistributionHandmade x1, x2 = (Indexed('x', i) for i in (1, 2)) assert _test_args(JointDistributionHandmade(x1 + x2, S.Reals**2)) def test_sympy__stats__joint_rv__MarginalDistribution(): from sympy.stats.rv import RandomSymbol from sympy.stats.joint_rv import MarginalDistribution r = RandomSymbol(S('r')) assert _test_args(MarginalDistribution(r, (r,))) def test_sympy__stats__joint_rv__CompoundDistribution(): from sympy.stats.joint_rv import CompoundDistribution from sympy.stats.drv_types import PoissonDistribution r = PoissonDistribution(x) assert _test_args(CompoundDistribution(PoissonDistribution(r))) @SKIP("abstract class") def test_sympy__stats__drv__SingleDiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__drv__DiscreteDomain(): pass def test_sympy__stats__rv__RandomDomain(): from sympy.stats.rv import RandomDomain from sympy.sets.sets import FiniteSet assert _test_args(RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3))) def test_sympy__stats__rv__SingleDomain(): from sympy.stats.rv import SingleDomain from sympy.sets.sets import FiniteSet assert _test_args(SingleDomain(x, FiniteSet(1, 2, 3))) def test_sympy__stats__rv__ConditionalDomain(): from sympy.stats.rv import ConditionalDomain, RandomDomain from sympy.sets.sets import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2)) assert _test_args(ConditionalDomain(D, x > 1)) def test_sympy__stats__rv__PSpace(): from sympy.stats.rv import PSpace, RandomDomain from sympy import FiniteSet D = RandomDomain(FiniteSet(x), FiniteSet(1, 2, 3, 4, 5, 6)) assert _test_args(PSpace(D, die)) @SKIP("abstract Class") def test_sympy__stats__rv__SinglePSpace(): pass def test_sympy__stats__rv__RandomSymbol(): from sympy.stats.rv import RandomSymbol from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) assert _test_args(RandomSymbol(x, A)) @SKIP("abstract Class") def test_sympy__stats__rv__ProductPSpace(): pass def test_sympy__stats__rv__IndependentProductPSpace(): from sympy.stats.rv import IndependentProductPSpace from sympy.stats.crv import SingleContinuousPSpace A = SingleContinuousPSpace(x, nd) B = SingleContinuousPSpace(y, nd) assert _test_args(IndependentProductPSpace(A, B)) def test_sympy__stats__rv__ProductDomain(): from sympy.stats.rv import ProductDomain, SingleDomain D = SingleDomain(x, Interval(-oo, oo)) E = SingleDomain(y, Interval(0, oo)) assert _test_args(ProductDomain(D, E)) def test_sympy__stats__symbolic_probability__Probability(): from sympy.stats.symbolic_probability import Probability from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Probability(X > 0)) def test_sympy__stats__symbolic_probability__Expectation(): from sympy.stats.symbolic_probability import Expectation from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Expectation(X > 0)) def test_sympy__stats__symbolic_probability__Covariance(): from sympy.stats.symbolic_probability import Covariance from sympy.stats import Normal X = Normal('X', 0, 1) Y = Normal('Y', 0, 3) assert _test_args(Covariance(X, Y)) def test_sympy__stats__symbolic_probability__Variance(): from sympy.stats.symbolic_probability import Variance from sympy.stats import Normal X = Normal('X', 0, 1) assert _test_args(Variance(X)) def test_sympy__stats__frv_types__DiscreteUniformDistribution(): from sympy.stats.frv_types import DiscreteUniformDistribution from sympy.core.containers import Tuple assert _test_args(DiscreteUniformDistribution(Tuple(*list(range(6))))) def test_sympy__stats__frv_types__DieDistribution(): assert _test_args(die) def test_sympy__stats__frv_types__BernoulliDistribution(): from sympy.stats.frv_types import BernoulliDistribution assert _test_args(BernoulliDistribution(S.Half, 0, 1)) def test_sympy__stats__frv_types__BinomialDistribution(): from sympy.stats.frv_types import BinomialDistribution assert _test_args(BinomialDistribution(5, S.Half, 1, 0)) def test_sympy__stats__frv_types__BetaBinomialDistribution(): from sympy.stats.frv_types import BetaBinomialDistribution assert _test_args(BetaBinomialDistribution(5, 1, 1)) def test_sympy__stats__frv_types__HypergeometricDistribution(): from sympy.stats.frv_types import HypergeometricDistribution assert _test_args(HypergeometricDistribution(10, 5, 3)) def test_sympy__stats__frv_types__RademacherDistribution(): from sympy.stats.frv_types import RademacherDistribution assert _test_args(RademacherDistribution()) def test_sympy__stats__frv__FiniteDomain(): from sympy.stats.frv import FiniteDomain assert _test_args(FiniteDomain({(x, 1), (x, 2)})) # x can be 1 or 2 def test_sympy__stats__frv__SingleFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain assert _test_args(SingleFiniteDomain(x, {1, 2})) # x can be 1 or 2 def test_sympy__stats__frv__ProductFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ProductFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) yd = SingleFiniteDomain(y, {1, 2}) assert _test_args(ProductFiniteDomain(xd, yd)) def test_sympy__stats__frv__ConditionalFiniteDomain(): from sympy.stats.frv import SingleFiniteDomain, ConditionalFiniteDomain xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(ConditionalFiniteDomain(xd, x > 1)) def test_sympy__stats__frv__FinitePSpace(): from sympy.stats.frv import FinitePSpace, SingleFiniteDomain xd = SingleFiniteDomain(x, {1, 2, 3, 4, 5, 6}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) xd = SingleFiniteDomain(x, {1, 2}) assert _test_args(FinitePSpace(xd, {(x, 1): S.Half, (x, 2): S.Half})) def test_sympy__stats__frv__SingleFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace from sympy import Symbol assert _test_args(SingleFinitePSpace(Symbol('x'), die)) def test_sympy__stats__frv__ProductFinitePSpace(): from sympy.stats.frv import SingleFinitePSpace, ProductFinitePSpace from sympy import Symbol xp = SingleFinitePSpace(Symbol('x'), die) yp = SingleFinitePSpace(Symbol('y'), die) assert _test_args(ProductFinitePSpace(xp, yp)) @SKIP("abstract class") def test_sympy__stats__frv__SingleFiniteDistribution(): pass @SKIP("abstract class") def test_sympy__stats__crv__ContinuousDistribution(): pass def test_sympy__stats__frv_types__FiniteDistributionHandmade(): from sympy.stats.frv_types import FiniteDistributionHandmade from sympy import Dict assert _test_args(FiniteDistributionHandmade(Dict({1: 1}))) def test_sympy__stats__crv__ContinuousDistributionHandmade(): from sympy.stats.crv import ContinuousDistributionHandmade from sympy import Symbol, Interval assert _test_args(ContinuousDistributionHandmade(Symbol('x'), Interval(0, 2))) def test_sympy__stats__drv__DiscreteDistributionHandmade(): from sympy.stats.drv import DiscreteDistributionHandmade assert _test_args(DiscreteDistributionHandmade(x, S.Naturals)) def test_sympy__stats__rv__Density(): from sympy.stats.rv import Density from sympy.stats.crv_types import Normal assert _test_args(Density(Normal('x', 0, 1))) def test_sympy__stats__crv_types__ArcsinDistribution(): from sympy.stats.crv_types import ArcsinDistribution assert _test_args(ArcsinDistribution(0, 1)) def test_sympy__stats__crv_types__BeniniDistribution(): from sympy.stats.crv_types import BeniniDistribution assert _test_args(BeniniDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaDistribution(): from sympy.stats.crv_types import BetaDistribution assert _test_args(BetaDistribution(1, 1)) def test_sympy__stats__crv_types__BetaNoncentralDistribution(): from sympy.stats.crv_types import BetaNoncentralDistribution assert _test_args(BetaNoncentralDistribution(1, 1, 1)) def test_sympy__stats__crv_types__BetaPrimeDistribution(): from sympy.stats.crv_types import BetaPrimeDistribution assert _test_args(BetaPrimeDistribution(1, 1)) def test_sympy__stats__crv_types__CauchyDistribution(): from sympy.stats.crv_types import CauchyDistribution assert _test_args(CauchyDistribution(0, 1)) def test_sympy__stats__crv_types__ChiDistribution(): from sympy.stats.crv_types import ChiDistribution assert _test_args(ChiDistribution(1)) def test_sympy__stats__crv_types__ChiNoncentralDistribution(): from sympy.stats.crv_types import ChiNoncentralDistribution assert _test_args(ChiNoncentralDistribution(1,1)) def test_sympy__stats__crv_types__ChiSquaredDistribution(): from sympy.stats.crv_types import ChiSquaredDistribution assert _test_args(ChiSquaredDistribution(1)) def test_sympy__stats__crv_types__DagumDistribution(): from sympy.stats.crv_types import DagumDistribution assert _test_args(DagumDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExGaussianDistribution(): from sympy.stats.crv_types import ExGaussianDistribution assert _test_args(ExGaussianDistribution(1, 1, 1)) def test_sympy__stats__crv_types__ExponentialDistribution(): from sympy.stats.crv_types import ExponentialDistribution assert _test_args(ExponentialDistribution(1)) def test_sympy__stats__crv_types__ExponentialPowerDistribution(): from sympy.stats.crv_types import ExponentialPowerDistribution assert _test_args(ExponentialPowerDistribution(0, 1, 1)) def test_sympy__stats__crv_types__FDistributionDistribution(): from sympy.stats.crv_types import FDistributionDistribution assert _test_args(FDistributionDistribution(1, 1)) def test_sympy__stats__crv_types__FisherZDistribution(): from sympy.stats.crv_types import FisherZDistribution assert _test_args(FisherZDistribution(1, 1)) def test_sympy__stats__crv_types__FrechetDistribution(): from sympy.stats.crv_types import FrechetDistribution assert _test_args(FrechetDistribution(1, 1, 1)) def test_sympy__stats__crv_types__GammaInverseDistribution(): from sympy.stats.crv_types import GammaInverseDistribution assert _test_args(GammaInverseDistribution(1, 1)) def test_sympy__stats__crv_types__GammaDistribution(): from sympy.stats.crv_types import GammaDistribution assert _test_args(GammaDistribution(1, 1)) def test_sympy__stats__crv_types__GumbelDistribution(): from sympy.stats.crv_types import GumbelDistribution assert _test_args(GumbelDistribution(1, 1, False)) def test_sympy__stats__crv_types__GompertzDistribution(): from sympy.stats.crv_types import GompertzDistribution assert _test_args(GompertzDistribution(1, 1)) def test_sympy__stats__crv_types__KumaraswamyDistribution(): from sympy.stats.crv_types import KumaraswamyDistribution assert _test_args(KumaraswamyDistribution(1, 1)) def test_sympy__stats__crv_types__LaplaceDistribution(): from sympy.stats.crv_types import LaplaceDistribution assert _test_args(LaplaceDistribution(0, 1)) def test_sympy__stats__crv_types__LevyDistribution(): from sympy.stats.crv_types import LevyDistribution assert _test_args(LevyDistribution(0, 1)) def test_sympy__stats__crv_types__LogisticDistribution(): from sympy.stats.crv_types import LogisticDistribution assert _test_args(LogisticDistribution(0, 1)) def test_sympy__stats__crv_types__LogLogisticDistribution(): from sympy.stats.crv_types import LogLogisticDistribution assert _test_args(LogLogisticDistribution(1, 1)) def test_sympy__stats__crv_types__LogNormalDistribution(): from sympy.stats.crv_types import LogNormalDistribution assert _test_args(LogNormalDistribution(0, 1)) def test_sympy__stats__crv_types__MaxwellDistribution(): from sympy.stats.crv_types import MaxwellDistribution assert _test_args(MaxwellDistribution(1)) def test_sympy__stats__crv_types__NakagamiDistribution(): from sympy.stats.crv_types import NakagamiDistribution assert _test_args(NakagamiDistribution(1, 1)) def test_sympy__stats__crv_types__NormalDistribution(): from sympy.stats.crv_types import NormalDistribution assert _test_args(NormalDistribution(0, 1)) def test_sympy__stats__crv_types__GaussianInverseDistribution(): from sympy.stats.crv_types import GaussianInverseDistribution assert _test_args(GaussianInverseDistribution(1, 1)) def test_sympy__stats__crv_types__ParetoDistribution(): from sympy.stats.crv_types import ParetoDistribution assert _test_args(ParetoDistribution(1, 1)) def test_sympy__stats__crv_types__QuadraticUDistribution(): from sympy.stats.crv_types import QuadraticUDistribution assert _test_args(QuadraticUDistribution(1, 2)) def test_sympy__stats__crv_types__RaisedCosineDistribution(): from sympy.stats.crv_types import RaisedCosineDistribution assert _test_args(RaisedCosineDistribution(1, 1)) def test_sympy__stats__crv_types__RayleighDistribution(): from sympy.stats.crv_types import RayleighDistribution assert _test_args(RayleighDistribution(1)) def test_sympy__stats__crv_types__ReciprocalDistribution(): from sympy.stats.crv_types import ReciprocalDistribution assert _test_args(ReciprocalDistribution(5, 30)) def test_sympy__stats__crv_types__ShiftedGompertzDistribution(): from sympy.stats.crv_types import ShiftedGompertzDistribution assert _test_args(ShiftedGompertzDistribution(1, 1)) def test_sympy__stats__crv_types__StudentTDistribution(): from sympy.stats.crv_types import StudentTDistribution assert _test_args(StudentTDistribution(1)) def test_sympy__stats__crv_types__TrapezoidalDistribution(): from sympy.stats.crv_types import TrapezoidalDistribution assert _test_args(TrapezoidalDistribution(1, 2, 3, 4)) def test_sympy__stats__crv_types__TriangularDistribution(): from sympy.stats.crv_types import TriangularDistribution assert _test_args(TriangularDistribution(-1, 0, 1)) def test_sympy__stats__crv_types__UniformDistribution(): from sympy.stats.crv_types import UniformDistribution assert _test_args(UniformDistribution(0, 1)) def test_sympy__stats__crv_types__UniformSumDistribution(): from sympy.stats.crv_types import UniformSumDistribution assert _test_args(UniformSumDistribution(1)) def test_sympy__stats__crv_types__VonMisesDistribution(): from sympy.stats.crv_types import VonMisesDistribution assert _test_args(VonMisesDistribution(1, 1)) def test_sympy__stats__crv_types__WeibullDistribution(): from sympy.stats.crv_types import WeibullDistribution assert _test_args(WeibullDistribution(1, 1)) def test_sympy__stats__crv_types__WignerSemicircleDistribution(): from sympy.stats.crv_types import WignerSemicircleDistribution assert _test_args(WignerSemicircleDistribution(1)) def test_sympy__stats__drv_types__GeometricDistribution(): from sympy.stats.drv_types import GeometricDistribution assert _test_args(GeometricDistribution(.5)) def test_sympy__stats__drv_types__LogarithmicDistribution(): from sympy.stats.drv_types import LogarithmicDistribution assert _test_args(LogarithmicDistribution(.5)) def test_sympy__stats__drv_types__NegativeBinomialDistribution(): from sympy.stats.drv_types import NegativeBinomialDistribution assert _test_args(NegativeBinomialDistribution(.5, .5)) def test_sympy__stats__drv_types__PoissonDistribution(): from sympy.stats.drv_types import PoissonDistribution assert _test_args(PoissonDistribution(1)) def test_sympy__stats__drv_types__SkellamDistribution(): from sympy.stats.drv_types import SkellamDistribution assert _test_args(SkellamDistribution(1, 1)) def test_sympy__stats__drv_types__YuleSimonDistribution(): from sympy.stats.drv_types import YuleSimonDistribution assert _test_args(YuleSimonDistribution(.5)) def test_sympy__stats__drv_types__ZetaDistribution(): from sympy.stats.drv_types import ZetaDistribution assert _test_args(ZetaDistribution(1.5)) def test_sympy__stats__joint_rv__JointDistribution(): from sympy.stats.joint_rv import JointDistribution assert _test_args(JointDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__MultivariateNormalDistribution(): from sympy.stats.joint_rv_types import MultivariateNormalDistribution assert _test_args( MultivariateNormalDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateLaplaceDistribution(): from sympy.stats.joint_rv_types import MultivariateLaplaceDistribution assert _test_args(MultivariateLaplaceDistribution([0, 1], [[1, 0],[0, 1]])) def test_sympy__stats__joint_rv_types__MultivariateTDistribution(): from sympy.stats.joint_rv_types import MultivariateTDistribution assert _test_args(MultivariateTDistribution([0, 1], [[1, 0],[0, 1]], 1)) def test_sympy__stats__joint_rv_types__NormalGammaDistribution(): from sympy.stats.joint_rv_types import NormalGammaDistribution assert _test_args(NormalGammaDistribution(1, 2, 3, 4)) def test_sympy__stats__joint_rv_types__GeneralizedMultivariateLogGammaDistribution(): from sympy.stats.joint_rv_types import GeneralizedMultivariateLogGammaDistribution v, l, mu = (4, [1, 2, 3, 4], [1, 2, 3, 4]) assert _test_args(GeneralizedMultivariateLogGammaDistribution(S.Half, v, l, mu)) def test_sympy__stats__joint_rv_types__MultivariateBetaDistribution(): from sympy.stats.joint_rv_types import MultivariateBetaDistribution assert _test_args(MultivariateBetaDistribution([1, 2, 3])) def test_sympy__stats__joint_rv_types__MultivariateEwensDistribution(): from sympy.stats.joint_rv_types import MultivariateEwensDistribution assert _test_args(MultivariateEwensDistribution(5, 1)) def test_sympy__stats__joint_rv_types__MultinomialDistribution(): from sympy.stats.joint_rv_types import MultinomialDistribution assert _test_args(MultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__joint_rv_types__NegativeMultinomialDistribution(): from sympy.stats.joint_rv_types import NegativeMultinomialDistribution assert _test_args(NegativeMultinomialDistribution(5, [0.5, 0.1, 0.3])) def test_sympy__stats__rv__RandomIndexedSymbol(): from sympy.stats.rv import RandomIndexedSymbol, pspace from sympy.stats.stochastic_process_types import DiscreteMarkovChain X = DiscreteMarkovChain("X") assert _test_args(RandomIndexedSymbol(X[0].symbol, pspace(X[0]))) def test_sympy__stats__rv__RandomMatrixSymbol(): from sympy.stats.rv import RandomMatrixSymbol from sympy.stats.random_matrix import RandomMatrixPSpace pspace = RandomMatrixPSpace('P') assert _test_args(RandomMatrixSymbol('M', 3, 3, pspace)) def test_sympy__stats__stochastic_process__StochasticPSpace(): from sympy.stats.stochastic_process import StochasticPSpace from sympy.stats.stochastic_process_types import StochasticProcess from sympy.stats.frv_types import BernoulliDistribution assert _test_args(StochasticPSpace("Y", StochasticProcess("Y", [1, 2, 3]), BernoulliDistribution(S.Half, 1, 0))) def test_sympy__stats__stochastic_process_types__StochasticProcess(): from sympy.stats.stochastic_process_types import StochasticProcess assert _test_args(StochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__MarkovProcess(): from sympy.stats.stochastic_process_types import MarkovProcess assert _test_args(MarkovProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__DiscreteTimeStochasticProcess(): from sympy.stats.stochastic_process_types import DiscreteTimeStochasticProcess assert _test_args(DiscreteTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__ContinuousTimeStochasticProcess(): from sympy.stats.stochastic_process_types import ContinuousTimeStochasticProcess assert _test_args(ContinuousTimeStochasticProcess("Y", [1, 2, 3])) def test_sympy__stats__stochastic_process_types__TransitionMatrixOf(): from sympy.stats.stochastic_process_types import TransitionMatrixOf, DiscreteMarkovChain from sympy import MatrixSymbol DMC = DiscreteMarkovChain("Y") assert _test_args(TransitionMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__GeneratorMatrixOf(): from sympy.stats.stochastic_process_types import GeneratorMatrixOf, ContinuousMarkovChain from sympy import MatrixSymbol DMC = ContinuousMarkovChain("Y") assert _test_args(GeneratorMatrixOf(DMC, MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__StochasticStateSpaceOf(): from sympy.stats.stochastic_process_types import StochasticStateSpaceOf, DiscreteMarkovChain DMC = DiscreteMarkovChain("Y") assert _test_args(StochasticStateSpaceOf(DMC, [0, 1, 2])) def test_sympy__stats__stochastic_process_types__DiscreteMarkovChain(): from sympy.stats.stochastic_process_types import DiscreteMarkovChain from sympy import MatrixSymbol assert _test_args(DiscreteMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__stochastic_process_types__ContinuousMarkovChain(): from sympy.stats.stochastic_process_types import ContinuousMarkovChain from sympy import MatrixSymbol assert _test_args(ContinuousMarkovChain("Y", [0, 1, 2], MatrixSymbol('T', 3, 3))) def test_sympy__stats__random_matrix__RandomMatrixPSpace(): from sympy.stats.random_matrix import RandomMatrixPSpace from sympy.stats.random_matrix_models import RandomMatrixEnsemble assert _test_args(RandomMatrixPSpace('P', RandomMatrixEnsemble('R', 3))) def test_sympy__stats__random_matrix_models__RandomMatrixEnsemble(): from sympy.stats.random_matrix_models import RandomMatrixEnsemble assert _test_args(RandomMatrixEnsemble('R', 3)) def test_sympy__stats__random_matrix_models__GaussianEnsemble(): from sympy.stats.random_matrix_models import GaussianEnsemble assert _test_args(GaussianEnsemble('G', 3)) def test_sympy__stats__random_matrix_models__GaussianUnitaryEnsemble(): from sympy.stats import GaussianUnitaryEnsemble assert _test_args(GaussianUnitaryEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__GaussianOrthogonalEnsemble(): from sympy.stats import GaussianOrthogonalEnsemble assert _test_args(GaussianOrthogonalEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__GaussianSymplecticEnsemble(): from sympy.stats import GaussianSymplecticEnsemble assert _test_args(GaussianSymplecticEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__CircularEnsemble(): from sympy.stats import CircularEnsemble assert _test_args(CircularEnsemble('C', 3)) def test_sympy__stats__random_matrix_models__CircularUnitaryEnsemble(): from sympy.stats import CircularUnitaryEnsemble assert _test_args(CircularUnitaryEnsemble('U', 3)) def test_sympy__stats__random_matrix_models__CircularOrthogonalEnsemble(): from sympy.stats import CircularOrthogonalEnsemble assert _test_args(CircularOrthogonalEnsemble('O', 3)) def test_sympy__stats__random_matrix_models__CircularSymplecticEnsemble(): from sympy.stats import CircularSymplecticEnsemble assert _test_args(CircularSymplecticEnsemble('S', 3)) def test_sympy__core__symbol__Dummy(): from sympy.core.symbol import Dummy assert _test_args(Dummy('t')) def test_sympy__core__symbol__Symbol(): from sympy.core.symbol import Symbol assert _test_args(Symbol('t')) def test_sympy__core__symbol__Wild(): from sympy.core.symbol import Wild assert _test_args(Wild('x', exclude=[x])) @SKIP("abstract class") def test_sympy__functions__combinatorial__factorials__CombinatorialFunction(): pass def test_sympy__functions__combinatorial__factorials__FallingFactorial(): from sympy.functions.combinatorial.factorials import FallingFactorial assert _test_args(FallingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__MultiFactorial(): from sympy.functions.combinatorial.factorials import MultiFactorial assert _test_args(MultiFactorial(x)) def test_sympy__functions__combinatorial__factorials__RisingFactorial(): from sympy.functions.combinatorial.factorials import RisingFactorial assert _test_args(RisingFactorial(2, x)) def test_sympy__functions__combinatorial__factorials__binomial(): from sympy.functions.combinatorial.factorials import binomial assert _test_args(binomial(2, x)) def test_sympy__functions__combinatorial__factorials__subfactorial(): from sympy.functions.combinatorial.factorials import subfactorial assert _test_args(subfactorial(1)) def test_sympy__functions__combinatorial__factorials__factorial(): from sympy.functions.combinatorial.factorials import factorial assert _test_args(factorial(x)) def test_sympy__functions__combinatorial__factorials__factorial2(): from sympy.functions.combinatorial.factorials import factorial2 assert _test_args(factorial2(x)) def test_sympy__functions__combinatorial__numbers__bell(): from sympy.functions.combinatorial.numbers import bell assert _test_args(bell(x, y)) def test_sympy__functions__combinatorial__numbers__bernoulli(): from sympy.functions.combinatorial.numbers import bernoulli assert _test_args(bernoulli(x)) def test_sympy__functions__combinatorial__numbers__catalan(): from sympy.functions.combinatorial.numbers import catalan assert _test_args(catalan(x)) def test_sympy__functions__combinatorial__numbers__genocchi(): from sympy.functions.combinatorial.numbers import genocchi assert _test_args(genocchi(x)) def test_sympy__functions__combinatorial__numbers__euler(): from sympy.functions.combinatorial.numbers import euler assert _test_args(euler(x)) def test_sympy__functions__combinatorial__numbers__carmichael(): from sympy.functions.combinatorial.numbers import carmichael assert _test_args(carmichael(x)) def test_sympy__functions__combinatorial__numbers__fibonacci(): from sympy.functions.combinatorial.numbers import fibonacci assert _test_args(fibonacci(x)) def test_sympy__functions__combinatorial__numbers__tribonacci(): from sympy.functions.combinatorial.numbers import tribonacci assert _test_args(tribonacci(x)) def test_sympy__functions__combinatorial__numbers__harmonic(): from sympy.functions.combinatorial.numbers import harmonic assert _test_args(harmonic(x, 2)) def test_sympy__functions__combinatorial__numbers__lucas(): from sympy.functions.combinatorial.numbers import lucas assert _test_args(lucas(x)) def test_sympy__functions__combinatorial__numbers__partition(): from sympy.core.symbol import Symbol from sympy.functions.combinatorial.numbers import partition assert _test_args(partition(Symbol('a', integer=True))) def test_sympy__functions__elementary__complexes__Abs(): from sympy.functions.elementary.complexes import Abs assert _test_args(Abs(x)) def test_sympy__functions__elementary__complexes__adjoint(): from sympy.functions.elementary.complexes import adjoint assert _test_args(adjoint(x)) def test_sympy__functions__elementary__complexes__arg(): from sympy.functions.elementary.complexes import arg assert _test_args(arg(x)) def test_sympy__functions__elementary__complexes__conjugate(): from sympy.functions.elementary.complexes import conjugate assert _test_args(conjugate(x)) def test_sympy__functions__elementary__complexes__im(): from sympy.functions.elementary.complexes import im assert _test_args(im(x)) def test_sympy__functions__elementary__complexes__re(): from sympy.functions.elementary.complexes import re assert _test_args(re(x)) def test_sympy__functions__elementary__complexes__sign(): from sympy.functions.elementary.complexes import sign assert _test_args(sign(x)) def test_sympy__functions__elementary__complexes__polar_lift(): from sympy.functions.elementary.complexes import polar_lift assert _test_args(polar_lift(x)) def test_sympy__functions__elementary__complexes__periodic_argument(): from sympy.functions.elementary.complexes import periodic_argument assert _test_args(periodic_argument(x, y)) def test_sympy__functions__elementary__complexes__principal_branch(): from sympy.functions.elementary.complexes import principal_branch assert _test_args(principal_branch(x, y)) def test_sympy__functions__elementary__complexes__transpose(): from sympy.functions.elementary.complexes import transpose assert _test_args(transpose(x)) def test_sympy__functions__elementary__exponential__LambertW(): from sympy.functions.elementary.exponential import LambertW assert _test_args(LambertW(2)) @SKIP("abstract class") def test_sympy__functions__elementary__exponential__ExpBase(): pass def test_sympy__functions__elementary__exponential__exp(): from sympy.functions.elementary.exponential import exp assert _test_args(exp(2)) def test_sympy__functions__elementary__exponential__exp_polar(): from sympy.functions.elementary.exponential import exp_polar assert _test_args(exp_polar(2)) def test_sympy__functions__elementary__exponential__log(): from sympy.functions.elementary.exponential import log assert _test_args(log(2)) @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__HyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__ReciprocalHyperbolicFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__hyperbolic__InverseHyperbolicFunction(): pass def test_sympy__functions__elementary__hyperbolic__acosh(): from sympy.functions.elementary.hyperbolic import acosh assert _test_args(acosh(2)) def test_sympy__functions__elementary__hyperbolic__acoth(): from sympy.functions.elementary.hyperbolic import acoth assert _test_args(acoth(2)) def test_sympy__functions__elementary__hyperbolic__asinh(): from sympy.functions.elementary.hyperbolic import asinh assert _test_args(asinh(2)) def test_sympy__functions__elementary__hyperbolic__atanh(): from sympy.functions.elementary.hyperbolic import atanh assert _test_args(atanh(2)) def test_sympy__functions__elementary__hyperbolic__asech(): from sympy.functions.elementary.hyperbolic import asech assert _test_args(asech(2)) def test_sympy__functions__elementary__hyperbolic__acsch(): from sympy.functions.elementary.hyperbolic import acsch assert _test_args(acsch(2)) def test_sympy__functions__elementary__hyperbolic__cosh(): from sympy.functions.elementary.hyperbolic import cosh assert _test_args(cosh(2)) def test_sympy__functions__elementary__hyperbolic__coth(): from sympy.functions.elementary.hyperbolic import coth assert _test_args(coth(2)) def test_sympy__functions__elementary__hyperbolic__csch(): from sympy.functions.elementary.hyperbolic import csch assert _test_args(csch(2)) def test_sympy__functions__elementary__hyperbolic__sech(): from sympy.functions.elementary.hyperbolic import sech assert _test_args(sech(2)) def test_sympy__functions__elementary__hyperbolic__sinh(): from sympy.functions.elementary.hyperbolic import sinh assert _test_args(sinh(2)) def test_sympy__functions__elementary__hyperbolic__tanh(): from sympy.functions.elementary.hyperbolic import tanh assert _test_args(tanh(2)) @SKIP("does this work at all?") def test_sympy__functions__elementary__integers__RoundFunction(): from sympy.functions.elementary.integers import RoundFunction assert _test_args(RoundFunction()) def test_sympy__functions__elementary__integers__ceiling(): from sympy.functions.elementary.integers import ceiling assert _test_args(ceiling(x)) def test_sympy__functions__elementary__integers__floor(): from sympy.functions.elementary.integers import floor assert _test_args(floor(x)) def test_sympy__functions__elementary__integers__frac(): from sympy.functions.elementary.integers import frac assert _test_args(frac(x)) def test_sympy__functions__elementary__miscellaneous__IdentityFunction(): from sympy.functions.elementary.miscellaneous import IdentityFunction assert _test_args(IdentityFunction()) def test_sympy__functions__elementary__miscellaneous__Max(): from sympy.functions.elementary.miscellaneous import Max assert _test_args(Max(x, 2)) def test_sympy__functions__elementary__miscellaneous__Min(): from sympy.functions.elementary.miscellaneous import Min assert _test_args(Min(x, 2)) @SKIP("abstract class") def test_sympy__functions__elementary__miscellaneous__MinMaxBase(): pass def test_sympy__functions__elementary__piecewise__ExprCondPair(): from sympy.functions.elementary.piecewise import ExprCondPair assert _test_args(ExprCondPair(1, True)) def test_sympy__functions__elementary__piecewise__Piecewise(): from sympy.functions.elementary.piecewise import Piecewise assert _test_args(Piecewise((1, x >= 0), (0, True))) @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__TrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__ReciprocalTrigonometricFunction(): pass @SKIP("abstract class") def test_sympy__functions__elementary__trigonometric__InverseTrigonometricFunction(): pass def test_sympy__functions__elementary__trigonometric__acos(): from sympy.functions.elementary.trigonometric import acos assert _test_args(acos(2)) def test_sympy__functions__elementary__trigonometric__acot(): from sympy.functions.elementary.trigonometric import acot assert _test_args(acot(2)) def test_sympy__functions__elementary__trigonometric__asin(): from sympy.functions.elementary.trigonometric import asin assert _test_args(asin(2)) def test_sympy__functions__elementary__trigonometric__asec(): from sympy.functions.elementary.trigonometric import asec assert _test_args(asec(2)) def test_sympy__functions__elementary__trigonometric__acsc(): from sympy.functions.elementary.trigonometric import acsc assert _test_args(acsc(2)) def test_sympy__functions__elementary__trigonometric__atan(): from sympy.functions.elementary.trigonometric import atan assert _test_args(atan(2)) def test_sympy__functions__elementary__trigonometric__atan2(): from sympy.functions.elementary.trigonometric import atan2 assert _test_args(atan2(2, 3)) def test_sympy__functions__elementary__trigonometric__cos(): from sympy.functions.elementary.trigonometric import cos assert _test_args(cos(2)) def test_sympy__functions__elementary__trigonometric__csc(): from sympy.functions.elementary.trigonometric import csc assert _test_args(csc(2)) def test_sympy__functions__elementary__trigonometric__cot(): from sympy.functions.elementary.trigonometric import cot assert _test_args(cot(2)) def test_sympy__functions__elementary__trigonometric__sin(): assert _test_args(sin(2)) def test_sympy__functions__elementary__trigonometric__sinc(): from sympy.functions.elementary.trigonometric import sinc assert _test_args(sinc(2)) def test_sympy__functions__elementary__trigonometric__sec(): from sympy.functions.elementary.trigonometric import sec assert _test_args(sec(2)) def test_sympy__functions__elementary__trigonometric__tan(): from sympy.functions.elementary.trigonometric import tan assert _test_args(tan(2)) @SKIP("abstract class") def test_sympy__functions__special__bessel__BesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalBesselBase(): pass @SKIP("abstract class") def test_sympy__functions__special__bessel__SphericalHankelBase(): pass def test_sympy__functions__special__bessel__besseli(): from sympy.functions.special.bessel import besseli assert _test_args(besseli(x, 1)) def test_sympy__functions__special__bessel__besselj(): from sympy.functions.special.bessel import besselj assert _test_args(besselj(x, 1)) def test_sympy__functions__special__bessel__besselk(): from sympy.functions.special.bessel import besselk assert _test_args(besselk(x, 1)) def test_sympy__functions__special__bessel__bessely(): from sympy.functions.special.bessel import bessely assert _test_args(bessely(x, 1)) def test_sympy__functions__special__bessel__hankel1(): from sympy.functions.special.bessel import hankel1 assert _test_args(hankel1(x, 1)) def test_sympy__functions__special__bessel__hankel2(): from sympy.functions.special.bessel import hankel2 assert _test_args(hankel2(x, 1)) def test_sympy__functions__special__bessel__jn(): from sympy.functions.special.bessel import jn assert _test_args(jn(0, x)) def test_sympy__functions__special__bessel__yn(): from sympy.functions.special.bessel import yn assert _test_args(yn(0, x)) def test_sympy__functions__special__bessel__hn1(): from sympy.functions.special.bessel import hn1 assert _test_args(hn1(0, x)) def test_sympy__functions__special__bessel__hn2(): from sympy.functions.special.bessel import hn2 assert _test_args(hn2(0, x)) def test_sympy__functions__special__bessel__AiryBase(): pass def test_sympy__functions__special__bessel__airyai(): from sympy.functions.special.bessel import airyai assert _test_args(airyai(2)) def test_sympy__functions__special__bessel__airybi(): from sympy.functions.special.bessel import airybi assert _test_args(airybi(2)) def test_sympy__functions__special__bessel__airyaiprime(): from sympy.functions.special.bessel import airyaiprime assert _test_args(airyaiprime(2)) def test_sympy__functions__special__bessel__airybiprime(): from sympy.functions.special.bessel import airybiprime assert _test_args(airybiprime(2)) def test_sympy__functions__special__bessel__marcumq(): from sympy.functions.special.bessel import marcumq assert _test_args(marcumq(x, y, z)) def test_sympy__functions__special__elliptic_integrals__elliptic_k(): from sympy.functions.special.elliptic_integrals import elliptic_k as K assert _test_args(K(x)) def test_sympy__functions__special__elliptic_integrals__elliptic_f(): from sympy.functions.special.elliptic_integrals import elliptic_f as F assert _test_args(F(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_e(): from sympy.functions.special.elliptic_integrals import elliptic_e as E assert _test_args(E(x)) assert _test_args(E(x, y)) def test_sympy__functions__special__elliptic_integrals__elliptic_pi(): from sympy.functions.special.elliptic_integrals import elliptic_pi as P assert _test_args(P(x, y)) assert _test_args(P(x, y, z)) def test_sympy__functions__special__delta_functions__DiracDelta(): from sympy.functions.special.delta_functions import DiracDelta assert _test_args(DiracDelta(x, 1)) def test_sympy__functions__special__singularity_functions__SingularityFunction(): from sympy.functions.special.singularity_functions import SingularityFunction assert _test_args(SingularityFunction(x, y, z)) def test_sympy__functions__special__delta_functions__Heaviside(): from sympy.functions.special.delta_functions import Heaviside assert _test_args(Heaviside(x)) def test_sympy__functions__special__error_functions__erf(): from sympy.functions.special.error_functions import erf assert _test_args(erf(2)) def test_sympy__functions__special__error_functions__erfc(): from sympy.functions.special.error_functions import erfc assert _test_args(erfc(2)) def test_sympy__functions__special__error_functions__erfi(): from sympy.functions.special.error_functions import erfi assert _test_args(erfi(2)) def test_sympy__functions__special__error_functions__erf2(): from sympy.functions.special.error_functions import erf2 assert _test_args(erf2(2, 3)) def test_sympy__functions__special__error_functions__erfinv(): from sympy.functions.special.error_functions import erfinv assert _test_args(erfinv(2)) def test_sympy__functions__special__error_functions__erfcinv(): from sympy.functions.special.error_functions import erfcinv assert _test_args(erfcinv(2)) def test_sympy__functions__special__error_functions__erf2inv(): from sympy.functions.special.error_functions import erf2inv assert _test_args(erf2inv(2, 3)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__FresnelIntegral(): pass def test_sympy__functions__special__error_functions__fresnels(): from sympy.functions.special.error_functions import fresnels assert _test_args(fresnels(2)) def test_sympy__functions__special__error_functions__fresnelc(): from sympy.functions.special.error_functions import fresnelc assert _test_args(fresnelc(2)) def test_sympy__functions__special__error_functions__erfs(): from sympy.functions.special.error_functions import _erfs assert _test_args(_erfs(2)) def test_sympy__functions__special__error_functions__Ei(): from sympy.functions.special.error_functions import Ei assert _test_args(Ei(2)) def test_sympy__functions__special__error_functions__li(): from sympy.functions.special.error_functions import li assert _test_args(li(2)) def test_sympy__functions__special__error_functions__Li(): from sympy.functions.special.error_functions import Li assert _test_args(Li(2)) @SKIP("abstract class") def test_sympy__functions__special__error_functions__TrigonometricIntegral(): pass def test_sympy__functions__special__error_functions__Si(): from sympy.functions.special.error_functions import Si assert _test_args(Si(2)) def test_sympy__functions__special__error_functions__Ci(): from sympy.functions.special.error_functions import Ci assert _test_args(Ci(2)) def test_sympy__functions__special__error_functions__Shi(): from sympy.functions.special.error_functions import Shi assert _test_args(Shi(2)) def test_sympy__functions__special__error_functions__Chi(): from sympy.functions.special.error_functions import Chi assert _test_args(Chi(2)) def test_sympy__functions__special__error_functions__expint(): from sympy.functions.special.error_functions import expint assert _test_args(expint(y, x)) def test_sympy__functions__special__gamma_functions__gamma(): from sympy.functions.special.gamma_functions import gamma assert _test_args(gamma(x)) def test_sympy__functions__special__gamma_functions__loggamma(): from sympy.functions.special.gamma_functions import loggamma assert _test_args(loggamma(2)) def test_sympy__functions__special__gamma_functions__lowergamma(): from sympy.functions.special.gamma_functions import lowergamma assert _test_args(lowergamma(x, 2)) def test_sympy__functions__special__gamma_functions__polygamma(): from sympy.functions.special.gamma_functions import polygamma assert _test_args(polygamma(x, 2)) def test_sympy__functions__special__gamma_functions__digamma(): from sympy.functions.special.gamma_functions import digamma assert _test_args(digamma(x)) def test_sympy__functions__special__gamma_functions__trigamma(): from sympy.functions.special.gamma_functions import trigamma assert _test_args(trigamma(x)) def test_sympy__functions__special__gamma_functions__uppergamma(): from sympy.functions.special.gamma_functions import uppergamma assert _test_args(uppergamma(x, 2)) def test_sympy__functions__special__gamma_functions__multigamma(): from sympy.functions.special.gamma_functions import multigamma assert _test_args(multigamma(x, 1)) def test_sympy__functions__special__beta_functions__beta(): from sympy.functions.special.beta_functions import beta assert _test_args(beta(x, x)) def test_sympy__functions__special__mathieu_functions__MathieuBase(): pass def test_sympy__functions__special__mathieu_functions__mathieus(): from sympy.functions.special.mathieu_functions import mathieus assert _test_args(mathieus(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieuc(): from sympy.functions.special.mathieu_functions import mathieuc assert _test_args(mathieuc(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieusprime(): from sympy.functions.special.mathieu_functions import mathieusprime assert _test_args(mathieusprime(1, 1, 1)) def test_sympy__functions__special__mathieu_functions__mathieucprime(): from sympy.functions.special.mathieu_functions import mathieucprime assert _test_args(mathieucprime(1, 1, 1)) @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleParametersBase(): pass @SKIP("abstract class") def test_sympy__functions__special__hyper__TupleArg(): pass def test_sympy__functions__special__hyper__hyper(): from sympy.functions.special.hyper import hyper assert _test_args(hyper([1, 2, 3], [4, 5], x)) def test_sympy__functions__special__hyper__meijerg(): from sympy.functions.special.hyper import meijerg assert _test_args(meijerg([1, 2, 3], [4, 5], [6], [], x)) @SKIP("abstract class") def test_sympy__functions__special__hyper__HyperRep(): pass def test_sympy__functions__special__hyper__HyperRep_power1(): from sympy.functions.special.hyper import HyperRep_power1 assert _test_args(HyperRep_power1(x, y)) def test_sympy__functions__special__hyper__HyperRep_power2(): from sympy.functions.special.hyper import HyperRep_power2 assert _test_args(HyperRep_power2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log1(): from sympy.functions.special.hyper import HyperRep_log1 assert _test_args(HyperRep_log1(x)) def test_sympy__functions__special__hyper__HyperRep_atanh(): from sympy.functions.special.hyper import HyperRep_atanh assert _test_args(HyperRep_atanh(x)) def test_sympy__functions__special__hyper__HyperRep_asin1(): from sympy.functions.special.hyper import HyperRep_asin1 assert _test_args(HyperRep_asin1(x)) def test_sympy__functions__special__hyper__HyperRep_asin2(): from sympy.functions.special.hyper import HyperRep_asin2 assert _test_args(HyperRep_asin2(x)) def test_sympy__functions__special__hyper__HyperRep_sqrts1(): from sympy.functions.special.hyper import HyperRep_sqrts1 assert _test_args(HyperRep_sqrts1(x, y)) def test_sympy__functions__special__hyper__HyperRep_sqrts2(): from sympy.functions.special.hyper import HyperRep_sqrts2 assert _test_args(HyperRep_sqrts2(x, y)) def test_sympy__functions__special__hyper__HyperRep_log2(): from sympy.functions.special.hyper import HyperRep_log2 assert _test_args(HyperRep_log2(x)) def test_sympy__functions__special__hyper__HyperRep_cosasin(): from sympy.functions.special.hyper import HyperRep_cosasin assert _test_args(HyperRep_cosasin(x, y)) def test_sympy__functions__special__hyper__HyperRep_sinasin(): from sympy.functions.special.hyper import HyperRep_sinasin assert _test_args(HyperRep_sinasin(x, y)) def test_sympy__functions__special__hyper__appellf1(): from sympy.functions.special.hyper import appellf1 a, b1, b2, c, x, y = symbols('a b1 b2 c x y') assert _test_args(appellf1(a, b1, b2, c, x, y)) @SKIP("abstract class") def test_sympy__functions__special__polynomials__OrthogonalPolynomial(): pass def test_sympy__functions__special__polynomials__jacobi(): from sympy.functions.special.polynomials import jacobi assert _test_args(jacobi(x, 2, 2, 2)) def test_sympy__functions__special__polynomials__gegenbauer(): from sympy.functions.special.polynomials import gegenbauer assert _test_args(gegenbauer(x, 2, 2)) def test_sympy__functions__special__polynomials__chebyshevt(): from sympy.functions.special.polynomials import chebyshevt assert _test_args(chebyshevt(x, 2)) def test_sympy__functions__special__polynomials__chebyshevt_root(): from sympy.functions.special.polynomials import chebyshevt_root assert _test_args(chebyshevt_root(3, 2)) def test_sympy__functions__special__polynomials__chebyshevu(): from sympy.functions.special.polynomials import chebyshevu assert _test_args(chebyshevu(x, 2)) def test_sympy__functions__special__polynomials__chebyshevu_root(): from sympy.functions.special.polynomials import chebyshevu_root assert _test_args(chebyshevu_root(3, 2)) def test_sympy__functions__special__polynomials__hermite(): from sympy.functions.special.polynomials import hermite assert _test_args(hermite(x, 2)) def test_sympy__functions__special__polynomials__legendre(): from sympy.functions.special.polynomials import legendre assert _test_args(legendre(x, 2)) def test_sympy__functions__special__polynomials__assoc_legendre(): from sympy.functions.special.polynomials import assoc_legendre assert _test_args(assoc_legendre(x, 0, y)) def test_sympy__functions__special__polynomials__laguerre(): from sympy.functions.special.polynomials import laguerre assert _test_args(laguerre(x, 2)) def test_sympy__functions__special__polynomials__assoc_laguerre(): from sympy.functions.special.polynomials import assoc_laguerre assert _test_args(assoc_laguerre(x, 0, y)) def test_sympy__functions__special__spherical_harmonics__Ynm(): from sympy.functions.special.spherical_harmonics import Ynm assert _test_args(Ynm(1, 1, x, y)) def test_sympy__functions__special__spherical_harmonics__Znm(): from sympy.functions.special.spherical_harmonics import Znm assert _test_args(Znm(1, 1, x, y)) def test_sympy__functions__special__tensor_functions__LeviCivita(): from sympy.functions.special.tensor_functions import LeviCivita assert _test_args(LeviCivita(x, y, 2)) def test_sympy__functions__special__tensor_functions__KroneckerDelta(): from sympy.functions.special.tensor_functions import KroneckerDelta assert _test_args(KroneckerDelta(x, y)) def test_sympy__functions__special__zeta_functions__dirichlet_eta(): from sympy.functions.special.zeta_functions import dirichlet_eta assert _test_args(dirichlet_eta(x)) def test_sympy__functions__special__zeta_functions__zeta(): from sympy.functions.special.zeta_functions import zeta assert _test_args(zeta(101)) def test_sympy__functions__special__zeta_functions__lerchphi(): from sympy.functions.special.zeta_functions import lerchphi assert _test_args(lerchphi(x, y, z)) def test_sympy__functions__special__zeta_functions__polylog(): from sympy.functions.special.zeta_functions import polylog assert _test_args(polylog(x, y)) def test_sympy__functions__special__zeta_functions__stieltjes(): from sympy.functions.special.zeta_functions import stieltjes assert _test_args(stieltjes(x, y)) def test_sympy__integrals__integrals__Integral(): from sympy.integrals.integrals import Integral assert _test_args(Integral(2, (x, 0, 1))) def test_sympy__integrals__risch__NonElementaryIntegral(): from sympy.integrals.risch import NonElementaryIntegral assert _test_args(NonElementaryIntegral(exp(-x**2), x)) @SKIP("abstract class") def test_sympy__integrals__transforms__IntegralTransform(): pass def test_sympy__integrals__transforms__MellinTransform(): from sympy.integrals.transforms import MellinTransform assert _test_args(MellinTransform(2, x, y)) def test_sympy__integrals__transforms__InverseMellinTransform(): from sympy.integrals.transforms import InverseMellinTransform assert _test_args(InverseMellinTransform(2, x, y, 0, 1)) def test_sympy__integrals__transforms__LaplaceTransform(): from sympy.integrals.transforms import LaplaceTransform assert _test_args(LaplaceTransform(2, x, y)) def test_sympy__integrals__transforms__InverseLaplaceTransform(): from sympy.integrals.transforms import InverseLaplaceTransform assert _test_args(InverseLaplaceTransform(2, x, y, 0)) @SKIP("abstract class") def test_sympy__integrals__transforms__FourierTypeTransform(): pass def test_sympy__integrals__transforms__InverseFourierTransform(): from sympy.integrals.transforms import InverseFourierTransform assert _test_args(InverseFourierTransform(2, x, y)) def test_sympy__integrals__transforms__FourierTransform(): from sympy.integrals.transforms import FourierTransform assert _test_args(FourierTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__SineCosineTypeTransform(): pass def test_sympy__integrals__transforms__InverseSineTransform(): from sympy.integrals.transforms import InverseSineTransform assert _test_args(InverseSineTransform(2, x, y)) def test_sympy__integrals__transforms__SineTransform(): from sympy.integrals.transforms import SineTransform assert _test_args(SineTransform(2, x, y)) def test_sympy__integrals__transforms__InverseCosineTransform(): from sympy.integrals.transforms import InverseCosineTransform assert _test_args(InverseCosineTransform(2, x, y)) def test_sympy__integrals__transforms__CosineTransform(): from sympy.integrals.transforms import CosineTransform assert _test_args(CosineTransform(2, x, y)) @SKIP("abstract class") def test_sympy__integrals__transforms__HankelTypeTransform(): pass def test_sympy__integrals__transforms__InverseHankelTransform(): from sympy.integrals.transforms import InverseHankelTransform assert _test_args(InverseHankelTransform(2, x, y, 0)) def test_sympy__integrals__transforms__HankelTransform(): from sympy.integrals.transforms import HankelTransform assert _test_args(HankelTransform(2, x, y, 0)) @XFAIL def test_sympy__liealgebras__cartan_type__CartanType_generator(): from sympy.liealgebras.cartan_type import CartanType_generator assert _test_args(CartanType_generator("A2")) @XFAIL def test_sympy__liealgebras__cartan_type__Standard_Cartan(): from sympy.liealgebras.cartan_type import Standard_Cartan assert _test_args(Standard_Cartan("A", 2)) @XFAIL def test_sympy__liealgebras__weyl_group__WeylGroup(): from sympy.liealgebras.weyl_group import WeylGroup assert _test_args(WeylGroup("B4")) @XFAIL def test_sympy__liealgebras__root_system__RootSystem(): from sympy.liealgebras.root_system import RootSystem assert _test_args(RootSystem("A2")) @XFAIL def test_sympy__liealgebras__type_a__TypeA(): from sympy.liealgebras.type_a import TypeA assert _test_args(TypeA(2)) @XFAIL def test_sympy__liealgebras__type_b__TypeB(): from sympy.liealgebras.type_b import TypeB assert _test_args(TypeB(4)) @XFAIL def test_sympy__liealgebras__type_c__TypeC(): from sympy.liealgebras.type_c import TypeC assert _test_args(TypeC(4)) @XFAIL def test_sympy__liealgebras__type_d__TypeD(): from sympy.liealgebras.type_d import TypeD assert _test_args(TypeD(4)) @XFAIL def test_sympy__liealgebras__type_e__TypeE(): from sympy.liealgebras.type_e import TypeE assert _test_args(TypeE(6)) @XFAIL def test_sympy__liealgebras__type_f__TypeF(): from sympy.liealgebras.type_f import TypeF assert _test_args(TypeF(4)) @XFAIL def test_sympy__liealgebras__type_g__TypeG(): from sympy.liealgebras.type_g import TypeG assert _test_args(TypeG(2)) def test_sympy__logic__boolalg__And(): from sympy.logic.boolalg import And assert _test_args(And(x, y, 1)) @SKIP("abstract class") def test_sympy__logic__boolalg__Boolean(): pass def test_sympy__logic__boolalg__BooleanFunction(): from sympy.logic.boolalg import BooleanFunction assert _test_args(BooleanFunction(1, 2, 3)) @SKIP("abstract class") def test_sympy__logic__boolalg__BooleanAtom(): pass def test_sympy__logic__boolalg__BooleanTrue(): from sympy.logic.boolalg import true assert _test_args(true) def test_sympy__logic__boolalg__BooleanFalse(): from sympy.logic.boolalg import false assert _test_args(false) def test_sympy__logic__boolalg__Equivalent(): from sympy.logic.boolalg import Equivalent assert _test_args(Equivalent(x, 2)) def test_sympy__logic__boolalg__ITE(): from sympy.logic.boolalg import ITE assert _test_args(ITE(x, y, 1)) def test_sympy__logic__boolalg__Implies(): from sympy.logic.boolalg import Implies assert _test_args(Implies(x, y)) def test_sympy__logic__boolalg__Nand(): from sympy.logic.boolalg import Nand assert _test_args(Nand(x, y, 1)) def test_sympy__logic__boolalg__Nor(): from sympy.logic.boolalg import Nor assert _test_args(Nor(x, y)) def test_sympy__logic__boolalg__Not(): from sympy.logic.boolalg import Not assert _test_args(Not(x)) def test_sympy__logic__boolalg__Or(): from sympy.logic.boolalg import Or assert _test_args(Or(x, y)) def test_sympy__logic__boolalg__Xor(): from sympy.logic.boolalg import Xor assert _test_args(Xor(x, y, 2)) def test_sympy__logic__boolalg__Xnor(): from sympy.logic.boolalg import Xnor assert _test_args(Xnor(x, y, 2)) def test_sympy__matrices__matrices__DeferredVector(): from sympy.matrices.matrices import DeferredVector assert _test_args(DeferredVector("X")) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixBase(): pass def test_sympy__matrices__immutable__ImmutableDenseMatrix(): from sympy.matrices.immutable import ImmutableDenseMatrix m = ImmutableDenseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableDenseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableDenseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__immutable__ImmutableSparseMatrix(): from sympy.matrices.immutable import ImmutableSparseMatrix m = ImmutableSparseMatrix([[1, 2], [3, 4]]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, {(0, 0): 1}) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(1, 1, [1]) assert _test_args(m) assert _test_args(Basic(*list(m))) m = ImmutableSparseMatrix(2, 2, lambda i, j: 1) assert m[0, 0] is S.One m = ImmutableSparseMatrix(2, 2, lambda i, j: 1/(1 + i) + 1/(1 + j)) assert m[1, 1] is S.One # true div. will give 1.0 if i,j not sympified assert _test_args(m) assert _test_args(Basic(*list(m))) def test_sympy__matrices__expressions__slice__MatrixSlice(): from sympy.matrices.expressions.slice import MatrixSlice from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 4, 4) assert _test_args(MatrixSlice(X, (0, 2), (0, 2))) def test_sympy__matrices__expressions__applyfunc__ElementwiseApplyFunction(): from sympy.matrices.expressions.applyfunc import ElementwiseApplyFunction from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol("X", x, x) func = Lambda(x, x**2) assert _test_args(ElementwiseApplyFunction(func, X)) def test_sympy__matrices__expressions__blockmatrix__BlockDiagMatrix(): from sympy.matrices.expressions.blockmatrix import BlockDiagMatrix from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) assert _test_args(BlockDiagMatrix(X, Y)) def test_sympy__matrices__expressions__blockmatrix__BlockMatrix(): from sympy.matrices.expressions.blockmatrix import BlockMatrix from sympy.matrices.expressions import MatrixSymbol, ZeroMatrix X = MatrixSymbol('X', x, x) Y = MatrixSymbol('Y', y, y) Z = MatrixSymbol('Z', x, y) O = ZeroMatrix(y, x) assert _test_args(BlockMatrix([[X, Z], [O, Y]])) def test_sympy__matrices__expressions__inverse__Inverse(): from sympy.matrices.expressions.inverse import Inverse from sympy.matrices.expressions import MatrixSymbol assert _test_args(Inverse(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__matadd__MatAdd(): from sympy.matrices.expressions.matadd import MatAdd from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(MatAdd(X, Y)) def test_sympy__matrices__expressions__matexpr__Identity(): from sympy.matrices.expressions.matexpr import Identity assert _test_args(Identity(3)) def test_sympy__matrices__expressions__matexpr__GenericIdentity(): from sympy.matrices.expressions.matexpr import GenericIdentity assert _test_args(GenericIdentity()) @SKIP("abstract class") def test_sympy__matrices__expressions__matexpr__MatrixExpr(): pass def test_sympy__matrices__expressions__matexpr__MatrixElement(): from sympy.matrices.expressions.matexpr import MatrixSymbol, MatrixElement from sympy import S assert _test_args(MatrixElement(MatrixSymbol('A', 3, 5), S(2), S(3))) def test_sympy__matrices__expressions__matexpr__MatrixSymbol(): from sympy.matrices.expressions.matexpr import MatrixSymbol assert _test_args(MatrixSymbol('A', 3, 5)) def test_sympy__matrices__expressions__matexpr__ZeroMatrix(): from sympy.matrices.expressions.matexpr import ZeroMatrix assert _test_args(ZeroMatrix(3, 5)) def test_sympy__matrices__expressions__matexpr__OneMatrix(): from sympy.matrices.expressions.matexpr import OneMatrix assert _test_args(OneMatrix(3, 5)) def test_sympy__matrices__expressions__matexpr__GenericZeroMatrix(): from sympy.matrices.expressions.matexpr import GenericZeroMatrix assert _test_args(GenericZeroMatrix()) def test_sympy__matrices__expressions__matmul__MatMul(): from sympy.matrices.expressions.matmul import MatMul from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', y, x) assert _test_args(MatMul(X, Y)) def test_sympy__matrices__expressions__dotproduct__DotProduct(): from sympy.matrices.expressions.dotproduct import DotProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, 1) Y = MatrixSymbol('Y', x, 1) assert _test_args(DotProduct(X, Y)) def test_sympy__matrices__expressions__diagonal__DiagonalMatrix(): from sympy.matrices.expressions.diagonal import DiagonalMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagonalMatrix(x)) def test_sympy__matrices__expressions__diagonal__DiagonalOf(): from sympy.matrices.expressions.diagonal import DiagonalOf from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('x', 10, 10) assert _test_args(DiagonalOf(X)) def test_sympy__matrices__expressions__diagonal__DiagMatrix(): from sympy.matrices.expressions.diagonal import DiagMatrix from sympy.matrices.expressions import MatrixSymbol x = MatrixSymbol('x', 10, 1) assert _test_args(DiagMatrix(x)) def test_sympy__matrices__expressions__hadamard__HadamardProduct(): from sympy.matrices.expressions.hadamard import HadamardProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(HadamardProduct(X, Y)) def test_sympy__matrices__expressions__hadamard__HadamardPower(): from sympy.matrices.expressions.hadamard import HadamardPower from sympy.matrices.expressions import MatrixSymbol from sympy import Symbol X = MatrixSymbol('X', x, y) n = Symbol("n") assert _test_args(HadamardPower(X, n)) def test_sympy__matrices__expressions__kronecker__KroneckerProduct(): from sympy.matrices.expressions.kronecker import KroneckerProduct from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, y) Y = MatrixSymbol('Y', x, y) assert _test_args(KroneckerProduct(X, Y)) def test_sympy__matrices__expressions__matpow__MatPow(): from sympy.matrices.expressions.matpow import MatPow from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', x, x) assert _test_args(MatPow(X, 2)) def test_sympy__matrices__expressions__transpose__Transpose(): from sympy.matrices.expressions.transpose import Transpose from sympy.matrices.expressions import MatrixSymbol assert _test_args(Transpose(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__adjoint__Adjoint(): from sympy.matrices.expressions.adjoint import Adjoint from sympy.matrices.expressions import MatrixSymbol assert _test_args(Adjoint(MatrixSymbol('A', 3, 5))) def test_sympy__matrices__expressions__trace__Trace(): from sympy.matrices.expressions.trace import Trace from sympy.matrices.expressions import MatrixSymbol assert _test_args(Trace(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__determinant__Determinant(): from sympy.matrices.expressions.determinant import Determinant from sympy.matrices.expressions import MatrixSymbol assert _test_args(Determinant(MatrixSymbol('A', 3, 3))) def test_sympy__matrices__expressions__funcmatrix__FunctionMatrix(): from sympy.matrices.expressions.funcmatrix import FunctionMatrix from sympy import symbols i, j = symbols('i,j') assert _test_args(FunctionMatrix(3, 3, Lambda((i, j), i - j) )) def test_sympy__matrices__expressions__fourier__DFT(): from sympy.matrices.expressions.fourier import DFT from sympy import S assert _test_args(DFT(S(2))) def test_sympy__matrices__expressions__fourier__IDFT(): from sympy.matrices.expressions.fourier import IDFT from sympy import S assert _test_args(IDFT(S(2))) from sympy.matrices.expressions import MatrixSymbol X = MatrixSymbol('X', 10, 10) def test_sympy__matrices__expressions__factorizations__LofLU(): from sympy.matrices.expressions.factorizations import LofLU assert _test_args(LofLU(X)) def test_sympy__matrices__expressions__factorizations__UofLU(): from sympy.matrices.expressions.factorizations import UofLU assert _test_args(UofLU(X)) def test_sympy__matrices__expressions__factorizations__QofQR(): from sympy.matrices.expressions.factorizations import QofQR assert _test_args(QofQR(X)) def test_sympy__matrices__expressions__factorizations__RofQR(): from sympy.matrices.expressions.factorizations import RofQR assert _test_args(RofQR(X)) def test_sympy__matrices__expressions__factorizations__LofCholesky(): from sympy.matrices.expressions.factorizations import LofCholesky assert _test_args(LofCholesky(X)) def test_sympy__matrices__expressions__factorizations__UofCholesky(): from sympy.matrices.expressions.factorizations import UofCholesky assert _test_args(UofCholesky(X)) def test_sympy__matrices__expressions__factorizations__EigenVectors(): from sympy.matrices.expressions.factorizations import EigenVectors assert _test_args(EigenVectors(X)) def test_sympy__matrices__expressions__factorizations__EigenValues(): from sympy.matrices.expressions.factorizations import EigenValues assert _test_args(EigenValues(X)) def test_sympy__matrices__expressions__factorizations__UofSVD(): from sympy.matrices.expressions.factorizations import UofSVD assert _test_args(UofSVD(X)) def test_sympy__matrices__expressions__factorizations__VofSVD(): from sympy.matrices.expressions.factorizations import VofSVD assert _test_args(VofSVD(X)) def test_sympy__matrices__expressions__factorizations__SofSVD(): from sympy.matrices.expressions.factorizations import SofSVD assert _test_args(SofSVD(X)) @SKIP("abstract class") def test_sympy__matrices__expressions__factorizations__Factorization(): pass def test_sympy__matrices__expressions__permutation__PermutationMatrix(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.permutation import PermutationMatrix assert _test_args(PermutationMatrix(Permutation([2, 0, 1]))) def test_sympy__matrices__expressions__permutation__MatrixPermute(): from sympy.combinatorics import Permutation from sympy.matrices.expressions.matexpr import MatrixSymbol from sympy.matrices.expressions.permutation import MatrixPermute A = MatrixSymbol('A', 3, 3) assert _test_args(MatrixPermute(A, Permutation([2, 0, 1]))) def test_sympy__physics__vector__frame__CoordinateSym(): from sympy.physics.vector import CoordinateSym from sympy.physics.vector import ReferenceFrame assert _test_args(CoordinateSym('R_x', ReferenceFrame('R'), 0)) def test_sympy__physics__paulialgebra__Pauli(): from sympy.physics.paulialgebra import Pauli assert _test_args(Pauli(1)) def test_sympy__physics__quantum__anticommutator__AntiCommutator(): from sympy.physics.quantum.anticommutator import AntiCommutator assert _test_args(AntiCommutator(x, y)) def test_sympy__physics__quantum__cartesian__PositionBra3D(): from sympy.physics.quantum.cartesian import PositionBra3D assert _test_args(PositionBra3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionKet3D(): from sympy.physics.quantum.cartesian import PositionKet3D assert _test_args(PositionKet3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PositionState3D(): from sympy.physics.quantum.cartesian import PositionState3D assert _test_args(PositionState3D(x, y, z)) def test_sympy__physics__quantum__cartesian__PxBra(): from sympy.physics.quantum.cartesian import PxBra assert _test_args(PxBra(x, y, z)) def test_sympy__physics__quantum__cartesian__PxKet(): from sympy.physics.quantum.cartesian import PxKet assert _test_args(PxKet(x, y, z)) def test_sympy__physics__quantum__cartesian__PxOp(): from sympy.physics.quantum.cartesian import PxOp assert _test_args(PxOp(x, y, z)) def test_sympy__physics__quantum__cartesian__XBra(): from sympy.physics.quantum.cartesian import XBra assert _test_args(XBra(x)) def test_sympy__physics__quantum__cartesian__XKet(): from sympy.physics.quantum.cartesian import XKet assert _test_args(XKet(x)) def test_sympy__physics__quantum__cartesian__XOp(): from sympy.physics.quantum.cartesian import XOp assert _test_args(XOp(x)) def test_sympy__physics__quantum__cartesian__YOp(): from sympy.physics.quantum.cartesian import YOp assert _test_args(YOp(x)) def test_sympy__physics__quantum__cartesian__ZOp(): from sympy.physics.quantum.cartesian import ZOp assert _test_args(ZOp(x)) def test_sympy__physics__quantum__cg__CG(): from sympy.physics.quantum.cg import CG from sympy import S assert _test_args(CG(Rational(3, 2), Rational(3, 2), S.Half, Rational(-1, 2), 1, 1)) def test_sympy__physics__quantum__cg__Wigner3j(): from sympy.physics.quantum.cg import Wigner3j assert _test_args(Wigner3j(6, 0, 4, 0, 2, 0)) def test_sympy__physics__quantum__cg__Wigner6j(): from sympy.physics.quantum.cg import Wigner6j assert _test_args(Wigner6j(1, 2, 3, 2, 1, 2)) def test_sympy__physics__quantum__cg__Wigner9j(): from sympy.physics.quantum.cg import Wigner9j assert _test_args(Wigner9j(2, 1, 1, Rational(3, 2), S.Half, 1, S.Half, S.Half, 0)) def test_sympy__physics__quantum__circuitplot__Mz(): from sympy.physics.quantum.circuitplot import Mz assert _test_args(Mz(0)) def test_sympy__physics__quantum__circuitplot__Mx(): from sympy.physics.quantum.circuitplot import Mx assert _test_args(Mx(0)) def test_sympy__physics__quantum__commutator__Commutator(): from sympy.physics.quantum.commutator import Commutator A, B = symbols('A,B', commutative=False) assert _test_args(Commutator(A, B)) def test_sympy__physics__quantum__constants__HBar(): from sympy.physics.quantum.constants import HBar assert _test_args(HBar()) def test_sympy__physics__quantum__dagger__Dagger(): from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.state import Ket assert _test_args(Dagger(Dagger(Ket('psi')))) def test_sympy__physics__quantum__gate__CGate(): from sympy.physics.quantum.gate import CGate, Gate assert _test_args(CGate((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CGateS(): from sympy.physics.quantum.gate import CGateS, Gate assert _test_args(CGateS((0, 1), Gate(2))) def test_sympy__physics__quantum__gate__CNotGate(): from sympy.physics.quantum.gate import CNotGate assert _test_args(CNotGate(0, 1)) def test_sympy__physics__quantum__gate__Gate(): from sympy.physics.quantum.gate import Gate assert _test_args(Gate(0)) def test_sympy__physics__quantum__gate__HadamardGate(): from sympy.physics.quantum.gate import HadamardGate assert _test_args(HadamardGate(0)) def test_sympy__physics__quantum__gate__IdentityGate(): from sympy.physics.quantum.gate import IdentityGate assert _test_args(IdentityGate(0)) def test_sympy__physics__quantum__gate__OneQubitGate(): from sympy.physics.quantum.gate import OneQubitGate assert _test_args(OneQubitGate(0)) def test_sympy__physics__quantum__gate__PhaseGate(): from sympy.physics.quantum.gate import PhaseGate assert _test_args(PhaseGate(0)) def test_sympy__physics__quantum__gate__SwapGate(): from sympy.physics.quantum.gate import SwapGate assert _test_args(SwapGate(0, 1)) def test_sympy__physics__quantum__gate__TGate(): from sympy.physics.quantum.gate import TGate assert _test_args(TGate(0)) def test_sympy__physics__quantum__gate__TwoQubitGate(): from sympy.physics.quantum.gate import TwoQubitGate assert _test_args(TwoQubitGate(0)) def test_sympy__physics__quantum__gate__UGate(): from sympy.physics.quantum.gate import UGate from sympy.matrices.immutable import ImmutableDenseMatrix from sympy import Integer, Tuple assert _test_args( UGate(Tuple(Integer(1)), ImmutableDenseMatrix([[1, 0], [0, 2]]))) def test_sympy__physics__quantum__gate__XGate(): from sympy.physics.quantum.gate import XGate assert _test_args(XGate(0)) def test_sympy__physics__quantum__gate__YGate(): from sympy.physics.quantum.gate import YGate assert _test_args(YGate(0)) def test_sympy__physics__quantum__gate__ZGate(): from sympy.physics.quantum.gate import ZGate assert _test_args(ZGate(0)) @SKIP("TODO: sympy.physics") def test_sympy__physics__quantum__grover__OracleGate(): from sympy.physics.quantum.grover import OracleGate assert _test_args(OracleGate()) def test_sympy__physics__quantum__grover__WGate(): from sympy.physics.quantum.grover import WGate assert _test_args(WGate(1)) def test_sympy__physics__quantum__hilbert__ComplexSpace(): from sympy.physics.quantum.hilbert import ComplexSpace assert _test_args(ComplexSpace(x)) def test_sympy__physics__quantum__hilbert__DirectSumHilbertSpace(): from sympy.physics.quantum.hilbert import DirectSumHilbertSpace, ComplexSpace, FockSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(DirectSumHilbertSpace(c, f)) def test_sympy__physics__quantum__hilbert__FockSpace(): from sympy.physics.quantum.hilbert import FockSpace assert _test_args(FockSpace()) def test_sympy__physics__quantum__hilbert__HilbertSpace(): from sympy.physics.quantum.hilbert import HilbertSpace assert _test_args(HilbertSpace()) def test_sympy__physics__quantum__hilbert__L2(): from sympy.physics.quantum.hilbert import L2 from sympy import oo, Interval assert _test_args(L2(Interval(0, oo))) def test_sympy__physics__quantum__hilbert__TensorPowerHilbertSpace(): from sympy.physics.quantum.hilbert import TensorPowerHilbertSpace, FockSpace f = FockSpace() assert _test_args(TensorPowerHilbertSpace(f, 2)) def test_sympy__physics__quantum__hilbert__TensorProductHilbertSpace(): from sympy.physics.quantum.hilbert import TensorProductHilbertSpace, FockSpace, ComplexSpace c = ComplexSpace(2) f = FockSpace() assert _test_args(TensorProductHilbertSpace(f, c)) def test_sympy__physics__quantum__innerproduct__InnerProduct(): from sympy.physics.quantum import Bra, Ket, InnerProduct b = Bra('b') k = Ket('k') assert _test_args(InnerProduct(b, k)) def test_sympy__physics__quantum__operator__DifferentialOperator(): from sympy.physics.quantum.operator import DifferentialOperator from sympy import Derivative, Function f = Function('f') assert _test_args(DifferentialOperator(1/x*Derivative(f(x), x), f(x))) def test_sympy__physics__quantum__operator__HermitianOperator(): from sympy.physics.quantum.operator import HermitianOperator assert _test_args(HermitianOperator('H')) def test_sympy__physics__quantum__operator__IdentityOperator(): from sympy.physics.quantum.operator import IdentityOperator assert _test_args(IdentityOperator(5)) def test_sympy__physics__quantum__operator__Operator(): from sympy.physics.quantum.operator import Operator assert _test_args(Operator('A')) def test_sympy__physics__quantum__operator__OuterProduct(): from sympy.physics.quantum.operator import OuterProduct from sympy.physics.quantum import Ket, Bra b = Bra('b') k = Ket('k') assert _test_args(OuterProduct(k, b)) def test_sympy__physics__quantum__operator__UnitaryOperator(): from sympy.physics.quantum.operator import UnitaryOperator assert _test_args(UnitaryOperator('U')) def test_sympy__physics__quantum__piab__PIABBra(): from sympy.physics.quantum.piab import PIABBra assert _test_args(PIABBra('B')) def test_sympy__physics__quantum__boson__BosonOp(): from sympy.physics.quantum.boson import BosonOp assert _test_args(BosonOp('a')) assert _test_args(BosonOp('a', False)) def test_sympy__physics__quantum__boson__BosonFockKet(): from sympy.physics.quantum.boson import BosonFockKet assert _test_args(BosonFockKet(1)) def test_sympy__physics__quantum__boson__BosonFockBra(): from sympy.physics.quantum.boson import BosonFockBra assert _test_args(BosonFockBra(1)) def test_sympy__physics__quantum__boson__BosonCoherentKet(): from sympy.physics.quantum.boson import BosonCoherentKet assert _test_args(BosonCoherentKet(1)) def test_sympy__physics__quantum__boson__BosonCoherentBra(): from sympy.physics.quantum.boson import BosonCoherentBra assert _test_args(BosonCoherentBra(1)) def test_sympy__physics__quantum__fermion__FermionOp(): from sympy.physics.quantum.fermion import FermionOp assert _test_args(FermionOp('c')) assert _test_args(FermionOp('c', False)) def test_sympy__physics__quantum__fermion__FermionFockKet(): from sympy.physics.quantum.fermion import FermionFockKet assert _test_args(FermionFockKet(1)) def test_sympy__physics__quantum__fermion__FermionFockBra(): from sympy.physics.quantum.fermion import FermionFockBra assert _test_args(FermionFockBra(1)) def test_sympy__physics__quantum__pauli__SigmaOpBase(): from sympy.physics.quantum.pauli import SigmaOpBase assert _test_args(SigmaOpBase()) def test_sympy__physics__quantum__pauli__SigmaX(): from sympy.physics.quantum.pauli import SigmaX assert _test_args(SigmaX()) def test_sympy__physics__quantum__pauli__SigmaY(): from sympy.physics.quantum.pauli import SigmaY assert _test_args(SigmaY()) def test_sympy__physics__quantum__pauli__SigmaZ(): from sympy.physics.quantum.pauli import SigmaZ assert _test_args(SigmaZ()) def test_sympy__physics__quantum__pauli__SigmaMinus(): from sympy.physics.quantum.pauli import SigmaMinus assert _test_args(SigmaMinus()) def test_sympy__physics__quantum__pauli__SigmaPlus(): from sympy.physics.quantum.pauli import SigmaPlus assert _test_args(SigmaPlus()) def test_sympy__physics__quantum__pauli__SigmaZKet(): from sympy.physics.quantum.pauli import SigmaZKet assert _test_args(SigmaZKet(0)) def test_sympy__physics__quantum__pauli__SigmaZBra(): from sympy.physics.quantum.pauli import SigmaZBra assert _test_args(SigmaZBra(0)) def test_sympy__physics__quantum__piab__PIABHamiltonian(): from sympy.physics.quantum.piab import PIABHamiltonian assert _test_args(PIABHamiltonian('P')) def test_sympy__physics__quantum__piab__PIABKet(): from sympy.physics.quantum.piab import PIABKet assert _test_args(PIABKet('K')) def test_sympy__physics__quantum__qexpr__QExpr(): from sympy.physics.quantum.qexpr import QExpr assert _test_args(QExpr(0)) def test_sympy__physics__quantum__qft__Fourier(): from sympy.physics.quantum.qft import Fourier assert _test_args(Fourier(0, 1)) def test_sympy__physics__quantum__qft__IQFT(): from sympy.physics.quantum.qft import IQFT assert _test_args(IQFT(0, 1)) def test_sympy__physics__quantum__qft__QFT(): from sympy.physics.quantum.qft import QFT assert _test_args(QFT(0, 1)) def test_sympy__physics__quantum__qft__RkGate(): from sympy.physics.quantum.qft import RkGate assert _test_args(RkGate(0, 1)) def test_sympy__physics__quantum__qubit__IntQubit(): from sympy.physics.quantum.qubit import IntQubit assert _test_args(IntQubit(0)) def test_sympy__physics__quantum__qubit__IntQubitBra(): from sympy.physics.quantum.qubit import IntQubitBra assert _test_args(IntQubitBra(0)) def test_sympy__physics__quantum__qubit__IntQubitState(): from sympy.physics.quantum.qubit import IntQubitState, QubitState assert _test_args(IntQubitState(QubitState(0, 1))) def test_sympy__physics__quantum__qubit__Qubit(): from sympy.physics.quantum.qubit import Qubit assert _test_args(Qubit(0, 0, 0)) def test_sympy__physics__quantum__qubit__QubitBra(): from sympy.physics.quantum.qubit import QubitBra assert _test_args(QubitBra('1', 0)) def test_sympy__physics__quantum__qubit__QubitState(): from sympy.physics.quantum.qubit import QubitState assert _test_args(QubitState(0, 1)) def test_sympy__physics__quantum__density__Density(): from sympy.physics.quantum.density import Density from sympy.physics.quantum.state import Ket assert _test_args(Density([Ket(0), 0.5], [Ket(1), 0.5])) @SKIP("TODO: sympy.physics.quantum.shor: Cmod Not Implemented") def test_sympy__physics__quantum__shor__CMod(): from sympy.physics.quantum.shor import CMod assert _test_args(CMod()) def test_sympy__physics__quantum__spin__CoupledSpinState(): from sympy.physics.quantum.spin import CoupledSpinState assert _test_args(CoupledSpinState(1, 0, (1, 1))) assert _test_args(CoupledSpinState(1, 0, (1, S.Half, S.Half))) assert _test_args(CoupledSpinState( 1, 0, (1, S.Half, S.Half), ((2, 3, S.Half), (1, 2, 1)) )) j, m, j1, j2, j3, j12, x = symbols('j m j1:4 j12 x') assert CoupledSpinState( j, m, (j1, j2, j3)).subs(j2, x) == CoupledSpinState(j, m, (j1, x, j3)) assert CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, j12), (1, 2, j)) ).subs(j12, x) == \ CoupledSpinState(j, m, (j1, j2, j3), ((1, 3, x), (1, 2, j)) ) def test_sympy__physics__quantum__spin__J2Op(): from sympy.physics.quantum.spin import J2Op assert _test_args(J2Op('J')) def test_sympy__physics__quantum__spin__JminusOp(): from sympy.physics.quantum.spin import JminusOp assert _test_args(JminusOp('J')) def test_sympy__physics__quantum__spin__JplusOp(): from sympy.physics.quantum.spin import JplusOp assert _test_args(JplusOp('J')) def test_sympy__physics__quantum__spin__JxBra(): from sympy.physics.quantum.spin import JxBra assert _test_args(JxBra(1, 0)) def test_sympy__physics__quantum__spin__JxBraCoupled(): from sympy.physics.quantum.spin import JxBraCoupled assert _test_args(JxBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxKet(): from sympy.physics.quantum.spin import JxKet assert _test_args(JxKet(1, 0)) def test_sympy__physics__quantum__spin__JxKetCoupled(): from sympy.physics.quantum.spin import JxKetCoupled assert _test_args(JxKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JxOp(): from sympy.physics.quantum.spin import JxOp assert _test_args(JxOp('J')) def test_sympy__physics__quantum__spin__JyBra(): from sympy.physics.quantum.spin import JyBra assert _test_args(JyBra(1, 0)) def test_sympy__physics__quantum__spin__JyBraCoupled(): from sympy.physics.quantum.spin import JyBraCoupled assert _test_args(JyBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyKet(): from sympy.physics.quantum.spin import JyKet assert _test_args(JyKet(1, 0)) def test_sympy__physics__quantum__spin__JyKetCoupled(): from sympy.physics.quantum.spin import JyKetCoupled assert _test_args(JyKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JyOp(): from sympy.physics.quantum.spin import JyOp assert _test_args(JyOp('J')) def test_sympy__physics__quantum__spin__JzBra(): from sympy.physics.quantum.spin import JzBra assert _test_args(JzBra(1, 0)) def test_sympy__physics__quantum__spin__JzBraCoupled(): from sympy.physics.quantum.spin import JzBraCoupled assert _test_args(JzBraCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzKet(): from sympy.physics.quantum.spin import JzKet assert _test_args(JzKet(1, 0)) def test_sympy__physics__quantum__spin__JzKetCoupled(): from sympy.physics.quantum.spin import JzKetCoupled assert _test_args(JzKetCoupled(1, 0, (1, 1))) def test_sympy__physics__quantum__spin__JzOp(): from sympy.physics.quantum.spin import JzOp assert _test_args(JzOp('J')) def test_sympy__physics__quantum__spin__Rotation(): from sympy.physics.quantum.spin import Rotation assert _test_args(Rotation(pi, 0, pi/2)) def test_sympy__physics__quantum__spin__SpinState(): from sympy.physics.quantum.spin import SpinState assert _test_args(SpinState(1, 0)) def test_sympy__physics__quantum__spin__WignerD(): from sympy.physics.quantum.spin import WignerD assert _test_args(WignerD(0, 1, 2, 3, 4, 5)) def test_sympy__physics__quantum__state__Bra(): from sympy.physics.quantum.state import Bra assert _test_args(Bra(0)) def test_sympy__physics__quantum__state__BraBase(): from sympy.physics.quantum.state import BraBase assert _test_args(BraBase(0)) def test_sympy__physics__quantum__state__Ket(): from sympy.physics.quantum.state import Ket assert _test_args(Ket(0)) def test_sympy__physics__quantum__state__KetBase(): from sympy.physics.quantum.state import KetBase assert _test_args(KetBase(0)) def test_sympy__physics__quantum__state__State(): from sympy.physics.quantum.state import State assert _test_args(State(0)) def test_sympy__physics__quantum__state__StateBase(): from sympy.physics.quantum.state import StateBase assert _test_args(StateBase(0)) def test_sympy__physics__quantum__state__TimeDepBra(): from sympy.physics.quantum.state import TimeDepBra assert _test_args(TimeDepBra('psi', 't')) def test_sympy__physics__quantum__state__TimeDepKet(): from sympy.physics.quantum.state import TimeDepKet assert _test_args(TimeDepKet('psi', 't')) def test_sympy__physics__quantum__state__TimeDepState(): from sympy.physics.quantum.state import TimeDepState assert _test_args(TimeDepState('psi', 't')) def test_sympy__physics__quantum__state__Wavefunction(): from sympy.physics.quantum.state import Wavefunction from sympy.functions import sin from sympy import Piecewise n = 1 L = 1 g = Piecewise((0, x < 0), (0, x > L), (sqrt(2//L)*sin(n*pi*x/L), True)) assert _test_args(Wavefunction(g, x)) def test_sympy__physics__quantum__tensorproduct__TensorProduct(): from sympy.physics.quantum.tensorproduct import TensorProduct assert _test_args(TensorProduct(x, y)) def test_sympy__physics__quantum__identitysearch__GateIdentity(): from sympy.physics.quantum.gate import X from sympy.physics.quantum.identitysearch import GateIdentity assert _test_args(GateIdentity(X(0), X(0))) def test_sympy__physics__quantum__sho1d__SHOOp(): from sympy.physics.quantum.sho1d import SHOOp assert _test_args(SHOOp('a')) def test_sympy__physics__quantum__sho1d__RaisingOp(): from sympy.physics.quantum.sho1d import RaisingOp assert _test_args(RaisingOp('a')) def test_sympy__physics__quantum__sho1d__LoweringOp(): from sympy.physics.quantum.sho1d import LoweringOp assert _test_args(LoweringOp('a')) def test_sympy__physics__quantum__sho1d__NumberOp(): from sympy.physics.quantum.sho1d import NumberOp assert _test_args(NumberOp('N')) def test_sympy__physics__quantum__sho1d__Hamiltonian(): from sympy.physics.quantum.sho1d import Hamiltonian assert _test_args(Hamiltonian('H')) def test_sympy__physics__quantum__sho1d__SHOState(): from sympy.physics.quantum.sho1d import SHOState assert _test_args(SHOState(0)) def test_sympy__physics__quantum__sho1d__SHOKet(): from sympy.physics.quantum.sho1d import SHOKet assert _test_args(SHOKet(0)) def test_sympy__physics__quantum__sho1d__SHOBra(): from sympy.physics.quantum.sho1d import SHOBra assert _test_args(SHOBra(0)) def test_sympy__physics__secondquant__AnnihilateBoson(): from sympy.physics.secondquant import AnnihilateBoson assert _test_args(AnnihilateBoson(0)) def test_sympy__physics__secondquant__AnnihilateFermion(): from sympy.physics.secondquant import AnnihilateFermion assert _test_args(AnnihilateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Annihilator(): pass def test_sympy__physics__secondquant__AntiSymmetricTensor(): from sympy.physics.secondquant import AntiSymmetricTensor i, j = symbols('i j', below_fermi=True) a, b = symbols('a b', above_fermi=True) assert _test_args(AntiSymmetricTensor('v', (a, i), (b, j))) def test_sympy__physics__secondquant__BosonState(): from sympy.physics.secondquant import BosonState assert _test_args(BosonState((0, 1))) @SKIP("abstract class") def test_sympy__physics__secondquant__BosonicOperator(): pass def test_sympy__physics__secondquant__Commutator(): from sympy.physics.secondquant import Commutator assert _test_args(Commutator(x, y)) def test_sympy__physics__secondquant__CreateBoson(): from sympy.physics.secondquant import CreateBoson assert _test_args(CreateBoson(0)) def test_sympy__physics__secondquant__CreateFermion(): from sympy.physics.secondquant import CreateFermion assert _test_args(CreateFermion(0)) @SKIP("abstract class") def test_sympy__physics__secondquant__Creator(): pass def test_sympy__physics__secondquant__Dagger(): from sympy.physics.secondquant import Dagger from sympy import I assert _test_args(Dagger(2*I)) def test_sympy__physics__secondquant__FermionState(): from sympy.physics.secondquant import FermionState assert _test_args(FermionState((0, 1))) def test_sympy__physics__secondquant__FermionicOperator(): from sympy.physics.secondquant import FermionicOperator assert _test_args(FermionicOperator(0)) def test_sympy__physics__secondquant__FockState(): from sympy.physics.secondquant import FockState assert _test_args(FockState((0, 1))) def test_sympy__physics__secondquant__FockStateBosonBra(): from sympy.physics.secondquant import FockStateBosonBra assert _test_args(FockStateBosonBra((0, 1))) def test_sympy__physics__secondquant__FockStateBosonKet(): from sympy.physics.secondquant import FockStateBosonKet assert _test_args(FockStateBosonKet((0, 1))) def test_sympy__physics__secondquant__FockStateBra(): from sympy.physics.secondquant import FockStateBra assert _test_args(FockStateBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionBra(): from sympy.physics.secondquant import FockStateFermionBra assert _test_args(FockStateFermionBra((0, 1))) def test_sympy__physics__secondquant__FockStateFermionKet(): from sympy.physics.secondquant import FockStateFermionKet assert _test_args(FockStateFermionKet((0, 1))) def test_sympy__physics__secondquant__FockStateKet(): from sympy.physics.secondquant import FockStateKet assert _test_args(FockStateKet((0, 1))) def test_sympy__physics__secondquant__InnerProduct(): from sympy.physics.secondquant import InnerProduct from sympy.physics.secondquant import FockStateKet, FockStateBra assert _test_args(InnerProduct(FockStateBra((0, 1)), FockStateKet((0, 1)))) def test_sympy__physics__secondquant__NO(): from sympy.physics.secondquant import NO, F, Fd assert _test_args(NO(Fd(x)*F(y))) def test_sympy__physics__secondquant__PermutationOperator(): from sympy.physics.secondquant import PermutationOperator assert _test_args(PermutationOperator(0, 1)) def test_sympy__physics__secondquant__SqOperator(): from sympy.physics.secondquant import SqOperator assert _test_args(SqOperator(0)) def test_sympy__physics__secondquant__TensorSymbol(): from sympy.physics.secondquant import TensorSymbol assert _test_args(TensorSymbol(x)) def test_sympy__physics__units__dimensions__Dimension(): from sympy.physics.units.dimensions import Dimension assert _test_args(Dimension("length", "L")) def test_sympy__physics__units__dimensions__DimensionSystem(): from sympy.physics.units.dimensions import DimensionSystem from sympy.physics.units.definitions.dimension_definitions import length, time, velocity assert _test_args(DimensionSystem((length, time), (velocity,))) def test_sympy__physics__units__quantities__Quantity(): from sympy.physics.units.quantities import Quantity assert _test_args(Quantity("dam")) def test_sympy__physics__units__prefixes__Prefix(): from sympy.physics.units.prefixes import Prefix assert _test_args(Prefix('kilo', 'k', 3)) def test_sympy__core__numbers__AlgebraicNumber(): from sympy.core.numbers import AlgebraicNumber assert _test_args(AlgebraicNumber(sqrt(2), [1, 2, 3])) def test_sympy__polys__polytools__GroebnerBasis(): from sympy.polys.polytools import GroebnerBasis assert _test_args(GroebnerBasis([x, y, z], x, y, z)) def test_sympy__polys__polytools__Poly(): from sympy.polys.polytools import Poly assert _test_args(Poly(2, x, y)) def test_sympy__polys__polytools__PurePoly(): from sympy.polys.polytools import PurePoly assert _test_args(PurePoly(2, x, y)) @SKIP('abstract class') def test_sympy__polys__rootoftools__RootOf(): pass def test_sympy__polys__rootoftools__ComplexRootOf(): from sympy.polys.rootoftools import ComplexRootOf assert _test_args(ComplexRootOf(x**3 + x + 1, 0)) def test_sympy__polys__rootoftools__RootSum(): from sympy.polys.rootoftools import RootSum assert _test_args(RootSum(x**3 + x + 1, sin)) def test_sympy__series__limits__Limit(): from sympy.series.limits import Limit assert _test_args(Limit(x, x, 0, dir='-')) def test_sympy__series__order__Order(): from sympy.series.order import Order assert _test_args(Order(1, x, y)) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqBase(): pass def test_sympy__series__sequences__EmptySequence(): # Need to imort the instance from series not the class from # series.sequence from sympy.series import EmptySequence assert _test_args(EmptySequence) @SKIP('Abstract Class') def test_sympy__series__sequences__SeqExpr(): pass def test_sympy__series__sequences__SeqPer(): from sympy.series.sequences import SeqPer assert _test_args(SeqPer((1, 2, 3), (0, 10))) def test_sympy__series__sequences__SeqFormula(): from sympy.series.sequences import SeqFormula assert _test_args(SeqFormula(x**2, (0, 10))) def test_sympy__series__sequences__RecursiveSeq(): from sympy.series.sequences import RecursiveSeq y = Function("y") n = symbols("n") assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n, (0, 1))) assert _test_args(RecursiveSeq(y(n - 1) + y(n - 2), y, n)) def test_sympy__series__sequences__SeqExprOp(): from sympy.series.sequences import SeqExprOp, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqExprOp(s1, s2)) def test_sympy__series__sequences__SeqAdd(): from sympy.series.sequences import SeqAdd, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqAdd(s1, s2)) def test_sympy__series__sequences__SeqMul(): from sympy.series.sequences import SeqMul, sequence s1 = sequence((1, 2, 3)) s2 = sequence(x**2) assert _test_args(SeqMul(s1, s2)) @SKIP('Abstract Class') def test_sympy__series__series_class__SeriesBase(): pass def test_sympy__series__fourier__FourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(x, (x, -pi, pi))) def test_sympy__series__fourier__FiniteFourierSeries(): from sympy.series.fourier import fourier_series assert _test_args(fourier_series(sin(pi*x), (x, -1, 1))) def test_sympy__series__formal__FormalPowerSeries(): from sympy.series.formal import fps assert _test_args(fps(log(1 + x), x)) def test_sympy__series__formal__Coeff(): from sympy.series.formal import fps assert _test_args(fps(x**2 + x + 1, x)) @SKIP('Abstract Class') def test_sympy__series__formal__FiniteFormalPowerSeries(): pass def test_sympy__series__formal__FormalPowerSeriesProduct(): from sympy.series.formal import fps f1, f2 = fps(sin(x)), fps(exp(x)) assert _test_args(f1.product(f2, x)) def test_sympy__series__formal__FormalPowerSeriesCompose(): from sympy.series.formal import fps f1, f2 = fps(exp(x)), fps(sin(x)) assert _test_args(f1.compose(f2, x)) def test_sympy__series__formal__FormalPowerSeriesInverse(): from sympy.series.formal import fps f1 = fps(exp(x)) assert _test_args(f1.inverse(x)) def test_sympy__simplify__hyperexpand__Hyper_Function(): from sympy.simplify.hyperexpand import Hyper_Function assert _test_args(Hyper_Function([2], [1])) def test_sympy__simplify__hyperexpand__G_Function(): from sympy.simplify.hyperexpand import G_Function assert _test_args(G_Function([2], [1], [], [])) @SKIP("abstract class") def test_sympy__tensor__array__ndim_array__ImmutableNDimArray(): pass def test_sympy__tensor__array__dense_ndim_array__ImmutableDenseNDimArray(): from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray densarr = ImmutableDenseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(densarr) def test_sympy__tensor__array__sparse_ndim_array__ImmutableSparseNDimArray(): from sympy.tensor.array.sparse_ndim_array import ImmutableSparseNDimArray sparr = ImmutableSparseNDimArray(range(10, 34), (2, 3, 4)) assert _test_args(sparr) def test_sympy__tensor__array__array_comprehension__ArrayComprehension(): from sympy.tensor.array.array_comprehension import ArrayComprehension arrcom = ArrayComprehension(x, (x, 1, 5)) assert _test_args(arrcom) def test_sympy__tensor__array__array_comprehension__ArrayComprehensionMap(): from sympy.tensor.array.array_comprehension import ArrayComprehensionMap arrcomma = ArrayComprehensionMap(lambda: 0, (x, 1, 5)) assert _test_args(arrcomma) def test_sympy__tensor__array__arrayop__Flatten(): from sympy.tensor.array.arrayop import Flatten from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray fla = Flatten(ImmutableDenseNDimArray(range(24)).reshape(2, 3, 4)) assert _test_args(fla) def test_sympy__tensor__functions__TensorProduct(): from sympy.tensor.functions import TensorProduct tp = TensorProduct(3, 4, evaluate=False) assert _test_args(tp) def test_sympy__tensor__indexed__Idx(): from sympy.tensor.indexed import Idx assert _test_args(Idx('test')) assert _test_args(Idx(1, (0, 10))) def test_sympy__tensor__indexed__Indexed(): from sympy.tensor.indexed import Indexed, Idx assert _test_args(Indexed('A', Idx('i'), Idx('j'))) def test_sympy__tensor__indexed__IndexedBase(): from sympy.tensor.indexed import IndexedBase assert _test_args(IndexedBase('A', shape=(x, y))) assert _test_args(IndexedBase('A', 1)) assert _test_args(IndexedBase('A')[0, 1]) def test_sympy__tensor__tensor__TensorIndexType(): from sympy.tensor.tensor import TensorIndexType assert _test_args(TensorIndexType('Lorentz')) @SKIP("deprecated class") def test_sympy__tensor__tensor__TensorType(): pass def test_sympy__tensor__tensor__TensorSymmetry(): from sympy.tensor.tensor import TensorSymmetry, get_symmetric_group_sgs assert _test_args(TensorSymmetry(get_symmetric_group_sgs(2))) def test_sympy__tensor__tensor__TensorHead(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') sym = TensorSymmetry(get_symmetric_group_sgs(1)) assert _test_args(TensorHead('p', [Lorentz], sym, 0)) def test_sympy__tensor__tensor__TensorIndex(): from sympy.tensor.tensor import TensorIndexType, TensorIndex Lorentz = TensorIndexType('Lorentz', dummy_name='L') assert _test_args(TensorIndex('i', Lorentz)) @SKIP("abstract class") def test_sympy__tensor__tensor__TensExpr(): pass def test_sympy__tensor__tensor__TensAdd(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensAdd, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p,q', [Lorentz], sym) t1 = p(a) t2 = q(a) assert _test_args(TensAdd(t1, t2)) def test_sympy__tensor__tensor__Tensor(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, TensorHead Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p = TensorHead('p', [Lorentz], sym) assert _test_args(p(a)) def test_sympy__tensor__tensor__TensMul(): from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, tensor_indices, tensor_heads Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) sym = TensorSymmetry(get_symmetric_group_sgs(1)) p, q = tensor_heads('p, q', [Lorentz], sym) assert _test_args(3*p(a)*q(b)) def test_sympy__tensor__tensor__TensorElement(): from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorElement L = TensorIndexType("L") A = TensorHead("A", [L, L]) telem = TensorElement(A(x, y), {x: 1}) assert _test_args(telem) def test_sympy__tensor__toperators__PartialDerivative(): from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead from sympy.tensor.toperators import PartialDerivative Lorentz = TensorIndexType('Lorentz', dummy_name='L') a, b = tensor_indices('a,b', Lorentz) A = TensorHead("A", [Lorentz]) assert _test_args(PartialDerivative(A(a), A(b))) def test_as_coeff_add(): assert (7, (3*x, 4*x**2)) == (7 + 3*x + 4*x**2).as_coeff_add() def test_sympy__geometry__curve__Curve(): from sympy.geometry.curve import Curve assert _test_args(Curve((x, 1), (x, 0, 1))) def test_sympy__geometry__point__Point(): from sympy.geometry.point import Point assert _test_args(Point(0, 1)) def test_sympy__geometry__point__Point2D(): from sympy.geometry.point import Point2D assert _test_args(Point2D(0, 1)) def test_sympy__geometry__point__Point3D(): from sympy.geometry.point import Point3D assert _test_args(Point3D(0, 1, 2)) def test_sympy__geometry__ellipse__Ellipse(): from sympy.geometry.ellipse import Ellipse assert _test_args(Ellipse((0, 1), 2, 3)) def test_sympy__geometry__ellipse__Circle(): from sympy.geometry.ellipse import Circle assert _test_args(Circle((0, 1), 2)) def test_sympy__geometry__parabola__Parabola(): from sympy.geometry.parabola import Parabola from sympy.geometry.line import Line assert _test_args(Parabola((0, 0), Line((2, 3), (4, 3)))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity(): pass def test_sympy__geometry__line__Line(): from sympy.geometry.line import Line assert _test_args(Line((0, 1), (2, 3))) def test_sympy__geometry__line__Ray(): from sympy.geometry.line import Ray assert _test_args(Ray((0, 1), (2, 3))) def test_sympy__geometry__line__Segment(): from sympy.geometry.line import Segment assert _test_args(Segment((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity2D(): pass def test_sympy__geometry__line__Line2D(): from sympy.geometry.line import Line2D assert _test_args(Line2D((0, 1), (2, 3))) def test_sympy__geometry__line__Ray2D(): from sympy.geometry.line import Ray2D assert _test_args(Ray2D((0, 1), (2, 3))) def test_sympy__geometry__line__Segment2D(): from sympy.geometry.line import Segment2D assert _test_args(Segment2D((0, 1), (2, 3))) @SKIP("abstract class") def test_sympy__geometry__line__LinearEntity3D(): pass def test_sympy__geometry__line__Line3D(): from sympy.geometry.line import Line3D assert _test_args(Line3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Segment3D(): from sympy.geometry.line import Segment3D assert _test_args(Segment3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__line__Ray3D(): from sympy.geometry.line import Ray3D assert _test_args(Ray3D((0, 1, 1), (2, 3, 4))) def test_sympy__geometry__plane__Plane(): from sympy.geometry.plane import Plane assert _test_args(Plane((1, 1, 1), (-3, 4, -2), (1, 2, 3))) def test_sympy__geometry__polygon__Polygon(): from sympy.geometry.polygon import Polygon assert _test_args(Polygon((0, 1), (2, 3), (4, 5), (6, 7))) def test_sympy__geometry__polygon__RegularPolygon(): from sympy.geometry.polygon import RegularPolygon assert _test_args(RegularPolygon((0, 1), 2, 3, 4)) def test_sympy__geometry__polygon__Triangle(): from sympy.geometry.polygon import Triangle assert _test_args(Triangle((0, 1), (2, 3), (4, 5))) def test_sympy__geometry__entity__GeometryEntity(): from sympy.geometry.entity import GeometryEntity from sympy.geometry.point import Point assert _test_args(GeometryEntity(Point(1, 0), 1, [1, 2])) @SKIP("abstract class") def test_sympy__geometry__entity__GeometrySet(): pass def test_sympy__diffgeom__diffgeom__Manifold(): from sympy.diffgeom import Manifold assert _test_args(Manifold('name', 3)) def test_sympy__diffgeom__diffgeom__Patch(): from sympy.diffgeom import Manifold, Patch assert _test_args(Patch('name', Manifold('name', 3))) def test_sympy__diffgeom__diffgeom__CoordSystem(): from sympy.diffgeom import Manifold, Patch, CoordSystem assert _test_args(CoordSystem('name', Patch('name', Manifold('name', 3)))) @XFAIL def test_sympy__diffgeom__diffgeom__Point(): from sympy.diffgeom import Manifold, Patch, CoordSystem, Point assert _test_args(Point( CoordSystem('name', Patch('name', Manifold('name', 3))), [x, y])) def test_sympy__diffgeom__diffgeom__BaseScalarField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseScalarField(cs, 0)) def test_sympy__diffgeom__diffgeom__BaseVectorField(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseVectorField(cs, 0)) def test_sympy__diffgeom__diffgeom__Differential(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(Differential(BaseScalarField(cs, 0))) def test_sympy__diffgeom__diffgeom__Commutator(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, Commutator cs = CoordSystem('name', Patch('name', Manifold('name', 3))) cs1 = CoordSystem('name1', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) v1 = BaseVectorField(cs1, 0) assert _test_args(Commutator(v, v1)) def test_sympy__diffgeom__diffgeom__TensorProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, TensorProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) assert _test_args(TensorProduct(d, d)) def test_sympy__diffgeom__diffgeom__WedgeProduct(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, WedgeProduct cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) d1 = Differential(BaseScalarField(cs, 1)) assert _test_args(WedgeProduct(d, d1)) def test_sympy__diffgeom__diffgeom__LieDerivative(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseScalarField, Differential, BaseVectorField, LieDerivative cs = CoordSystem('name', Patch('name', Manifold('name', 3))) d = Differential(BaseScalarField(cs, 0)) v = BaseVectorField(cs, 0) assert _test_args(LieDerivative(v, d)) @XFAIL def test_sympy__diffgeom__diffgeom__BaseCovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseCovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) assert _test_args(BaseCovarDerivativeOp(cs, 0, [[[0, ]*3, ]*3, ]*3)) def test_sympy__diffgeom__diffgeom__CovarDerivativeOp(): from sympy.diffgeom import Manifold, Patch, CoordSystem, BaseVectorField, CovarDerivativeOp cs = CoordSystem('name', Patch('name', Manifold('name', 3))) v = BaseVectorField(cs, 0) _test_args(CovarDerivativeOp(v, [[[0, ]*3, ]*3, ]*3)) def test_sympy__categories__baseclasses__Class(): from sympy.categories.baseclasses import Class assert _test_args(Class()) def test_sympy__categories__baseclasses__Object(): from sympy.categories import Object assert _test_args(Object("A")) @XFAIL def test_sympy__categories__baseclasses__Morphism(): from sympy.categories import Object, Morphism assert _test_args(Morphism(Object("A"), Object("B"))) def test_sympy__categories__baseclasses__IdentityMorphism(): from sympy.categories import Object, IdentityMorphism assert _test_args(IdentityMorphism(Object("A"))) def test_sympy__categories__baseclasses__NamedMorphism(): from sympy.categories import Object, NamedMorphism assert _test_args(NamedMorphism(Object("A"), Object("B"), "f")) def test_sympy__categories__baseclasses__CompositeMorphism(): from sympy.categories import Object, NamedMorphism, CompositeMorphism A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") assert _test_args(CompositeMorphism(f, g)) def test_sympy__categories__baseclasses__Diagram(): from sympy.categories import Object, NamedMorphism, Diagram A = Object("A") B = Object("B") f = NamedMorphism(A, B, "f") d = Diagram([f]) assert _test_args(d) def test_sympy__categories__baseclasses__Category(): from sympy.categories import Object, NamedMorphism, Diagram, Category A = Object("A") B = Object("B") C = Object("C") f = NamedMorphism(A, B, "f") g = NamedMorphism(B, C, "g") d1 = Diagram([f, g]) d2 = Diagram([f]) K = Category("K", commutative_diagrams=[d1, d2]) assert _test_args(K) def test_sympy__ntheory__factor___totient(): from sympy.ntheory.factor_ import totient k = symbols('k', integer=True) t = totient(k) assert _test_args(t) def test_sympy__ntheory__factor___reduced_totient(): from sympy.ntheory.factor_ import reduced_totient k = symbols('k', integer=True) t = reduced_totient(k) assert _test_args(t) def test_sympy__ntheory__factor___divisor_sigma(): from sympy.ntheory.factor_ import divisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = divisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___udivisor_sigma(): from sympy.ntheory.factor_ import udivisor_sigma k = symbols('k', integer=True) n = symbols('n', integer=True) t = udivisor_sigma(n, k) assert _test_args(t) def test_sympy__ntheory__factor___primenu(): from sympy.ntheory.factor_ import primenu n = symbols('n', integer=True) t = primenu(n) assert _test_args(t) def test_sympy__ntheory__factor___primeomega(): from sympy.ntheory.factor_ import primeomega n = symbols('n', integer=True) t = primeomega(n) assert _test_args(t) def test_sympy__ntheory__residue_ntheory__mobius(): from sympy.ntheory import mobius assert _test_args(mobius(2)) def test_sympy__ntheory__generate__primepi(): from sympy.ntheory import primepi n = symbols('n') t = primepi(n) assert _test_args(t) def test_sympy__physics__optics__waves__TWave(): from sympy.physics.optics import TWave A, f, phi = symbols('A, f, phi') assert _test_args(TWave(A, f, phi)) def test_sympy__physics__optics__gaussopt__BeamParameter(): from sympy.physics.optics import BeamParameter assert _test_args(BeamParameter(530e-9, 1, w=1e-3)) def test_sympy__physics__optics__medium__Medium(): from sympy.physics.optics import Medium assert _test_args(Medium('m')) def test_sympy__codegen__array_utils__CodegenArrayContraction(): from sympy.codegen.array_utils import CodegenArrayContraction from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayContraction(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayDiagonal(): from sympy.codegen.array_utils import CodegenArrayDiagonal from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayDiagonal(A, (0, 1))) def test_sympy__codegen__array_utils__CodegenArrayTensorProduct(): from sympy.codegen.array_utils import CodegenArrayTensorProduct from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayTensorProduct(A, B)) def test_sympy__codegen__array_utils__CodegenArrayElementwiseAdd(): from sympy.codegen.array_utils import CodegenArrayElementwiseAdd from sympy import IndexedBase A, B = symbols("A B", cls=IndexedBase) assert _test_args(CodegenArrayElementwiseAdd(A, B)) def test_sympy__codegen__array_utils__CodegenArrayPermuteDims(): from sympy.codegen.array_utils import CodegenArrayPermuteDims from sympy import IndexedBase A = symbols("A", cls=IndexedBase) assert _test_args(CodegenArrayPermuteDims(A, (1, 0))) def test_sympy__codegen__ast__Assignment(): from sympy.codegen.ast import Assignment assert _test_args(Assignment(x, y)) def test_sympy__codegen__cfunctions__expm1(): from sympy.codegen.cfunctions import expm1 assert _test_args(expm1(x)) def test_sympy__codegen__cfunctions__log1p(): from sympy.codegen.cfunctions import log1p assert _test_args(log1p(x)) def test_sympy__codegen__cfunctions__exp2(): from sympy.codegen.cfunctions import exp2 assert _test_args(exp2(x)) def test_sympy__codegen__cfunctions__log2(): from sympy.codegen.cfunctions import log2 assert _test_args(log2(x)) def test_sympy__codegen__cfunctions__fma(): from sympy.codegen.cfunctions import fma assert _test_args(fma(x, y, z)) def test_sympy__codegen__cfunctions__log10(): from sympy.codegen.cfunctions import log10 assert _test_args(log10(x)) def test_sympy__codegen__cfunctions__Sqrt(): from sympy.codegen.cfunctions import Sqrt assert _test_args(Sqrt(x)) def test_sympy__codegen__cfunctions__Cbrt(): from sympy.codegen.cfunctions import Cbrt assert _test_args(Cbrt(x)) def test_sympy__codegen__cfunctions__hypot(): from sympy.codegen.cfunctions import hypot assert _test_args(hypot(x, y)) def test_sympy__codegen__fnodes__FFunction(): from sympy.codegen.fnodes import FFunction assert _test_args(FFunction('f')) def test_sympy__codegen__fnodes__F95Function(): from sympy.codegen.fnodes import F95Function assert _test_args(F95Function('f')) def test_sympy__codegen__fnodes__isign(): from sympy.codegen.fnodes import isign assert _test_args(isign(1, x)) def test_sympy__codegen__fnodes__dsign(): from sympy.codegen.fnodes import dsign assert _test_args(dsign(1, x)) def test_sympy__codegen__fnodes__cmplx(): from sympy.codegen.fnodes import cmplx assert _test_args(cmplx(x, y)) def test_sympy__codegen__fnodes__kind(): from sympy.codegen.fnodes import kind assert _test_args(kind(x)) def test_sympy__codegen__fnodes__merge(): from sympy.codegen.fnodes import merge assert _test_args(merge(1, 2, Eq(x, 0))) def test_sympy__codegen__fnodes___literal(): from sympy.codegen.fnodes import _literal assert _test_args(_literal(1)) def test_sympy__codegen__fnodes__literal_sp(): from sympy.codegen.fnodes import literal_sp assert _test_args(literal_sp(1)) def test_sympy__codegen__fnodes__literal_dp(): from sympy.codegen.fnodes import literal_dp assert _test_args(literal_dp(1)) def test_sympy__codegen__matrix_nodes__MatrixSolve(): from sympy.matrices import MatrixSymbol from sympy.codegen.matrix_nodes import MatrixSolve A = MatrixSymbol('A', 3, 3) v = MatrixSymbol('x', 3, 1) assert _test_args(MatrixSolve(A, v)) def test_sympy__vector__coordsysrect__CoordSys3D(): from sympy.vector.coordsysrect import CoordSys3D assert _test_args(CoordSys3D('C')) def test_sympy__vector__point__Point(): from sympy.vector.point import Point assert _test_args(Point('P')) def test_sympy__vector__basisdependent__BasisDependent(): from sympy.vector.basisdependent import BasisDependent #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentMul(): from sympy.vector.basisdependent import BasisDependentMul #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentAdd(): from sympy.vector.basisdependent import BasisDependentAdd #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__basisdependent__BasisDependentZero(): from sympy.vector.basisdependent import BasisDependentZero #These classes have been created to maintain an OOP hierarchy #for Vectors and Dyadics. Are NOT meant to be initialized def test_sympy__vector__vector__BaseVector(): from sympy.vector.vector import BaseVector from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseVector(0, C, ' ', ' ')) def test_sympy__vector__vector__VectorAdd(): from sympy.vector.vector import VectorAdd, VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a, b, c, x, y, z v1 = a*C.i + b*C.j + c*C.k v2 = x*C.i + y*C.j + z*C.k assert _test_args(VectorAdd(v1, v2)) assert _test_args(VectorMul(x, v1)) def test_sympy__vector__vector__VectorMul(): from sympy.vector.vector import VectorMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') from sympy.abc import a assert _test_args(VectorMul(a, C.i)) def test_sympy__vector__vector__VectorZero(): from sympy.vector.vector import VectorZero assert _test_args(VectorZero()) def test_sympy__vector__vector__Vector(): from sympy.vector.vector import Vector #Vector is never to be initialized using args pass def test_sympy__vector__vector__Cross(): from sympy.vector.vector import Cross from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Cross(C.i, C.j)) def test_sympy__vector__vector__Dot(): from sympy.vector.vector import Dot from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') _test_args(Dot(C.i, C.j)) def test_sympy__vector__dyadic__Dyadic(): from sympy.vector.dyadic import Dyadic #Dyadic is never to be initialized using args pass def test_sympy__vector__dyadic__BaseDyadic(): from sympy.vector.dyadic import BaseDyadic from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseDyadic(C.i, C.j)) def test_sympy__vector__dyadic__DyadicMul(): from sympy.vector.dyadic import BaseDyadic, DyadicMul from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(DyadicMul(3, BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicAdd(): from sympy.vector.dyadic import BaseDyadic, DyadicAdd from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(2 * DyadicAdd(BaseDyadic(C.i, C.i), BaseDyadic(C.i, C.j))) def test_sympy__vector__dyadic__DyadicZero(): from sympy.vector.dyadic import DyadicZero assert _test_args(DyadicZero()) def test_sympy__vector__deloperator__Del(): from sympy.vector.deloperator import Del assert _test_args(Del()) def test_sympy__vector__operators__Curl(): from sympy.vector.operators import Curl from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Curl(C.i)) def test_sympy__vector__operators__Laplacian(): from sympy.vector.operators import Laplacian from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Laplacian(C.i)) def test_sympy__vector__operators__Divergence(): from sympy.vector.operators import Divergence from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Divergence(C.i)) def test_sympy__vector__operators__Gradient(): from sympy.vector.operators import Gradient from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(Gradient(C.x)) def test_sympy__vector__orienters__Orienter(): from sympy.vector.orienters import Orienter #Not to be initialized def test_sympy__vector__orienters__ThreeAngleOrienter(): from sympy.vector.orienters import ThreeAngleOrienter #Not to be initialized def test_sympy__vector__orienters__AxisOrienter(): from sympy.vector.orienters import AxisOrienter from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(AxisOrienter(x, C.i)) def test_sympy__vector__orienters__BodyOrienter(): from sympy.vector.orienters import BodyOrienter assert _test_args(BodyOrienter(x, y, z, '123')) def test_sympy__vector__orienters__SpaceOrienter(): from sympy.vector.orienters import SpaceOrienter assert _test_args(SpaceOrienter(x, y, z, '123')) def test_sympy__vector__orienters__QuaternionOrienter(): from sympy.vector.orienters import QuaternionOrienter a, b, c, d = symbols('a b c d') assert _test_args(QuaternionOrienter(a, b, c, d)) def test_sympy__vector__scalar__BaseScalar(): from sympy.vector.scalar import BaseScalar from sympy.vector.coordsysrect import CoordSys3D C = CoordSys3D('C') assert _test_args(BaseScalar(0, C, ' ', ' ')) def test_sympy__physics__wigner__Wigner3j(): from sympy.physics.wigner import Wigner3j assert _test_args(Wigner3j(0, 0, 0, 0, 0, 0)) def test_sympy__integrals__rubi__symbol__matchpyWC(): from sympy.integrals.rubi.symbol import matchpyWC assert _test_args(matchpyWC(1, True, 'a')) def test_sympy__integrals__rubi__utility_function__rubi_unevaluated_expr(): from sympy.integrals.rubi.utility_function import rubi_unevaluated_expr a = symbols('a') assert _test_args(rubi_unevaluated_expr(a)) def test_sympy__integrals__rubi__utility_function__rubi_exp(): from sympy.integrals.rubi.utility_function import rubi_exp assert _test_args(rubi_exp(5)) def test_sympy__integrals__rubi__utility_function__rubi_log(): from sympy.integrals.rubi.utility_function import rubi_log assert _test_args(rubi_log(5)) def test_sympy__integrals__rubi__utility_function__Int(): from sympy.integrals.rubi.utility_function import Int assert _test_args(Int(5, x)) def test_sympy__integrals__rubi__utility_function__Util_Coefficient(): from sympy.integrals.rubi.utility_function import Util_Coefficient a, x = symbols('a x') assert _test_args(Util_Coefficient(a, x)) def test_sympy__integrals__rubi__utility_function__Gamma(): from sympy.integrals.rubi.utility_function import Gamma assert _test_args(Gamma(5)) def test_sympy__integrals__rubi__utility_function__Util_Part(): from sympy.integrals.rubi.utility_function import Util_Part a, b = symbols('a b') assert _test_args(Util_Part(a + b, 0)) def test_sympy__integrals__rubi__utility_function__PolyGamma(): from sympy.integrals.rubi.utility_function import PolyGamma assert _test_args(PolyGamma(1, 1)) def test_sympy__integrals__rubi__utility_function__ProductLog(): from sympy.integrals.rubi.utility_function import ProductLog assert _test_args(ProductLog(1))
66014597876cb6d19e8b475faecfeb5fc9e842c1dce9a9a61616f7060b711f03
from sympy import (Symbol, Wild, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, pi, I, Rational, sympify, symbols, Dummy) from sympy.core.symbol import _uniquely_named_symbol, _symbol from sympy.utilities.pytest import raises from sympy.core.symbol import disambiguate def test_Symbol(): a = Symbol("a") x1 = Symbol("x") x2 = Symbol("x") xdummy1 = Dummy("x") xdummy2 = Dummy("x") assert a != x1 assert a != x2 assert x1 == x2 assert x1 != xdummy1 assert xdummy1 != xdummy2 assert Symbol("x") == Symbol("x") assert Dummy("x") != Dummy("x") d = symbols('d', cls=Dummy) assert isinstance(d, Dummy) c, d = symbols('c,d', cls=Dummy) assert isinstance(c, Dummy) assert isinstance(d, Dummy) raises(TypeError, lambda: Symbol()) def test_Dummy(): assert Dummy() != Dummy() def test_Dummy_force_dummy_index(): raises(AssertionError, lambda: Dummy(dummy_index=1)) assert Dummy('d', dummy_index=2) == Dummy('d', dummy_index=2) assert Dummy('d1', dummy_index=2) != Dummy('d2', dummy_index=2) d1 = Dummy('d', dummy_index=3) d2 = Dummy('d') # might fail if d1 were created with dummy_index >= 10**6 assert d1 != d2 d3 = Dummy('d', dummy_index=3) assert d1 == d3 assert Dummy()._count == Dummy('d', dummy_index=3)._count def test_lt_gt(): from sympy import sympify as S x, y = Symbol('x'), Symbol('y') assert (x >= y) == GreaterThan(x, y) assert (x >= 0) == GreaterThan(x, 0) assert (x <= y) == LessThan(x, y) assert (x <= 0) == LessThan(x, 0) assert (0 <= x) == GreaterThan(x, 0) assert (0 >= x) == LessThan(x, 0) assert (S(0) >= x) == GreaterThan(0, x) assert (S(0) <= x) == LessThan(0, x) assert (x > y) == StrictGreaterThan(x, y) assert (x > 0) == StrictGreaterThan(x, 0) assert (x < y) == StrictLessThan(x, y) assert (x < 0) == StrictLessThan(x, 0) assert (0 < x) == StrictGreaterThan(x, 0) assert (0 > x) == StrictLessThan(x, 0) assert (S(0) > x) == StrictGreaterThan(0, x) assert (S(0) < x) == StrictLessThan(0, x) e = x**2 + 4*x + 1 assert (e >= 0) == GreaterThan(e, 0) assert (0 <= e) == GreaterThan(e, 0) assert (e > 0) == StrictGreaterThan(e, 0) assert (0 < e) == StrictGreaterThan(e, 0) assert (e <= 0) == LessThan(e, 0) assert (0 >= e) == LessThan(e, 0) assert (e < 0) == StrictLessThan(e, 0) assert (0 > e) == StrictLessThan(e, 0) assert (S(0) >= e) == GreaterThan(0, e) assert (S(0) <= e) == LessThan(0, e) assert (S(0) < e) == StrictLessThan(0, e) assert (S(0) > e) == StrictGreaterThan(0, e) def test_no_len(): # there should be no len for numbers x = Symbol('x') raises(TypeError, lambda: len(x)) def test_ineq_unequal(): S = sympify x, y, z = symbols('x,y,z') e = ( S(-1) >= x, S(-1) >= y, S(-1) >= z, S(-1) > x, S(-1) > y, S(-1) > z, S(-1) <= x, S(-1) <= y, S(-1) <= z, S(-1) < x, S(-1) < y, S(-1) < z, S(0) >= x, S(0) >= y, S(0) >= z, S(0) > x, S(0) > y, S(0) > z, S(0) <= x, S(0) <= y, S(0) <= z, S(0) < x, S(0) < y, S(0) < z, S('3/7') >= x, S('3/7') >= y, S('3/7') >= z, S('3/7') > x, S('3/7') > y, S('3/7') > z, S('3/7') <= x, S('3/7') <= y, S('3/7') <= z, S('3/7') < x, S('3/7') < y, S('3/7') < z, S(1.5) >= x, S(1.5) >= y, S(1.5) >= z, S(1.5) > x, S(1.5) > y, S(1.5) > z, S(1.5) <= x, S(1.5) <= y, S(1.5) <= z, S(1.5) < x, S(1.5) < y, S(1.5) < z, S(2) >= x, S(2) >= y, S(2) >= z, S(2) > x, S(2) > y, S(2) > z, S(2) <= x, S(2) <= y, S(2) <= z, S(2) < x, S(2) < y, S(2) < z, x >= -1, y >= -1, z >= -1, x > -1, y > -1, z > -1, x <= -1, y <= -1, z <= -1, x < -1, y < -1, z < -1, x >= 0, y >= 0, z >= 0, x > 0, y > 0, z > 0, x <= 0, y <= 0, z <= 0, x < 0, y < 0, z < 0, x >= 1.5, y >= 1.5, z >= 1.5, x > 1.5, y > 1.5, z > 1.5, x <= 1.5, y <= 1.5, z <= 1.5, x < 1.5, y < 1.5, z < 1.5, x >= 2, y >= 2, z >= 2, x > 2, y > 2, z > 2, x <= 2, y <= 2, z <= 2, x < 2, y < 2, z < 2, x >= y, x >= z, y >= x, y >= z, z >= x, z >= y, x > y, x > z, y > x, y > z, z > x, z > y, x <= y, x <= z, y <= x, y <= z, z <= x, z <= y, x < y, x < z, y < x, y < z, z < x, z < y, x - pi >= y + z, y - pi >= x + z, z - pi >= x + y, x - pi > y + z, y - pi > x + z, z - pi > x + y, x - pi <= y + z, y - pi <= x + z, z - pi <= x + y, x - pi < y + z, y - pi < x + z, z - pi < x + y, True, False ) left_e = e[:-1] for i, e1 in enumerate( left_e ): for e2 in e[i + 1:]: assert e1 != e2 def test_Wild_properties(): # these tests only include Atoms x = Symbol("x") y = Symbol("y") p = Symbol("p", positive=True) k = Symbol("k", integer=True) n = Symbol("n", integer=True, positive=True) given_patterns = [ x, y, p, k, -k, n, -n, sympify(-3), sympify(3), pi, Rational(3, 2), I ] integerp = lambda k: k.is_integer positivep = lambda k: k.is_positive symbolp = lambda k: k.is_Symbol realp = lambda k: k.is_extended_real S = Wild("S", properties=[symbolp]) R = Wild("R", properties=[realp]) Y = Wild("Y", exclude=[x, p, k, n]) P = Wild("P", properties=[positivep]) K = Wild("K", properties=[integerp]) N = Wild("N", properties=[positivep, integerp]) given_wildcards = [ S, R, Y, P, K, N ] goodmatch = { S: (x, y, p, k, n), R: (p, k, -k, n, -n, -3, 3, pi, Rational(3, 2)), Y: (y, -3, 3, pi, Rational(3, 2), I ), P: (p, n, 3, pi, Rational(3, 2)), K: (k, -k, n, -n, -3, 3), N: (n, 3)} for A in given_wildcards: for pat in given_patterns: d = pat.match(A) if pat in goodmatch[A]: assert d[A] in goodmatch[A] else: assert d is None def test_symbols(): x = Symbol('x') y = Symbol('y') z = Symbol('z') assert symbols('x') == x assert symbols('x ') == x assert symbols(' x ') == x assert symbols('x,') == (x,) assert symbols('x, ') == (x,) assert symbols('x ,') == (x,) assert symbols('x , y') == (x, y) assert symbols('x,y,z') == (x, y, z) assert symbols('x y z') == (x, y, z) assert symbols('x,y,z,') == (x, y, z) assert symbols('x y z ') == (x, y, z) xyz = Symbol('xyz') abc = Symbol('abc') assert symbols('xyz') == xyz assert symbols('xyz,') == (xyz,) assert symbols('xyz,abc') == (xyz, abc) assert symbols(('xyz',)) == (xyz,) assert symbols(('xyz,',)) == ((xyz,),) assert symbols(('x,y,z,',)) == ((x, y, z),) assert symbols(('xyz', 'abc')) == (xyz, abc) assert symbols(('xyz,abc',)) == ((xyz, abc),) assert symbols(('xyz,abc', 'x,y,z')) == ((xyz, abc), (x, y, z)) assert symbols(('x', 'y', 'z')) == (x, y, z) assert symbols(['x', 'y', 'z']) == [x, y, z] assert symbols(set(['x', 'y', 'z'])) == set([x, y, z]) raises(ValueError, lambda: symbols('')) raises(ValueError, lambda: symbols(',')) raises(ValueError, lambda: symbols('x,,y,,z')) raises(ValueError, lambda: symbols(('x', '', 'y', '', 'z'))) a, b = symbols('x,y', real=True) assert a.is_real and b.is_real x0 = Symbol('x0') x1 = Symbol('x1') x2 = Symbol('x2') y0 = Symbol('y0') y1 = Symbol('y1') assert symbols('x0:0') == () assert symbols('x0:1') == (x0,) assert symbols('x0:2') == (x0, x1) assert symbols('x0:3') == (x0, x1, x2) assert symbols('x:0') == () assert symbols('x:1') == (x0,) assert symbols('x:2') == (x0, x1) assert symbols('x:3') == (x0, x1, x2) assert symbols('x1:1') == () assert symbols('x1:2') == (x1,) assert symbols('x1:3') == (x1, x2) assert symbols('x1:3,x,y,z') == (x1, x2, x, y, z) assert symbols('x:3,y:2') == (x0, x1, x2, y0, y1) assert symbols(('x:3', 'y:2')) == ((x0, x1, x2), (y0, y1)) a = Symbol('a') b = Symbol('b') c = Symbol('c') d = Symbol('d') assert symbols('x:z') == (x, y, z) assert symbols('a:d,x:z') == (a, b, c, d, x, y, z) assert symbols(('a:d', 'x:z')) == ((a, b, c, d), (x, y, z)) aa = Symbol('aa') ab = Symbol('ab') ac = Symbol('ac') ad = Symbol('ad') assert symbols('aa:d') == (aa, ab, ac, ad) assert symbols('aa:d,x:z') == (aa, ab, ac, ad, x, y, z) assert symbols(('aa:d','x:z')) == ((aa, ab, ac, ad), (x, y, z)) # issue 6675 def sym(s): return str(symbols(s)) assert sym('a0:4') == '(a0, a1, a2, a3)' assert sym('a2:4,b1:3') == '(a2, a3, b1, b2)' assert sym('a1(2:4)') == '(a12, a13)' assert sym(('a0:2.0:2')) == '(a0.0, a0.1, a1.0, a1.1)' assert sym(('aa:cz')) == '(aaz, abz, acz)' assert sym('aa:c0:2') == '(aa0, aa1, ab0, ab1, ac0, ac1)' assert sym('aa:ba:b') == '(aaa, aab, aba, abb)' assert sym('a:3b') == '(a0b, a1b, a2b)' assert sym('a-1:3b') == '(a-1b, a-2b)' assert sym(r'a:2\,:2' + chr(0)) == '(a0,0%s, a0,1%s, a1,0%s, a1,1%s)' % ( (chr(0),)*4) assert sym('x(:a:3)') == '(x(a0), x(a1), x(a2))' assert sym('x(:c):1') == '(xa0, xb0, xc0)' assert sym('x((:a)):3') == '(x(a)0, x(a)1, x(a)2)' assert sym('x(:a:3') == '(x(a0, x(a1, x(a2)' assert sym(':2') == '(0, 1)' assert sym(':b') == '(a, b)' assert sym(':b:2') == '(a0, a1, b0, b1)' assert sym(':2:2') == '(00, 01, 10, 11)' assert sym(':b:b') == '(aa, ab, ba, bb)' raises(ValueError, lambda: symbols(':')) raises(ValueError, lambda: symbols('a:')) raises(ValueError, lambda: symbols('::')) raises(ValueError, lambda: symbols('a::')) raises(ValueError, lambda: symbols(':a:')) raises(ValueError, lambda: symbols('::a')) def test_symbols_become_functions_issue_3539(): from sympy.abc import alpha, phi, beta, t raises(TypeError, lambda: beta(2)) raises(TypeError, lambda: beta(2.5)) raises(TypeError, lambda: phi(2.5)) raises(TypeError, lambda: alpha(2.5)) raises(TypeError, lambda: phi(t)) def test_unicode(): xu = Symbol(u'x') x = Symbol('x') assert x == xu raises(TypeError, lambda: Symbol(1)) def test__uniquely_named_symbol_and__symbol(): F = _uniquely_named_symbol x = Symbol('x') assert F(x) == x assert F('x') == x assert str(F('x', x)) == '_x' assert str(F('x', (x + 1, 1/x))) == '_x' _x = Symbol('x', real=True) assert F(('x', _x)) == _x assert F((x, _x)) == _x assert F('x', real=True).is_real y = Symbol('y') assert F(('x', y), real=True).is_real r = Symbol('x', real=True) assert F(('x', r)).is_real assert F(('x', r), real=False).is_real assert F('x1', Symbol('x1'), compare=lambda i: str(i).rstrip('1')).name == 'x1' assert F('x1', Symbol('x1'), modify=lambda i: i + '_').name == 'x1_' assert _symbol(x, _x) == x def test_disambiguate(): x, y, y_1, _x, x_1, x_2 = symbols('x y y_1 _x x_1 x_2') t1 = Dummy('y'), _x, Dummy('x'), Dummy('x') t2 = Dummy('x'), Dummy('x') t3 = Dummy('x'), Dummy('y') t4 = x, Dummy('x') t5 = Symbol('x', integer=True), x, Symbol('x_1') assert disambiguate(*t1) == (y, x_2, x, x_1) assert disambiguate(*t2) == (x, x_1) assert disambiguate(*t3) == (x, y) assert disambiguate(*t4) == (x_1, x) assert disambiguate(*t5) == (t5[0], x_2, x_1) assert disambiguate(*t5)[0] != x # assumptions are retained t6 = _x, Dummy('x')/y t7 = y*Dummy('y'), y assert disambiguate(*t6) == (x_1, x/y) assert disambiguate(*t7) == (y*y_1, y_1) assert disambiguate(Dummy('x_1'), Dummy('x_1') ) == (x_1, Symbol('x_1_1'))
684957b4ec6891082e3eb8b1e81c9267944b0e28cc63e7134a2c2c4e1f550318
from __future__ import absolute_import import numbers as nums import decimal from sympy import (Rational, Symbol, Float, I, sqrt, cbrt, oo, nan, pi, E, Integer, S, factorial, Catalan, EulerGamma, GoldenRatio, TribonacciConstant, cos, exp, Number, zoo, log, Mul, Pow, Tuple, latex, Gt, Lt, Ge, Le, AlgebraicNumber, simplify, sin, fibonacci, RealField, sympify, srepr, Dummy, Sum) from sympy.core.compatibility import long, PY3 from sympy.core.logic import fuzzy_not from sympy.core.numbers import (igcd, ilcm, igcdex, seterr, igcd2, igcd_lehmer, mpf_norm, comp, mod_inverse) from sympy.core.power import integer_nthroot, isqrt, integer_log from sympy.polys.domains.groundtypes import PythonRational from sympy.utilities.decorator import conserve_mpmath_dps from sympy.utilities.iterables import permutations from sympy.utilities.pytest import XFAIL, raises from mpmath import mpf from mpmath.rational import mpq import mpmath from sympy import numbers t = Symbol('t', real=False) _ninf = float(-oo) _inf = float(oo) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_seterr(): seterr(divide=True) raises(ValueError, lambda: S.Zero/S.Zero) seterr(divide=False) assert S.Zero / S.Zero is S.NaN def test_mod(): x = S.Half y = Rational(3, 4) z = Rational(5, 18043) assert x % x == 0 assert x % y == S.Half assert x % z == Rational(3, 36086) assert y % x == Rational(1, 4) assert y % y == 0 assert y % z == Rational(9, 72172) assert z % x == Rational(5, 18043) assert z % y == Rational(5, 18043) assert z % z == 0 a = Float(2.6) assert (a % .2) == 0.0 assert (a % 2).round(15) == 0.6 assert (a % 0.5).round(15) == 0.1 p = Symbol('p', infinite=True) assert oo % oo is nan assert zoo % oo is nan assert 5 % oo is nan assert p % 5 is nan # In these two tests, if the precision of m does # not match the precision of the ans, then it is # likely that the change made now gives an answer # with degraded accuracy. r = Rational(500, 41) f = Float('.36', 3) m = r % f ans = Float(r % Rational(f), 3) assert m == ans and m._prec == ans._prec f = Float('8.36', 3) m = f % r ans = Float(Rational(f) % r, 3) assert m == ans and m._prec == ans._prec s = S.Zero assert s % float(1) == 0.0 # No rounding required since these numbers can be represented # exactly. assert Rational(3, 4) % Float(1.1) == 0.75 assert Float(1.5) % Rational(5, 4) == 0.25 assert Rational(5, 4).__rmod__(Float('1.5')) == 0.25 assert Float('1.5').__rmod__(Float('2.75')) == Float('1.25') assert 2.75 % Float('1.5') == Float('1.25') a = Integer(7) b = Integer(4) assert type(a % b) == Integer assert a % b == Integer(3) assert Integer(1) % Rational(2, 3) == Rational(1, 3) assert Rational(7, 5) % Integer(1) == Rational(2, 5) assert Integer(2) % 1.5 == 0.5 assert Integer(3).__rmod__(Integer(10)) == Integer(1) assert Integer(10) % 4 == Integer(2) assert 15 % Integer(4) == Integer(3) def test_divmod(): assert divmod(S(12), S(8)) == Tuple(1, 4) assert divmod(-S(12), S(8)) == Tuple(-2, 4) assert divmod(S.Zero, S.One) == Tuple(0, 0) raises(ZeroDivisionError, lambda: divmod(S.Zero, S.Zero)) raises(ZeroDivisionError, lambda: divmod(S.One, S.Zero)) assert divmod(S(12), 8) == Tuple(1, 4) assert divmod(12, S(8)) == Tuple(1, 4) assert divmod(S("2"), S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), S("2")) == Tuple(S("0"), S("3/2")) assert divmod(S("2"), S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), S("2")) == Tuple(S("1"), S("1.5")) assert divmod(S("2"), S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), S("2")) == Tuple(S("0"), S("1/3")) assert divmod(S("2"), S("1/10")) == Tuple(S("20"), S("0")) assert divmod(S("2"), S(".1"))[0] == 19 assert divmod(S("0.1"), S("2")) == Tuple(S("0"), S("0.1")) assert divmod(S("2"), 2) == Tuple(S("1"), S("0")) assert divmod(2, S("2")) == Tuple(S("1"), S("0")) assert divmod(S("2"), 1.5) == Tuple(S("1"), S("0.5")) assert divmod(1.5, S("2")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("2")) == Tuple(S("0"), S("0.3")) assert divmod(S("3/2"), S("3.5")) == Tuple(S("0"), S("3/2")) assert divmod(S("3.5"), S("3/2")) == Tuple(S("2"), S("0.5")) assert divmod(S("3/2"), S("1/3")) == Tuple(S("4"), S("1/6")) assert divmod(S("1/3"), S("3/2")) == Tuple(S("0"), S("1/3")) assert divmod(S("3/2"), S("0.1"))[0] == 14 assert divmod(S("0.1"), S("3/2")) == Tuple(S("0"), S("0.1")) assert divmod(S("3/2"), 2) == Tuple(S("0"), S("3/2")) assert divmod(2, S("3/2")) == Tuple(S("1"), S("1/2")) assert divmod(S("3/2"), 1.5) == Tuple(S("1"), S("0")) assert divmod(1.5, S("3/2")) == Tuple(S("1"), S("0")) assert divmod(S("3/2"), 0.3) == Tuple(S("5"), S("0")) assert divmod(0.3, S("3/2")) == Tuple(S("0"), S("0.3")) assert divmod(S("1/3"), S("3.5")) == Tuple(S("0"), S("1/3")) assert divmod(S("3.5"), S("0.1")) == Tuple(S("35"), S("0")) assert divmod(S("0.1"), S("3.5")) == Tuple(S("0"), S("0.1")) assert divmod(S("3.5"), 2) == Tuple(S("1"), S("1.5")) assert divmod(2, S("3.5")) == Tuple(S("0"), S("2")) assert divmod(S("3.5"), 1.5) == Tuple(S("2"), S("0.5")) assert divmod(1.5, S("3.5")) == Tuple(S("0"), S("1.5")) assert divmod(0.3, S("3.5")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), S("1/3")) == Tuple(S("0"), S("0.1")) assert divmod(S("1/3"), 2) == Tuple(S("0"), S("1/3")) assert divmod(2, S("1/3")) == Tuple(S("6"), S("0")) assert divmod(S("1/3"), 1.5) == Tuple(S("0"), S("1/3")) assert divmod(0.3, S("1/3")) == Tuple(S("0"), S("0.3")) assert divmod(S("0.1"), 2) == Tuple(S("0"), S("0.1")) assert divmod(2, S("0.1"))[0] == 19 assert divmod(S("0.1"), 1.5) == Tuple(S("0"), S("0.1")) assert divmod(1.5, S("0.1")) == Tuple(S("15"), S("0")) assert divmod(S("0.1"), 0.3) == Tuple(S("0"), S("0.1")) assert str(divmod(S("2"), 0.3)) == '(6, 0.2)' assert str(divmod(S("3.5"), S("1/3"))) == '(10, 0.166666666666667)' assert str(divmod(S("3.5"), 0.3)) == '(11, 0.2)' assert str(divmod(S("1/3"), S("0.1"))) == '(3, 0.0333333333333333)' assert str(divmod(1.5, S("1/3"))) == '(4, 0.166666666666667)' assert str(divmod(S("1/3"), 0.3)) == '(1, 0.0333333333333333)' assert str(divmod(0.3, S("0.1"))) == '(2, 0.1)' assert divmod(-3, S(2)) == (-2, 1) assert divmod(S(-3), S(2)) == (-2, 1) assert divmod(S(-3), 2) == (-2, 1) assert divmod(S(4), S(-3.1)) == Tuple(-2, -2.2) assert divmod(S(4), S(-2.1)) == divmod(4, -2.1) assert divmod(S(-8), S(-2.5) ) == Tuple(3 , -0.5) assert divmod(oo, 1) == (S.NaN, S.NaN) assert divmod(S.NaN, 1) == (S.NaN, S.NaN) assert divmod(1, S.NaN) == (S.NaN, S.NaN) ans = [(-1, oo), (-1, oo), (0, 0), (0, 1), (0, 2)] OO = float('inf') ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, oo) for i in range(-2, 3)] == ans ans = [(0, -2), (0, -1), (0, 0), (-1, -oo), (-1, -oo)] ANS = [tuple(map(float, i)) for i in ans] assert [divmod(i, -oo) for i in range(-2, 3)] == ans assert [divmod(i, -OO) for i in range(-2, 3)] == ANS assert divmod(S(3.5), S(-2)) == divmod(3.5, -2) assert divmod(-S(3.5), S(-2)) == divmod(-3.5, -2) def test_igcd(): assert igcd(0, 0) == 0 assert igcd(0, 1) == 1 assert igcd(1, 0) == 1 assert igcd(0, 7) == 7 assert igcd(7, 0) == 7 assert igcd(7, 1) == 1 assert igcd(1, 7) == 1 assert igcd(-1, 0) == 1 assert igcd(0, -1) == 1 assert igcd(-1, -1) == 1 assert igcd(-1, 7) == 1 assert igcd(7, -1) == 1 assert igcd(8, 2) == 2 assert igcd(4, 8) == 4 assert igcd(8, 16) == 8 assert igcd(7, -3) == 1 assert igcd(-7, 3) == 1 assert igcd(-7, -3) == 1 assert igcd(*[10, 20, 30]) == 10 raises(TypeError, lambda: igcd()) raises(TypeError, lambda: igcd(2)) raises(ValueError, lambda: igcd(0, None)) raises(ValueError, lambda: igcd(1, 2.2)) for args in permutations((45.1, 1, 30)): raises(ValueError, lambda: igcd(*args)) for args in permutations((1, 2, None)): raises(ValueError, lambda: igcd(*args)) def test_igcd_lehmer(): a, b = fibonacci(10001), fibonacci(10000) # len(str(a)) == 2090 # small divisors, long Euclidean sequence assert igcd_lehmer(a, b) == 1 c = fibonacci(100) assert igcd_lehmer(a*c, b*c) == c # big divisor assert igcd_lehmer(a, 10**1000) == 1 # swapping argmument assert igcd_lehmer(1, 2) == igcd_lehmer(2, 1) def test_igcd2(): # short loop assert igcd2(2**100 - 1, 2**99 - 1) == 1 # Lehmer's algorithm a, b = int(fibonacci(10001)), int(fibonacci(10000)) assert igcd2(a, b) == 1 def test_ilcm(): assert ilcm(0, 0) == 0 assert ilcm(1, 0) == 0 assert ilcm(0, 1) == 0 assert ilcm(1, 1) == 1 assert ilcm(2, 1) == 2 assert ilcm(8, 2) == 8 assert ilcm(8, 6) == 24 assert ilcm(8, 7) == 56 assert ilcm(*[10, 20, 30]) == 60 raises(ValueError, lambda: ilcm(8.1, 7)) raises(ValueError, lambda: ilcm(8, 7.1)) raises(TypeError, lambda: ilcm(8)) def test_igcdex(): assert igcdex(2, 3) == (-1, 1, 1) assert igcdex(10, 12) == (-1, 1, 2) assert igcdex(100, 2004) == (-20, 1, 4) assert igcdex(0, 0) == (0, 1, 0) assert igcdex(1, 0) == (1, 0, 1) def _strictly_equal(a, b): return (a.p, a.q, type(a.p), type(a.q)) == \ (b.p, b.q, type(b.p), type(b.q)) def _test_rational_new(cls): """ Tests that are common between Integer and Rational. """ assert cls(0) is S.Zero assert cls(1) is S.One assert cls(-1) is S.NegativeOne # These look odd, but are similar to int(): assert cls('1') is S.One assert cls(u'-1') is S.NegativeOne i = Integer(10) assert _strictly_equal(i, cls('10')) assert _strictly_equal(i, cls(u'10')) assert _strictly_equal(i, cls(long(10))) assert _strictly_equal(i, cls(i)) raises(TypeError, lambda: cls(Symbol('x'))) def test_Integer_new(): """ Test for Integer constructor """ _test_rational_new(Integer) assert _strictly_equal(Integer(0.9), S.Zero) assert _strictly_equal(Integer(10.5), Integer(10)) raises(ValueError, lambda: Integer("10.5")) assert Integer(Rational('1.' + '9'*20)) == 1 def test_Rational_new(): """" Test for Rational constructor """ _test_rational_new(Rational) n1 = S.Half assert n1 == Rational(Integer(1), 2) assert n1 == Rational(Integer(1), Integer(2)) assert n1 == Rational(1, Integer(2)) assert n1 == Rational(S.Half) assert 1 == Rational(n1, n1) assert Rational(3, 2) == Rational(S.Half, Rational(1, 3)) assert Rational(3, 1) == Rational(1, Rational(1, 3)) n3_4 = Rational(3, 4) assert Rational('3/4') == n3_4 assert -Rational('-3/4') == n3_4 assert Rational('.76').limit_denominator(4) == n3_4 assert Rational(19, 25).limit_denominator(4) == n3_4 assert Rational('19/25').limit_denominator(4) == n3_4 assert Rational(1.0, 3) == Rational(1, 3) assert Rational(1, 3.0) == Rational(1, 3) assert Rational(Float(0.5)) == S.Half assert Rational('1e2/1e-2') == Rational(10000) assert Rational('1 234') == Rational(1234) assert Rational('1/1 234') == Rational(1, 1234) assert Rational(-1, 0) is S.ComplexInfinity assert Rational(1, 0) is S.ComplexInfinity # Make sure Rational doesn't lose precision on Floats assert Rational(pi.evalf(100)).evalf(100) == pi.evalf(100) raises(TypeError, lambda: Rational('3**3')) raises(TypeError, lambda: Rational('1/2 + 2/3')) # handle fractions.Fraction instances try: import fractions assert Rational(fractions.Fraction(1, 2)) == S.Half except ImportError: pass assert Rational(mpq(2, 6)) == Rational(1, 3) assert Rational(PythonRational(2, 6)) == Rational(1, 3) def test_Number_new(): """" Test for Number constructor """ # Expected behavior on numbers and strings assert Number(1) is S.One assert Number(2).__class__ is Integer assert Number(-622).__class__ is Integer assert Number(5, 3).__class__ is Rational assert Number(5.3).__class__ is Float assert Number('1') is S.One assert Number('2').__class__ is Integer assert Number('-622').__class__ is Integer assert Number('5/3').__class__ is Rational assert Number('5.3').__class__ is Float raises(ValueError, lambda: Number('cos')) raises(TypeError, lambda: Number(cos)) a = Rational(3, 5) assert Number(a) is a # Check idempotence on Numbers u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Number(i) is a, (i, Number(i), a) def test_Number_cmp(): n1 = Number(1) n2 = Number(2) n3 = Number(-3) assert n1 < n2 assert n1 <= n2 assert n3 < n1 assert n2 > n3 assert n2 >= n3 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Rational_cmp(): n1 = Rational(1, 4) n2 = Rational(1, 3) n3 = Rational(2, 4) n4 = Rational(2, -4) n5 = Rational(0) n6 = Rational(1) n7 = Rational(3) n8 = Rational(-3) assert n8 < n5 assert n5 < n6 assert n6 < n7 assert n8 < n7 assert n7 > n8 assert (n1 + 1)**n2 < 2 assert ((n1 + n6)/n7) < 1 assert n4 < n3 assert n2 < n3 assert n1 < n2 assert n3 > n1 assert not n3 < n1 assert not (Rational(-1) > 0) assert Rational(-1) < 0 raises(TypeError, lambda: n1 < S.NaN) raises(TypeError, lambda: n1 <= S.NaN) raises(TypeError, lambda: n1 > S.NaN) raises(TypeError, lambda: n1 >= S.NaN) def test_Float(): def eq(a, b): t = Float("1.0E-15") return (-t < a - b < t) zeros = (0, S.Zero, 0., Float(0)) for i, j in permutations(zeros, 2): assert i == j for z in zeros: assert z in zeros assert S.Zero.is_zero a = Float(2) ** Float(3) assert eq(a.evalf(), Float(8)) assert eq((pi ** -1).evalf(), Float("0.31830988618379067")) a = Float(2) ** Float(4) assert eq(a.evalf(), Float(16)) assert (S(.3) == S(.5)) is False mpf = (0, 5404319552844595, -52, 53) x_str = Float((0, '13333333333333', -52, 53)) x2_str = Float((0, '26666666666666', -53, 54)) x_hex = Float((0, long(0x13333333333333), -52, 53)) x_dec = Float(mpf) assert x_str == x_hex == x_dec == Float(1.2) # x2_str was entered slightly malformed in that the mantissa # was even -- it should be odd and the even part should be # included with the exponent, but this is resolved by normalization # ONLY IF REQUIREMENTS of mpf_norm are met: the bitcount must # be exact: double the mantissa ==> increase bc by 1 assert Float(1.2)._mpf_ == mpf assert x2_str._mpf_ == mpf assert Float((0, long(0), -123, -1)) is S.NaN assert Float((0, long(0), -456, -2)) is S.Infinity assert Float((1, long(0), -789, -3)) is S.NegativeInfinity # if you don't give the full signature, it's not special assert Float((0, long(0), -123)) == Float(0) assert Float((0, long(0), -456)) == Float(0) assert Float((1, long(0), -789)) == Float(0) raises(ValueError, lambda: Float((0, 7, 1, 3), '')) assert Float('0.0').is_finite is True assert Float('0.0').is_negative is False assert Float('0.0').is_positive is False assert Float('0.0').is_infinite is False assert Float('0.0').is_zero is True # rationality properties # if the integer test fails then the use of intlike # should be removed from gamma_functions.py assert Float(1).is_integer is False assert Float(1).is_rational is None assert Float(1).is_irrational is None assert sqrt(2).n(15).is_rational is None assert sqrt(2).n(15).is_irrational is None # do not automatically evalf def teq(a): assert (a.evalf() == a) is False assert (a.evalf() != a) is True assert (a == a.evalf()) is False assert (a != a.evalf()) is True teq(pi) teq(2*pi) teq(cos(0.1, evaluate=False)) # long integer i = 12345678901234567890 assert same_and_same_prec(Float(12, ''), Float('12', '')) assert same_and_same_prec(Float(Integer(i), ''), Float(i, '')) assert same_and_same_prec(Float(i, ''), Float(str(i), 20)) assert same_and_same_prec(Float(str(i)), Float(i, '')) assert same_and_same_prec(Float(i), Float(i, '')) # inexact floats (repeating binary = denom not multiple of 2) # cannot have precision greater than 15 assert Float(.125, 22) == .125 assert Float(2.0, 22) == 2 assert float(Float('.12500000000000001', '')) == .125 raises(ValueError, lambda: Float(.12500000000000001, '')) # allow spaces Float('123 456.123 456') == Float('123456.123456') Integer('123 456') == Integer('123456') Rational('123 456.123 456') == Rational('123456.123456') assert Float(' .3e2') == Float('0.3e2') # allow underscore assert Float('1_23.4_56') == Float('123.456') assert Float('1_23.4_5_6', 12) == Float('123.456', 12) # ...but not in all cases (per Py 3.6) raises(ValueError, lambda: Float('_1')) raises(ValueError, lambda: Float('1_')) raises(ValueError, lambda: Float('1_.')) raises(ValueError, lambda: Float('1._')) raises(ValueError, lambda: Float('1__2')) raises(ValueError, lambda: Float('_inf')) # allow auto precision detection assert Float('.1', '') == Float(.1, 1) assert Float('.125', '') == Float(.125, 3) assert Float('.100', '') == Float(.1, 3) assert Float('2.0', '') == Float('2', 2) raises(ValueError, lambda: Float("12.3d-4", "")) raises(ValueError, lambda: Float(12.3, "")) raises(ValueError, lambda: Float('.')) raises(ValueError, lambda: Float('-.')) zero = Float('0.0') assert Float('-0') == zero assert Float('.0') == zero assert Float('-.0') == zero assert Float('-0.0') == zero assert Float(0.0) == zero assert Float(0) == zero assert Float(0, '') == Float('0', '') assert Float(1) == Float(1.0) assert Float(S.Zero) == zero assert Float(S.One) == Float(1.0) assert Float(decimal.Decimal('0.1'), 3) == Float('.1', 3) assert Float(decimal.Decimal('nan')) is S.NaN assert Float(decimal.Decimal('Infinity')) is S.Infinity assert Float(decimal.Decimal('-Infinity')) is S.NegativeInfinity assert '{0:.3f}'.format(Float(4.236622)) == '4.237' assert '{0:.35f}'.format(Float(pi.n(40), 40)) == \ '3.14159265358979323846264338327950288' # unicode assert Float(u'0.73908513321516064100000000') == \ Float('0.73908513321516064100000000') assert Float(u'0.73908513321516064100000000', 28) == \ Float('0.73908513321516064100000000', 28) # binary precision # Decimal value 0.1 cannot be expressed precisely as a base 2 fraction a = Float(S.One/10, dps=15) b = Float(S.One/10, dps=16) p = Float(S.One/10, precision=53) q = Float(S.One/10, precision=54) assert a._mpf_ == p._mpf_ assert not a._mpf_ == q._mpf_ assert not b._mpf_ == q._mpf_ # Precision specifying errors raises(ValueError, lambda: Float("1.23", dps=3, precision=10)) raises(ValueError, lambda: Float("1.23", dps="", precision=10)) raises(ValueError, lambda: Float("1.23", dps=3, precision="")) raises(ValueError, lambda: Float("1.23", dps="", precision="")) # from NumberSymbol assert same_and_same_prec(Float(pi, 32), pi.evalf(32)) assert same_and_same_prec(Float(Catalan), Catalan.evalf()) # oo and nan u = ['inf', '-inf', 'nan', 'iNF', '+inf'] v = [oo, -oo, nan, oo, oo] for i, a in zip(u, v): assert Float(i) is a @conserve_mpmath_dps def test_float_mpf(): import mpmath mpmath.mp.dps = 100 mp_pi = mpmath.pi() assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) mpmath.mp.dps = 15 assert Float(mp_pi, 100) == Float(mp_pi._mpf_, 100) == pi.evalf(100) def test_Float_RealElement(): repi = RealField(dps=100)(pi.evalf(100)) # We still have to pass the precision because Float doesn't know what # RealElement is, but make sure it keeps full precision from the result. assert Float(repi, 100) == pi.evalf(100) def test_Float_default_to_highprec_from_str(): s = str(pi.evalf(128)) assert same_and_same_prec(Float(s), Float(s, '')) def test_Float_eval(): a = Float(3.2) assert (a**2).is_Float def test_Float_issue_2107(): a = Float(0.1, 10) b = Float("0.1", 10) assert a - a == 0 assert a + (-a) == 0 assert S.Zero + a - a == 0 assert S.Zero + a + (-a) == 0 assert b - b == 0 assert b + (-b) == 0 assert S.Zero + b - b == 0 assert S.Zero + b + (-b) == 0 def test_issue_14289(): from sympy.polys.numberfields import to_number_field a = 1 - sqrt(2) b = to_number_field(a) assert b.as_expr() == a assert b.minpoly(a).expand() == 0 def test_Float_from_tuple(): a = Float((0, '1L', 0, 1)) b = Float((0, '1', 0, 1)) assert a == b def test_Infinity(): assert oo != 1 assert 1*oo is oo assert 1 != oo assert oo != -oo assert oo != Symbol("x")**3 assert oo + 1 is oo assert 2 + oo is oo assert 3*oo + 2 is oo assert S.Half**oo == 0 assert S.Half**(-oo) is oo assert -oo*3 is -oo assert oo + oo is oo assert -oo + oo*(-5) is -oo assert 1/oo == 0 assert 1/(-oo) == 0 assert 8/oo == 0 assert oo % 2 is nan assert 2 % oo is nan assert oo/oo is nan assert oo/-oo is nan assert -oo/oo is nan assert -oo/-oo is nan assert oo - oo is nan assert oo - -oo is oo assert -oo - oo is -oo assert -oo - -oo is nan assert oo + -oo is nan assert -oo + oo is nan assert oo + oo is oo assert -oo + oo is nan assert oo + -oo is nan assert -oo + -oo is -oo assert oo*oo is oo assert -oo*oo is -oo assert oo*-oo is -oo assert -oo*-oo is oo assert oo/0 is oo assert -oo/0 is -oo assert 0/oo == 0 assert 0/-oo == 0 assert oo*0 is nan assert -oo*0 is nan assert 0*oo is nan assert 0*-oo is nan assert oo + 0 is oo assert -oo + 0 is -oo assert 0 + oo is oo assert 0 + -oo is -oo assert oo - 0 is oo assert -oo - 0 is -oo assert 0 - oo is -oo assert 0 - -oo is oo assert oo/2 is oo assert -oo/2 is -oo assert oo/-2 is -oo assert -oo/-2 is oo assert oo*2 is oo assert -oo*2 is -oo assert oo*-2 is -oo assert 2/oo == 0 assert 2/-oo == 0 assert -2/oo == 0 assert -2/-oo == 0 assert 2*oo is oo assert 2*-oo is -oo assert -2*oo is -oo assert -2*-oo is oo assert 2 + oo is oo assert 2 - oo is -oo assert -2 + oo is oo assert -2 - oo is -oo assert 2 + -oo is -oo assert 2 - -oo is oo assert -2 + -oo is -oo assert -2 - -oo is oo assert S(2) + oo is oo assert S(2) - oo is -oo assert oo/I == -oo*I assert -oo/I == oo*I assert oo*float(1) == _inf and (oo*float(1)) is oo assert -oo*float(1) == _ninf and (-oo*float(1)) is -oo assert oo/float(1) == _inf and (oo/float(1)) is oo assert -oo/float(1) == _ninf and (-oo/float(1)) is -oo assert oo*float(-1) == _ninf and (oo*float(-1)) is -oo assert -oo*float(-1) == _inf and (-oo*float(-1)) is oo assert oo/float(-1) == _ninf and (oo/float(-1)) is -oo assert -oo/float(-1) == _inf and (-oo/float(-1)) is oo assert oo + float(1) == _inf and (oo + float(1)) is oo assert -oo + float(1) == _ninf and (-oo + float(1)) is -oo assert oo - float(1) == _inf and (oo - float(1)) is oo assert -oo - float(1) == _ninf and (-oo - float(1)) is -oo assert float(1)*oo == _inf and (float(1)*oo) is oo assert float(1)*-oo == _ninf and (float(1)*-oo) is -oo assert float(1)/oo == 0 assert float(1)/-oo == 0 assert float(-1)*oo == _ninf and (float(-1)*oo) is -oo assert float(-1)*-oo == _inf and (float(-1)*-oo) is oo assert float(-1)/oo == 0 assert float(-1)/-oo == 0 assert float(1) + oo is oo assert float(1) + -oo is -oo assert float(1) - oo is -oo assert float(1) - -oo is oo assert oo == float(oo) assert (oo != float(oo)) is False assert type(float(oo)) is float assert -oo == float(-oo) assert (-oo != float(-oo)) is False assert type(float(-oo)) is float assert Float('nan') is nan assert nan*1.0 is nan assert -1.0*nan is nan assert nan*oo is nan assert nan*-oo is nan assert nan/oo is nan assert nan/-oo is nan assert nan + oo is nan assert nan + -oo is nan assert nan - oo is nan assert nan - -oo is nan assert -oo * S.Zero is nan assert oo*nan is nan assert -oo*nan is nan assert oo/nan is nan assert -oo/nan is nan assert oo + nan is nan assert -oo + nan is nan assert oo - nan is nan assert -oo - nan is nan assert S.Zero * oo is nan assert oo.is_Rational is False assert isinstance(oo, Rational) is False assert S.One/oo == 0 assert -S.One/oo == 0 assert S.One/-oo == 0 assert -S.One/-oo == 0 assert S.One*oo is oo assert -S.One*oo is -oo assert S.One*-oo is -oo assert -S.One*-oo is oo assert S.One/nan is nan assert S.One - -oo is oo assert S.One + nan is nan assert S.One - nan is nan assert nan - S.One is nan assert nan/S.One is nan assert -oo - S.One is -oo def test_Infinity_2(): x = Symbol('x') assert oo*x != oo assert oo*(pi - 1) is oo assert oo*(1 - pi) is -oo assert (-oo)*x != -oo assert (-oo)*(pi - 1) is -oo assert (-oo)*(1 - pi) is oo assert (-1)**S.NaN is S.NaN assert oo - _inf is S.NaN assert oo + _ninf is S.NaN assert oo*0 is S.NaN assert oo/_inf is S.NaN assert oo/_ninf is S.NaN assert oo**S.NaN is S.NaN assert -oo + _inf is S.NaN assert -oo - _ninf is S.NaN assert -oo*S.NaN is S.NaN assert -oo*0 is S.NaN assert -oo/_inf is S.NaN assert -oo/_ninf is S.NaN assert -oo/S.NaN is S.NaN assert abs(-oo) is oo assert all((-oo)**i is S.NaN for i in (oo, -oo, S.NaN)) assert (-oo)**3 is -oo assert (-oo)**2 is oo assert abs(S.ComplexInfinity) is oo def test_Mul_Infinity_Zero(): assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert Float(0)*_inf is nan assert Float(0)*_ninf is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan assert _inf*Float(0) is nan assert _ninf*Float(0) is nan def test_Div_By_Zero(): assert 1/S.Zero is zoo assert 1/Float(0) is zoo assert 0/S.Zero is nan assert 0/Float(0) is nan assert S.Zero/0 is nan assert Float(0)/0 is nan assert -1/S.Zero is zoo assert -1/Float(0) is zoo def test_Infinity_inequations(): assert oo > pi assert not (oo < pi) assert exp(-3) < oo assert _inf > pi assert not (_inf < pi) assert exp(-3) < _inf raises(TypeError, lambda: oo < I) raises(TypeError, lambda: oo <= I) raises(TypeError, lambda: oo > I) raises(TypeError, lambda: oo >= I) raises(TypeError, lambda: -oo < I) raises(TypeError, lambda: -oo <= I) raises(TypeError, lambda: -oo > I) raises(TypeError, lambda: -oo >= I) raises(TypeError, lambda: I < oo) raises(TypeError, lambda: I <= oo) raises(TypeError, lambda: I > oo) raises(TypeError, lambda: I >= oo) raises(TypeError, lambda: I < -oo) raises(TypeError, lambda: I <= -oo) raises(TypeError, lambda: I > -oo) raises(TypeError, lambda: I >= -oo) assert oo > -oo and oo >= -oo assert (oo < -oo) == False and (oo <= -oo) == False assert -oo < oo and -oo <= oo assert (-oo > oo) == False and (-oo >= oo) == False assert (oo < oo) == False # issue 7775 assert (oo > oo) == False assert (-oo > -oo) == False and (-oo < -oo) == False assert oo >= oo and oo <= oo and -oo >= -oo and -oo <= -oo assert (-oo < -_inf) == False assert (oo > _inf) == False assert -oo >= -_inf assert oo <= _inf x = Symbol('x') b = Symbol('b', finite=True, real=True) assert (x < oo) == Lt(x, oo) # issue 7775 assert b < oo and b > -oo and b <= oo and b >= -oo assert oo > b and oo >= b and (oo < b) == False and (oo <= b) == False assert (-oo > b) == False and (-oo >= b) == False and -oo < b and -oo <= b assert (oo < x) == Lt(oo, x) and (oo > x) == Gt(oo, x) assert (oo <= x) == Le(oo, x) and (oo >= x) == Ge(oo, x) assert (-oo < x) == Lt(-oo, x) and (-oo > x) == Gt(-oo, x) assert (-oo <= x) == Le(-oo, x) and (-oo >= x) == Ge(-oo, x) def test_NaN(): assert nan is nan assert nan != 1 assert 1*nan is nan assert 1 != nan assert -nan is nan assert oo != Symbol("x")**3 assert 2 + nan is nan assert 3*nan + 2 is nan assert -nan*3 is nan assert nan + nan is nan assert -nan + nan*(-5) is nan assert 8/nan is nan raises(TypeError, lambda: nan > 0) raises(TypeError, lambda: nan < 0) raises(TypeError, lambda: nan >= 0) raises(TypeError, lambda: nan <= 0) raises(TypeError, lambda: 0 < nan) raises(TypeError, lambda: 0 > nan) raises(TypeError, lambda: 0 <= nan) raises(TypeError, lambda: 0 >= nan) assert nan**0 == 1 # as per IEEE 754 assert 1**nan is nan # IEEE 754 is not the best choice for symbolic work # test Pow._eval_power's handling of NaN assert Pow(nan, 0, evaluate=False)**2 == 1 for n in (1, 1., S.One, S.NegativeOne, Float(1)): assert n + nan is nan assert n - nan is nan assert nan + n is nan assert nan - n is nan assert n/nan is nan assert nan/n is nan def test_special_numbers(): assert isinstance(S.NaN, Number) is True assert isinstance(S.Infinity, Number) is True assert isinstance(S.NegativeInfinity, Number) is True assert S.NaN.is_number is True assert S.Infinity.is_number is True assert S.NegativeInfinity.is_number is True assert S.ComplexInfinity.is_number is True assert isinstance(S.NaN, Rational) is False assert isinstance(S.Infinity, Rational) is False assert isinstance(S.NegativeInfinity, Rational) is False assert S.NaN.is_rational is not True assert S.Infinity.is_rational is not True assert S.NegativeInfinity.is_rational is not True def test_powers(): assert integer_nthroot(1, 2) == (1, True) assert integer_nthroot(1, 5) == (1, True) assert integer_nthroot(2, 1) == (2, True) assert integer_nthroot(2, 2) == (1, False) assert integer_nthroot(2, 5) == (1, False) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(123**25, 25) == (123, True) assert integer_nthroot(123**25 + 1, 25) == (123, False) assert integer_nthroot(123**25 - 1, 25) == (122, False) assert integer_nthroot(1, 1) == (1, True) assert integer_nthroot(0, 1) == (0, True) assert integer_nthroot(0, 3) == (0, True) assert integer_nthroot(10000, 1) == (10000, True) assert integer_nthroot(4, 2) == (2, True) assert integer_nthroot(16, 2) == (4, True) assert integer_nthroot(26, 2) == (5, False) assert integer_nthroot(1234567**7, 7) == (1234567, True) assert integer_nthroot(1234567**7 + 1, 7) == (1234567, False) assert integer_nthroot(1234567**7 - 1, 7) == (1234566, False) b = 25**1000 assert integer_nthroot(b, 1000) == (25, True) assert integer_nthroot(b + 1, 1000) == (25, False) assert integer_nthroot(b - 1, 1000) == (24, False) c = 10**400 c2 = c**2 assert integer_nthroot(c2, 2) == (c, True) assert integer_nthroot(c2 + 1, 2) == (c, False) assert integer_nthroot(c2 - 1, 2) == (c - 1, False) assert integer_nthroot(2, 10**10) == (1, False) p, r = integer_nthroot(int(factorial(10000)), 100) assert p % (10**10) == 5322420655 assert not r # Test that this is fast assert integer_nthroot(2, 10**10) == (1, False) # output should be int if possible assert type(integer_nthroot(2**61, 2)[0]) is int def test_integer_nthroot_overflow(): assert integer_nthroot(10**(50*50), 50) == (10**50, True) assert integer_nthroot(10**100000, 10000) == (10**10, True) def test_integer_log(): raises(ValueError, lambda: integer_log(2, 1)) raises(ValueError, lambda: integer_log(0, 2)) raises(ValueError, lambda: integer_log(1.1, 2)) raises(ValueError, lambda: integer_log(1, 2.2)) assert integer_log(1, 2) == (0, True) assert integer_log(1, 3) == (0, True) assert integer_log(2, 3) == (0, False) assert integer_log(3, 3) == (1, True) assert integer_log(3*2, 3) == (1, False) assert integer_log(3**2, 3) == (2, True) assert integer_log(3*4, 3) == (2, False) assert integer_log(3**3, 3) == (3, True) assert integer_log(27, 5) == (2, False) assert integer_log(2, 3) == (0, False) assert integer_log(-4, -2) == (2, False) assert integer_log(27, -3) == (3, False) assert integer_log(-49, 7) == (0, False) assert integer_log(-49, -7) == (2, False) def test_isqrt(): from math import sqrt as _sqrt limit = 4503599761588223 assert int(_sqrt(limit)) == integer_nthroot(limit, 2)[0] assert int(_sqrt(limit + 1)) != integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 1) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + S.Half) == integer_nthroot(limit, 2)[0] assert isqrt(limit + 1 + S.Half) == integer_nthroot(limit + 1, 2)[0] assert isqrt(limit + 2 + S.Half) == integer_nthroot(limit + 2, 2)[0] # Regression tests for https://github.com/sympy/sympy/issues/17034 assert isqrt(4503599761588224) == 67108864 assert isqrt(9999999999999999) == 99999999 # Other corner cases, especially involving non-integers. raises(ValueError, lambda: isqrt(-1)) raises(ValueError, lambda: isqrt(-10**1000)) raises(ValueError, lambda: isqrt(Rational(-1, 2))) tiny = Rational(1, 10**1000) raises(ValueError, lambda: isqrt(-tiny)) assert isqrt(1-tiny) == 0 assert isqrt(4503599761588224-tiny) == 67108864 assert isqrt(10**100 - tiny) == 10**50 - 1 # Check that using an inaccurate math.sqrt doesn't affect the results. from sympy.core import power old_sqrt = power._sqrt power._sqrt = lambda x: 2.999999999 try: assert isqrt(9) == 3 assert isqrt(10000) == 100 finally: power._sqrt = old_sqrt def test_powers_Integer(): """Test Integer._eval_power""" # check infinity assert S.One ** S.Infinity is S.NaN assert S.NegativeOne** S.Infinity is S.NaN assert S(2) ** S.Infinity is S.Infinity assert S(-2)** S.Infinity == S.Infinity + S.Infinity * S.ImaginaryUnit assert S(0) ** S.Infinity is S.Zero # check Nan assert S.One ** S.NaN is S.NaN assert S.NegativeOne ** S.NaN is S.NaN # check for exact roots assert S.NegativeOne ** Rational(6, 5) == - (-1)**(S.One/5) assert sqrt(S(4)) == 2 assert sqrt(S(-4)) == I * 2 assert S(16) ** Rational(1, 4) == 2 assert S(-16) ** Rational(1, 4) == 2 * (-1)**Rational(1, 4) assert S(9) ** Rational(3, 2) == 27 assert S(-9) ** Rational(3, 2) == -27*I assert S(27) ** Rational(2, 3) == 9 assert S(-27) ** Rational(2, 3) == 9 * (S.NegativeOne ** Rational(2, 3)) assert (-2) ** Rational(-2, 1) == Rational(1, 4) # not exact roots assert sqrt(-3) == I*sqrt(3) assert (3) ** (Rational(3, 2)) == 3 * sqrt(3) assert (-3) ** (Rational(3, 2)) == - 3 * sqrt(-3) assert (-3) ** (Rational(5, 2)) == 9 * I * sqrt(3) assert (-3) ** (Rational(7, 2)) == - I * 27 * sqrt(3) assert (2) ** (Rational(3, 2)) == 2 * sqrt(2) assert (2) ** (Rational(-3, 2)) == sqrt(2) / 4 assert (81) ** (Rational(2, 3)) == 9 * (S(3) ** (Rational(2, 3))) assert (-81) ** (Rational(2, 3)) == 9 * (S(-3) ** (Rational(2, 3))) assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 # join roots assert sqrt(6) + sqrt(24) == 3*sqrt(6) assert sqrt(2) * sqrt(3) == sqrt(6) # separate symbols & constansts x = Symbol("x") assert sqrt(49 * x) == 7 * sqrt(x) assert sqrt((3 - sqrt(pi)) ** 2) == 3 - sqrt(pi) # check that it is fast for big numbers assert (2**64 + 1) ** Rational(4, 3) assert (2**64 + 1) ** Rational(17, 25) # negative rational power and negative base assert (-3) ** Rational(-7, 3) == \ -(-1)**Rational(2, 3)*3**Rational(2, 3)/27 assert (-3) ** Rational(-2, 3) == \ -(-1)**Rational(1, 3)*3**Rational(1, 3)/3 assert (-2) ** Rational(-10, 3) == \ (-1)**Rational(2, 3)*2**Rational(2, 3)/16 assert abs(Pow(-2, Rational(-10, 3)).n() - Pow(-2, Rational(-10, 3), evaluate=False).n()) < 1e-16 # negative base and rational power with some simplification assert (-8) ** Rational(2, 5) == \ 2*(-1)**Rational(2, 5)*2**Rational(1, 5) assert (-4) ** Rational(9, 5) == \ -8*(-1)**Rational(4, 5)*2**Rational(3, 5) assert S(1234).factors() == {617: 1, 2: 1} assert Rational(2*3, 3*5*7).factors() == {2: 1, 5: -1, 7: -1} # test that eval_power factors numbers bigger than # the current limit in factor_trial_division (2**15) from sympy import nextprime n = nextprime(2**15) assert sqrt(n**2) == n assert sqrt(n**3) == n*sqrt(n) assert sqrt(4*n) == 2*sqrt(n) # check that factors of base with powers sharing gcd with power are removed assert (2**4*3)**Rational(1, 6) == 2**Rational(2, 3)*3**Rational(1, 6) assert (2**4*3)**Rational(5, 6) == 8*2**Rational(1, 3)*3**Rational(5, 6) # check that bases sharing a gcd are exptracted assert 2**Rational(1, 3)*3**Rational(1, 4)*6**Rational(1, 5) == \ 2**Rational(8, 15)*3**Rational(9, 20) assert sqrt(8)*24**Rational(1, 3)*6**Rational(1, 5) == \ 4*2**Rational(7, 10)*3**Rational(8, 15) assert sqrt(8)*(-24)**Rational(1, 3)*(-6)**Rational(1, 5) == \ 4*(-3)**Rational(8, 15)*2**Rational(7, 10) assert 2**Rational(1, 3)*2**Rational(8, 9) == 2*2**Rational(2, 9) assert 2**Rational(2, 3)*6**Rational(1, 3) == 2*3**Rational(1, 3) assert 2**Rational(2, 3)*6**Rational(8, 9) == \ 2*2**Rational(5, 9)*3**Rational(8, 9) assert (-2)**Rational(2, S(3))*(-4)**Rational(1, S(3)) == -2*2**Rational(1, 3) assert 3*Pow(3, 2, evaluate=False) == 3**3 assert 3*Pow(3, Rational(-1, 3), evaluate=False) == 3**Rational(2, 3) assert (-2)**Rational(1, 3)*(-3)**Rational(1, 4)*(-5)**Rational(5, 6) == \ -(-1)**Rational(5, 12)*2**Rational(1, 3)*3**Rational(1, 4) * \ 5**Rational(5, 6) assert Integer(-2)**Symbol('', even=True) == \ Integer(2)**Symbol('', even=True) assert (-1)**Float(.5) == 1.0*I def test_powers_Rational(): """Test Rational._eval_power""" # check infinity assert S.Half ** S.Infinity == 0 assert Rational(3, 2) ** S.Infinity is S.Infinity assert Rational(-1, 2) ** S.Infinity == 0 assert Rational(-3, 2) ** S.Infinity == \ S.Infinity + S.Infinity * S.ImaginaryUnit # check Nan assert Rational(3, 4) ** S.NaN is S.NaN assert Rational(-2, 3) ** S.NaN is S.NaN # exact roots on numerator assert sqrt(Rational(4, 3)) == 2 * sqrt(3) / 3 assert Rational(4, 3) ** Rational(3, 2) == 8 * sqrt(3) / 9 assert sqrt(Rational(-4, 3)) == I * 2 * sqrt(3) / 3 assert Rational(-4, 3) ** Rational(3, 2) == - I * 8 * sqrt(3) / 9 assert Rational(27, 2) ** Rational(1, 3) == 3 * (2 ** Rational(2, 3)) / 2 assert Rational(5**3, 8**3) ** Rational(4, 3) == Rational(5**4, 8**4) # exact root on denominator assert sqrt(Rational(1, 4)) == S.Half assert sqrt(Rational(1, -4)) == I * S.Half assert sqrt(Rational(3, 4)) == sqrt(3) / 2 assert sqrt(Rational(3, -4)) == I * sqrt(3) / 2 assert Rational(5, 27) ** Rational(1, 3) == (5 ** Rational(1, 3)) / 3 # not exact roots assert sqrt(S.Half) == sqrt(2) / 2 assert sqrt(Rational(-4, 7)) == I * sqrt(Rational(4, 7)) assert Rational(-3, 2)**Rational(-7, 3) == \ -4*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/27 assert Rational(-3, 2)**Rational(-2, 3) == \ -(-1)**Rational(1, 3)*2**Rational(2, 3)*3**Rational(1, 3)/3 assert Rational(-3, 2)**Rational(-10, 3) == \ 8*(-1)**Rational(2, 3)*2**Rational(1, 3)*3**Rational(2, 3)/81 assert abs(Pow(Rational(-2, 3), Rational(-7, 4)).n() - Pow(Rational(-2, 3), Rational(-7, 4), evaluate=False).n()) < 1e-16 # negative integer power and negative rational base assert Rational(-2, 3) ** Rational(-2, 1) == Rational(9, 4) a = Rational(1, 10) assert a**Float(a, 2) == Float(a, 2)**Float(a, 2) assert Rational(-2, 3)**Symbol('', even=True) == \ Rational(2, 3)**Symbol('', even=True) def test_powers_Float(): assert str((S('-1/10')**S('3/10')).n()) == str(Float(-.1)**(.3)) def test_abs1(): assert Rational(1, 6) != Rational(-1, 6) assert abs(Rational(1, 6)) == abs(Rational(-1, 6)) def test_accept_int(): assert Float(4) == 4 def test_dont_accept_str(): assert Float("0.2") != "0.2" assert not (Float("0.2") == "0.2") def test_int(): a = Rational(5) assert int(a) == 5 a = Rational(9, 10) assert int(a) == int(-a) == 0 assert 1/(-1)**Rational(2, 3) == -(-1)**Rational(1, 3) assert int(pi) == 3 assert int(E) == 2 assert int(GoldenRatio) == 1 assert int(TribonacciConstant) == 2 # issue 10368 a = Rational(32442016954, 78058255275) assert type(int(a)) is type(int(-a)) is int def test_long(): a = Rational(5) assert long(a) == 5 a = Rational(9, 10) assert long(a) == long(-a) == 0 a = Integer(2**100) assert long(a) == a assert long(pi) == 3 assert long(E) == 2 assert long(GoldenRatio) == 1 assert long(TribonacciConstant) == 2 def test_real_bug(): x = Symbol("x") assert str(2.0*x*x) in ["(2.0*x)*x", "2.0*x**2", "2.00000000000000*x**2"] assert str(2.1*x*x) != "(2.0*x)*x" def test_bug_sqrt(): assert ((sqrt(Rational(2)) + 1)*(sqrt(Rational(2)) - 1)).expand() == 1 def test_pi_Pi(): "Test that pi (instance) is imported, but Pi (class) is not" from sympy import pi # noqa with raises(ImportError): from sympy import Pi # noqa def test_no_len(): # there should be no len for numbers raises(TypeError, lambda: len(Rational(2))) raises(TypeError, lambda: len(Rational(2, 3))) raises(TypeError, lambda: len(Integer(2))) def test_issue_3321(): assert sqrt(Rational(1, 5)) == Rational(1, 5)**S.Half assert 5 * sqrt(Rational(1, 5)) == sqrt(5) def test_issue_3692(): assert ((-1)**Rational(1, 6)).expand(complex=True) == I/2 + sqrt(3)/2 assert ((-5)**Rational(1, 6)).expand(complex=True) == \ 5**Rational(1, 6)*I/2 + 5**Rational(1, 6)*sqrt(3)/2 assert ((-64)**Rational(1, 6)).expand(complex=True) == I + sqrt(3) def test_issue_3423(): x = Symbol("x") assert sqrt(x - 1).as_base_exp() == (x - 1, S.Half) assert sqrt(x - 1) != I*sqrt(1 - x) def test_issue_3449(): x = Symbol("x") assert sqrt(x - 1).subs(x, 5) == 2 def test_issue_13890(): x = Symbol("x") e = (-x/4 - S.One/12)**x - 1 f = simplify(e) a = Rational(9, 5) assert abs(e.subs(x,a).evalf() - f.subs(x,a).evalf()) < 1e-15 def test_Integer_factors(): def F(i): return Integer(i).factors() assert F(1) == {} assert F(2) == {2: 1} assert F(3) == {3: 1} assert F(4) == {2: 2} assert F(5) == {5: 1} assert F(6) == {2: 1, 3: 1} assert F(7) == {7: 1} assert F(8) == {2: 3} assert F(9) == {3: 2} assert F(10) == {2: 1, 5: 1} assert F(11) == {11: 1} assert F(12) == {2: 2, 3: 1} assert F(13) == {13: 1} assert F(14) == {2: 1, 7: 1} assert F(15) == {3: 1, 5: 1} assert F(16) == {2: 4} assert F(17) == {17: 1} assert F(18) == {2: 1, 3: 2} assert F(19) == {19: 1} assert F(20) == {2: 2, 5: 1} assert F(21) == {3: 1, 7: 1} assert F(22) == {2: 1, 11: 1} assert F(23) == {23: 1} assert F(24) == {2: 3, 3: 1} assert F(25) == {5: 2} assert F(26) == {2: 1, 13: 1} assert F(27) == {3: 3} assert F(28) == {2: 2, 7: 1} assert F(29) == {29: 1} assert F(30) == {2: 1, 3: 1, 5: 1} assert F(31) == {31: 1} assert F(32) == {2: 5} assert F(33) == {3: 1, 11: 1} assert F(34) == {2: 1, 17: 1} assert F(35) == {5: 1, 7: 1} assert F(36) == {2: 2, 3: 2} assert F(37) == {37: 1} assert F(38) == {2: 1, 19: 1} assert F(39) == {3: 1, 13: 1} assert F(40) == {2: 3, 5: 1} assert F(41) == {41: 1} assert F(42) == {2: 1, 3: 1, 7: 1} assert F(43) == {43: 1} assert F(44) == {2: 2, 11: 1} assert F(45) == {3: 2, 5: 1} assert F(46) == {2: 1, 23: 1} assert F(47) == {47: 1} assert F(48) == {2: 4, 3: 1} assert F(49) == {7: 2} assert F(50) == {2: 1, 5: 2} assert F(51) == {3: 1, 17: 1} def test_Rational_factors(): def F(p, q, visual=None): return Rational(p, q).factors(visual=visual) assert F(2, 3) == {2: 1, 3: -1} assert F(2, 9) == {2: 1, 3: -2} assert F(2, 15) == {2: 1, 3: -1, 5: -1} assert F(6, 10) == {3: 1, 5: -1} def test_issue_4107(): assert pi*(E + 10) + pi*(-E - 10) != 0 assert pi*(E + 10**10) + pi*(-E - 10**10) != 0 assert pi*(E + 10**20) + pi*(-E - 10**20) != 0 assert pi*(E + 10**80) + pi*(-E - 10**80) != 0 assert (pi*(E + 10) + pi*(-E - 10)).expand() == 0 assert (pi*(E + 10**10) + pi*(-E - 10**10)).expand() == 0 assert (pi*(E + 10**20) + pi*(-E - 10**20)).expand() == 0 assert (pi*(E + 10**80) + pi*(-E - 10**80)).expand() == 0 def test_IntegerInteger(): a = Integer(4) b = Integer(a) assert a == b def test_Rational_gcd_lcm_cofactors(): assert Integer(4).gcd(2) == Integer(2) assert Integer(4).lcm(2) == Integer(4) assert Integer(4).gcd(Integer(2)) == Integer(2) assert Integer(4).lcm(Integer(2)) == Integer(4) a, b = 720**99911, 480**12342 assert Integer(a).lcm(b) == a*b/Integer(a).gcd(b) assert Integer(4).gcd(3) == Integer(1) assert Integer(4).lcm(3) == Integer(12) assert Integer(4).gcd(Integer(3)) == Integer(1) assert Integer(4).lcm(Integer(3)) == Integer(12) assert Rational(4, 3).gcd(2) == Rational(2, 3) assert Rational(4, 3).lcm(2) == Integer(4) assert Rational(4, 3).gcd(Integer(2)) == Rational(2, 3) assert Rational(4, 3).lcm(Integer(2)) == Integer(4) assert Integer(4).gcd(Rational(2, 9)) == Rational(2, 9) assert Integer(4).lcm(Rational(2, 9)) == Integer(4) assert Rational(4, 3).gcd(Rational(2, 9)) == Rational(2, 9) assert Rational(4, 3).lcm(Rational(2, 9)) == Rational(4, 3) assert Rational(4, 5).gcd(Rational(2, 9)) == Rational(2, 45) assert Rational(4, 5).lcm(Rational(2, 9)) == Integer(4) assert Rational(5, 9).lcm(Rational(3, 7)) == Rational(Integer(5).lcm(3),Integer(9).gcd(7)) assert Integer(4).cofactors(2) == (Integer(2), Integer(2), Integer(1)) assert Integer(4).cofactors(Integer(2)) == \ (Integer(2), Integer(2), Integer(1)) assert Integer(4).gcd(Float(2.0)) == S.One assert Integer(4).lcm(Float(2.0)) == Float(8.0) assert Integer(4).cofactors(Float(2.0)) == (S.One, Integer(4), Float(2.0)) assert S.Half.gcd(Float(2.0)) == S.One assert S.Half.lcm(Float(2.0)) == Float(1.0) assert S.Half.cofactors(Float(2.0)) == \ (S.One, S.Half, Float(2.0)) def test_Float_gcd_lcm_cofactors(): assert Float(2.0).gcd(Integer(4)) == S.One assert Float(2.0).lcm(Integer(4)) == Float(8.0) assert Float(2.0).cofactors(Integer(4)) == (S.One, Float(2.0), Integer(4)) assert Float(2.0).gcd(S.Half) == S.One assert Float(2.0).lcm(S.Half) == Float(1.0) assert Float(2.0).cofactors(S.Half) == \ (S.One, Float(2.0), S.Half) def test_issue_4611(): assert abs(pi._evalf(50) - 3.14159265358979) < 1e-10 assert abs(E._evalf(50) - 2.71828182845905) < 1e-10 assert abs(Catalan._evalf(50) - 0.915965594177219) < 1e-10 assert abs(EulerGamma._evalf(50) - 0.577215664901533) < 1e-10 assert abs(GoldenRatio._evalf(50) - 1.61803398874989) < 1e-10 assert abs(TribonacciConstant._evalf(50) - 1.83928675521416) < 1e-10 x = Symbol("x") assert (pi + x).evalf() == pi.evalf() + x assert (E + x).evalf() == E.evalf() + x assert (Catalan + x).evalf() == Catalan.evalf() + x assert (EulerGamma + x).evalf() == EulerGamma.evalf() + x assert (GoldenRatio + x).evalf() == GoldenRatio.evalf() + x assert (TribonacciConstant + x).evalf() == TribonacciConstant.evalf() + x @conserve_mpmath_dps def test_conversion_to_mpmath(): assert mpmath.mpmathify(Integer(1)) == mpmath.mpf(1) assert mpmath.mpmathify(S.Half) == mpmath.mpf(0.5) assert mpmath.mpmathify(Float('1.23', 15)) == mpmath.mpf('1.23') assert mpmath.mpmathify(I) == mpmath.mpc(1j) assert mpmath.mpmathify(1 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(1.0 + 2.0*I) == mpmath.mpc(1 + 2j) assert mpmath.mpmathify(S.Half + S.Half*I) == mpmath.mpc(0.5 + 0.5j) assert mpmath.mpmathify(2*I) == mpmath.mpc(2j) assert mpmath.mpmathify(2.0*I) == mpmath.mpc(2j) assert mpmath.mpmathify(S.Half*I) == mpmath.mpc(0.5j) mpmath.mp.dps = 100 assert mpmath.mpmathify(pi.evalf(100) + pi.evalf(100)*I) == mpmath.pi + mpmath.pi*mpmath.j assert mpmath.mpmathify(pi.evalf(100)*I) == mpmath.pi*mpmath.j def test_relational(): # real x = S(.1) assert (x != cos) is True assert (x == cos) is False # rational x = Rational(1, 3) assert (x != cos) is True assert (x == cos) is False # integer defers to rational so these tests are omitted # number symbol x = pi assert (x != cos) is True assert (x == cos) is False def test_Integer_as_index(): assert 'hello'[Integer(2):] == 'llo' def test_Rational_int(): assert int( Rational(7, 5)) == 1 assert int( S.Half) == 0 assert int(Rational(-1, 2)) == 0 assert int(-Rational(7, 5)) == -1 def test_zoo(): b = Symbol('b', finite=True) nz = Symbol('nz', nonzero=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) im = Symbol('i', imaginary=True) c = Symbol('c', complex=True) pb = Symbol('pb', positive=True, finite=True) nb = Symbol('nb', negative=True, finite=True) imb = Symbol('ib', imaginary=True, finite=True) for i in [I, S.Infinity, S.NegativeInfinity, S.Zero, S.One, S.Pi, S.Half, S(3), log(3), b, nz, p, n, im, pb, nb, imb, c]: if i.is_finite and (i.is_real or i.is_imaginary): assert i + zoo is zoo assert i - zoo is zoo assert zoo + i is zoo assert zoo - i is zoo elif i.is_finite is not False: assert (i + zoo).is_Add assert (i - zoo).is_Add assert (zoo + i).is_Add assert (zoo - i).is_Add else: assert (i + zoo) is S.NaN assert (i - zoo) is S.NaN assert (zoo + i) is S.NaN assert (zoo - i) is S.NaN if fuzzy_not(i.is_zero) and (i.is_extended_real or i.is_imaginary): assert i*zoo is zoo assert zoo*i is zoo elif i.is_zero: assert i*zoo is S.NaN assert zoo*i is S.NaN else: assert (i*zoo).is_Mul assert (zoo*i).is_Mul if fuzzy_not((1/i).is_zero) and (i.is_real or i.is_imaginary): assert zoo/i is zoo elif (1/i).is_zero: assert zoo/i is S.NaN elif i.is_zero: assert zoo/i is zoo else: assert (zoo/i).is_Mul assert (I*oo).is_Mul # allow directed infinity assert zoo + zoo is S.NaN assert zoo * zoo is zoo assert zoo - zoo is S.NaN assert zoo/zoo is S.NaN assert zoo**zoo is S.NaN assert zoo**0 is S.One assert zoo**2 is zoo assert 1/zoo is S.Zero assert Mul.flatten([S.NegativeOne, oo, S(0)]) == ([S.NaN], [], None) def test_issue_4122(): x = Symbol('x', nonpositive=True) assert oo + x is oo x = Symbol('x', extended_nonpositive=True) assert (oo + x).is_Add x = Symbol('x', finite=True) assert (oo + x).is_Add # x could be imaginary x = Symbol('x', nonnegative=True) assert oo + x is oo x = Symbol('x', extended_nonnegative=True) assert oo + x is oo x = Symbol('x', finite=True, real=True) assert oo + x is oo # similarly for negative infinity x = Symbol('x', nonnegative=True) assert -oo + x is -oo x = Symbol('x', extended_nonnegative=True) assert (-oo + x).is_Add x = Symbol('x', finite=True) assert (-oo + x).is_Add x = Symbol('x', nonpositive=True) assert -oo + x is -oo x = Symbol('x', extended_nonpositive=True) assert -oo + x is -oo x = Symbol('x', finite=True, real=True) assert -oo + x is -oo def test_GoldenRatio_expand(): assert GoldenRatio.expand(func=True) == S.Half + sqrt(5)/2 def test_TribonacciConstant_expand(): assert TribonacciConstant.expand(func=True) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_as_content_primitive(): assert S.Zero.as_content_primitive() == (1, 0) assert S.Half.as_content_primitive() == (S.Half, 1) assert (Rational(-1, 2)).as_content_primitive() == (S.Half, -1) assert S(3).as_content_primitive() == (3, 1) assert S(3.1).as_content_primitive() == (1, 3.1) def test_hashing_sympy_integers(): # Test for issue 5072 assert set([Integer(3)]) == set([int(3)]) assert hash(Integer(4)) == hash(int(4)) def test_rounding_issue_4172(): assert int((E**100).round()) == \ 26881171418161354484126255515800135873611119 assert int((pi**100).round()) == \ 51878483143196131920862615246303013562686760680406 assert int((Rational(1)/EulerGamma**100).round()) == \ 734833795660954410469466 @XFAIL def test_mpmath_issues(): from mpmath.libmp.libmpf import _normalize import mpmath.libmp as mlib rnd = mlib.round_nearest mpf = (0, long(0), -123, -1, 53, rnd) # nan assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (0, long(0), -456, -2, 53, rnd) # +inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) mpf = (1, long(0), -789, -3, 53, rnd) # -inf assert _normalize(mpf, 53) != (0, long(0), 0, 0) from mpmath.libmp.libmpf import fnan assert mlib.mpf_eq(fnan, fnan) def test_Catalan_EulerGamma_prec(): n = GoldenRatio f = Float(n.n(), 5) assert f._mpf_ == (0, long(212079), -17, 18) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ n = EulerGamma f = Float(n.n(), 5) assert f._mpf_ == (0, long(302627), -19, 19) assert f._prec == 20 assert n._as_mpf_val(20) == f._mpf_ def test_Catalan_rewrite(): k = Dummy('k', integer=True, nonnegative=True) assert Catalan.rewrite(Sum).dummy_eq( Sum((-1)**k/(2*k + 1)**2, (k, 0, oo))) assert Catalan.rewrite() == Catalan def test_bool_eq(): assert 0 == False assert S(0) == False assert S(0) != S.false assert 1 == True assert S.One == True assert S.One != S.true def test_Float_eq(): # all .5 values are the same assert Float(.5, 10) == Float(.5, 11) == Float(.5, 1) # but floats that aren't exact in base-2 still # don't compare the same because they have different # underlying mpf values assert Float(.12, 3) != Float(.12, 4) assert Float(.12, 3) != .12 assert 0.12 != Float(.12, 3) assert Float('.12', 22) != .12 # issue 11707 # but Float/Rational -- except for 0 -- # are exact so Rational(x) = Float(y) only if # Rational(x) == Rational(Float(y)) assert Float('1.1') != Rational(11, 10) assert Rational(11, 10) != Float('1.1') # coverage assert not Float(3) == 2 assert not Float(2**2) == S.Half assert Float(2**2) == 4 assert not Float(2**-2) == 1 assert Float(2**-1) == S.Half assert not Float(2*3) == 3 assert not Float(2*3) == S.Half assert Float(2*3) == 6 assert not Float(2*3) == 8 assert Float(.75) == Rational(3, 4) assert Float(5/18) == 5/18 # 4473 assert Float(2.) != 3 assert Float((0,1,-3)) == S.One/8 assert Float((0,1,-3)) != S.One/9 # 16196 assert 2 == Float(2) # as per Python # but in a computation... assert t**2 != t**2.0 def test_int_NumberSymbols(): assert [int(i) for i in [pi, EulerGamma, E, GoldenRatio, Catalan]] == \ [3, 0, 2, 1, 0] def test_issue_6640(): from mpmath.libmp.libmpf import finf, fninf # fnan is not included because Float no longer returns fnan, # but otherwise, the same sort of test could apply assert Float(finf).is_zero is False assert Float(fninf).is_zero is False assert bool(Float(0)) is False def test_issue_6349(): assert Float('23.e3', '')._prec == 10 assert Float('23e3', '')._prec == 20 assert Float('23000', '')._prec == 20 assert Float('-23000', '')._prec == 20 def test_mpf_norm(): assert mpf_norm((1, 0, 1, 0), 10) == mpf('0')._mpf_ assert Float._new((1, 0, 1, 0), 10)._mpf_ == mpf('0')._mpf_ def test_latex(): assert latex(pi) == r"\pi" assert latex(E) == r"e" assert latex(GoldenRatio) == r"\phi" assert latex(TribonacciConstant) == r"\text{TribonacciConstant}" assert latex(EulerGamma) == r"\gamma" assert latex(oo) == r"\infty" assert latex(-oo) == r"-\infty" assert latex(zoo) == r"\tilde{\infty}" assert latex(nan) == r"\text{NaN}" assert latex(I) == r"i" def test_issue_7742(): assert -oo % 1 is nan def test_simplify_AlgebraicNumber(): A = AlgebraicNumber e = 3**(S.One/6)*(3 + (135 + 78*sqrt(3))**Rational(2, 3))/(45 + 26*sqrt(3))**(S.One/3) assert simplify(A(e)) == A(12) # wester test_C20 e = (41 + 29*sqrt(2))**(S.One/5) assert simplify(A(e)) == A(1 + sqrt(2)) # wester test_C21 e = (3 + 4*I)**Rational(3, 2) assert simplify(A(e)) == A(2 + 11*I) # issue 4401 def test_Float_idempotence(): x = Float('1.23', '') y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) x = Float(10**20) y = Float(x) z = Float(x, 15) assert same_and_same_prec(y, x) assert not same_and_same_prec(z, x) def test_comp1(): # sqrt(2) = 1.414213 5623730950... a = sqrt(2).n(7) assert comp(a, 1.4142129) is False assert comp(a, 1.4142130) # ... assert comp(a, 1.4142141) assert comp(a, 1.4142142) is False assert comp(sqrt(2).n(2), '1.4') assert comp(sqrt(2).n(2), Float(1.4, 2), '') assert comp(sqrt(2).n(2), 1.4, '') assert comp(sqrt(2).n(2), Float(1.4, 3), '') is False assert comp(sqrt(2) + sqrt(3)*I, 1.4 + 1.7*I, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.89, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*0.90, .1) assert comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.07, .1) assert not comp(sqrt(2) + sqrt(3)*I, (1.5 + 1.7*I)*1.08, .1) assert [(i, j) for i in range(130, 150) for j in range(170, 180) if comp((sqrt(2)+ I*sqrt(3)).n(3), i/100. + I*j/100.)] == [ (141, 173), (142, 173)] raises(ValueError, lambda: comp(t, '1')) raises(ValueError, lambda: comp(t, 1)) assert comp(0, 0.0) assert comp(.5, S.Half) assert comp(2 + sqrt(2), 2.0 + sqrt(2)) assert not comp(0, 1) assert not comp(2, sqrt(2)) assert not comp(2 + I, 2.0 + sqrt(2)) assert not comp(2.0 + sqrt(2), 2 + I) assert not comp(2.0 + sqrt(2), sqrt(3)) assert comp(1/pi.n(4), 0.3183, 1e-5) assert not comp(1/pi.n(4), 0.3183, 8e-6) def test_issue_9491(): assert oo**zoo is nan def test_issue_10063(): assert 2**Float(3) == Float(8) def test_issue_10020(): assert oo**I is S.NaN assert oo**(1 + I) is S.ComplexInfinity assert oo**(-1 + I) is S.Zero assert (-oo)**I is S.NaN assert (-oo)**(-1 + I) is S.Zero assert oo**t == Pow(oo, t, evaluate=False) assert (-oo)**t == Pow(-oo, t, evaluate=False) def test_invert_numbers(): assert S(2).invert(5) == 3 assert S(2).invert(Rational(5, 2)) == S.Half assert S(2).invert(5.) == 0.5 assert S(2).invert(S(5)) == 3 assert S(2.).invert(5) == 0.5 assert S(sqrt(2)).invert(5) == 1/sqrt(2) assert S(sqrt(2)).invert(sqrt(3)) == 1/sqrt(2) def test_mod_inverse(): assert mod_inverse(3, 11) == 4 assert mod_inverse(5, 11) == 9 assert mod_inverse(21124921, 521512) == 7713 assert mod_inverse(124215421, 5125) == 2981 assert mod_inverse(214, 12515) == 1579 assert mod_inverse(5823991, 3299) == 1442 assert mod_inverse(123, 44) == 39 assert mod_inverse(2, 5) == 3 assert mod_inverse(-2, 5) == 2 assert mod_inverse(2, -5) == -2 assert mod_inverse(-2, -5) == -3 assert mod_inverse(-3, -7) == -5 x = Symbol('x') assert S(2).invert(x) == S.Half raises(TypeError, lambda: mod_inverse(2, x)) raises(ValueError, lambda: mod_inverse(2, S.Half)) raises(ValueError, lambda: mod_inverse(2, cos(1)**2 + sin(1)**2)) def test_golden_ratio_rewrite_as_sqrt(): assert GoldenRatio.rewrite(sqrt) == S.Half + sqrt(5)*S.Half def test_tribonacci_constant_rewrite_as_sqrt(): assert TribonacciConstant.rewrite(sqrt) == \ (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3 def test_comparisons_with_unknown_type(): class Foo(object): """ Class that is unaware of Basic, and relies on both classes returning the NotImplemented singleton for equivalence to evaluate to False. """ ni, nf, nr = Integer(3), Float(1.0), Rational(1, 3) foo = Foo() for n in ni, nf, nr, oo, -oo, zoo, nan: assert n != foo assert foo != n assert not n == foo assert not foo == n if PY3: raises(TypeError, lambda: n < foo) raises(TypeError, lambda: foo > n) raises(TypeError, lambda: n > foo) raises(TypeError, lambda: foo < n) raises(TypeError, lambda: n <= foo) raises(TypeError, lambda: foo >= n) raises(TypeError, lambda: n >= foo) raises(TypeError, lambda: foo <= n) class Bar(object): """ Class that considers itself equal to any instance of Number except infinities and nans, and relies on sympy types returning the NotImplemented singleton for symmetric equality relations. """ def __eq__(self, other): if other in (oo, -oo, zoo, nan): return False if isinstance(other, Number): return True return NotImplemented def __ne__(self, other): return not self == other bar = Bar() for n in ni, nf, nr: assert n == bar assert bar == n assert not n != bar assert not bar != n for n in oo, -oo, zoo, nan: assert n != bar assert bar != n assert not n == bar assert not bar == n for n in ni, nf, nr, oo, -oo, zoo, nan: if PY3: raises(TypeError, lambda: n < bar) raises(TypeError, lambda: bar > n) raises(TypeError, lambda: n > bar) raises(TypeError, lambda: bar < n) raises(TypeError, lambda: n <= bar) raises(TypeError, lambda: bar >= n) raises(TypeError, lambda: n >= bar) raises(TypeError, lambda: bar <= n) def test_NumberSymbol_comparison(): from sympy.core.tests.test_relational import rel_check rpi = Rational('905502432259640373/288230376151711744') fpi = Float(float(pi)) assert rel_check(rpi, fpi) def test_Integer_precision(): # Make sure Integer inputs for keyword args work assert Float('1.0', dps=Integer(15))._prec == 53 assert Float('1.0', precision=Integer(15))._prec == 15 assert type(Float('1.0', precision=Integer(15))._prec) == int assert sympify(srepr(Float('1.0', precision=15))) == Float('1.0', precision=15) def test_numpy_to_float(): from sympy.utilities.pytest import skip from sympy.external import import_module np = import_module('numpy') if not np: skip('numpy not installed. Abort numpy tests.') def check_prec_and_relerr(npval, ratval): prec = np.finfo(npval).nmant + 1 x = Float(npval) assert x._prec == prec y = Float(ratval, precision=prec) assert abs((x - y)/y) < 2**(-(prec + 1)) check_prec_and_relerr(np.float16(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float32(2.0/3), Rational(2, 3)) check_prec_and_relerr(np.float64(2.0/3), Rational(2, 3)) # extended precision, on some arch/compilers: x = np.longdouble(2)/3 check_prec_and_relerr(x, Rational(2, 3)) y = Float(x, precision=10) assert same_and_same_prec(y, Float(Rational(2, 3), precision=10)) raises(TypeError, lambda: Float(np.complex64(1+2j))) raises(TypeError, lambda: Float(np.complex128(1+2j))) def test_Integer_ceiling_floor(): a = Integer(4) assert a.floor() == a assert a.ceiling() == a def test_ComplexInfinity(): assert zoo.floor() is zoo assert zoo.ceiling() is zoo assert zoo**zoo is S.NaN def test_Infinity_floor_ceiling_power(): assert oo.floor() is oo assert oo.ceiling() is oo assert oo**S.NaN is S.NaN assert oo**zoo is S.NaN def test_One_power(): assert S.One**12 is S.One assert S.NegativeOne**S.NaN is S.NaN def test_NegativeInfinity(): assert (-oo).floor() is -oo assert (-oo).ceiling() is -oo assert (-oo)**11 is -oo assert (-oo)**12 is oo def test_issue_6133(): if PY3: raises(TypeError, lambda: (-oo < None)) raises(TypeError, lambda: (S(-2) < None)) raises(TypeError, lambda: (oo < None)) raises(TypeError, lambda: (oo > None)) raises(TypeError, lambda: (S(2) < None)) def test_abc(): x = numbers.Float(5) assert(isinstance(x, nums.Number)) assert(isinstance(x, numbers.Number)) assert(isinstance(x, nums.Real)) y = numbers.Rational(1, 3) assert(isinstance(y, nums.Number)) assert(y.numerator() == 1) assert(y.denominator() == 3) assert(isinstance(y, nums.Rational)) z = numbers.Integer(3) assert(isinstance(z, nums.Number)) def test_floordiv(): assert S(2)//S.Half == 4
89608d23ef7ad88d3ed161edf5e0b7c02dec613e14d4a9734ab5862a8ad8a9af
from sympy.core.basic import Basic from sympy.core.numbers import Rational from sympy.core.singleton import S, Singleton, SingletonRegistry from sympy.core.compatibility import with_metaclass, exec_ def test_Singleton(): global instantiated instantiated = 0 class MySingleton(with_metaclass(Singleton, Basic)): def __new__(cls): global instantiated instantiated += 1 return Basic.__new__(cls) assert instantiated == 0 MySingleton() # force instantiation assert instantiated == 1 assert MySingleton() is not Basic() assert MySingleton() is MySingleton() assert S.MySingleton is MySingleton() assert instantiated == 1 class MySingleton_sub(MySingleton): pass assert instantiated == 1 MySingleton_sub() assert instantiated == 2 assert MySingleton_sub() is not MySingleton() assert MySingleton_sub() is MySingleton_sub() def test_singleton_redefinition(): class TestSingleton(with_metaclass(Singleton, Basic)): pass assert TestSingleton() is S.TestSingleton class TestSingleton(with_metaclass(Singleton, Basic)): pass assert TestSingleton() is S.TestSingleton def test_names_in_namespace(): # Every singleton name should be accessible from the 'from sympy import *' # namespace in addition to the S object. However, it does not need to be # by the same name (e.g., oo instead of S.Infinity). # As a general rule, things should only be added to the singleton registry # if they are used often enough that code can benefit either from the # performance benefit of being able to use 'is' (this only matters in very # tight loops), or from the memory savings of having exactly one instance # (this matters for the numbers singletons, but very little else). The # singleton registry is already a bit overpopulated, and things cannot be # removed from it without breaking backwards compatibility. So if you got # here by adding something new to the singletons, ask yourself if it # really needs to be singletonized. Note that SymPy classes compare to one # another just fine, so Class() == Class() will give True even if each # Class() returns a new instance. Having unique instances is only # necessary for the above noted performance gains. It should not be needed # for any behavioral purposes. # If you determine that something really should be a singleton, it must be # accessible to sympify() without using 'S' (hence this test). Also, its # str printer should print a form that does not use S. This is because # sympify() disables attribute lookups by default for safety purposes. d = {} exec_('from sympy import *', d) for name in dir(S) + list(S._classes_to_install): if name.startswith('_'): continue if name == 'register': continue if isinstance(getattr(S, name), Rational): continue if getattr(S, name).__module__.startswith('sympy.physics'): continue if name in ['MySingleton', 'MySingleton_sub', 'TestSingleton']: # From the tests above continue if name == 'NegativeInfinity': # Accessible by -oo continue # Use is here to ensure it is the exact same object assert any(getattr(S, name) is i for i in d.values()), name
96629ba37d7dd7ce46d6db0d4910f820ec33f19f43ad7a4ca8bee64797145e56
from sympy import Symbol, var, Function, FunctionClass from sympy.utilities.pytest import raises def test_var(): ns = {"var": var, "raises": raises} eval("var('a')", ns) assert ns["a"] == Symbol("a") eval("var('b bb cc zz _x')", ns) assert ns["b"] == Symbol("b") assert ns["bb"] == Symbol("bb") assert ns["cc"] == Symbol("cc") assert ns["zz"] == Symbol("zz") assert ns["_x"] == Symbol("_x") v = eval("var(['d', 'e', 'fg'])", ns) assert ns['d'] == Symbol('d') assert ns['e'] == Symbol('e') assert ns['fg'] == Symbol('fg') # check return value assert v != ['d', 'e', 'fg'] assert v == [Symbol('d'), Symbol('e'), Symbol('fg')] def test_var_return(): ns = {"var": var, "raises": raises} "raises(ValueError, lambda: var(''))" v2 = eval("var('q')", ns) v3 = eval("var('q p')", ns) assert v2 == Symbol('q') assert v3 == (Symbol('q'), Symbol('p')) def test_var_accepts_comma(): ns = {"var": var} v1 = eval("var('x y z')", ns) v2 = eval("var('x,y,z')", ns) v3 = eval("var('x,y z')", ns) assert v1 == v2 assert v1 == v3 def test_var_keywords(): ns = {"var": var} eval("var('x y', real=True)", ns) assert ns['x'].is_real and ns['y'].is_real def test_var_cls(): ns = {"var": var, "Function": Function} f = eval("var('f', cls=Function)", ns) assert isinstance(ns['f'], FunctionClass) g, h = eval("var('g,h', cls=Function)", ns) assert isinstance(ns['g'], FunctionClass) assert isinstance(ns['h'], FunctionClass)
21463f8a68e64f1e080285c25ac2416263e6dfbee2c7c0098391a5340d962074
from sympy import (Lambda, Symbol, Function, Derivative, Subs, sqrt, log, exp, Rational, Float, sin, cos, acos, diff, I, re, im, E, expand, pi, O, Sum, S, polygamma, loggamma, expint, Tuple, Dummy, Eq, Expr, symbols, nfloat, Piecewise, Indexed, Matrix, Basic, Dict, oo, zoo, nan, Pow) from sympy.core.basic import _aresame from sympy.core.cache import clear_cache from sympy.core.compatibility import range from sympy.core.expr import unchanged from sympy.core.function import (PoleError, _mexpand, arity, BadSignatureError, BadArgumentsError) from sympy.core.sympify import sympify from sympy.matrices import MutableMatrix, ImmutableMatrix from sympy.sets.sets import FiniteSet from sympy.solvers.solveset import solveset from sympy.tensor.array import NDimArray from sympy.utilities.iterables import subsets, variations from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy from sympy.abc import t, w, x, y, z f, g, h = symbols('f g h', cls=Function) _xi_1, _xi_2, _xi_3 = [Dummy() for i in range(3)] def test_f_expand_complex(): x = Symbol('x', real=True) assert f(x).expand(complex=True) == I*im(f(x)) + re(f(x)) assert exp(x).expand(complex=True) == exp(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(z).expand(complex=True) == cos(im(z))*exp(re(z)) + \ I*sin(im(z))*exp(re(z)) def test_bug1(): e = sqrt(-log(w)) assert e.subs(log(w), -x) == sqrt(x) e = sqrt(-5*log(w)) assert e.subs(log(w), -x) == sqrt(5*x) def test_general_function(): nu = Function('nu') e = nu(x) edx = e.diff(x) edy = e.diff(y) edxdx = e.diff(x).diff(x) edxdy = e.diff(x).diff(y) assert e == nu(x) assert edx != nu(x) assert edx == diff(nu(x), x) assert edy == 0 assert edxdx == diff(diff(nu(x), x), x) assert edxdy == 0 def test_general_function_nullary(): nu = Function('nu') e = nu() edx = e.diff(x) edxdx = e.diff(x).diff(x) assert e == nu() assert edx != nu() assert edx == 0 assert edxdx == 0 def test_derivative_subs_bug(): e = diff(g(x), x) assert e.subs(g(x), f(x)) != e assert e.subs(g(x), f(x)) == Derivative(f(x), x) assert e.subs(g(x), -f(x)) == Derivative(-f(x), x) assert e.subs(x, y) == Derivative(g(y), y) def test_derivative_subs_self_bug(): d = diff(f(x), x) assert d.subs(d, y) == y def test_derivative_linearity(): assert diff(-f(x), x) == -diff(f(x), x) assert diff(8*f(x), x) == 8*diff(f(x), x) assert diff(8*f(x), x) != 7*diff(f(x), x) assert diff(8*f(x)*x, x) == 8*f(x) + 8*x*diff(f(x), x) assert diff(8*f(x)*y*x, x).expand() == 8*y*f(x) + 8*y*x*diff(f(x), x) def test_derivative_evaluate(): assert Derivative(sin(x), x) != diff(sin(x), x) assert Derivative(sin(x), x).doit() == diff(sin(x), x) assert Derivative(Derivative(f(x), x), x) == diff(f(x), x, x) assert Derivative(sin(x), x, 0) == sin(x) assert Derivative(sin(x), (x, y), (x, -y)) == sin(x) def test_diff_symbols(): assert diff(f(x, y, z), x, y, z) == Derivative(f(x, y, z), x, y, z) assert diff(f(x, y, z), x, x, x) == Derivative(f(x, y, z), x, x, x) == Derivative(f(x, y, z), (x, 3)) assert diff(f(x, y, z), x, 3) == Derivative(f(x, y, z), x, 3) # issue 5028 assert [diff(-z + x/y, sym) for sym in (z, x, y)] == [-1, 1/y, -x/y**2] assert diff(f(x, y, z), x, y, z, 2) == Derivative(f(x, y, z), x, y, z, z) assert diff(f(x, y, z), x, y, z, 2, evaluate=False) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(f(x, y, z), x, y, z)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z, z) assert Derivative(Derivative(f(x, y, z), x), y)._eval_derivative(z) == \ Derivative(f(x, y, z), x, y, z) raises(TypeError, lambda: cos(x).diff((x, y)).variables) assert cos(x).diff((x, y))._wrt_variables == [x] def test_Function(): class myfunc(Function): @classmethod def eval(cls): # zero args return assert myfunc.nargs == FiniteSet(0) assert myfunc().nargs == FiniteSet(0) raises(TypeError, lambda: myfunc(x).nargs) class myfunc(Function): @classmethod def eval(cls, x): # one arg return assert myfunc.nargs == FiniteSet(1) assert myfunc(x).nargs == FiniteSet(1) raises(TypeError, lambda: myfunc(x, y).nargs) class myfunc(Function): @classmethod def eval(cls, *x): # star args return assert myfunc.nargs == S.Naturals0 assert myfunc(x).nargs == S.Naturals0 def test_nargs(): f = Function('f') assert f.nargs == S.Naturals0 assert f(1).nargs == S.Naturals0 assert Function('f', nargs=2)(1, 2).nargs == FiniteSet(2) assert sin.nargs == FiniteSet(1) assert sin(2).nargs == FiniteSet(1) assert log.nargs == FiniteSet(1, 2) assert log(2).nargs == FiniteSet(1, 2) assert Function('f', nargs=2).nargs == FiniteSet(2) assert Function('f', nargs=0).nargs == FiniteSet(0) assert Function('f', nargs=(0, 1)).nargs == FiniteSet(0, 1) assert Function('f', nargs=None).nargs == S.Naturals0 raises(ValueError, lambda: Function('f', nargs=())) def test_arity(): f = lambda x, y: 1 assert arity(f) == 2 def f(x, y, z=None): pass assert arity(f) == (2, 3) assert arity(lambda *x: x) is None assert arity(log) == (1, 2) def test_Lambda(): e = Lambda(x, x**2) assert e(4) == 16 assert e(x) == x**2 assert e(y) == y**2 assert Lambda((), 42)() == 42 assert unchanged(Lambda, (), 42) assert Lambda((), 42) != Lambda((), 43) assert Lambda((), f(x))() == f(x) assert Lambda((), 42).nargs == FiniteSet(0) assert unchanged(Lambda, (x,), x**2) assert Lambda(x, x**2) == Lambda((x,), x**2) assert Lambda(x, x**2) == Lambda(y, y**2) assert Lambda(x, x**2) != Lambda(y, y**2 + 1) assert Lambda((x, y), x**y) == Lambda((y, x), y**x) assert Lambda((x, y), x**y) != Lambda((x, y), y**x) assert Lambda((x, y), x**y)(x, y) == x**y assert Lambda((x, y), x**y)(3, 3) == 3**3 assert Lambda((x, y), x**y)(x, 3) == x**3 assert Lambda((x, y), x**y)(3, y) == 3**y assert Lambda(x, f(x))(x) == f(x) assert Lambda(x, x**2)(e(x)) == x**4 assert e(e(x)) == x**4 x1, x2 = (Indexed('x', i) for i in (1, 2)) assert Lambda((x1, x2), x1 + x2)(x, y) == x + y assert Lambda((x, y), x + y).nargs == FiniteSet(2) p = x, y, z, t assert Lambda(p, t*(x + y + z))(*p) == t * (x + y + z) assert Lambda(x, 2*x) + Lambda(y, 2*y) == 2*Lambda(x, 2*x) assert Lambda(x, 2*x) not in [ Lambda(x, x) ] raises(BadSignatureError, lambda: Lambda(1, x)) assert Lambda(x, 1)(1) is S.One raises(BadSignatureError, lambda: Lambda((x, x), x + 2)) raises(BadSignatureError, lambda: Lambda(((x, x), y), x)) raises(BadSignatureError, lambda: Lambda(((y, x), x), x)) raises(BadSignatureError, lambda: Lambda(((y, 1), 2), x)) with warns_deprecated_sympy(): assert Lambda([x, y], x+y) == Lambda((x, y), x+y) flam = Lambda( ((x, y),) , x + y) assert flam((2, 3)) == 5 flam = Lambda( ((x, y), z) , x + y + z) assert flam((2, 3), 1) == 6 flam = Lambda( (((x,y),z),) , x+y+z) assert flam( ((2,3),1) ) == 6 raises(BadArgumentsError, lambda: flam(1, 2, 3)) flam = Lambda( (x,), (x, x)) assert flam(1,) == (1, 1) assert flam((1,)) == ((1,), (1,)) flam = Lambda( ((x,),) , (x, x)) raises(BadArgumentsError, lambda: flam(1)) assert flam((1,)) == (1, 1) # Previously TypeError was raised so this is potentially needed for # backwards compatibility. assert issubclass(BadSignatureError, TypeError) assert issubclass(BadArgumentsError, TypeError) # These are tested to see they don't raise: hash(Lambda(x, 2*x)) hash(Lambda(x, x)) # IdentityFunction subclass def test_IdentityFunction(): assert Lambda(x, x) is Lambda(y, y) is S.IdentityFunction assert Lambda(x, 2*x) is not S.IdentityFunction assert Lambda((x, y), x) is not S.IdentityFunction def test_Lambda_symbols(): assert Lambda(x, 2*x).free_symbols == set() assert Lambda(x, x*y).free_symbols == {y} assert Lambda((), 42).free_symbols == set() assert Lambda((), x*y).free_symbols == {x,y} def test_functionclas_symbols(): assert f.free_symbols == set() def test_Lambda_arguments(): raises(TypeError, lambda: Lambda(x, 2*x)(x, y)) raises(TypeError, lambda: Lambda((x, y), x + y)(x)) raises(TypeError, lambda: Lambda((), 42)(x)) def test_Lambda_equality(): assert Lambda(x, 2*x) == Lambda(y, 2*y) # although variables are casts as Dummies, the expressions # should still compare equal assert Lambda((x, y), 2*x) == Lambda((x, y), 2*x) assert Lambda(x, 2*x) != Lambda((x, y), 2*x) assert Lambda(x, 2*x) != 2*x def test_Subs(): assert Subs(1, (), ()) is S.One # check null subs influence on hashing assert Subs(x, y, z) != Subs(x, y, 1) # neutral subs works assert Subs(x, x, 1).subs(x, y).has(y) # self mapping var/point assert Subs(Derivative(f(x), (x, 2)), x, x).doit() == f(x).diff(x, x) assert Subs(x, x, 0).has(x) # it's a structural answer assert not Subs(x, x, 0).free_symbols assert Subs(Subs(x + y, x, 2), y, 1) == Subs(x + y, (x, y), (2, 1)) assert Subs(x, (x,), (0,)) == Subs(x, x, 0) assert Subs(x, x, 0) == Subs(y, y, 0) assert Subs(x, x, 0).subs(x, 1) == Subs(x, x, 0) assert Subs(y, x, 0).subs(y, 1) == Subs(1, x, 0) assert Subs(f(x), x, 0).doit() == f(0) assert Subs(f(x**2), x**2, 0).doit() == f(0) assert Subs(f(x, y, z), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y, z), (x, y, z), (0, 0, 1)) assert Subs(x, y, 2).subs(x, y).doit() == 2 assert Subs(f(x, y), (x, y, z), (0, 1, 1)) != \ Subs(f(x, y) + z, (x, y, z), (0, 1, 0)) assert Subs(f(x, y), (x, y), (0, 1)).doit() == f(0, 1) assert Subs(Subs(f(x, y), x, 0), y, 1).doit() == f(0, 1) raises(ValueError, lambda: Subs(f(x, y), (x, y), (0, 0, 1))) raises(ValueError, lambda: Subs(f(x, y), (x, x, y), (0, 0, 1))) assert len(Subs(f(x, y), (x, y), (0, 1)).variables) == 2 assert Subs(f(x, y), (x, y), (0, 1)).point == Tuple(0, 1) assert Subs(f(x), x, 0) == Subs(f(y), y, 0) assert Subs(f(x, y), (x, y), (0, 1)) == Subs(f(x, y), (y, x), (1, 0)) assert Subs(f(x)*y, (x, y), (0, 1)) == Subs(f(y)*x, (y, x), (0, 1)) assert Subs(f(x)*y, (x, y), (1, 1)) == Subs(f(y)*x, (x, y), (1, 1)) assert Subs(f(x), x, 0).subs(x, 1).doit() == f(0) assert Subs(f(x), x, y).subs(y, 0) == Subs(f(x), x, 0) assert Subs(y*f(x), x, y).subs(y, 2) == Subs(2*f(x), x, 2) assert (2 * Subs(f(x), x, 0)).subs(Subs(f(x), x, 0), y) == 2*y assert Subs(f(x), x, 0).free_symbols == set([]) assert Subs(f(x, y), x, z).free_symbols == {y, z} assert Subs(f(x).diff(x), x, 0).doit(), Subs(f(x).diff(x), x, 0) assert Subs(1 + f(x).diff(x), x, 0).doit(), 1 + Subs(f(x).diff(x), x, 0) assert Subs(y*f(x, y).diff(x), (x, y), (0, 2)).doit() == \ 2*Subs(Derivative(f(x, 2), x), x, 0) assert Subs(y**2*f(x), x, 0).diff(y) == 2*y*f(0) e = Subs(y**2*f(x), x, y) assert e.diff(y) == e.doit().diff(y) == y**2*Derivative(f(y), y) + 2*y*f(y) assert Subs(f(x), x, 0) + Subs(f(x), x, 0) == 2*Subs(f(x), x, 0) e1 = Subs(z*f(x), x, 1) e2 = Subs(z*f(y), y, 1) assert e1 + e2 == 2*e1 assert e1.__hash__() == e2.__hash__() assert Subs(z*f(x + 1), x, 1) not in [ e1, e2 ] assert Derivative(f(x), x).subs(x, g(x)) == Derivative(f(g(x)), g(x)) assert Derivative(f(x), x).subs(x, x + y) == Subs(Derivative(f(x), x), x, x + y) assert Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).n(2) == \ Subs(f(x)*cos(y) + z, (x, y), (0, pi/3)).evalf(2) == \ z + Rational('1/2').n(2)*f(0) assert f(x).diff(x).subs(x, 0).subs(x, y) == f(x).diff(x).subs(x, 0) assert (x*f(x).diff(x).subs(x, 0)).subs(x, y) == y*f(x).diff(x).subs(x, 0) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit() == 2*exp(x) assert Subs(Derivative(g(x)**2, g(x), x), g(x), exp(x) ).doit(deep=False) == 2*Derivative(exp(x), x) assert Derivative(f(x, g(x)), x).doit() == Derivative( f(x, g(x)), g(x))*Derivative(g(x), x) + Subs(Derivative( f(y, g(x)), y), y, x) def test_doitdoit(): done = Derivative(f(x, g(x)), x, g(x)).doit() assert done == done.doit() @XFAIL def test_Subs2(): # this reflects a limitation of subs(), probably won't fix assert Subs(f(x), x**2, x).doit() == f(sqrt(x)) def test_expand_function(): assert expand(x + y) == x + y assert expand(x + y, complex=True) == I*im(x) + I*im(y) + re(x) + re(y) assert expand((x + y)**11, modulus=11) == x**11 + y**11 def test_function_comparable(): assert sin(x).is_comparable is False assert cos(x).is_comparable is False assert sin(Float('0.1')).is_comparable is True assert cos(Float('0.1')).is_comparable is True assert sin(E).is_comparable is True assert cos(E).is_comparable is True assert sin(Rational(1, 3)).is_comparable is True assert cos(Rational(1, 3)).is_comparable is True def test_function_comparable_infinities(): assert sin(oo).is_comparable is False assert sin(-oo).is_comparable is False assert sin(zoo).is_comparable is False assert sin(nan).is_comparable is False def test_deriv1(): # These all require derivatives evaluated at a point (issue 4719) to work. # See issue 4624 assert f(2*x).diff(x) == 2*Subs(Derivative(f(x), x), x, 2*x) assert (f(x)**3).diff(x) == 3*f(x)**2*f(x).diff(x) assert (f(2*x)**3).diff(x) == 6*f(2*x)**2*Subs( Derivative(f(x), x), x, 2*x) assert f(2 + x).diff(x) == Subs(Derivative(f(x), x), x, x + 2) assert f(2 + 3*x).diff(x) == 3*Subs( Derivative(f(x), x), x, 3*x + 2) assert f(3*sin(x)).diff(x) == 3*cos(x)*Subs( Derivative(f(x), x), x, 3*sin(x)) # See issue 8510 assert f(x, x + z).diff(x) == ( Subs(Derivative(f(y, x + z), y), y, x) + Subs(Derivative(f(x, y), y), y, x + z)) assert f(x, x**2).diff(x) == ( 2*x*Subs(Derivative(f(x, y), y), y, x**2) + Subs(Derivative(f(y, x**2), y), y, x)) # but Subs is not always necessary assert f(x, g(y)).diff(g(y)) == Derivative(f(x, g(y)), g(y)) def test_deriv2(): assert (x**3).diff(x) == 3*x**2 assert (x**3).diff(x, evaluate=False) != 3*x**2 assert (x**3).diff(x, evaluate=False) == Derivative(x**3, x) assert diff(x**3, x) == 3*x**2 assert diff(x**3, x, evaluate=False) != 3*x**2 assert diff(x**3, x, evaluate=False) == Derivative(x**3, x) def test_func_deriv(): assert f(x).diff(x) == Derivative(f(x), x) # issue 4534 assert f(x, y).diff(x, y) - f(x, y).diff(y, x) == 0 assert Derivative(f(x, y), x, y).args[1:] == ((x, 1), (y, 1)) assert Derivative(f(x, y), y, x).args[1:] == ((y, 1), (x, 1)) assert (Derivative(f(x, y), x, y) - Derivative(f(x, y), y, x)).doit() == 0 def test_suppressed_evaluation(): a = sin(0, evaluate=False) assert a != 0 assert a.func is sin assert a.args == (0,) def test_function_evalf(): def eq(a, b, eps): return abs(a - b) < eps assert eq(sin(1).evalf(15), Float("0.841470984807897"), 1e-13) assert eq( sin(2).evalf(25), Float("0.9092974268256816953960199", 25), 1e-23) assert eq(sin(1 + I).evalf( 15), Float("1.29845758141598") + Float("0.634963914784736")*I, 1e-13) assert eq(exp(1 + I).evalf(15), Float( "1.46869393991588") + Float("2.28735528717884239")*I, 1e-13) assert eq(exp(-0.5 + 1.5*I).evalf(15), Float( "0.0429042815937374") + Float("0.605011292285002")*I, 1e-13) assert eq(log(pi + sqrt(2)*I).evalf( 15), Float("1.23699044022052") + Float("0.422985442737893")*I, 1e-13) assert eq(cos(100).evalf(15), Float("0.86231887228768"), 1e-13) def test_extensibility_eval(): class MyFunc(Function): @classmethod def eval(cls, *args): return (0, 0, 0) assert MyFunc(0) == (0, 0, 0) def test_function_non_commutative(): x = Symbol('x', commutative=False) assert f(x).is_commutative is False assert sin(x).is_commutative is False assert exp(x).is_commutative is False assert log(x).is_commutative is False assert f(x).is_complex is False assert sin(x).is_complex is False assert exp(x).is_complex is False assert log(x).is_complex is False def test_function_complex(): x = Symbol('x', complex=True) xzf = Symbol('x', complex=True, zero=False) assert f(x).is_commutative is True assert sin(x).is_commutative is True assert exp(x).is_commutative is True assert log(x).is_commutative is True assert f(x).is_complex is None assert sin(x).is_complex is True assert exp(x).is_complex is True assert log(x).is_complex is None assert log(xzf).is_complex is True def test_function__eval_nseries(): n = Symbol('n') assert sin(x)._eval_nseries(x, 2, None) == x + O(x**2) assert sin(x + 1)._eval_nseries(x, 2, None) == x*cos(1) + sin(1) + O(x**2) assert sin(pi*(1 - x))._eval_nseries(x, 2, None) == pi*x + O(x**2) assert acos(1 - x**2)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x**2) + O(x**2) assert polygamma(n, x + 1)._eval_nseries(x, 2, None) == \ polygamma(n, 1) + polygamma(n + 1, 1)*x + O(x**2) raises(PoleError, lambda: sin(1/x)._eval_nseries(x, 2, None)) assert acos(1 - x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(x) + O(x) assert acos(1 + x)._eval_nseries(x, 2, None) == sqrt(2)*sqrt(-x) + O(x) # XXX: wrong, branch cuts assert loggamma(1/x)._eval_nseries(x, 0, None) == \ log(x)/2 - log(x)/x - 1/x + O(1, x) assert loggamma(log(1/x)).nseries(x, n=1, logx=y) == loggamma(-y) # issue 6725: assert expint(Rational(3, 2), -x)._eval_nseries(x, 5, None) == \ 2 - 2*sqrt(pi)*sqrt(-x) - 2*x - x**2/3 - x**3/15 - x**4/84 + O(x**5) assert sin(sqrt(x))._eval_nseries(x, 3, None) == \ sqrt(x) - x**Rational(3, 2)/6 + x**Rational(5, 2)/120 + O(x**3) def test_doit(): n = Symbol('n', integer=True) f = Sum(2 * n * x, (n, 1, 3)) d = Derivative(f, x) assert d.doit() == 12 assert d.doit(deep=False) == Sum(2*n, (n, 1, 3)) def test_evalf_default(): from sympy.functions.special.gamma_functions import polygamma assert type(sin(4.0)) == Float assert type(re(sin(I + 1.0))) == Float assert type(im(sin(I + 1.0))) == Float assert type(sin(4)) == sin assert type(polygamma(2.0, 4.0)) == Float assert type(sin(Rational(1, 4))) == sin def test_issue_5399(): args = [x, y, S(2), S.Half] def ok(a): """Return True if the input args for diff are ok""" if not a: return False if a[0].is_Symbol is False: return False s_at = [i for i in range(len(a)) if a[i].is_Symbol] n_at = [i for i in range(len(a)) if not a[i].is_Symbol] # every symbol is followed by symbol or int # every number is followed by a symbol return (all(a[i + 1].is_Symbol or a[i + 1].is_Integer for i in s_at if i + 1 < len(a)) and all(a[i + 1].is_Symbol for i in n_at if i + 1 < len(a))) eq = x**10*y**8 for a in subsets(args): for v in variations(a, len(a)): if ok(v): eq.diff(*v) # does not raise else: raises(ValueError, lambda: eq.diff(*v)) def test_derivative_numerically(): from random import random z0 = random() + I*random() assert abs(Derivative(sin(x), x).doit_numerically(z0) - cos(z0)) < 1e-15 def test_fdiff_argument_index_error(): from sympy.core.function import ArgumentIndexError class myfunc(Function): nargs = 1 # define since there is no eval routine def fdiff(self, idx): raise ArgumentIndexError mf = myfunc(x) assert mf.diff(x) == Derivative(mf, x) raises(TypeError, lambda: myfunc(x, x)) def test_deriv_wrt_function(): x = f(t) xd = diff(x, t) xdd = diff(xd, t) y = g(t) yd = diff(y, t) assert diff(x, t) == xd assert diff(2 * x + 4, t) == 2 * xd assert diff(2 * x + 4 + y, t) == 2 * xd + yd assert diff(2 * x + 4 + y * x, t) == 2 * xd + x * yd + xd * y assert diff(2 * x + 4 + y * x, x) == 2 + y assert (diff(4 * x**2 + 3 * x + x * y, t) == 3 * xd + x * yd + xd * y + 8 * x * xd) assert (diff(4 * x**2 + 3 * xd + x * y, t) == 3 * xdd + x * yd + xd * y + 8 * x * xd) assert diff(4 * x**2 + 3 * xd + x * y, xd) == 3 assert diff(4 * x**2 + 3 * xd + x * y, xdd) == 0 assert diff(sin(x), t) == xd * cos(x) assert diff(exp(x), t) == xd * exp(x) assert diff(sqrt(x), t) == xd / (2 * sqrt(x)) def test_diff_wrt_value(): assert Expr()._diff_wrt is False assert x._diff_wrt is True assert f(x)._diff_wrt is True assert Derivative(f(x), x)._diff_wrt is True assert Derivative(x**2, x)._diff_wrt is False def test_diff_wrt(): fx = f(x) dfx = diff(f(x), x) ddfx = diff(f(x), x, x) assert diff(sin(fx) + fx**2, fx) == cos(fx) + 2*fx assert diff(sin(dfx) + dfx**2, dfx) == cos(dfx) + 2*dfx assert diff(sin(ddfx) + ddfx**2, ddfx) == cos(ddfx) + 2*ddfx assert diff(fx**2, dfx) == 0 assert diff(fx**2, ddfx) == 0 assert diff(dfx**2, fx) == 0 assert diff(dfx**2, ddfx) == 0 assert diff(ddfx**2, dfx) == 0 assert diff(fx*dfx*ddfx, fx) == dfx*ddfx assert diff(fx*dfx*ddfx, dfx) == fx*ddfx assert diff(fx*dfx*ddfx, ddfx) == fx*dfx assert diff(f(x), x).diff(f(x)) == 0 assert (sin(f(x)) - cos(diff(f(x), x))).diff(f(x)) == cos(f(x)) assert diff(sin(fx), fx, x) == diff(sin(fx), x, fx) # Chain rule cases assert f(g(x)).diff(x) == \ Derivative(g(x), x)*Derivative(f(g(x)), g(x)) assert diff(f(g(x), h(y)), x) == \ Derivative(g(x), x)*Derivative(f(g(x), h(y)), g(x)) assert diff(f(g(x), h(x)), x) == ( Subs(Derivative(f(y, h(x)), y), y, g(x))*Derivative(g(x), x) + Subs(Derivative(f(g(x), y), y), y, h(x))*Derivative(h(x), x)) assert f( sin(x)).diff(x) == cos(x)*Subs(Derivative(f(x), x), x, sin(x)) assert diff(f(g(x)), g(x)) == Derivative(f(g(x)), g(x)) def test_diff_wrt_func_subs(): assert f(g(x)).diff(x).subs(g, Lambda(x, 2*x)).doit() == f(2*x).diff(x) def test_subs_in_derivative(): expr = sin(x*exp(y)) u = Function('u') v = Function('v') assert Derivative(expr, y).subs(expr, y) == Derivative(y, y) assert Derivative(expr, y).subs(y, x).doit() == \ Derivative(expr, y).doit().subs(y, x) assert Derivative(f(x, y), y).subs(y, x) == Subs(Derivative(f(x, y), y), y, x) assert Derivative(f(x, y), y).subs(x, y) == Subs(Derivative(f(x, y), y), x, y) assert Derivative(f(x, y), y).subs(y, g(x, y)) == Subs(Derivative(f(x, y), y), y, g(x, y)).doit() assert Derivative(f(x, y), y).subs(x, g(x, y)) == Subs(Derivative(f(x, y), y), x, g(x, y)) assert Derivative(f(x, y), g(y)).subs(x, g(x, y)) == Derivative(f(g(x, y), y), g(y)) assert Derivative(f(u(x), h(y)), h(y)).subs(h(y), g(x, y)) == \ Subs(Derivative(f(u(x), h(y)), h(y)), h(y), g(x, y)).doit() assert Derivative(f(x, y), y).subs(y, z) == Derivative(f(x, z), z) assert Derivative(f(x, y), y).subs(y, g(y)) == Derivative(f(x, g(y)), g(y)) assert Derivative(f(g(x), h(y)), h(y)).subs(h(y), u(y)) == \ Derivative(f(g(x), u(y)), u(y)) assert Derivative(f(x, f(x, x)), f(x, x)).subs( f, Lambda((x, y), x + y)) == Subs( Derivative(z + x, z), z, 2*x) assert Subs(Derivative(f(f(x)), x), f, cos).doit() == sin(x)*sin(cos(x)) assert Subs(Derivative(f(f(x)), f(x)), f, cos).doit() == -sin(cos(x)) # Issue 13791. No comparison (it's a long formula) but this used to raise an exception. assert isinstance(v(x, y, u(x, y)).diff(y).diff(x).diff(y), Expr) # This is also related to issues 13791 and 13795; issue 15190 F = Lambda((x, y), exp(2*x + 3*y)) abstract = f(x, f(x, x)).diff(x, 2) concrete = F(x, F(x, x)).diff(x, 2) assert (abstract.subs(f, F).doit() - concrete).simplify() == 0 # don't introduce a new symbol if not necessary assert x in f(x).diff(x).subs(x, 0).atoms() # case (4) assert Derivative(f(x,f(x,y)), x, y).subs(x, g(y) ) == Subs(Derivative(f(x, f(x, y)), x, y), x, g(y)) assert Derivative(f(x, x), x).subs(x, 0 ) == Subs(Derivative(f(x, x), x), x, 0) # issue 15194 assert Derivative(f(y, g(x)), (x, z)).subs(z, x ) == Derivative(f(y, g(x)), (x, x)) df = f(x).diff(x) assert df.subs(df, 1) is S.One assert df.diff(df) is S.One dxy = Derivative(f(x, y), x, y) dyx = Derivative(f(x, y), y, x) assert dxy.subs(Derivative(f(x, y), y, x), 1) is S.One assert dxy.diff(dyx) is S.One assert Derivative(f(x, y), x, 2, y, 3).subs( dyx, g(x, y)) == Derivative(g(x, y), x, 1, y, 2) assert Derivative(f(x, x - y), y).subs(x, x + y) == Subs( Derivative(f(x, x - y), y), x, x + y) def test_diff_wrt_not_allowed(): # issue 7027 included for wrt in ( cos(x), re(x), x**2, x*y, 1 + x, Derivative(cos(x), x), Derivative(f(f(x)), x)): raises(ValueError, lambda: diff(f(x), wrt)) # if we don't differentiate wrt then don't raise error assert diff(exp(x*y), x*y, 0) == exp(x*y) def test_klein_gordon_lagrangian(): m = Symbol('m') phi = f(x, t) L = -(diff(phi, t)**2 - diff(phi, x)**2 - m**2*phi**2)/2 eqna = Eq( diff(L, phi) - diff(L, diff(phi, x), x) - diff(L, diff(phi, t), t), 0) eqnb = Eq(diff(phi, t, t) - diff(phi, x, x) + m**2*phi, 0) assert eqna == eqnb def test_sho_lagrangian(): m = Symbol('m') k = Symbol('k') x = f(t) L = m*diff(x, t)**2/2 - k*x**2/2 eqna = Eq(diff(L, x), diff(L, diff(x, t), t)) eqnb = Eq(-k*x, m*diff(x, t, t)) assert eqna == eqnb assert diff(L, x, t) == diff(L, t, x) assert diff(L, diff(x, t), t) == m*diff(x, t, 2) assert diff(L, t, diff(x, t)) == -k*x + m*diff(x, t, 2) def test_straight_line(): F = f(x) Fd = F.diff(x) L = sqrt(1 + Fd**2) assert diff(L, F) == 0 assert diff(L, Fd) == Fd/sqrt(1 + Fd**2) def test_sort_variable(): vsort = Derivative._sort_variable_count def vsort0(*v, **kw): reverse = kw.get('reverse', False) return [i[0] for i in vsort([(i, 0) for i in ( reversed(v) if reverse else v)])] for R in range(2): assert vsort0(y, x, reverse=R) == [x, y] assert vsort0(f(x), x, reverse=R) == [x, f(x)] assert vsort0(f(y), f(x), reverse=R) == [f(x), f(y)] assert vsort0(g(x), f(y), reverse=R) == [f(y), g(x)] assert vsort0(f(x, y), f(x), reverse=R) == [f(x), f(x, y)] fx = f(x).diff(x) assert vsort0(fx, y, reverse=R) == [y, fx] fy = f(y).diff(y) assert vsort0(fy, fx, reverse=R) == [fx, fy] fxx = fx.diff(x) assert vsort0(fxx, fx, reverse=R) == [fx, fxx] assert vsort0(Basic(x), f(x), reverse=R) == [f(x), Basic(x)] assert vsort0(Basic(y), Basic(x), reverse=R) == [Basic(x), Basic(y)] assert vsort0(Basic(y, z), Basic(x), reverse=R) == [ Basic(x), Basic(y, z)] assert vsort0(fx, x, reverse=R) == [ x, fx] if R else [fx, x] assert vsort0(Basic(x), x, reverse=R) == [ x, Basic(x)] if R else [Basic(x), x] assert vsort0(Basic(f(x)), f(x), reverse=R) == [ f(x), Basic(f(x))] if R else [Basic(f(x)), f(x)] assert vsort0(Basic(x, z), Basic(x), reverse=R) == [ Basic(x), Basic(x, z)] if R else [Basic(x, z), Basic(x)] assert vsort([]) == [] assert _aresame(vsort([(x, 1)]), [Tuple(x, 1)]) assert vsort([(x, y), (x, z)]) == [(x, y + z)] assert vsort([(y, 1), (x, 1 + y)]) == [(x, 1 + y), (y, 1)] # coverage complete; legacy tests below assert vsort([(x, 3), (y, 2), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(x), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 2), (x, 3), (h(x), 1), (g(x), 1), (f(x), 1)]) == [(x, 3), (y, 2), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(x, 1), (f(x), 1), (y, 1), (f(y), 1)]) == [(x, 1), (y, 1), (f(x), 1), (f(y), 1)] assert vsort([(y, 1), (x, 2), (g(x), 1), (f(x), 1), (z, 1), (h(x), 1), (y, 2), (x, 1)]) == [(x, 3), (y, 3), (z, 1), (f(x), 1), (g(x), 1), (h(x), 1)] assert vsort([(z, 1), (y, 1), (f(x), 1), (x, 1), (f(x), 1), (g(x), 1)]) == [(x, 1), (y, 1), (z, 1), (f(x), 2), (g(x), 1)] assert vsort([(z, 1), (y, 2), (f(x), 1), (x, 2), (f(x), 2), (g(x), 1), (z, 2), (z, 1), (y, 1), (x, 1)]) == [(x, 3), (y, 3), (z, 4), (f(x), 3), (g(x), 1)] assert vsort(((y, 2), (x, 1), (y, 1), (x, 1))) == [(x, 2), (y, 3)] assert isinstance(vsort([(x, 3), (y, 2), (z, 1)])[0], Tuple) assert vsort([(x, 1), (f(x), 1), (x, 1)]) == [(x, 2), (f(x), 1)] assert vsort([(y, 2), (x, 3), (z, 1)]) == [(x, 3), (y, 2), (z, 1)] assert vsort([(h(y), 1), (g(x), 1), (f(x), 1)]) == [ (f(x), 1), (g(x), 1), (h(y), 1)] assert vsort([(x, 1), (y, 1), (x, 1)]) == [(x, 2), (y, 1)] assert vsort([(f(x), 1), (f(y), 1), (f(x), 1)]) == [ (f(x), 2), (f(y), 1)] dfx = f(x).diff(x) self = [(dfx, 1), (x, 1)] assert vsort(self) == self assert vsort([ (dfx, 1), (y, 1), (f(x), 1), (x, 1), (f(y), 1), (x, 1)]) == [ (y, 1), (f(x), 1), (f(y), 1), (dfx, 1), (x, 2)] dfy = f(y).diff(y) assert vsort([(dfy, 1), (dfx, 1)]) == [(dfx, 1), (dfy, 1)] d2fx = dfx.diff(x) assert vsort([(d2fx, 1), (dfx, 1)]) == [(dfx, 1), (d2fx, 1)] def test_multiple_derivative(): # Issue #15007 assert f(x, y).diff(y, y, x, y, x ) == Derivative(f(x, y), (x, 2), (y, 3)) def test_unhandled(): class MyExpr(Expr): def _eval_derivative(self, s): if not s.name.startswith('xi'): return self else: return None eq = MyExpr(f(x), y, z) assert diff(eq, x, y, f(x), z) == Derivative(eq, f(x)) assert diff(eq, f(x), x) == Derivative(eq, f(x)) assert f(x, y).diff(x,(y, z)) == Derivative(f(x, y), x, (y, z)) assert f(x, y).diff(x,(y, 0)) == Derivative(f(x, y), x) def test_nfloat(): from sympy.core.basic import _aresame from sympy.polys.rootoftools import rootof x = Symbol("x") eq = x**Rational(4, 3) + 4*x**(S.One/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(S.One/3)) assert _aresame(nfloat(eq, exponent=True), x**(4.0/3) + (4.0/3)*x**(1.0/3)) eq = x**Rational(4, 3) + 4*x**(x/3)/3 assert _aresame(nfloat(eq), x**Rational(4, 3) + (4.0/3)*x**(x/3)) big = 12345678901234567890 # specify precision to match value used in nfloat Float_big = Float(big, 15) assert _aresame(nfloat(big), Float_big) assert _aresame(nfloat(big*x), Float_big*x) assert _aresame(nfloat(x**big, exponent=True), x**Float_big) assert nfloat(cos(x + sqrt(2))) == cos(x + nfloat(sqrt(2))) # issue 6342 f = S('x*lamda + lamda**3*(x/2 + 1/2) + lamda**2 + 1/4') assert not any(a.free_symbols for a in solveset(f.subs(x, -0.139))) # issue 6632 assert nfloat(-100000*sqrt(2500000001) + 5000000001) == \ 9.99999999800000e-11 # issue 7122 eq = cos(3*x**4 + y)*rootof(x**5 + 3*x**3 + 1, 0) assert str(nfloat(eq, exponent=False, n=1)) == '-0.7*cos(3.0*x**4 + y)' # issue 10933 for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (S.Half, Float(.5))) for ti in (dict, Dict): d = ti({S.Half: S.Half}) n = nfloat(d, dkeys=True) assert isinstance(n, ti) assert _aresame(list(n.items()).pop(), (Float(.5), Float(.5))) d = [S.Half] n = nfloat(d) assert type(n) is list assert _aresame(n[0], Float(.5)) assert _aresame(nfloat(Eq(x, S.Half)).rhs, Float(.5)) assert _aresame(nfloat(S(True)), S(True)) assert _aresame(nfloat(Tuple(S.Half))[0], Float(.5)) assert nfloat(Eq((3 - I)**2/2 + I, 0)) == S.false # pass along kwargs assert nfloat([{S.Half: x}], dkeys=True) == [{Float(0.5): x}] # Issue 17706 A = MutableMatrix([[1, 2], [3, 4]]) B = MutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) A = ImmutableMatrix([[1, 2], [3, 4]]) B = ImmutableMatrix( [[Float('1.0', precision=53), Float('2.0', precision=53)], [Float('3.0', precision=53), Float('4.0', precision=53)]]) assert _aresame(nfloat(A), B) def test_issue_7068(): from sympy.abc import a, b f = Function('f') y1 = Dummy('y') y2 = Dummy('y') func1 = f(a + y1 * b) func2 = f(a + y2 * b) func1_y = func1.diff(y1) func2_y = func2.diff(y2) assert func1_y != func2_y z1 = Subs(f(a), a, y1) z2 = Subs(f(a), a, y2) assert z1 != z2 def test_issue_7231(): from sympy.abc import a ans1 = f(x).series(x, a) res = (f(a) + (-a + x)*Subs(Derivative(f(y), y), y, a) + (-a + x)**2*Subs(Derivative(f(y), y, y), y, a)/2 + (-a + x)**3*Subs(Derivative(f(y), y, y, y), y, a)/6 + (-a + x)**4*Subs(Derivative(f(y), y, y, y, y), y, a)/24 + (-a + x)**5*Subs(Derivative(f(y), y, y, y, y, y), y, a)/120 + O((-a + x)**6, (x, a))) assert res == ans1 ans2 = f(x).series(x, a) assert res == ans2 def test_issue_7687(): from sympy.core.function import Function from sympy.abc import x f = Function('f')(x) ff = Function('f')(x) match_with_cache = ff.matches(f) assert isinstance(f, type(ff)) clear_cache() ff = Function('f')(x) assert isinstance(f, type(ff)) assert match_with_cache == ff.matches(f) def test_issue_7688(): from sympy.core.function import Function, UndefinedFunction f = Function('f') # actually an UndefinedFunction clear_cache() class A(UndefinedFunction): pass a = A('f') assert isinstance(a, type(f)) def test_mexpand(): from sympy.abc import x assert _mexpand(None) is None assert _mexpand(1) is S.One assert _mexpand(x*(x + 1)**2) == (x*(x + 1)**2).expand() def test_issue_8469(): # This should not take forever to run N = 40 def g(w, theta): return 1/(1+exp(w-theta)) ws = symbols(['w%i'%i for i in range(N)]) import functools expr = functools.reduce(g, ws) assert isinstance(expr, Pow) def test_issue_12996(): # foo=True imitates the sort of arguments that Derivative can get # from Integral when it passes doit to the expression assert Derivative(im(x), x).doit(foo=True) == Derivative(im(x), x) def test_should_evalf(): # This should not take forever to run (see #8506) assert isinstance(sin((1.0 + 1.0*I)**10000 + 1), sin) def test_Derivative_as_finite_difference(): # Central 1st derivative at gridpoint x, h = symbols('x h', real=True) dfdx = f(x).diff(x) assert (dfdx.as_finite_difference([x-2, x-1, x, x+1, x+2]) - (S.One/12*(f(x-2)-f(x+2)) + Rational(2, 3)*(f(x+1)-f(x-1)))).simplify() == 0 # Central 1st derivative "half-way" assert (dfdx.as_finite_difference() - (f(x + S.Half)-f(x - S.Half))).simplify() == 0 assert (dfdx.as_finite_difference(h) - (f(x + h/S(2))-f(x - h/S(2)))/h).simplify() == 0 assert (dfdx.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (S(9)/(8*2*h)*(f(x+h) - f(x-h)) + S.One/(24*2*h)*(f(x - 3*h) - f(x + 3*h)))).simplify() == 0 # One sided 1st derivative at gridpoint assert (dfdx.as_finite_difference([0, 1, 2], 0) - (Rational(-3, 2)*f(0) + 2*f(1) - f(2)/2)).simplify() == 0 assert (dfdx.as_finite_difference([x, x+h], x) - (f(x+h) - f(x))/h).simplify() == 0 assert (dfdx.as_finite_difference([x-h, x, x+h], x-h) - (-S(3)/(2*h)*f(x-h) + 2/h*f(x) - S.One/(2*h)*f(x+h))).simplify() == 0 # One sided 1st derivative "half-way" assert (dfdx.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h, x + 7*h]) - 1/(2*h)*(-S(11)/(12)*f(x-h) + S(17)/(24)*f(x+h) + Rational(3, 8)*f(x + 3*h) - Rational(5, 24)*f(x + 5*h) + S.One/24*f(x + 7*h))).simplify() == 0 d2fdx2 = f(x).diff(x, 2) # Central 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x-h, x, x+h]) - h**-2 * (f(x-h) + f(x+h) - 2*f(x))).simplify() == 0 assert (d2fdx2.as_finite_difference([x - 2*h, x-h, x, x+h, x + 2*h]) - h**-2 * (Rational(-1, 12)*(f(x - 2*h) + f(x + 2*h)) + Rational(4, 3)*(f(x+h) + f(x-h)) - Rational(5, 2)*f(x))).simplify() == 0 # Central 2nd derivative "half-way" assert (d2fdx2.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-2 * (S.Half*(f(x - 3*h) + f(x + 3*h)) - S.Half*(f(x+h) + f(x-h)))).simplify() == 0 # One sided 2nd derivative at gridpoint assert (d2fdx2.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-2 * (2*f(x) - 5*f(x+h) + 4*f(x+2*h) - f(x+3*h))).simplify() == 0 # One sided 2nd derivative at "half-way" assert (d2fdx2.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-2 * (Rational(3, 2)*f(x-h) - Rational(7, 2)*f(x+h) + Rational(5, 2)*f(x + 3*h) - S.Half*f(x + 5*h))).simplify() == 0 d3fdx3 = f(x).diff(x, 3) # Central 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference() - (-f(x - Rational(3, 2)) + 3*f(x - S.Half) - 3*f(x + S.Half) + f(x + Rational(3, 2)))).simplify() == 0 assert (d3fdx3.as_finite_difference( [x - 3*h, x - 2*h, x-h, x, x+h, x + 2*h, x + 3*h]) - h**-3 * (S.One/8*(f(x - 3*h) - f(x + 3*h)) - f(x - 2*h) + f(x + 2*h) + Rational(13, 8)*(f(x-h) - f(x+h)))).simplify() == 0 # Central 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x - 3*h, x-h, x+h, x + 3*h]) - (2*h)**-3 * (f(x + 3*h)-f(x - 3*h) + 3*(f(x-h)-f(x+h)))).simplify() == 0 # One sided 3rd derivative at gridpoint assert (d3fdx3.as_finite_difference([x, x+h, x + 2*h, x + 3*h]) - h**-3 * (f(x + 3*h)-f(x) + 3*(f(x+h)-f(x + 2*h)))).simplify() == 0 # One sided 3rd derivative at "half-way" assert (d3fdx3.as_finite_difference([x-h, x+h, x + 3*h, x + 5*h]) - (2*h)**-3 * (f(x + 5*h)-f(x-h) + 3*(f(x+h)-f(x + 3*h)))).simplify() == 0 # issue 11007 y = Symbol('y', real=True) d2fdxdy = f(x, y).diff(x, y) ref0 = Derivative(f(x + S.Half, y), y) - Derivative(f(x - S.Half, y), y) assert (d2fdxdy.as_finite_difference(wrt=x) - ref0).simplify() == 0 half = S.Half xm, xp, ym, yp = x-half, x+half, y-half, y+half ref2 = f(xm, ym) + f(xp, yp) - f(xp, ym) - f(xm, yp) assert (d2fdxdy.as_finite_difference() - ref2).simplify() == 0 def test_issue_11159(): # Tests Application._eval_subs expr1 = E expr0 = expr1 * expr1 expr1 = expr0.subs(expr1,expr0) assert expr0 == expr1 def test_issue_12005(): e1 = Subs(Derivative(f(x), x), x, x) assert e1.diff(x) == Derivative(f(x), x, x) e2 = Subs(Derivative(f(x), x), x, x**2 + 1) assert e2.diff(x) == 2*x*Subs(Derivative(f(x), x, x), x, x**2 + 1) e3 = Subs(Derivative(f(x) + y**2 - y, y), y, y**2) assert e3.diff(y) == 4*y e4 = Subs(Derivative(f(x + y), y), y, (x**2)) assert e4.diff(y) is S.Zero e5 = Subs(Derivative(f(x), x), (y, z), (y, z)) assert e5.diff(x) == Derivative(f(x), x, x) assert f(g(x)).diff(g(x), g(x)) == Derivative(f(g(x)), g(x), g(x)) def test_issue_13843(): x = symbols('x') f = Function('f') m, n = symbols('m n', integer=True) assert Derivative(Derivative(f(x), (x, m)), (x, n)) == Derivative(f(x), (x, m + n)) assert Derivative(Derivative(f(x), (x, m+5)), (x, n+3)) == Derivative(f(x), (x, m + n + 8)) assert Derivative(f(x), (x, n)).doit() == Derivative(f(x), (x, n)) def test_order_could_be_zero(): x, y = symbols('x, y') n = symbols('n', integer=True, nonnegative=True) m = symbols('m', integer=True, positive=True) assert diff(y, (x, n)) == Piecewise((y, Eq(n, 0)), (0, True)) assert diff(y, (x, n + 1)) is S.Zero assert diff(y, (x, m)) is S.Zero def test_undefined_function_eq(): f = Function('f') f2 = Function('f') g = Function('g') f_real = Function('f', is_real=True) # This test may only be meaningful if the cache is turned off assert f == f2 assert hash(f) == hash(f2) assert f == f assert f != g assert f != f_real def test_function_assumptions(): x = Symbol('x') f = Function('f') f_real = Function('f', real=True) f_real1 = Function('f', real=1) f_real_inherit = Function(Symbol('f', real=True)) assert f_real == f_real1 # assumptions are sanitized assert f != f_real assert f(x) != f_real(x) assert f(x).is_real is None assert f_real(x).is_real is True assert f_real_inherit(x).is_real is True and f_real_inherit.name == 'f' # Can also do it this way, but it won't be equal to f_real because of the # way UndefinedFunction.__new__ works. Any non-recognized assumptions # are just added literally as something which is used in the hash f_real2 = Function('f', is_real=True) assert f_real2(x).is_real is True def test_undef_fcn_float_issue_6938(): f = Function('ceil') assert not f(0.3).is_number f = Function('sin') assert not f(0.3).is_number assert not f(pi).evalf().is_number x = Symbol('x') assert not f(x).evalf(subs={x:1.2}).is_number def test_undefined_function_eval(): # Issue 15170. Make sure UndefinedFunction with eval defined works # properly. The issue there was that the hash was determined before _nargs # was set, which is included in the hash, hence changing the hash. The # class is added to sympy.core.core.all_classes before the hash is # changed, meaning "temp in all_classes" would fail, causing sympify(temp(t)) # to give a new class. We will eventually remove all_classes, but make # sure this continues to work. fdiff = lambda self, argindex=1: cos(self.args[argindex - 1]) eval = classmethod(lambda cls, t: None) _imp_ = classmethod(lambda cls, t: sin(t)) temp = Function('temp', fdiff=fdiff, eval=eval, _imp_=_imp_) expr = temp(t) assert sympify(expr) == expr assert type(sympify(expr)).fdiff.__name__ == "<lambda>" assert expr.diff(t) == cos(t) def test_issue_15241(): F = f(x) Fx = F.diff(x) assert (F + x*Fx).diff(x, Fx) == 2 assert (F + x*Fx).diff(Fx, x) == 1 assert (x*F + x*Fx*F).diff(F, x) == x*Fx.diff(x) + Fx + 1 assert (x*F + x*Fx*F).diff(x, F) == x*Fx.diff(x) + Fx + 1 y = f(x) G = f(y) Gy = G.diff(y) assert (G + y*Gy).diff(y, Gy) == 2 assert (G + y*Gy).diff(Gy, y) == 1 assert (y*G + y*Gy*G).diff(G, y) == y*Gy.diff(y) + Gy + 1 assert (y*G + y*Gy*G).diff(y, G) == y*Gy.diff(y) + Gy + 1 def test_issue_15226(): assert Subs(Derivative(f(y), x, y), y, g(x)).doit() != 0 def test_issue_7027(): for wrt in (cos(x), re(x), Derivative(cos(x), x)): raises(ValueError, lambda: diff(f(x), wrt)) def test_derivative_quick_exit(): assert f(x).diff(y) == 0 assert f(x).diff(y, f(x)) == 0 assert f(x).diff(x, f(y)) == 0 assert f(f(x)).diff(x, f(x), f(y)) == 0 assert f(f(x)).diff(x, f(x), y) == 0 assert f(x).diff(g(x)) == 0 assert f(x).diff(x, f(x).diff(x)) == 1 df = f(x).diff(x) assert f(x).diff(df) == 0 dg = g(x).diff(x) assert dg.diff(df).doit() == 0 def test_issue_15084_13166(): eq = f(x, g(x)) assert eq.diff((g(x), y)) == Derivative(f(x, g(x)), (g(x), y)) # issue 13166 assert eq.diff(x, 2).doit() == ( (Derivative(f(x, g(x)), (g(x), 2))*Derivative(g(x), x) + Subs(Derivative(f(x, _xi_2), _xi_2, x), _xi_2, g(x)))*Derivative(g(x), x) + Derivative(f(x, g(x)), g(x))*Derivative(g(x), (x, 2)) + Derivative(g(x), x)*Subs(Derivative(f(_xi_1, g(x)), _xi_1, g(x)), _xi_1, x) + Subs(Derivative(f(_xi_1, g(x)), (_xi_1, 2)), _xi_1, x)) # issue 6681 assert diff(f(x, t, g(x, t)), x).doit() == ( Derivative(f(x, t, g(x, t)), g(x, t))*Derivative(g(x, t), x) + Subs(Derivative(f(_xi_1, t, g(x, t)), _xi_1), _xi_1, x)) # make sure the order doesn't matter when using diff assert eq.diff(x, g(x)) == eq.diff(g(x), x) def test_negative_counts(): # issue 13873 raises(ValueError, lambda: sin(x).diff(x, -1)) def test_Derivative__new__(): raises(TypeError, lambda: f(x).diff((x, 2), 0)) assert f(x, y).diff([(x, y), 0]) == f(x, y) assert f(x, y).diff([(x, y), 1]) == NDimArray([ Derivative(f(x, y), x), Derivative(f(x, y), y)]) assert f(x,y).diff(y, (x, z), y, x) == Derivative( f(x, y), (x, z + 1), (y, 2)) assert Matrix([x]).diff(x, 2) == Matrix([0]) # is_zero exit def test_issue_14719_10150(): class V(Expr): _diff_wrt = True is_scalar = False assert V().diff(V()) == Derivative(V(), V()) assert (2*V()).diff(V()) == 2*Derivative(V(), V()) class X(Expr): _diff_wrt = True assert X().diff(X()) == 1 assert (2*X()).diff(X()) == 2 def test_noncommutative_issue_15131(): x = Symbol('x', commutative=False) t = Symbol('t', commutative=False) fx = Function('Fx', commutative=False)(x) ft = Function('Ft', commutative=False)(t) A = Symbol('A', commutative=False) eq = fx * A * ft eqdt = eq.diff(t) assert eqdt.args[-1] == ft.diff(t) def test_Subs_Derivative(): a = Derivative(f(g(x), h(x)), g(x), h(x),x) b = Derivative(Derivative(f(g(x), h(x)), g(x), h(x)),x) c = f(g(x), h(x)).diff(g(x), h(x), x) d = f(g(x), h(x)).diff(g(x), h(x)).diff(x) e = Derivative(f(g(x), h(x)), x) eqs = (a, b, c, d, e) subs = lambda arg: arg.subs(f, Lambda((x, y), exp(x + y)) ).subs(g(x), 1/x).subs(h(x), x**3) ans = 3*x**2*exp(1/x)*exp(x**3) - exp(1/x)*exp(x**3)/x**2 assert all(subs(i).doit().expand() == ans for i in eqs) assert all(subs(i.doit()).doit().expand() == ans for i in eqs) def test_issue_15360(): f = Function('f') assert f.name == 'f' def test_issue_15947(): assert f._diff_wrt is False raises(TypeError, lambda: f(f)) raises(TypeError, lambda: f(x).diff(f)) def test_Derivative_free_symbols(): f = Function('f') n = Symbol('n', integer=True, positive=True) assert diff(f(x), (x, n)).free_symbols == {n, x}
c17aa6084cb9671a84e591d1447ae91f74e842a26ada173a06873703915b2899
from sympy import (S, Symbol, sqrt, I, Integer, Rational, cos, sin, im, re, Abs, exp, sinh, cosh, tan, tanh, conjugate, sign, cot, coth, pi, symbols, expand_complex, Pow) def test_complex(): a = Symbol("a", real=True) b = Symbol("b", real=True) e = (a + I*b)*(a - I*b) assert e.expand() == a**2 + b**2 assert sqrt(I) == Pow(I, S.Half) def test_conjugate(): a = Symbol("a", real=True) b = Symbol("b", real=True) c = Symbol("c", imaginary=True) d = Symbol("d", imaginary=True) x = Symbol('x') z = a + I*b + c + I*d zc = a - I*b - c + I*d assert conjugate(z) == zc assert conjugate(exp(z)) == exp(zc) assert conjugate(exp(I*x)) == exp(-I*conjugate(x)) assert conjugate(z**5) == zc**5 assert conjugate(abs(x)) == abs(x) assert conjugate(sign(z)) == sign(zc) assert conjugate(sin(z)) == sin(zc) assert conjugate(cos(z)) == cos(zc) assert conjugate(tan(z)) == tan(zc) assert conjugate(cot(z)) == cot(zc) assert conjugate(sinh(z)) == sinh(zc) assert conjugate(cosh(z)) == cosh(zc) assert conjugate(tanh(z)) == tanh(zc) assert conjugate(coth(z)) == coth(zc) def test_abs1(): a = Symbol("a", real=True) b = Symbol("b", real=True) assert abs(a) == Abs(a) assert abs(-a) == abs(a) assert abs(a + I*b) == sqrt(a**2 + b**2) def test_abs2(): a = Symbol("a", real=False) b = Symbol("b", real=False) assert abs(a) != a assert abs(-a) != a assert abs(a + I*b) != sqrt(a**2 + b**2) def test_evalc(): x = Symbol("x", real=True) y = Symbol("y", real=True) z = Symbol("z") assert ((x + I*y)**2).expand(complex=True) == x**2 + 2*I*x*y - y**2 assert expand_complex(z**(2*I)) == (re((re(z) + I*im(z))**(2*I)) + I*im((re(z) + I*im(z))**(2*I))) assert expand_complex( z**(2*I), deep=False) == I*im(z**(2*I)) + re(z**(2*I)) assert exp(I*x) != cos(x) + I*sin(x) assert exp(I*x).expand(complex=True) == cos(x) + I*sin(x) assert exp(I*x + y).expand(complex=True) == exp(y)*cos(x) + I*sin(x)*exp(y) assert sin(I*x).expand(complex=True) == I * sinh(x) assert sin(x + I*y).expand(complex=True) == sin(x)*cosh(y) + \ I * sinh(y) * cos(x) assert cos(I*x).expand(complex=True) == cosh(x) assert cos(x + I*y).expand(complex=True) == cos(x)*cosh(y) - \ I * sinh(y) * sin(x) assert tan(I*x).expand(complex=True) == tanh(x) * I assert tan(x + I*y).expand(complex=True) == ( sin(2*x)/(cos(2*x) + cosh(2*y)) + I*sinh(2*y)/(cos(2*x) + cosh(2*y))) assert sinh(I*x).expand(complex=True) == I * sin(x) assert sinh(x + I*y).expand(complex=True) == sinh(x)*cos(y) + \ I * sin(y) * cosh(x) assert cosh(I*x).expand(complex=True) == cos(x) assert cosh(x + I*y).expand(complex=True) == cosh(x)*cos(y) + \ I * sin(y) * sinh(x) assert tanh(I*x).expand(complex=True) == tan(x) * I assert tanh(x + I*y).expand(complex=True) == ( (sinh(x)*cosh(x) + I*cos(y)*sin(y)) / (sinh(x)**2 + cos(y)**2)).expand() def test_pythoncomplex(): x = Symbol("x") assert 4j*x != 4*x*I assert 4j*x == 4.0*x*I assert 4.1j*x != 4*x*I def test_rootcomplex(): R = Rational assert ((+1 + I)**R(1, 2)).expand( complex=True) == 2**R(1, 4)*cos( pi/8) + 2**R(1, 4)*sin( pi/8)*I assert ((-1 - I)**R(1, 2)).expand( complex=True) == 2**R(1, 4)*cos(3*pi/8) - 2**R(1, 4)*sin(3*pi/8)*I assert (sqrt(-10)*I).as_real_imag() == (-sqrt(10), 0) def test_expand_inverse(): assert (1/(1 + I)).expand(complex=True) == (1 - I)/2 assert ((1 + 2*I)**(-2)).expand(complex=True) == (-3 - 4*I)/25 assert ((1 + I)**(-8)).expand(complex=True) == Rational(1, 16) def test_expand_complex(): assert ((2 + 3*I)**10).expand(complex=True) == -341525 - 145668*I # the following two tests are to ensure the SymPy uses an efficient # algorithm for calculating powers of complex numbers. They should execute # in something like 0.01s. assert ((2 + 3*I)**1000).expand(complex=True) == \ -81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999 + \ 46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I assert ((2 + 3*I/4)**1000).expand(complex=True) == \ Integer(1)*37079892761199059751745775382463070250205990218394308874593455293485167797989691280095867197640410033222367257278387021789651672598831503296531725827158233077451476545928116965316544607115843772405184272449644892857783761260737279675075819921259597776770965829089907990486964515784097181964312256560561065607846661496055417619388874421218472707497847700629822858068783288579581649321248495739224020822198695759609598745114438265083593711851665996586461937988748911532242908776883696631067311443171682974330675406616373422505939887984366289623091300746049101284856530270685577940283077888955692921951247230006346681086274961362500646889925803654263491848309446197554307105991537357310209426736453173441104334496173618419659521888945605315751089087820455852582920963561495787655250624781448951403353654348109893478206364632640344111022531861683064175862889459084900614967785405977231549003280842218501570429860550379522498497412180001/114813069527425452423283320117768198402231770208869520047764273682576626139237031385665948631650626991844596463898746277344711896086305533142593135616665318539129989145312280000688779148240044871428926990063486244781615463646388363947317026040466353970904996558162398808944629605623311649536164221970332681344168908984458505602379484807914058900934776500429002716706625830522008132236281291761267883317206598995396418127021779858404042159853183251540889433902091920554957783589672039160081957216630582755380425583726015528348786419432054508915275783882625175435528800822842770817965453762184851149029376 + \ I*421638390580169706973991429333213477486930178424989246669892530737775352519112934278994501272111385966211392610029433824534634841747911783746811994443436271013377059560245191441549885048056920190833693041257216263519792201852046825443439142932464031501882145407459174948712992271510309541474392303461939389368955986650538525895866713074543004916049550090364398070215427272240155060576252568700906004691224321432509053286859100920489253598392100207663785243368195857086816912514025693453058403158416856847185079684216151337200057494966741268925263085619240941610301610538225414050394612058339070756009433535451561664522479191267503989904464718368605684297071150902631208673621618217106272361061676184840810762902463998065947687814692402219182668782278472952758690939877465065070481351343206840649517150634973307937551168752642148704904383991876969408056379195860410677814566225456558230131911142229028179902418223009651437985670625/1793954211366022694113801876840128100034871409513586250746316776290259783425578615401030447369541046747571819748417910583511123376348523955353017744010395602173906080395504375010762174191250701116076984219741972574712741619474818186676828531882286780795390571221287481389759837587864244524002565968286448146002639202882164150037179450123657170327105882819203167448541028601906377066191895183769810676831353109303069033234715310287563158747705988305326397404720186258671215368588625611876280581509852855552819149745718992630449787803625851701801184123166018366180137512856918294030710215034138299203584 assert ((2 + 3*I)**-1000).expand(complex=True) == \ Integer(1)*-81079464736246615951519029367296227340216902563389546989376269312984127074385455204551402940331021387412262494620336565547972162814110386834027871072723273110439771695255662375718498785908345629702081336606863762777939617745464755635193139022811989314881997210583159045854968310911252660312523907616129080027594310008539817935736331124833163907518549408018652090650537035647520296539436440394920287688149200763245475036722326561143851304795139005599209239350981457301460233967137708519975586996623552182807311159141501424576682074392689622074945519232029999/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001 - Integer(1)*46938745946789557590804551905243206242164799136976022474337918748798900569942573265747576032611189047943842446167719177749107138603040963603119861476016947257034472364028585381714774667326478071264878108114128915685688115488744955550920239128462489496563930809677159214598114273887061533057125164518549173898349061972857446844052995037423459472376202251620778517659247970283904820245958198842631651569984310559418135975795868314764489884749573052997832686979294085577689571149679540256349988338406458116270429842222666345146926395233040564229555893248370000*I/8777125472973511649630750050295188683351430110097915876250894978429797369155961290321829625004920141758416719066805645579710744290541337680113772670040386863849283653078324415471816788604945889094925784900885812724984087843737442111926413818245854362613018058774368703971604921858023116665586358870612944209398056562604561248859926344335598822815885851096698226775053153403320782439987679978321289537645645163767251396759519805603090332694449553371530571613352311006350058217982509738362083094920649452123351717366337410243853659113315547584871655479914439219520157174729130746351059075207407866012574386726064196992865627149566238044625779078186624347183905913357718850537058578084932880569701242598663149911276357125355850792073635533676541250531086757377369962506979378337216411188347761901006460813413505861461267545723590468627854202034450569581626648934062198718362303420281555886394558137408159453103395918783625713213314350531051312551733021627153081075080140680608080529736975658786227362251632725009435866547613598753584705455955419696609282059191031962604169242974038517575645939316377801594539335940001 assert ((2 + 3*I/4)**-1000).expand(complex=True) == \ Integer(1)*4257256305661027385394552848555894604806501409793288342610746813288539790051927148781268212212078237301273165351052934681382567968787279534591114913777456610214738290619922068269909423637926549603264174216950025398244509039145410016404821694746262142525173737175066432954496592560621330313807235750500564940782099283410261748370262433487444897446779072067625787246390824312580440138770014838135245148574339248259670887549732495841810961088930810608893772914812838358159009303794863047635845688453859317690488124382253918725010358589723156019888846606295866740117645571396817375322724096486161308083462637370825829567578309445855481578518239186117686659177284332344643124760453112513611749309168470605289172320376911472635805822082051716625171429727162039621902266619821870482519063133136820085579315127038372190224739238686708451840610064871885616258831386810233957438253532027049148030157164346719204500373766157143311767338973363806106967439378604898250533766359989107510507493549529158818602327525235240510049484816090584478644771183158342479140194633579061295740839490629457435283873180259847394582069479062820225159699506175855369539201399183443253793905149785994830358114153241481884290274629611529758663543080724574566578220908907477622643689220814376054314972190402285121776593824615083669045183404206291739005554569305329760211752815718335731118664756831942466773261465213581616104242113894521054475516019456867271362053692785300826523328020796670205463390909136593859765912483565093461468865534470710132881677639651348709376/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001 - Integer(1)*3098214262599218784594285246258841485430681674561917573155883806818465520660668045042109232930382494608383663464454841313154390741655282039877410154577448327874989496074260116195788919037407420625081798124301494353693248757853222257918294662198297114746822817460991242508743651430439120439020484502408313310689912381846149597061657483084652685283853595100434135149479564507015504022249330340259111426799121454516345905101620532787348293877485702600390665276070250119465888154331218827342488849948540687659846652377277250614246402784754153678374932540789808703029043827352976139228402417432199779415751301480406673762521987999573209628597459357964214510139892316208670927074795773830798600837815329291912002136924506221066071242281626618211060464126372574400100990746934953437169840312584285942093951405864225230033279614235191326102697164613004299868695519642598882914862568516635347204441042798206770888274175592401790040170576311989738272102077819127459014286741435419468254146418098278519775722104890854275995510700298782146199325790002255362719776098816136732897323406228294203133323296591166026338391813696715894870956511298793595675308998014158717167429941371979636895553724830981754579086664608880698350866487717403917070872269853194118364230971216854931998642990452908852258008095741042117326241406479532880476938937997238098399302185675832474590293188864060116934035867037219176916416481757918864533515526389079998129329045569609325290897577497835388451456680707076072624629697883854217331728051953671643278797380171857920000*I/2103100954337624833663208713697737151593634525061637972297915388685604042449504336765884978184588688426595940401280828953096857809292320006227881797146858511436638446932833617514351442216409828605662238790280753075176269765767010004889778647709740770757817960711900340755635772183674511158570690702969774966791073165467918123298694584729211212414462628433370481195120564586361368504153395406845170075275051749019600057116719726628746724489572189061061036426955163696859127711110719502594479795200686212257570291758725259007379710596548777812659422174199194837355646482046783616494013289495563083118517507178847555801163089723056310287760875135196081975602765511153122381201303871673391366630940702817360340900568748719988954847590748960761446218262344767250783946365392689256634180417145926390656439421745644011831124277463643383712803287985472471755648426749842410972650924240795946699346613614779460399530274263580007672855851663196114585312432954432654691485867618908420370875753749297487803461900447407917655296784879220450937110470920633595689721819488638484547259978337741496090602390463594556401615298457456112485536498177883358587125449801777718900375736758266215245325999241624148841915093787519330809347240990363802360596034171167818310322276373120180985148650099673289383722502488957717848531612020897298448601714154586319660314294591620415272119454982220034319689607295960162971300417552364254983071768070124456169427638371140064235083443242844616326538396503937972586505546495649094344512270582463639152160238137952390380581401171977159154009407415523525096743009110916334144716516647041176989758534635251844947906038080852185583742296318878233394998111078843229681030277039104786225656992262073797524057992347971177720807155842376332851559276430280477639539393920006008737472164850104411971830120295750221200029811143140323763349636629725073624360001 a = Symbol('a', real=True) b = Symbol('b', real=True) assert exp(a*(2 + I*b)).expand(complex=True) == \ I*exp(2*a)*sin(a*b) + exp(2*a)*cos(a*b) def test_expand(): f = (16 - 2*sqrt(29))**2 assert f.expand() == 372 - 64*sqrt(29) f = (Integer(1)/2 + I/2)**10 assert f.expand() == I/32 f = (Integer(1)/2 + I)**10 assert f.expand() == Integer(237)/1024 - 779*I/256 def test_re_im1652(): x = Symbol('x') assert re(x) == re(conjugate(x)) assert im(x) == - im(conjugate(x)) assert im(x)*re(conjugate(x)) + im(conjugate(x)) * re(x) == 0 def test_issue_5084(): x = Symbol('x') assert ((x + x*I)/(1 + I)).as_real_imag() == (re((x + I*x)/(1 + I) ), im((x + I*x)/(1 + I))) def test_issue_5236(): assert (cos(1 + I)**3).as_real_imag() == (-3*sin(1)**2*sinh(1)**2*cos(1)*cosh(1) + cos(1)**3*cosh(1)**3, -3*cos(1)**2*cosh(1)**2*sin(1)*sinh(1) + sin(1)**3*sinh(1)**3) def test_real_imag(): x, y, z = symbols('x, y, z') X, Y, Z = symbols('X, Y, Z', commutative=False) a = Symbol('a', real=True) assert (2*a*x).as_real_imag() == (2*a*re(x), 2*a*im(x)) # issue 5395: assert (x*x.conjugate()).as_real_imag() == (Abs(x)**2, 0) assert im(x*x.conjugate()) == 0 assert im(x*y.conjugate()*z*y) == im(x*z)*Abs(y)**2 assert im(x*y.conjugate()*x*y) == im(x**2)*Abs(y)**2 assert im(Z*y.conjugate()*X*y) == im(Z*X)*Abs(y)**2 assert im(X*X.conjugate()) == im(X*X.conjugate(), evaluate=False) assert (sin(x)*sin(x).conjugate()).as_real_imag() == \ (Abs(sin(x))**2, 0) # issue 6573: assert (x**2).as_real_imag() == (re(x)**2 - im(x)**2, 2*re(x)*im(x)) # issue 6428: r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert (i*r*x).as_real_imag() == (I*i*r*im(x), -I*i*r*re(x)) assert (i*r*x*(y + 2)).as_real_imag() == ( I*i*r*(re(y) + 2)*im(x) + I*i*r*re(x)*im(y), -I*i*r*(re(y) + 2)*re(x) + I*i*r*im(x)*im(y)) # issue 7106: assert ((1 + I)/(1 - I)).as_real_imag() == (0, 1) assert ((1 + 2*I)*(1 + 3*I)).as_real_imag() == (-5, 5) def test_pow_issue_1724(): e = ((S.NegativeOne)**(S.One/3)) assert e.conjugate().n() == e.n().conjugate() e = S('-2/3 - (-29/54 + sqrt(93)/18)**(1/3) - 1/(9*(-29/54 + sqrt(93)/18)**(1/3))') assert e.conjugate().n() == e.n().conjugate() e = 2**I assert e.conjugate().n() == e.n().conjugate() def test_issue_5429(): assert sqrt(I).conjugate() != sqrt(I) def test_issue_4124(): from sympy import oo assert expand_complex(I*oo) == oo*I def test_issue_11518(): x = Symbol("x", real=True) y = Symbol("y", real=True) r = sqrt(x**2 + y**2) assert conjugate(r) == r s = abs(x + I * y) assert conjugate(s) == r
c6de92faefe07bb408e259431148b3776728230de3b3f57b19f28435363ee95d
from sympy.concrete.summations import Sum from sympy.core.expr import Expr from sympy.core.function import (Derivative, Function, diff, Subs) from sympy.core.numbers import (I, Rational, pi) from sympy.core.relational import Eq from sympy.core.singleton import S from sympy.core.symbol import Symbol from sympy.functions.combinatorial.factorials import factorial from sympy.functions.elementary.complexes import (im, re) from sympy.functions.elementary.exponential import (exp, log) from sympy.functions.elementary.miscellaneous import Max from sympy.functions.elementary.piecewise import Piecewise from sympy.functions.elementary.trigonometric import (cos, cot, sin, tan) from sympy.tensor.array.ndim_array import NDimArray from sympy.utilities.pytest import raises from sympy.abc import a, b, c, x, y, z def test_diff(): assert Rational(1, 3).diff(x) is S.Zero assert I.diff(x) is S.Zero assert pi.diff(x) is S.Zero assert x.diff(x, 0) == x assert (x**2).diff(x, 2, x) == 0 assert (x**2).diff((x, 2), x) == 0 assert (x**2).diff((x, 1), x) == 2 assert (x**2).diff((x, 1), (x, 1)) == 2 assert (x**2).diff((x, 2)) == 2 assert (x**2).diff(x, y, 0) == 2*x assert (x**2).diff(x, (y, 0)) == 2*x assert (x**2).diff(x, y) == 0 raises(ValueError, lambda: x.diff(1, x)) p = Rational(5) e = a*b + b**p assert e.diff(a) == b assert e.diff(b) == a + 5*b**4 assert e.diff(b).diff(a) == Rational(1) e = a*(b + c) assert e.diff(a) == b + c assert e.diff(b) == a assert e.diff(b).diff(a) == Rational(1) e = c**p assert e.diff(c, 6) == Rational(0) assert e.diff(c, 5) == Rational(120) e = c**Rational(2) assert e.diff(c) == 2*c e = a*b*c assert e.diff(c) == a*b def test_diff2(): n3 = Rational(3) n2 = Rational(2) n6 = Rational(6) e = n3*(-n2 + x**n2)*cos(x) + x*(-n6 + x**n2)*sin(x) assert e == 3*(-2 + x**2)*cos(x) + x*(-6 + x**2)*sin(x) assert e.diff(x).expand() == x**3*cos(x) e = (x + 1)**3 assert e.diff(x) == 3*(x + 1)**2 e = x*(x + 1)**3 assert e.diff(x) == (x + 1)**3 + 3*x*(x + 1)**2 e = 2*exp(x*x)*x assert e.diff(x) == 2*exp(x**2) + 4*x**2*exp(x**2) def test_diff3(): p = Rational(5) e = a*b + sin(b**p) assert e == a*b + sin(b**5) assert e.diff(a) == b assert e.diff(b) == a + 5*b**4*cos(b**5) e = tan(c) assert e == tan(c) assert e.diff(c) in [cos(c)**(-2), 1 + sin(c)**2/cos(c)**2, 1 + tan(c)**2] e = c*log(c) - c assert e == -c + c*log(c) assert e.diff(c) == log(c) e = log(sin(c)) assert e == log(sin(c)) assert e.diff(c) in [sin(c)**(-1)*cos(c), cot(c)] e = (Rational(2)**a/log(Rational(2))) assert e == 2**a*log(Rational(2))**(-1) assert e.diff(a) == 2**a def test_diff_no_eval_derivative(): class My(Expr): def __new__(cls, x): return Expr.__new__(cls, x) # My doesn't have its own _eval_derivative method assert My(x).diff(x).func is Derivative assert My(x).diff(x, 3).func is Derivative assert re(x).diff(x, 2) == Derivative(re(x), (x, 2)) # issue 15518 assert diff(NDimArray([re(x), im(x)]), (x, 2)) == NDimArray( [Derivative(re(x), (x, 2)), Derivative(im(x), (x, 2))]) # it doesn't have y so it shouldn't need a method for this case assert My(x).diff(y) == 0 def test_speed(): # this should return in 0.0s. If it takes forever, it's wrong. assert x.diff(x, 10**8) == 0 def test_deriv_noncommutative(): A = Symbol("A", commutative=False) f = Function("f") assert A*f(x)*A == f(x)*A**2 assert A*f(x).diff(x)*A == f(x).diff(x) * A**2 def test_diff_nth_derivative(): f = Function("f") n = Symbol("n", integer=True) expr = diff(sin(x), (x, n)) expr2 = diff(f(x), (x, 2)) expr3 = diff(f(x), (x, n)) assert expr.subs(sin(x), cos(-x)) == Derivative(cos(-x), (x, n)) assert expr.subs(n, 1).doit() == cos(x) assert expr.subs(n, 2).doit() == -sin(x) assert expr2.subs(Derivative(f(x), x), y) == Derivative(y, x) # Currently not supported (cannot determine if `n > 1`): #assert expr3.subs(Derivative(f(x), x), y) == Derivative(y, (x, n-1)) assert expr3 == Derivative(f(x), (x, n)) assert diff(x, (x, n)) == Piecewise((x, Eq(n, 0)), (1, Eq(n, 1)), (0, True)) assert diff(2*x, (x, n)).dummy_eq( Sum(Piecewise((2*x*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0, -y + n), 0)), (2*factorial(n)/(factorial(y)*factorial(-y + n)), Eq(y, 0) & Eq(Max(0, -y + n), 1)), (0, True)), (y, 0, n))) # TODO: assert diff(x**2, (x, n)) == x**(2-n)*ff(2, n) exprm = x*sin(x) mul_diff = diff(exprm, (x, n)) assert isinstance(mul_diff, Sum) for i in range(5): assert mul_diff.subs(n, i).doit() == exprm.diff((x, i)).expand() exprm2 = 2*y*x*sin(x)*cos(x)*log(x)*exp(x) dex = exprm2.diff((x, n)) assert isinstance(dex, Sum) for i in range(7): assert dex.subs(n, i).doit().expand() == \ exprm2.diff((x, i)).expand() assert (cos(x)*sin(y)).diff([[x, y, z]]) == NDimArray([ -sin(x)*sin(y), cos(x)*cos(y), 0]) def test_issue_16160(): assert Derivative(x**3, (x, x)).subs(x, 2) == Subs( Derivative(x**3, (x, 2)), x, 2) assert Derivative(1 + x**3, (x, x)).subs(x, 0 ) == Derivative(1 + y**3, (y, 0)).subs(y, 0)
3062dfcd2a0e84e0477c3e95ec98dfb95b625c8b40174792a729f620746bc570
"""Tests for tools for manipulating of large commutative expressions. """ from sympy import (S, Add, sin, Mul, Symbol, oo, Integral, sqrt, Tuple, I, Function, Interval, O, symbols, simplify, collect, Sum, Basic, Dict, root, exp, cos, Dummy, log, Rational) from sympy.core.exprtools import (decompose_power, Factors, Term, _gcd_terms, gcd_terms, factor_terms, factor_nc, _mask_nc, _monotonic_sign) from sympy.core.mul import _keep_coeff as _keep_coeff from sympy.simplify.cse_opts import sub_pre from sympy.utilities.pytest import raises from sympy.abc import a, b, t, x, y, z def test_decompose_power(): assert decompose_power(x) == (x, 1) assert decompose_power(x**2) == (x, 2) assert decompose_power(x**(2*y)) == (x**y, 2) assert decompose_power(x**(2*y/3)) == (x**(y/3), 2) assert decompose_power(x**(y*Rational(2, 3))) == (x**(y/3), 2) def test_Factors(): assert Factors() == Factors({}) == Factors(S.One) assert Factors().as_expr() is S.One assert Factors({x: 2, y: 3, sin(x): 4}).as_expr() == x**2*y**3*sin(x)**4 assert Factors(S.Infinity) == Factors({oo: 1}) assert Factors(S.NegativeInfinity) == Factors({oo: 1, -1: 1}) # issue #18059: assert Factors((x**2)**S.Half).as_expr() == (x**2)**S.Half a = Factors({x: 5, y: 3, z: 7}) b = Factors({ y: 4, z: 3, t: 10}) assert a.mul(b) == a*b == Factors({x: 5, y: 7, z: 10, t: 10}) assert a.div(b) == divmod(a, b) == \ (Factors({x: 5, z: 4}), Factors({y: 1, t: 10})) assert a.quo(b) == a/b == Factors({x: 5, z: 4}) assert a.rem(b) == a % b == Factors({y: 1, t: 10}) assert a.pow(3) == a**3 == Factors({x: 15, y: 9, z: 21}) assert b.pow(3) == b**3 == Factors({y: 12, z: 9, t: 30}) assert a.gcd(b) == Factors({y: 3, z: 3}) assert a.lcm(b) == Factors({x: 5, y: 4, z: 7, t: 10}) a = Factors({x: 4, y: 7, t: 7}) b = Factors({z: 1, t: 3}) assert a.normal(b) == (Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Factors(sqrt(2)*x).as_expr() == sqrt(2)*x assert Factors(-I)*I == Factors() assert Factors({S.NegativeOne: S(3)})*Factors({S.NegativeOne: S.One, I: S(5)}) == \ Factors(I) assert Factors(S(2)**x).div(S(3)**x) == \ (Factors({S(2): x}), Factors({S(3): x})) assert Factors(2**(2*x + 2)).div(S(8)) == \ (Factors({S(2): 2*x + 2}), Factors({S(8): S.One})) # coverage # /!\ things break if this is not True assert Factors({S.NegativeOne: Rational(3, 2)}) == Factors({I: S.One, S.NegativeOne: S.One}) assert Factors({I: S.One, S.NegativeOne: Rational(1, 3)}).as_expr() == I*(-1)**Rational(1, 3) assert Factors(-1.) == Factors({S.NegativeOne: S.One, S(1.): 1}) assert Factors(-2.) == Factors({S.NegativeOne: S.One, S(2.): 1}) assert Factors((-2.)**x) == Factors({S(-2.): x}) assert Factors(S(-2)) == Factors({S.NegativeOne: S.One, S(2): 1}) assert Factors(S.Half) == Factors({S(2): -S.One}) assert Factors(Rational(3, 2)) == Factors({S(3): S.One, S(2): S.NegativeOne}) assert Factors({I: S.One}) == Factors(I) assert Factors({-1.0: 2, I: 1}) == Factors({S(1.0): 1, I: 1}) assert Factors({S.NegativeOne: Rational(-3, 2)}).as_expr() == I A = symbols('A', commutative=False) assert Factors(2*A**2) == Factors({S(2): 1, A**2: 1}) assert Factors(I) == Factors({I: S.One}) assert Factors(x).normal(S(2)) == (Factors(x), Factors(S(2))) assert Factors(x).normal(S.Zero) == (Factors(), Factors(S.Zero)) raises(ZeroDivisionError, lambda: Factors(x).div(S.Zero)) assert Factors(x).mul(S(2)) == Factors(2*x) assert Factors(x).mul(S.Zero).is_zero assert Factors(x).mul(1/x).is_one assert Factors(x**sqrt(2)**3).as_expr() == x**(2*sqrt(2)) assert Factors(x)**Factors(S(2)) == Factors(x**2) assert Factors(x).gcd(S.Zero) == Factors(x) assert Factors(x).lcm(S.Zero).is_zero assert Factors(S.Zero).div(x) == (Factors(S.Zero), Factors()) assert Factors(x).div(x) == (Factors(), Factors()) assert Factors({x: .2})/Factors({x: .2}) == Factors() assert Factors(x) != Factors() assert Factors(S.Zero).normal(x) == (Factors(S.Zero), Factors()) n, d = x**(2 + y), x**2 f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(x**y), Factors()) assert f.gcd(d) == Factors() d = x**y assert f.div(d) == f.normal(d) == (Factors(x**2), Factors()) assert f.gcd(d) == Factors(d) n = d = 2**x f = Factors(n) assert f.div(d) == f.normal(d) == (Factors(), Factors()) assert f.gcd(d) == Factors(d) n, d = 2**x, 2**y f = Factors(n) assert f.div(d) == f.normal(d) == (Factors({S(2): x}), Factors({S(2): y})) assert f.gcd(d) == Factors() # extraction of constant only n = x**(x + 3) assert Factors(n).normal(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).normal(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).normal(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).normal(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).normal(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).normal(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1})) assert Factors(n).div(x**-3) == (Factors({x: x + 6}), Factors({})) assert Factors(n).div(x**3) == (Factors({x: x}), Factors({})) assert Factors(n).div(x**4) == (Factors({x: x}), Factors({x: 1})) assert Factors(n).div(x**(y - 3)) == \ (Factors({x: x + 6}), Factors({x: y})) assert Factors(n).div(x**(y + 3)) == (Factors({x: x}), Factors({x: y})) assert Factors(n).div(x**(y + 4)) == \ (Factors({x: x}), Factors({x: y + 1})) assert Factors(3 * x / 2) == Factors({3: 1, 2: -1, x: 1}) assert Factors(x * x / y) == Factors({x: 2, y: -1}) assert Factors(27 * x / y**9) == Factors({27: 1, x: 1, y: -9}) def test_Term(): a = Term(4*x*y**2/z/t**3) b = Term(2*x**3*y**5/t**3) assert a == Term(4, Factors({x: 1, y: 2}), Factors({z: 1, t: 3})) assert b == Term(2, Factors({x: 3, y: 5}), Factors({t: 3})) assert a.as_expr() == 4*x*y**2/z/t**3 assert b.as_expr() == 2*x**3*y**5/t**3 assert a.inv() == \ Term(S.One/4, Factors({z: 1, t: 3}), Factors({x: 1, y: 2})) assert b.inv() == Term(S.Half, Factors({t: 3}), Factors({x: 3, y: 5})) assert a.mul(b) == a*b == \ Term(8, Factors({x: 4, y: 7}), Factors({z: 1, t: 6})) assert a.quo(b) == a/b == Term(2, Factors({}), Factors({x: 2, y: 3, z: 1})) assert a.pow(3) == a**3 == \ Term(64, Factors({x: 3, y: 6}), Factors({z: 3, t: 9})) assert b.pow(3) == b**3 == Term(8, Factors({x: 9, y: 15}), Factors({t: 9})) assert a.pow(-3) == a**(-3) == \ Term(S.One/64, Factors({z: 3, t: 9}), Factors({x: 3, y: 6})) assert b.pow(-3) == b**(-3) == \ Term(S.One/8, Factors({t: 9}), Factors({x: 9, y: 15})) assert a.gcd(b) == Term(2, Factors({x: 1, y: 2}), Factors({t: 3})) assert a.lcm(b) == Term(4, Factors({x: 3, y: 5}), Factors({z: 1, t: 3})) a = Term(4*x*y**2/z/t**3) b = Term(2*x**3*y**5*t**7) assert a.mul(b) == Term(8, Factors({x: 4, y: 7, t: 4}), Factors({z: 1})) assert Term((2*x + 2)**3) == Term(8, Factors({x + 1: 3}), Factors({})) assert Term((2*x + 2)*(3*x + 6)**2) == \ Term(18, Factors({x + 1: 1, x + 2: 2}), Factors({})) def test_gcd_terms(): f = 2*(x + 1)*(x + 4)/(5*x**2 + 5) + (2*x + 2)*(x + 5)/(x**2 + 1)/5 + \ (2*x + 2)*(x + 6)/(5*x**2 + 5) assert _gcd_terms(f) == ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1) assert _gcd_terms(Add.make_args(f)) == \ ((Rational(6, 5))*((1 + x)/(1 + x**2)), 5 + x, 1) newf = (Rational(6, 5))*((1 + x)*(5 + x)/(1 + x**2)) assert gcd_terms(f) == newf args = Add.make_args(f) # non-Basic sequences of terms treated as terms of Add assert gcd_terms(list(args)) == newf assert gcd_terms(tuple(args)) == newf assert gcd_terms(set(args)) == newf # but a Basic sequence is treated as a container assert gcd_terms(Tuple(*args)) != newf assert gcd_terms(Basic(Tuple(1, 3*y + 3*x*y), Tuple(1, 3))) == \ Basic((1, 3*y*(x + 1)), (1, 3)) # but we shouldn't change keys of a dictionary or some may be lost assert gcd_terms(Dict((x*(1 + y), 2), (x + x*y, y + x*y))) == \ Dict({x*(y + 1): 2, x + x*y: y*(1 + x)}) assert gcd_terms((2*x + 2)**3 + (2*x + 2)**2) == 4*(x + 1)**2*(2*x + 3) assert gcd_terms(0) == 0 assert gcd_terms(1) == 1 assert gcd_terms(x) == x assert gcd_terms(2 + 2*x) == Mul(2, 1 + x, evaluate=False) arg = x*(2*x + 4*y) garg = 2*x*(x + 2*y) assert gcd_terms(arg) == garg assert gcd_terms(sin(arg)) == sin(garg) # issue 6139-like alpha, alpha1, alpha2, alpha3 = symbols('alpha:4') a = alpha**2 - alpha*x**2 + alpha + x**3 - x*(alpha + 1) rep = (alpha, (1 + sqrt(5))/2 + alpha1*x + alpha2*x**2 + alpha3*x**3) s = (a/(x - alpha)).subs(*rep).series(x, 0, 1) assert simplify(collect(s, x)) == -sqrt(5)/2 - Rational(3, 2) + O(x) # issue 5917 assert _gcd_terms([S.Zero, S.Zero]) == (0, 0, 1) assert _gcd_terms([2*x + 4]) == (2, x + 2, 1) eq = x/(x + 1/x) assert gcd_terms(eq, fraction=False) == eq eq = x/2/y + 1/x/y assert gcd_terms(eq, fraction=True, clear=True) == \ (x**2 + 2)/(2*x*y) assert gcd_terms(eq, fraction=True, clear=False) == \ (x**2/2 + 1)/(x*y) assert gcd_terms(eq, fraction=False, clear=True) == \ (x + 2/x)/(2*y) assert gcd_terms(eq, fraction=False, clear=False) == \ (x/2 + 1/x)/y def test_factor_terms(): A = Symbol('A', commutative=False) assert factor_terms(9*(x + x*y + 1) + (3*x + 3)**(2 + 2*x)) == \ 9*x*y + 9*x + _keep_coeff(S(3), x + 1)**_keep_coeff(S(2), x + 1) + 9 assert factor_terms(9*(x + x*y + 1) + (3)**(2 + 2*x)) == \ _keep_coeff(S(9), 3**(2*x) + x*y + x + 1) assert factor_terms(3**(2 + 2*x) + a*3**(2 + 2*x)) == \ 9*3**(2*x)*(a + 1) assert factor_terms(x + x*A) == \ x*(1 + A) assert factor_terms(sin(x + x*A)) == \ sin(x*(1 + A)) assert factor_terms((3*x + 3)**((2 + 2*x)/3)) == \ _keep_coeff(S(3), x + 1)**_keep_coeff(Rational(2, 3), x + 1) assert factor_terms(x + (x*y + x)**(3*x + 3)) == \ x + (x*(y + 1))**_keep_coeff(S(3), x + 1) assert factor_terms(a*(x + x*y) + b*(x*2 + y*x*2)) == \ x*(a + 2*b)*(y + 1) i = Integral(x, (x, 0, oo)) assert factor_terms(i) == i assert factor_terms(x/2 + y) == x/2 + y # fraction doesn't apply to integer denominators assert factor_terms(x/2 + y, fraction=True) == x/2 + y # clear *does* apply to the integer denominators assert factor_terms(x/2 + y, clear=True) == Mul(S.Half, x + 2*y, evaluate=False) # check radical extraction eq = sqrt(2) + sqrt(10) assert factor_terms(eq) == eq assert factor_terms(eq, radical=True) == sqrt(2)*(1 + sqrt(5)) eq = root(-6, 3) + root(6, 3) assert factor_terms(eq, radical=True) == 6**(S.One/3)*(1 + (-1)**(S.One/3)) eq = [x + x*y] ans = [x*(y + 1)] for c in [list, tuple, set]: assert factor_terms(c(eq)) == c(ans) assert factor_terms(Tuple(x + x*y)) == Tuple(x*(y + 1)) assert factor_terms(Interval(0, 1)) == Interval(0, 1) e = 1/sqrt(a/2 + 1) assert factor_terms(e, clear=False) == 1/sqrt(a/2 + 1) assert factor_terms(e, clear=True) == sqrt(2)/sqrt(a + 2) eq = x/(x + 1/x) + 1/(x**2 + 1) assert factor_terms(eq, fraction=False) == eq assert factor_terms(eq, fraction=True) == 1 assert factor_terms((1/(x**3 + x**2) + 2/x**2)*y) == \ y*(2 + 1/(x + 1))/x**2 # if not True, then processesing for this in factor_terms is not necessary assert gcd_terms(-x - y) == -x - y assert factor_terms(-x - y) == Mul(-1, x + y, evaluate=False) # if not True, then "special" processesing in factor_terms is not necessary assert gcd_terms(exp(Mul(-1, x + 1))) == exp(-x - 1) e = exp(-x - 2) + x assert factor_terms(e) == exp(Mul(-1, x + 2, evaluate=False)) + x assert factor_terms(e, sign=False) == e assert factor_terms(exp(-4*x - 2) - x) == -x + exp(Mul(-2, 2*x + 1, evaluate=False)) # sum/integral tests for F in (Sum, Integral): assert factor_terms(F(x, (y, 1, 10))) == x * F(1, (y, 1, 10)) assert factor_terms(F(x, (y, 1, 10)) + x) == x * (1 + F(1, (y, 1, 10))) assert factor_terms(F(x*y + x*y**2, (y, 1, 10))) == x*F(y*(y + 1), (y, 1, 10)) def test_xreplace(): e = Mul(2, 1 + x, evaluate=False) assert e.xreplace({}) == e assert e.xreplace({y: x}) == e def test_factor_nc(): x, y = symbols('x,y') k = symbols('k', integer=True) n, m, o = symbols('n,m,o', commutative=False) # mul and multinomial expansion is needed from sympy.core.function import _mexpand e = x*(1 + y)**2 assert _mexpand(e) == x + x*2*y + x*y**2 def factor_nc_test(e): ex = _mexpand(e) assert ex.is_Add f = factor_nc(ex) assert not f.is_Add and _mexpand(f) == ex factor_nc_test(x*(1 + y)) factor_nc_test(n*(x + 1)) factor_nc_test(n*(x + m)) factor_nc_test((x + m)*n) factor_nc_test(n*m*(x*o + n*o*m)*n) s = Sum(x, (x, 1, 2)) factor_nc_test(x*(1 + s)) factor_nc_test(x*(1 + s)*s) factor_nc_test(x*(1 + sin(s))) factor_nc_test((1 + n)**2) factor_nc_test((x + n)*(x + m)*(x + y)) factor_nc_test(x*(n*m + 1)) factor_nc_test(x*(n*m + x)) factor_nc_test(x*(x*n*m + 1)) factor_nc_test(x*n*(x*m + 1)) factor_nc_test(x*(m*n + x*n*m)) factor_nc_test(n*(1 - m)*n**2) factor_nc_test((n + m)**2) factor_nc_test((n - m)*(n + m)**2) factor_nc_test((n + m)**2*(n - m)) factor_nc_test((m - n)*(n + m)**2*(n - m)) assert factor_nc(n*(n + n*m)) == n**2*(1 + m) assert factor_nc(m*(m*n + n*m*n**2)) == m*(m + n*m*n)*n eq = m*sin(n) - sin(n)*m assert factor_nc(eq) == eq # for coverage: from sympy.physics.secondquant import Commutator from sympy import factor eq = 1 + x*Commutator(m, n) assert factor_nc(eq) == eq eq = x*Commutator(m, n) + x*Commutator(m, o)*Commutator(m, n) assert factor(eq) == x*(1 + Commutator(m, o))*Commutator(m, n) # issue 6534 assert (2*n + 2*m).factor() == 2*(n + m) # issue 6701 assert factor_nc(n**k + n**(k + 1)) == n**k*(1 + n) assert factor_nc((m*n)**k + (m*n)**(k + 1)) == (1 + m*n)*(m*n)**k # issue 6918 assert factor_nc(-n*(2*x**2 + 2*x)) == -2*n*x*(x + 1) def test_issue_6360(): a, b = symbols("a b") apb = a + b eq = apb + apb**2*(-2*a - 2*b) assert factor_terms(sub_pre(eq)) == a + b - 2*(a + b)**3 def test_issue_7903(): a = symbols(r'a', real=True) t = exp(I*cos(a)) + exp(-I*sin(a)) assert t.simplify() def test_issue_8263(): F, G = symbols('F, G', commutative=False, cls=Function) x, y = symbols('x, y') expr, dummies, _ = _mask_nc(F(x)*G(y) - G(y)*F(x)) for v in dummies.values(): assert not v.is_commutative assert not expr.is_zero def test_monotonic_sign(): F = _monotonic_sign x = symbols('x') assert F(x) is None assert F(-x) is None assert F(Dummy(prime=True)) == 2 assert F(Dummy(prime=True, odd=True)) == 3 assert F(Dummy(composite=True)) == 4 assert F(Dummy(composite=True, odd=True)) == 9 assert F(Dummy(positive=True, integer=True)) == 1 assert F(Dummy(positive=True, even=True)) == 2 assert F(Dummy(positive=True, even=True, prime=False)) == 4 assert F(Dummy(negative=True, integer=True)) == -1 assert F(Dummy(negative=True, even=True)) == -2 assert F(Dummy(zero=True)) == 0 assert F(Dummy(nonnegative=True)) == 0 assert F(Dummy(nonpositive=True)) == 0 assert F(Dummy(positive=True) + 1).is_positive assert F(Dummy(positive=True, integer=True) - 1).is_nonnegative assert F(Dummy(positive=True) - 1) is None assert F(Dummy(negative=True) + 1) is None assert F(Dummy(negative=True, integer=True) - 1).is_nonpositive assert F(Dummy(negative=True) - 1).is_negative assert F(-Dummy(positive=True) + 1) is None assert F(-Dummy(positive=True, integer=True) - 1).is_negative assert F(-Dummy(positive=True) - 1).is_negative assert F(-Dummy(negative=True) + 1).is_positive assert F(-Dummy(negative=True, integer=True) - 1).is_nonnegative assert F(-Dummy(negative=True) - 1) is None x = Dummy(negative=True) assert F(x**3).is_nonpositive assert F(x**3 + log(2)*x - 1).is_negative x = Dummy(positive=True) assert F(-x**3).is_nonpositive p = Dummy(positive=True) assert F(1/p).is_positive assert F(p/(p + 1)).is_positive p = Dummy(nonnegative=True) assert F(p/(p + 1)).is_nonnegative p = Dummy(positive=True) assert F(-1/p).is_negative p = Dummy(nonpositive=True) assert F(p/(-p + 1)).is_nonpositive p = Dummy(positive=True, integer=True) q = Dummy(positive=True, integer=True) assert F(-2/p/q).is_negative assert F(-2/(p - 1)/q) is None assert F((p - 1)*q + 1).is_positive assert F(-(p - 1)*q - 1).is_negative def test_issue_17256(): from sympy import Symbol, Range, Sum x = Symbol('x') s1 = Sum(x + 1, (x, 1, 9)) s2 = Sum(x + 1, (x, Range(1, 10))) a = Symbol('a') r1 = s1.xreplace({x:a}) r2 = s2.xreplace({x:a}) r1.doit() == r2.doit() s1 = Sum(x + 1, (x, 0, 9)) s2 = Sum(x + 1, (x, Range(10))) a = Symbol('a') r1 = s1.xreplace({x:a}) r2 = s2.xreplace({x:a}) assert r1 == r2
bfd287438b7eeba4f6e12874e839eb6386c76bf011766b1bf8992527c1af0b88
from sympy.core import ( Rational, Symbol, S, Float, Integer, Mul, Number, Pow, Basic, I, nan, pi, symbols, oo, zoo, Rational, N) from sympy.core.tests.test_evalf import NS from sympy.core.function import expand_multinomial from sympy.functions.elementary.complexes import Abs from sympy.functions.elementary.miscellaneous import sqrt, cbrt from sympy.functions.elementary.exponential import exp, log from sympy.functions.special.error_functions import erf from sympy.functions.elementary.trigonometric import ( sin, cos, tan, sec, csc, sinh, cosh, tanh, atan) from sympy.series.order import O def test_rational(): a = Rational(1, 5) r = sqrt(5)/5 assert sqrt(a) == r assert 2*sqrt(a) == 2*r r = a*a**S.Half assert a**Rational(3, 2) == r assert 2*a**Rational(3, 2) == 2*r r = a**5*a**Rational(2, 3) assert a**Rational(17, 3) == r assert 2 * a**Rational(17, 3) == 2*r def test_large_rational(): e = (Rational(123712**12 - 1, 7) + Rational(1, 7))**Rational(1, 3) assert e == 234232585392159195136 * (Rational(1, 7)**Rational(1, 3)) def test_negative_real(): def feq(a, b): return abs(a - b) < 1E-10 assert feq(S.One / Float(-0.5), -Integer(2)) def test_expand(): x = Symbol('x') assert (2**(-1 - x)).expand() == S.Half*2**(-x) def test_issue_3449(): #test if powers are simplified correctly #see also issue 3995 x = Symbol('x') assert ((x**Rational(1, 3))**Rational(2)) == x**Rational(2, 3) assert ( (x**Rational(3))**Rational(2, 5)) == (x**Rational(3))**Rational(2, 5) a = Symbol('a', real=True) b = Symbol('b', real=True) assert (a**2)**b == (abs(a)**b)**2 assert sqrt(1/a) != 1/sqrt(a) # e.g. for a = -1 assert (a**3)**Rational(1, 3) != a assert (x**a)**b != x**(a*b) # e.g. x = -1, a=2, b=1/2 assert (x**.5)**b == x**(.5*b) assert (x**.5)**.5 == x**.25 assert (x**2.5)**.5 != x**1.25 # e.g. for x = 5*I k = Symbol('k', integer=True) m = Symbol('m', integer=True) assert (x**k)**m == x**(k*m) assert Number(5)**Rational(2, 3) == Number(25)**Rational(1, 3) assert (x**.5)**2 == x**1.0 assert (x**2)**k == (x**k)**2 == x**(2*k) a = Symbol('a', positive=True) assert (a**3)**Rational(2, 5) == a**Rational(6, 5) assert (a**2)**b == (a**b)**2 assert (a**Rational(2, 3))**x == a**(x*Rational(2, 3)) != (a**x)**Rational(2, 3) def test_issue_3866(): assert --sqrt(sqrt(5) - 1) == sqrt(sqrt(5) - 1) def test_negative_one(): x = Symbol('x', complex=True) y = Symbol('y', complex=True) assert 1/x**y == x**(-y) def test_issue_4362(): neg = Symbol('neg', negative=True) nonneg = Symbol('nonneg', nonnegative=True) any = Symbol('any') num, den = sqrt(1/neg).as_numer_denom() assert num == sqrt(-1) assert den == sqrt(-neg) num, den = sqrt(1/nonneg).as_numer_denom() assert num == 1 assert den == sqrt(nonneg) num, den = sqrt(1/any).as_numer_denom() assert num == sqrt(1/any) assert den == 1 def eqn(num, den, pow): return (num/den)**pow npos = 1 nneg = -1 dpos = 2 - sqrt(3) dneg = 1 - sqrt(3) assert dpos > 0 and dneg < 0 and npos > 0 and nneg < 0 # pos or neg integer eq = eqn(npos, dpos, 2) assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2) eq = eqn(npos, dneg, 2) assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2) eq = eqn(nneg, dpos, 2) assert eq.is_Pow and eq.as_numer_denom() == (1, dpos**2) eq = eqn(nneg, dneg, 2) assert eq.is_Pow and eq.as_numer_denom() == (1, dneg**2) eq = eqn(npos, dpos, -2) assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1) eq = eqn(npos, dneg, -2) assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1) eq = eqn(nneg, dpos, -2) assert eq.is_Pow and eq.as_numer_denom() == (dpos**2, 1) eq = eqn(nneg, dneg, -2) assert eq.is_Pow and eq.as_numer_denom() == (dneg**2, 1) # pos or neg rational pow = S.Half eq = eqn(npos, dpos, pow) assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow) eq = eqn(npos, dneg, pow) assert eq.is_Pow is False and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow) eq = eqn(nneg, dpos, pow) assert not eq.is_Pow or eq.as_numer_denom() == (nneg**pow, dpos**pow) eq = eqn(nneg, dneg, pow) assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow) eq = eqn(npos, dpos, -pow) assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, npos**pow) eq = eqn(npos, dneg, -pow) assert eq.is_Pow is False and eq.as_numer_denom() == (-(-npos)**pow*(-dneg)**pow, npos) eq = eqn(nneg, dpos, -pow) assert not eq.is_Pow or eq.as_numer_denom() == (dpos**pow, nneg**pow) eq = eqn(nneg, dneg, -pow) assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow) # unknown exponent pow = 2*any eq = eqn(npos, dpos, pow) assert eq.is_Pow and eq.as_numer_denom() == (npos**pow, dpos**pow) eq = eqn(npos, dneg, pow) assert eq.is_Pow and eq.as_numer_denom() == ((-npos)**pow, (-dneg)**pow) eq = eqn(nneg, dpos, pow) assert eq.is_Pow and eq.as_numer_denom() == (nneg**pow, dpos**pow) eq = eqn(nneg, dneg, pow) assert eq.is_Pow and eq.as_numer_denom() == ((-nneg)**pow, (-dneg)**pow) eq = eqn(npos, dpos, -pow) assert eq.as_numer_denom() == (dpos**pow, npos**pow) eq = eqn(npos, dneg, -pow) assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-npos)**pow) eq = eqn(nneg, dpos, -pow) assert eq.is_Pow and eq.as_numer_denom() == (dpos**pow, nneg**pow) eq = eqn(nneg, dneg, -pow) assert eq.is_Pow and eq.as_numer_denom() == ((-dneg)**pow, (-nneg)**pow) x = Symbol('x') y = Symbol('y') assert ((1/(1 + x/3))**(-S.One)).as_numer_denom() == (3 + x, 3) notp = Symbol('notp', positive=False) # not positive does not imply real b = ((1 + x/notp)**-2) assert (b**(-y)).as_numer_denom() == (1, b**y) assert (b**(-S.One)).as_numer_denom() == ((notp + x)**2, notp**2) nonp = Symbol('nonp', nonpositive=True) assert (((1 + x/nonp)**-2)**(-S.One)).as_numer_denom() == ((-nonp - x)**2, nonp**2) n = Symbol('n', negative=True) assert (x**n).as_numer_denom() == (1, x**-n) assert sqrt(1/n).as_numer_denom() == (S.ImaginaryUnit, sqrt(-n)) n = Symbol('0 or neg', nonpositive=True) # if x and n are split up without negating each term and n is negative # then the answer might be wrong; if n is 0 it won't matter since # 1/oo and 1/zoo are both zero as is sqrt(0)/sqrt(-x) unless x is also # zero (in which case the negative sign doesn't matter): # 1/sqrt(1/-1) = -I but sqrt(-1)/sqrt(1) = I assert (1/sqrt(x/n)).as_numer_denom() == (sqrt(-n), sqrt(-x)) c = Symbol('c', complex=True) e = sqrt(1/c) assert e.as_numer_denom() == (e, 1) i = Symbol('i', integer=True) assert (((1 + x/y)**i)).as_numer_denom() == ((x + y)**i, y**i) def test_Pow_signs(): """Cf. issues 4595 and 5250""" x = Symbol('x') y = Symbol('y') n = Symbol('n', even=True) assert (3 - y)**2 != (y - 3)**2 assert (3 - y)**n != (y - 3)**n assert (-3 + y - x)**2 != (3 - y + x)**2 assert (y - 3)**3 != -(3 - y)**3 def test_power_with_noncommutative_mul_as_base(): x = Symbol('x', commutative=False) y = Symbol('y', commutative=False) assert not (x*y)**3 == x**3*y**3 assert (2*x*y)**3 == 8*(x*y)**3 def test_power_rewrite_exp(): assert (I**I).rewrite(exp) == exp(-pi/2) expr = (2 + 3*I)**(4 + 5*I) assert expr.rewrite(exp) == exp((4 + 5*I)*(log(sqrt(13)) + I*atan(Rational(3, 2)))) assert expr.rewrite(exp).expand() == \ 169*exp(5*I*log(13)/2)*exp(4*I*atan(Rational(3, 2)))*exp(-5*atan(Rational(3, 2))) assert ((6 + 7*I)**5).rewrite(exp) == 7225*sqrt(85)*exp(5*I*atan(Rational(7, 6))) expr = 5**(6 + 7*I) assert expr.rewrite(exp) == exp((6 + 7*I)*log(5)) assert expr.rewrite(exp).expand() == 15625*exp(7*I*log(5)) assert Pow(123, 789, evaluate=False).rewrite(exp) == 123**789 assert (1**I).rewrite(exp) == 1**I assert (0**I).rewrite(exp) == 0**I expr = (-2)**(2 + 5*I) assert expr.rewrite(exp) == exp((2 + 5*I)*(log(2) + I*pi)) assert expr.rewrite(exp).expand() == 4*exp(-5*pi)*exp(5*I*log(2)) assert ((-2)**S(-5)).rewrite(exp) == (-2)**S(-5) x, y = symbols('x y') assert (x**y).rewrite(exp) == exp(y*log(x)) assert (7**x).rewrite(exp) == exp(x*log(7), evaluate=False) assert ((2 + 3*I)**x).rewrite(exp) == exp(x*(log(sqrt(13)) + I*atan(Rational(3, 2)))) assert (y**(5 + 6*I)).rewrite(exp) == exp(log(y)*(5 + 6*I)) assert all((1/func(x)).rewrite(exp) == 1/(func(x).rewrite(exp)) for func in (sin, cos, tan, sec, csc, sinh, cosh, tanh)) def test_zero(): x = Symbol('x') y = Symbol('y') assert 0**x != 0 assert 0**(2*x) == 0**x assert 0**(1.0*x) == 0**x assert 0**(2.0*x) == 0**x assert (0**(2 - x)).as_base_exp() == (0, 2 - x) assert 0**(x - 2) != S.Infinity**(2 - x) assert 0**(2*x*y) == 0**(x*y) assert 0**(-2*x*y) == S.ComplexInfinity**(x*y) def test_pow_as_base_exp(): x = Symbol('x') assert (S.Infinity**(2 - x)).as_base_exp() == (S.Infinity, 2 - x) assert (S.Infinity**(x - 2)).as_base_exp() == (S.Infinity, x - 2) p = S.Half**x assert p.base, p.exp == p.as_base_exp() == (S(2), -x) # issue 8344: assert Pow(1, 2, evaluate=False).as_base_exp() == (S.One, S(2)) def test_issue_6100_12942_4473(): x = Symbol('x') y = Symbol('y') assert x**1.0 != x assert x != x**1.0 assert True != x**1.0 assert x**1.0 is not True assert x is not True assert x*y != (x*y)**1.0 # Pow != Symbol assert (x**1.0)**1.0 != x assert (x**1.0)**2.0 != x**2 b = Basic() assert Pow(b, 1.0, evaluate=False) != b # if the following gets distributed as a Mul (x**1.0*y**1.0 then # __eq__ methods could be added to Symbol and Pow to detect the # power-of-1.0 case. assert ((x*y)**1.0).func is Pow def test_issue_6208(): from sympy import root, Rational I = S.ImaginaryUnit assert sqrt(33**(I*Rational(9, 10))) == -33**(I*Rational(9, 20)) assert root((6*I)**(2*I), 3).as_base_exp()[1] == Rational(1, 3) # != 2*I/3 assert root((6*I)**(I/3), 3).as_base_exp()[1] == I/9 assert sqrt(exp(3*I)) == exp(I*Rational(3, 2)) assert sqrt(-sqrt(3)*(1 + 2*I)) == sqrt(sqrt(3))*sqrt(-1 - 2*I) assert sqrt(exp(5*I)) == -exp(I*Rational(5, 2)) assert root(exp(5*I), 3).exp == Rational(1, 3) def test_issue_6990(): x = Symbol('x') a = Symbol('a') b = Symbol('b') assert (sqrt(a + b*x + x**2)).series(x, 0, 3).removeO() == \ b*x/(2*sqrt(a)) + x**2*(1/(2*sqrt(a)) - \ b**2/(8*a**Rational(3, 2))) + sqrt(a) def test_issue_6068(): x = Symbol('x') assert sqrt(sin(x)).series(x, 0, 7) == \ sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \ x**Rational(13, 2)/24192 + O(x**7) assert sqrt(sin(x)).series(x, 0, 9) == \ sqrt(x) - x**Rational(5, 2)/12 + x**Rational(9, 2)/1440 - \ x**Rational(13, 2)/24192 - 67*x**Rational(17, 2)/29030400 + O(x**9) assert sqrt(sin(x**3)).series(x, 0, 19) == \ x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 + O(x**19) assert sqrt(sin(x**3)).series(x, 0, 20) == \ x**Rational(3, 2) - x**Rational(15, 2)/12 + x**Rational(27, 2)/1440 - \ x**Rational(39, 2)/24192 + O(x**20) def test_issue_6782(): x = Symbol('x') assert sqrt(sin(x**3)).series(x, 0, 7) == x**Rational(3, 2) + O(x**7) assert sqrt(sin(x**4)).series(x, 0, 3) == x**2 + O(x**3) def test_issue_6653(): x = Symbol('x') assert (1 / sqrt(1 + sin(x**2))).series(x, 0, 3) == 1 - x**2/2 + O(x**3) def test_issue_6429(): x = Symbol('x') c = Symbol('c') f = (c**2 + x)**(0.5) assert f.series(x, x0=0, n=1) == (c**2)**0.5 + O(x) assert f.taylor_term(0, x) == (c**2)**0.5 assert f.taylor_term(1, x) == 0.5*x*(c**2)**(-0.5) assert f.taylor_term(2, x) == -0.125*x**2*(c**2)**(-1.5) def test_issue_7638(): f = pi/log(sqrt(2)) assert ((1 + I)**(I*f/2))**0.3 == (1 + I)**(0.15*I*f) # if 1/3 -> 1.0/3 this should fail since it cannot be shown that the # sign will be +/-1; for the previous "small arg" case, it didn't matter # that this could not be proved assert (1 + I)**(4*I*f) == ((1 + I)**(12*I*f))**Rational(1, 3) assert (((1 + I)**(I*(1 + 7*f)))**Rational(1, 3)).exp == Rational(1, 3) r = symbols('r', real=True) assert sqrt(r**2) == abs(r) assert cbrt(r**3) != r assert sqrt(Pow(2*I, 5*S.Half)) != (2*I)**Rational(5, 4) p = symbols('p', positive=True) assert cbrt(p**2) == p**Rational(2, 3) assert NS(((0.2 + 0.7*I)**(0.7 + 1.0*I))**(0.5 - 0.1*I), 1) == '0.4 + 0.2*I' assert sqrt(1/(1 + I)) == sqrt(1 - I)/sqrt(2) # or 1/sqrt(1 + I) e = 1/(1 - sqrt(2)) assert sqrt(e) == I/sqrt(-1 + sqrt(2)) assert e**Rational(-1, 2) == -I*sqrt(-1 + sqrt(2)) assert sqrt((cos(1)**2 + sin(1)**2 - 1)**(3 + I)).exp in [S.Half, Rational(3, 2) + I/2] assert sqrt(r**Rational(4, 3)) != r**Rational(2, 3) assert sqrt((p + I)**Rational(4, 3)) == (p + I)**Rational(2, 3) assert sqrt((p - p**2*I)**2) == p - p**2*I assert sqrt((p + r*I)**2) != p + r*I e = (1 + I/5) assert sqrt(e**5) == e**(5*S.Half) assert sqrt(e**6) == e**3 assert sqrt((1 + I*r)**6) != (1 + I*r)**3 def test_issue_8582(): assert 1**oo is nan assert 1**(-oo) is nan assert 1**zoo is nan assert 1**(oo + I) is nan assert 1**(1 + I*oo) is nan assert 1**(oo + I*oo) is nan def test_issue_8650(): n = Symbol('n', integer=True, nonnegative=True) assert (n**n).is_positive is True x = 5*n + 5 assert (x**(5*(n + 1))).is_positive is True def test_issue_13914(): b = Symbol('b') assert (-1)**zoo is nan assert 2**zoo is nan assert (S.Half)**(1 + zoo) is nan assert I**(zoo + I) is nan assert b**(I + zoo) is nan def test_better_sqrt(): n = Symbol('n', integer=True, nonnegative=True) assert sqrt(3 + 4*I) == 2 + I assert sqrt(3 - 4*I) == 2 - I assert sqrt(-3 - 4*I) == 1 - 2*I assert sqrt(-3 + 4*I) == 1 + 2*I assert sqrt(32 + 24*I) == 6 + 2*I assert sqrt(32 - 24*I) == 6 - 2*I assert sqrt(-32 - 24*I) == 2 - 6*I assert sqrt(-32 + 24*I) == 2 + 6*I # triple (3, 4, 5): # parity of 3 matches parity of 5 and # den, 4, is a square assert sqrt((3 + 4*I)/4) == 1 + I/2 # triple (8, 15, 17) # parity of 8 doesn't match parity of 17 but # den/2, 8/2, is a square assert sqrt((8 + 15*I)/8) == (5 + 3*I)/4 # handle the denominator assert sqrt((3 - 4*I)/25) == (2 - I)/5 assert sqrt((3 - 4*I)/26) == (2 - I)/sqrt(26) # mul # issue #12739 assert sqrt((3 + 4*I)/(3 - 4*I)) == (3 + 4*I)/5 assert sqrt(2/(3 + 4*I)) == sqrt(2)/5*(2 - I) assert sqrt(n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(2 - I) assert sqrt(-2/(3 + 4*I)) == sqrt(2)/5*(1 + 2*I) assert sqrt(-n/(3 + 4*I)).subs(n, 2) == sqrt(2)/5*(1 + 2*I) # power assert sqrt(1/(3 + I*4)) == (2 - I)/5 assert sqrt(1/(3 - I)) == sqrt(10)*sqrt(3 + I)/10 # symbolic i = symbols('i', imaginary=True) assert sqrt(3/i) == Mul(sqrt(3), sqrt(-i)/abs(i), evaluate=False) # multiples of 1/2; don't make this too automatic assert sqrt((3 + 4*I))**3 == (2 + I)**3 assert Pow(3 + 4*I, Rational(3, 2)) == 2 + 11*I assert Pow(6 + 8*I, Rational(3, 2)) == 2*sqrt(2)*(2 + 11*I) n, d = (3 + 4*I), (3 - 4*I)**3 a = n/d assert a.args == (1/d, n) eq = sqrt(a) assert eq.args == (a, S.Half) assert expand_multinomial(eq) == sqrt((-117 + 44*I)*(3 + 4*I))/125 assert eq.expand() == (7 - 24*I)/125 # issue 12775 # pos im part assert sqrt(2*I) == (1 + I) assert sqrt(2*9*I) == Mul(3, 1 + I, evaluate=False) assert Pow(2*I, 3*S.Half) == (1 + I)**3 # neg im part assert sqrt(-I/2) == Mul(S.Half, 1 - I, evaluate=False) # fractional im part assert Pow(Rational(-9, 2)*I, Rational(3, 2)) == 27*(1 - I)**3/8 def test_issue_2993(): x = Symbol('x') assert str((2.3*x - 4)**0.3) == '1.5157165665104*(0.575*x - 1)**0.3' assert str((2.3*x + 4)**0.3) == '1.5157165665104*(0.575*x + 1)**0.3' assert str((-2.3*x + 4)**0.3) == '1.5157165665104*(1 - 0.575*x)**0.3' assert str((-2.3*x - 4)**0.3) == '1.5157165665104*(-0.575*x - 1)**0.3' assert str((2.3*x - 2)**0.3) == '1.28386201800527*(x - 0.869565217391304)**0.3' assert str((-2.3*x - 2)**0.3) == '1.28386201800527*(-x - 0.869565217391304)**0.3' assert str((-2.3*x + 2)**0.3) == '1.28386201800527*(0.869565217391304 - x)**0.3' assert str((2.3*x + 2)**0.3) == '1.28386201800527*(x + 0.869565217391304)**0.3' assert str((2.3*x - 4)**Rational(1, 3)) == '2**(2/3)*(0.575*x - 1)**(1/3)' eq = (2.3*x + 4) assert eq**2 == 16*(0.575*x + 1)**2 assert (1/eq).args == (eq, -1) # don't change trivial power # issue 17735 q=.5*exp(x) - .5*exp(-x) + 0.1 assert int((q**2).subs(x, 1)) == 1 # issue 17756 y = Symbol('y') assert len(sqrt(x/(x + y)**2 + Float('0.008', 30)).subs(y, pi.n(25)).atoms(Float)) == 2 # issue 17756 a, b, c, d, e, f, g = symbols('a:g') expr = sqrt(1 + a*(c**4 + g*d - 2*g*e - f*(-g + d))**2/ (c**3*b**2*(d - 3*e + 2*f)**2))/2 r = [ (a, N('0.0170992456333788667034850458615', 30)), (b, N('0.0966594956075474769169134801223', 30)), (c, N('0.390911862903463913632151616184', 30)), (d, N('0.152812084558656566271750185933', 30)), (e, N('0.137562344465103337106561623432', 30)), (f, N('0.174259178881496659302933610355', 30)), (g, N('0.220745448491223779615401870086', 30))] tru = expr.n(30, subs=dict(r)) seq = expr.subs(r) # although `tru` is the right way to evaluate # expr with numerical values, `seq` will have # significant loss of precision if extraction of # the largest coefficient of a power's base's terms # is done improperly assert seq == tru def test_issue_17450(): assert (erf(cosh(1)**7)**I).is_real is None assert (erf(cosh(1)**7)**I).is_imaginary is False assert (Pow(exp(1+sqrt(2)), ((1-sqrt(2))*I*pi), evaluate=False)).is_real is None assert ((-10)**(10*I*pi/3)).is_real is False assert ((-5)**(4*I*pi)).is_real is False
0b662ce25db8f062cbdc4048b7bd182e4f192b83c1a8806e0ae1232b29ece9ba
from sympy import I, sqrt, log, exp, sin, asin, factorial, Mod, pi from sympy.core import Symbol, S, Rational, Integer, Dummy, Wild, Pow from sympy.core.facts import InconsistentAssumptions from sympy import simplify from sympy.core.compatibility import range from sympy.utilities.pytest import raises, XFAIL def test_symbol_unset(): x = Symbol('x', real=True, integer=True) assert x.is_real is True assert x.is_integer is True assert x.is_imaginary is False assert x.is_noninteger is False assert x.is_number is False def test_zero(): z = Integer(0) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is False assert z.is_negative is False assert z.is_nonpositive is True assert z.is_nonnegative is True assert z.is_even is True assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False assert z.is_number is True def test_one(): z = Integer(1) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is True assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_number is True assert z.is_composite is False # issue 8807 def test_negativeone(): z = Integer(-1) assert z.is_commutative is True assert z.is_integer is True assert z.is_rational is True assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is False assert z.is_positive is False assert z.is_negative is True assert z.is_nonpositive is True assert z.is_nonnegative is False assert z.is_even is False assert z.is_odd is True assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False assert z.is_number is True def test_infinity(): oo = S.Infinity assert oo.is_commutative is True assert oo.is_integer is False assert oo.is_rational is False assert oo.is_algebraic is False assert oo.is_transcendental is False assert oo.is_extended_real is True assert oo.is_real is False assert oo.is_complex is False assert oo.is_noninteger is True assert oo.is_irrational is False assert oo.is_imaginary is False assert oo.is_nonzero is False assert oo.is_positive is False assert oo.is_negative is False assert oo.is_nonpositive is False assert oo.is_nonnegative is False assert oo.is_extended_nonzero is True assert oo.is_extended_positive is True assert oo.is_extended_negative is False assert oo.is_extended_nonpositive is False assert oo.is_extended_nonnegative is True assert oo.is_even is False assert oo.is_odd is False assert oo.is_finite is False assert oo.is_infinite is True assert oo.is_comparable is True assert oo.is_prime is False assert oo.is_composite is False assert oo.is_number is True def test_neg_infinity(): mm = S.NegativeInfinity assert mm.is_commutative is True assert mm.is_integer is False assert mm.is_rational is False assert mm.is_algebraic is False assert mm.is_transcendental is False assert mm.is_extended_real is True assert mm.is_real is False assert mm.is_complex is False assert mm.is_noninteger is True assert mm.is_irrational is False assert mm.is_imaginary is False assert mm.is_nonzero is False assert mm.is_positive is False assert mm.is_negative is False assert mm.is_nonpositive is False assert mm.is_nonnegative is False assert mm.is_extended_nonzero is True assert mm.is_extended_positive is False assert mm.is_extended_negative is True assert mm.is_extended_nonpositive is True assert mm.is_extended_nonnegative is False assert mm.is_even is False assert mm.is_odd is False assert mm.is_finite is False assert mm.is_infinite is True assert mm.is_comparable is True assert mm.is_prime is False assert mm.is_composite is False assert mm.is_number is True def test_zoo(): zoo = S.ComplexInfinity assert zoo.is_complex is False assert zoo.is_real is False assert zoo.is_prime is False def test_nan(): nan = S.NaN assert nan.is_commutative is True assert nan.is_integer is None assert nan.is_rational is None assert nan.is_algebraic is None assert nan.is_transcendental is None assert nan.is_real is None assert nan.is_complex is None assert nan.is_noninteger is None assert nan.is_irrational is None assert nan.is_imaginary is None assert nan.is_positive is None assert nan.is_negative is None assert nan.is_nonpositive is None assert nan.is_nonnegative is None assert nan.is_even is None assert nan.is_odd is None assert nan.is_finite is None assert nan.is_infinite is None assert nan.is_comparable is False assert nan.is_prime is None assert nan.is_composite is None assert nan.is_number is True def test_pos_rational(): r = Rational(3, 4) assert r.is_commutative is True assert r.is_integer is False assert r.is_rational is True assert r.is_algebraic is True assert r.is_transcendental is False assert r.is_real is True assert r.is_complex is True assert r.is_noninteger is True assert r.is_irrational is False assert r.is_imaginary is False assert r.is_positive is True assert r.is_negative is False assert r.is_nonpositive is False assert r.is_nonnegative is True assert r.is_even is False assert r.is_odd is False assert r.is_finite is True assert r.is_infinite is False assert r.is_comparable is True assert r.is_prime is False assert r.is_composite is False r = Rational(1, 4) assert r.is_nonpositive is False assert r.is_positive is True assert r.is_negative is False assert r.is_nonnegative is True r = Rational(5, 4) assert r.is_negative is False assert r.is_positive is True assert r.is_nonpositive is False assert r.is_nonnegative is True r = Rational(5, 3) assert r.is_nonnegative is True assert r.is_positive is True assert r.is_negative is False assert r.is_nonpositive is False def test_neg_rational(): r = Rational(-3, 4) assert r.is_positive is False assert r.is_nonpositive is True assert r.is_negative is True assert r.is_nonnegative is False r = Rational(-1, 4) assert r.is_nonpositive is True assert r.is_positive is False assert r.is_negative is True assert r.is_nonnegative is False r = Rational(-5, 4) assert r.is_negative is True assert r.is_positive is False assert r.is_nonpositive is True assert r.is_nonnegative is False r = Rational(-5, 3) assert r.is_nonnegative is False assert r.is_positive is False assert r.is_negative is True assert r.is_nonpositive is True def test_pi(): z = S.Pi assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is False assert z.is_transcendental is True assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is True assert z.is_irrational is True assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False def test_E(): z = S.Exp1 assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is False assert z.is_transcendental is True assert z.is_real is True assert z.is_complex is True assert z.is_noninteger is True assert z.is_irrational is True assert z.is_imaginary is False assert z.is_positive is True assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is True assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is True assert z.is_prime is False assert z.is_composite is False def test_I(): z = S.ImaginaryUnit assert z.is_commutative is True assert z.is_integer is False assert z.is_rational is False assert z.is_algebraic is True assert z.is_transcendental is False assert z.is_real is False assert z.is_complex is True assert z.is_noninteger is False assert z.is_irrational is False assert z.is_imaginary is True assert z.is_positive is False assert z.is_negative is False assert z.is_nonpositive is False assert z.is_nonnegative is False assert z.is_even is False assert z.is_odd is False assert z.is_finite is True assert z.is_infinite is False assert z.is_comparable is False assert z.is_prime is False assert z.is_composite is False def test_symbol_real_false(): # issue 3848 a = Symbol('a', real=False) assert a.is_real is False assert a.is_integer is False assert a.is_zero is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_nonzero is False assert a.is_extended_negative is None assert a.is_extended_positive is None assert a.is_extended_nonnegative is None assert a.is_extended_nonpositive is None assert a.is_extended_nonzero is None def test_symbol_extended_real_false(): # issue 3848 a = Symbol('a', extended_real=False) assert a.is_real is False assert a.is_integer is False assert a.is_zero is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_nonzero is False assert a.is_extended_negative is False assert a.is_extended_positive is False assert a.is_extended_nonnegative is False assert a.is_extended_nonpositive is False assert a.is_extended_nonzero is False def test_symbol_imaginary(): a = Symbol('a', imaginary=True) assert a.is_real is False assert a.is_integer is False assert a.is_negative is False assert a.is_positive is False assert a.is_nonnegative is False assert a.is_nonpositive is False assert a.is_zero is False assert a.is_nonzero is False # since nonzero -> real def test_symbol_zero(): x = Symbol('x', zero=True) assert x.is_positive is False assert x.is_nonpositive assert x.is_negative is False assert x.is_nonnegative assert x.is_zero is True # TODO Change to x.is_nonzero is None # See https://github.com/sympy/sympy/pull/9583 assert x.is_nonzero is False assert x.is_finite is True def test_symbol_positive(): x = Symbol('x', positive=True) assert x.is_positive is True assert x.is_nonpositive is False assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is False assert x.is_nonzero is True def test_neg_symbol_positive(): x = -Symbol('x', positive=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is True assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is True def test_symbol_nonpositive(): x = Symbol('x', nonpositive=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_nonpositive(): x = -Symbol('x', nonpositive=True) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive(): x = Symbol('x', positive=False) assert x.is_positive is False assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive_mul(): # To test pull request 9379 # Explicit handling of arg.is_positive=False was added to Mul._eval_is_positive x = 2*Symbol('x', positive=False) assert x.is_positive is False # This was None before assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None @XFAIL def test_symbol_infinitereal_mul(): ix = Symbol('ix', infinite=True, extended_real=True) assert (-ix).is_extended_positive is None def test_neg_symbol_falsepositive(): x = -Symbol('x', positive=False) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_falsenegative(): # To test pull request 9379 # Explicit handling of arg.is_negative=False was added to Mul._eval_is_positive x = -Symbol('x', negative=False) assert x.is_positive is False # This was None before assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsepositive_real(): x = Symbol('x', positive=False, real=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is None assert x.is_nonnegative is None assert x.is_zero is None assert x.is_nonzero is None def test_neg_symbol_falsepositive_real(): x = -Symbol('x', positive=False, real=True) assert x.is_positive is None assert x.is_nonpositive is None assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is None assert x.is_nonzero is None def test_symbol_falsenonnegative(): x = Symbol('x', nonnegative=False) assert x.is_positive is False assert x.is_nonpositive is None assert x.is_negative is None assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is None @XFAIL def test_neg_symbol_falsenonnegative(): x = -Symbol('x', nonnegative=False) assert x.is_positive is None assert x.is_nonpositive is False # this currently returns None assert x.is_negative is False # this currently returns None assert x.is_nonnegative is None assert x.is_zero is False # this currently returns None assert x.is_nonzero is True # this currently returns None def test_symbol_falsenonnegative_real(): x = Symbol('x', nonnegative=False, real=True) assert x.is_positive is False assert x.is_nonpositive is True assert x.is_negative is True assert x.is_nonnegative is False assert x.is_zero is False assert x.is_nonzero is True def test_neg_symbol_falsenonnegative_real(): x = -Symbol('x', nonnegative=False, real=True) assert x.is_positive is True assert x.is_nonpositive is False assert x.is_negative is False assert x.is_nonnegative is True assert x.is_zero is False assert x.is_nonzero is True def test_prime(): assert S.NegativeOne.is_prime is False assert S(-2).is_prime is False assert S(-4).is_prime is False assert S.Zero.is_prime is False assert S.One.is_prime is False assert S(2).is_prime is True assert S(17).is_prime is True assert S(4).is_prime is False def test_composite(): assert S.NegativeOne.is_composite is False assert S(-2).is_composite is False assert S(-4).is_composite is False assert S.Zero.is_composite is False assert S(2).is_composite is False assert S(17).is_composite is False assert S(4).is_composite is True x = Dummy(integer=True, positive=True, prime=False) assert x.is_composite is None # x could be 1 assert (x + 1).is_composite is None x = Dummy(positive=True, even=True, prime=False) assert x.is_integer is True assert x.is_composite is True def test_prime_symbol(): x = Symbol('x', prime=True) assert x.is_prime is True assert x.is_integer is True assert x.is_positive is True assert x.is_negative is False assert x.is_nonpositive is False assert x.is_nonnegative is True x = Symbol('x', prime=False) assert x.is_prime is False assert x.is_integer is None assert x.is_positive is None assert x.is_negative is None assert x.is_nonpositive is None assert x.is_nonnegative is None def test_symbol_noncommutative(): x = Symbol('x', commutative=True) assert x.is_complex is None x = Symbol('x', commutative=False) assert x.is_integer is False assert x.is_rational is False assert x.is_algebraic is False assert x.is_irrational is False assert x.is_real is False assert x.is_complex is False def test_other_symbol(): x = Symbol('x', integer=True) assert x.is_integer is True assert x.is_real is True assert x.is_finite is True x = Symbol('x', integer=True, nonnegative=True) assert x.is_integer is True assert x.is_nonnegative is True assert x.is_negative is False assert x.is_positive is None assert x.is_finite is True x = Symbol('x', integer=True, nonpositive=True) assert x.is_integer is True assert x.is_nonpositive is True assert x.is_positive is False assert x.is_negative is None assert x.is_finite is True x = Symbol('x', odd=True) assert x.is_odd is True assert x.is_even is False assert x.is_integer is True assert x.is_finite is True x = Symbol('x', odd=False) assert x.is_odd is False assert x.is_even is None assert x.is_integer is None assert x.is_finite is None x = Symbol('x', even=True) assert x.is_even is True assert x.is_odd is False assert x.is_integer is True assert x.is_finite is True x = Symbol('x', even=False) assert x.is_even is False assert x.is_odd is None assert x.is_integer is None assert x.is_finite is None x = Symbol('x', integer=True, nonnegative=True) assert x.is_integer is True assert x.is_nonnegative is True assert x.is_finite is True x = Symbol('x', integer=True, nonpositive=True) assert x.is_integer is True assert x.is_nonpositive is True assert x.is_finite is True x = Symbol('x', rational=True) assert x.is_real is True assert x.is_finite is True x = Symbol('x', rational=False) assert x.is_real is None assert x.is_finite is None x = Symbol('x', irrational=True) assert x.is_real is True assert x.is_finite is True x = Symbol('x', irrational=False) assert x.is_real is None assert x.is_finite is None with raises(AttributeError): x.is_real = False x = Symbol('x', algebraic=True) assert x.is_transcendental is False x = Symbol('x', transcendental=True) assert x.is_algebraic is False assert x.is_rational is False assert x.is_integer is False def test_issue_3825(): """catch: hash instability""" x = Symbol("x") y = Symbol("y") a1 = x + y a2 = y + x a2.is_comparable h1 = hash(a1) h2 = hash(a2) assert h1 == h2 def test_issue_4822(): z = (-1)**Rational(1, 3)*(1 - I*sqrt(3)) assert z.is_real in [True, None] def test_hash_vs_typeinfo(): """seemingly different typeinfo, but in fact equal""" # the following two are semantically equal x1 = Symbol('x', even=True) x2 = Symbol('x', integer=True, odd=False) assert hash(x1) == hash(x2) assert x1 == x2 def test_hash_vs_typeinfo_2(): """different typeinfo should mean !eq""" # the following two are semantically different x = Symbol('x') x1 = Symbol('x', even=True) assert x != x1 assert hash(x) != hash(x1) # This might fail with very low probability def test_hash_vs_eq(): """catch: different hash for equal objects""" a = 1 + S.Pi # important: do not fold it into a Number instance ha = hash(a) # it should be Add/Mul/... to trigger the bug a.is_positive # this uses .evalf() and deduces it is positive assert a.is_positive is True # be sure that hash stayed the same assert ha == hash(a) # now b should be the same expression b = a.expand(trig=True) hb = hash(b) assert a == b assert ha == hb def test_Add_is_pos_neg(): # these cover lines not covered by the rest of tests in core n = Symbol('n', extended_negative=True, infinite=True) nn = Symbol('n', extended_nonnegative=True, infinite=True) np = Symbol('n', extended_nonpositive=True, infinite=True) p = Symbol('p', extended_positive=True, infinite=True) r = Dummy(extended_real=True, finite=False) x = Symbol('x') xf = Symbol('xf', finite=True) assert (n + p).is_extended_positive is None assert (n + x).is_extended_positive is None assert (p + x).is_extended_positive is None assert (n + p).is_extended_negative is None assert (n + x).is_extended_negative is None assert (p + x).is_extended_negative is None assert (n + xf).is_extended_positive is False assert (p + xf).is_extended_positive is True assert (n + xf).is_extended_negative is True assert (p + xf).is_extended_negative is False assert (x - S.Infinity).is_extended_negative is None # issue 7798 # issue 8046, 16.2 assert (p + nn).is_extended_positive assert (n + np).is_extended_negative assert (p + r).is_extended_positive is None def test_Add_is_imaginary(): nn = Dummy(nonnegative=True) assert (I*nn + I).is_imaginary # issue 8046, 17 def test_Add_is_algebraic(): a = Symbol('a', algebraic=True) b = Symbol('a', algebraic=True) na = Symbol('na', algebraic=False) nb = Symbol('nb', algebraic=False) x = Symbol('x') assert (a + b).is_algebraic assert (na + nb).is_algebraic is None assert (a + na).is_algebraic is False assert (a + x).is_algebraic is None assert (na + x).is_algebraic is None def test_Mul_is_algebraic(): a = Symbol('a', algebraic=True) b = Symbol('b', algebraic=True) na = Symbol('na', algebraic=False) an = Symbol('an', algebraic=True, nonzero=True) nb = Symbol('nb', algebraic=False) x = Symbol('x') assert (a*b).is_algebraic is True assert (na*nb).is_algebraic is None assert (a*na).is_algebraic is None assert (an*na).is_algebraic is False assert (a*x).is_algebraic is None assert (na*x).is_algebraic is None def test_Pow_is_algebraic(): e = Symbol('e', algebraic=True) assert Pow(1, e, evaluate=False).is_algebraic assert Pow(0, e, evaluate=False).is_algebraic a = Symbol('a', algebraic=True) azf = Symbol('azf', algebraic=True, zero=False) na = Symbol('na', algebraic=False) ia = Symbol('ia', algebraic=True, irrational=True) ib = Symbol('ib', algebraic=True, irrational=True) r = Symbol('r', rational=True) x = Symbol('x') assert (a**2).is_algebraic is True assert (a**r).is_algebraic is None assert (azf**r).is_algebraic is True assert (a**x).is_algebraic is None assert (na**r).is_algebraic is None assert (ia**r).is_algebraic is True assert (ia**ib).is_algebraic is False assert (a**e).is_algebraic is None # Gelfond-Schneider constant: assert Pow(2, sqrt(2), evaluate=False).is_algebraic is False assert Pow(S.GoldenRatio, sqrt(3), evaluate=False).is_algebraic is False # issue 8649 t = Symbol('t', real=True, transcendental=True) n = Symbol('n', integer=True) assert (t**n).is_algebraic is None assert (t**n).is_integer is None assert (pi**3).is_algebraic is False r = Symbol('r', zero=True) assert (pi**r).is_algebraic is True def test_Mul_is_prime_composite(): x = Symbol('x', positive=True, integer=True) y = Symbol('y', positive=True, integer=True) assert (x*y).is_prime is None assert ( (x+1)*(y+1) ).is_prime is False assert ( (x+1)*(y+1) ).is_composite is True x = Symbol('x', positive=True) assert ( (x+1)*(y+1) ).is_prime is None assert ( (x+1)*(y+1) ).is_composite is None def test_Pow_is_pos_neg(): z = Symbol('z', real=True) w = Symbol('w', nonpositive=True) assert (S.NegativeOne**S(2)).is_positive is True assert (S.One**z).is_positive is True assert (S.NegativeOne**S(3)).is_positive is False assert (S.Zero**S.Zero).is_positive is True # 0**0 is 1 assert (w**S(3)).is_positive is False assert (w**S(2)).is_positive is None assert (I**2).is_positive is False assert (I**4).is_positive is True # tests emerging from #16332 issue p = Symbol('p', zero=True) q = Symbol('q', zero=False, real=True) j = Symbol('j', zero=False, even=True) x = Symbol('x', zero=True) y = Symbol('y', zero=True) assert (p**q).is_positive is False assert (p**q).is_negative is False assert (p**j).is_positive is False assert (x**y).is_positive is True # 0**0 assert (x**y).is_negative is False def test_Pow_is_prime_composite(): x = Symbol('x', positive=True, integer=True) y = Symbol('y', positive=True, integer=True) assert (x**y).is_prime is None assert ( x**(y+1) ).is_prime is False assert ( x**(y+1) ).is_composite is None assert ( (x+1)**(y+1) ).is_composite is True assert ( (-x-1)**(2*y) ).is_composite is True x = Symbol('x', positive=True) assert (x**y).is_prime is None def test_Mul_is_infinite(): x = Symbol('x') f = Symbol('f', finite=True) i = Symbol('i', infinite=True) z = Dummy(zero=True) nzf = Dummy(finite=True, zero=False) from sympy import Mul assert (x*f).is_finite is None assert (x*i).is_finite is None assert (f*i).is_finite is None assert (x*f*i).is_finite is None assert (z*i).is_finite is None assert (nzf*i).is_finite is False assert (z*f).is_finite is True assert Mul(0, f, evaluate=False).is_finite is True assert Mul(0, i, evaluate=False).is_finite is None assert (x*f).is_infinite is None assert (x*i).is_infinite is None assert (f*i).is_infinite is None assert (x*f*i).is_infinite is None assert (z*i).is_infinite is S.NaN.is_infinite assert (nzf*i).is_infinite is True assert (z*f).is_infinite is False assert Mul(0, f, evaluate=False).is_infinite is False assert Mul(0, i, evaluate=False).is_infinite is S.NaN.is_infinite def test_Add_is_infinite(): x = Symbol('x') f = Symbol('f', finite=True) i = Symbol('i', infinite=True) i2 = Symbol('i2', infinite=True) z = Dummy(zero=True) nzf = Dummy(finite=True, zero=False) from sympy import Add assert (x+f).is_finite is None assert (x+i).is_finite is None assert (f+i).is_finite is False assert (x+f+i).is_finite is None assert (z+i).is_finite is False assert (nzf+i).is_finite is False assert (z+f).is_finite is True assert (i+i2).is_finite is None assert Add(0, f, evaluate=False).is_finite is True assert Add(0, i, evaluate=False).is_finite is False assert (x+f).is_infinite is None assert (x+i).is_infinite is None assert (f+i).is_infinite is True assert (x+f+i).is_infinite is None assert (z+i).is_infinite is True assert (nzf+i).is_infinite is True assert (z+f).is_infinite is False assert (i+i2).is_infinite is None assert Add(0, f, evaluate=False).is_infinite is False assert Add(0, i, evaluate=False).is_infinite is True def test_special_is_rational(): i = Symbol('i', integer=True) i2 = Symbol('i2', integer=True) ni = Symbol('ni', integer=True, nonzero=True) r = Symbol('r', rational=True) rn = Symbol('r', rational=True, nonzero=True) nr = Symbol('nr', irrational=True) x = Symbol('x') assert sqrt(3).is_rational is False assert (3 + sqrt(3)).is_rational is False assert (3*sqrt(3)).is_rational is False assert exp(3).is_rational is False assert exp(ni).is_rational is False assert exp(rn).is_rational is False assert exp(x).is_rational is None assert exp(log(3), evaluate=False).is_rational is True assert log(exp(3), evaluate=False).is_rational is True assert log(3).is_rational is False assert log(ni + 1).is_rational is False assert log(rn + 1).is_rational is False assert log(x).is_rational is None assert (sqrt(3) + sqrt(5)).is_rational is None assert (sqrt(3) + S.Pi).is_rational is False assert (x**i).is_rational is None assert (i**i).is_rational is True assert (i**i2).is_rational is None assert (r**i).is_rational is None assert (r**r).is_rational is None assert (r**x).is_rational is None assert (nr**i).is_rational is None # issue 8598 assert (nr**Symbol('z', zero=True)).is_rational assert sin(1).is_rational is False assert sin(ni).is_rational is False assert sin(rn).is_rational is False assert sin(x).is_rational is None assert asin(r).is_rational is False assert sin(asin(3), evaluate=False).is_rational is True @XFAIL def test_issue_6275(): x = Symbol('x') # both zero or both Muls...but neither "change would be very appreciated. # This is similar to x/x => 1 even though if x = 0, it is really nan. assert isinstance(x*0, type(0*S.Infinity)) if 0*S.Infinity is S.NaN: b = Symbol('b', finite=None) assert (b*0).is_zero is None def test_sanitize_assumptions(): # issue 6666 for cls in (Symbol, Dummy, Wild): x = cls('x', real=1, positive=0) assert x.is_real is True assert x.is_positive is False assert cls('', real=True, positive=None).is_positive is None raises(ValueError, lambda: cls('', commutative=None)) raises(ValueError, lambda: Symbol._sanitize(dict(commutative=None))) def test_special_assumptions(): e = -3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2 assert simplify(e < 0) is S.false assert simplify(e > 0) is S.false assert (e == 0) is False # it's not a literal 0 assert e.equals(0) is True def test_inconsistent(): # cf. issues 5795 and 5545 raises(InconsistentAssumptions, lambda: Symbol('x', real=True, commutative=False)) def test_issue_6631(): assert ((-1)**(I)).is_real is True assert ((-1)**(I*2)).is_real is True assert ((-1)**(I/2)).is_real is True assert ((-1)**(I*S.Pi)).is_real is True assert (I**(I + 2)).is_real is True def test_issue_2730(): assert (1/(1 + I)).is_real is False def test_issue_4149(): assert (3 + I).is_complex assert (3 + I).is_imaginary is False assert (3*I + S.Pi*I).is_imaginary # as Zero.is_imaginary is False, see issue 7649 y = Symbol('y', real=True) assert (3*I + S.Pi*I + y*I).is_imaginary is None p = Symbol('p', positive=True) assert (3*I + S.Pi*I + p*I).is_imaginary n = Symbol('n', negative=True) assert (-3*I - S.Pi*I + n*I).is_imaginary i = Symbol('i', imaginary=True) assert ([(i**a).is_imaginary for a in range(4)] == [False, True, False, True]) # tests from the PR #7887: e = S("-sqrt(3)*I/2 + 0.866025403784439*I") assert e.is_real is False assert e.is_imaginary def test_issue_2920(): n = Symbol('n', negative=True) assert sqrt(n).is_imaginary def test_issue_7899(): x = Symbol('x', real=True) assert (I*x).is_real is None assert ((x - I)*(x - 1)).is_zero is None assert ((x - I)*(x - 1)).is_real is None @XFAIL def test_issue_7993(): x = Dummy(integer=True) y = Dummy(noninteger=True) assert (x - y).is_zero is False def test_issue_8075(): raises(InconsistentAssumptions, lambda: Dummy(zero=True, finite=False)) raises(InconsistentAssumptions, lambda: Dummy(zero=True, infinite=True)) def test_issue_8642(): x = Symbol('x', real=True, integer=False) assert (x*2).is_integer is None def test_issues_8632_8633_8638_8675_8992(): p = Dummy(integer=True, positive=True) nn = Dummy(integer=True, nonnegative=True) assert (p - S.Half).is_positive assert (p - 1).is_nonnegative assert (nn + 1).is_positive assert (-p + 1).is_nonpositive assert (-nn - 1).is_negative prime = Dummy(prime=True) assert (prime - 2).is_nonnegative assert (prime - 3).is_nonnegative is None even = Dummy(positive=True, even=True) assert (even - 2).is_nonnegative p = Dummy(positive=True) assert (p/(p + 1) - 1).is_negative assert ((p + 2)**3 - S.Half).is_positive n = Dummy(negative=True) assert (n - 3).is_nonpositive def test_issue_9115_9150(): n = Dummy('n', integer=True, nonnegative=True) assert (factorial(n) >= 1) == True assert (factorial(n) < 1) == False assert factorial(n + 1).is_even is None assert factorial(n + 2).is_even is True assert factorial(n + 2) >= 2 def test_issue_9165(): z = Symbol('z', zero=True) f = Symbol('f', finite=False) assert 0/z is S.NaN assert 0*(1/z) is S.NaN assert 0*f is S.NaN def test_issue_10024(): x = Dummy('x') assert Mod(x, 2*pi).is_zero is None def test_issue_10302(): x = Symbol('x') r = Symbol('r', real=True) u = -(3*2**pi)**(1/pi) + 2*3**(1/pi) i = u + u*I assert i.is_real is None # w/o simplification this should fail assert (u + i).is_zero is None assert (1 + i).is_zero is False a = Dummy('a', zero=True) assert (a + I).is_zero is False assert (a + r*I).is_zero is None assert (a + I).is_imaginary assert (a + x + I).is_imaginary is None assert (a + r*I + I).is_imaginary is None def test_complex_reciprocal_imaginary(): assert (1 / (4 + 3*I)).is_imaginary is False def test_issue_16313(): x = Symbol('x', extended_real=False) k = Symbol('k', real=True) l = Symbol('l', real=True, zero=False) assert (-x).is_real is False assert (k*x).is_real is None # k can be zero also assert (l*x).is_real is False assert (l*x*x).is_real is None # since x*x can be a real number assert (-x).is_positive is False def test_issue_16579(): # extended_real -> finite | infinite x = Symbol('x', extended_real=True, infinite=False) y = Symbol('y', extended_real=True, finite=False) assert x.is_finite is True assert y.is_infinite is True # With PR 16978, complex now implies finite c = Symbol('c', complex=True) assert c.is_finite is True raises(InconsistentAssumptions, lambda: Dummy(complex=True, finite=False))
2eb2e7e91b392013c4f619d8f4b8c2fc57e00cff21500328a6a36acc64e390bb
from sympy.utilities.pytest import XFAIL, raises, warns_deprecated_sympy from sympy import (S, Symbol, symbols, nan, oo, I, pi, Float, And, Or, Not, Implies, Xor, zoo, sqrt, Rational, simplify, Function, log, cos, sin, Add, floor, ceiling, trigsimp) from sympy.core.compatibility import range, PY3 from sympy.core.relational import (Relational, Equality, Unequality, GreaterThan, LessThan, StrictGreaterThan, StrictLessThan, Rel, Eq, Lt, Le, Gt, Ge, Ne) from sympy.sets.sets import Interval, FiniteSet from itertools import combinations x, y, z, t = symbols('x,y,z,t') def rel_check(a, b): from sympy.utilities.pytest import raises assert a.is_number and b.is_number for do in range(len(set([type(a), type(b)]))): if S.NaN in (a, b): v = [(a == b), (a != b)] assert len(set(v)) == 1 and v[0] == False assert not (a != b) and not (a == b) assert raises(TypeError, lambda: a < b) assert raises(TypeError, lambda: a <= b) assert raises(TypeError, lambda: a > b) assert raises(TypeError, lambda: a >= b) else: E = [(a == b), (a != b)] assert len(set(E)) == 2 v = [ (a < b), (a <= b), (a > b), (a >= b)] i = [ [True, True, False, False], [False, True, False, True], # <-- i == 1 [False, False, True, True]].index(v) if i == 1: assert E[0] or (a.is_Float != b.is_Float) # ugh else: assert E[1] a, b = b, a return True def test_rel_ne(): assert Relational(x, y, '!=') == Ne(x, y) # issue 6116 p = Symbol('p', positive=True) assert Ne(p, 0) is S.true def test_rel_subs(): e = Relational(x, y, '==') e = e.subs(x, z) assert isinstance(e, Equality) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>=') e = e.subs(x, z) assert isinstance(e, GreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<=') e = e.subs(x, z) assert isinstance(e, LessThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '>') e = e.subs(x, z) assert isinstance(e, StrictGreaterThan) assert e.lhs == z assert e.rhs == y e = Relational(x, y, '<') e = e.subs(x, z) assert isinstance(e, StrictLessThan) assert e.lhs == z assert e.rhs == y e = Eq(x, 0) assert e.subs(x, 0) is S.true assert e.subs(x, 1) is S.false def test_wrappers(): e = x + x**2 res = Relational(y, e, '==') assert Rel(y, x + x**2, '==') == res assert Eq(y, x + x**2) == res res = Relational(y, e, '<') assert Lt(y, x + x**2) == res res = Relational(y, e, '<=') assert Le(y, x + x**2) == res res = Relational(y, e, '>') assert Gt(y, x + x**2) == res res = Relational(y, e, '>=') assert Ge(y, x + x**2) == res res = Relational(y, e, '!=') assert Ne(y, x + x**2) == res def test_Eq(): assert Eq(x, x) # issue 5719 with warns_deprecated_sympy(): assert Eq(x) == Eq(x, 0) # issue 6116 p = Symbol('p', positive=True) assert Eq(p, 0) is S.false # issue 13348 assert Eq(True, 1) is S.false assert Eq((), 1) is S.false def test_rel_Infinity(): # NOTE: All of these are actually handled by sympy.core.Number, and do # not create Relational objects. assert (oo > oo) is S.false assert (oo > -oo) is S.true assert (oo > 1) is S.true assert (oo < oo) is S.false assert (oo < -oo) is S.false assert (oo < 1) is S.false assert (oo >= oo) is S.true assert (oo >= -oo) is S.true assert (oo >= 1) is S.true assert (oo <= oo) is S.true assert (oo <= -oo) is S.false assert (oo <= 1) is S.false assert (-oo > oo) is S.false assert (-oo > -oo) is S.false assert (-oo > 1) is S.false assert (-oo < oo) is S.true assert (-oo < -oo) is S.false assert (-oo < 1) is S.true assert (-oo >= oo) is S.false assert (-oo >= -oo) is S.true assert (-oo >= 1) is S.false assert (-oo <= oo) is S.true assert (-oo <= -oo) is S.true assert (-oo <= 1) is S.true def test_infinite_symbol_inequalities(): x = Symbol('x', extended_positive=True, infinite=True) y = Symbol('y', extended_positive=True, infinite=True) z = Symbol('z', extended_negative=True, infinite=True) w = Symbol('w', extended_negative=True, infinite=True) inf_set = (x, y, oo) ninf_set = (z, w, -oo) for inf1 in inf_set: assert (inf1 < 1) is S.false assert (inf1 > 1) is S.true assert (inf1 <= 1) is S.false assert (inf1 >= 1) is S.true for inf2 in inf_set: assert (inf1 < inf2) is S.false assert (inf1 > inf2) is S.false assert (inf1 <= inf2) is S.true assert (inf1 >= inf2) is S.true for ninf1 in ninf_set: assert (inf1 < ninf1) is S.false assert (inf1 > ninf1) is S.true assert (inf1 <= ninf1) is S.false assert (inf1 >= ninf1) is S.true assert (ninf1 < inf1) is S.true assert (ninf1 > inf1) is S.false assert (ninf1 <= inf1) is S.true assert (ninf1 >= inf1) is S.false for ninf1 in ninf_set: assert (ninf1 < 1) is S.true assert (ninf1 > 1) is S.false assert (ninf1 <= 1) is S.true assert (ninf1 >= 1) is S.false for ninf2 in ninf_set: assert (ninf1 < ninf2) is S.false assert (ninf1 > ninf2) is S.false assert (ninf1 <= ninf2) is S.true assert (ninf1 >= ninf2) is S.true def test_bool(): assert Eq(0, 0) is S.true assert Eq(1, 0) is S.false assert Ne(0, 0) is S.false assert Ne(1, 0) is S.true assert Lt(0, 1) is S.true assert Lt(1, 0) is S.false assert Le(0, 1) is S.true assert Le(1, 0) is S.false assert Le(0, 0) is S.true assert Gt(1, 0) is S.true assert Gt(0, 1) is S.false assert Ge(1, 0) is S.true assert Ge(0, 1) is S.false assert Ge(1, 1) is S.true assert Eq(I, 2) is S.false assert Ne(I, 2) is S.true raises(TypeError, lambda: Gt(I, 2)) raises(TypeError, lambda: Ge(I, 2)) raises(TypeError, lambda: Lt(I, 2)) raises(TypeError, lambda: Le(I, 2)) a = Float('.000000000000000000001', '') b = Float('.0000000000000000000001', '') assert Eq(pi + a, pi + b) is S.false def test_rich_cmp(): assert (x < y) == Lt(x, y) assert (x <= y) == Le(x, y) assert (x > y) == Gt(x, y) assert (x >= y) == Ge(x, y) def test_doit(): from sympy import Symbol p = Symbol('p', positive=True) n = Symbol('n', negative=True) np = Symbol('np', nonpositive=True) nn = Symbol('nn', nonnegative=True) assert Gt(p, 0).doit() is S.true assert Gt(p, 1).doit() == Gt(p, 1) assert Ge(p, 0).doit() is S.true assert Le(p, 0).doit() is S.false assert Lt(n, 0).doit() is S.true assert Le(np, 0).doit() is S.true assert Gt(nn, 0).doit() == Gt(nn, 0) assert Lt(nn, 0).doit() is S.false assert Eq(x, 0).doit() == Eq(x, 0) def test_new_relational(): x = Symbol('x') assert Eq(x, 0) == Relational(x, 0) # None ==> Equality assert Eq(x, 0) == Relational(x, 0, '==') assert Eq(x, 0) == Relational(x, 0, 'eq') assert Eq(x, 0) == Equality(x, 0) assert Eq(x, 0) != Relational(x, 1) # None ==> Equality assert Eq(x, 0) != Relational(x, 1, '==') assert Eq(x, 0) != Relational(x, 1, 'eq') assert Eq(x, 0) != Equality(x, 1) assert Eq(x, -1) == Relational(x, -1) # None ==> Equality assert Eq(x, -1) == Relational(x, -1, '==') assert Eq(x, -1) == Relational(x, -1, 'eq') assert Eq(x, -1) == Equality(x, -1) assert Eq(x, -1) != Relational(x, 1) # None ==> Equality assert Eq(x, -1) != Relational(x, 1, '==') assert Eq(x, -1) != Relational(x, 1, 'eq') assert Eq(x, -1) != Equality(x, 1) assert Ne(x, 0) == Relational(x, 0, '!=') assert Ne(x, 0) == Relational(x, 0, '<>') assert Ne(x, 0) == Relational(x, 0, 'ne') assert Ne(x, 0) == Unequality(x, 0) assert Ne(x, 0) != Relational(x, 1, '!=') assert Ne(x, 0) != Relational(x, 1, '<>') assert Ne(x, 0) != Relational(x, 1, 'ne') assert Ne(x, 0) != Unequality(x, 1) assert Ge(x, 0) == Relational(x, 0, '>=') assert Ge(x, 0) == Relational(x, 0, 'ge') assert Ge(x, 0) == GreaterThan(x, 0) assert Ge(x, 1) != Relational(x, 0, '>=') assert Ge(x, 1) != Relational(x, 0, 'ge') assert Ge(x, 1) != GreaterThan(x, 0) assert (x >= 1) == Relational(x, 1, '>=') assert (x >= 1) == Relational(x, 1, 'ge') assert (x >= 1) == GreaterThan(x, 1) assert (x >= 0) != Relational(x, 1, '>=') assert (x >= 0) != Relational(x, 1, 'ge') assert (x >= 0) != GreaterThan(x, 1) assert Le(x, 0) == Relational(x, 0, '<=') assert Le(x, 0) == Relational(x, 0, 'le') assert Le(x, 0) == LessThan(x, 0) assert Le(x, 1) != Relational(x, 0, '<=') assert Le(x, 1) != Relational(x, 0, 'le') assert Le(x, 1) != LessThan(x, 0) assert (x <= 1) == Relational(x, 1, '<=') assert (x <= 1) == Relational(x, 1, 'le') assert (x <= 1) == LessThan(x, 1) assert (x <= 0) != Relational(x, 1, '<=') assert (x <= 0) != Relational(x, 1, 'le') assert (x <= 0) != LessThan(x, 1) assert Gt(x, 0) == Relational(x, 0, '>') assert Gt(x, 0) == Relational(x, 0, 'gt') assert Gt(x, 0) == StrictGreaterThan(x, 0) assert Gt(x, 1) != Relational(x, 0, '>') assert Gt(x, 1) != Relational(x, 0, 'gt') assert Gt(x, 1) != StrictGreaterThan(x, 0) assert (x > 1) == Relational(x, 1, '>') assert (x > 1) == Relational(x, 1, 'gt') assert (x > 1) == StrictGreaterThan(x, 1) assert (x > 0) != Relational(x, 1, '>') assert (x > 0) != Relational(x, 1, 'gt') assert (x > 0) != StrictGreaterThan(x, 1) assert Lt(x, 0) == Relational(x, 0, '<') assert Lt(x, 0) == Relational(x, 0, 'lt') assert Lt(x, 0) == StrictLessThan(x, 0) assert Lt(x, 1) != Relational(x, 0, '<') assert Lt(x, 1) != Relational(x, 0, 'lt') assert Lt(x, 1) != StrictLessThan(x, 0) assert (x < 1) == Relational(x, 1, '<') assert (x < 1) == Relational(x, 1, 'lt') assert (x < 1) == StrictLessThan(x, 1) assert (x < 0) != Relational(x, 1, '<') assert (x < 0) != Relational(x, 1, 'lt') assert (x < 0) != StrictLessThan(x, 1) # finally, some fuzz testing from random import randint from sympy.core.compatibility import unichr for i in range(100): while 1: strtype, length = (unichr, 65535) if randint(0, 1) else (chr, 255) relation_type = strtype(randint(0, length)) if randint(0, 1): relation_type += strtype(randint(0, length)) if relation_type not in ('==', 'eq', '!=', '<>', 'ne', '>=', 'ge', '<=', 'le', '>', 'gt', '<', 'lt', ':=', '+=', '-=', '*=', '/=', '%='): break raises(ValueError, lambda: Relational(x, 1, relation_type)) assert all(Relational(x, 0, op).rel_op == '==' for op in ('eq', '==')) assert all(Relational(x, 0, op).rel_op == '!=' for op in ('ne', '<>', '!=')) assert all(Relational(x, 0, op).rel_op == '>' for op in ('gt', '>')) assert all(Relational(x, 0, op).rel_op == '<' for op in ('lt', '<')) assert all(Relational(x, 0, op).rel_op == '>=' for op in ('ge', '>=')) assert all(Relational(x, 0, op).rel_op == '<=' for op in ('le', '<=')) def test_relational_bool_output(): # https://github.com/sympy/sympy/issues/5931 raises(TypeError, lambda: bool(x > 3)) raises(TypeError, lambda: bool(x >= 3)) raises(TypeError, lambda: bool(x < 3)) raises(TypeError, lambda: bool(x <= 3)) raises(TypeError, lambda: bool(Eq(x, 3))) raises(TypeError, lambda: bool(Ne(x, 3))) def test_relational_logic_symbols(): # See issue 6204 assert (x < y) & (z < t) == And(x < y, z < t) assert (x < y) | (z < t) == Or(x < y, z < t) assert ~(x < y) == Not(x < y) assert (x < y) >> (z < t) == Implies(x < y, z < t) assert (x < y) << (z < t) == Implies(z < t, x < y) assert (x < y) ^ (z < t) == Xor(x < y, z < t) assert isinstance((x < y) & (z < t), And) assert isinstance((x < y) | (z < t), Or) assert isinstance(~(x < y), GreaterThan) assert isinstance((x < y) >> (z < t), Implies) assert isinstance((x < y) << (z < t), Implies) assert isinstance((x < y) ^ (z < t), (Or, Xor)) def test_univariate_relational_as_set(): assert (x > 0).as_set() == Interval(0, oo, True, True) assert (x >= 0).as_set() == Interval(0, oo) assert (x < 0).as_set() == Interval(-oo, 0, True, True) assert (x <= 0).as_set() == Interval(-oo, 0) assert Eq(x, 0).as_set() == FiniteSet(0) assert Ne(x, 0).as_set() == Interval(-oo, 0, True, True) + \ Interval(0, oo, True, True) assert (x**2 >= 4).as_set() == Interval(-oo, -2) + Interval(2, oo) @XFAIL def test_multivariate_relational_as_set(): assert (x*y >= 0).as_set() == Interval(0, oo)*Interval(0, oo) + \ Interval(-oo, 0)*Interval(-oo, 0) def test_Not(): assert Not(Equality(x, y)) == Unequality(x, y) assert Not(Unequality(x, y)) == Equality(x, y) assert Not(StrictGreaterThan(x, y)) == LessThan(x, y) assert Not(StrictLessThan(x, y)) == GreaterThan(x, y) assert Not(GreaterThan(x, y)) == StrictLessThan(x, y) assert Not(LessThan(x, y)) == StrictGreaterThan(x, y) def test_evaluate(): assert str(Eq(x, x, evaluate=False)) == 'Eq(x, x)' assert Eq(x, x, evaluate=False).doit() == S.true assert str(Ne(x, x, evaluate=False)) == 'Ne(x, x)' assert Ne(x, x, evaluate=False).doit() == S.false assert str(Ge(x, x, evaluate=False)) == 'x >= x' assert str(Le(x, x, evaluate=False)) == 'x <= x' assert str(Gt(x, x, evaluate=False)) == 'x > x' assert str(Lt(x, x, evaluate=False)) == 'x < x' def assert_all_ineq_raise_TypeError(a, b): raises(TypeError, lambda: a > b) raises(TypeError, lambda: a >= b) raises(TypeError, lambda: a < b) raises(TypeError, lambda: a <= b) raises(TypeError, lambda: b > a) raises(TypeError, lambda: b >= a) raises(TypeError, lambda: b < a) raises(TypeError, lambda: b <= a) def assert_all_ineq_give_class_Inequality(a, b): """All inequality operations on `a` and `b` result in class Inequality.""" from sympy.core.relational import _Inequality as Inequality assert isinstance(a > b, Inequality) assert isinstance(a >= b, Inequality) assert isinstance(a < b, Inequality) assert isinstance(a <= b, Inequality) assert isinstance(b > a, Inequality) assert isinstance(b >= a, Inequality) assert isinstance(b < a, Inequality) assert isinstance(b <= a, Inequality) def test_imaginary_compare_raises_TypeError(): # See issue #5724 assert_all_ineq_raise_TypeError(I, x) def test_complex_compare_not_real(): # two cases which are not real y = Symbol('y', imaginary=True) z = Symbol('z', complex=True, extended_real=False) for w in (y, z): assert_all_ineq_raise_TypeError(2, w) # some cases which should remain un-evaluated t = Symbol('t') x = Symbol('x', real=True) z = Symbol('z', complex=True) for w in (x, z, t): assert_all_ineq_give_class_Inequality(2, w) def test_imaginary_and_inf_compare_raises_TypeError(): # See pull request #7835 y = Symbol('y', imaginary=True) assert_all_ineq_raise_TypeError(oo, y) assert_all_ineq_raise_TypeError(-oo, y) def test_complex_pure_imag_not_ordered(): raises(TypeError, lambda: 2*I < 3*I) # more generally x = Symbol('x', real=True, nonzero=True) y = Symbol('y', imaginary=True) z = Symbol('z', complex=True) assert_all_ineq_raise_TypeError(I, y) t = I*x # an imaginary number, should raise errors assert_all_ineq_raise_TypeError(2, t) t = -I*y # a real number, so no errors assert_all_ineq_give_class_Inequality(2, t) t = I*z # unknown, should be unevaluated assert_all_ineq_give_class_Inequality(2, t) def test_x_minus_y_not_same_as_x_lt_y(): """ A consequence of pull request #7792 is that `x - y < 0` and `x < y` are not synonymous. """ x = I + 2 y = I + 3 raises(TypeError, lambda: x < y) assert x - y < 0 ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 t = Symbol('t', imaginary=True) x = 2 + t y = 3 + t ineq = Lt(x, y, evaluate=False) raises(TypeError, lambda: ineq.doit()) assert ineq.lhs - ineq.rhs < 0 # this one should give error either way x = I + 2 y = 2*I + 3 raises(TypeError, lambda: x < y) raises(TypeError, lambda: x - y < 0) def test_nan_equality_exceptions(): # See issue #7774 import random assert Equality(nan, nan) is S.false assert Unequality(nan, nan) is S.true # See issue #7773 A = (x, S.Zero, S.One/3, pi, oo, -oo) assert Equality(nan, random.choice(A)) is S.false assert Equality(random.choice(A), nan) is S.false assert Unequality(nan, random.choice(A)) is S.true assert Unequality(random.choice(A), nan) is S.true def test_nan_inequality_raise_errors(): # See discussion in pull request #7776. We test inequalities with # a set including examples of various classes. for q in (x, S.Zero, S(10), S.One/3, pi, S(1.3), oo, -oo, nan): assert_all_ineq_raise_TypeError(q, nan) def test_nan_complex_inequalities(): # Comparisons of NaN with non-real raise errors, we're not too # fussy whether its the NaN error or complex error. for r in (I, zoo, Symbol('z', imaginary=True)): assert_all_ineq_raise_TypeError(r, nan) def test_complex_infinity_inequalities(): raises(TypeError, lambda: zoo > 0) raises(TypeError, lambda: zoo >= 0) raises(TypeError, lambda: zoo < 0) raises(TypeError, lambda: zoo <= 0) def test_inequalities_symbol_name_same(): """Using the operator and functional forms should give same results.""" # We test all combinations from a set # FIXME: could replace with random selection after test passes A = (x, y, S.Zero, S.One/3, pi, oo, -oo) for a in A: for b in A: assert Gt(a, b) == (a > b) assert Lt(a, b) == (a < b) assert Ge(a, b) == (a >= b) assert Le(a, b) == (a <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(x, b, evaluate=False) == (x > b) assert Lt(x, b, evaluate=False) == (x < b) assert Ge(x, b, evaluate=False) == (x >= b) assert Le(x, b, evaluate=False) == (x <= b) for b in (y, S.Zero, S.One/3, pi, oo, -oo): assert Gt(b, x, evaluate=False) == (b > x) assert Lt(b, x, evaluate=False) == (b < x) assert Ge(b, x, evaluate=False) == (b >= x) assert Le(b, x, evaluate=False) == (b <= x) def test_inequalities_symbol_name_same_complex(): """Using the operator and functional forms should give same results. With complex non-real numbers, both should raise errors. """ # FIXME: could replace with random selection after test passes for a in (x, S.Zero, S.One/3, pi, oo, Rational(1, 3)): raises(TypeError, lambda: Gt(a, I)) raises(TypeError, lambda: a > I) raises(TypeError, lambda: Lt(a, I)) raises(TypeError, lambda: a < I) raises(TypeError, lambda: Ge(a, I)) raises(TypeError, lambda: a >= I) raises(TypeError, lambda: Le(a, I)) raises(TypeError, lambda: a <= I) def test_inequalities_cant_sympify_other(): # see issue 7833 from operator import gt, lt, ge, le bar = "foo" for a in (x, S.Zero, S.One/3, pi, I, zoo, oo, -oo, nan, Rational(1, 3)): for op in (lt, gt, le, ge): if PY3: raises(TypeError, lambda: op(a, bar)) def test_ineq_avoid_wild_symbol_flip(): # see issue #7951, we try to avoid this internally, e.g., by using # __lt__ instead of "<". from sympy.core.symbol import Wild p = symbols('p', cls=Wild) # x > p might flip, but Gt should not: assert Gt(x, p) == Gt(x, p, evaluate=False) # Previously failed as 'p > x': e = Lt(x, y).subs({y: p}) assert e == Lt(x, p, evaluate=False) # Previously failed as 'p <= x': e = Ge(x, p).doit() assert e == Ge(x, p, evaluate=False) def test_issue_8245(): a = S("6506833320952669167898688709329/5070602400912917605986812821504") assert rel_check(a, a.n(10)) assert rel_check(a, a.n(20)) assert rel_check(a, a.n()) # prec of 30 is enough to fully capture a as mpf assert Float(a, 30) == Float(str(a.p), '')/Float(str(a.q), '') for i in range(31): r = Rational(Float(a, i)) f = Float(r) assert (f < a) == (Rational(f) < a) # test sign handling assert (-f < -a) == (Rational(-f) < -a) # test equivalence handling isa = Float(a.p,'')/Float(a.q,'') assert isa <= a assert not isa < a assert isa >= a assert not isa > a assert isa > 0 a = sqrt(2) r = Rational(str(a.n(30))) assert rel_check(a, r) a = sqrt(2) r = Rational(str(a.n(29))) assert rel_check(a, r) assert Eq(log(cos(2)**2 + sin(2)**2), 0) == True def test_issue_8449(): p = Symbol('p', nonnegative=True) assert Lt(-oo, p) assert Ge(-oo, p) is S.false assert Gt(oo, -p) assert Le(oo, -p) is S.false def test_simplify_relational(): assert simplify(x*(y + 1) - x*y - x + 1 < x) == (x > 1) assert simplify(x*(y + 1) - x*y - x - 1 < x) == (x > -1) assert simplify(x < x*(y + 1) - x*y - x + 1) == (x < 1) r = S.One < x # canonical operations are not the same as simplification, # so if there is no simplification, canonicalization will # be done unless the measure forbids it assert simplify(r) == r.canonical assert simplify(r, ratio=0) != r.canonical # this is not a random test; in _eval_simplify # this will simplify to S.false and that is the # reason for the 'if r.is_Relational' in Relational's # _eval_simplify routine assert simplify(-(2**(pi*Rational(3, 2)) + 6**pi)**(1/pi) + 2*(2**(pi/2) + 3**pi)**(1/pi) < 0) is S.false # canonical at least assert Eq(y, x).simplify() == Eq(x, y) assert Eq(x - 1, 0).simplify() == Eq(x, 1) assert Eq(x - 1, x).simplify() == S.false assert Eq(2*x - 1, x).simplify() == Eq(x, 1) assert Eq(2*x, 4).simplify() == Eq(x, 2) z = cos(1)**2 + sin(1)**2 - 1 # z.is_zero is None assert Eq(z*x, 0).simplify() == S.true assert Ne(y, x).simplify() == Ne(x, y) assert Ne(x - 1, 0).simplify() == Ne(x, 1) assert Ne(x - 1, x).simplify() == S.true assert Ne(2*x - 1, x).simplify() == Ne(x, 1) assert Ne(2*x, 4).simplify() == Ne(x, 2) assert Ne(z*x, 0).simplify() == S.false # No real-valued assumptions assert Ge(y, x).simplify() == Le(x, y) assert Ge(x - 1, 0).simplify() == Ge(x, 1) assert Ge(x - 1, x).simplify() == S.false assert Ge(2*x - 1, x).simplify() == Ge(x, 1) assert Ge(2*x, 4).simplify() == Ge(x, 2) assert Ge(z*x, 0).simplify() == S.true assert Ge(x, -2).simplify() == Ge(x, -2) assert Ge(-x, -2).simplify() == Le(x, 2) assert Ge(x, 2).simplify() == Ge(x, 2) assert Ge(-x, 2).simplify() == Le(x, -2) assert Le(y, x).simplify() == Ge(x, y) assert Le(x - 1, 0).simplify() == Le(x, 1) assert Le(x - 1, x).simplify() == S.true assert Le(2*x - 1, x).simplify() == Le(x, 1) assert Le(2*x, 4).simplify() == Le(x, 2) assert Le(z*x, 0).simplify() == S.true assert Le(x, -2).simplify() == Le(x, -2) assert Le(-x, -2).simplify() == Ge(x, 2) assert Le(x, 2).simplify() == Le(x, 2) assert Le(-x, 2).simplify() == Ge(x, -2) assert Gt(y, x).simplify() == Lt(x, y) assert Gt(x - 1, 0).simplify() == Gt(x, 1) assert Gt(x - 1, x).simplify() == S.false assert Gt(2*x - 1, x).simplify() == Gt(x, 1) assert Gt(2*x, 4).simplify() == Gt(x, 2) assert Gt(z*x, 0).simplify() == S.false assert Gt(x, -2).simplify() == Gt(x, -2) assert Gt(-x, -2).simplify() == Lt(x, 2) assert Gt(x, 2).simplify() == Gt(x, 2) assert Gt(-x, 2).simplify() == Lt(x, -2) assert Lt(y, x).simplify() == Gt(x, y) assert Lt(x - 1, 0).simplify() == Lt(x, 1) assert Lt(x - 1, x).simplify() == S.true assert Lt(2*x - 1, x).simplify() == Lt(x, 1) assert Lt(2*x, 4).simplify() == Lt(x, 2) assert Lt(z*x, 0).simplify() == S.false assert Lt(x, -2).simplify() == Lt(x, -2) assert Lt(-x, -2).simplify() == Gt(x, 2) assert Lt(x, 2).simplify() == Lt(x, 2) assert Lt(-x, 2).simplify() == Gt(x, -2) def test_equals(): w, x, y, z = symbols('w:z') f = Function('f') assert Eq(x, 1).equals(Eq(x*(y + 1) - x*y - x + 1, x)) assert Eq(x, y).equals(x < y, True) == False assert Eq(x, f(1)).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(f(1), y).equals(Eq(f(2), y), True) == f(1) - f(2) assert Eq(x, f(1)).equals(Eq(f(2), x), True) == f(1) - f(2) assert Eq(f(1), x).equals(Eq(x, f(2)), True) == f(1) - f(2) assert Eq(w, x).equals(Eq(y, z), True) == False assert Eq(f(1), f(2)).equals(Eq(f(3), f(4)), True) == f(1) - f(3) assert (x < y).equals(y > x, True) == True assert (x < y).equals(y >= x, True) == False assert (x < y).equals(z < y, True) == False assert (x < y).equals(x < z, True) == False assert (x < f(1)).equals(x < f(2), True) == f(1) - f(2) assert (f(1) < x).equals(f(2) < x, True) == f(1) - f(2) def test_reversed(): assert (x < y).reversed == (y > x) assert (x <= y).reversed == (y >= x) assert Eq(x, y, evaluate=False).reversed == Eq(y, x, evaluate=False) assert Ne(x, y, evaluate=False).reversed == Ne(y, x, evaluate=False) assert (x >= y).reversed == (y <= x) assert (x > y).reversed == (y < x) def test_canonical(): c = [i.canonical for i in ( x + y < z, x + 2 > 3, x < 2, S(2) > x, x**2 > -x/y, Gt(3, 2, evaluate=False) )] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) c = [i.reversed.func(i.rhs, i.lhs, evaluate=False).canonical for i in c] assert [i.canonical for i in c] == c assert [i.reversed.canonical for i in c] == c assert not any(i.lhs.is_Number and not i.rhs.is_Number for i in c) @XFAIL def test_issue_8444_nonworkingtests(): x = symbols('x', real=True) assert (x <= oo) == (x >= -oo) == True x = symbols('x') assert x >= floor(x) assert (x < floor(x)) == False assert x <= ceiling(x) assert (x > ceiling(x)) == False def test_issue_8444_workingtests(): x = symbols('x') assert Gt(x, floor(x)) == Gt(x, floor(x), evaluate=False) assert Ge(x, floor(x)) == Ge(x, floor(x), evaluate=False) assert Lt(x, ceiling(x)) == Lt(x, ceiling(x), evaluate=False) assert Le(x, ceiling(x)) == Le(x, ceiling(x), evaluate=False) i = symbols('i', integer=True) assert (i > floor(i)) == False assert (i < ceiling(i)) == False def test_issue_10304(): d = cos(1)**2 + sin(1)**2 - 1 assert d.is_comparable is False # if this fails, find a new d e = 1 + d*I assert simplify(Eq(e, 0)) is S.false def test_issue_10401(): x = symbols('x') fin = symbols('inf', finite=True) inf = symbols('inf', infinite=True) inf2 = symbols('inf2', infinite=True) infx = symbols('infx', infinite=True, extended_real=True) # Used in the commented tests below: #infx2 = symbols('infx2', infinite=True, extended_real=True) infnx = symbols('inf~x', infinite=True, extended_real=False) infnx2 = symbols('inf~x2', infinite=True, extended_real=False) infp = symbols('infp', infinite=True, extended_positive=True) infp1 = symbols('infp1', infinite=True, extended_positive=True) infn = symbols('infn', infinite=True, extended_negative=True) zero = symbols('z', zero=True) nonzero = symbols('nz', zero=False, finite=True) assert Eq(1/(1/x + 1), 1).func is Eq assert Eq(1/(1/x + 1), 1).subs(x, S.ComplexInfinity) is S.true assert Eq(1/(1/fin + 1), 1) is S.false T, F = S.true, S.false assert Eq(fin, inf) is F assert Eq(inf, inf2) not in (T, F) and inf != inf2 assert Eq(1 + inf, 2 + inf2) not in (T, F) and inf != inf2 assert Eq(infp, infp1) is T assert Eq(infp, infn) is F assert Eq(1 + I*oo, I*oo) is F assert Eq(I*oo, 1 + I*oo) is F assert Eq(1 + I*oo, 2 + I*oo) is F assert Eq(1 + I*oo, 2 + I*infx) is F assert Eq(1 + I*oo, 2 + infx) is F # FIXME: The test below fails because (-infx).is_extended_positive is True # (should be None) #assert Eq(1 + I*infx, 1 + I*infx2) not in (T, F) and infx != infx2 # assert Eq(zoo, sqrt(2) + I*oo) is F assert Eq(zoo, oo) is F r = Symbol('r', real=True) i = Symbol('i', imaginary=True) assert Eq(i*I, r) not in (T, F) assert Eq(infx, infnx) is F assert Eq(infnx, infnx2) not in (T, F) and infnx != infnx2 assert Eq(zoo, oo) is F assert Eq(inf/inf2, 0) is F assert Eq(inf/fin, 0) is F assert Eq(fin/inf, 0) is T assert Eq(zero/nonzero, 0) is T and ((zero/nonzero) != 0) # The commented out test below is incorrect because: assert zoo == -zoo assert Eq(zoo, -zoo) is T assert Eq(oo, -oo) is F assert Eq(inf, -inf) not in (T, F) assert Eq(fin/(fin + 1), 1) is S.false o = symbols('o', odd=True) assert Eq(o, 2*o) is S.false p = symbols('p', positive=True) assert Eq(p/(p - 1), 1) is F def test_issue_10633(): assert Eq(True, False) == False assert Eq(False, True) == False assert Eq(True, True) == True assert Eq(False, False) == True def test_issue_10927(): x = symbols('x') assert str(Eq(x, oo)) == 'Eq(x, oo)' assert str(Eq(x, -oo)) == 'Eq(x, -oo)' def test_issues_13081_12583_12534(): # 13081 r = Rational('905502432259640373/288230376151711744') assert (r < pi) is S.false assert (r > pi) is S.true # 12583 v = sqrt(2) u = sqrt(v) + 2/sqrt(10 - 8/sqrt(2 - v) + 4*v*(1/sqrt(2 - v) - 1)) assert (u >= 0) is S.true # 12534; Rational vs NumberSymbol # here are some precisions for which Rational forms # at a lower and higher precision bracket the value of pi # e.g. for p = 20: # Rational(pi.n(p + 1)).n(25) = 3.14159265358979323846 2834 # pi.n(25) = 3.14159265358979323846 2643 # Rational(pi.n(p )).n(25) = 3.14159265358979323846 1987 assert [p for p in range(20, 50) if (Rational(pi.n(p)) < pi) and (pi < Rational(pi.n(p + 1)))] == [20, 24, 27, 33, 37, 43, 48] # pick one such precision and affirm that the reversed operation # gives the opposite result, i.e. if x < y is true then x > y # must be false for i in (20, 21): v = pi.n(i) assert rel_check(Rational(v), pi) assert rel_check(v, pi) assert rel_check(pi.n(20), pi.n(21)) # Float vs Rational # the rational form is less than the floating representation # at the same precision assert [i for i in range(15, 50) if Rational(pi.n(i)) > pi.n(i)] == [] # this should be the same if we reverse the relational assert [i for i in range(15, 50) if pi.n(i) < Rational(pi.n(i))] == [] def test_binary_symbols(): ans = set([x]) for f in Eq, Ne: for t in S.true, S.false: eq = f(x, S.true) assert eq.binary_symbols == ans assert eq.reversed.binary_symbols == ans assert f(x, 1).binary_symbols == set() def test_rel_args(): # can't have Boolean args; this is automatic with Python 3 # so this test and the __lt__, etc..., definitions in # relational.py and boolalg.py which are marked with /// # can be removed. for op in ['<', '<=', '>', '>=']: for b in (S.true, x < 1, And(x, y)): for v in (0.1, 1, 2**32, t, S.One): raises(TypeError, lambda: Relational(b, v, op)) def test_Equality_rewrite_as_Add(): eq = Eq(x + y, y - x) assert eq.rewrite(Add) == 2*x assert eq.rewrite(Add, evaluate=None).args == (x, x, y, -y) assert eq.rewrite(Add, evaluate=False).args == (x, y, x, -y) def test_issue_15847(): a = Ne(x*(x+y), x**2 + x*y) assert simplify(a) == False def test_negated_property(): eq = Eq(x, y) assert eq.negated == Ne(x, y) eq = Ne(x, y) assert eq.negated == Eq(x, y) eq = Ge(x + y, y - x) assert eq.negated == Lt(x + y, y - x) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).negated.negated == f(x, y) def test_reversedsign_property(): eq = Eq(x, y) assert eq.reversedsign == Eq(-x, -y) eq = Ne(x, y) assert eq.reversedsign == Ne(-x, -y) eq = Ge(x + y, y - x) assert eq.reversedsign == Le(-x - y, x - y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversedsign.reversedsign == f(x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversedsign.reversedsign == f(-x, y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversedsign.reversedsign == f(x, -y) for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversedsign.reversedsign == f(-x, -y) def test_reversed_reversedsign_property(): for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, y).reversed.reversedsign == f(x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, y).reversed.reversedsign == f(-x, y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(x, -y).reversed.reversedsign == f(x, -y).reversedsign.reversed for f in (Eq, Ne, Ge, Gt, Le, Lt): assert f(-x, -y).reversed.reversedsign == \ f(-x, -y).reversedsign.reversed def test_improved_canonical(): def test_different_forms(listofforms): for form1, form2 in combinations(listofforms, 2): assert form1.canonical == form2.canonical def generate_forms(expr): return [expr, expr.reversed, expr.reversedsign, expr.reversed.reversedsign] test_different_forms(generate_forms(x > -y)) test_different_forms(generate_forms(x >= -y)) test_different_forms(generate_forms(Eq(x, -y))) test_different_forms(generate_forms(Ne(x, -y))) test_different_forms(generate_forms(pi < x)) test_different_forms(generate_forms(pi - 5*y < -x + 2*y**2 - 7)) assert (pi >= x).canonical == (x <= pi) def test_set_equality_canonical(): a, b, c = symbols('a b c') A = Eq(FiniteSet(a, b, c), FiniteSet(1, 2, 3)) B = Ne(FiniteSet(a, b, c), FiniteSet(4, 5, 6)) assert A.canonical == A.reversed assert B.canonical == B.reversed def test_trigsimp(): # issue 16736 s, c = sin(2*x), cos(2*x) eq = Eq(s, c) assert trigsimp(eq) == eq # no rearrangement of sides # simplification of sides might result in # an unevaluated Eq changed = trigsimp(Eq(s + c, sqrt(2))) assert isinstance(changed, Eq) assert changed.subs(x, pi/8) is S.true # or an evaluated one assert trigsimp(Eq(cos(x)**2 + sin(x)**2, 1)) is S.true def test_polynomial_relation_simplification(): assert Ge(3*x*(x + 1) + 4, 3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert Le(-(3*x*(x + 1) + 4), -3*x).simplify() in [Ge(x**2, -Rational(4,3)), Le(-x**2, Rational(4, 3))] assert ((x**2+3)*(x**2-1)+3*x >= 2*x**2).simplify() in [(x**4 + 3*x >= 3), (-x**4 - 3*x <= -3)] def test_multivariate_linear_function_simplification(): assert Ge(x + y, x - y).simplify() == Ge(y, 0) assert Le(-x + y, -x - y).simplify() == Le(y, 0) assert Eq(2*x + y, 2*x + y - 3).simplify() == False assert (2*x + y > 2*x + y - 3).simplify() == True assert (2*x + y < 2*x + y - 3).simplify() == False assert (2*x + y < 2*x + y + 3).simplify() == True a, b, c, d, e, f, g = symbols('a b c d e f g') assert Lt(a + b + c + 2*d, 3*d - f + g). simplify() == Lt(a, -b - c + d - f + g) def test_nonpolymonial_relations(): assert Eq(cos(x), 0).simplify() == Eq(cos(x), 0)
a17589f894364d52e0c8489c0d8b5d68f8739073676383f04bfa132ff0439b0b
from __future__ import division #this module tests that sympy works with true division turned on from sympy import Rational, Symbol, Float def test_truediv(): assert 1/2 != 0 assert Rational(1)/2 != 0 def dotest(s): x = Symbol("x") y = Symbol("y") l = [ Rational(2), Float("1.3"), x, y, pow(x, y)*y, 5, 5.5 ] for x in l: for y in l: s(x, y) return True def test_basic(): def s(a, b): x = a x = +a x = -a x = a + b x = a - b x = a*b x = a/b x = a**b del x assert dotest(s) def test_ibasic(): def s(a, b): x = a x += b x = a x -= b x = a x *= b x = a x /= b assert dotest(s)
024b954f6bea913ca9ef5545337748113ec69cab40bfd42254cd2bbe178c9db4
from sympy import (Symbol, exp, Integer, Float, sin, cos, log, Poly, Lambda, Function, I, S, sqrt, srepr, Rational, Tuple, Matrix, Interval, Add, Mul, Pow, Or, true, false, Abs, pi, Range, Xor) from sympy.abc import x, y from sympy.core.sympify import (sympify, _sympify, SympifyError, kernS, CantSympify) from sympy.core.decorators import _sympifyit from sympy.external import import_module from sympy.utilities.pytest import raises, XFAIL, skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.geometry import Point, Line from sympy.functions.combinatorial.factorials import factorial, factorial2 from sympy.abc import _clash, _clash1, _clash2 from sympy.core.compatibility import exec_, HAS_GMPY, range from sympy.sets import FiniteSet, EmptySet from sympy.tensor.array.dense_ndim_array import ImmutableDenseNDimArray import mpmath from collections import defaultdict, OrderedDict from mpmath.rational import mpq numpy = import_module('numpy') def test_issue_3538(): v = sympify("exp(x)") assert v == exp(x) assert type(v) == type(exp(x)) assert str(type(v)) == str(type(exp(x))) def test_sympify1(): assert sympify("x") == Symbol("x") assert sympify(" x") == Symbol("x") assert sympify(" x ") == Symbol("x") # issue 4877 n1 = S.Half assert sympify('--.5') == n1 assert sympify('-1/2') == -n1 assert sympify('-+--.5') == -n1 assert sympify('-.[3]') == Rational(-1, 3) assert sympify('.[3]') == Rational(1, 3) assert sympify('+.[3]') == Rational(1, 3) assert sympify('+0.[3]*10**-2') == Rational(1, 300) assert sympify('.[052631578947368421]') == Rational(1, 19) assert sympify('.0[526315789473684210]') == Rational(1, 19) assert sympify('.034[56]') == Rational(1711, 49500) # options to make reals into rationals assert sympify('1.22[345]', rational=True) == \ 1 + Rational(22, 100) + Rational(345, 99900) assert sympify('2/2.6', rational=True) == Rational(10, 13) assert sympify('2.6/2', rational=True) == Rational(13, 10) assert sympify('2.6e2/17', rational=True) == Rational(260, 17) assert sympify('2.6e+2/17', rational=True) == Rational(260, 17) assert sympify('2.6e-2/17', rational=True) == Rational(26, 17000) assert sympify('2.1+3/4', rational=True) == \ Rational(21, 10) + Rational(3, 4) assert sympify('2.234456', rational=True) == Rational(279307, 125000) assert sympify('2.234456e23', rational=True) == 223445600000000000000000 assert sympify('2.234456e-23', rational=True) == \ Rational(279307, 12500000000000000000000000000) assert sympify('-2.234456e-23', rational=True) == \ Rational(-279307, 12500000000000000000000000000) assert sympify('12345678901/17', rational=True) == \ Rational(12345678901, 17) assert sympify('1/.3 + x', rational=True) == Rational(10, 3) + x # make sure longs in fractions work assert sympify('222222222222/11111111111') == \ Rational(222222222222, 11111111111) # ... even if they come from repetend notation assert sympify('1/.2[123456789012]') == Rational(333333333333, 70781892967) # ... or from high precision reals assert sympify('.1234567890123456', rational=True) == \ Rational(19290123283179, 156250000000000) def test_sympify_Fraction(): try: import fractions except ImportError: pass else: value = sympify(fractions.Fraction(101, 127)) assert value == Rational(101, 127) and type(value) is Rational def test_sympify_gmpy(): if HAS_GMPY: if HAS_GMPY == 2: import gmpy2 as gmpy elif HAS_GMPY == 1: import gmpy value = sympify(gmpy.mpz(1000001)) assert value == Integer(1000001) and type(value) is Integer value = sympify(gmpy.mpq(101, 127)) assert value == Rational(101, 127) and type(value) is Rational @conserve_mpmath_dps def test_sympify_mpmath(): value = sympify(mpmath.mpf(1.0)) assert value == Float(1.0) and type(value) is Float mpmath.mp.dps = 12 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-12")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159265359"), Float("1e-13")) == False mpmath.mp.dps = 6 assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-5")) == True assert sympify( mpmath.pi).epsilon_eq(Float("3.14159"), Float("1e-6")) == False assert sympify(mpmath.mpc(1.0 + 2.0j)) == Float(1.0) + Float(2.0)*I assert sympify(mpq(1, 2)) == S.Half def test_sympify2(): class A: def _sympy_(self): return Symbol("x")**3 a = A() assert _sympify(a) == x**3 assert sympify(a) == x**3 assert a == x**3 def test_sympify3(): assert sympify("x**3") == x**3 assert sympify("x^3") == x**3 assert sympify("1/2") == Integer(1)/2 raises(SympifyError, lambda: _sympify('x**3')) raises(SympifyError, lambda: _sympify('1/2')) def test_sympify_keywords(): raises(SympifyError, lambda: sympify('if')) raises(SympifyError, lambda: sympify('for')) raises(SympifyError, lambda: sympify('while')) raises(SympifyError, lambda: sympify('lambda')) def test_sympify_float(): assert sympify("1e-64") != 0 assert sympify("1e-20000") != 0 def test_sympify_bool(): assert sympify(True) is true assert sympify(False) is false def test_sympyify_iterables(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify(['.3', '.2'], rational=True) == ans assert sympify(dict(x=0, y=1)) == {x: 0, y: 1} assert sympify(['1', '2', ['3', '4']]) == [S(1), S(2), [S(3), S(4)]] @XFAIL def test_issue_16772(): # because there is a converter for tuple, the # args are only sympified without the flags being passed # along; list, on the other hand, is not converted # with a converter so its args are traversed later ans = [Rational(3, 10), Rational(1, 5)] assert sympify(tuple(['.3', '.2']), rational=True) == Tuple(*ans) def test_issue_16859(): class no(float, CantSympify): pass raises(SympifyError, lambda: sympify(no(1.2))) def test_sympify4(): class A: def _sympy_(self): return Symbol("x") a = A() assert _sympify(a)**3 == x**3 assert sympify(a)**3 == x**3 assert a == x def test_sympify_text(): assert sympify('some') == Symbol('some') assert sympify('core') == Symbol('core') assert sympify('True') is True assert sympify('False') is False assert sympify('Poly') == Poly assert sympify('sin') == sin def test_sympify_function(): assert sympify('factor(x**2-1, x)') == -(1 - x)*(x + 1) assert sympify('sin(pi/2)*cos(pi)') == -Integer(1) def test_sympify_poly(): p = Poly(x**2 + x + 1, x) assert _sympify(p) is p assert sympify(p) is p def test_sympify_factorial(): assert sympify('x!') == factorial(x) assert sympify('(x+1)!') == factorial(x + 1) assert sympify('(1 + y*(x + 1))!') == factorial(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!)^2') == (1 + y*factorial(x + 1))**2 assert sympify('y*x!') == y*factorial(x) assert sympify('x!!') == factorial2(x) assert sympify('(x+1)!!') == factorial2(x + 1) assert sympify('(1 + y*(x + 1))!!') == factorial2(1 + y*(x + 1)) assert sympify('(1 + y*(x + 1)!!)^2') == (1 + y*factorial2(x + 1))**2 assert sympify('y*x!!') == y*factorial2(x) assert sympify('factorial2(x)!') == factorial(factorial2(x)) raises(SympifyError, lambda: sympify("+!!")) raises(SympifyError, lambda: sympify(")!!")) raises(SympifyError, lambda: sympify("!")) raises(SympifyError, lambda: sympify("(!)")) raises(SympifyError, lambda: sympify("x!!!")) def test_sage(): # how to effectivelly test for the _sage_() method without having SAGE # installed? assert hasattr(x, "_sage_") assert hasattr(Integer(3), "_sage_") assert hasattr(sin(x), "_sage_") assert hasattr(cos(x), "_sage_") assert hasattr(x**2, "_sage_") assert hasattr(x + y, "_sage_") assert hasattr(exp(x), "_sage_") assert hasattr(log(x), "_sage_") def test_issue_3595(): assert sympify("a_") == Symbol("a_") assert sympify("_a") == Symbol("_a") def test_lambda(): x = Symbol('x') assert sympify('lambda: 1') == Lambda((), 1) assert sympify('lambda x: x') == Lambda(x, x) assert sympify('lambda x: 2*x') == Lambda(x, 2*x) assert sympify('lambda x, y: 2*x+y') == Lambda((x, y), 2*x + y) def test_lambda_raises(): raises(SympifyError, lambda: sympify("lambda *args: args")) # args argument error raises(SympifyError, lambda: sympify("lambda **kwargs: kwargs[0]")) # kwargs argument error raises(SympifyError, lambda: sympify("lambda x = 1: x")) # Keyword argument error with raises(SympifyError): _sympify('lambda: 1') def test_sympify_raises(): raises(SympifyError, lambda: sympify("fx)")) def test__sympify(): x = Symbol('x') f = Function('f') # positive _sympify assert _sympify(x) is x assert _sympify(f) is f assert _sympify(1) == Integer(1) assert _sympify(0.5) == Float("0.5") assert _sympify(1 + 1j) == 1.0 + I*1.0 class A: def _sympy_(self): return Integer(5) a = A() assert _sympify(a) == Integer(5) # negative _sympify raises(SympifyError, lambda: _sympify('1')) raises(SympifyError, lambda: _sympify([1, 2, 3])) def test_sympifyit(): x = Symbol('x') y = Symbol('y') @_sympifyit('b', NotImplemented) def add(a, b): return a + b assert add(x, 1) == x + 1 assert add(x, 0.5) == x + Float('0.5') assert add(x, y) == x + y assert add(x, '1') == NotImplemented @_sympifyit('b') def add_raises(a, b): return a + b assert add_raises(x, 1) == x + 1 assert add_raises(x, 0.5) == x + Float('0.5') assert add_raises(x, y) == x + y raises(SympifyError, lambda: add_raises(x, '1')) def test_int_float(): class F1_1(object): def __float__(self): return 1.1 class F1_1b(object): """ This class is still a float, even though it also implements __int__(). """ def __float__(self): return 1.1 def __int__(self): return 1 class F1_1c(object): """ This class is still a float, because it implements _sympy_() """ def __float__(self): return 1.1 def __int__(self): return 1 def _sympy_(self): return Float(1.1) class I5(object): def __int__(self): return 5 class I5b(object): """ This class implements both __int__() and __float__(), so it will be treated as Float in SymPy. One could change this behavior, by using float(a) == int(a), but deciding that integer-valued floats represent exact numbers is arbitrary and often not correct, so we do not do it. If, in the future, we decide to do it anyway, the tests for I5b need to be changed. """ def __float__(self): return 5.0 def __int__(self): return 5 class I5c(object): """ This class implements both __int__() and __float__(), but also a _sympy_() method, so it will be Integer. """ def __float__(self): return 5.0 def __int__(self): return 5 def _sympy_(self): return Integer(5) i5 = I5() i5b = I5b() i5c = I5c() f1_1 = F1_1() f1_1b = F1_1b() f1_1c = F1_1c() assert sympify(i5) == 5 assert isinstance(sympify(i5), Integer) assert sympify(i5b) == 5 assert isinstance(sympify(i5b), Float) assert sympify(i5c) == 5 assert isinstance(sympify(i5c), Integer) assert abs(sympify(f1_1) - 1.1) < 1e-5 assert abs(sympify(f1_1b) - 1.1) < 1e-5 assert abs(sympify(f1_1c) - 1.1) < 1e-5 assert _sympify(i5) == 5 assert isinstance(_sympify(i5), Integer) assert _sympify(i5b) == 5 assert isinstance(_sympify(i5b), Float) assert _sympify(i5c) == 5 assert isinstance(_sympify(i5c), Integer) assert abs(_sympify(f1_1) - 1.1) < 1e-5 assert abs(_sympify(f1_1b) - 1.1) < 1e-5 assert abs(_sympify(f1_1c) - 1.1) < 1e-5 def test_evaluate_false(): cases = { '2 + 3': Add(2, 3, evaluate=False), '2**2 / 3': Mul(Pow(2, 2, evaluate=False), Pow(3, -1, evaluate=False), evaluate=False), '2 + 3 * 5': Add(2, Mul(3, 5, evaluate=False), evaluate=False), '2 - 3 * 5': Add(2, Mul(-1, Mul(3, 5,evaluate=False), evaluate=False), evaluate=False), '1 / 3': Mul(1, Pow(3, -1, evaluate=False), evaluate=False), 'True | False': Or(True, False, evaluate=False), '1 + 2 + 3 + 5*3 + integrate(x)': Add(1, 2, 3, Mul(5, 3, evaluate=False), x**2/2, evaluate=False), '2 * 4 * 6 + 8': Add(Mul(2, 4, 6, evaluate=False), 8, evaluate=False), '2 - 8 / 4': Add(2, Mul(-1, Mul(8, Pow(4, -1, evaluate=False), evaluate=False), evaluate=False), evaluate=False), '2 - 2**2': Add(2, Mul(-1, Pow(2, 2, evaluate=False), evaluate=False), evaluate=False), } for case, result in cases.items(): assert sympify(case, evaluate=False) == result def test_issue_4133(): a = sympify('Integer(4)') assert a == Integer(4) assert a.is_Integer def test_issue_3982(): a = [3, 2.0] assert sympify(a) == [Integer(3), Float(2.0)] assert sympify(tuple(a)) == Tuple(Integer(3), Float(2.0)) assert sympify(set(a)) == FiniteSet(Integer(3), Float(2.0)) def test_S_sympify(): assert S(1)/2 == sympify(1)/2 assert (-2)**(S(1)/2) == sqrt(2)*I def test_issue_4788(): assert srepr(S(1.0 + 0J)) == srepr(S(1.0)) == srepr(Float(1.0)) def test_issue_4798_None(): assert S(None) is None def test_issue_3218(): assert sympify("x+\ny") == x + y def test_issue_4988_builtins(): C = Symbol('C') vars = {'C': C} exp1 = sympify('C') assert exp1 == C # Make sure it did not get mixed up with sympy.C exp2 = sympify('C', vars) assert exp2 == C # Make sure it did not get mixed up with sympy.C def test_geometry(): p = sympify(Point(0, 1)) assert p == Point(0, 1) and isinstance(p, Point) L = sympify(Line(p, (1, 0))) assert L == Line((0, 1), (1, 0)) and isinstance(L, Line) def test_kernS(): s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))' # when 1497 is fixed, this no longer should pass: the expression # should be unchanged assert -1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x))) == -1 # sympification should not allow the constant to enter a Mul # or else the structure can change dramatically ss = kernS(s) assert ss != -1 and ss.simplify() == -1 s = '-1 - 2*(-(-x + 1/x)/(x*(x - 1/x)**2) - 1/(x*(x - 1/x)))'.replace( 'x', '_kern') ss = kernS(s) assert ss != -1 and ss.simplify() == -1 # issue 6687 assert kernS('Interval(-1,-2 - 4*(-3))') == Interval(-1, 10) assert kernS('_kern') == Symbol('_kern') assert kernS('E**-(x)') == exp(-x) e = 2*(x + y)*y assert kernS(['2*(x + y)*y', ('2*(x + y)*y',)]) == [e, (e,)] assert kernS('-(2*sin(x)**2 + 2*sin(x)*cos(x))*y/2') == \ -y*(2*sin(x)**2 + 2*sin(x)*cos(x))/2 # issue 15132 assert kernS('(1 - x)/(1 - x*(1-y))') == kernS('(1-x)/(1-(1-y)*x)') assert kernS('(1-2**-(4+1)*(1-y)*x)') == (1 - x*(1 - y)/32) assert kernS('(1-2**(4+1)*(1-y)*x)') == (1 - 32*x*(1 - y)) assert kernS('(1-2.*(1-y)*x)') == 1 - 2.*x*(1 - y) one = kernS('x - (x - 1)') assert one != 1 and one.expand() == 1 def test_issue_6540_6552(): assert S('[[1/3,2], (2/5,)]') == [[Rational(1, 3), 2], (Rational(2, 5),)] assert S('[[2/6,2], (2/4,)]') == [[Rational(1, 3), 2], (S.Half,)] assert S('[[[2*(1)]]]') == [[[2]]] assert S('Matrix([2*(1)])') == Matrix([2]) def test_issue_6046(): assert str(S("Q & C", locals=_clash1)) == 'C & Q' assert str(S('pi(x)', locals=_clash2)) == 'pi(x)' assert str(S('pi(C, Q)', locals=_clash)) == 'pi(C, Q)' locals = {} exec_("from sympy.abc import Q, C", locals) assert str(S('C&Q', locals)) == 'C & Q' def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = sympify(s) assert Abs(sin(p)) < 1e-127 def test_issue_10295(): if not numpy: skip("numpy not installed.") A = numpy.array([[1, 3, -1], [0, 1, 7]]) sA = S(A) assert sA.shape == (2, 3) for (ri, ci), val in numpy.ndenumerate(A): assert sA[ri, ci] == val B = numpy.array([-7, x, 3*y**2]) sB = S(B) assert sB.shape == (3,) assert B[0] == sB[0] == -7 assert B[1] == sB[1] == x assert B[2] == sB[2] == 3*y**2 C = numpy.arange(0, 24) C.resize(2,3,4) sC = S(C) assert sC[0, 0, 0].is_integer assert sC[0, 0, 0] == 0 a1 = numpy.array([1, 2, 3]) a2 = numpy.array([i for i in range(24)]) a2.resize(2, 4, 3) assert sympify(a1) == ImmutableDenseNDimArray([1, 2, 3]) assert sympify(a2) == ImmutableDenseNDimArray([i for i in range(24)], (2, 4, 3)) def test_Range(): # Only works in Python 3 where range returns a range type assert sympify(range(10)) == Range(10) assert _sympify(range(10)) == Range(10) def test_sympify_set(): n = Symbol('n') assert sympify({n}) == FiniteSet(n) assert sympify(set()) == EmptySet def test_sympify_numpy(): if not numpy: skip('numpy not installed. Abort numpy tests.') np = numpy def equal(x, y): return x == y and type(x) == type(y) assert sympify(np.bool_(1)) is S(True) try: assert equal( sympify(np.int_(1234567891234567891)), S(1234567891234567891)) assert equal( sympify(np.intp(1234567891234567891)), S(1234567891234567891)) except OverflowError: # May fail on 32-bit systems: Python int too large to convert to C long pass assert equal(sympify(np.intc(1234567891)), S(1234567891)) assert equal(sympify(np.int8(-123)), S(-123)) assert equal(sympify(np.int16(-12345)), S(-12345)) assert equal(sympify(np.int32(-1234567891)), S(-1234567891)) assert equal( sympify(np.int64(-1234567891234567891)), S(-1234567891234567891)) assert equal(sympify(np.uint8(123)), S(123)) assert equal(sympify(np.uint16(12345)), S(12345)) assert equal(sympify(np.uint32(1234567891)), S(1234567891)) assert equal( sympify(np.uint64(1234567891234567891)), S(1234567891234567891)) assert equal(sympify(np.float32(1.123456)), Float(1.123456, precision=24)) assert equal(sympify(np.float64(1.1234567891234)), Float(1.1234567891234, precision=53)) assert equal(sympify(np.longdouble(1.123456789)), Float(1.123456789, precision=80)) assert equal(sympify(np.complex64(1 + 2j)), S(1.0 + 2.0*I)) assert equal(sympify(np.complex128(1 + 2j)), S(1.0 + 2.0*I)) assert equal(sympify(np.longcomplex(1 + 2j)), S(1.0 + 2.0*I)) #float96 does not exist on all platforms if hasattr(np, 'float96'): assert equal(sympify(np.float96(1.123456789)), Float(1.123456789, precision=80)) #float128 does not exist on all platforms if hasattr(np, 'float128'): assert equal(sympify(np.float128(1.123456789123)), Float(1.123456789123, precision=80)) @XFAIL def test_sympify_rational_numbers_set(): ans = [Rational(3, 10), Rational(1, 5)] assert sympify({'.3', '.2'}, rational=True) == FiniteSet(*ans) def test_issue_13924(): if not numpy: skip("numpy not installed.") a = sympify(numpy.array([1])) assert isinstance(a, ImmutableDenseNDimArray) assert a[0] == 1 def test_numpy_sympify_args(): # Issue 15098. Make sure sympify args work with numpy types (like numpy.str_) if not numpy: skip("numpy not installed.") a = sympify(numpy.str_('a')) assert type(a) is Symbol assert a == Symbol('a') class CustomSymbol(Symbol): pass a = sympify(numpy.str_('a'), {"Symbol": CustomSymbol}) assert isinstance(a, CustomSymbol) a = sympify(numpy.str_('x^y')) assert a == x**y a = sympify(numpy.str_('x^y'), convert_xor=False) assert a == Xor(x, y) raises(SympifyError, lambda: sympify(numpy.str_('x'), strict=True)) a = sympify(numpy.str_('1.1')) assert isinstance(a, Float) assert a == 1.1 a = sympify(numpy.str_('1.1'), rational=True) assert isinstance(a, Rational) assert a == Rational(11, 10) a = sympify(numpy.str_('x + x')) assert isinstance(a, Mul) assert a == 2*x a = sympify(numpy.str_('x + x'), evaluate=False) assert isinstance(a, Add) assert a == Add(x, x, evaluate=False) def test_issue_5939(): a = Symbol('a') b = Symbol('b') assert sympify('''a+\nb''') == a + b def test_issue_16759(): d = sympify({.5: 1}) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(OrderedDict({.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One d = sympify(defaultdict(int, {.5: 1})) assert S.Half not in d assert Float(.5) in d assert d[.5] is S.One def test_issue_17811(): a = Function('a') assert sympify('a(x)*5', evaluate=False) == Mul(a(x), 5, evaluate=False)
ff7b977db74ae087ec92fb93a3902a66c31d81e3b9d9a5ab1dfa85ce2d29c249
from sympy import (Abs, Add, atan, ceiling, cos, E, Eq, exp, factor, factorial, fibonacci, floor, Function, GoldenRatio, I, Integral, integrate, log, Mul, N, oo, pi, Pow, product, Product, Rational, S, Sum, simplify, sin, sqrt, sstr, sympify, Symbol, Max, nfloat, cosh, acosh, acos) from sympy.core.numbers import comp from sympy.core.evalf import (complex_accuracy, PrecisionExhausted, scaled_zero, get_integer_part, as_mpmath, evalf) from mpmath import inf, ninf from mpmath.libmp.libmpf import from_float from sympy.core.compatibility import long, range from sympy.core.expr import unchanged from sympy.utilities.pytest import raises, XFAIL from sympy.abc import n, x, y def NS(e, n=15, **options): return sstr(sympify(e).evalf(n, **options), full_prec=True) def test_evalf_helpers(): assert complex_accuracy((from_float(2.0), None, 35, None)) == 35 assert complex_accuracy((from_float(2.0), from_float(10.0), 35, 100)) == 37 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 35, 100)) == 43 assert complex_accuracy((from_float(2.0), from_float(10.0), 100, 35)) == 35 assert complex_accuracy( (from_float(2.0), from_float(1000.0), 100, 35)) == 35 def test_evalf_basic(): assert NS('pi', 15) == '3.14159265358979' assert NS('2/3', 10) == '0.6666666667' assert NS('355/113-pi', 6) == '2.66764e-7' assert NS('16*atan(1/5)-4*atan(1/239)', 15) == '3.14159265358979' def test_cancellation(): assert NS(Add(pi, Rational(1, 10**1000), -pi, evaluate=False), 15, maxn=1200) == '1.00000000000000e-1000' def test_evalf_powers(): assert NS('pi**(10**20)', 10) == '1.339148777e+49714987269413385435' assert NS(pi**(10**100), 10) == ('4.946362032e+4971498726941338543512682882' '9089887365167832438044244613405349992494711208' '95526746555473864642912223') assert NS('2**(1/10**50)', 15) == '1.00000000000000' assert NS('2**(1/10**50)-1', 15) == '6.93147180559945e-51' # Evaluation of Rump's ill-conditioned polynomial def test_evalf_rump(): a = 1335*y**6/4 + x**2*(11*x**2*y**2 - y**6 - 121*y**4 - 2) + 11*y**8/2 + x/(2*y) assert NS(a, 15, subs={x: 77617, y: 33096}) == '-0.827396059946821' def test_evalf_complex(): assert NS('2*sqrt(pi)*I', 10) == '3.544907702*I' assert NS('3+3*I', 15) == '3.00000000000000 + 3.00000000000000*I' assert NS('E+pi*I', 15) == '2.71828182845905 + 3.14159265358979*I' assert NS('pi * (3+4*I)', 15) == '9.42477796076938 + 12.5663706143592*I' assert NS('I*(2+I)', 15) == '-1.00000000000000 + 2.00000000000000*I' @XFAIL def test_evalf_complex_bug(): assert NS('(pi+E*I)*(E+pi*I)', 15) in ('0.e-15 + 17.25866050002*I', '0.e-17 + 17.25866050002*I', '-0.e-17 + 17.25866050002*I') def test_evalf_complex_powers(): assert NS('(E+pi*I)**100000000000000000') == \ '-3.58896782867793e+61850354284995199 + 4.58581754997159e+61850354284995199*I' # XXX: rewrite if a+a*I simplification introduced in sympy #assert NS('(pi + pi*I)**2') in ('0.e-15 + 19.7392088021787*I', '0.e-16 + 19.7392088021787*I') assert NS('(pi + pi*I)**2', chop=True) == '19.7392088021787*I' assert NS( '(pi + 1/10**8 + pi*I)**2') == '6.2831853e-8 + 19.7392088650106*I' assert NS('(pi + 1/10**12 + pi*I)**2') == '6.283e-12 + 19.7392088021850*I' assert NS('(pi + pi*I)**4', chop=True) == '-389.636364136010' assert NS( '(pi + 1/10**8 + pi*I)**4') == '-389.636366616512 + 2.4805021e-6*I' assert NS('(pi + 1/10**12 + pi*I)**4') == '-389.636364136258 + 2.481e-10*I' assert NS( '(10000*pi + 10000*pi*I)**4', chop=True) == '-3.89636364136010e+18' @XFAIL def test_evalf_complex_powers_bug(): assert NS('(pi + pi*I)**4') == '-389.63636413601 + 0.e-14*I' def test_evalf_exponentiation(): assert NS(sqrt(-pi)) == '1.77245385090552*I' assert NS(Pow(pi*I, Rational( 1, 2), evaluate=False)) == '1.25331413731550 + 1.25331413731550*I' assert NS(pi**I) == '0.413292116101594 + 0.910598499212615*I' assert NS(pi**(E + I/3)) == '20.8438653991931 + 8.36343473930031*I' assert NS((pi + I/3)**(E + I/3)) == '17.2442906093590 + 13.6839376767037*I' assert NS(exp(pi)) == '23.1406926327793' assert NS(exp(pi + E*I)) == '-21.0981542849657 + 9.50576358282422*I' assert NS(pi**pi) == '36.4621596072079' assert NS((-pi)**pi) == '-32.9138577418939 - 15.6897116534332*I' assert NS((-pi)**(-pi)) == '-0.0247567717232697 + 0.0118013091280262*I' # An example from Smith, "Multiple Precision Complex Arithmetic and Functions" def test_evalf_complex_cancellation(): A = Rational('63287/100000') B = Rational('52498/100000') C = Rational('69301/100000') D = Rational('83542/100000') F = Rational('2231321613/2500000000') # XXX: the number of returned mantissa digits in the real part could # change with the implementation. What matters is that the returned digits are # correct; those that are showing now are correct. # >>> ((A+B*I)*(C+D*I)).expand() # 64471/10000000000 + 2231321613*I/2500000000 # >>> 2231321613*4 # 8925286452L assert NS((A + B*I)*(C + D*I), 6) == '6.44710e-6 + 0.892529*I' assert NS((A + B*I)*(C + D*I), 10) == '6.447100000e-6 + 0.8925286452*I' assert NS((A + B*I)*( C + D*I) - F*I, 5) in ('6.4471e-6 + 0.e-14*I', '6.4471e-6 - 0.e-14*I') def test_evalf_logs(): assert NS("log(3+pi*I)", 15) == '1.46877619736226 + 0.808448792630022*I' assert NS("log(pi*I)", 15) == '1.14472988584940 + 1.57079632679490*I' assert NS('log(-1 + 0.00001)', 2) == '-1.0e-5 + 3.1*I' assert NS('log(100, 10, evaluate=False)', 15) == '2.00000000000000' assert NS('-2*I*log(-(-1)**(S(1)/9))', 15) == '-5.58505360638185' def test_evalf_trig(): assert NS('sin(1)', 15) == '0.841470984807897' assert NS('cos(1)', 15) == '0.540302305868140' assert NS('sin(10**-6)', 15) == '9.99999999999833e-7' assert NS('cos(10**-6)', 15) == '0.999999999999500' assert NS('sin(E*10**100)', 15) == '0.409160531722613' # Some input near roots assert NS(sin(exp(pi*sqrt(163))*pi), 15) == '-2.35596641936785e-12' assert NS(sin(pi*10**100 + Rational(7, 10**5), evaluate=False), 15, maxn=120) == \ '6.99999999428333e-5' assert NS(sin(Rational(7, 10**5), evaluate=False), 15) == \ '6.99999999428333e-5' # Check detection of various false identities def test_evalf_near_integers(): # Binet's formula f = lambda n: ((1 + sqrt(5))**n)/(2**n * sqrt(5)) assert NS(f(5000) - fibonacci(5000), 10, maxn=1500) == '5.156009964e-1046' # Some near-integer identities from # http://mathworld.wolfram.com/AlmostInteger.html assert NS('sin(2017*2**(1/5))', 15) == '-1.00000000000000' assert NS('sin(2017*2**(1/5))', 20) == '-0.99999999999999997857' assert NS('1+sin(2017*2**(1/5))', 15) == '2.14322287389390e-17' assert NS('45 - 613*E/37 + 35/991', 15) == '6.03764498766326e-11' def test_evalf_ramanujan(): assert NS(exp(pi*sqrt(163)) - 640320**3 - 744, 10) == '-7.499274028e-13' # A related identity A = 262537412640768744*exp(-pi*sqrt(163)) B = 196884*exp(-2*pi*sqrt(163)) C = 103378831900730205293632*exp(-3*pi*sqrt(163)) assert NS(1 - A - B + C, 10) == '1.613679005e-59' # Input that for various reasons have failed at some point def test_evalf_bugs(): assert NS(sin(1) + exp(-10**10), 10) == NS(sin(1), 10) assert NS(exp(10**10) + sin(1), 10) == NS(exp(10**10), 10) assert NS('expand_log(log(1+1/10**50))', 20) == '1.0000000000000000000e-50' assert NS('log(10**100,10)', 10) == '100.0000000' assert NS('log(2)', 10) == '0.6931471806' assert NS( '(sin(x)-x)/x**3', 15, subs={x: '1/10**50'}) == '-0.166666666666667' assert NS(sin(1) + Rational( 1, 10**100)*I, 15) == '0.841470984807897 + 1.00000000000000e-100*I' assert x.evalf() == x assert NS((1 + I)**2*I, 6) == '-2.00000' d = {n: ( -1)**Rational(6, 7), y: (-1)**Rational(4, 7), x: (-1)**Rational(2, 7)} assert NS((x*(1 + y*(1 + n))).subs(d).evalf(), 6) == '0.346011 + 0.433884*I' assert NS(((-I - sqrt(2)*I)**2).evalf()) == '-5.82842712474619' assert NS((1 + I)**2*I, 15) == '-2.00000000000000' # issue 4758 (1/2): assert NS(pi.evalf(69) - pi) == '-4.43863937855894e-71' # issue 4758 (2/2): With the bug present, this still only fails if the # terms are in the order given here. This is not generally the case, # because the order depends on the hashes of the terms. assert NS(20 - 5008329267844*n**25 - 477638700*n**37 - 19*n, subs={n: .01}) == '19.8100000000000' assert NS(((x - 1)*((1 - x))**1000).n() ) == '(1.00000000000000 - x)**1000*(x - 1.00000000000000)' assert NS((-x).n()) == '-x' assert NS((-2*x).n()) == '-2.00000000000000*x' assert NS((-2*x*y).n()) == '-2.00000000000000*x*y' assert cos(x).n(subs={x: 1+I}) == cos(x).subs(x, 1+I).n() # issue 6660. Also NaN != mpmath.nan # In this order: # 0*nan, 0/nan, 0*inf, 0/inf # 0+nan, 0-nan, 0+inf, 0-inf # >>> n = Some Number # n*nan, n/nan, n*inf, n/inf # n+nan, n-nan, n+inf, n-inf assert (0*E**(oo)).n() is S.NaN assert (0/E**(oo)).n() is S.Zero assert (0+E**(oo)).n() is S.Infinity assert (0-E**(oo)).n() is S.NegativeInfinity assert (5*E**(oo)).n() is S.Infinity assert (5/E**(oo)).n() is S.Zero assert (5+E**(oo)).n() is S.Infinity assert (5-E**(oo)).n() is S.NegativeInfinity #issue 7416 assert as_mpmath(0.0, 10, {'chop': True}) == 0 #issue 5412 assert ((oo*I).n() == S.Infinity*I) assert ((oo+oo*I).n() == S.Infinity + S.Infinity*I) #issue 11518 assert NS(2*x**2.5, 5) == '2.0000*x**2.5000' #issue 13076 assert NS(Mul(Max(0, y), x, evaluate=False).evalf()) == 'x*Max(0, y)' def test_evalf_integer_parts(): a = floor(log(8)/log(2) - exp(-1000), evaluate=False) b = floor(log(8)/log(2), evaluate=False) assert a.evalf() == 3 assert b.evalf() == 3 # equals, as a fallback, can still fail but it might succeed as here assert ceiling(10*(sin(1)**2 + cos(1)**2)) == 10 assert int(floor(factorial(50)/E, evaluate=False).evalf(70)) == \ long(11188719610782480504630258070757734324011354208865721592720336800) assert int(ceiling(factorial(50)/E, evaluate=False).evalf(70)) == \ long(11188719610782480504630258070757734324011354208865721592720336801) assert int(floor((GoldenRatio**999 / sqrt(5) + S.Half)) .evalf(1000)) == fibonacci(999) assert int(floor((GoldenRatio**1000 / sqrt(5) + S.Half)) .evalf(1000)) == fibonacci(1000) assert ceiling(x).evalf(subs={x: 3}) == 3 assert ceiling(x).evalf(subs={x: 3*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2 + 3*I}) == 2.0 + 3.0*I assert ceiling(x).evalf(subs={x: 3.}) == 3 assert ceiling(x).evalf(subs={x: 3.*I}) == 3.0*I assert ceiling(x).evalf(subs={x: 2. + 3*I}) == 2.0 + 3.0*I assert float((floor(1.5, evaluate=False)+1/9).evalf()) == 1 + 1/9 assert float((floor(0.5, evaluate=False)+20).evalf()) == 20 def test_evalf_trig_zero_detection(): a = sin(160*pi, evaluate=False) t = a.evalf(maxn=100) assert abs(t) < 1e-100 assert t._prec < 2 assert a.evalf(chop=True) == 0 raises(PrecisionExhausted, lambda: a.evalf(strict=True)) def test_evalf_sum(): assert Sum(n,(n,1,2)).evalf() == 3. assert Sum(n,(n,1,2)).doit().evalf() == 3. # the next test should return instantly assert Sum(1/n,(n,1,2)).evalf() == 1.5 # issue 8219 assert Sum(E/factorial(n), (n, 0, oo)).evalf() == (E*E).evalf() # issue 8254 assert Sum(2**n*n/factorial(n), (n, 0, oo)).evalf() == (2*E*E).evalf() # issue 8411 s = Sum(1/x**2, (x, 100, oo)) assert s.n() == s.doit().n() def test_evalf_divergent_series(): raises(ValueError, lambda: Sum(1/n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n/(n**2 + 1), (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-1)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(n**2, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum(2**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((-2)**n, (n, 1, oo)).evalf()) raises(ValueError, lambda: Sum((2*n + 3)/(3*n**2 + 4), (n, 0, oo)).evalf()) raises(ValueError, lambda: Sum((0.5*n**3)/(n**4 + 1), (n, 0, oo)).evalf()) def test_evalf_product(): assert Product(n, (n, 1, 10)).evalf() == 3628800. assert comp(Product(1 - S.Half**2/n**2, (n, 1, oo)).n(5), 0.63662) assert Product(n, (n, -1, 3)).evalf() == 0 def test_evalf_py_methods(): assert abs(float(pi + 1) - 4.1415926535897932) < 1e-10 assert abs(complex(pi + 1) - 4.1415926535897932) < 1e-10 assert abs( complex(pi + E*I) - (3.1415926535897931 + 2.7182818284590451j)) < 1e-10 raises(TypeError, lambda: float(pi + x)) def test_evalf_power_subs_bugs(): assert (x**2).evalf(subs={x: 0}) == 0 assert sqrt(x).evalf(subs={x: 0}) == 0 assert (x**Rational(2, 3)).evalf(subs={x: 0}) == 0 assert (x**x).evalf(subs={x: 0}) == 1 assert (3**x).evalf(subs={x: 0}) == 1 assert exp(x).evalf(subs={x: 0}) == 1 assert ((2 + I)**x).evalf(subs={x: 0}) == 1 assert (0**x).evalf(subs={x: 0}) == 1 def test_evalf_arguments(): raises(TypeError, lambda: pi.evalf(method="garbage")) def test_implemented_function_evalf(): from sympy.utilities.lambdify import implemented_function f = Function('f') f = implemented_function(f, lambda x: x + 1) assert str(f(x)) == "f(x)" assert str(f(2)) == "f(2)" assert f(2).evalf() == 3 assert f(x).evalf() == f(x) f = implemented_function(Function('sin'), lambda x: x + 1) assert f(2).evalf() != sin(2) del f._imp_ # XXX: due to caching _imp_ would influence all other tests def test_evaluate_false(): for no in [0, False]: assert Add(3, 2, evaluate=no).is_Add assert Mul(3, 2, evaluate=no).is_Mul assert Pow(3, 2, evaluate=no).is_Pow assert Pow(y, 2, evaluate=True) - Pow(y, 2, evaluate=True) == 0 def test_evalf_relational(): assert Eq(x/5, y/10).evalf() == Eq(0.2*x, 0.1*y) # if this first assertion fails it should be replaced with # one that doesn't assert unchanged(Eq, (3 - I)**2/2 + I, 0) assert Eq((3 - I)**2/2 + I, 0).n() is S.false # note: these don't always evaluate to Boolean assert nfloat(Eq((3 - I)**2 + I, 0)) == Eq((3.0 - I)**2 + I, 0) def test_issue_5486(): assert not cos(sqrt(0.5 + I)).n().is_Function def test_issue_5486_bug(): from sympy import I, Expr assert abs(Expr._from_mpmath(I._to_mpmath(15), 15) - I) < 1.0e-15 def test_bugs(): from sympy import polar_lift, re assert abs(re((1 + I)**2)) < 1e-15 # anything that evalf's to 0 will do in place of polar_lift assert abs(polar_lift(0)).n() == 0 def test_subs(): assert NS('besseli(-x, y) - besseli(x, y)', subs={x: 3.5, y: 20.0}) == \ '-4.92535585957223e-10' assert NS('Piecewise((x, x>0)) + Piecewise((1-x, x>0))', subs={x: 0.1}) == \ '1.00000000000000' raises(TypeError, lambda: x.evalf(subs=(x, 1))) def test_issue_4956_5204(): # issue 4956 v = S('''(-27*12**(1/3)*sqrt(31)*I + 27*2**(2/3)*3**(1/3)*sqrt(31)*I)/(-2511*2**(2/3)*3**(1/3) + (29*18**(1/3) + 9*2**(1/3)*3**(2/3)*sqrt(31)*I + 87*2**(1/3)*3**(1/6)*I)**2)''') assert NS(v, 1) == '0.e-118 - 0.e-118*I' # issue 5204 v = S('''-(357587765856 + 18873261792*249**(1/2) + 56619785376*I*83**(1/2) + 108755765856*I*3**(1/2) + 41281887168*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) - 1239810624*6**(1/3)*249**(1/2)*(1422 + 54*249**(1/2))**(1/3) - 3110400000*I*6**(1/3)*83**(1/2)*(1422 + 54*249**(1/2))**(1/3) + 13478400000*I*3**(1/2)*6**(1/3)*(1422 + 54*249**(1/2))**(1/3) + 1274950152*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) + 32347944*6**(2/3)*249**(1/2)*(1422 + 54*249**(1/2))**(2/3) - 1758790152*I*3**(1/2)*6**(2/3)*(1422 + 54*249**(1/2))**(2/3) - 304403832*I*6**(2/3)*83**(1/2)*(1422 + 4*249**(1/2))**(2/3))/(175732658352 + (1106028 + 25596*249**(1/2) + 76788*I*83**(1/2))**2)''') assert NS(v, 5) == '0.077284 + 1.1104*I' assert NS(v, 1) == '0.08 + 1.*I' def test_old_docstring(): a = (E + pi*I)*(E - pi*I) assert NS(a) == '17.2586605000200' assert a.n() == 17.25866050002001 def test_issue_4806(): assert integrate(atan(x)**2, (x, -1, 1)).evalf().round(1) == 0.5 assert atan(0, evaluate=False).n() == 0 def test_evalf_mul(): # sympy should not try to expand this; it should be handled term-wise # in evalf through mpmath assert NS(product(1 + sqrt(n)*I, (n, 1, 500)), 1) == '5.e+567 + 2.e+568*I' def test_scaled_zero(): a, b = (([0], 1, 100, 1), -1) assert scaled_zero(100) == (a, b) assert scaled_zero(a) == (0, 1, 100, 1) a, b = (([1], 1, 100, 1), -1) assert scaled_zero(100, -1) == (a, b) assert scaled_zero(a) == (1, 1, 100, 1) raises(ValueError, lambda: scaled_zero(scaled_zero(100))) raises(ValueError, lambda: scaled_zero(100, 2)) raises(ValueError, lambda: scaled_zero(100, 0)) raises(ValueError, lambda: scaled_zero((1, 5, 1, 3))) def test_chop_value(): for i in range(-27, 28): assert (Pow(10, i)*2).n(chop=10**i) and not (Pow(10, i)).n(chop=10**i) def test_infinities(): assert oo.evalf(chop=True) == inf assert (-oo).evalf(chop=True) == ninf def test_to_mpmath(): assert sqrt(3)._to_mpmath(20)._mpf_ == (0, long(908093), -19, 20) assert S(3.2)._to_mpmath(20)._mpf_ == (0, long(838861), -18, 20) def test_issue_6632_evalf(): add = (-100000*sqrt(2500000001) + 5000000001) assert add.n() == 9.999999998e-11 assert (add*add).n() == 9.999999996e-21 def test_issue_4945(): from sympy.abc import H from sympy import zoo assert (H/0).evalf(subs={H:1}) == zoo*H def test_evalf_integral(): # test that workprec has to increase in order to get a result other than 0 eps = Rational(1, 1000000) assert Integral(sin(x), (x, -pi, pi + eps)).n(2)._prec == 10 def test_issue_8821_highprec_from_str(): s = str(pi.evalf(128)) p = N(s) assert Abs(sin(p)) < 1e-15 p = N(s, 64) assert Abs(sin(p)) < 1e-64 def test_issue_8853(): p = Symbol('x', even=True, positive=True) assert floor(-p - S.Half).is_even == False assert floor(-p + S.Half).is_even == True assert ceiling(p - S.Half).is_even == True assert ceiling(p + S.Half).is_even == False assert get_integer_part(S.Half, -1, {}, True) == (0, 0) assert get_integer_part(S.Half, 1, {}, True) == (1, 0) assert get_integer_part(Rational(-1, 2), -1, {}, True) == (-1, 0) assert get_integer_part(Rational(-1, 2), 1, {}, True) == (0, 0) def test_issue_17681(): class identity_func(Function): def _eval_evalf(self, *args, **kwargs): return self.args[0].evalf(*args, **kwargs) assert floor(identity_func(S(0))) == 0 assert get_integer_part(S(0), 1, {}, True) == (0, 0) def test_issue_9326(): from sympy import Dummy d1 = Dummy('d') d2 = Dummy('d') e = d1 + d2 assert e.evalf(subs = {d1: 1, d2: 2}) == 3 def test_issue_10323(): assert ceiling(sqrt(2**30 + 1)) == 2**15 + 1 def test_AssocOp_Function(): # the first arg of Min is not comparable in the imaginary part raises(ValueError, lambda: S(''' Min(-sqrt(3)*cos(pi/18)/6 + re(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 + sin(pi/18)/2 + 2 + I*(-cos(pi/18)/2 - sqrt(3)*sin(pi/18)/6 + im(1/((-1/2 - sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3), re(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*cos(pi/18)/6 - sin(pi/18)/2 + 2 + I*(im(1/((-1/2 + sqrt(3)*I/2)*(1/6 + sqrt(3)*I/18)**(1/3)))/3 - sqrt(3)*sin(pi/18)/6 + cos(pi/18)/2))''')) # if that is changed so a non-comparable number remains as # an arg, then the Min/Max instantiation needs to be changed # to watch out for non-comparable args when making simplifications # and the following test should be added instead (with e being # the sympified expression above): # raises(ValueError, lambda: e._eval_evalf(2)) def test_issue_10395(): eq = x*Max(0, y) assert nfloat(eq) == eq eq = x*Max(y, -1.1) assert nfloat(eq) == eq assert Max(y, 4).n() == Max(4.0, y) def test_issue_13098(): assert floor(log(S('9.'+'9'*20), 10)) == 0 assert ceiling(log(S('9.'+'9'*20), 10)) == 1 assert floor(log(20 - S('9.'+'9'*20), 10)) == 1 assert ceiling(log(20 - S('9.'+'9'*20), 10)) == 2 def test_issue_14601(): e = 5*x*y/2 - y*(35*(x**3)/2 - 15*x/2) subst = {x:0.0, y:0.0} e2 = e.evalf(subs=subst) assert float(e2) == 0.0 assert float((x + x*(x**2 + x)).evalf(subs={x: 0.0})) == 0.0 def test_issue_11151(): z = S.Zero e = Sum(z, (x, 1, 2)) assert e != z # it shouldn't evaluate # when it does evaluate, this is what it should give assert evalf(e, 15, {}) == \ evalf(z, 15, {}) == (None, None, 15, None) # so this shouldn't fail assert (e/2).n() == 0 # this was where the issue appeared expr0 = Sum(x**2 + x, (x, 1, 2)) expr1 = Sum(0, (x, 1, 2)) expr2 = expr1/expr0 assert simplify(factor(expr2) - expr2) == 0 def test_issue_13425(): assert N('2**.5', 30) == N('sqrt(2)', 30) assert N('x - x', 30) == 0 assert abs((N('pi*.1', 22)*10 - pi).n()) < 1e-22 def test_issue_17421(): assert N(acos(-I + acosh(cosh(cosh(1) + I)))) == 1.0*I
34425f71a16707d898fc813e2e94d89b47dd6f9c177cf69b99cfb77ac2335b9c
from sympy import (Basic, Symbol, sin, cos, atan, exp, sqrt, Rational, Float, re, pi, sympify, Add, Mul, Pow, Mod, I, log, S, Max, symbols, oo, zoo, Integer, sign, im, nan, Dummy, factorial, comp, floor ) from sympy.core.compatibility import long, range from sympy.core.evaluate import distribute from sympy.core.expr import unchanged from sympy.utilities.iterables import cartes from sympy.utilities.pytest import XFAIL, raises from sympy.utilities.randtest import verify_numerically a, c, x, y, z = symbols('a,c,x,y,z') b = Symbol("b", positive=True) def same_and_same_prec(a, b): # stricter matching for Floats return a == b and a._prec == b._prec def test_bug1(): assert re(x) != x x.series(x, 0, 1) assert re(x) != x def test_Symbol(): e = a*b assert e == a*b assert a*b*b == a*b**2 assert a*b*b + c == c + a*b**2 assert a*b*b - c == -c + a*b**2 x = Symbol('x', complex=True, real=False) assert x.is_imaginary is None # could be I or 1 + I x = Symbol('x', complex=True, imaginary=False) assert x.is_real is None # could be 1 or 1 + I x = Symbol('x', real=True) assert x.is_complex x = Symbol('x', imaginary=True) assert x.is_complex x = Symbol('x', real=False, imaginary=False) assert x.is_complex is None # might be a non-number def test_arit0(): p = Rational(5) e = a*b assert e == a*b e = a*b + b*a assert e == 2*a*b e = a*b + b*a + a*b + p*b*a assert e == 8*a*b e = a*b + b*a + a*b + p*b*a + a assert e == a + 8*a*b e = a + a assert e == 2*a e = a + b + a assert e == b + 2*a e = a + b*b + a + b*b assert e == 2*a + 2*b**2 e = a + Rational(2) + b*b + a + b*b + p assert e == 7 + 2*a + 2*b**2 e = (a + b*b + a + b*b)*p assert e == 5*(2*a + 2*b**2) e = (a*b*c + c*b*a + b*a*c)*p assert e == 15*a*b*c e = (a*b*c + c*b*a + b*a*c)*p - Rational(15)*a*b*c assert e == Rational(0) e = Rational(50)*(a - a) assert e == Rational(0) e = b*a - b - a*b + b assert e == Rational(0) e = a*b + c**p assert e == a*b + c**5 e = a/b assert e == a*b**(-1) e = a*2*2 assert e == 4*a e = 2 + a*2/2 assert e == 2 + a e = 2 - a - 2 assert e == -a e = 2*a*2 assert e == 4*a e = 2/a/2 assert e == a**(-1) e = 2**a**2 assert e == 2**(a**2) e = -(1 + a) assert e == -1 - a e = S.Half*(1 + a) assert e == S.Half + a/2 def test_div(): e = a/b assert e == a*b**(-1) e = a/b + c/2 assert e == a*b**(-1) + Rational(1)/2*c e = (1 - b)/(b - 1) assert e == (1 + -b)*((-1) + b)**(-1) def test_pow(): n1 = Rational(1) n2 = Rational(2) n5 = Rational(5) e = a*a assert e == a**2 e = a*a*a assert e == a**3 e = a*a*a*a**Rational(6) assert e == a**9 e = a*a*a*a**Rational(6) - a**Rational(9) assert e == Rational(0) e = a**(b - b) assert e == Rational(1) e = (a + Rational(1) - a)**b assert e == Rational(1) e = (a + b + c)**n2 assert e == (a + b + c)**2 assert e.expand() == 2*b*c + 2*a*c + 2*a*b + a**2 + c**2 + b**2 e = (a + b)**n2 assert e == (a + b)**2 assert e.expand() == 2*a*b + a**2 + b**2 e = (a + b)**(n1/n2) assert e == sqrt(a + b) assert e.expand() == sqrt(a + b) n = n5**(n1/n2) assert n == sqrt(5) e = n*a*b - n*b*a assert e == Rational(0) e = n*a*b + n*b*a assert e == 2*a*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) assert e.diff(a) == 2*b*sqrt(5) e = a/b**2 assert e == a*b**(-2) assert sqrt(2*(1 + sqrt(2))) == (2*(1 + 2**S.Half))**S.Half x = Symbol('x') y = Symbol('y') assert ((x*y)**3).expand() == y**3 * x**3 assert ((x*y)**-3).expand() == y**-3 * x**-3 assert (x**5*(3*x)**(3)).expand() == 27 * x**8 assert (x**5*(-3*x)**(3)).expand() == -27 * x**8 assert (x**5*(3*x)**(-3)).expand() == x**2 * Rational(1, 27) assert (x**5*(-3*x)**(-3)).expand() == x**2 * Rational(-1, 27) # expand_power_exp assert (x**(y**(x + exp(x + y)) + z)).expand(deep=False) == \ x**z*x**(y**(x + exp(x + y))) assert (x**(y**(x + exp(x + y)) + z)).expand() == \ x**z*x**(y**x*y**(exp(x)*exp(y))) n = Symbol('n', even=False) k = Symbol('k', even=True) o = Symbol('o', odd=True) assert unchanged(Pow, -1, x) assert unchanged(Pow, -1, n) assert (-2)**k == 2**k assert (-1)**k == 1 assert (-1)**o == -1 def test_pow2(): # x**(2*y) is always (x**y)**2 but is only (x**2)**y if # x.is_positive or y.is_integer # let x = 1 to see why the following are not true. assert (-x)**Rational(2, 3) != x**Rational(2, 3) assert (-x)**Rational(5, 7) != -x**Rational(5, 7) assert ((-x)**2)**Rational(1, 3) != ((-x)**Rational(1, 3))**2 assert sqrt(x**2) != x def test_pow3(): assert sqrt(2)**3 == 2 * sqrt(2) assert sqrt(2)**3 == sqrt(8) def test_mod_pow(): for s, t, u, v in [(4, 13, 497, 445), (4, -3, 497, 365), (3.2, 2.1, 1.9, 0.1031015682350942), (S(3)/2, 5, S(5)/6, S(3)/32)]: assert pow(S(s), t, u) == v assert pow(S(s), S(t), u) == v assert pow(S(s), t, S(u)) == v assert pow(S(s), S(t), S(u)) == v assert pow(S(2), S(10000000000), S(3)) == 1 assert pow(x, y, z) == x**y%z raises(TypeError, lambda: pow(S(4), "13", 497)) raises(TypeError, lambda: pow(S(4), 13, "497")) def test_pow_E(): assert 2**(y/log(2)) == S.Exp1**y assert 2**(y/log(2)/3) == S.Exp1**(y/3) assert 3**(1/log(-3)) != S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I) + I*pi)) == S.Exp1 assert (4 + 2*I)**(1/(log(-4 - 2*I) + I*pi)) == S.Exp1 assert (3 + 2*I)**(1/(log(-3 - 2*I, 3)/2 + I*pi/log(3)/2)) == 9 assert (3 + 2*I)**(1/(log(3 + 2*I, 3)/2)) == 9 # every time tests are run they will affirm with a different random # value that this identity holds while 1: b = x._random() r, i = b.as_real_imag() if i: break assert verify_numerically(b**(1/(log(-b) + sign(i)*I*pi).n()), S.Exp1) def test_pow_issue_3516(): assert 4**Rational(1, 4) == sqrt(2) def test_pow_im(): for m in (-2, -1, 2): for d in (3, 4, 5): b = m*I for i in range(1, 4*d + 1): e = Rational(i, d) assert (b**e - b.n()**e.n()).n(2, chop=1e-10) == 0 e = Rational(7, 3) assert (2*x*I)**e == 4*2**Rational(1, 3)*(I*x)**e # same as Wolfram Alpha im = symbols('im', imaginary=True) assert (2*im*I)**e == 4*2**Rational(1, 3)*(I*im)**e args = [I, I, I, I, 2] e = Rational(1, 3) ans = 2**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, I, 2] e = Rational(1, 3) ans = 2**e*(-I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6*I)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args = [I, I, 2] e = Rational(1, 3) ans = (-2)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-3) ans = (6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans args.append(-1) ans = (-6)**e assert Mul(*args, evaluate=False)**e == ans assert Mul(*args)**e == ans assert Mul(Pow(-1, Rational(3, 2), evaluate=False), I, I) == I assert Mul(I*Pow(I, S.Half, evaluate=False)) == sqrt(I)*I def test_real_mul(): assert Float(0) * pi * x == 0 assert set((Float(1) * pi * x).args) == {Float(1), pi, x} def test_ncmul(): A = Symbol("A", commutative=False) B = Symbol("B", commutative=False) C = Symbol("C", commutative=False) assert A*B != B*A assert A*B*C != C*B*A assert A*b*B*3*C == 3*b*A*B*C assert A*b*B*3*C != 3*b*B*A*C assert A*b*B*3*C == 3*A*B*C*b assert A + B == B + A assert (A + B)*C != C*(A + B) assert C*(A + B)*C != C*C*(A + B) assert A*A == A**2 assert (A + B)*(A + B) == (A + B)**2 assert A**-1 * A == 1 assert A/A == 1 assert A/(A**2) == 1/A assert A/(1 + A) == A/(1 + A) assert set((A + B + 2*(A + B)).args) == \ {A, B, 2*(A + B)} def test_ncpow(): x = Symbol('x', commutative=False) y = Symbol('y', commutative=False) z = Symbol('z', commutative=False) a = Symbol('a') b = Symbol('b') c = Symbol('c') assert (x**2)*(y**2) != (y**2)*(x**2) assert (x**-2)*y != y*(x**2) assert 2**x*2**y != 2**(x + y) assert 2**x*2**y*2**z != 2**(x + y + z) assert 2**x*2**(2*x) == 2**(3*x) assert 2**x*2**(2*x)*2**x == 2**(4*x) assert exp(x)*exp(y) != exp(y)*exp(x) assert exp(x)*exp(y)*exp(z) != exp(y)*exp(x)*exp(z) assert exp(x)*exp(y)*exp(z) != exp(x + y + z) assert x**a*x**b != x**(a + b) assert x**a*x**b*x**c != x**(a + b + c) assert x**3*x**4 == x**7 assert x**3*x**4*x**2 == x**9 assert x**a*x**(4*a) == x**(5*a) assert x**a*x**(4*a)*x**a == x**(6*a) def test_powerbug(): x = Symbol("x") assert x**1 != (-x)**1 assert x**2 == (-x)**2 assert x**3 != (-x)**3 assert x**4 == (-x)**4 assert x**5 != (-x)**5 assert x**6 == (-x)**6 assert x**128 == (-x)**128 assert x**129 != (-x)**129 assert (2*x)**2 == (-2*x)**2 def test_Mul_doesnt_expand_exp(): x = Symbol('x') y = Symbol('y') assert unchanged(Mul, exp(x), exp(y)) assert unchanged(Mul, 2**x, 2**y) assert x**2*x**3 == x**5 assert 2**x*3**x == 6**x assert x**(y)*x**(2*y) == x**(3*y) assert sqrt(2)*sqrt(2) == 2 assert 2**x*2**(2*x) == 2**(3*x) assert sqrt(2)*2**Rational(1, 4)*5**Rational(3, 4) == 10**Rational(3, 4) assert (x**(-log(5)/log(3))*x)/(x*x**( - log(5)/log(3))) == sympify(1) def test_Add_Mul_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True) assert (2*k).is_integer is True assert (-k).is_integer is True assert (k/3).is_integer is None assert (x*k*n).is_integer is None assert (k + n).is_integer is True assert (k + x).is_integer is None assert (k + n*x).is_integer is None assert (k + n/3).is_integer is None assert ((1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False assert (1 + (1 + sqrt(3))*(-sqrt(3) + 1)).is_integer is not False def test_Add_Mul_is_finite(): x = Symbol('x', extended_real=True, finite=False) assert sin(x).is_finite is True assert (x*sin(x)).is_finite is None assert (x*atan(x)).is_finite is False assert (1024*sin(x)).is_finite is True assert (sin(x)*exp(x)).is_finite is None assert (sin(x)*cos(x)).is_finite is True assert (x*sin(x)*exp(x)).is_finite is None assert (sin(x) - 67).is_finite is True assert (sin(x) + exp(x)).is_finite is not True assert (1 + x).is_finite is False assert (1 + x**2 + (1 + x)*(1 - x)).is_finite is None assert (sqrt(2)*(1 + x)).is_finite is False assert (sqrt(2)*(1 + x)*(1 - x)).is_finite is False def test_Mul_is_even_odd(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (2*x).is_even is True assert (2*x).is_odd is False assert (3*x).is_even is None assert (3*x).is_odd is None assert (k/3).is_integer is None assert (k/3).is_even is None assert (k/3).is_odd is None assert (2*n).is_even is True assert (2*n).is_odd is False assert (2*m).is_even is True assert (2*m).is_odd is False assert (-n).is_even is False assert (-n).is_odd is True assert (k*n).is_even is False assert (k*n).is_odd is True assert (k*m).is_even is True assert (k*m).is_odd is False assert (k*n*m).is_even is True assert (k*n*m).is_odd is False assert (k*m*x).is_even is True assert (k*m*x).is_odd is False # issue 6791: assert (x/2).is_integer is None assert (k/2).is_integer is False assert (m/2).is_integer is True assert (x*y).is_even is None assert (x*x).is_even is None assert (x*(x + k)).is_even is True assert (x*(x + m)).is_even is None assert (x*y).is_odd is None assert (x*x).is_odd is None assert (x*(x + k)).is_odd is False assert (x*(x + m)).is_odd is None @XFAIL def test_evenness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_even is True assert (y*x*(x + k)).is_even is True def test_evenness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_even is None @XFAIL def test_oddness_in_ternary_integer_product_with_odd(): # Tests that oddness inference is independent of term ordering. # Term ordering at the point of testing depends on SymPy's symbol order, so # we try to force a different order by modifying symbol names. x = Symbol('x', integer=True) y = Symbol('y', integer=True) k = Symbol('k', odd=True) assert (x*y*(y + k)).is_odd is False assert (y*x*(x + k)).is_odd is False def test_oddness_in_ternary_integer_product_with_even(): x = Symbol('x', integer=True) y = Symbol('y', integer=True) m = Symbol('m', even=True) assert (x*y*(y + m)).is_odd is None def test_Mul_is_rational(): x = Symbol('x') n = Symbol('n', integer=True) m = Symbol('m', integer=True, nonzero=True) assert (n/m).is_rational is True assert (x/pi).is_rational is None assert (x/n).is_rational is None assert (m/pi).is_rational is False r = Symbol('r', rational=True) assert (pi*r).is_rational is None # issue 8008 z = Symbol('z', zero=True) i = Symbol('i', imaginary=True) assert (z*i).is_rational is True bi = Symbol('i', imaginary=True, finite=True) assert (z*bi).is_zero is True def test_Add_is_rational(): x = Symbol('x') n = Symbol('n', rational=True) m = Symbol('m', rational=True) assert (n + m).is_rational is True assert (x + pi).is_rational is None assert (x + n).is_rational is None assert (n + pi).is_rational is False def test_Add_is_even_odd(): x = Symbol('x', integer=True) k = Symbol('k', odd=True) n = Symbol('n', odd=True) m = Symbol('m', even=True) assert (k + 7).is_even is True assert (k + 7).is_odd is False assert (-k + 7).is_even is True assert (-k + 7).is_odd is False assert (k - 12).is_even is False assert (k - 12).is_odd is True assert (-k - 12).is_even is False assert (-k - 12).is_odd is True assert (k + n).is_even is True assert (k + n).is_odd is False assert (k + m).is_even is False assert (k + m).is_odd is True assert (k + n + m).is_even is True assert (k + n + m).is_odd is False assert (k + n + x + m).is_even is None assert (k + n + x + m).is_odd is None def test_Mul_is_negative_positive(): x = Symbol('x', real=True) y = Symbol('y', extended_real=False, complex=True) z = Symbol('z', zero=True) e = 2*z assert e.is_Mul and e.is_positive is False and e.is_negative is False neg = Symbol('neg', negative=True) pos = Symbol('pos', positive=True) nneg = Symbol('nneg', nonnegative=True) npos = Symbol('npos', nonpositive=True) assert neg.is_negative is True assert (-neg).is_negative is False assert (2*neg).is_negative is True assert (2*pos)._eval_is_extended_negative() is False assert (2*pos).is_negative is False assert pos.is_negative is False assert (-pos).is_negative is True assert (2*pos).is_negative is False assert (pos*neg).is_negative is True assert (2*pos*neg).is_negative is True assert (-pos*neg).is_negative is False assert (pos*neg*y).is_negative is False # y.is_real=F; !real -> !neg assert nneg.is_negative is False assert (-nneg).is_negative is None assert (2*nneg).is_negative is False assert npos.is_negative is None assert (-npos).is_negative is False assert (2*npos).is_negative is None assert (nneg*npos).is_negative is None assert (neg*nneg).is_negative is None assert (neg*npos).is_negative is False assert (pos*nneg).is_negative is False assert (pos*npos).is_negative is None assert (npos*neg*nneg).is_negative is False assert (npos*pos*nneg).is_negative is None assert (-npos*neg*nneg).is_negative is None assert (-npos*pos*nneg).is_negative is False assert (17*npos*neg*nneg).is_negative is False assert (17*npos*pos*nneg).is_negative is None assert (neg*npos*pos*nneg).is_negative is False assert (x*neg).is_negative is None assert (nneg*npos*pos*x*neg).is_negative is None assert neg.is_positive is False assert (-neg).is_positive is True assert (2*neg).is_positive is False assert pos.is_positive is True assert (-pos).is_positive is False assert (2*pos).is_positive is True assert (pos*neg).is_positive is False assert (2*pos*neg).is_positive is False assert (-pos*neg).is_positive is True assert (-pos*neg*y).is_positive is False # y.is_real=F; !real -> !neg assert nneg.is_positive is None assert (-nneg).is_positive is False assert (2*nneg).is_positive is None assert npos.is_positive is False assert (-npos).is_positive is None assert (2*npos).is_positive is False assert (nneg*npos).is_positive is False assert (neg*nneg).is_positive is False assert (neg*npos).is_positive is None assert (pos*nneg).is_positive is None assert (pos*npos).is_positive is False assert (npos*neg*nneg).is_positive is None assert (npos*pos*nneg).is_positive is False assert (-npos*neg*nneg).is_positive is False assert (-npos*pos*nneg).is_positive is None assert (17*npos*neg*nneg).is_positive is None assert (17*npos*pos*nneg).is_positive is False assert (neg*npos*pos*nneg).is_positive is None assert (x*neg).is_positive is None assert (nneg*npos*pos*x*neg).is_positive is None def test_Mul_is_negative_positive_2(): a = Symbol('a', nonnegative=True) b = Symbol('b', nonnegative=True) c = Symbol('c', nonpositive=True) d = Symbol('d', nonpositive=True) assert (a*b).is_nonnegative is True assert (a*b).is_negative is False assert (a*b).is_zero is None assert (a*b).is_positive is None assert (c*d).is_nonnegative is True assert (c*d).is_negative is False assert (c*d).is_zero is None assert (c*d).is_positive is None assert (a*c).is_nonpositive is True assert (a*c).is_positive is False assert (a*c).is_zero is None assert (a*c).is_negative is None def test_Mul_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert k.is_nonpositive is True assert (-k).is_nonpositive is False assert (2*k).is_nonpositive is True assert n.is_nonpositive is False assert (-n).is_nonpositive is True assert (2*n).is_nonpositive is False assert (n*k).is_nonpositive is True assert (2*n*k).is_nonpositive is True assert (-n*k).is_nonpositive is False assert u.is_nonpositive is None assert (-u).is_nonpositive is True assert (2*u).is_nonpositive is None assert v.is_nonpositive is True assert (-v).is_nonpositive is None assert (2*v).is_nonpositive is True assert (u*v).is_nonpositive is True assert (k*u).is_nonpositive is True assert (k*v).is_nonpositive is None assert (n*u).is_nonpositive is None assert (n*v).is_nonpositive is True assert (v*k*u).is_nonpositive is None assert (v*n*u).is_nonpositive is True assert (-v*k*u).is_nonpositive is True assert (-v*n*u).is_nonpositive is None assert (17*v*k*u).is_nonpositive is None assert (17*v*n*u).is_nonpositive is True assert (k*v*n*u).is_nonpositive is None assert (x*k).is_nonpositive is None assert (u*v*n*x*k).is_nonpositive is None assert k.is_nonnegative is False assert (-k).is_nonnegative is True assert (2*k).is_nonnegative is False assert n.is_nonnegative is True assert (-n).is_nonnegative is False assert (2*n).is_nonnegative is True assert (n*k).is_nonnegative is False assert (2*n*k).is_nonnegative is False assert (-n*k).is_nonnegative is True assert u.is_nonnegative is True assert (-u).is_nonnegative is None assert (2*u).is_nonnegative is True assert v.is_nonnegative is None assert (-v).is_nonnegative is True assert (2*v).is_nonnegative is None assert (u*v).is_nonnegative is None assert (k*u).is_nonnegative is None assert (k*v).is_nonnegative is True assert (n*u).is_nonnegative is True assert (n*v).is_nonnegative is None assert (v*k*u).is_nonnegative is True assert (v*n*u).is_nonnegative is None assert (-v*k*u).is_nonnegative is None assert (-v*n*u).is_nonnegative is True assert (17*v*k*u).is_nonnegative is True assert (17*v*n*u).is_nonnegative is None assert (k*v*n*u).is_nonnegative is True assert (x*k).is_nonnegative is None assert (u*v*n*x*k).is_nonnegative is None def test_Add_is_negative_positive(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (k - 2).is_negative is True assert (k + 17).is_negative is None assert (-k - 5).is_negative is None assert (-k + 123).is_negative is False assert (k - n).is_negative is True assert (k + n).is_negative is None assert (-k - n).is_negative is None assert (-k + n).is_negative is False assert (k - n - 2).is_negative is True assert (k + n + 17).is_negative is None assert (-k - n - 5).is_negative is None assert (-k + n + 123).is_negative is False assert (-2*k + 123*n + 17).is_negative is False assert (k + u).is_negative is None assert (k + v).is_negative is True assert (n + u).is_negative is False assert (n + v).is_negative is None assert (u - v).is_negative is False assert (u + v).is_negative is None assert (-u - v).is_negative is None assert (-u + v).is_negative is None assert (u - v + n + 2).is_negative is False assert (u + v + n + 2).is_negative is None assert (-u - v + n + 2).is_negative is None assert (-u + v + n + 2).is_negative is None assert (k + x).is_negative is None assert (k + x - n).is_negative is None assert (k - 2).is_positive is False assert (k + 17).is_positive is None assert (-k - 5).is_positive is None assert (-k + 123).is_positive is True assert (k - n).is_positive is False assert (k + n).is_positive is None assert (-k - n).is_positive is None assert (-k + n).is_positive is True assert (k - n - 2).is_positive is False assert (k + n + 17).is_positive is None assert (-k - n - 5).is_positive is None assert (-k + n + 123).is_positive is True assert (-2*k + 123*n + 17).is_positive is True assert (k + u).is_positive is None assert (k + v).is_positive is False assert (n + u).is_positive is True assert (n + v).is_positive is None assert (u - v).is_positive is None assert (u + v).is_positive is None assert (-u - v).is_positive is None assert (-u + v).is_positive is False assert (u - v - n - 2).is_positive is None assert (u + v - n - 2).is_positive is None assert (-u - v - n - 2).is_positive is None assert (-u + v - n - 2).is_positive is False assert (n + x).is_positive is None assert (n + x - k).is_positive is None z = (-3 - sqrt(5) + (-sqrt(10)/2 - sqrt(2)/2)**2) assert z.is_zero z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_zero def test_Add_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', negative=True) n = Symbol('n', positive=True) u = Symbol('u', nonnegative=True) v = Symbol('v', nonpositive=True) assert (u - 2).is_nonpositive is None assert (u + 17).is_nonpositive is False assert (-u - 5).is_nonpositive is True assert (-u + 123).is_nonpositive is None assert (u - v).is_nonpositive is None assert (u + v).is_nonpositive is None assert (-u - v).is_nonpositive is None assert (-u + v).is_nonpositive is True assert (u - v - 2).is_nonpositive is None assert (u + v + 17).is_nonpositive is None assert (-u - v - 5).is_nonpositive is None assert (-u + v - 123).is_nonpositive is True assert (-2*u + 123*v - 17).is_nonpositive is True assert (k + u).is_nonpositive is None assert (k + v).is_nonpositive is True assert (n + u).is_nonpositive is False assert (n + v).is_nonpositive is None assert (k - n).is_nonpositive is True assert (k + n).is_nonpositive is None assert (-k - n).is_nonpositive is None assert (-k + n).is_nonpositive is False assert (k - n + u + 2).is_nonpositive is None assert (k + n + u + 2).is_nonpositive is None assert (-k - n + u + 2).is_nonpositive is None assert (-k + n + u + 2).is_nonpositive is False assert (u + x).is_nonpositive is None assert (v - x - n).is_nonpositive is None assert (u - 2).is_nonnegative is None assert (u + 17).is_nonnegative is True assert (-u - 5).is_nonnegative is False assert (-u + 123).is_nonnegative is None assert (u - v).is_nonnegative is True assert (u + v).is_nonnegative is None assert (-u - v).is_nonnegative is None assert (-u + v).is_nonnegative is None assert (u - v + 2).is_nonnegative is True assert (u + v + 17).is_nonnegative is None assert (-u - v - 5).is_nonnegative is None assert (-u + v - 123).is_nonnegative is False assert (2*u - 123*v + 17).is_nonnegative is True assert (k + u).is_nonnegative is None assert (k + v).is_nonnegative is False assert (n + u).is_nonnegative is True assert (n + v).is_nonnegative is None assert (k - n).is_nonnegative is False assert (k + n).is_nonnegative is None assert (-k - n).is_nonnegative is None assert (-k + n).is_nonnegative is True assert (k - n - u - 2).is_nonnegative is False assert (k + n - u - 2).is_nonnegative is None assert (-k - n - u - 2).is_nonnegative is None assert (-k + n - u - 2).is_nonnegative is None assert (u - x).is_nonnegative is None assert (v + x + n).is_nonnegative is None def test_Pow_is_integer(): x = Symbol('x') k = Symbol('k', integer=True) n = Symbol('n', integer=True, nonnegative=True) m = Symbol('m', integer=True, positive=True) assert (k**2).is_integer is True assert (k**(-2)).is_integer is None assert ((m + 1)**(-2)).is_integer is False assert (m**(-1)).is_integer is None # issue 8580 assert (2**k).is_integer is None assert (2**(-k)).is_integer is None assert (2**n).is_integer is True assert (2**(-n)).is_integer is None assert (2**m).is_integer is True assert (2**(-m)).is_integer is False assert (x**2).is_integer is None assert (2**x).is_integer is None assert (k**n).is_integer is True assert (k**(-n)).is_integer is None assert (k**x).is_integer is None assert (x**k).is_integer is None assert (k**(n*m)).is_integer is True assert (k**(-n*m)).is_integer is None assert sqrt(3).is_integer is False assert sqrt(.3).is_integer is False assert Pow(3, 2, evaluate=False).is_integer is True assert Pow(3, 0, evaluate=False).is_integer is True assert Pow(3, -2, evaluate=False).is_integer is False assert Pow(S.Half, 3, evaluate=False).is_integer is False # decided by re-evaluating assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(3, S.Half, evaluate=False).is_integer is False assert Pow(4, S.Half, evaluate=False).is_integer is True assert Pow(S.Half, -2, evaluate=False).is_integer is True assert ((-1)**k).is_integer x = Symbol('x', real=True, integer=False) assert (x**2).is_integer is None # issue 8641 def test_Pow_is_real(): x = Symbol('x', real=True) y = Symbol('y', real=True, positive=True) assert (x**2).is_real is True assert (x**3).is_real is True assert (x**x).is_real is None assert (y**x).is_real is True assert (x**Rational(1, 3)).is_real is None assert (y**Rational(1, 3)).is_real is True assert sqrt(-1 - sqrt(2)).is_real is False i = Symbol('i', imaginary=True) assert (i**i).is_real is None assert (I**i).is_extended_real is True assert ((-I)**i).is_extended_real is True assert (2**i).is_real is None # (2**(pi/log(2) * I)) is real, 2**I is not assert (2**I).is_real is False assert (2**-I).is_real is False assert (i**2).is_extended_real is True assert (i**3).is_extended_real is False assert (i**x).is_real is None # could be (-I)**(2/3) e = Symbol('e', even=True) o = Symbol('o', odd=True) k = Symbol('k', integer=True) assert (i**e).is_extended_real is True assert (i**o).is_extended_real is False assert (i**k).is_real is None assert (i**(4*k)).is_extended_real is True x = Symbol("x", nonnegative=True) y = Symbol("y", nonnegative=True) assert im(x**y).expand(complex=True) is S.Zero assert (x**y).is_real is True i = Symbol('i', imaginary=True) assert (exp(i)**I).is_extended_real is True assert log(exp(i)).is_imaginary is None # i could be 2*pi*I c = Symbol('c', complex=True) assert log(c).is_real is None # c could be 0 or 2, too assert log(exp(c)).is_real is None # log(0), log(E), ... n = Symbol('n', negative=False) assert log(n).is_real is None n = Symbol('n', nonnegative=True) assert log(n).is_real is None assert sqrt(-I).is_real is False # issue 7843 i = Symbol('i', integer=True) assert (1/(i-1)).is_real is None assert (1/(i-1)).is_extended_real is None def test_real_Pow(): k = Symbol('k', integer=True, nonzero=True) assert (k**(I*pi/log(k))).is_real def test_Pow_is_finite(): xe = Symbol('xe', extended_real=True) xr = Symbol('xr', real=True) p = Symbol('p', positive=True) n = Symbol('n', negative=True) i = Symbol('i', integer=True) assert (xe**2).is_finite is None # xe could be oo assert (xr**2).is_finite is True assert (xe**xe).is_finite is None assert (xr**xe).is_finite is None assert (xe**xr).is_finite is None # FIXME: The line below should be True rather than None # assert (xr**xr).is_finite is True assert (xr**xr).is_finite is None assert (p**xe).is_finite is None assert (p**xr).is_finite is True assert (n**xe).is_finite is None assert (n**xr).is_finite is True assert (sin(xe)**2).is_finite is True assert (sin(xr)**2).is_finite is True assert (sin(xe)**xe).is_finite is None # xe, xr could be -pi assert (sin(xr)**xr).is_finite is None # FIXME: Should the line below be True rather than None? assert (sin(xe)**exp(xe)).is_finite is None assert (sin(xr)**exp(xr)).is_finite is True assert (1/sin(xe)).is_finite is None # if zero, no, otherwise yes assert (1/sin(xr)).is_finite is None assert (1/exp(xe)).is_finite is None # xe could be -oo assert (1/exp(xr)).is_finite is True assert (1/S.Pi).is_finite is True assert (1/(i-1)).is_finite is None def test_Pow_is_even_odd(): x = Symbol('x') k = Symbol('k', even=True) n = Symbol('n', odd=True) m = Symbol('m', integer=True, nonnegative=True) p = Symbol('p', integer=True, positive=True) assert ((-1)**n).is_odd assert ((-1)**k).is_odd assert ((-1)**(m - p)).is_odd assert (k**2).is_even is True assert (n**2).is_even is False assert (2**k).is_even is None assert (x**2).is_even is None assert (k**m).is_even is None assert (n**m).is_even is False assert (k**p).is_even is True assert (n**p).is_even is False assert (m**k).is_even is None assert (p**k).is_even is None assert (m**n).is_even is None assert (p**n).is_even is None assert (k**x).is_even is None assert (n**x).is_even is None assert (k**2).is_odd is False assert (n**2).is_odd is True assert (3**k).is_odd is None assert (k**m).is_odd is None assert (n**m).is_odd is True assert (k**p).is_odd is False assert (n**p).is_odd is True assert (m**k).is_odd is None assert (p**k).is_odd is None assert (m**n).is_odd is None assert (p**n).is_odd is None assert (k**x).is_odd is None assert (n**x).is_odd is None def test_Pow_is_negative_positive(): r = Symbol('r', real=True) k = Symbol('k', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) x = Symbol('x') assert (2**r).is_positive is True assert ((-2)**r).is_positive is None assert ((-2)**n).is_positive is True assert ((-2)**m).is_positive is False assert (k**2).is_positive is True assert (k**(-2)).is_positive is True assert (k**r).is_positive is True assert ((-k)**r).is_positive is None assert ((-k)**n).is_positive is True assert ((-k)**m).is_positive is False assert (2**r).is_negative is False assert ((-2)**r).is_negative is None assert ((-2)**n).is_negative is False assert ((-2)**m).is_negative is True assert (k**2).is_negative is False assert (k**(-2)).is_negative is False assert (k**r).is_negative is False assert ((-k)**r).is_negative is None assert ((-k)**n).is_negative is False assert ((-k)**m).is_negative is True assert (2**x).is_positive is None assert (2**x).is_negative is None def test_Pow_is_zero(): z = Symbol('z', zero=True) e = z**2 assert e.is_zero assert e.is_positive is False assert e.is_negative is False assert Pow(0, 0, evaluate=False).is_zero is False assert Pow(0, 3, evaluate=False).is_zero assert Pow(0, oo, evaluate=False).is_zero assert Pow(0, -3, evaluate=False).is_zero is False assert Pow(0, -oo, evaluate=False).is_zero is False assert Pow(2, 2, evaluate=False).is_zero is False a = Symbol('a', zero=False) assert Pow(a, 3).is_zero is False # issue 7965 assert Pow(2, oo, evaluate=False).is_zero is False assert Pow(2, -oo, evaluate=False).is_zero assert Pow(S.Half, oo, evaluate=False).is_zero assert Pow(S.Half, -oo, evaluate=False).is_zero is False def test_Pow_is_nonpositive_nonnegative(): x = Symbol('x', real=True) k = Symbol('k', integer=True, nonnegative=True) l = Symbol('l', integer=True, positive=True) n = Symbol('n', even=True) m = Symbol('m', odd=True) assert (x**(4*k)).is_nonnegative is True assert (2**x).is_nonnegative is True assert ((-2)**x).is_nonnegative is None assert ((-2)**n).is_nonnegative is True assert ((-2)**m).is_nonnegative is False assert (k**2).is_nonnegative is True assert (k**(-2)).is_nonnegative is None assert (k**k).is_nonnegative is True assert (k**x).is_nonnegative is None # NOTE (0**x).is_real = U assert (l**x).is_nonnegative is True assert (l**x).is_positive is True assert ((-k)**x).is_nonnegative is None assert ((-k)**m).is_nonnegative is None assert (2**x).is_nonpositive is False assert ((-2)**x).is_nonpositive is None assert ((-2)**n).is_nonpositive is False assert ((-2)**m).is_nonpositive is True assert (k**2).is_nonpositive is None assert (k**(-2)).is_nonpositive is None assert (k**x).is_nonpositive is None assert ((-k)**x).is_nonpositive is None assert ((-k)**n).is_nonpositive is None assert (x**2).is_nonnegative is True i = symbols('i', imaginary=True) assert (i**2).is_nonpositive is True assert (i**4).is_nonpositive is False assert (i**3).is_nonpositive is False assert (I**i).is_nonnegative is True assert (exp(I)**i).is_nonnegative is True assert ((-l)**n).is_nonnegative is True assert ((-l)**m).is_nonpositive is True assert ((-k)**n).is_nonnegative is None assert ((-k)**m).is_nonpositive is None def test_Mul_is_imaginary_real(): r = Symbol('r', real=True) p = Symbol('p', positive=True) i1 = Symbol('i1', imaginary=True) i2 = Symbol('i2', imaginary=True) x = Symbol('x') assert I.is_imaginary is True assert I.is_real is False assert (-I).is_imaginary is True assert (-I).is_real is False assert (3*I).is_imaginary is True assert (3*I).is_real is False assert (I*I).is_imaginary is False assert (I*I).is_real is True e = (p + p*I) j = Symbol('j', integer=True, zero=False) assert (e**j).is_real is None assert (e**(2*j)).is_real is None assert (e**j).is_imaginary is None assert (e**(2*j)).is_imaginary is None assert (e**-1).is_imaginary is False assert (e**2).is_imaginary assert (e**3).is_imaginary is False assert (e**4).is_imaginary is False assert (e**5).is_imaginary is False assert (e**-1).is_real is False assert (e**2).is_real is False assert (e**3).is_real is False assert (e**4).is_real is True assert (e**5).is_real is False assert (e**3).is_complex assert (r*i1).is_imaginary is None assert (r*i1).is_real is None assert (x*i1).is_imaginary is None assert (x*i1).is_real is None assert (i1*i2).is_imaginary is False assert (i1*i2).is_real is True assert (r*i1*i2).is_imaginary is False assert (r*i1*i2).is_real is True # Github's issue 5874: nr = Symbol('nr', real=False, complex=True) # e.g. I or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*nr).is_real is None assert (a*nr).is_real is False assert (b*nr).is_real is None ni = Symbol('ni', imaginary=False, complex=True) # e.g. 2 or 1 + I a = Symbol('a', real=True, nonzero=True) b = Symbol('b', real=True) assert (i1*ni).is_real is False assert (a*ni).is_real is None assert (b*ni).is_real is None def test_Mul_hermitian_antihermitian(): a = Symbol('a', hermitian=True, zero=False) b = Symbol('b', hermitian=True) c = Symbol('c', hermitian=False) d = Symbol('d', antihermitian=True) e1 = Mul(a, b, c, evaluate=False) e2 = Mul(b, a, c, evaluate=False) e3 = Mul(a, b, c, d, evaluate=False) e4 = Mul(b, a, c, d, evaluate=False) e5 = Mul(a, c, evaluate=False) e6 = Mul(a, c, d, evaluate=False) assert e1.is_hermitian is None assert e2.is_hermitian is None assert e1.is_antihermitian is None assert e2.is_antihermitian is None assert e3.is_antihermitian is None assert e4.is_antihermitian is None assert e5.is_antihermitian is None assert e6.is_antihermitian is None def test_Add_is_comparable(): assert (x + y).is_comparable is False assert (x + 1).is_comparable is False assert (Rational(1, 3) - sqrt(8)).is_comparable is True def test_Mul_is_comparable(): assert (x*y).is_comparable is False assert (x*2).is_comparable is False assert (sqrt(2)*Rational(1, 3)).is_comparable is True def test_Pow_is_comparable(): assert (x**y).is_comparable is False assert (x**2).is_comparable is False assert (sqrt(Rational(1, 3))).is_comparable is True def test_Add_is_positive_2(): e = Rational(1, 3) - sqrt(8) assert e.is_positive is False assert e.is_negative is True e = pi - 1 assert e.is_positive is True assert e.is_negative is False def test_Add_is_irrational(): i = Symbol('i', irrational=True) assert i.is_irrational is True assert i.is_rational is False assert (i + 1).is_irrational is True assert (i + 1).is_rational is False @XFAIL def test_issue_3531(): class MightyNumeric(tuple): def __rdiv__(self, other): return "something" def __rtruediv__(self, other): return "something" assert sympify(1)/MightyNumeric((1, 2)) == "something" def test_issue_3531b(): class Foo: def __init__(self): self.field = 1.0 def __mul__(self, other): self.field = self.field * other def __rmul__(self, other): self.field = other * self.field f = Foo() x = Symbol("x") assert f*x == x*f def test_bug3(): a = Symbol("a") b = Symbol("b", positive=True) e = 2*a + b f = b + 2*a assert e == f def test_suppressed_evaluation(): a = Add(0, 3, 2, evaluate=False) b = Mul(1, 3, 2, evaluate=False) c = Pow(3, 2, evaluate=False) assert a != 6 assert a.func is Add assert a.args == (3, 2) assert b != 6 assert b.func is Mul assert b.args == (3, 2) assert c != 9 assert c.func is Pow assert c.args == (3, 2) def test_Add_as_coeff_mul(): # issue 5524. These should all be (1, self) assert (x + 1).as_coeff_mul() == (1, (x + 1,)) assert (x + 2).as_coeff_mul() == (1, (x + 2,)) assert (x + 3).as_coeff_mul() == (1, (x + 3,)) assert (x - 1).as_coeff_mul() == (1, (x - 1,)) assert (x - 2).as_coeff_mul() == (1, (x - 2,)) assert (x - 3).as_coeff_mul() == (1, (x - 3,)) n = Symbol('n', integer=True) assert (n + 1).as_coeff_mul() == (1, (n + 1,)) assert (n + 2).as_coeff_mul() == (1, (n + 2,)) assert (n + 3).as_coeff_mul() == (1, (n + 3,)) assert (n - 1).as_coeff_mul() == (1, (n - 1,)) assert (n - 2).as_coeff_mul() == (1, (n - 2,)) assert (n - 3).as_coeff_mul() == (1, (n - 3,)) def test_Pow_as_coeff_mul_doesnt_expand(): assert exp(x + y).as_coeff_mul() == (1, (exp(x + y),)) assert exp(x + exp(x + y)) != exp(x + exp(x)*exp(y)) def test_issue_3514(): assert sqrt(S.Half) * sqrt(6) == 2 * sqrt(3)/2 assert S.Half*sqrt(6)*sqrt(2) == sqrt(3) assert sqrt(6)/2*sqrt(2) == sqrt(3) assert sqrt(6)*sqrt(2)/2 == sqrt(3) def test_make_args(): assert Add.make_args(x) == (x,) assert Mul.make_args(x) == (x,) assert Add.make_args(x*y*z) == (x*y*z,) assert Mul.make_args(x*y*z) == (x*y*z).args assert Add.make_args(x + y + z) == (x + y + z).args assert Mul.make_args(x + y + z) == (x + y + z,) assert Add.make_args((x + y)**z) == ((x + y)**z,) assert Mul.make_args((x + y)**z) == ((x + y)**z,) def test_issue_5126(): assert (-2)**x*(-3)**x != 6**x i = Symbol('i', integer=1) assert (-2)**i*(-3)**i == 6**i def test_Rational_as_content_primitive(): c, p = S.One, S.Zero assert (c*p).as_content_primitive() == (c, p) c, p = S.Half, S.One assert (c*p).as_content_primitive() == (c, p) def test_Add_as_content_primitive(): assert (x + 2).as_content_primitive() == (1, x + 2) assert (3*x + 2).as_content_primitive() == (1, 3*x + 2) assert (3*x + 3).as_content_primitive() == (3, x + 1) assert (3*x + 6).as_content_primitive() == (3, x + 2) assert (3*x + 2*y).as_content_primitive() == (1, 3*x + 2*y) assert (3*x + 3*y).as_content_primitive() == (3, x + y) assert (3*x + 6*y).as_content_primitive() == (3, x + 2*y) assert (3/x + 2*x*y*z**2).as_content_primitive() == (1, 3/x + 2*x*y*z**2) assert (3/x + 3*x*y*z**2).as_content_primitive() == (3, 1/x + x*y*z**2) assert (3/x + 6*x*y*z**2).as_content_primitive() == (3, 1/x + 2*x*y*z**2) assert (2*x/3 + 4*y/9).as_content_primitive() == \ (Rational(2, 9), 3*x + 2*y) assert (2*x/3 + 2.5*y).as_content_primitive() == \ (Rational(1, 3), 2*x + 7.5*y) # the coefficient may sort to a position other than 0 p = 3 + x + y assert (2*p).expand().as_content_primitive() == (2, p) assert (2.0*p).expand().as_content_primitive() == (1, 2.*p) p *= -1 assert (2*p).expand().as_content_primitive() == (2, p) def test_Mul_as_content_primitive(): assert (2*x).as_content_primitive() == (2, x) assert (x*(2 + 2*x)).as_content_primitive() == (2, x*(1 + x)) assert (x*(2 + 2*y)*(3*x + 3)**2).as_content_primitive() == \ (18, x*(1 + y)*(x + 1)**2) assert ((2 + 2*x)**2*(3 + 6*x) + S.Half).as_content_primitive() == \ (S.Half, 24*(x + 1)**2*(2*x + 1) + 1) def test_Pow_as_content_primitive(): assert (x**y).as_content_primitive() == (1, x**y) assert ((2*x + 2)**y).as_content_primitive() == \ (1, (Mul(2, (x + 1), evaluate=False))**y) assert ((2*x + 2)**3).as_content_primitive() == (8, (x + 1)**3) def test_issue_5460(): u = Mul(2, (1 + x), evaluate=False) assert (2 + u).args == (2, u) def test_product_irrational(): from sympy import I, pi assert (I*pi).is_irrational is False # The following used to be deduced from the above bug: assert (I*pi).is_positive is False def test_issue_5919(): assert (x/(y*(1 + y))).expand() == x/(y**2 + y) def test_Mod(): assert Mod(x, 1).func is Mod assert pi % pi is S.Zero assert Mod(5, 3) == 2 assert Mod(-5, 3) == 1 assert Mod(5, -3) == -1 assert Mod(-5, -3) == -2 assert type(Mod(3.2, 2, evaluate=False)) == Mod assert 5 % x == Mod(5, x) assert x % 5 == Mod(x, 5) assert x % y == Mod(x, y) assert (x % y).subs({x: 5, y: 3}) == 2 assert Mod(nan, 1) is nan assert Mod(1, nan) is nan assert Mod(nan, nan) is nan Mod(0, x) == 0 with raises(ZeroDivisionError): Mod(x, 0) k = Symbol('k', integer=True) m = Symbol('m', integer=True, positive=True) assert (x**m % x).func is Mod assert (k**(-m) % k).func is Mod assert k**m % k == 0 assert (-2*k)**m % k == 0 # Float handling point3 = Float(3.3) % 1 assert (x - 3.3) % 1 == Mod(1.*x + 1 - point3, 1) assert Mod(-3.3, 1) == 1 - point3 assert Mod(0.7, 1) == Float(0.7) e = Mod(1.3, 1) assert comp(e, .3) and e.is_Float e = Mod(1.3, .7) assert comp(e, .6) and e.is_Float e = Mod(1.3, Rational(7, 10)) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), 0.7) assert comp(e, .6) and e.is_Float e = Mod(Rational(13, 10), Rational(7, 10)) assert comp(e, .6) and e.is_Rational # check that sign is right r2 = sqrt(2) r3 = sqrt(3) for i in [-r3, -r2, r2, r3]: for j in [-r3, -r2, r2, r3]: assert verify_numerically(i % j, i.n() % j.n()) for _x in range(4): for _y in range(9): reps = [(x, _x), (y, _y)] assert Mod(3*x + y, 9).subs(reps) == (3*_x + _y) % 9 # denesting t = Symbol('t', real=True) assert Mod(Mod(x, t), t) == Mod(x, t) assert Mod(-Mod(x, t), t) == Mod(-x, t) assert Mod(Mod(x, 2*t), t) == Mod(x, t) assert Mod(-Mod(x, 2*t), t) == Mod(-x, t) assert Mod(Mod(x, t), 2*t) == Mod(x, t) assert Mod(-Mod(x, t), -2*t) == -Mod(x, t) for i in [-4, -2, 2, 4]: for j in [-4, -2, 2, 4]: for k in range(4): assert Mod(Mod(x, i), j).subs({x: k}) == (k % i) % j assert Mod(-Mod(x, i), j).subs({x: k}) == -(k % i) % j # known difference assert Mod(5*sqrt(2), sqrt(5)) == 5*sqrt(2) - 3*sqrt(5) p = symbols('p', positive=True) assert Mod(2, p + 3) == 2 assert Mod(-2, p + 3) == p + 1 assert Mod(2, -p - 3) == -p - 1 assert Mod(-2, -p - 3) == -2 assert Mod(p + 5, p + 3) == 2 assert Mod(-p - 5, p + 3) == p + 1 assert Mod(p + 5, -p - 3) == -p - 1 assert Mod(-p - 5, -p - 3) == -2 assert Mod(p + 1, p - 1).func is Mod # handling sums assert (x + 3) % 1 == Mod(x, 1) assert (x + 3.0) % 1 == Mod(1.*x, 1) assert (x - S(33)/10) % 1 == Mod(x + S(7)/10, 1) a = Mod(.6*x + y, .3*y) b = Mod(0.1*y + 0.6*x, 0.3*y) # Test that a, b are equal, with 1e-14 accuracy in coefficients eps = 1e-14 assert abs((a.args[0] - b.args[0]).subs({x: 1, y: 1})) < eps assert abs((a.args[1] - b.args[1]).subs({x: 1, y: 1})) < eps assert (x + 1) % x == 1 % x assert (x + y) % x == y % x assert (x + y + 2) % x == (y + 2) % x assert (a + 3*x + 1) % (2*x) == Mod(a + x + 1, 2*x) assert (12*x + 18*y) % (3*x) == 3*Mod(6*y, x) # gcd extraction assert (-3*x) % (-2*y) == -Mod(3*x, 2*y) assert (.6*pi) % (.3*x*pi) == 0.3*pi*Mod(2, x) assert (.6*pi) % (.31*x*pi) == pi*Mod(0.6, 0.31*x) assert (6*pi) % (.3*x*pi) == 0.3*pi*Mod(20, x) assert (6*pi) % (.31*x*pi) == pi*Mod(6, 0.31*x) assert (6*pi) % (.42*x*pi) == pi*Mod(6, 0.42*x) assert (12*x) % (2*y) == 2*Mod(6*x, y) assert (12*x) % (3*5*y) == 3*Mod(4*x, 5*y) assert (12*x) % (15*x*y) == 3*x*Mod(4, 5*y) assert (-2*pi) % (3*pi) == pi assert (2*x + 2) % (x + 1) == 0 assert (x*(x + 1)) % (x + 1) == (x + 1)*Mod(x, 1) assert Mod(5.0*x, 0.1*y) == 0.1*Mod(50*x, y) i = Symbol('i', integer=True) assert (3*i*x) % (2*i*y) == i*Mod(3*x, 2*y) assert Mod(4*i, 4) == 0 # issue 8677 n = Symbol('n', integer=True, positive=True) assert factorial(n) % n == 0 assert factorial(n + 2) % n == 0 assert (factorial(n + 4) % (n + 5)).func is Mod # Wilson's theorem factorial(18042, evaluate=False) % 18043 == 18042 p = Symbol('n', prime=True) factorial(p - 1) % p == p - 1 factorial(p - 1) % -p == -1 (factorial(3, evaluate=False) % 4).doit() == 2 n = Symbol('n', composite=True, odd=True) factorial(n - 1) % n == 0 # symbolic with known parity n = Symbol('n', even=True) assert Mod(n, 2) == 0 n = Symbol('n', odd=True) assert Mod(n, 2) == 1 # issue 10963 assert (x**6000%400).args[1] == 400 #issue 13543 assert Mod(Mod(x + 1, 2) + 1 , 2) == Mod(x,2) assert Mod(Mod(x + 2, 4)*(x + 4), 4) == Mod(x*(x + 2), 4) assert Mod(Mod(x + 2, 4)*4, 4) == 0 # issue 15493 i, j = symbols('i j', integer=True, positive=True) assert Mod(3*i, 2) == Mod(i, 2) assert Mod(8*i/j, 4) == 4*Mod(2*i/j, 1) assert Mod(8*i, 4) == 0 # rewrite assert Mod(x, y).rewrite(floor) == x - y*floor(x/y) assert ((x - Mod(x, y))/y).rewrite(floor) == floor(x/y) def test_Mod_Pow(): # modular exponentiation assert isinstance(Mod(Pow(2, 2, evaluate=False), 3), Integer) assert Mod(Pow(4, 13, evaluate=False), 497) == Mod(Pow(4, 13), 497) assert Mod(Pow(2, 10000000000, evaluate=False), 3) == 1 assert Mod(Pow(32131231232, 9**10**6, evaluate=False),10**12) == \ pow(32131231232,9**10**6,10**12) assert Mod(Pow(33284959323, 123**999, evaluate=False),11**13) == \ pow(33284959323,123**999,11**13) assert Mod(Pow(78789849597, 333**555, evaluate=False),12**9) == \ pow(78789849597,333**555,12**9) # modular nested exponentiation expr = Pow(2, 2, evaluate=False) expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 32191 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 18016 expr = Pow(2, expr, evaluate=False) assert Mod(expr, 3**10) == 5137 expr = Pow(2, 2, evaluate=False) expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 16 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 6487 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 38281 expr = Pow(expr, 2, evaluate=False) assert Mod(expr, 3**10) == 15928 @XFAIL def test_failing_Mod_Pow_nested(): expr = Pow(2, 2, evaluate=False) expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 256 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 9229 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 25708 expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 26608 # XXX This fails in nondeterministic way because of the overflow # error in mpmath expr = Pow(expr, expr, evaluate=False) assert Mod(expr, 3**10) == 1966 def test_Mod_is_integer(): p = Symbol('p', integer=True) q1 = Symbol('q1', integer=True) q2 = Symbol('q2', integer=True, nonzero=True) assert Mod(x, y).is_integer is None assert Mod(p, q1).is_integer is None assert Mod(x, q2).is_integer is None assert Mod(p, q2).is_integer def test_Mod_is_nonposneg(): n = Symbol('n', integer=True) k = Symbol('k', integer=True, positive=True) assert (n%3).is_nonnegative assert Mod(n, -3).is_nonpositive assert Mod(n, k).is_nonnegative assert Mod(n, -k).is_nonpositive assert Mod(k, n).is_nonnegative is None def test_issue_6001(): A = Symbol("A", commutative=False) eq = A + A**2 # it doesn't matter whether it's True or False; they should # just all be the same assert ( eq.is_commutative == (eq + 1).is_commutative == (A + 1).is_commutative) B = Symbol("B", commutative=False) # Although commutative terms could cancel we return True # meaning "there are non-commutative symbols; aftersubstitution # that definition can change, e.g. (A*B).subs(B,A**-1) -> 1 assert (sqrt(2)*A).is_commutative is False assert (sqrt(2)*A*B).is_commutative is False def test_polar(): from sympy import polar_lift p = Symbol('p', polar=True) x = Symbol('x') assert p.is_polar assert x.is_polar is None assert S.One.is_polar is None assert (p**x).is_polar is True assert (x**p).is_polar is None assert ((2*p)**x).is_polar is True assert (2*p).is_polar is True assert (-2*p).is_polar is not True assert (polar_lift(-2)*p).is_polar is True q = Symbol('q', polar=True) assert (p*q)**2 == p**2 * q**2 assert (2*q)**2 == 4 * q**2 assert ((p*q)**x).expand() == p**x * q**x def test_issue_6040(): a, b = Pow(1, 2, evaluate=False), S.One assert a != b assert b != a assert not (a == b) assert not (b == a) def test_issue_6082(): # Comparison is symmetric assert Basic.compare(Max(x, 1), Max(x, 2)) == \ - Basic.compare(Max(x, 2), Max(x, 1)) # Equal expressions compare equal assert Basic.compare(Max(x, 1), Max(x, 1)) == 0 # Basic subtypes (such as Max) compare different than standard types assert Basic.compare(Max(1, x), frozenset((1, x))) != 0 def test_issue_6077(): assert x**2.0/x == x**1.0 assert x/x**2.0 == x**-1.0 assert x*x**2.0 == x**3.0 assert x**1.5*x**2.5 == x**4.0 assert 2**(2.0*x)/2**x == 2**(1.0*x) assert 2**x/2**(2.0*x) == 2**(-1.0*x) assert 2**x*2**(2.0*x) == 2**(3.0*x) assert 2**(1.5*x)*2**(2.5*x) == 2**(4.0*x) def test_mul_flatten_oo(): p = symbols('p', positive=True) n, m = symbols('n,m', negative=True) x_im = symbols('x_im', imaginary=True) assert n*oo is -oo assert n*m*oo is oo assert p*oo is oo assert x_im*oo != I*oo # i could be +/- 3*I -> +/-oo def test_add_flatten(): # see https://github.com/sympy/sympy/issues/2633#issuecomment-29545524 a = oo + I*oo b = oo - I*oo assert a + b is nan assert a - b is nan # FIXME: This evaluates as: # >>> 1/a # 0*(oo + oo*I) # which should not simplify to 0. Should be fixed in Pow.eval #assert (1/a).simplify() == (1/b).simplify() == 0 a = Pow(2, 3, evaluate=False) assert a + a == 16 def test_issue_5160_6087_6089_6090(): # issue 6087 assert ((-2*x*y**y)**3.2).n(2) == (2**3.2*(-x*y**y)**3.2).n(2) # issue 6089 A, B, C = symbols('A,B,C', commutative=False) assert (2.*B*C)**3 == 8.0*(B*C)**3 assert (-2.*B*C)**3 == -8.0*(B*C)**3 assert (-2*B*C)**2 == 4*(B*C)**2 # issue 5160 assert sqrt(-1.0*x) == 1.0*sqrt(-x) assert sqrt(1.0*x) == 1.0*sqrt(x) # issue 6090 assert (-2*x*y*A*B)**2 == 4*x**2*y**2*(A*B)**2 def test_float_int_round(): assert int(float(sqrt(10))) == int(sqrt(10)) assert int(pi**1000) % 10 == 2 assert int(Float('1.123456789012345678901234567890e20', '')) == \ long(112345678901234567890) assert int(Float('1.123456789012345678901234567890e25', '')) == \ long(11234567890123456789012345) # decimal forces float so it's not an exact integer ending in 000000 assert int(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert int(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert Integer(Float('1.123456789012345678901234567890e20', '')) == \ 112345678901234567890 assert Integer(Float('1.123456789012345678901234567890e25', '')) == \ 11234567890123456789012345 # decimal forces float so it's not an exact integer ending in 000000 assert Integer(Float('1.123456789012345678901234567890e35', '')) == \ 112345678901234567890123456789000192 assert Integer(Float('123456789012345678901234567890e5', '')) == \ 12345678901234567890123456789000000 assert same_and_same_prec(Float('123000e-2',''), Float('1230.00', '')) assert same_and_same_prec(Float('123000e2',''), Float('12300000', '')) assert int(1 + Rational('.9999999999999999999999999')) == 1 assert int(pi/1e20) == 0 assert int(1 + pi/1e20) == 1 assert int(Add(1.2, -2, evaluate=False)) == int(1.2 - 2) assert int(Add(1.2, +2, evaluate=False)) == int(1.2 + 2) assert int(Add(1 + Float('.99999999999999999', ''), evaluate=False)) == 1 raises(TypeError, lambda: float(x)) raises(TypeError, lambda: float(sqrt(-1))) assert int(12345678901234567890 + cos(1)**2 + sin(1)**2) == \ 12345678901234567891 def test_issue_6611a(): assert Mul.flatten([3**Rational(1, 3), Pow(-Rational(1, 9), Rational(2, 3), evaluate=False)]) == \ ([Rational(1, 3), (-1)**Rational(2, 3)], [], None) def test_denest_add_mul(): # when working with evaluated expressions make sure they denest eq = x + 1 eq = Add(eq, 2, evaluate=False) eq = Add(eq, 2, evaluate=False) assert Add(*eq.args) == x + 5 eq = x*2 eq = Mul(eq, 2, evaluate=False) eq = Mul(eq, 2, evaluate=False) assert Mul(*eq.args) == 8*x # but don't let them denest unecessarily eq = Mul(-2, x - 2, evaluate=False) assert 2*eq == Mul(-4, x - 2, evaluate=False) assert -eq == Mul(2, x - 2, evaluate=False) def test_mul_coeff(): # It is important that all Numbers be removed from the seq; # This can be tricky when powers combine to produce those numbers p = exp(I*pi/3) assert p**2*x*p*y*p*x*p**2 == x**2*y def test_mul_zero_detection(): nz = Dummy(real=True, zero=False) r = Dummy(extended_real=True) c = Dummy(real=False, complex=True) c2 = Dummy(real=False, complex=True) i = Dummy(imaginary=True) e = nz*r*c assert e.is_imaginary is None assert e.is_extended_real is None e = nz*c assert e.is_imaginary is None assert e.is_extended_real is False e = nz*i*c assert e.is_imaginary is False assert e.is_extended_real is None # check for more than one complex; it is important to use # uniquely named Symbols to ensure that two factors appear # e.g. if the symbols have the same name they just become # a single factor, a power. e = nz*i*c*c2 assert e.is_imaginary is None assert e.is_extended_real is None # _eval_is_extended_real and _eval_is_zero both employ trapping of the # zero value so args should be tested in both directions and # TO AVOID GETTING THE CACHED RESULT, Dummy MUST BE USED # real is unknown def test(z, b, e): if z.is_zero and b.is_finite: assert e.is_extended_real and e.is_zero else: assert e.is_extended_real is None if b.is_finite: if z.is_zero: assert e.is_zero else: assert e.is_zero is None elif b.is_finite is False: if z.is_zero is None: assert e.is_zero is None else: assert e.is_zero is False for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('nz', nonzero=iz) b = Dummy('f', finite=ib) e = Mul(b, z, evaluate=False) test(z, b, e) # real is True def test(z, b, e): if z.is_zero and not b.is_finite: assert e.is_extended_real is None else: assert e.is_extended_real is True for iz, ib in cartes(*[[True, False, None]]*2): z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(z, b, evaluate=False) test(z, b, e) z = Dummy('z', nonzero=iz, extended_real=True) b = Dummy('b', finite=ib, extended_real=True) e = Mul(b, z, evaluate=False) test(z, b, e) def test_Mul_with_zero_infinite(): zer = Dummy(zero=True) inf = Dummy(finite=False) e = Mul(zer, inf, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None e = Mul(inf, zer, evaluate=False) assert e.is_extended_positive is None assert e.is_hermitian is None def test_Mul_does_not_cancel_infinities(): a, b = symbols('a b') assert ((zoo + 3*a)/(3*a + zoo)) is nan assert ((b - oo)/(b - oo)) is nan # issue 13904 expr = (1/(a+b) + 1/(a-b))/(1/(a+b) - 1/(a-b)) assert expr.subs(b, a) is nan def test_Mul_does_not_distribute_infinity(): a, b = symbols('a b') assert ((1 + I)*oo).is_Mul assert ((a + b)*(-oo)).is_Mul assert ((a + 1)*zoo).is_Mul assert ((1 + I)*oo).is_finite is False z = (1 + I)*oo assert ((1 - I)*z).expand() is oo def test_issue_8247_8354(): from sympy import tan z = sqrt(1 + sqrt(3)) + sqrt(3 + 3*sqrt(3)) - sqrt(10 + 6*sqrt(3)) assert z.is_positive is False # it's 0 z = S('''-2**(1/3)*(3*sqrt(93) + 29)**2 - 4*(3*sqrt(93) + 29)**(4/3) + 12*sqrt(93)*(3*sqrt(93) + 29)**(1/3) + 116*(3*sqrt(93) + 29)**(1/3) + 174*2**(1/3)*sqrt(93) + 1678*2**(1/3)''') assert z.is_positive is False # it's 0 z = 2*(-3*tan(19*pi/90) + sqrt(3))*cos(11*pi/90)*cos(19*pi/90) - \ sqrt(3)*(-3 + 4*cos(19*pi/90)**2) assert z.is_positive is not True # it's zero and it shouldn't hang z = S('''9*(3*sqrt(93) + 29)**(2/3)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**3 + 72*(3*sqrt(93) + 29)**(2/3)*(81*sqrt(93) + 783) + (162*sqrt(93) + 1566)*((3*sqrt(93) + 29)**(1/3)*(-2**(2/3)*(3*sqrt(93) + 29)**(1/3) - 2) - 2*2**(1/3))**2''') assert z.is_positive is False # it's 0 (and a single _mexpand isn't enough) def test_Add_is_zero(): x, y = symbols('x y', zero=True) assert (x + y).is_zero # Issue 15873 e = -2*I + (1 + I)**2 assert e.is_zero is None def test_issue_14392(): assert (sin(zoo)**2).as_real_imag() == (nan, nan) def test_divmod(): assert divmod(x, y) == (x//y, x % y) assert divmod(x, 3) == (x//3, x % 3) assert divmod(3, x) == (3//x, 3 % x) def test__neg__(): assert -(x*y) == -x*y assert -(-x*y) == x*y assert -(1.*x) == -1.*x assert -(-1.*x) == 1.*x assert -(2.*x) == -2.*x assert -(-2.*x) == 2.*x with distribute(False): eq = -(x + y) assert eq.is_Mul and eq.args == (-1, x + y)
9076463383a04dd66c790efbf5a5c84202b57ab01665976abde27272ddb82c72
from sympy.core.compatibility import PY3 from sympy.core.logic import (fuzzy_not, Logic, And, Or, Not, fuzzy_and, fuzzy_or, _fuzzy_group, _torf, fuzzy_nand, fuzzy_xor) from sympy.utilities.pytest import raises T = True F = False U = None def test_torf(): from sympy.utilities.iterables import cartes v = [T, F, U] for i in cartes(*[v]*3): assert _torf(i) is (True if all(j for j in i) else (False if all(j is False for j in i) else None)) def test_fuzzy_group(): from sympy.utilities.iterables import cartes v = [T, F, U] for i in cartes(*[v]*3): assert _fuzzy_group(i) is (None if None in i else (True if all(j for j in i) else False)) assert _fuzzy_group(i, quick_exit=True) is \ (None if (i.count(False) > 1) else (None if None in i else (True if all(j for j in i) else False))) it = (True if (i == 0) else None for i in range(2)) assert _torf(it) is None it = (True if (i == 1) else None for i in range(2)) assert _torf(it) is None def test_fuzzy_not(): assert fuzzy_not(T) == F assert fuzzy_not(F) == T assert fuzzy_not(U) == U def test_fuzzy_and(): assert fuzzy_and([T, T]) == T assert fuzzy_and([T, F]) == F assert fuzzy_and([T, U]) == U assert fuzzy_and([F, F]) == F assert fuzzy_and([F, U]) == F assert fuzzy_and([U, U]) == U assert [fuzzy_and([w]) for w in [U, T, F]] == [U, T, F] assert fuzzy_and([T, F, U]) == F assert fuzzy_and([]) == T raises(TypeError, lambda: fuzzy_and()) def test_fuzzy_or(): assert fuzzy_or([T, T]) == T assert fuzzy_or([T, F]) == T assert fuzzy_or([T, U]) == T assert fuzzy_or([F, F]) == F assert fuzzy_or([F, U]) == U assert fuzzy_or([U, U]) == U assert [fuzzy_or([w]) for w in [U, T, F]] == [U, T, F] assert fuzzy_or([T, F, U]) == T assert fuzzy_or([]) == F raises(TypeError, lambda: fuzzy_or()) def test_logic_cmp(): l1 = And('a', Not('b')) l2 = And('a', Not('b')) assert hash(l1) == hash(l2) assert (l1 == l2) == T assert (l1 != l2) == F assert And('a', 'b', 'c') == And('b', 'a', 'c') assert And('a', 'b', 'c') == And('c', 'b', 'a') assert And('a', 'b', 'c') == And('c', 'a', 'b') assert Not('a') < Not('b') assert (Not('b') < Not('a')) is False if PY3: assert (Not('a') < 2) is False def test_logic_onearg(): assert And() is True assert Or() is False assert And(T) == T assert And(F) == F assert Or(T) == T assert Or(F) == F assert And('a') == 'a' assert Or('a') == 'a' def test_logic_xnotx(): assert And('a', Not('a')) == F assert Or('a', Not('a')) == T def test_logic_eval_TF(): assert And(F, F) == F assert And(F, T) == F assert And(T, F) == F assert And(T, T) == T assert Or(F, F) == F assert Or(F, T) == T assert Or(T, F) == T assert Or(T, T) == T assert And('a', T) == 'a' assert And('a', F) == F assert Or('a', T) == T assert Or('a', F) == 'a' def test_logic_combine_args(): assert And('a', 'b', 'a') == And('a', 'b') assert Or('a', 'b', 'a') == Or('a', 'b') assert And(And('a', 'b'), And('c', 'd')) == And('a', 'b', 'c', 'd') assert Or(Or('a', 'b'), Or('c', 'd')) == Or('a', 'b', 'c', 'd') assert Or('t', And('n', 'p', 'r'), And('n', 'r'), And('n', 'p', 'r'), 't', And('n', 'r')) == Or('t', And('n', 'p', 'r'), And('n', 'r')) def test_logic_expand(): t = And(Or('a', 'b'), 'c') assert t.expand() == Or(And('a', 'c'), And('b', 'c')) t = And(Or('a', Not('b')), 'b') assert t.expand() == And('a', 'b') t = And(Or('a', 'b'), Or('c', 'd')) assert t.expand() == \ Or(And('a', 'c'), And('a', 'd'), And('b', 'c'), And('b', 'd')) def test_logic_fromstring(): S = Logic.fromstring assert S('a') == 'a' assert S('!a') == Not('a') assert S('a & b') == And('a', 'b') assert S('a | b') == Or('a', 'b') assert S('a | b & c') == And(Or('a', 'b'), 'c') assert S('a & b | c') == Or(And('a', 'b'), 'c') assert S('a & b & c') == And('a', 'b', 'c') assert S('a | b | c') == Or('a', 'b', 'c') raises(ValueError, lambda: S('| a')) raises(ValueError, lambda: S('& a')) raises(ValueError, lambda: S('a | | b')) raises(ValueError, lambda: S('a | & b')) raises(ValueError, lambda: S('a & & b')) raises(ValueError, lambda: S('a |')) raises(ValueError, lambda: S('a|b')) raises(ValueError, lambda: S('!')) raises(ValueError, lambda: S('! a')) raises(ValueError, lambda: S('!(a + 1)')) raises(ValueError, lambda: S('')) def test_logic_not(): assert Not('a') != '!a' assert Not('!a') != 'a' assert Not(True) == False assert Not(False) == True # NOTE: we may want to change default Not behaviour and put this # functionality into some method. assert Not(And('a', 'b')) == Or(Not('a'), Not('b')) assert Not(Or('a', 'b')) == And(Not('a'), Not('b')) raises(ValueError, lambda: Not(1)) def test_formatting(): S = Logic.fromstring raises(ValueError, lambda: S('a&b')) raises(ValueError, lambda: S('a|b')) raises(ValueError, lambda: S('! a')) def test_fuzzy_xor(): assert fuzzy_xor((None,)) is None assert fuzzy_xor((None, True)) is None assert fuzzy_xor((None, False)) is None assert fuzzy_xor((True, False)) is True assert fuzzy_xor((True, True)) is False assert fuzzy_xor((True, True, False)) is False assert fuzzy_xor((True, True, False, True)) is True def test_fuzzy_nand(): for args in [(1, 0), (1, 1), (0, 0)]: assert fuzzy_nand(args) == fuzzy_not(fuzzy_and(args))
304101bddf1ebcabb139f5df329a6c0d7e0022c6896d9091602352f9dfca1db6
"""Implementation of mathematical domains. """ __all__ = ['Domain', 'FiniteField', 'IntegerRing', 'RationalField', 'RealField', 'ComplexField', 'PythonFiniteField', 'GMPYFiniteField', 'PythonIntegerRing', 'GMPYIntegerRing', 'PythonRational', 'GMPYRationalField', 'AlgebraicField', 'PolynomialRing', 'FractionField', 'ExpressionDomain', 'PythonRational'] from .domain import Domain from .finitefield import FiniteField from .integerring import IntegerRing from .rationalfield import RationalField from .realfield import RealField from .complexfield import ComplexField from .pythonfinitefield import PythonFiniteField from .gmpyfinitefield import GMPYFiniteField from .pythonintegerring import PythonIntegerRing from .gmpyintegerring import GMPYIntegerRing from .pythonrationalfield import PythonRationalField from .gmpyrationalfield import GMPYRationalField from .algebraicfield import AlgebraicField from .polynomialring import PolynomialRing from .fractionfield import FractionField from .expressiondomain import ExpressionDomain from .pythonrational import PythonRational FF_python = PythonFiniteField FF_gmpy = GMPYFiniteField ZZ_python = PythonIntegerRing ZZ_gmpy = GMPYIntegerRing QQ_python = PythonRationalField QQ_gmpy = GMPYRationalField RR = RealField() CC = ComplexField() from sympy.core.compatibility import GROUND_TYPES _GROUND_TYPES_MAP = { 'gmpy': (FF_gmpy, ZZ_gmpy(), QQ_gmpy()), 'python': (FF_python, ZZ_python(), QQ_python()), } try: FF, ZZ, QQ = _GROUND_TYPES_MAP[GROUND_TYPES] except KeyError: raise ValueError("invalid ground types: %s" % GROUND_TYPES) GF = FF EX = ExpressionDomain() __all__.extend([ "FF_python", "FF_gmpy", "ZZ_python", "ZZ_gmpy", "QQ_python", "QQ_gmpy", "GF", "FF", "ZZ", "QQ", "RR", "CC", "EX", ])
53f60449213b7922094d9b855143e3b2424145ba8b841ae34abaddbe61911a50
"""Implementation of :class:`FiniteField` class. """ from __future__ import print_function, division from sympy.polys.domains.field import Field from sympy.polys.domains.groundtypes import SymPyInteger from sympy.polys.domains.modularinteger import ModularIntegerFactory from sympy.polys.domains.simpledomain import SimpleDomain from sympy.polys.polyerrors import CoercionFailed from sympy.utilities import public @public class FiniteField(Field, SimpleDomain): """General class for finite fields. """ rep = 'FF' is_FiniteField = is_FF = True is_Numerical = True has_assoc_Ring = False has_assoc_Field = True dom = None mod = None def __init__(self, mod, dom=None, symmetric=True): if mod <= 0: raise ValueError('modulus must be a positive integer, got %s' % mod) if dom is None: from sympy.polys.domains import ZZ dom = ZZ self.dtype = ModularIntegerFactory(mod, dom, symmetric, self) self.zero = self.dtype(0) self.one = self.dtype(1) self.dom = dom self.mod = mod def __str__(self): return 'GF(%s)' % self.mod def __hash__(self): return hash((self.__class__.__name__, self.dtype, self.mod, self.dom)) def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, FiniteField) and \ self.mod == other.mod and self.dom == other.dom def characteristic(self): """Return the characteristic of this domain. """ return self.mod def get_field(self): """Returns a field associated with ``self``. """ return self def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ return SymPyInteger(int(a)) def from_sympy(self, a): """Convert SymPy's Integer to SymPy's ``Integer``. """ if a.is_Integer: return self.dtype(self.dom.dtype(int(a))) elif a.is_Float and int(a) == a: return self.dtype(self.dom.dtype(int(a))) else: raise CoercionFailed("expected an integer, got %s" % a) def from_FF_python(K1, a, K0=None): """Convert ``ModularInteger(int)`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_python(a.val, K0.dom)) def from_ZZ_python(K1, a, K0=None): """Convert Python's ``int`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_python(a, K0)) def from_QQ_python(K1, a, K0=None): """Convert Python's ``Fraction`` to ``dtype``. """ if a.denominator == 1: return K1.from_ZZ_python(a.numerator) def from_FF_gmpy(K1, a, K0=None): """Convert ``ModularInteger(mpz)`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_gmpy(a.val, K0.dom)) def from_ZZ_gmpy(K1, a, K0=None): """Convert GMPY's ``mpz`` to ``dtype``. """ return K1.dtype(K1.dom.from_ZZ_gmpy(a, K0)) def from_QQ_gmpy(K1, a, K0=None): """Convert GMPY's ``mpq`` to ``dtype``. """ if a.denominator == 1: return K1.from_ZZ_gmpy(a.numerator) def from_RealField(K1, a, K0): """Convert mpmath's ``mpf`` to ``dtype``. """ p, q = K0.to_rational(a) if q == 1: return K1.dtype(K1.dom.dtype(p))
a8364d5ee7f218cd6bc1556461e98cbc8d68cf41f2f57441d4e19b4252d48696
"""Ground types for various mathematical domains in SymPy. """ from __future__ import print_function, division from sympy.core.compatibility import builtins, HAS_GMPY PythonInteger = builtins.int PythonReal = builtins.float PythonComplex = builtins.complex from .pythonrational import PythonRational from sympy.core.numbers import ( igcdex as python_gcdex, igcd2 as python_gcd, ilcm as python_lcm, ) from sympy import ( Float as SymPyReal, Integer as SymPyInteger, Rational as SymPyRational, ) if HAS_GMPY == 1: from gmpy import ( mpz as GMPYInteger, mpq as GMPYRational, fac as gmpy_factorial, numer as gmpy_numer, denom as gmpy_denom, gcdext as gmpy_gcdex, gcd as gmpy_gcd, lcm as gmpy_lcm, sqrt as gmpy_sqrt, qdiv as gmpy_qdiv, ) elif HAS_GMPY == 2: from gmpy2 import ( mpz as GMPYInteger, mpq as GMPYRational, fac as gmpy_factorial, numer as gmpy_numer, denom as gmpy_denom, gcdext as gmpy_gcdex, gcd as gmpy_gcd, lcm as gmpy_lcm, isqrt as gmpy_sqrt, qdiv as gmpy_qdiv, ) else: class GMPYInteger(object): def __init__(self, obj): pass class GMPYRational(object): def __init__(self, obj): pass gmpy_factorial = None gmpy_numer = None gmpy_denom = None gmpy_gcdex = None gmpy_gcd = None gmpy_lcm = None gmpy_sqrt = None gmpy_qdiv = None import mpmath.libmp as mlib def python_sqrt(n): return int(mlib.isqrt(n)) def python_factorial(n): return int(mlib.ifac(n)) __all__ = [ 'PythonInteger', 'PythonReal', 'PythonComplex', 'PythonRational', 'python_gcdex', 'python_gcd', 'python_lcm', 'SymPyReal', 'SymPyInteger', 'SymPyRational', 'GMPYInteger', 'GMPYRational', 'gmpy_factorial', 'gmpy_numer', 'gmpy_denom', 'gmpy_gcdex', 'gmpy_gcd', 'gmpy_lcm', 'gmpy_sqrt', 'gmpy_qdiv', 'GMPYInteger', 'GMPYRational', 'mlib', 'python_sqrt', 'python_factorial' ]
822e692cc5781d4387434d12361ba05e91473b97e57bfa6f837d6c6e3d598ce3
"""Implementation of :class:`Domain` class. """ from __future__ import print_function, division from sympy.core import Basic, sympify from sympy.core.compatibility import HAS_GMPY, integer_types, is_sequence from sympy.core.decorators import deprecated from sympy.polys.domains.domainelement import DomainElement from sympy.polys.orderings import lex from sympy.polys.polyerrors import UnificationFailed, CoercionFailed, DomainError from sympy.polys.polyutils import _unify_gens, _not_a_coeff from sympy.utilities import default_sort_key, public @public class Domain(object): """Represents an abstract domain. """ dtype = None zero = None one = None is_Ring = False is_Field = False has_assoc_Ring = False has_assoc_Field = False is_FiniteField = is_FF = False is_IntegerRing = is_ZZ = False is_RationalField = is_QQ = False is_RealField = is_RR = False is_ComplexField = is_CC = False is_AlgebraicField = is_Algebraic = False is_PolynomialRing = is_Poly = False is_FractionField = is_Frac = False is_SymbolicDomain = is_EX = False is_Exact = True is_Numerical = False is_Simple = False is_Composite = False is_PID = False has_CharacteristicZero = False rep = None alias = None @property @deprecated(useinstead="is_Field", issue=12723, deprecated_since_version="1.1") def has_Field(self): return self.is_Field @property @deprecated(useinstead="is_Ring", issue=12723, deprecated_since_version="1.1") def has_Ring(self): return self.is_Ring def __init__(self): raise NotImplementedError def __str__(self): return self.rep def __repr__(self): return str(self) def __hash__(self): return hash((self.__class__.__name__, self.dtype)) def new(self, *args): return self.dtype(*args) @property def tp(self): return self.dtype def __call__(self, *args): """Construct an element of ``self`` domain from ``args``. """ return self.new(*args) def normal(self, *args): return self.dtype(*args) def convert_from(self, element, base): """Convert ``element`` to ``self.dtype`` given the base domain. """ if base.alias is not None: method = "from_" + base.alias else: method = "from_" + base.__class__.__name__ _convert = getattr(self, method) if _convert is not None: result = _convert(element, base) if result is not None: return result raise CoercionFailed("can't convert %s of type %s from %s to %s" % (element, type(element), base, self)) def convert(self, element, base=None): """Convert ``element`` to ``self.dtype``. """ if _not_a_coeff(element): raise CoercionFailed('%s is not in any domain' % element) if base is not None: return self.convert_from(element, base) if self.of_type(element): return element from sympy.polys.domains import PythonIntegerRing, GMPYIntegerRing, GMPYRationalField, RealField, ComplexField if isinstance(element, integer_types): return self.convert_from(element, PythonIntegerRing()) if HAS_GMPY: integers = GMPYIntegerRing() if isinstance(element, integers.tp): return self.convert_from(element, integers) rationals = GMPYRationalField() if isinstance(element, rationals.tp): return self.convert_from(element, rationals) if isinstance(element, float): parent = RealField(tol=False) return self.convert_from(parent(element), parent) if isinstance(element, complex): parent = ComplexField(tol=False) return self.convert_from(parent(element), parent) if isinstance(element, DomainElement): return self.convert_from(element, element.parent()) # TODO: implement this in from_ methods if self.is_Numerical and getattr(element, 'is_ground', False): return self.convert(element.LC()) if isinstance(element, Basic): try: return self.from_sympy(element) except (TypeError, ValueError): pass else: # TODO: remove this branch if not is_sequence(element): try: element = sympify(element) if isinstance(element, Basic): return self.from_sympy(element) except (TypeError, ValueError): pass raise CoercionFailed("can't convert %s of type %s to %s" % (element, type(element), self)) def of_type(self, element): """Check if ``a`` is of type ``dtype``. """ return isinstance(element, self.tp) # XXX: this isn't correct, e.g. PolyElement def __contains__(self, a): """Check if ``a`` belongs to this domain. """ try: if _not_a_coeff(a): raise CoercionFailed self.convert(a) # this might raise, too except CoercionFailed: return False return True def to_sympy(self, a): """Convert ``a`` to a SymPy object. """ raise NotImplementedError def from_sympy(self, a): """Convert a SymPy object to ``dtype``. """ raise NotImplementedError def from_FF_python(K1, a, K0): """Convert ``ModularInteger(int)`` to ``dtype``. """ return None def from_ZZ_python(K1, a, K0): """Convert a Python ``int`` object to ``dtype``. """ return None def from_QQ_python(K1, a, K0): """Convert a Python ``Fraction`` object to ``dtype``. """ return None def from_FF_gmpy(K1, a, K0): """Convert ``ModularInteger(mpz)`` to ``dtype``. """ return None def from_ZZ_gmpy(K1, a, K0): """Convert a GMPY ``mpz`` object to ``dtype``. """ return None def from_QQ_gmpy(K1, a, K0): """Convert a GMPY ``mpq`` object to ``dtype``. """ return None def from_RealField(K1, a, K0): """Convert a real element object to ``dtype``. """ return None def from_ComplexField(K1, a, K0): """Convert a complex element to ``dtype``. """ return None def from_AlgebraicField(K1, a, K0): """Convert an algebraic number to ``dtype``. """ return None def from_PolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.is_ground: return K1.convert(a.LC, K0.dom) def from_FractionField(K1, a, K0): """Convert a rational function to ``dtype``. """ return None def from_ExpressionDomain(K1, a, K0): """Convert a ``EX`` object to ``dtype``. """ return K1.from_sympy(a.ex) def from_GlobalPolynomialRing(K1, a, K0): """Convert a polynomial to ``dtype``. """ if a.degree() <= 0: return K1.convert(a.LC(), K0.dom) def from_GeneralizedPolynomialRing(K1, a, K0): return K1.from_FractionField(a, K0) def unify_with_symbols(K0, K1, symbols): if (K0.is_Composite and (set(K0.symbols) & set(symbols))) or (K1.is_Composite and (set(K1.symbols) & set(symbols))): raise UnificationFailed("can't unify %s with %s, given %s generators" % (K0, K1, tuple(symbols))) return K0.unify(K1) def unify(K0, K1, symbols=None): """ Construct a minimal domain that contains elements of ``K0`` and ``K1``. Known domains (from smallest to largest): - ``GF(p)`` - ``ZZ`` - ``QQ`` - ``RR(prec, tol)`` - ``CC(prec, tol)`` - ``ALG(a, b, c)`` - ``K[x, y, z]`` - ``K(x, y, z)`` - ``EX`` """ if symbols is not None: return K0.unify_with_symbols(K1, symbols) if K0 == K1: return K0 if K0.is_EX: return K0 if K1.is_EX: return K1 if K0.is_Composite or K1.is_Composite: K0_ground = K0.dom if K0.is_Composite else K0 K1_ground = K1.dom if K1.is_Composite else K1 K0_symbols = K0.symbols if K0.is_Composite else () K1_symbols = K1.symbols if K1.is_Composite else () domain = K0_ground.unify(K1_ground) symbols = _unify_gens(K0_symbols, K1_symbols) order = K0.order if K0.is_Composite else K1.order if ((K0.is_FractionField and K1.is_PolynomialRing or K1.is_FractionField and K0.is_PolynomialRing) and (not K0_ground.is_Field or not K1_ground.is_Field) and domain.is_Field): domain = domain.get_ring() if K0.is_Composite and (not K1.is_Composite or K0.is_FractionField or K1.is_PolynomialRing): cls = K0.__class__ else: cls = K1.__class__ from sympy.polys.domains.old_polynomialring import GlobalPolynomialRing if cls == GlobalPolynomialRing: return cls(domain, symbols) return cls(domain, symbols, order) def mkinexact(cls, K0, K1): prec = max(K0.precision, K1.precision) tol = max(K0.tolerance, K1.tolerance) return cls(prec=prec, tol=tol) if K0.is_ComplexField and K1.is_ComplexField: return mkinexact(K0.__class__, K0, K1) if K0.is_ComplexField and K1.is_RealField: return mkinexact(K0.__class__, K0, K1) if K0.is_RealField and K1.is_ComplexField: return mkinexact(K1.__class__, K1, K0) if K0.is_RealField and K1.is_RealField: return mkinexact(K0.__class__, K0, K1) if K0.is_ComplexField or K0.is_RealField: return K0 if K1.is_ComplexField or K1.is_RealField: return K1 if K0.is_AlgebraicField and K1.is_AlgebraicField: return K0.__class__(K0.dom.unify(K1.dom), *_unify_gens(K0.orig_ext, K1.orig_ext)) elif K0.is_AlgebraicField: return K0 elif K1.is_AlgebraicField: return K1 if K0.is_RationalField: return K0 if K1.is_RationalField: return K1 if K0.is_IntegerRing: return K0 if K1.is_IntegerRing: return K1 if K0.is_FiniteField and K1.is_FiniteField: return K0.__class__(max(K0.mod, K1.mod, key=default_sort_key)) from sympy.polys.domains import EX return EX def __eq__(self, other): """Returns ``True`` if two domains are equivalent. """ return isinstance(other, Domain) and self.dtype == other.dtype def __ne__(self, other): """Returns ``False`` if two domains are equivalent. """ return not self == other def map(self, seq): """Rersively apply ``self`` to all elements of ``seq``. """ result = [] for elt in seq: if isinstance(elt, list): result.append(self.map(elt)) else: result.append(self(elt)) return result def get_ring(self): """Returns a ring associated with ``self``. """ raise DomainError('there is no ring associated with %s' % self) def get_field(self): """Returns a field associated with ``self``. """ raise DomainError('there is no field associated with %s' % self) def get_exact(self): """Returns an exact domain associated with ``self``. """ return self def __getitem__(self, symbols): """The mathematical way to make a polynomial ring. """ if hasattr(symbols, '__iter__'): return self.poly_ring(*symbols) else: return self.poly_ring(symbols) def poly_ring(self, *symbols, **kwargs): """Returns a polynomial ring, i.e. `K[X]`. """ from sympy.polys.domains.polynomialring import PolynomialRing return PolynomialRing(self, symbols, kwargs.get("order", lex)) def frac_field(self, *symbols, **kwargs): """Returns a fraction field, i.e. `K(X)`. """ from sympy.polys.domains.fractionfield import FractionField return FractionField(self, symbols, kwargs.get("order", lex)) def old_poly_ring(self, *symbols, **kwargs): """Returns a polynomial ring, i.e. `K[X]`. """ from sympy.polys.domains.old_polynomialring import PolynomialRing return PolynomialRing(self, *symbols, **kwargs) def old_frac_field(self, *symbols, **kwargs): """Returns a fraction field, i.e. `K(X)`. """ from sympy.polys.domains.old_fractionfield import FractionField return FractionField(self, *symbols, **kwargs) def algebraic_field(self, *extension): r"""Returns an algebraic field, i.e. `K(\alpha, \ldots)`. """ raise DomainError("can't create algebraic field over %s" % self) def inject(self, *symbols): """Inject generators into this domain. """ raise NotImplementedError def is_zero(self, a): """Returns True if ``a`` is zero. """ return not a def is_one(self, a): """Returns True if ``a`` is one. """ return a == self.one def is_positive(self, a): """Returns True if ``a`` is positive. """ return a > 0 def is_negative(self, a): """Returns True if ``a`` is negative. """ return a < 0 def is_nonpositive(self, a): """Returns True if ``a`` is non-positive. """ return a <= 0 def is_nonnegative(self, a): """Returns True if ``a`` is non-negative. """ return a >= 0 def abs(self, a): """Absolute value of ``a``, implies ``__abs__``. """ return abs(a) def neg(self, a): """Returns ``a`` negated, implies ``__neg__``. """ return -a def pos(self, a): """Returns ``a`` positive, implies ``__pos__``. """ return +a def add(self, a, b): """Sum of ``a`` and ``b``, implies ``__add__``. """ return a + b def sub(self, a, b): """Difference of ``a`` and ``b``, implies ``__sub__``. """ return a - b def mul(self, a, b): """Product of ``a`` and ``b``, implies ``__mul__``. """ return a * b def pow(self, a, b): """Raise ``a`` to power ``b``, implies ``__pow__``. """ return a ** b def exquo(self, a, b): """Exact quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError def quo(self, a, b): """Quotient of ``a`` and ``b``, implies something. """ raise NotImplementedError def rem(self, a, b): """Remainder of ``a`` and ``b``, implies ``__mod__``. """ raise NotImplementedError def div(self, a, b): """Division of ``a`` and ``b``, implies something. """ raise NotImplementedError def invert(self, a, b): """Returns inversion of ``a mod b``, implies something. """ raise NotImplementedError def revert(self, a): """Returns ``a**(-1)`` if possible. """ raise NotImplementedError def numer(self, a): """Returns numerator of ``a``. """ raise NotImplementedError def denom(self, a): """Returns denominator of ``a``. """ raise NotImplementedError def half_gcdex(self, a, b): """Half extended GCD of ``a`` and ``b``. """ s, t, h = self.gcdex(a, b) return s, h def gcdex(self, a, b): """Extended GCD of ``a`` and ``b``. """ raise NotImplementedError def cofactors(self, a, b): """Returns GCD and cofactors of ``a`` and ``b``. """ gcd = self.gcd(a, b) cfa = self.quo(a, gcd) cfb = self.quo(b, gcd) return gcd, cfa, cfb def gcd(self, a, b): """Returns GCD of ``a`` and ``b``. """ raise NotImplementedError def lcm(self, a, b): """Returns LCM of ``a`` and ``b``. """ raise NotImplementedError def log(self, a, b): """Returns b-base logarithm of ``a``. """ raise NotImplementedError def sqrt(self, a): """Returns square root of ``a``. """ raise NotImplementedError def evalf(self, a, prec=None, **options): """Returns numerical approximation of ``a``. """ return self.to_sympy(a).evalf(prec, **options) n = evalf def real(self, a): return a def imag(self, a): return self.zero def almosteq(self, a, b, tolerance=None): """Check if ``a`` and ``b`` are almost equal. """ return a == b def characteristic(self): """Return the characteristic of this domain. """ raise NotImplementedError('characteristic()') __all__ = ['Domain']
1e608e64ec0cfa3a3d3ac751c53d68f912e6376684408461b61cf53c7d66c4d6
from sympy.polys.domains import QQ, EX, RR from sympy.polys.rings import ring from sympy.polys.ring_series import (_invert_monoms, rs_integrate, rs_trunc, rs_mul, rs_square, rs_pow, _has_constant_term, rs_hadamard_exp, rs_series_from_list, rs_exp, rs_log, rs_newton, rs_series_inversion, rs_compose_add, rs_asin, rs_atan, rs_atanh, rs_tan, rs_cot, rs_sin, rs_cos, rs_cos_sin, rs_sinh, rs_cosh, rs_tanh, _tan1, rs_fun, rs_nth_root, rs_LambertW, rs_series_reversion, rs_is_puiseux, rs_series) from sympy.utilities.pytest import raises from sympy.core.compatibility import range from sympy.core.symbol import symbols from sympy.functions import (sin, cos, exp, tan, cot, atan, atanh, tanh, log, sqrt) from sympy.core.numbers import Rational from sympy.core import expand, S def is_close(a, b): tol = 10**(-10) assert abs(a - b) < tol def test_ring_series1(): R, x = ring('x', QQ) p = x**4 + 2*x**3 + 3*x + 4 assert _invert_monoms(p) == 4*x**4 + 3*x**3 + 2*x + 1 assert rs_hadamard_exp(p) == x**4/24 + x**3/3 + 3*x + 4 R, x = ring('x', QQ) p = x**4 + 2*x**3 + 3*x + 4 assert rs_integrate(p, x) == x**5/5 + x**4/2 + 3*x**2/2 + 4*x R, x, y = ring('x, y', QQ) p = x**2*y**2 + x + 1 assert rs_integrate(p, x) == x**3*y**2/3 + x**2/2 + x assert rs_integrate(p, y) == x**2*y**3/3 + x*y + y def test_trunc(): R, x, y, t = ring('x, y, t', QQ) p = (y + t*x)**4 p1 = rs_trunc(p, x, 3) assert p1 == y**4 + 4*y**3*t*x + 6*y**2*t**2*x**2 def test_mul_trunc(): R, x, y, t = ring('x, y, t', QQ) p = 1 + t*x + t*y for i in range(2): p = rs_mul(p, p, t, 3) assert p == 6*x**2*t**2 + 12*x*y*t**2 + 6*y**2*t**2 + 4*x*t + 4*y*t + 1 p = 1 + t*x + t*y + t**2*x*y p1 = rs_mul(p, p, t, 2) assert p1 == 1 + 2*t*x + 2*t*y R1, z = ring('z', QQ) raises(ValueError, lambda: rs_mul(p, z, x, 2)) p1 = 2 + 2*x + 3*x**2 p2 = 3 + x**2 assert rs_mul(p1, p2, x, 4) == 2*x**3 + 11*x**2 + 6*x + 6 def test_square_trunc(): R, x, y, t = ring('x, y, t', QQ) p = (1 + t*x + t*y)*2 p1 = rs_mul(p, p, x, 3) p2 = rs_square(p, x, 3) assert p1 == p2 p = 1 + x + x**2 + x**3 assert rs_square(p, x, 4) == 4*x**3 + 3*x**2 + 2*x + 1 def test_pow_trunc(): R, x, y, z = ring('x, y, z', QQ) p0 = y + x*z p = p0**16 for xx in (x, y, z): p1 = rs_trunc(p, xx, 8) p2 = rs_pow(p0, 16, xx, 8) assert p1 == p2 p = 1 + x p1 = rs_pow(p, 3, x, 2) assert p1 == 1 + 3*x assert rs_pow(p, 0, x, 2) == 1 assert rs_pow(p, -2, x, 2) == 1 - 2*x p = x + y assert rs_pow(p, 3, y, 3) == x**3 + 3*x**2*y + 3*x*y**2 assert rs_pow(1 + x, Rational(2, 3), x, 4) == 4*x**3/81 - x**2/9 + x*Rational(2, 3) + 1 def test_has_constant_term(): R, x, y, z = ring('x, y, z', QQ) p = y + x*z assert _has_constant_term(p, x) p = x + x**4 assert not _has_constant_term(p, x) p = 1 + x + x**4 assert _has_constant_term(p, x) p = x + y + x*z def test_inversion(): R, x = ring('x', QQ) p = 2 + x + 2*x**2 n = 5 p1 = rs_series_inversion(p, x, n) assert rs_trunc(p*p1, x, n) == 1 R, x, y = ring('x, y', QQ) p = 2 + x + 2*x**2 + y*x + x**2*y p1 = rs_series_inversion(p, x, n) assert rs_trunc(p*p1, x, n) == 1 R, x, y = ring('x, y', QQ) p = 1 + x + y raises(NotImplementedError, lambda: rs_series_inversion(p, x, 4)) p = R.zero raises(ZeroDivisionError, lambda: rs_series_inversion(p, x, 3)) def test_series_reversion(): R, x, y = ring('x, y', QQ) p = rs_tan(x, x, 10) assert rs_series_reversion(p, x, 8, y) == rs_atan(y, y, 8) p = rs_sin(x, x, 10) assert rs_series_reversion(p, x, 8, y) == 5*y**7/112 + 3*y**5/40 + \ y**3/6 + y def test_series_from_list(): R, x = ring('x', QQ) p = 1 + 2*x + x**2 + 3*x**3 c = [1, 2, 0, 4, 4] r = rs_series_from_list(p, c, x, 5) pc = R.from_list(list(reversed(c))) r1 = rs_trunc(pc.compose(x, p), x, 5) assert r == r1 R, x, y = ring('x, y', QQ) c = [1, 3, 5, 7] p1 = rs_series_from_list(x + y, c, x, 3, concur=0) p2 = rs_trunc((1 + 3*(x+y) + 5*(x+y)**2 + 7*(x+y)**3), x, 3) assert p1 == p2 R, x = ring('x', QQ) h = 25 p = rs_exp(x, x, h) - 1 p1 = rs_series_from_list(p, c, x, h) p2 = 0 for i, cx in enumerate(c): p2 += cx*rs_pow(p, i, x, h) assert p1 == p2 def test_log(): R, x = ring('x', QQ) p = 1 + x p1 = rs_log(p, x, 4)/x**2 assert p1 == Rational(1, 3)*x - S.Half + x**(-1) p = 1 + x +2*x**2/3 p1 = rs_log(p, x, 9) assert p1 == -17*x**8/648 + 13*x**7/189 - 11*x**6/162 - x**5/45 + \ 7*x**4/36 - x**3/3 + x**2/6 + x p2 = rs_series_inversion(p, x, 9) p3 = rs_log(p2, x, 9) assert p3 == -p1 R, x, y = ring('x, y', QQ) p = 1 + x + 2*y*x**2 p1 = rs_log(p, x, 6) assert p1 == (4*x**5*y**2 - 2*x**5*y - 2*x**4*y**2 + x**5/5 + 2*x**4*y - x**4/4 - 2*x**3*y + x**3/3 + 2*x**2*y - x**2/2 + x) # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_log(x + a, x, 5) == -EX(1/(4*a**4))*x**4 + EX(1/(3*a**3))*x**3 \ - EX(1/(2*a**2))*x**2 + EX(1/a)*x + EX(log(a)) assert rs_log(x + x**2*y + a, x, 4) == -EX(a**(-2))*x**3*y + \ EX(1/(3*a**3))*x**3 + EX(1/a)*x**2*y - EX(1/(2*a**2))*x**2 + \ EX(1/a)*x + EX(log(a)) p = x + x**2 + 3 assert rs_log(p, x, 10).compose(x, 5) == EX(log(3) + Rational(19281291595, 9920232)) def test_exp(): R, x = ring('x', QQ) p = x + x**4 for h in [10, 30]: q = rs_series_inversion(1 + p, x, h) - 1 p1 = rs_exp(q, x, h) q1 = rs_log(p1, x, h) assert q1 == q p1 = rs_exp(p, x, 30) assert p1.coeff(x**29) == QQ(74274246775059676726972369, 353670479749588078181744640000) prec = 21 p = rs_log(1 + x, x, prec) p1 = rs_exp(p, x, prec) assert p1 == x + 1 # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[exp(a), a]) assert rs_exp(x + a, x, 5) == exp(a)*x**4/24 + exp(a)*x**3/6 + \ exp(a)*x**2/2 + exp(a)*x + exp(a) assert rs_exp(x + x**2*y + a, x, 5) == exp(a)*x**4*y**2/2 + \ exp(a)*x**4*y/2 + exp(a)*x**4/24 + exp(a)*x**3*y + \ exp(a)*x**3/6 + exp(a)*x**2*y + exp(a)*x**2/2 + exp(a)*x + exp(a) R, x, y = ring('x, y', EX) assert rs_exp(x + a, x, 5) == EX(exp(a)/24)*x**4 + EX(exp(a)/6)*x**3 + \ EX(exp(a)/2)*x**2 + EX(exp(a))*x + EX(exp(a)) assert rs_exp(x + x**2*y + a, x, 5) == EX(exp(a)/2)*x**4*y**2 + \ EX(exp(a)/2)*x**4*y + EX(exp(a)/24)*x**4 + EX(exp(a))*x**3*y + \ EX(exp(a)/6)*x**3 + EX(exp(a))*x**2*y + EX(exp(a)/2)*x**2 + \ EX(exp(a))*x + EX(exp(a)) def test_newton(): R, x = ring('x', QQ) p = x**2 - 2 r = rs_newton(p, x, 4) assert r == 8*x**4 + 4*x**2 + 2 def test_compose_add(): R, x = ring('x', QQ) p1 = x**3 - 1 p2 = x**2 - 2 assert rs_compose_add(p1, p2) == x**6 - 6*x**4 - 2*x**3 + 12*x**2 - 12*x - 7 def test_fun(): R, x, y = ring('x, y', QQ) p = x*y + x**2*y**3 + x**5*y assert rs_fun(p, rs_tan, x, 10) == rs_tan(p, x, 10) assert rs_fun(p, _tan1, x, 10) == _tan1(p, x, 10) def test_nth_root(): R, x, y = ring('x, y', QQ) assert rs_nth_root(1 + x**2*y, 4, x, 10) == -77*x**8*y**4/2048 + \ 7*x**6*y**3/128 - 3*x**4*y**2/32 + x**2*y/4 + 1 assert rs_nth_root(1 + x*y + x**2*y**3, 3, x, 5) == -x**4*y**6/9 + \ 5*x**4*y**5/27 - 10*x**4*y**4/243 - 2*x**3*y**4/9 + 5*x**3*y**3/81 + \ x**2*y**3/3 - x**2*y**2/9 + x*y/3 + 1 assert rs_nth_root(8*x, 3, x, 3) == 2*x**QQ(1, 3) assert rs_nth_root(8*x + x**2 + x**3, 3, x, 3) == x**QQ(4,3)/12 + 2*x**QQ(1,3) r = rs_nth_root(8*x + x**2*y + x**3, 3, x, 4) assert r == -x**QQ(7,3)*y**2/288 + x**QQ(7,3)/12 + x**QQ(4,3)*y/12 + 2*x**QQ(1,3) # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_nth_root(x + a, 3, x, 4) == EX(5/(81*a**QQ(8, 3)))*x**3 - \ EX(1/(9*a**QQ(5, 3)))*x**2 + EX(1/(3*a**QQ(2, 3)))*x + EX(a**QQ(1, 3)) assert rs_nth_root(x**QQ(2, 3) + x**2*y + 5, 2, x, 3) == -EX(sqrt(5)/100)*\ x**QQ(8, 3)*y - EX(sqrt(5)/16000)*x**QQ(8, 3) + EX(sqrt(5)/10)*x**2*y + \ EX(sqrt(5)/2000)*x**2 - EX(sqrt(5)/200)*x**QQ(4, 3) + \ EX(sqrt(5)/10)*x**QQ(2, 3) + EX(sqrt(5)) def test_atan(): R, x, y = ring('x, y', QQ) assert rs_atan(x, x, 9) == -x**7/7 + x**5/5 - x**3/3 + x assert rs_atan(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 - x**8*y**9 + \ 2*x**7*y**9 - x**7*y**7/7 - x**6*y**9/3 + x**6*y**7 - x**5*y**7 + \ x**5*y**5/5 - x**4*y**5 - x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_atan(x + a, x, 5) == -EX((a**3 - a)/(a**8 + 4*a**6 + 6*a**4 + \ 4*a**2 + 1))*x**4 + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + \ 9*a**2 + 3))*x**3 - EX(a/(a**4 + 2*a**2 + 1))*x**2 + \ EX(1/(a**2 + 1))*x + EX(atan(a)) assert rs_atan(x + x**2*y + a, x, 4) == -EX(2*a/(a**4 + 2*a**2 + 1)) \ *x**3*y + EX((3*a**2 - 1)/(3*a**6 + 9*a**4 + 9*a**2 + 3))*x**3 + \ EX(1/(a**2 + 1))*x**2*y - EX(a/(a**4 + 2*a**2 + 1))*x**2 + EX(1/(a**2 \ + 1))*x + EX(atan(a)) def test_asin(): R, x, y = ring('x, y', QQ) assert rs_asin(x + x*y, x, 5) == x**3*y**3/6 + x**3*y**2/2 + x**3*y/2 + \ x**3/6 + x*y + x assert rs_asin(x*y + x**2*y**3, x, 6) == x**5*y**7/2 + 3*x**5*y**5/40 + \ x**4*y**5/2 + x**3*y**3/6 + x**2*y**3 + x*y def test_tan(): R, x, y = ring('x, y', QQ) assert rs_tan(x, x, 9)/x**5 == \ Rational(17, 315)*x**2 + Rational(2, 15) + Rational(1, 3)*x**(-2) + x**(-4) assert rs_tan(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 + 17*x**8*y**9/45 + \ 4*x**7*y**9/3 + 17*x**7*y**7/315 + x**6*y**9/3 + 2*x**6*y**7/3 + \ x**5*y**7 + 2*x**5*y**5/15 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[tan(a), a]) assert rs_tan(x + a, x, 5) == (tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + (tan(a)**4 + 4*tan(a)**2/3 + Rational(1, 3))*x**3 + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) assert rs_tan(x + x**2*y + a, x, 4) == (2*tan(a)**3 + 2*tan(a))*x**3*y + \ (tan(a)**4 + Rational(4, 3)*tan(a)**2 + Rational(1, 3))*x**3 + (tan(a)**2 + 1)*x**2*y + \ (tan(a)**3 + tan(a))*x**2 + (tan(a)**2 + 1)*x + tan(a) R, x, y = ring('x, y', EX) assert rs_tan(x + a, x, 5) == EX(tan(a)**5 + 5*tan(a)**3/3 + 2*tan(a)/3)*x**4 + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**3 + tan(a))*x**2 + EX(tan(a)**2 + 1)*x + EX(tan(a)) assert rs_tan(x + x**2*y + a, x, 4) == EX(2*tan(a)**3 + 2*tan(a))*x**3*y + EX(tan(a)**4 + 4*tan(a)**2/3 + EX(1)/3)*x**3 + \ EX(tan(a)**2 + 1)*x**2*y + EX(tan(a)**3 + tan(a))*x**2 + \ EX(tan(a)**2 + 1)*x + EX(tan(a)) p = x + x**2 + 5 assert rs_atan(p, x, 10).compose(x, 10) == EX(atan(5) + S(67701870330562640) / \ 668083460499) def test_cot(): R, x, y = ring('x, y', QQ) assert rs_cot(x**6 + x**7, x, 8) == x**(-6) - x**(-5) + x**(-4) - \ x**(-3) + x**(-2) - x**(-1) + 1 - x + x**2 - x**3 + x**4 - x**5 + \ 2*x**6/3 - 4*x**7/3 assert rs_cot(x + x**2*y, x, 5) == -x**4*y**5 - x**4*y/15 + x**3*y**4 - \ x**3/45 - x**2*y**3 - x**2*y/3 + x*y**2 - x/3 - y + x**(-1) def test_sin(): R, x, y = ring('x, y', QQ) assert rs_sin(x, x, 9)/x**5 == \ Rational(-1, 5040)*x**2 + Rational(1, 120) - Rational(1, 6)*x**(-2) + x**(-4) assert rs_sin(x*y + x**2*y**3, x, 9) == x**8*y**11/12 - \ x**8*y**9/720 + x**7*y**9/12 - x**7*y**7/5040 - x**6*y**9/6 + \ x**6*y**7/24 - x**5*y**7/2 + x**5*y**5/120 - x**4*y**5/2 - \ x**3*y**3/6 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[sin(a), cos(a), a]) assert rs_sin(x + a, x, 5) == sin(a)*x**4/24 - cos(a)*x**3/6 - \ sin(a)*x**2/2 + cos(a)*x + sin(a) assert rs_sin(x + x**2*y + a, x, 5) == -sin(a)*x**4*y**2/2 - \ cos(a)*x**4*y/2 + sin(a)*x**4/24 - sin(a)*x**3*y - cos(a)*x**3/6 + \ cos(a)*x**2*y - sin(a)*x**2/2 + cos(a)*x + sin(a) R, x, y = ring('x, y', EX) assert rs_sin(x + a, x, 5) == EX(sin(a)/24)*x**4 - EX(cos(a)/6)*x**3 - \ EX(sin(a)/2)*x**2 + EX(cos(a))*x + EX(sin(a)) assert rs_sin(x + x**2*y + a, x, 5) == -EX(sin(a)/2)*x**4*y**2 - \ EX(cos(a)/2)*x**4*y + EX(sin(a)/24)*x**4 - EX(sin(a))*x**3*y - \ EX(cos(a)/6)*x**3 + EX(cos(a))*x**2*y - EX(sin(a)/2)*x**2 + \ EX(cos(a))*x + EX(sin(a)) def test_cos(): R, x, y = ring('x, y', QQ) assert rs_cos(x, x, 9)/x**5 == \ Rational(1, 40320)*x**3 - Rational(1, 720)*x + Rational(1, 24)*x**(-1) - S.Half*x**(-3) + x**(-5) assert rs_cos(x*y + x**2*y**3, x, 9) == x**8*y**12/24 - \ x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 - \ x**7*y**8/120 + x**6*y**8/4 - x**6*y**6/720 + x**5*y**6/6 - \ x**4*y**6/2 + x**4*y**4/24 - x**3*y**4 - x**2*y**2/2 + 1 # Constant term in series a = symbols('a') R, x, y = ring('x, y', QQ[sin(a), cos(a), a]) assert rs_cos(x + a, x, 5) == cos(a)*x**4/24 + sin(a)*x**3/6 - \ cos(a)*x**2/2 - sin(a)*x + cos(a) assert rs_cos(x + x**2*y + a, x, 5) == -cos(a)*x**4*y**2/2 + \ sin(a)*x**4*y/2 + cos(a)*x**4/24 - cos(a)*x**3*y + sin(a)*x**3/6 - \ sin(a)*x**2*y - cos(a)*x**2/2 - sin(a)*x + cos(a) R, x, y = ring('x, y', EX) assert rs_cos(x + a, x, 5) == EX(cos(a)/24)*x**4 + EX(sin(a)/6)*x**3 - \ EX(cos(a)/2)*x**2 - EX(sin(a))*x + EX(cos(a)) assert rs_cos(x + x**2*y + a, x, 5) == -EX(cos(a)/2)*x**4*y**2 + \ EX(sin(a)/2)*x**4*y + EX(cos(a)/24)*x**4 - EX(cos(a))*x**3*y + \ EX(sin(a)/6)*x**3 - EX(sin(a))*x**2*y - EX(cos(a)/2)*x**2 - \ EX(sin(a))*x + EX(cos(a)) def test_cos_sin(): R, x, y = ring('x, y', QQ) cos, sin = rs_cos_sin(x, x, 9) assert cos == rs_cos(x, x, 9) assert sin == rs_sin(x, x, 9) cos, sin = rs_cos_sin(x + x*y, x, 5) assert cos == rs_cos(x + x*y, x, 5) assert sin == rs_sin(x + x*y, x, 5) def test_atanh(): R, x, y = ring('x, y', QQ) assert rs_atanh(x, x, 9)/x**5 == Rational(1, 7)*x**2 + Rational(1, 5) + Rational(1, 3)*x**(-2) + x**(-4) assert rs_atanh(x*y + x**2*y**3, x, 9) == 2*x**8*y**11 + x**8*y**9 + \ 2*x**7*y**9 + x**7*y**7/7 + x**6*y**9/3 + x**6*y**7 + x**5*y**7 + \ x**5*y**5/5 + x**4*y**5 + x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_atanh(x + a, x, 5) == EX((a**3 + a)/(a**8 - 4*a**6 + 6*a**4 - \ 4*a**2 + 1))*x**4 - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + \ 9*a**2 - 3))*x**3 + EX(a/(a**4 - 2*a**2 + 1))*x**2 - EX(1/(a**2 - \ 1))*x + EX(atanh(a)) assert rs_atanh(x + x**2*y + a, x, 4) == EX(2*a/(a**4 - 2*a**2 + \ 1))*x**3*y - EX((3*a**2 + 1)/(3*a**6 - 9*a**4 + 9*a**2 - 3))*x**3 - \ EX(1/(a**2 - 1))*x**2*y + EX(a/(a**4 - 2*a**2 + 1))*x**2 - \ EX(1/(a**2 - 1))*x + EX(atanh(a)) p = x + x**2 + 5 assert rs_atanh(p, x, 10).compose(x, 10) == EX(Rational(-733442653682135, 5079158784) \ + atanh(5)) def test_sinh(): R, x, y = ring('x, y', QQ) assert rs_sinh(x, x, 9)/x**5 == Rational(1, 5040)*x**2 + Rational(1, 120) + Rational(1, 6)*x**(-2) + x**(-4) assert rs_sinh(x*y + x**2*y**3, x, 9) == x**8*y**11/12 + \ x**8*y**9/720 + x**7*y**9/12 + x**7*y**7/5040 + x**6*y**9/6 + \ x**6*y**7/24 + x**5*y**7/2 + x**5*y**5/120 + x**4*y**5/2 + \ x**3*y**3/6 + x**2*y**3 + x*y def test_cosh(): R, x, y = ring('x, y', QQ) assert rs_cosh(x, x, 9)/x**5 == Rational(1, 40320)*x**3 + Rational(1, 720)*x + Rational(1, 24)*x**(-1) + \ S.Half*x**(-3) + x**(-5) assert rs_cosh(x*y + x**2*y**3, x, 9) == x**8*y**12/24 + \ x**8*y**10/48 + x**8*y**8/40320 + x**7*y**10/6 + \ x**7*y**8/120 + x**6*y**8/4 + x**6*y**6/720 + x**5*y**6/6 + \ x**4*y**6/2 + x**4*y**4/24 + x**3*y**4 + x**2*y**2/2 + 1 def test_tanh(): R, x, y = ring('x, y', QQ) assert rs_tanh(x, x, 9)/x**5 == Rational(-17, 315)*x**2 + Rational(2, 15) - Rational(1, 3)*x**(-2) + x**(-4) assert rs_tanh(x*y + x**2*y**3, x, 9) == 4*x**8*y**11/3 - \ 17*x**8*y**9/45 + 4*x**7*y**9/3 - 17*x**7*y**7/315 - x**6*y**9/3 + \ 2*x**6*y**7/3 - x**5*y**7 + 2*x**5*y**5/15 - x**4*y**5 - \ x**3*y**3/3 + x**2*y**3 + x*y # Constant term in series a = symbols('a') R, x, y = ring('x, y', EX) assert rs_tanh(x + a, x, 5) == EX(tanh(a)**5 - 5*tanh(a)**3/3 + 2*tanh(a)/3)*x**4 + EX(-tanh(a)**4 + 4*tanh(a)**2/3 - QQ(1, 3))*x**3 + \ EX(tanh(a)**3 - tanh(a))*x**2 + EX(-tanh(a)**2 + 1)*x + EX(tanh(a)) p = rs_tanh(x + x**2*y + a, x, 4) assert (p.compose(x, 10)).compose(y, 5) == EX(-1000*tanh(a)**4 + \ 10100*tanh(a)**3 + 2470*tanh(a)**2/3 - 10099*tanh(a) + QQ(530, 3)) def test_RR(): rs_funcs = [rs_sin, rs_cos, rs_tan, rs_cot, rs_atan, rs_tanh] sympy_funcs = [sin, cos, tan, cot, atan, tanh] R, x, y = ring('x, y', RR) a = symbols('a') for rs_func, sympy_func in zip(rs_funcs, sympy_funcs): p = rs_func(2 + x, x, 5).compose(x, 5) q = sympy_func(2 + a).series(a, 0, 5).removeO() is_close(p.as_expr(), q.subs(a, 5).n()) p = rs_nth_root(2 + x, 5, x, 5).compose(x, 5) q = ((2 + a)**QQ(1, 5)).series(a, 0, 5).removeO() is_close(p.as_expr(), q.subs(a, 5).n()) def test_is_regular(): R, x, y = ring('x, y', QQ) p = 1 + 2*x + x**2 + 3*x**3 assert not rs_is_puiseux(p, x) p = x + x**QQ(1,5)*y assert rs_is_puiseux(p, x) assert not rs_is_puiseux(p, y) p = x + x**2*y**QQ(1,5)*y assert not rs_is_puiseux(p, x) def test_puiseux(): R, x, y = ring('x, y', QQ) p = x**QQ(2,5) + x**QQ(2,3) + x r = rs_series_inversion(p, x, 1) r1 = -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + x**QQ(2,3) + \ 2*x**QQ(7,15) - x**QQ(2,5) - x**QQ(1,5) + x**QQ(2,15) - x**QQ(-2,15) \ + x**QQ(-2,5) assert r == r1 r = rs_nth_root(1 + p, 3, x, 1) assert r == -x**QQ(4,5)/9 + x**QQ(2,3)/3 + x**QQ(2,5)/3 + 1 r = rs_log(1 + p, x, 1) assert r == -x**QQ(4,5)/2 + x**QQ(2,3) + x**QQ(2,5) r = rs_LambertW(p, x, 1) assert r == -x**QQ(4,5) + x**QQ(2,3) + x**QQ(2,5) p1 = x + x**QQ(1,5)*y r = rs_exp(p1, x, 1) assert r == x**QQ(4,5)*y**4/24 + x**QQ(3,5)*y**3/6 + x**QQ(2,5)*y**2/2 + \ x**QQ(1,5)*y + 1 r = rs_atan(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) r = rs_atan(p1, x, 2) assert r == x**QQ(9,5)*y**9/9 + x**QQ(9,5)*y**4 - x**QQ(7,5)*y**7/7 - \ x**QQ(7,5)*y**2 + x*y**5/5 + x - x**QQ(3,5)*y**3/3 + x**QQ(1,5)*y r = rs_asin(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cot(p, x, 1) assert r == -x**QQ(14,15) + x**QQ(4,5) - 3*x**QQ(11,15) + \ 2*x**QQ(2,3)/3 + 2*x**QQ(7,15) - 4*x**QQ(2,5)/3 - x**QQ(1,5) + \ x**QQ(2,15) - x**QQ(-2,15) + x**QQ(-2,5) r = rs_cos_sin(p, x, 2) assert r[0] == x**QQ(28,15)/6 - x**QQ(5,3) + x**QQ(8,5)/24 - x**QQ(7,5) - \ x**QQ(4,3)/2 - x**QQ(16,15) - x**QQ(4,5)/2 + 1 assert r[1] == -x**QQ(9,5)/2 - x**QQ(26,15)/2 - x**QQ(22,15)/2 - \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_atanh(p, x, 2) assert r == x**QQ(9,5) + x**QQ(26,15) + x**QQ(22,15) + x**QQ(6,5)/3 + x + \ x**QQ(2,3) + x**QQ(2,5) r = rs_sinh(p, x, 2) assert r == x**QQ(9,5)/2 + x**QQ(26,15)/2 + x**QQ(22,15)/2 + \ x**QQ(6,5)/6 + x + x**QQ(2,3) + x**QQ(2,5) r = rs_cosh(p, x, 2) assert r == x**QQ(28,15)/6 + x**QQ(5,3) + x**QQ(8,5)/24 + x**QQ(7,5) + \ x**QQ(4,3)/2 + x**QQ(16,15) + x**QQ(4,5)/2 + 1 r = rs_tanh(p, x, 2) assert r == -x**QQ(9,5) - x**QQ(26,15) - x**QQ(22,15) - x**QQ(6,5)/3 + \ x + x**QQ(2,3) + x**QQ(2,5) def test1(): R, x = ring('x', QQ) r = rs_sin(x, x, 15)*x**(-5) assert r == x**8/6227020800 - x**6/39916800 + x**4/362880 - x**2/5040 + \ QQ(1,120) - x**-2/6 + x**-4 p = rs_sin(x, x, 10) r = rs_nth_root(p, 2, x, 10) assert r == -67*x**QQ(17,2)/29030400 - x**QQ(13,2)/24192 + \ x**QQ(9,2)/1440 - x**QQ(5,2)/12 + x**QQ(1,2) p = rs_sin(x, x, 10) r = rs_nth_root(p, 7, x, 10) r = rs_pow(r, 5, x, 10) assert r == -97*x**QQ(61,7)/124467840 - x**QQ(47,7)/16464 + \ 11*x**QQ(33,7)/3528 - 5*x**QQ(19,7)/42 + x**QQ(5,7) r = rs_exp(x**QQ(1,2), x, 10) assert r == x**QQ(19,2)/121645100408832000 + x**9/6402373705728000 + \ x**QQ(17,2)/355687428096000 + x**8/20922789888000 + \ x**QQ(15,2)/1307674368000 + x**7/87178291200 + \ x**QQ(13,2)/6227020800 + x**6/479001600 + x**QQ(11,2)/39916800 + \ x**5/3628800 + x**QQ(9,2)/362880 + x**4/40320 + x**QQ(7,2)/5040 + \ x**3/720 + x**QQ(5,2)/120 + x**2/24 + x**QQ(3,2)/6 + x/2 + \ x**QQ(1,2) + 1 def test_puiseux2(): R, y = ring('y', QQ) S, x = ring('x', R) p = x + x**QQ(1,5)*y r = rs_atan(p, x, 3) assert r == (y**13/13 + y**8 + 2*y**3)*x**QQ(13,5) - (y**11/11 + y**6 + y)*x**QQ(11,5) + (y**9/9 + y**4)*x**QQ(9,5) - (y**7/7 + y**2)*x**QQ(7,5) + (y**5/5 + 1)*x - y**3*x**QQ(3,5)/3 + y*x**QQ(1,5) def test_rs_series(): x, a, b, c = symbols('x, a, b, c') assert rs_series(a, a, 5).as_expr() == a assert rs_series(sin(a), a, 5).as_expr() == (sin(a).series(a, 0, 5)).removeO() assert rs_series(sin(a) + cos(a), a, 5).as_expr() == ((sin(a) + cos(a)).series(a, 0, 5)).removeO() assert rs_series(sin(a)*cos(a), a, 5).as_expr() == ((sin(a)* cos(a)).series(a, 0, 5)).removeO() p = (sin(a) - a)*(cos(a**2) + a**4/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a**2/2 + a/3) + cos(a/5)*sin(a/2)**3 assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(x**2 + a)*(cos(x**3 - 1) - a - a**2) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = sin(a**2 - a/3 + 2)**5*exp(a**3 - a/2) assert expand(rs_series(p, a, 10).as_expr()) == expand(p.series(a, 0, 10).removeO()) p = sin(a + b + c) assert expand(rs_series(p, a, 5).as_expr()) == expand(p.series(a, 0, 5).removeO()) p = tan(sin(a**2 + 4) + b + c) assert expand(rs_series(p, a, 6).as_expr()) == expand(p.series(a, 0, 6).removeO()) p = a**QQ(2,5) + a**QQ(2,3) + a r = rs_series(tan(p), a, 2) assert r.as_expr() == a**QQ(9,5) + a**QQ(26,15) + a**QQ(22,15) + a**QQ(6,5)/3 + \ a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(exp(p), a, 1) assert r.as_expr() == a**QQ(4,5)/2 + a**QQ(2,3) + a**QQ(2,5) + 1 r = rs_series(sin(p), a, 2) assert r.as_expr() == -a**QQ(9,5)/2 - a**QQ(26,15)/2 - a**QQ(22,15)/2 - \ a**QQ(6,5)/6 + a + a**QQ(2,3) + a**QQ(2,5) r = rs_series(cos(p), a, 2) assert r.as_expr() == a**QQ(28,15)/6 - a**QQ(5,3) + a**QQ(8,5)/24 - a**QQ(7,5) - \ a**QQ(4,3)/2 - a**QQ(16,15) - a**QQ(4,5)/2 + 1 assert rs_series(sin(a)/7, a, 5).as_expr() == (sin(a)/7).series(a, 0, 5).removeO() assert rs_series(log(1 + x), x, 5).as_expr() == -x**4/4 + x**3/3 - \ x**2/2 + x assert rs_series(log(1 + 4*x), x, 5).as_expr() == -64*x**4 + 64*x**3/3 - \ 8*x**2 + 4*x assert rs_series(log(1 + x + x**2), x, 10).as_expr() == -2*x**9/9 + \ x**8/8 + x**7/7 - x**6/3 + x**5/5 + x**4/4 - 2*x**3/3 + \ x**2/2 + x assert rs_series(log(1 + x*a**2), x, 7).as_expr() == -x**6*a**12/6 + \ x**5*a**10/5 - x**4*a**8/4 + x**3*a**6/3 - \ x**2*a**4/2 + x*a**2
851aaa0b94d847c59f5cd9cdace52ca857d0a079057bf4bda62d6561ef2cfd73
"""Tests for Dixon's and Macaulay's classes. """ from sympy import Matrix from sympy.core import symbols from sympy.tensor.indexed import IndexedBase from sympy.polys.multivariate_resultants import (DixonResultant, MacaulayResultant) c, d = symbols("a, b") x, y = symbols("x, y") p = c * x + y q = x + d * y dixon = DixonResultant(polynomials=[p, q], variables=[x, y]) macaulay = MacaulayResultant(polynomials=[p, q], variables=[x, y]) def test_dixon_resultant_init(): """Test init method of DixonResultant.""" a = IndexedBase("alpha") assert dixon.polynomials == [p, q] assert dixon.variables == [x, y] assert dixon.n == 2 assert dixon.m == 2 assert dixon.dummy_variables == [a[0], a[1]] def test_get_dixon_polynomial_numerical(): """Test Dixon's polynomial for a numerical example.""" a = IndexedBase("alpha") p = x + y q = x ** 2 + y **3 h = x ** 2 + y dixon = DixonResultant([p, q, h], [x, y]) polynomial = -x * y ** 2 * a[0] - x * y ** 2 * a[1] - x * y * a[0] \ * a[1] - x * y * a[1] ** 2 - x * a[0] * a[1] ** 2 + x * a[0] - \ y ** 2 * a[0] * a[1] + y ** 2 * a[1] - y * a[0] * a[1] ** 2 + y * \ a[1] ** 2 assert dixon.get_dixon_polynomial().factor() == polynomial def test_get_max_degrees(): """Tests max degrees function.""" p = x + y q = x ** 2 + y **3 h = x ** 2 + y dixon = DixonResultant(polynomials=[p, q, h], variables=[x, y]) dixon_polynomial = dixon.get_dixon_polynomial() assert dixon.get_max_degrees(dixon_polynomial) == [1, 2] def test_get_dixon_matrix(): """Test Dixon's resultant for a numerical example.""" x, y = symbols('x, y') p = x + y q = x ** 2 + y ** 3 h = x ** 2 + y dixon = DixonResultant([p, q, h], [x, y]) polynomial = dixon.get_dixon_polynomial() assert dixon.get_dixon_matrix(polynomial).det() == 0 def test_get_dixon_matrix_example_two(): """Test Dixon's matrix for example from [Palancz08]_.""" x, y, z = symbols('x, y, z') f = x ** 2 + y ** 2 - 1 + z * 0 g = x ** 2 + z ** 2 - 1 + y * 0 h = y ** 2 + z ** 2 - 1 example_two = DixonResultant([f, g, h], [y, z]) poly = example_two.get_dixon_polynomial() matrix = example_two.get_dixon_matrix(poly) expr = 1 - 8 * x ** 2 + 24 * x ** 4 - 32 * x ** 6 + 16 * x ** 8 assert (matrix.det() - expr).expand() == 0 def test_KSY_precondition(): """Tests precondition for KSY Resultant.""" A, B, C = symbols('A, B, C') m1 = Matrix([[1, 2, 3], [4, 5, 12], [6, 7, 18]]) m2 = Matrix([[0, C**2], [-2 * C, -C ** 2]]) m3 = Matrix([[1, 0], [0, 1]]) m4 = Matrix([[A**2, 0, 1], [A, 1, 1 / A]]) m5 = Matrix([[5, 1], [2, B], [0, 1], [0, 0]]) assert dixon.KSY_precondition(m1) == False assert dixon.KSY_precondition(m2) == True assert dixon.KSY_precondition(m3) == True assert dixon.KSY_precondition(m4) == False assert dixon.KSY_precondition(m5) == True def test_delete_zero_rows_and_columns(): """Tests method for deleting rows and columns containing only zeros.""" A, B, C = symbols('A, B, C') m1 = Matrix([[0, 0], [0, 0], [1, 2]]) m2 = Matrix([[0, 1, 2], [0, 3, 4], [0, 5, 6]]) m3 = Matrix([[0, 0, 0, 0], [0, 1, 2, 0], [0, 3, 4, 0], [0, 0, 0, 0]]) m4 = Matrix([[1, 0, 2], [0, 0, 0], [3, 0, 4]]) m5 = Matrix([[0, 0, 0, 1], [0, 0, 0, 2], [0, 0, 0, 3], [0, 0, 0, 4]]) m6 = Matrix([[0, 0, A], [B, 0, 0], [0, 0, C]]) assert dixon.delete_zero_rows_and_columns(m1) == Matrix([[1, 2]]) assert dixon.delete_zero_rows_and_columns(m2) == Matrix([[1, 2], [3, 4], [5, 6]]) assert dixon.delete_zero_rows_and_columns(m3) == Matrix([[1, 2], [3, 4]]) assert dixon.delete_zero_rows_and_columns(m4) == Matrix([[1, 2], [3, 4]]) assert dixon.delete_zero_rows_and_columns(m5) == Matrix([[1], [2], [3], [4]]) assert dixon.delete_zero_rows_and_columns(m6) == Matrix([[0, A], [B, 0], [0, C]]) def test_product_leading_entries(): """Tests product of leading entries method.""" A, B = symbols('A, B') m1 = Matrix([[1, 2, 3], [0, 4, 5], [0, 0, 6]]) m2 = Matrix([[0, 0, 1], [2, 0, 3]]) m3 = Matrix([[0, 0, 0], [1, 2, 3], [0, 0, 0]]) m4 = Matrix([[0, 0, A], [1, 2, 3], [B, 0, 0]]) assert dixon.product_leading_entries(m1) == 24 assert dixon.product_leading_entries(m2) == 2 assert dixon.product_leading_entries(m3) == 1 assert dixon.product_leading_entries(m4) == A * B def test_get_KSY_Dixon_resultant_example_one(): """Tests the KSY Dixon resultant for example one""" x, y, z = symbols('x, y, z') p = x * y * z q = x**2 - z**2 h = x + y + z dixon = DixonResultant([p, q, h], [x, y]) dixon_poly = dixon.get_dixon_polynomial() dixon_matrix = dixon.get_dixon_matrix(dixon_poly) D = dixon.get_KSY_Dixon_resultant(dixon_matrix) assert D == -z**3 def test_get_KSY_Dixon_resultant_example_two(): """Tests the KSY Dixon resultant for example two""" x, y, A = symbols('x, y, A') p = x * y + x * A + x - A**2 - A + y**2 + y q = x**2 + x * A - x + x * y + y * A - y h = x**2 + x * y + 2 * x - x * A - y * A - 2 * A dixon = DixonResultant([p, q, h], [x, y]) dixon_poly = dixon.get_dixon_polynomial() dixon_matrix = dixon.get_dixon_matrix(dixon_poly) from sympy import factor, simplify D = factor(dixon.get_KSY_Dixon_resultant(dixon_matrix)) assert D == -8*A*(A - 1)*(A + 2)*(2*A - 1)**2 def test_macaulay_resultant_init(): """Test init method of MacaulayResultant.""" assert macaulay.polynomials == [p, q] assert macaulay.variables == [x, y] assert macaulay.n == 2 assert macaulay.degrees == [1, 1] assert macaulay.degree_m == 1 assert macaulay.monomials_size == 2 def test_get_degree_m(): assert macaulay._get_degree_m() == 1 def test_get_size(): assert macaulay.get_size() == 2 def test_macaulay_example_one(): """Tests the Macaulay for example from [Bruce97]_""" x, y, z = symbols('x, y, z') a_1_1, a_1_2, a_1_3 = symbols('a_1_1, a_1_2, a_1_3') a_2_2, a_2_3, a_3_3 = symbols('a_2_2, a_2_3, a_3_3') b_1_1, b_1_2, b_1_3 = symbols('b_1_1, b_1_2, b_1_3') b_2_2, b_2_3, b_3_3 = symbols('b_2_2, b_2_3, b_3_3') c_1, c_2, c_3 = symbols('c_1, c_2, c_3') f_1 = a_1_1 * x ** 2 + a_1_2 * x * y + a_1_3 * x * z + \ a_2_2 * y ** 2 + a_2_3 * y * z + a_3_3 * z ** 2 f_2 = b_1_1 * x ** 2 + b_1_2 * x * y + b_1_3 * x * z + \ b_2_2 * y ** 2 + b_2_3 * y * z + b_3_3 * z ** 2 f_3 = c_1 * x + c_2 * y + c_3 * z mac = MacaulayResultant([f_1, f_2, f_3], [x, y, z]) assert mac.degrees == [2, 2, 1] assert mac.degree_m == 3 assert mac.monomial_set == [x ** 3, x ** 2 * y, x ** 2 * z, x * y ** 2, x * y * z, x * z ** 2, y ** 3, y ** 2 *z, y * z ** 2, z ** 3] assert mac.monomials_size == 10 assert mac.get_row_coefficients() == [[x, y, z], [x, y, z], [x * y, x * z, y * z, z ** 2]] matrix = mac.get_matrix() assert matrix.shape == (mac.monomials_size, mac.monomials_size) assert mac.get_submatrix(matrix) == Matrix([[a_1_1, a_2_2], [b_1_1, b_2_2]]) def test_macaulay_example_two(): """Tests the Macaulay formulation for example from [Stiller96]_.""" x, y, z = symbols('x, y, z') a_0, a_1, a_2 = symbols('a_0, a_1, a_2') b_0, b_1, b_2 = symbols('b_0, b_1, b_2') c_0, c_1, c_2, c_3, c_4 = symbols('c_0, c_1, c_2, c_3, c_4') f = a_0 * y - a_1 * x + a_2 * z g = b_1 * x ** 2 + b_0 * y ** 2 - b_2 * z ** 2 h = c_0 * y - c_1 * x ** 3 + c_2 * x ** 2 * z - c_3 * x * z ** 2 + \ c_4 * z ** 3 mac = MacaulayResultant([f, g, h], [x, y, z]) assert mac.degrees == [1, 2, 3] assert mac.degree_m == 4 assert mac.monomials_size == 15 assert len(mac.get_row_coefficients()) == mac.n matrix = mac.get_matrix() assert matrix.shape == (mac.monomials_size, mac.monomials_size) assert mac.get_submatrix(matrix) == Matrix([[-a_1, a_0, a_2, 0], [0, -a_1, 0, 0], [0, 0, -a_1, 0], [0, 0, 0, -a_1]])
d5bb048a5792bf61d581b43d88c6c6a5173fe3f2da58b9effdb0a331f653e096
"""Tests for tools for constructing domains for expressions. """ from sympy.polys.constructor import construct_domain from sympy.polys.domains import ZZ, QQ, RR, EX from sympy.polys.domains.realfield import RealField from sympy import S, sqrt, sin, Float, E, GoldenRatio, pi, Catalan, Rational from sympy.abc import x, y def test_construct_domain(): assert construct_domain([1, 2, 3]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([1, 2, 3], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S.One, S(2), S(3)]) == (ZZ, [ZZ(1), ZZ(2), ZZ(3)]) assert construct_domain([S.One, S(2), S(3)], field=True) == (QQ, [QQ(1), QQ(2), QQ(3)]) assert construct_domain([S.Half, S(2)]) == (QQ, [QQ(1, 2), QQ(2)]) result = construct_domain([3.14, 1, S.Half]) assert isinstance(result[0], RealField) assert result[1] == [RR(3.14), RR(1.0), RR(0.5)] assert construct_domain([3.14, sqrt(2)], extension=None) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([3.14, sqrt(2)], extension=True) == (EX, [EX(3.14), EX(sqrt(2))]) assert construct_domain([1, sqrt(2)], extension=None) == (EX, [EX(1), EX(sqrt(2))]) assert construct_domain([x, sqrt(x)]) == (EX, [EX(x), EX(sqrt(x))]) assert construct_domain([x, sqrt(x), sqrt(y)]) == (EX, [EX(x), EX(sqrt(x)), EX(sqrt(y))]) alg = QQ.algebraic_field(sqrt(2)) assert construct_domain([7, S.Half, sqrt(2)], extension=True) == \ (alg, [alg.convert(7), alg.convert(S.Half), alg.convert(sqrt(2))]) alg = QQ.algebraic_field(sqrt(2) + sqrt(3)) assert construct_domain([7, sqrt(2), sqrt(3)], extension=True) == \ (alg, [alg.convert(7), alg.convert(sqrt(2)), alg.convert(sqrt(3))]) dom = ZZ[x] assert construct_domain([2*x, 3]) == \ (dom, [dom.convert(2*x), dom.convert(3)]) dom = ZZ[x, y] assert construct_domain([2*x, 3*y]) == \ (dom, [dom.convert(2*x), dom.convert(3*y)]) dom = QQ[x] assert construct_domain([x/2, 3]) == \ (dom, [dom.convert(x/2), dom.convert(3)]) dom = QQ[x, y] assert construct_domain([x/2, 3*y]) == \ (dom, [dom.convert(x/2), dom.convert(3*y)]) dom = RR[x] assert construct_domain([x/2, 3.5]) == \ (dom, [dom.convert(x/2), dom.convert(3.5)]) dom = RR[x, y] assert construct_domain([x/2, 3.5*y]) == \ (dom, [dom.convert(x/2), dom.convert(3.5*y)]) dom = ZZ.frac_field(x) assert construct_domain([2/x, 3]) == \ (dom, [dom.convert(2/x), dom.convert(3)]) dom = ZZ.frac_field(x, y) assert construct_domain([2/x, 3*y]) == \ (dom, [dom.convert(2/x), dom.convert(3*y)]) dom = RR.frac_field(x) assert construct_domain([2/x, 3.5]) == \ (dom, [dom.convert(2/x), dom.convert(3.5)]) dom = RR.frac_field(x, y) assert construct_domain([2/x, 3.5*y]) == \ (dom, [dom.convert(2/x), dom.convert(3.5*y)]) dom = RealField(prec=336)[x] assert construct_domain([pi.evalf(100)*x]) == \ (dom, [dom.convert(pi.evalf(100)*x)]) assert construct_domain(2) == (ZZ, ZZ(2)) assert construct_domain(S(2)/3) == (QQ, QQ(2, 3)) assert construct_domain(Rational(2, 3)) == (QQ, QQ(2, 3)) assert construct_domain({}) == (ZZ, {}) def test_composite_option(): assert construct_domain({(1,): sin(y)}, composite=False) == \ (EX, {(1,): EX(sin(y))}) assert construct_domain({(1,): y}, composite=False) == \ (EX, {(1,): EX(y)}) assert construct_domain({(1, 1): 1}, composite=False) == \ (ZZ, {(1, 1): 1}) assert construct_domain({(1, 0): y}, composite=False) == \ (EX, {(1, 0): EX(y)}) def test_precision(): f1 = Float("1.01") f2 = Float("1.0000000000000000000001") for u in [1, 1e-2, 1e-6, 1e-13, 1e-14, 1e-16, 1e-20, 1e-100, 1e-300, f1, f2]: result = construct_domain([u]) v = float(result[1][0]) assert abs(u - v) / u < 1e-14 # Test relative accuracy result = construct_domain([f1]) y = result[1][0] assert y-1 > 1e-50 result = construct_domain([f2]) y = result[1][0] assert y-1 > 1e-50 def test_issue_11538(): for n in [E, pi, Catalan]: assert construct_domain(n)[0] == ZZ[n] assert construct_domain(x + n)[0] == ZZ[x, n] assert construct_domain(GoldenRatio)[0] == EX assert construct_domain(x + GoldenRatio)[0] == EX
1d9894ac2d1ba62ef68d9cc5ae4e2395445ad92ced205a6fadc8181fe6c216a2
"""Tests for computational algebraic number field theory. """ from sympy import (S, Rational, Symbol, Poly, sqrt, I, oo, Tuple, expand, pi, cos, sin, exp) from sympy.utilities.pytest import raises, slow from sympy.core.compatibility import range from sympy.polys.numberfields import ( minimal_polynomial, primitive_element, is_isomorphism_possible, field_isomorphism_pslq, field_isomorphism, to_number_field, AlgebraicNumber, isolate, IntervalPrinter, ) from sympy.polys.polyerrors import ( IsomorphismFailed, NotAlgebraic, GeneratorsError, ) from sympy.polys.polyclasses import DMP from sympy.polys.domains import QQ from sympy.polys.rootoftools import rootof from sympy.polys.polytools import degree from sympy.abc import x, y, z Q = Rational def test_minimal_polynomial(): assert minimal_polynomial(-7, x) == x + 7 assert minimal_polynomial(-1, x) == x + 1 assert minimal_polynomial( 0, x) == x assert minimal_polynomial( 1, x) == x - 1 assert minimal_polynomial( 7, x) == x - 7 assert minimal_polynomial(sqrt(2), x) == x**2 - 2 assert minimal_polynomial(sqrt(5), x) == x**2 - 5 assert minimal_polynomial(sqrt(6), x) == x**2 - 6 assert minimal_polynomial(2*sqrt(2), x) == x**2 - 8 assert minimal_polynomial(3*sqrt(5), x) == x**2 - 45 assert minimal_polynomial(4*sqrt(6), x) == x**2 - 96 assert minimal_polynomial(2*sqrt(2) + 3, x) == x**2 - 6*x + 1 assert minimal_polynomial(3*sqrt(5) + 6, x) == x**2 - 12*x - 9 assert minimal_polynomial(4*sqrt(6) + 7, x) == x**2 - 14*x - 47 assert minimal_polynomial(2*sqrt(2) - 3, x) == x**2 + 6*x + 1 assert minimal_polynomial(3*sqrt(5) - 6, x) == x**2 + 12*x - 9 assert minimal_polynomial(4*sqrt(6) - 7, x) == x**2 + 14*x - 47 assert minimal_polynomial(sqrt(1 + sqrt(6)), x) == x**4 - 2*x**2 - 5 assert minimal_polynomial(sqrt(I + sqrt(6)), x) == x**8 - 10*x**4 + 49 assert minimal_polynomial(2*I + sqrt(2 + I), x) == x**4 + 4*x**2 + 8*x + 37 assert minimal_polynomial(sqrt(2) + sqrt(3), x) == x**4 - 10*x**2 + 1 assert minimal_polynomial( sqrt(2) + sqrt(3) + sqrt(6), x) == x**4 - 22*x**2 - 48*x - 23 a = 1 - 9*sqrt(2) + 7*sqrt(3) assert minimal_polynomial( 1/a, x) == 392*x**4 - 1232*x**3 + 612*x**2 + 4*x - 1 assert minimal_polynomial( 1/sqrt(a), x) == 392*x**8 - 1232*x**6 + 612*x**4 + 4*x**2 - 1 raises(NotAlgebraic, lambda: minimal_polynomial(oo, x)) raises(NotAlgebraic, lambda: minimal_polynomial(2**y, x)) raises(NotAlgebraic, lambda: minimal_polynomial(sin(1), x)) assert minimal_polynomial(sqrt(2)).dummy_eq(x**2 - 2) assert minimal_polynomial(sqrt(2), x) == x**2 - 2 assert minimal_polynomial(sqrt(2), polys=True) == Poly(x**2 - 2) assert minimal_polynomial(sqrt(2), x, polys=True) == Poly(x**2 - 2) assert minimal_polynomial(sqrt(2), x, polys=True, compose=False) == Poly(x**2 - 2) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) assert minimal_polynomial(a, x) == x**2 - 2 assert minimal_polynomial(b, x) == x**2 - 3 assert minimal_polynomial(a, x, polys=True) == Poly(x**2 - 2) assert minimal_polynomial(b, x, polys=True) == Poly(x**2 - 3) assert minimal_polynomial(sqrt(a/2 + 17), x) == 2*x**4 - 68*x**2 + 577 assert minimal_polynomial(sqrt(b/2 + 17), x) == 4*x**4 - 136*x**2 + 1153 a, b = sqrt(2)/3 + 7, AlgebraicNumber(sqrt(2)/3 + 7) f = 81*x**8 - 2268*x**6 - 4536*x**5 + 22644*x**4 + 63216*x**3 - \ 31608*x**2 - 189648*x + 141358 assert minimal_polynomial(sqrt(a) + sqrt(sqrt(a)), x) == f assert minimal_polynomial(sqrt(b) + sqrt(sqrt(b)), x) == f assert minimal_polynomial( a**Q(3, 2), x) == 729*x**4 - 506898*x**2 + 84604519 # issue 5994 eq = S(''' -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)))''') assert minimal_polynomial(eq, x) == 8000*x**2 - 1 ex = 1 + sqrt(2) + sqrt(3) mp = minimal_polynomial(ex, x) assert mp == x**4 - 4*x**3 - 4*x**2 + 16*x - 8 ex = 1/(1 + sqrt(2) + sqrt(3)) mp = minimal_polynomial(ex, x) assert mp == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = (expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3))**Rational(1, 3) mp = minimal_polynomial(p, x) assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008 p = expand((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3) mp = minimal_polynomial(p, x) assert mp == x**8 - 512*x**7 - 118208*x**6 + 31131136*x**5 + 647362560*x**4 - 56026611712*x**3 + 116994310144*x**2 + 404854931456*x - 27216576512 assert minimal_polynomial(S("-sqrt(5)/2 - 1/2 + (-sqrt(5)/2 - 1/2)**2"), x) == x - 1 a = 1 + sqrt(2) assert minimal_polynomial((a*sqrt(2) + a)**3, x) == x**2 - 198*x + 1 p = 1/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, x, compose=False) == 8*x**4 - 16*x**3 + 4*x**2 + 4*x - 1 p = 2/(1 + sqrt(2) + sqrt(3)) assert minimal_polynomial(p, x, compose=False) == x**4 - 4*x**3 + 2*x**2 + 4*x - 2 assert minimal_polynomial(1 + sqrt(2)*I, x, compose=False) == x**2 - 2*x + 3 assert minimal_polynomial(1/(1 + sqrt(2)) + 1, x, compose=False) == x**2 - 2 assert minimal_polynomial(sqrt(2)*I + I*(1 + sqrt(2)), x, compose=False) == x**4 + 18*x**2 + 49 # minimal polynomial of I assert minimal_polynomial(I, x, domain=QQ.algebraic_field(I)) == x - I K = QQ.algebraic_field(I*(sqrt(2) + 1)) assert minimal_polynomial(I, x, domain=K) == x - I assert minimal_polynomial(I, x, domain=QQ) == x**2 + 1 assert minimal_polynomial(I, x, domain='QQ(y)') == x**2 + 1 def test_minimal_polynomial_hi_prec(): p = 1/sqrt(1 - 9*sqrt(2) + 7*sqrt(3) + Rational(1, 10)**30) mp = minimal_polynomial(p, x) # checked with Wolfram Alpha assert mp.coeff(x**6) == -1232000000000000000000000000001223999999999999999999999999999987999999999999999999999999999996000000000000000000000000000000 def test_minimal_polynomial_sq(): from sympy import Add, expand_multinomial p = expand_multinomial((1 + 5*sqrt(2) + 2*sqrt(3))**3) mp = minimal_polynomial(p**Rational(1, 3), x) assert mp == x**4 - 4*x**3 - 118*x**2 + 244*x + 1321 p = expand_multinomial((1 + sqrt(2) - 2*sqrt(3) + sqrt(7))**3) mp = minimal_polynomial(p**Rational(1, 3), x) assert mp == x**8 - 8*x**7 - 56*x**6 + 448*x**5 + 480*x**4 - 5056*x**3 + 1984*x**2 + 7424*x - 3008 p = Add(*[sqrt(i) for i in range(1, 12)]) mp = minimal_polynomial(p, x) assert mp.subs({x: 0}) == -71965773323122507776 def test_minpoly_compose(): # issue 6868 eq = S(''' -1/(800*sqrt(-1/240 + 1/(18000*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)) + 2*(-1/17280000 + sqrt(15)*I/28800000)**(1/3)))''') mp = minimal_polynomial(eq + 3, x) assert mp == 8000*x**2 - 48000*x + 71999 # issue 5888 assert minimal_polynomial(exp(I*pi/8), x) == x**8 + 1 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(sin(pi/7) + sqrt(2), x) assert mp == 4096*x**12 - 63488*x**10 + 351488*x**8 - 826496*x**6 + \ 770912*x**4 - 268432*x**2 + 28561 mp = minimal_polynomial(cos(pi/7) + sqrt(2), x) assert mp == 64*x**6 - 64*x**5 - 432*x**4 + 304*x**3 + 712*x**2 - \ 232*x - 239 mp = minimal_polynomial(exp(I*pi/7) + sqrt(2), x) assert mp == x**12 - 2*x**11 - 9*x**10 + 16*x**9 + 43*x**8 - 70*x**7 - 97*x**6 + 126*x**5 + 211*x**4 - 212*x**3 - 37*x**2 + 142*x + 127 mp = minimal_polynomial(exp(I*pi*Rational(2, 7)), x) assert mp == x**6 + x**5 + x**4 + x**3 + x**2 + x + 1 mp = minimal_polynomial(exp(I*pi*Rational(2, 15)), x) assert mp == x**8 - x**7 + x**5 - x**4 + x**3 - x + 1 mp = minimal_polynomial(cos(pi*Rational(2, 7)), x) assert mp == 8*x**3 + 4*x**2 - 4*x - 1 mp = minimal_polynomial(sin(pi*Rational(2, 7)), x) ex = (5*cos(pi*Rational(2, 7)) - 7)/(9*cos(pi/7) - 5*cos(pi*Rational(3, 7))) mp = minimal_polynomial(ex, x) assert mp == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(-1/(2*cos(pi/7)), x) == x**3 + 2*x**2 - x - 1 assert minimal_polynomial(sin(pi*Rational(2, 15)), x) == \ 256*x**8 - 448*x**6 + 224*x**4 - 32*x**2 + 1 assert minimal_polynomial(sin(pi*Rational(5, 14)), x) == 8*x**3 - 4*x**2 - 4*x + 1 assert minimal_polynomial(cos(pi/15), x) == 16*x**4 + 8*x**3 - 16*x**2 - 8*x + 1 ex = rootof(x**3 +x*4 + 1, 0) mp = minimal_polynomial(ex, x) assert mp == x**3 + 4*x + 1 mp = minimal_polynomial(ex + 1, x) assert mp == x**3 - 3*x**2 + 7*x - 4 assert minimal_polynomial(exp(I*pi/3), x) == x**2 - x + 1 assert minimal_polynomial(exp(I*pi/4), x) == x**4 + 1 assert minimal_polynomial(exp(I*pi/6), x) == x**4 - x**2 + 1 assert minimal_polynomial(exp(I*pi/9), x) == x**6 - x**3 + 1 assert minimal_polynomial(exp(I*pi/10), x) == x**8 - x**6 + x**4 - x**2 + 1 assert minimal_polynomial(sin(pi/9), x) == 64*x**6 - 96*x**4 + 36*x**2 - 3 assert minimal_polynomial(sin(pi/11), x) == 1024*x**10 - 2816*x**8 + \ 2816*x**6 - 1232*x**4 + 220*x**2 - 11 ex = 2**Rational(1, 3)*exp(Rational(2, 3)*I*pi) assert minimal_polynomial(ex, x) == x**3 - 2 raises(NotAlgebraic, lambda: minimal_polynomial(cos(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(sin(pi*sqrt(2)), x)) raises(NotAlgebraic, lambda: minimal_polynomial(exp(I*pi*sqrt(2)), x)) # issue 5934 ex = 1/(-36000 - 7200*sqrt(5) + (12*sqrt(10)*sqrt(sqrt(5) + 5) + 24*sqrt(10)*sqrt(-sqrt(5) + 5))**2) + 1 raises(ZeroDivisionError, lambda: minimal_polynomial(ex, x)) ex = sqrt(1 + 2**Rational(1,3)) + sqrt(1 + 2**Rational(1,4)) + sqrt(2) mp = minimal_polynomial(ex, x) assert degree(mp) == 48 and mp.subs({x:0}) == -16630256576 def test_minpoly_issue_7113(): # see discussion in https://github.com/sympy/sympy/pull/2234 from sympy.simplify.simplify import nsimplify r = nsimplify(pi, tolerance=0.000000001) mp = minimal_polynomial(r, x) assert mp == 1768292677839237920489538677417507171630859375*x**109 - \ 2734577732179183863586489182929671773182898498218854181690460140337930774573792597743853652058046464 def test_minpoly_issue_7574(): ex = -(-1)**Rational(1, 3) + (-1)**Rational(2,3) assert minimal_polynomial(ex, x) == x + 1 def test_primitive_element(): assert primitive_element([sqrt(2)], x) == (x**2 - 2, [1]) assert primitive_element( [sqrt(2), sqrt(3)], x) == (x**4 - 10*x**2 + 1, [1, 1]) assert primitive_element([sqrt(2)], x, polys=True) == (Poly(x**2 - 2), [1]) assert primitive_element([sqrt( 2), sqrt(3)], x, polys=True) == (Poly(x**4 - 10*x**2 + 1), [1, 1]) assert primitive_element( [sqrt(2)], x, ex=True) == (x**2 - 2, [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True) == \ (x**4 - 10*x**2 + 1, [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [- Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element( [sqrt(2)], x, ex=True, polys=True) == (Poly(x**2 - 2), [1], [[1, 0]]) assert primitive_element([sqrt(2), sqrt(3)], x, ex=True, polys=True) == \ (Poly(x**4 - 10*x**2 + 1), [1, 1], [[Q(1, 2), 0, -Q(9, 2), 0], [-Q(1, 2), 0, Q(11, 2), 0]]) assert primitive_element([sqrt(2)], polys=True) == (Poly(x**2 - 2), [1]) raises(ValueError, lambda: primitive_element([], x, ex=False)) raises(ValueError, lambda: primitive_element([], x, ex=True)) # Issue 14117 a, b = I*sqrt(2*sqrt(2) + 3), I*sqrt(-2*sqrt(2) + 3) assert primitive_element([a, b, I], x) == (x**4 + 6*x**2 + 1, [1, 0, 0]) def test_field_isomorphism_pslq(): a = AlgebraicNumber(I) b = AlgebraicNumber(I*sqrt(3)) raises(NotImplementedError, lambda: field_isomorphism_pslq(a, b)) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) c = AlgebraicNumber(sqrt(7)) d = AlgebraicNumber(sqrt(2) + sqrt(3)) e = AlgebraicNumber(sqrt(2) + sqrt(3) + sqrt(7)) assert field_isomorphism_pslq(a, a) == [1, 0] assert field_isomorphism_pslq(a, b) is None assert field_isomorphism_pslq(a, c) is None assert field_isomorphism_pslq(a, d) == [Q(1, 2), 0, -Q(9, 2), 0] assert field_isomorphism_pslq( a, e) == [Q(1, 80), 0, -Q(1, 2), 0, Q(59, 20), 0] assert field_isomorphism_pslq(b, a) is None assert field_isomorphism_pslq(b, b) == [1, 0] assert field_isomorphism_pslq(b, c) is None assert field_isomorphism_pslq(b, d) == [-Q(1, 2), 0, Q(11, 2), 0] assert field_isomorphism_pslq(b, e) == [-Q( 3, 640), 0, Q(67, 320), 0, -Q(297, 160), 0, Q(313, 80), 0] assert field_isomorphism_pslq(c, a) is None assert field_isomorphism_pslq(c, b) is None assert field_isomorphism_pslq(c, c) == [1, 0] assert field_isomorphism_pslq(c, d) is None assert field_isomorphism_pslq(c, e) == [Q( 3, 640), 0, -Q(71, 320), 0, Q(377, 160), 0, -Q(469, 80), 0] assert field_isomorphism_pslq(d, a) is None assert field_isomorphism_pslq(d, b) is None assert field_isomorphism_pslq(d, c) is None assert field_isomorphism_pslq(d, d) == [1, 0] assert field_isomorphism_pslq(d, e) == [-Q( 3, 640), 0, Q(71, 320), 0, -Q(377, 160), 0, Q(549, 80), 0] assert field_isomorphism_pslq(e, a) is None assert field_isomorphism_pslq(e, b) is None assert field_isomorphism_pslq(e, c) is None assert field_isomorphism_pslq(e, d) is None assert field_isomorphism_pslq(e, e) == [1, 0] f = AlgebraicNumber(3*sqrt(2) + 8*sqrt(7) - 5) assert field_isomorphism_pslq( f, e) == [Q(3, 80), 0, -Q(139, 80), 0, Q(347, 20), 0, -Q(761, 20), -5] def test_field_isomorphism(): assert field_isomorphism(3, sqrt(2)) == [3] assert field_isomorphism( I*sqrt(3), I*sqrt(3)/2) == [ 2, 0] assert field_isomorphism(-I*sqrt(3), I*sqrt(3)/2) == [-2, 0] assert field_isomorphism( I*sqrt(3), -I*sqrt(3)/2) == [-2, 0] assert field_isomorphism(-I*sqrt(3), -I*sqrt(3)/2) == [ 2, 0] assert field_isomorphism( 2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [ Rational(6, 35), 0] assert field_isomorphism(-2*I*sqrt(3)/7, 5*I*sqrt(3)/3) == [Rational(-6, 35), 0] assert field_isomorphism( 2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [Rational(-6, 35), 0] assert field_isomorphism(-2*I*sqrt(3)/7, -5*I*sqrt(3)/3) == [ Rational(6, 35), 0] assert field_isomorphism( 2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [ Rational(6, 35), 27] assert field_isomorphism( -2*I*sqrt(3)/7 + 27, 5*I*sqrt(3)/3) == [Rational(-6, 35), 27] assert field_isomorphism( 2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [Rational(-6, 35), 27] assert field_isomorphism( -2*I*sqrt(3)/7 + 27, -5*I*sqrt(3)/3) == [ Rational(6, 35), 27] p = AlgebraicNumber( sqrt(2) + sqrt(3)) q = AlgebraicNumber(-sqrt(2) + sqrt(3)) r = AlgebraicNumber( sqrt(2) - sqrt(3)) s = AlgebraicNumber(-sqrt(2) - sqrt(3)) pos_coeffs = [ S.Half, S.Zero, Rational(-9, 2), S.Zero] neg_coeffs = [Rational(-1, 2), S.Zero, Rational(9, 2), S.Zero] a = AlgebraicNumber(sqrt(2)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == neg_coeffs assert field_isomorphism(a, p, fast=False) == pos_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == neg_coeffs a = AlgebraicNumber(-sqrt(2)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == pos_coeffs assert field_isomorphism(a, r, fast=True) == neg_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == pos_coeffs assert field_isomorphism(a, r, fast=False) == neg_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs pos_coeffs = [ S.Half, S.Zero, Rational(-11, 2), S.Zero] neg_coeffs = [Rational(-1, 2), S.Zero, Rational(11, 2), S.Zero] a = AlgebraicNumber(sqrt(3)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs a = AlgebraicNumber(-sqrt(3)) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_coeffs assert field_isomorphism(a, q, fast=True) == pos_coeffs assert field_isomorphism(a, r, fast=True) == neg_coeffs assert field_isomorphism(a, s, fast=True) == neg_coeffs assert field_isomorphism(a, p, fast=False) == pos_coeffs assert field_isomorphism(a, q, fast=False) == pos_coeffs assert field_isomorphism(a, r, fast=False) == neg_coeffs assert field_isomorphism(a, s, fast=False) == neg_coeffs pos_coeffs = [ Rational(3, 2), S.Zero, Rational(-33, 2), -S(8)] neg_coeffs = [Rational(-3, 2), S.Zero, Rational(33, 2), -S(8)] a = AlgebraicNumber(3*sqrt(3) - 8) assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == neg_coeffs assert field_isomorphism(a, q, fast=True) == neg_coeffs assert field_isomorphism(a, r, fast=True) == pos_coeffs assert field_isomorphism(a, s, fast=True) == pos_coeffs assert field_isomorphism(a, p, fast=False) == neg_coeffs assert field_isomorphism(a, q, fast=False) == neg_coeffs assert field_isomorphism(a, r, fast=False) == pos_coeffs assert field_isomorphism(a, s, fast=False) == pos_coeffs a = AlgebraicNumber(3*sqrt(2) + 2*sqrt(3) + 1) pos_1_coeffs = [ S.Half, S.Zero, Rational(-5, 2), S.One] neg_5_coeffs = [Rational(-5, 2), S.Zero, Rational(49, 2), S.One] pos_5_coeffs = [ Rational(5, 2), S.Zero, Rational(-49, 2), S.One] neg_1_coeffs = [Rational(-1, 2), S.Zero, Rational(5, 2), S.One] assert is_isomorphism_possible(a, p) is True assert is_isomorphism_possible(a, q) is True assert is_isomorphism_possible(a, r) is True assert is_isomorphism_possible(a, s) is True assert field_isomorphism(a, p, fast=True) == pos_1_coeffs assert field_isomorphism(a, q, fast=True) == neg_5_coeffs assert field_isomorphism(a, r, fast=True) == pos_5_coeffs assert field_isomorphism(a, s, fast=True) == neg_1_coeffs assert field_isomorphism(a, p, fast=False) == pos_1_coeffs assert field_isomorphism(a, q, fast=False) == neg_5_coeffs assert field_isomorphism(a, r, fast=False) == pos_5_coeffs assert field_isomorphism(a, s, fast=False) == neg_1_coeffs a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(3)) c = AlgebraicNumber(sqrt(7)) assert is_isomorphism_possible(a, b) is True assert is_isomorphism_possible(b, a) is True assert is_isomorphism_possible(c, p) is False assert field_isomorphism(sqrt(2), sqrt(3), fast=True) is None assert field_isomorphism(sqrt(3), sqrt(2), fast=True) is None assert field_isomorphism(sqrt(2), sqrt(3), fast=False) is None assert field_isomorphism(sqrt(3), sqrt(2), fast=False) is None def test_to_number_field(): assert to_number_field(sqrt(2)) == AlgebraicNumber(sqrt(2)) assert to_number_field( [sqrt(2), sqrt(3)]) == AlgebraicNumber(sqrt(2) + sqrt(3)) a = AlgebraicNumber(sqrt(2) + sqrt(3), [S.Half, S.Zero, Rational(-9, 2), S.Zero]) assert to_number_field(sqrt(2), sqrt(2) + sqrt(3)) == a assert to_number_field(sqrt(2), AlgebraicNumber(sqrt(2) + sqrt(3))) == a raises(IsomorphismFailed, lambda: to_number_field(sqrt(2), sqrt(3))) def test_AlgebraicNumber(): minpoly, root = x**2 - 2, sqrt(2) a = AlgebraicNumber(root, gen=x) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [S.One, S.Zero] assert a.native_coeffs() == [QQ(1), QQ(0)] a = AlgebraicNumber(root, gen=x, alias='y') assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True a = AlgebraicNumber(root, gen=x, alias=Symbol('y')) assert a.rep == DMP([QQ(1), QQ(0)], QQ) assert a.root == root assert a.alias == Symbol('y') assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is True assert AlgebraicNumber(sqrt(2), []).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), ()).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), (0, 0)).rep == DMP([], QQ) assert AlgebraicNumber(sqrt(2), [8]).rep == DMP([QQ(8)], QQ) assert AlgebraicNumber(sqrt(2), [Rational(8, 3)]).rep == DMP([QQ(8, 3)], QQ) assert AlgebraicNumber(sqrt(2), [7, 3]).rep == DMP([QQ(7), QQ(3)], QQ) assert AlgebraicNumber( sqrt(2), [Rational(7, 9), Rational(3, 2)]).rep == DMP([QQ(7, 9), QQ(3, 2)], QQ) assert AlgebraicNumber(sqrt(2), [1, 2, 3]).rep == DMP([QQ(2), QQ(5)], QQ) a = AlgebraicNumber(AlgebraicNumber(root, gen=x), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert a.coeffs() == [S.One, S(2)] assert a.native_coeffs() == [QQ(1), QQ(2)] a = AlgebraicNumber((minpoly, root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False a = AlgebraicNumber((Poly(minpoly), root), [1, 2]) assert a.rep == DMP([QQ(1), QQ(2)], QQ) assert a.root == root assert a.alias is None assert a.minpoly == minpoly assert a.is_number assert a.is_aliased is False assert AlgebraicNumber( sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) assert AlgebraicNumber(-sqrt(3)).rep == DMP([ QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(2)) b = AlgebraicNumber(sqrt(2)) assert a == b c = AlgebraicNumber(sqrt(2), gen=x) assert a == b assert a == c a = AlgebraicNumber(sqrt(2), [1, 2]) b = AlgebraicNumber(sqrt(2), [1, 3]) assert a != b and a != sqrt(2) + 3 assert (a == x) is False and (a != x) is True a = AlgebraicNumber(sqrt(2), [1, 0]) b = AlgebraicNumber(sqrt(2), [1, 0], alias=y) assert a.as_poly(x) == Poly(x) assert b.as_poly() == Poly(y) assert a.as_expr() == sqrt(2) assert a.as_expr(x) == x assert b.as_expr() == sqrt(2) assert b.as_expr(x) == x a = AlgebraicNumber(sqrt(2), [2, 3]) b = AlgebraicNumber(sqrt(2), [2, 3], alias=y) p = a.as_poly() assert p == Poly(2*p.gen + 3) assert a.as_poly(x) == Poly(2*x + 3) assert b.as_poly() == Poly(2*y + 3) assert a.as_expr() == 2*sqrt(2) + 3 assert a.as_expr(x) == 2*x + 3 assert b.as_expr() == 2*sqrt(2) + 3 assert b.as_expr(x) == 2*x + 3 a = AlgebraicNumber(sqrt(2)) b = to_number_field(sqrt(2)) assert a.args == b.args == (sqrt(2), Tuple(1, 0)) b = AlgebraicNumber(sqrt(2), alias='alpha') assert b.args == (sqrt(2), Tuple(1, 0), Symbol('alpha')) a = AlgebraicNumber(sqrt(2), [1, 2, 3]) assert a.args == (sqrt(2), Tuple(1, 2, 3)) def test_to_algebraic_integer(): a = AlgebraicNumber(sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 3 assert a.root == sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(2*sqrt(3), gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3)/2, gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(1), QQ(0)], QQ) a = AlgebraicNumber(sqrt(3)/2, [Rational(7, 19), 3], gen=x).to_algebraic_integer() assert a.minpoly == x**2 - 12 assert a.root == 2*sqrt(3) assert a.rep == DMP([QQ(7, 19), QQ(3)], QQ) def test_IntervalPrinter(): ip = IntervalPrinter() assert ip.doprint(x**Q(1, 3)) == "x**(mpi('1/3'))" assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))" def test_isolate(): assert isolate(1) == (1, 1) assert isolate(S.Half) == (S.Half, S.Half) assert isolate(sqrt(2)) == (1, 2) assert isolate(-sqrt(2)) == (-2, -1) assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17)) raises(NotImplementedError, lambda: isolate(I)) def test_minpoly_fraction_field(): assert minimal_polynomial(1/x, y) == -x*y + 1 assert minimal_polynomial(1 / (x + 1), y) == (x + 1)*y - 1 assert minimal_polynomial(sqrt(x), y) == y**2 - x assert minimal_polynomial(sqrt(x + 1), y) == y**2 - x - 1 assert minimal_polynomial(sqrt(x) / x, y) == x*y**2 - 1 assert minimal_polynomial(sqrt(2) * sqrt(x), y) == y**2 - 2 * x assert minimal_polynomial(sqrt(2) + sqrt(x), y) == \ y**4 + (-2*x - 4)*y**2 + x**2 - 4*x + 4 assert minimal_polynomial(x**Rational(1,3), y) == y**3 - x assert minimal_polynomial(x**Rational(1,3) + sqrt(x), y) == \ y**6 - 3*x*y**4 - 2*x*y**3 + 3*x**2*y**2 - 6*x**2*y - x**3 + x**2 assert minimal_polynomial(sqrt(x) / z, y) == z**2*y**2 - x assert minimal_polynomial(sqrt(x) / (z + 1), y) == (z**2 + 2*z + 1)*y**2 - x assert minimal_polynomial(1/x, y, polys=True) == Poly(-x*y + 1, y) assert minimal_polynomial(1 / (x + 1), y, polys=True) == \ Poly((x + 1)*y - 1, y) assert minimal_polynomial(sqrt(x), y, polys=True) == Poly(y**2 - x, y) assert minimal_polynomial(sqrt(x) / z, y, polys=True) == \ Poly(z**2*y**2 - x, y) # this is (sqrt(1 + x**3)/x).integrate(x).diff(x) - sqrt(1 + x**3)/x a = sqrt(x)/sqrt(1 + x**(-3)) - sqrt(x**3 + 1)/x + 1/(x**Rational(5, 2)* \ (1 + x**(-3))**Rational(3, 2)) + 1/(x**Rational(11, 2)*(1 + x**(-3))**Rational(3, 2)) assert minimal_polynomial(a, y) == y raises(NotAlgebraic, lambda: minimal_polynomial(exp(x), y)) raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x), x)) raises(GeneratorsError, lambda: minimal_polynomial(sqrt(x) - y, x)) raises(NotImplementedError, lambda: minimal_polynomial(sqrt(x), y, compose=False)) @slow def test_minpoly_fraction_field_slow(): assert minimal_polynomial(minimal_polynomial(sqrt(x**Rational(1,5) - 1), y).subs(y, sqrt(x**Rational(1,5) - 1)), z) == z def test_minpoly_domain(): assert minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2))) == \ x - sqrt(2) assert minimal_polynomial(sqrt(8), x, domain=QQ.algebraic_field(sqrt(2))) == \ x - 2*sqrt(2) assert minimal_polynomial(sqrt(Rational(3,2)), x, domain=QQ.algebraic_field(sqrt(2))) == 2*x**2 - 3 raises(NotAlgebraic, lambda: minimal_polynomial(y, x, domain=QQ)) def test_issue_14831(): a = -2*sqrt(2)*sqrt(12*sqrt(2) + 17) assert minimal_polynomial(a, x) == x**2 + 16*x - 8 e = (-3*sqrt(12*sqrt(2) + 17) + 12*sqrt(2) + 17 - 2*sqrt(2)*sqrt(12*sqrt(2) + 17)) assert minimal_polynomial(e, x) == x
19e7aa4c64a28c95ad11d47cbbb6bc031f53fa3a6bdde93e9686477cbd837f61
"""Tests for high-level polynomials manipulation functions. """ from sympy.polys.polyfuncs import ( symmetrize, horner, interpolate, rational_interpolate, viete, ) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ) from sympy import symbols, S from sympy.utilities.pytest import raises from sympy.abc import a, b, c, d, e, x, y, z def test_symmetrize(): assert symmetrize(0, x, y, z) == (0, 0) assert symmetrize(1, x, y, z) == (1, 0) s1 = x + y + z s2 = x*y + x*z + y*z assert symmetrize(1) == (1, 0) assert symmetrize(1, formal=True) == (1, 0, []) assert symmetrize(x) == (x, 0) assert symmetrize(x + 1) == (x + 1, 0) assert symmetrize(x, x, y) == (x + y, -y) assert symmetrize(x + 1, x, y) == (x + y + 1, -y) assert symmetrize(x, x, y, z) == (s1, -y - z) assert symmetrize(x + 1, x, y, z) == (s1 + 1, -y - z) assert symmetrize(x**2, x, y, z) == (s1**2 - 2*s2, -y**2 - z**2) assert symmetrize(x**2 + y**2) == (-2*x*y + (x + y)**2, 0) assert symmetrize(x**2 - y**2) == (-2*x*y + (x + y)**2, -2*y**2) assert symmetrize(x**3 + y**2 + a*x**2 + b*y**3, x, y) == \ (-3*x*y*(x + y) - 2*a*x*y + a*(x + y)**2 + (x + y)**3, y**2*(1 - a) + y**3*(b - 1)) U = [u0, u1, u2] = symbols('u:3') assert symmetrize(x + 1, x, y, z, formal=True, symbols=U) == \ (u0 + 1, -y - z, [(u0, x + y + z), (u1, x*y + x*z + y*z), (u2, x*y*z)]) assert symmetrize([1, 2, 3]) == [(1, 0), (2, 0), (3, 0)] assert symmetrize([1, 2, 3], formal=True) == ([(1, 0), (2, 0), (3, 0)], []) assert symmetrize([x + y, x - y]) == [(x + y, 0), (x + y, -2*y)] def test_horner(): assert horner(0) == 0 assert horner(1) == 1 assert horner(x) == x assert horner(x + 1) == x + 1 assert horner(x**2 + 1) == x**2 + 1 assert horner(x**2 + x) == (x + 1)*x assert horner(x**2 + x + 1) == (x + 1)*x + 1 assert horner( 9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) == (((9*x + 8)*x + 7)*x + 6)*x + 5 assert horner( a*x**4 + b*x**3 + c*x**2 + d*x + e) == (((a*x + b)*x + c)*x + d)*x + e assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=x) == (( 4*y + 2)*x*y + (2*y + 1)*y)*x assert horner(4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y, wrt=y) == (( 4*x + 2)*y*x + (2*x + 1)*x)*y def test_interpolate(): assert interpolate([1, 4, 9, 16], x) == x**2 assert interpolate([1, 4, 9, 25], x) == S(3)*x**3/2 - S(8)*x**2 + S(33)*x/2 - 9 assert interpolate([(1, 1), (2, 4), (3, 9)], x) == x**2 assert interpolate([(1, 2), (2, 5), (3, 10)], x) == 1 + x**2 assert interpolate({1: 2, 2: 5, 3: 10}, x) == 1 + x**2 assert interpolate({5: 2, 7: 5, 8: 10, 9: 13}, x) == \ -S(13)*x**3/24 + S(12)*x**2 - S(2003)*x/24 + 187 assert interpolate([(1, 3), (0, 6), (2, 5), (5, 7), (-2, 4)], x) == \ S(-61)*x**4/280 + S(247)*x**3/210 + S(139)*x**2/280 - S(1871)*x/420 + 6 assert interpolate((9, 4, 9), 3) == 9 assert interpolate((1, 9, 16), 1) is S.One assert interpolate(((x, 1), (2, 3)), x) is S.One assert interpolate(dict([(x, 1), (2, 3)]), x) is S.One assert interpolate(((2, x), (1, 3)), x) == x**2 - 4*x + 6 def test_rational_interpolate(): x, y = symbols('x,y') xdata = [1, 2, 3, 4, 5, 6] ydata1 = [120, 150, 200, 255, 312, 370] ydata2 = [-210, -35, 105, 231, 350, 465] assert rational_interpolate(list(zip(xdata, ydata1)), 2) == ( (60*x**2 + 60)/x ) assert rational_interpolate(list(zip(xdata, ydata1)), 3) == ( (60*x**2 + 60)/x ) assert rational_interpolate(list(zip(xdata, ydata2)), 2, X=y) == ( (105*y**2 - 525)/(y + 1) ) xdata = list(range(1,11)) ydata = [-1923885361858460, -5212158811973685, -9838050145867125, -15662936261217245, -22469424125057910, -30073793365223685, -38332297297028735, -47132954289530109, -56387719094026320, -66026548943876885] assert rational_interpolate(list(zip(xdata, ydata)), 5) == ( (-12986226192544605*x**4 + 8657484128363070*x**3 - 30301194449270745*x**2 + 4328742064181535*x - 4328742064181535)/(x**3 + 9*x**2 - 3*x + 11)) def test_viete(): r1, r2 = symbols('r1, r2') assert viete( a*x**2 + b*x + c, [r1, r2], x) == [(r1 + r2, -b/a), (r1*r2, c/a)] raises(ValueError, lambda: viete(1, [], x)) raises(ValueError, lambda: viete(x**2 + 1, [r1])) raises(MultivariatePolynomialError, lambda: viete(x + y, [r1]))
aa41594f522b96f2950d79a76afd1f886dfd94f65f61161558cd62e42a5fcba5
"""Test sparse rational functions. """ from sympy.polys.fields import field, sfield, FracField, FracElement from sympy.polys.rings import ring from sympy.polys.domains import ZZ, QQ from sympy.polys.orderings import lex from sympy.utilities.pytest import raises, XFAIL from sympy.core import symbols, E from sympy import sqrt, Rational, exp, log def test_FracField___init__(): F1 = FracField("x,y", ZZ, lex) F2 = FracField("x,y", ZZ, lex) F3 = FracField("x,y,z", ZZ, lex) assert F1.x == F1.gens[0] assert F1.y == F1.gens[1] assert F1.x == F2.x assert F1.y == F2.y assert F1.x != F3.x assert F1.y != F3.y def test_FracField___hash__(): F, x, y, z = field("x,y,z", QQ) assert hash(F) def test_FracField___eq__(): assert field("x,y,z", QQ)[0] == field("x,y,z", QQ)[0] assert field("x,y,z", QQ)[0] is field("x,y,z", QQ)[0] assert field("x,y,z", QQ)[0] != field("x,y,z", ZZ)[0] assert field("x,y,z", QQ)[0] is not field("x,y,z", ZZ)[0] assert field("x,y,z", ZZ)[0] != field("x,y,z", QQ)[0] assert field("x,y,z", ZZ)[0] is not field("x,y,z", QQ)[0] assert field("x,y,z", QQ)[0] != field("x,y", QQ)[0] assert field("x,y,z", QQ)[0] is not field("x,y", QQ)[0] assert field("x,y", QQ)[0] != field("x,y,z", QQ)[0] assert field("x,y", QQ)[0] is not field("x,y,z", QQ)[0] def test_sfield(): x = symbols("x") F = FracField((E, exp(exp(x)), exp(x)), ZZ, lex) e, exex, ex = F.gens assert sfield(exp(x)*exp(exp(x) + 1 + log(exp(x) + 3)/2)**2/(exp(x) + 3)) \ == (F, e**2*exex**2*ex) F = FracField((x, exp(1/x), log(x), x**QQ(1, 3)), ZZ, lex) _, ex, lg, x3 = F.gens assert sfield(((x-3)*log(x)+4*x**2)*exp(1/x+log(x)/3)/x**2) == \ (F, (4*F.x**2*ex + F.x*ex*lg - 3*ex*lg)/x3**5) F = FracField((x, log(x), sqrt(x + log(x))), ZZ, lex) _, lg, srt = F.gens assert sfield((x + 1) / (x * (x + log(x))**QQ(3, 2)) - 1/(x * log(x)**2)) \ == (F, (F.x*lg**2 - F.x*srt + lg**2 - lg*srt)/ (F.x**2*lg**2*srt + F.x*lg**3*srt)) def test_FracElement___hash__(): F, x, y, z = field("x,y,z", QQ) assert hash(x*y/z) def test_FracElement_copy(): F, x, y, z = field("x,y,z", ZZ) f = x*y/3*z g = f.copy() assert f == g g.numer[(1, 1, 1)] = 7 assert f != g def test_FracElement_as_expr(): F, x, y, z = field("x,y,z", ZZ) f = (3*x**2*y - x*y*z)/(7*z**3 + 1) X, Y, Z = F.symbols g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1) assert f != g assert f.as_expr() == g X, Y, Z = symbols("x,y,z") g = (3*X**2*Y - X*Y*Z)/(7*Z**3 + 1) assert f != g assert f.as_expr(X, Y, Z) == g raises(ValueError, lambda: f.as_expr(X)) def test_FracElement_from_expr(): x, y, z = symbols("x,y,z") F, X, Y, Z = field((x, y, z), ZZ) f = F.from_expr(1) assert f == 1 and isinstance(f, F.dtype) f = F.from_expr(Rational(3, 7)) assert f == F(3)/7 and isinstance(f, F.dtype) f = F.from_expr(x) assert f == X and isinstance(f, F.dtype) f = F.from_expr(Rational(3,7)*x) assert f == X*Rational(3, 7) and isinstance(f, F.dtype) f = F.from_expr(1/x) assert f == 1/X and isinstance(f, F.dtype) f = F.from_expr(x*y*z) assert f == X*Y*Z and isinstance(f, F.dtype) f = F.from_expr(x*y/z) assert f == X*Y/Z and isinstance(f, F.dtype) f = F.from_expr(x*y*z + x*y + x) assert f == X*Y*Z + X*Y + X and isinstance(f, F.dtype) f = F.from_expr((x*y*z + x*y + x)/(x*y + 7)) assert f == (X*Y*Z + X*Y + X)/(X*Y + 7) and isinstance(f, F.dtype) f = F.from_expr(x**3*y*z + x**2*y**7 + 1) assert f == X**3*Y*Z + X**2*Y**7 + 1 and isinstance(f, F.dtype) raises(ValueError, lambda: F.from_expr(2**x)) raises(ValueError, lambda: F.from_expr(7*x + sqrt(2))) assert isinstance(ZZ[2**x].get_field().convert(2**(-x)), FracElement) assert isinstance(ZZ[x**2].get_field().convert(x**(-6)), FracElement) assert isinstance(ZZ[exp(Rational(1, 3))].get_field().convert(E), FracElement) def test_FracElement__lt_le_gt_ge__(): F, x, y = field("x,y", ZZ) assert F(1) < 1/x < 1/x**2 < 1/x**3 assert F(1) <= 1/x <= 1/x**2 <= 1/x**3 assert -7/x < 1/x < 3/x < y/x < 1/x**2 assert -7/x <= 1/x <= 3/x <= y/x <= 1/x**2 assert 1/x**3 > 1/x**2 > 1/x > F(1) assert 1/x**3 >= 1/x**2 >= 1/x >= F(1) assert 1/x**2 > y/x > 3/x > 1/x > -7/x assert 1/x**2 >= y/x >= 3/x >= 1/x >= -7/x def test_FracElement___neg__(): F, x,y = field("x,y", QQ) f = (7*x - 9)/y g = (-7*x + 9)/y assert -f == g assert -g == f def test_FracElement___add__(): F, x,y = field("x,y", QQ) f, g = 1/x, 1/y assert f + g == g + f == (x + y)/(x*y) assert x + F.ring.gens[0] == F.ring.gens[0] + x == 2*x F, x,y = field("x,y", ZZ) assert x + 3 == 3 + x assert x + QQ(3,7) == QQ(3,7) + x == (7*x + 3)/7 Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) f = (u*v + x)/(y + u*v) assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v} assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v} Ruv, u,v = ring("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Ruv) f = (u*v + x)/(y + u*v) assert dict(f.numer) == {(1, 0, 0, 0): 1, (0, 0, 0, 0): u*v} assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0): u*v} def test_FracElement___sub__(): F, x,y = field("x,y", QQ) f, g = 1/x, 1/y assert f - g == (-x + y)/(x*y) assert x - F.ring.gens[0] == F.ring.gens[0] - x == 0 F, x,y = field("x,y", ZZ) assert x - 3 == -(3 - x) assert x - QQ(3,7) == -(QQ(3,7) - x) == (7*x - 3)/7 Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) f = (u*v - x)/(y - u*v) assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v} assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v} Ruv, u,v = ring("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Ruv) f = (u*v - x)/(y - u*v) assert dict(f.numer) == {(1, 0, 0, 0):-1, (0, 0, 0, 0): u*v} assert dict(f.denom) == {(0, 1, 0, 0): 1, (0, 0, 0, 0):-u*v} def test_FracElement___mul__(): F, x,y = field("x,y", QQ) f, g = 1/x, 1/y assert f*g == g*f == 1/(x*y) assert x*F.ring.gens[0] == F.ring.gens[0]*x == x**2 F, x,y = field("x,y", ZZ) assert x*3 == 3*x assert x*QQ(3,7) == QQ(3,7)*x == x*Rational(3, 7) Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1) assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1} assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1} Ruv, u,v = ring("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Ruv) f = ((u + 1)*x*y + 1)/((v - 1)*z - t*u*v - 1) assert dict(f.numer) == {(1, 1, 0, 0): u + 1, (0, 0, 0, 0): 1} assert dict(f.denom) == {(0, 0, 1, 0): v - 1, (0, 0, 0, 1): -u*v, (0, 0, 0, 0): -1} def test_FracElement___div__(): F, x,y = field("x,y", QQ) f, g = 1/x, 1/y assert f/g == y/x assert x/F.ring.gens[0] == F.ring.gens[0]/x == 1 F, x,y = field("x,y", ZZ) assert x*3 == 3*x assert x/QQ(3,7) == (QQ(3,7)/x)**-1 == x*Rational(7, 3) raises(ZeroDivisionError, lambda: x/0) raises(ZeroDivisionError, lambda: 1/(x - x)) raises(ZeroDivisionError, lambda: x/(x - x)) Fuv, u,v = field("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Fuv) f = (u*v)/(x*y) assert dict(f.numer) == {(0, 0, 0, 0): u*v} assert dict(f.denom) == {(1, 1, 0, 0): 1} g = (x*y)/(u*v) assert dict(g.numer) == {(1, 1, 0, 0): 1} assert dict(g.denom) == {(0, 0, 0, 0): u*v} Ruv, u,v = ring("u,v", ZZ) Fxyzt, x,y,z,t = field("x,y,z,t", Ruv) f = (u*v)/(x*y) assert dict(f.numer) == {(0, 0, 0, 0): u*v} assert dict(f.denom) == {(1, 1, 0, 0): 1} g = (x*y)/(u*v) assert dict(g.numer) == {(1, 1, 0, 0): 1} assert dict(g.denom) == {(0, 0, 0, 0): u*v} def test_FracElement___pow__(): F, x,y = field("x,y", QQ) f, g = 1/x, 1/y assert f**3 == 1/x**3 assert g**3 == 1/y**3 assert (f*g)**3 == 1/(x**3*y**3) assert (f*g)**-3 == (x*y)**3 raises(ZeroDivisionError, lambda: (x - x)**-3) def test_FracElement_diff(): F, x,y,z = field("x,y,z", ZZ) assert ((x**2 + y)/(z + 1)).diff(x) == 2*x/(z + 1) @XFAIL def test_FracElement___call__(): F, x,y,z = field("x,y,z", ZZ) f = (x**2 + 3*y)/z r = f(1, 1, 1) assert r == 4 and not isinstance(r, FracElement) raises(ZeroDivisionError, lambda: f(1, 1, 0)) def test_FracElement_evaluate(): F, x,y,z = field("x,y,z", ZZ) Fyz = field("y,z", ZZ)[0] f = (x**2 + 3*y)/z assert f.evaluate(x, 0) == 3*Fyz.y/Fyz.z raises(ZeroDivisionError, lambda: f.evaluate(z, 0)) def test_FracElement_subs(): F, x,y,z = field("x,y,z", ZZ) f = (x**2 + 3*y)/z assert f.subs(x, 0) == 3*y/z raises(ZeroDivisionError, lambda: f.subs(z, 0)) def test_FracElement_compose(): pass
d836dace3400077b3801fbff608462792d56d1e033ef4a656707691bfe0f9238
"""Tests for the implementation of RootOf class and related tools. """ from sympy.polys.polytools import Poly from sympy.polys.rootoftools import (rootof, RootOf, CRootOf, RootSum, _pure_key_dict as D) from sympy.polys.polyerrors import ( MultivariatePolynomialError, GeneratorsNeeded, PolynomialError, ) from sympy import ( S, sqrt, I, Rational, Float, Lambda, log, exp, tan, Function, Eq, solve, legendre_poly, Integral ) from sympy.utilities.pytest import raises, slow from sympy.core.expr import unchanged from sympy.core.compatibility import range from sympy.abc import a, b, x, y, z, r def test_CRootOf___new__(): assert rootof(x, 0) == 0 assert rootof(x, -1) == 0 assert rootof(x, S.Zero) == 0 assert rootof(x - 1, 0) == 1 assert rootof(x - 1, -1) == 1 assert rootof(x + 1, 0) == -1 assert rootof(x + 1, -1) == -1 assert rootof(x**2 + 2*x + 3, 0) == -1 - I*sqrt(2) assert rootof(x**2 + 2*x + 3, 1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -1) == -1 + I*sqrt(2) assert rootof(x**2 + 2*x + 3, -2) == -1 - I*sqrt(2) r = rootof(x**2 + 2*x + 3, 0, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, 1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -1, radicals=False) assert isinstance(r, RootOf) is True r = rootof(x**2 + 2*x + 3, -2, radicals=False) assert isinstance(r, RootOf) is True assert rootof((x - 1)*(x + 1), 0, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=False) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=False) == -1 assert rootof((x - 1)*(x + 1), 0, radicals=True) == -1 assert rootof((x - 1)*(x + 1), 1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -1, radicals=True) == 1 assert rootof((x - 1)*(x + 1), -2, radicals=True) == -1 assert rootof((x - 1)*(x**3 + x + 3), 0) == rootof(x**3 + x + 3, 0) assert rootof((x - 1)*(x**3 + x + 3), 1) == 1 assert rootof((x - 1)*(x**3 + x + 3), 2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), 3) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -1) == rootof(x**3 + x + 3, 2) assert rootof((x - 1)*(x**3 + x + 3), -2) == rootof(x**3 + x + 3, 1) assert rootof((x - 1)*(x**3 + x + 3), -3) == 1 assert rootof((x - 1)*(x**3 + x + 3), -4) == rootof(x**3 + x + 3, 0) assert rootof(x**4 + 3*x**3, 0) == -3 assert rootof(x**4 + 3*x**3, 1) == 0 assert rootof(x**4 + 3*x**3, 2) == 0 assert rootof(x**4 + 3*x**3, 3) == 0 raises(GeneratorsNeeded, lambda: rootof(0, 0)) raises(GeneratorsNeeded, lambda: rootof(1, 0)) raises(PolynomialError, lambda: rootof(Poly(0, x), 0)) raises(PolynomialError, lambda: rootof(Poly(1, x), 0)) raises(PolynomialError, lambda: rootof(x - y, 0)) # issue 8617 raises(PolynomialError, lambda: rootof(exp(x), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + sqrt(2), 0)) raises(NotImplementedError, lambda: rootof(x**3 - x + I, 0)) raises(IndexError, lambda: rootof(x**2 - 1, -4)) raises(IndexError, lambda: rootof(x**2 - 1, -3)) raises(IndexError, lambda: rootof(x**2 - 1, 2)) raises(IndexError, lambda: rootof(x**2 - 1, 3)) raises(ValueError, lambda: rootof(x**2 - 1, x)) assert rootof(Poly(x - y, x), 0) == y assert rootof(Poly(x**2 - y, x), 0) == -sqrt(y) assert rootof(Poly(x**2 - y, x), 1) == sqrt(y) assert rootof(Poly(x**3 - y, x), 0) == y**Rational(1, 3) assert rootof(y*x**3 + y*x + 2*y, x, 0) == -1 raises(NotImplementedError, lambda: rootof(x**3 + x + 2*y, x, 0)) assert rootof(x**3 + x + 1, 0).is_commutative is True def test_CRootOf_attributes(): r = rootof(x**3 + x + 3, 0) assert r.is_number assert r.free_symbols == set() # if the following assertion fails then multivariate polynomials # are apparently supported and the RootOf.free_symbols routine # should be changed to return whatever symbols would not be # the PurePoly dummy symbol raises(NotImplementedError, lambda: rootof(Poly(x**3 + y*x + 1, x), 0)) def test_CRootOf___eq__(): assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(x**3 + x + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(x**3 + x + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(x**3 + x + 3, 2)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 0)) is True assert (rootof(x**3 + x + 3, 0) == rootof(y**3 + y + 3, 1)) is False assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 1)) is True assert (rootof(x**3 + x + 3, 1) == rootof(y**3 + y + 3, 2)) is False assert (rootof(x**3 + x + 3, 2) == rootof(y**3 + y + 3, 2)) is True def test_CRootOf___eval_Eq__(): f = Function('f') eq = x**3 + x + 3 r = rootof(eq, 2) r1 = rootof(eq, 1) assert Eq(r, r1) is S.false assert Eq(r, r) is S.true assert unchanged(Eq, r, x) assert Eq(r, 0) is S.false assert Eq(r, S.Infinity) is S.false assert Eq(r, I) is S.false assert unchanged(Eq, r, f(0)) sol = solve(eq) for s in sol: if s.is_real: assert Eq(r, s) is S.false r = rootof(eq, 0) for s in sol: if s.is_real: assert Eq(r, s) is S.true eq = x**3 + x + 1 sol = solve(eq) assert [Eq(rootof(eq, i), j) for i in range(3) for j in sol] == [ False, False, True, False, True, False, True, False, False] assert Eq(rootof(eq, 0), 1 + S.ImaginaryUnit) == False def test_CRootOf_is_real(): assert rootof(x**3 + x + 3, 0).is_real is True assert rootof(x**3 + x + 3, 1).is_real is False assert rootof(x**3 + x + 3, 2).is_real is False def test_CRootOf_is_complex(): assert rootof(x**3 + x + 3, 0).is_complex is True def test_CRootOf_subs(): assert rootof(x**3 + x + 1, 0).subs(x, y) == rootof(y**3 + y + 1, 0) def test_CRootOf_diff(): assert rootof(x**3 + x + 1, 0).diff(x) == 0 assert rootof(x**3 + x + 1, 0).diff(y) == 0 @slow def test_CRootOf_evalf(): real = rootof(x**3 + x + 3, 0).evalf(n=20) assert real.epsilon_eq(Float("-1.2134116627622296341")) re, im = rootof(x**3 + x + 3, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq( Float("0.60670583138111481707")) assert im.epsilon_eq(-Float("1.45061224918844152650")) re, im = rootof(x**3 + x + 3, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("0.60670583138111481707")) assert im.epsilon_eq(Float("1.45061224918844152650")) p = legendre_poly(4, x, polys=True) roots = [str(r.n(17)) for r in p.real_roots()] # magnitudes are given by # sqrt(3/S(7) - 2*sqrt(6/S(5))/7) # and # sqrt(3/S(7) + 2*sqrt(6/S(5))/7) assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] re = rootof(x**5 - 5*x + 12, 0).evalf(n=20) assert re.epsilon_eq(Float("-1.84208596619025438271")) re, im = rootof(x**5 - 5*x + 12, 1).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("-1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 2).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("-0.351854240827371999559")) assert im.epsilon_eq(Float("+1.709561043370328882010")) re, im = rootof(x**5 - 5*x + 12, 3).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("-0.719798681483861386681")) re, im = rootof(x**5 - 5*x + 12, 4).evalf(n=20).as_real_imag() assert re.epsilon_eq(Float("+1.272897223922499190910")) assert im.epsilon_eq(Float("+0.719798681483861386681")) # issue 6393 assert str(rootof(x**5 + 2*x**4 + x**3 - 68719476736, 0).n(3)) == '147.' eq = (531441*x**11 + 3857868*x**10 + 13730229*x**9 + 32597882*x**8 + 55077472*x**7 + 60452000*x**6 + 32172064*x**5 - 4383808*x**4 - 11942912*x**3 - 1506304*x**2 + 1453312*x + 512) a, b = rootof(eq, 1).n(2).as_real_imag() c, d = rootof(eq, 2).n(2).as_real_imag() assert a == c assert b < d assert b == -d # issue 6451 r = rootof(legendre_poly(64, x), 7) assert r.n(2) == r.n(100).n(2) # issue 9019 r0 = rootof(x**2 + 1, 0, radicals=False) r1 = rootof(x**2 + 1, 1, radicals=False) assert r0.n(4) == -1.0*I assert r1.n(4) == 1.0*I # make sure verification is used in case a max/min traps the "root" assert str(rootof(4*x**5 + 16*x**3 + 12*x**2 + 7, 0).n(3)) == '-0.976' # watch out for UnboundLocalError c = CRootOf(90720*x**6 - 4032*x**4 + 84*x**2 - 1, 0) assert c._eval_evalf(2) # doesn't fail # watch out for imaginary parts that don't want to evaluate assert str(RootOf(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969, 10).n(2)) == '-3.4*I' assert abs(RootOf(x**4 + 10*x**2 + 1, 0).n(2)) < 0.4 # check reset and args r = [RootOf(x**3 + x + 3, i) for i in range(3)] r[0]._reset() for ri in r: i = ri._get_interval() ri.n(2) assert i != ri._get_interval() ri._reset() assert i == ri._get_interval() assert i == i.func(*i.args) def test_CRootOf_evalf_caching_bug(): r = rootof(x**5 - 5*x + 12, 1) r.n() a = r._get_interval() r = rootof(x**5 - 5*x + 12, 1) r.n() b = r._get_interval() assert a == b def test_CRootOf_real_roots(): assert Poly(x**5 + x + 1).real_roots() == [rootof(x**3 - x**2 + 1, 0)] assert Poly(x**5 + x + 1).real_roots(radicals=False) == [rootof( x**3 - x**2 + 1, 0)] def test_CRootOf_all_roots(): assert Poly(x**5 + x + 1).all_roots() == [ rootof(x**3 - x**2 + 1, 0), Rational(-1, 2) - sqrt(3)*I/2, Rational(-1, 2) + sqrt(3)*I/2, rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] assert Poly(x**5 + x + 1).all_roots(radicals=False) == [ rootof(x**3 - x**2 + 1, 0), rootof(x**2 + x + 1, 0, radicals=False), rootof(x**2 + x + 1, 1, radicals=False), rootof(x**3 - x**2 + 1, 1), rootof(x**3 - x**2 + 1, 2), ] def test_CRootOf_eval_rational(): p = legendre_poly(4, x, polys=True) roots = [r.eval_rational(n=18) for r in p.real_roots()] for root in roots: assert isinstance(root, Rational) roots = [str(root.n(17)) for root in roots] assert roots == [ "-0.86113631159405258", "-0.33998104358485626", "0.33998104358485626", "0.86113631159405258", ] def test_RootSum___new__(): f = x**3 + x + 3 g = Lambda(r, log(r*x)) s = RootSum(f, g) assert isinstance(s, RootSum) is True assert RootSum(f**2, g) == 2*RootSum(f, g) assert RootSum((x - 7)*f**3, g) == log(7*x) + 3*RootSum(f, g) # issue 5571 assert hash(RootSum((x - 7)*f**3, g)) == hash(log(7*x) + 3*RootSum(f, g)) raises(MultivariatePolynomialError, lambda: RootSum(x**3 + x + y)) raises(ValueError, lambda: RootSum(x**2 + 3, lambda x: x)) assert RootSum(f, exp) == RootSum(f, Lambda(x, exp(x))) assert RootSum(f, log) == RootSum(f, Lambda(x, log(x))) assert isinstance(RootSum(f, auto=False), RootSum) is True assert RootSum(f) == 0 assert RootSum(f, Lambda(x, x)) == 0 assert RootSum(f, Lambda(x, x**2)) == -2 assert RootSum(f, Lambda(x, 1)) == 3 assert RootSum(f, Lambda(x, 2)) == 6 assert RootSum(f, auto=False).is_commutative is True assert RootSum(f, Lambda(x, 1/(x + x**2))) == Rational(11, 3) assert RootSum(f, Lambda(x, y/(x + x**2))) == Rational(11, 3)*y assert RootSum(x**2 - 1, Lambda(x, 3*x**2), x) == 6 assert RootSum(x**2 - y, Lambda(x, 3*x**2), x) == 6*y assert RootSum(x**2 - 1, Lambda(x, z*x**2), x) == 2*z assert RootSum(x**2 - y, Lambda(x, z*x**2), x) == 2*z*y assert RootSum( x**2 - 1, Lambda(x, exp(x)), quadratic=True) == exp(-1) + exp(1) assert RootSum(x**3 + a*x + a**3, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(a*x))) assert RootSum(a**3*x**3 + a*x + 1, tan, x) == \ RootSum(x**3 + x + 1, Lambda(x, tan(x/a))) def test_RootSum_free_symbols(): assert RootSum(x**3 + x + 3, Lambda(r, exp(r))).free_symbols == set() assert RootSum(x**3 + x + 3, Lambda(r, exp(a*r))).free_symbols == {a} assert RootSum( x**3 + x + y, Lambda(r, exp(a*r)), x).free_symbols == {a, y} def test_RootSum___eq__(): f = Lambda(x, exp(x)) assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 1, f)) is True assert (RootSum(x**3 + x + 1, f) == RootSum(x**3 + x + 2, f)) is False assert (RootSum(x**3 + x + 1, f) == RootSum(y**3 + y + 2, f)) is False def test_RootSum_doit(): rs = RootSum(x**2 + 1, exp) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-I) + exp(I) rs = RootSum(x**2 + a, exp, x) assert isinstance(rs, RootSum) is True assert rs.doit() == exp(-sqrt(-a)) + exp(sqrt(-a)) def test_RootSum_evalf(): rs = RootSum(x**2 + 1, exp) assert rs.evalf(n=20, chop=True).epsilon_eq(Float("1.0806046117362794348")) assert rs.evalf(n=15, chop=True).epsilon_eq(Float("1.08060461173628")) rs = RootSum(x**2 + a, exp, x) assert rs.evalf() == rs def test_RootSum_diff(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) h = Lambda(r, r*exp(r*x)) assert RootSum(f, g).diff(x) == RootSum(f, h) def test_RootSum_subs(): f = x**3 + x + 3 g = Lambda(r, exp(r*x)) F = y**3 + y + 3 G = Lambda(r, exp(r*y)) assert RootSum(f, g).subs(y, 1) == RootSum(f, g) assert RootSum(f, g).subs(x, y) == RootSum(F, G) def test_RootSum_rational(): assert RootSum( z**5 - z + 1, Lambda(z, z/(x - z))) == (4*x - 5)/(x**5 - x + 1) f = 161*z**3 + 115*z**2 + 19*z + 1 g = Lambda(z, z*log( -3381*z**4/4 - 3381*z**3/4 - 625*z**2/2 - z*Rational(125, 2) - 5 + exp(x))) assert RootSum(f, g).diff(x) == -( (5*exp(2*x) - 6*exp(x) + 4)*exp(x)/(exp(3*x) - exp(2*x) + 1))/7 def test_RootSum_independent(): f = (x**3 - a)**2*(x**4 - b)**3 g = Lambda(x, 5*tan(x) + 7) h = Lambda(x, tan(x)) r0 = RootSum(x**3 - a, h, x) r1 = RootSum(x**4 - b, h, x) assert RootSum(f, g, x).as_ordered_terms() == [10*r0, 15*r1, 126] def test_issue_7876(): l1 = Poly(x**6 - x + 1, x).all_roots() l2 = [rootof(x**6 - x + 1, i) for i in range(6)] assert frozenset(l1) == frozenset(l2) def test_issue_8316(): f = Poly(7*x**8 - 9) assert len(f.all_roots()) == 8 f = Poly(7*x**8 - 10) assert len(f.all_roots()) == 8 def test__imag_count(): from sympy.polys.rootoftools import _imag_count_of_factor def imag_count(p): return sum([_imag_count_of_factor(f)*m for f, m in p.factor_list()[1]]) assert imag_count(Poly(x**6 + 10*x**2 + 1)) == 2 assert imag_count(Poly(x**2)) == 0 assert imag_count(Poly([1]*3 + [-1], x)) == 0 assert imag_count(Poly(x**3 + 1)) == 0 assert imag_count(Poly(x**2 + 1)) == 2 assert imag_count(Poly(x**2 - 1)) == 0 assert imag_count(Poly(x**4 - 1)) == 2 assert imag_count(Poly(x**4 + 1)) == 0 assert imag_count(Poly([1, 2, 3], x)) == 0 assert imag_count(Poly(x**3 + x + 1)) == 0 assert imag_count(Poly(x**4 + x + 1)) == 0 def q(r1, r2, p): return Poly(((x - r1)*(x - r2)).subs(x, x**p), x) assert imag_count(q(-1, -2, 2)) == 4 assert imag_count(q(-1, 2, 2)) == 2 assert imag_count(q(1, 2, 2)) == 0 assert imag_count(q(1, 2, 4)) == 4 assert imag_count(q(-1, 2, 4)) == 2 assert imag_count(q(-1, -2, 4)) == 0 def test_RootOf_is_imaginary(): r = RootOf(x**4 + 4*x**2 + 1, 1) i = r._get_interval() assert r.is_imaginary and i.ax*i.bx <= 0 def test_is_disjoint(): eq = x**3 + 5*x + 1 ir = rootof(eq, 0)._get_interval() ii = rootof(eq, 1)._get_interval() assert ir.is_disjoint(ii) assert ii.is_disjoint(ir) def test_pure_key_dict(): p = D() assert (x in p) is False assert (1 in p) is False p[x] = 1 assert x in p assert y in p assert p[y] == 1 raises(KeyError, lambda: p[1]) def dont(k): p[k] = 2 raises(ValueError, lambda: dont(1)) @slow def test_eval_approx_relative(): CRootOf.clear_cache() t = [CRootOf(x**3 + 10*x + 1, i) for i in range(3)] assert [i.eval_rational(1e-1) for i in t] == [ Rational(-21, 220), Rational(15, 256) - I*Rational(805, 256), Rational(15, 256) + I*Rational(805, 256)] t[0]._reset() assert [i.eval_rational(1e-1, 1e-4) for i in t] == [ Rational(-21, 220), Rational(3275, 65536) - I*Rational(414645, 131072), Rational(3275, 65536) + I*Rational(414645, 131072)] assert S(t[0]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dx) < 1e-1 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-1 assert S(t[2]._get_interval().dy) < 1e-4 t[0]._reset() assert [i.eval_rational(1e-4, 1e-4) for i in t] == [ Rational(-2001, 20020), Rational(6545, 131072) - I*Rational(414645, 131072), Rational(6545, 131072) + I*Rational(414645, 131072)] assert S(t[0]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dx) < 1e-4 assert S(t[1]._get_interval().dy) < 1e-4 assert S(t[2]._get_interval().dx) < 1e-4 assert S(t[2]._get_interval().dy) < 1e-4 # in the following, the actual relative precision is # less than tested, but it should never be greater t[0]._reset() assert [i.eval_rational(n=2) for i in t] == [ Rational(-202201, 2024022), Rational(104755, 2097152) - I*Rational(6634255, 2097152), Rational(104755, 2097152) + I*Rational(6634255, 2097152)] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-2 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-2 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-2 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-2 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-2 t[0]._reset() assert [i.eval_rational(n=3) for i in t] == [ Rational(-202201, 2024022), Rational(1676045, 33554432) - I*Rational(106148135, 33554432), Rational(1676045, 33554432) + I*Rational(106148135, 33554432)] assert abs(S(t[0]._get_interval().dx)/t[0]) < 1e-3 assert abs(S(t[1]._get_interval().dx)/t[1]).n() < 1e-3 assert abs(S(t[1]._get_interval().dy)/t[1]).n() < 1e-3 assert abs(S(t[2]._get_interval().dx)/t[2]).n() < 1e-3 assert abs(S(t[2]._get_interval().dy)/t[2]).n() < 1e-3 t[0]._reset() a = [i.eval_approx(2) for i in t] assert [str(i) for i in a] == [ '-0.10', '0.05 - 3.2*I', '0.05 + 3.2*I'] assert all(abs(((a[i] - t[i])/t[i]).n()) < 1e-2 for i in range(len(a))) def test_issue_15920(): r = rootof(x**5 - x + 1, 0) p = Integral(x, (x, 1, y)) assert unchanged(Eq, r, p)
f315a8bfee95eaedaea942b9ef8ac83d644b3d4277a4d8ea180416ea39025bae
"""Tests for user-friendly public interface to polynomial functions. """ from sympy.polys.polytools import ( Poly, PurePoly, poly, parallel_poly_from_expr, degree, degree_list, total_degree, LC, LM, LT, pdiv, prem, pquo, pexquo, div, rem, quo, exquo, half_gcdex, gcdex, invert, subresultants, resultant, discriminant, terms_gcd, cofactors, gcd, gcd_list, lcm, lcm_list, trunc, monic, content, primitive, compose, decompose, sturm, gff_list, gff, sqf_norm, sqf_part, sqf_list, sqf, factor_list, factor, intervals, refine_root, count_roots, real_roots, nroots, ground_roots, nth_power_roots_poly, cancel, reduced, groebner, GroebnerBasis, is_zero_dimensional, _torational_factor_list, to_rational_coeffs) from sympy.polys.polyerrors import ( MultivariatePolynomialError, ExactQuotientFailed, PolificationFailed, ComputationFailed, UnificationFailed, RefinementFailed, GeneratorsNeeded, GeneratorsError, PolynomialError, CoercionFailed, DomainError, OptionError, FlagError) from sympy.polys.polyclasses import DMP from sympy.polys.fields import field from sympy.polys.domains import FF, ZZ, QQ, RR, EX from sympy.polys.domains.realfield import RealField from sympy.polys.orderings import lex, grlex, grevlex from sympy import ( S, Integer, Rational, Float, Mul, Symbol, sqrt, Piecewise, Derivative, exp, sin, tanh, expand, oo, I, pi, re, im, rootof, Eq, Tuple, Expr, diff) from sympy.core.basic import _aresame from sympy.core.compatibility import iterable, PY3 from sympy.core.mul import _keep_coeff from sympy.utilities.pytest import raises, XFAIL from sympy.abc import a, b, c, d, p, q, t, w, x, y, z from sympy import MatrixSymbol, Matrix def _epsilon_eq(a, b): for u, v in zip(a, b): if abs(u - v) > 1e-10: return False return True def _strict_eq(a, b): if type(a) == type(b): if iterable(a): if len(a) == len(b): return all(_strict_eq(c, d) for c, d in zip(a, b)) else: return False else: return isinstance(a, Poly) and a.eq(b, strict=True) else: return False def test_Poly_from_dict(): K = FF(3) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {0: 1, 1: 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict( {(0,): 1, (1,): 5}, gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_dict({(0, 0): 1, (1, 1): 2}, gens=( x, y), domain=K).rep == DMP([[K(2), K(0)], [K(1)]], K) assert Poly.from_dict({0: 1, 1: 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {0: 1, 1: 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_dict( {(0,): 1, (1,): 2}, gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_dict({(1,): sin(y)}, gens=x, composite=False) == \ Poly(sin(y)*x, x, domain='EX') assert Poly.from_dict({(1,): y}, gens=x, composite=False) == \ Poly(y*x, x, domain='EX') assert Poly.from_dict({(1, 1): 1}, gens=(x, y), composite=False) == \ Poly(x*y, x, y, domain='ZZ') assert Poly.from_dict({(1, 0): y}, gens=(x, z), composite=False) == \ Poly(y*x, x, z, domain='EX') def test_Poly_from_list(): K = FF(3) assert Poly.from_list([2, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([5, 1], gens=x, domain=K).rep == DMP([K(2), K(1)], K) assert Poly.from_list([2, 1], gens=x).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, field=True).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([2, 1], gens=x, domain=ZZ).rep == DMP([ZZ(2), ZZ(1)], ZZ) assert Poly.from_list([2, 1], gens=x, domain=QQ).rep == DMP([QQ(2), QQ(1)], QQ) assert Poly.from_list([0, 1.0], gens=x).rep == DMP([RR(1.0)], RR) assert Poly.from_list([1.0, 0], gens=x).rep == DMP([RR(1.0), RR(0.0)], RR) raises(MultivariatePolynomialError, lambda: Poly.from_list([[]], gens=(x, y))) def test_Poly_from_poly(): f = Poly(x + 7, x, domain=ZZ) g = Poly(x + 2, x, modulus=3) h = Poly(x + y, x, y, domain=ZZ) K = FF(3) assert Poly.from_poly(f) == f assert Poly.from_poly(f, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=x) == f assert Poly.from_poly(f, gens=x, domain=K).rep == DMP([K(1), K(1)], K) assert Poly.from_poly(f, gens=x, domain=ZZ).rep == DMP([1, 7], ZZ) assert Poly.from_poly(f, gens=x, domain=QQ).rep == DMP([1, 7], QQ) assert Poly.from_poly(f, gens=y) == Poly(x + 7, y, domain='ZZ[x]') raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=K)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=ZZ)) raises(CoercionFailed, lambda: Poly.from_poly(f, gens=y, domain=QQ)) assert Poly.from_poly(f, gens=(x, y)) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=ZZ) == Poly(x + 7, x, y, domain='ZZ') assert Poly.from_poly( f, gens=(x, y), domain=QQ) == Poly(x + 7, x, y, domain='QQ') assert Poly.from_poly( f, gens=(x, y), modulus=3) == Poly(x + 7, x, y, domain='FF(3)') K = FF(2) assert Poly.from_poly(g) == g assert Poly.from_poly(g, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, domain=QQ)) assert Poly.from_poly(g, domain=K).rep == DMP([K(1), K(0)], K) assert Poly.from_poly(g, gens=x) == g assert Poly.from_poly(g, gens=x, domain=ZZ).rep == DMP([1, -1], ZZ) raises(CoercionFailed, lambda: Poly.from_poly(g, gens=x, domain=QQ)) assert Poly.from_poly(g, gens=x, domain=K).rep == DMP([K(1), K(0)], K) K = FF(3) assert Poly.from_poly(h) == h assert Poly.from_poly( h, domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly(h, domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly(h, gens=x) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=ZZ)) assert Poly.from_poly( h, gens=x, domain=ZZ[y]) == Poly(x + y, x, domain=ZZ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, domain=QQ)) assert Poly.from_poly( h, gens=x, domain=QQ[y]) == Poly(x + y, x, domain=QQ[y]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=x, modulus=3)) assert Poly.from_poly(h, gens=y) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=ZZ)) assert Poly.from_poly( h, gens=y, domain=ZZ[x]) == Poly(x + y, y, domain=ZZ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, domain=QQ)) assert Poly.from_poly( h, gens=y, domain=QQ[x]) == Poly(x + y, y, domain=QQ[x]) raises(CoercionFailed, lambda: Poly.from_poly(h, gens=y, modulus=3)) assert Poly.from_poly(h, gens=(x, y)) == h assert Poly.from_poly( h, gens=(x, y), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(x, y), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(y, x)).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=ZZ).rep == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) assert Poly.from_poly( h, gens=(y, x), domain=QQ).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(y, x), domain=K).rep == DMP([[K(1)], [K(1), K(0)]], K) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) assert Poly.from_poly( h, gens=(x, y), field=True).rep == DMP([[QQ(1)], [QQ(1), QQ(0)]], QQ) def test_Poly_from_expr(): raises(GeneratorsNeeded, lambda: Poly.from_expr(S.Zero)) raises(GeneratorsNeeded, lambda: Poly.from_expr(S(7))) F3 = FF(3) assert Poly.from_expr(x + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + 5, x, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(y + 5, y, domain=F3).rep == DMP([F3(1), F3(2)], F3) assert Poly.from_expr(x + y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + y, x, y, domain=F3).rep == DMP([[F3(1)], [F3(1), F3(0)]], F3) assert Poly.from_expr(x + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(y + 5, y, domain=ZZ).rep == DMP([1, 5], ZZ) assert Poly.from_expr(x + 5, x, y, domain=ZZ).rep == DMP([[1], [5]], ZZ) assert Poly.from_expr(y + 5, x, y, domain=ZZ).rep == DMP([[1, 5]], ZZ) def test_Poly__new__(): raises(GeneratorsError, lambda: Poly(x + 1, x, x)) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[x])) raises(GeneratorsError, lambda: Poly(x + y, x, y, domain=ZZ[y])) raises(OptionError, lambda: Poly(x, x, symmetric=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, domain=QQ)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, gaussian=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=[sqrt(3)])) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, modulus=3, extension=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=True)) raises(OptionError, lambda: Poly(x + 2, x, domain=ZZ, greedy=False)) raises(OptionError, lambda: Poly(x + 2, x, domain=QQ, field=False)) raises(NotImplementedError, lambda: Poly(x + 1, x, modulus=3, order='grlex')) raises(NotImplementedError, lambda: Poly(x + 1, x, order='grlex')) raises(GeneratorsNeeded, lambda: Poly({1: 2, 0: 1})) raises(GeneratorsNeeded, lambda: Poly([2, 1])) raises(GeneratorsNeeded, lambda: Poly((2, 1))) raises(GeneratorsNeeded, lambda: Poly(1)) f = a*x**2 + b*x + c assert Poly({2: a, 1: b, 0: c}, x) == f assert Poly(iter([a, b, c]), x) == f assert Poly([a, b, c], x) == f assert Poly((a, b, c), x) == f f = Poly({}, x, y, z) assert f.gens == (x, y, z) and f.as_expr() == 0 assert Poly(Poly(a*x + b*y, x, y), x) == Poly(a*x + b*y, x) assert Poly(3*x**2 + 2*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly(3*x**2 + 2*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='ZZ')) assert Poly( 3*x**2/5 + x*Rational(2, 5) + 1, domain='QQ').all_coeffs() == [Rational(3, 5), Rational(2, 5), 1] assert _epsilon_eq( Poly(3*x**2/5 + x*Rational(2, 5) + 1, domain='RR').all_coeffs(), [0.6, 0.4, 1.0]) assert Poly(3.0*x**2 + 2.0*x + 1, domain='ZZ').all_coeffs() == [3, 2, 1] assert Poly(3.0*x**2 + 2.0*x + 1, domain='QQ').all_coeffs() == [3, 2, 1] assert Poly( 3.0*x**2 + 2.0*x + 1, domain='RR').all_coeffs() == [3.0, 2.0, 1.0] raises(CoercionFailed, lambda: Poly(3.1*x**2 + 2.1*x + 1, domain='ZZ')) assert Poly(3.1*x**2 + 2.1*x + 1, domain='QQ').all_coeffs() == [Rational(31, 10), Rational(21, 10), 1] assert Poly(3.1*x**2 + 2.1*x + 1, domain='RR').all_coeffs() == [3.1, 2.1, 1.0] assert Poly({(2, 1): 1, (1, 2): 2, (1, 1): 3}, x, y) == \ Poly(x**2*y + 2*x*y**2 + 3*x*y, x, y) assert Poly(x**2 + 1, extension=I).get_domain() == QQ.algebraic_field(I) f = 3*x**5 - x**4 + x**3 - x** 2 + 65538 assert Poly(f, x, modulus=65537, symmetric=True) == \ Poly(3*x**5 - x**4 + x**3 - x** 2 + 1, x, modulus=65537, symmetric=True) assert Poly(f, x, modulus=65537, symmetric=False) == \ Poly(3*x**5 + 65536*x**4 + x**3 + 65536*x** 2 + 1, x, modulus=65537, symmetric=False) assert isinstance(Poly(x**2 + x + 1.0).get_domain(), RealField) def test_Poly__args(): assert Poly(x**2 + 1).args == (x**2 + 1,) def test_Poly__gens(): assert Poly((x - p)*(x - q), x).gens == (x,) assert Poly((x - p)*(x - q), p).gens == (p,) assert Poly((x - p)*(x - q), q).gens == (q,) assert Poly((x - p)*(x - q), x, p).gens == (x, p) assert Poly((x - p)*(x - q), x, q).gens == (x, q) assert Poly((x - p)*(x - q), x, p, q).gens == (x, p, q) assert Poly((x - p)*(x - q), p, x, q).gens == (p, x, q) assert Poly((x - p)*(x - q), p, q, x).gens == (p, q, x) assert Poly((x - p)*(x - q)).gens == (x, p, q) assert Poly((x - p)*(x - q), sort='x > p > q').gens == (x, p, q) assert Poly((x - p)*(x - q), sort='p > x > q').gens == (p, x, q) assert Poly((x - p)*(x - q), sort='p > q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), x, p, q, sort='p > q > x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='x').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p').gens == (p, x, q) assert Poly((x - p)*(x - q), wrt='q').gens == (q, x, p) assert Poly((x - p)*(x - q), wrt=x).gens == (x, p, q) assert Poly((x - p)*(x - q), wrt=p).gens == (p, x, q) assert Poly((x - p)*(x - q), wrt=q).gens == (q, x, p) assert Poly((x - p)*(x - q), x, p, q, wrt='p').gens == (x, p, q) assert Poly((x - p)*(x - q), wrt='p', sort='q > x').gens == (p, q, x) assert Poly((x - p)*(x - q), wrt='q', sort='p > x').gens == (q, p, x) def test_Poly_zero(): assert Poly(x).zero == Poly(0, x, domain=ZZ) assert Poly(x/2).zero == Poly(0, x, domain=QQ) def test_Poly_one(): assert Poly(x).one == Poly(1, x, domain=ZZ) assert Poly(x/2).one == Poly(1, x, domain=QQ) def test_Poly__unify(): raises(UnificationFailed, lambda: Poly(x)._unify(y)) F3 = FF(3) F5 = FF(5) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=3))[2:] == ( DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, y, modulus=5))[2:] == ( DMP([[F5(1)], []], F5), DMP([[F5(1), F5(0)]], F5)) assert Poly(y, x, y)._unify(Poly(x, x, modulus=3))[2:] == (DMP([[F3(1), F3(0)]], F3), DMP([[F3(1)], []], F3)) assert Poly(x, x, modulus=3)._unify(Poly(y, x, y))[2:] == (DMP([[F3(1)], []], F3), DMP([[F3(1), F3(0)]], F3)) assert Poly(x + 1, x)._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], ZZ), DMP([1, 2], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([1, 1], QQ), DMP([1, 2], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, x, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], ZZ), DMP([[1], [2]], ZZ)) assert Poly(x + 1, x, y, domain='QQ')._unify(Poly(x + 2, y, x))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, x, y)._unify(Poly(x + 2, y, x, domain='QQ'))[2:] == (DMP([[1], [1]], QQ), DMP([[1], [2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], ZZ), DMP([[1, 2]], ZZ)) assert Poly(x + 1, y, x, domain='QQ')._unify(Poly(x + 2, x, y))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) assert Poly(x + 1, y, x)._unify(Poly(x + 2, x, y, domain='QQ'))[2:] == (DMP([[1, 1]], QQ), DMP([[1, 2]], QQ)) F, A, B = field("a,b", ZZ) assert Poly(a*x, x, domain='ZZ[a]')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) assert Poly(a*x, x, domain='ZZ(a)')._unify(Poly(a*b*x, x, domain='ZZ(a,b)'))[2:] == \ (DMP([A, F(0)], F.to_domain()), DMP([A*B, F(0)], F.to_domain())) raises(CoercionFailed, lambda: Poly(Poly(x**2 + x**2*z, y, field=True), domain='ZZ(x)')) f = Poly(t**2 + t/3 + x, t, domain='QQ(x)') g = Poly(t**2 + t/3 + x, t, domain='QQ[x]') assert f._unify(g)[2:] == (f.rep, f.rep) def test_Poly_free_symbols(): assert Poly(x**2 + 1).free_symbols == {x} assert Poly(x**2 + y*z).free_symbols == {x, y, z} assert Poly(x**2 + y*z, x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z)).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x).free_symbols == {x, y, z} assert Poly(x**2 + sin(y*z), x, domain=EX).free_symbols == {x, y, z} assert Poly(1 + x + x**2, x, y, z).free_symbols == {x} assert Poly(x + sin(y), z).free_symbols == {x, y} def test_PurePoly_free_symbols(): assert PurePoly(x**2 + 1).free_symbols == set([]) assert PurePoly(x**2 + y*z).free_symbols == set([]) assert PurePoly(x**2 + y*z, x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z)).free_symbols == set([]) assert PurePoly(x**2 + sin(y*z), x).free_symbols == {y, z} assert PurePoly(x**2 + sin(y*z), x, domain=EX).free_symbols == {y, z} def test_Poly__eq__(): assert (Poly(x, x) == Poly(x, x)) is True assert (Poly(x, x, domain=QQ) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=QQ)) is True assert (Poly(x, x, domain=ZZ[a]) == Poly(x, x)) is True assert (Poly(x, x) == Poly(x, x, domain=ZZ[a])) is True assert (Poly(x*y, x, y) == Poly(x, x)) is False assert (Poly(x, x, y) == Poly(x, x)) is False assert (Poly(x, x) == Poly(x, x, y)) is False assert (Poly(x**2 + 1, x) == Poly(y**2 + 1, y)) is False assert (Poly(y**2 + 1, y) == Poly(x**2 + 1, x)) is False f = Poly(x, x, domain=ZZ) g = Poly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True t0 = Symbol('t0') f = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='QQ[x,t0]') g = Poly((t0/2 + x**2)*t**2 - x**2*t, t, domain='ZZ(x,t0)') assert (f == g) is True def test_PurePoly__eq__(): assert (PurePoly(x, x) == PurePoly(x, x)) is True assert (PurePoly(x, x, domain=QQ) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=QQ)) is True assert (PurePoly(x, x, domain=ZZ[a]) == PurePoly(x, x)) is True assert (PurePoly(x, x) == PurePoly(x, x, domain=ZZ[a])) is True assert (PurePoly(x*y, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x, y) == PurePoly(x, x)) is False assert (PurePoly(x, x) == PurePoly(x, x, y)) is False assert (PurePoly(x**2 + 1, x) == PurePoly(y**2 + 1, y)) is True assert (PurePoly(y**2 + 1, y) == PurePoly(x**2 + 1, x)) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(x, x, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True f = PurePoly(x, x, domain=ZZ) g = PurePoly(y, y, domain=QQ) assert f.eq(g) is True assert f.ne(g) is False assert f.eq(g, strict=True) is False assert f.ne(g, strict=True) is True def test_PurePoly_Poly(): assert isinstance(PurePoly(Poly(x**2 + 1)), PurePoly) is True assert isinstance(Poly(PurePoly(x**2 + 1)), Poly) is True def test_Poly_get_domain(): assert Poly(2*x).get_domain() == ZZ assert Poly(2*x, domain='ZZ').get_domain() == ZZ assert Poly(2*x, domain='QQ').get_domain() == QQ assert Poly(x/2).get_domain() == QQ raises(CoercionFailed, lambda: Poly(x/2, domain='ZZ')) assert Poly(x/2, domain='QQ').get_domain() == QQ assert isinstance(Poly(0.2*x).get_domain(), RealField) def test_Poly_set_domain(): assert Poly(2*x + 1).set_domain(ZZ) == Poly(2*x + 1) assert Poly(2*x + 1).set_domain('ZZ') == Poly(2*x + 1) assert Poly(2*x + 1).set_domain(QQ) == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1).set_domain('QQ') == Poly(2*x + 1, domain='QQ') assert Poly(Rational(2, 10)*x + Rational(1, 10)).set_domain('RR') == Poly(0.2*x + 0.1) assert Poly(0.2*x + 0.1).set_domain('QQ') == Poly(Rational(2, 10)*x + Rational(1, 10)) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_domain(ZZ)) raises(CoercionFailed, lambda: Poly(x + 1, modulus=2).set_domain(QQ)) raises(GeneratorsError, lambda: Poly(x*y, x, y).set_domain(ZZ[y])) def test_Poly_get_modulus(): assert Poly(x**2 + 1, modulus=2).get_modulus() == 2 raises(PolynomialError, lambda: Poly(x**2 + 1).get_modulus()) def test_Poly_set_modulus(): assert Poly( x**2 + 1, modulus=2).set_modulus(7) == Poly(x**2 + 1, modulus=7) assert Poly( x**2 + 5, modulus=7).set_modulus(2) == Poly(x**2 + 1, modulus=2) assert Poly(x**2 + 1).set_modulus(2) == Poly(x**2 + 1, modulus=2) raises(CoercionFailed, lambda: Poly(x/2 + 1).set_modulus(2)) def test_Poly_add_ground(): assert Poly(x + 1).add_ground(2) == Poly(x + 3) def test_Poly_sub_ground(): assert Poly(x + 1).sub_ground(2) == Poly(x - 1) def test_Poly_mul_ground(): assert Poly(x + 1).mul_ground(2) == Poly(2*x + 2) def test_Poly_quo_ground(): assert Poly(2*x + 4).quo_ground(2) == Poly(x + 2) assert Poly(2*x + 3).quo_ground(2) == Poly(x + 1) def test_Poly_exquo_ground(): assert Poly(2*x + 4).exquo_ground(2) == Poly(x + 2) raises(ExactQuotientFailed, lambda: Poly(2*x + 3).exquo_ground(2)) def test_Poly_abs(): assert Poly(-x + 1, x).abs() == abs(Poly(-x + 1, x)) == Poly(x + 1, x) def test_Poly_neg(): assert Poly(-x + 1, x).neg() == -Poly(-x + 1, x) == Poly(x - 1, x) def test_Poly_add(): assert Poly(0, x).add(Poly(0, x)) == Poly(0, x) assert Poly(0, x) + Poly(0, x) == Poly(0, x) assert Poly(1, x).add(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) + Poly(0, x) == Poly(1, x, y) assert Poly(0, x).add(Poly(1, x, y)) == Poly(1, x, y) assert Poly(0, x, y) + Poly(1, x, y) == Poly(1, x, y) assert Poly(1, x) + x == Poly(x + 1, x) assert Poly(1, x) + sin(x) == 1 + sin(x) assert Poly(x, x) + 1 == Poly(x + 1, x) assert 1 + Poly(x, x) == Poly(x + 1, x) def test_Poly_sub(): assert Poly(0, x).sub(Poly(0, x)) == Poly(0, x) assert Poly(0, x) - Poly(0, x) == Poly(0, x) assert Poly(1, x).sub(Poly(0, x)) == Poly(1, x) assert Poly(1, x, y) - Poly(0, x) == Poly(1, x, y) assert Poly(0, x).sub(Poly(1, x, y)) == Poly(-1, x, y) assert Poly(0, x, y) - Poly(1, x, y) == Poly(-1, x, y) assert Poly(1, x) - x == Poly(1 - x, x) assert Poly(1, x) - sin(x) == 1 - sin(x) assert Poly(x, x) - 1 == Poly(x - 1, x) assert 1 - Poly(x, x) == Poly(1 - x, x) def test_Poly_mul(): assert Poly(0, x).mul(Poly(0, x)) == Poly(0, x) assert Poly(0, x) * Poly(0, x) == Poly(0, x) assert Poly(2, x).mul(Poly(4, x)) == Poly(8, x) assert Poly(2, x, y) * Poly(4, x) == Poly(8, x, y) assert Poly(4, x).mul(Poly(2, x, y)) == Poly(8, x, y) assert Poly(4, x, y) * Poly(2, x, y) == Poly(8, x, y) assert Poly(1, x) * x == Poly(x, x) assert Poly(1, x) * sin(x) == sin(x) assert Poly(x, x) * 2 == Poly(2*x, x) assert 2 * Poly(x, x) == Poly(2*x, x) def test_issue_13079(): assert Poly(x)*x == Poly(x**2, x, domain='ZZ') assert x*Poly(x) == Poly(x**2, x, domain='ZZ') assert -2*Poly(x) == Poly(-2*x, x, domain='ZZ') assert S(-2)*Poly(x) == Poly(-2*x, x, domain='ZZ') assert Poly(x)*S(-2) == Poly(-2*x, x, domain='ZZ') def test_Poly_sqr(): assert Poly(x*y, x, y).sqr() == Poly(x**2*y**2, x, y) def test_Poly_pow(): assert Poly(x, x).pow(10) == Poly(x**10, x) assert Poly(x, x).pow(Integer(10)) == Poly(x**10, x) assert Poly(2*y, x, y).pow(4) == Poly(16*y**4, x, y) assert Poly(2*y, x, y).pow(Integer(4)) == Poly(16*y**4, x, y) assert Poly(7*x*y, x, y)**3 == Poly(343*x**3*y**3, x, y) assert Poly(x*y + 1, x, y)**(-1) == (x*y + 1)**(-1) assert Poly(x*y + 1, x, y)**x == (x*y + 1)**x def test_Poly_divmod(): f, g = Poly(x**2), Poly(x) q, r = g, Poly(0, x) assert divmod(f, g) == (q, r) assert f // g == q assert f % g == r assert divmod(f, x) == (q, r) assert f // x == q assert f % x == r q, r = Poly(0, x), Poly(2, x) assert divmod(2, g) == (q, r) assert 2 // g == q assert 2 % g == r assert Poly(x)/Poly(x) == 1 assert Poly(x**2)/Poly(x) == x assert Poly(x)/Poly(x**2) == 1/x def test_Poly_eq_ne(): assert (Poly(x + y, x, y) == Poly(x + y, x, y)) is True assert (Poly(x + y, x) == Poly(x + y, x, y)) is False assert (Poly(x + y, x, y) == Poly(x + y, x)) is False assert (Poly(x + y, x) == Poly(x + y, x)) is True assert (Poly(x + y, y) == Poly(x + y, y)) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, x, y) == x + y) is True assert (Poly(x + y, x) == x + y) is True assert (Poly(x + y, y) == x + y) is True assert (Poly(x + y, x, y) != Poly(x + y, x, y)) is False assert (Poly(x + y, x) != Poly(x + y, x, y)) is True assert (Poly(x + y, x, y) != Poly(x + y, x)) is True assert (Poly(x + y, x) != Poly(x + y, x)) is False assert (Poly(x + y, y) != Poly(x + y, y)) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, x, y) != x + y) is False assert (Poly(x + y, x) != x + y) is False assert (Poly(x + y, y) != x + y) is False assert (Poly(x, x) == sin(x)) is False assert (Poly(x, x) != sin(x)) is True def test_Poly_nonzero(): assert not bool(Poly(0, x)) is True assert not bool(Poly(1, x)) is False def test_Poly_properties(): assert Poly(0, x).is_zero is True assert Poly(1, x).is_zero is False assert Poly(1, x).is_one is True assert Poly(2, x).is_one is False assert Poly(x - 1, x).is_sqf is True assert Poly((x - 1)**2, x).is_sqf is False assert Poly(x - 1, x).is_monic is True assert Poly(2*x - 1, x).is_monic is False assert Poly(3*x + 2, x).is_primitive is True assert Poly(4*x + 2, x).is_primitive is False assert Poly(1, x).is_ground is True assert Poly(x, x).is_ground is False assert Poly(x + y + z + 1).is_linear is True assert Poly(x*y*z + 1).is_linear is False assert Poly(x*y + z + 1).is_quadratic is True assert Poly(x*y*z + 1).is_quadratic is False assert Poly(x*y).is_monomial is True assert Poly(x*y + 1).is_monomial is False assert Poly(x**2 + x*y).is_homogeneous is True assert Poly(x**3 + x*y).is_homogeneous is False assert Poly(x).is_univariate is True assert Poly(x*y).is_univariate is False assert Poly(x*y).is_multivariate is True assert Poly(x).is_multivariate is False assert Poly( x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1).is_cyclotomic is False assert Poly( x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1).is_cyclotomic is True def test_Poly_is_irreducible(): assert Poly(x**2 + x + 1).is_irreducible is True assert Poly(x**2 + 2*x + 1).is_irreducible is False assert Poly(7*x + 3, modulus=11).is_irreducible is True assert Poly(7*x**2 + 3*x + 1, modulus=11).is_irreducible is False def test_Poly_subs(): assert Poly(x + 1).subs(x, 0) == 1 assert Poly(x + 1).subs(x, x) == Poly(x + 1) assert Poly(x + 1).subs(x, y) == Poly(y + 1) assert Poly(x*y, x).subs(y, x) == x**2 assert Poly(x*y, x).subs(x, y) == y**2 def test_Poly_replace(): assert Poly(x + 1).replace(x) == Poly(x + 1) assert Poly(x + 1).replace(y) == Poly(y + 1) raises(PolynomialError, lambda: Poly(x + y).replace(z)) assert Poly(x + 1).replace(x, x) == Poly(x + 1) assert Poly(x + 1).replace(x, y) == Poly(y + 1) assert Poly(x + y).replace(x, x) == Poly(x + y) assert Poly(x + y).replace(x, z) == Poly(z + y, z, y) assert Poly(x + y).replace(y, y) == Poly(x + y) assert Poly(x + y).replace(y, z) == Poly(x + z, x, z) assert Poly(x + y).replace(z, t) == Poly(x + y) raises(PolynomialError, lambda: Poly(x + y).replace(x, y)) assert Poly(x + y, x).replace(x, z) == Poly(z + y, z) assert Poly(x + y, y).replace(y, z) == Poly(x + z, z) raises(PolynomialError, lambda: Poly(x + y, x).replace(x, y)) raises(PolynomialError, lambda: Poly(x + y, y).replace(y, x)) def test_Poly_reorder(): raises(PolynomialError, lambda: Poly(x + y).reorder(x, z)) assert Poly(x + y, x, y).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, y, x).reorder(x, y) == Poly(x + y, x, y) assert Poly(x + y, y, x).reorder(y, x) == Poly(x + y, y, x) assert Poly(x + y, x, y).reorder(wrt=x) == Poly(x + y, x, y) assert Poly(x + y, x, y).reorder(wrt=y) == Poly(x + y, y, x) def test_Poly_ltrim(): f = Poly(y**2 + y*z**2, x, y, z).ltrim(y) assert f.as_expr() == y**2 + y*z**2 and f.gens == (y, z) assert Poly(x*y - x, z, x, y).ltrim(1) == Poly(x*y - x, x, y) raises(PolynomialError, lambda: Poly(x*y**2 + y**2, x, y).ltrim(y)) raises(PolynomialError, lambda: Poly(x*y - x, x, y).ltrim(-1)) def test_Poly_has_only_gens(): assert Poly(x*y + 1, x, y, z).has_only_gens(x, y) is True assert Poly(x*y + z, x, y, z).has_only_gens(x, y) is False raises(GeneratorsError, lambda: Poly(x*y**2 + y**2, x, y).has_only_gens(t)) def test_Poly_to_ring(): assert Poly(2*x + 1, domain='ZZ').to_ring() == Poly(2*x + 1, domain='ZZ') assert Poly(2*x + 1, domain='QQ').to_ring() == Poly(2*x + 1, domain='ZZ') raises(CoercionFailed, lambda: Poly(x/2 + 1).to_ring()) raises(DomainError, lambda: Poly(2*x + 1, modulus=3).to_ring()) def test_Poly_to_field(): assert Poly(2*x + 1, domain='ZZ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(2*x + 1, domain='QQ').to_field() == Poly(2*x + 1, domain='QQ') assert Poly(x/2 + 1, domain='QQ').to_field() == Poly(x/2 + 1, domain='QQ') assert Poly(2*x + 1, modulus=3).to_field() == Poly(2*x + 1, modulus=3) assert Poly(2.0*x + 1.0).to_field() == Poly(2.0*x + 1.0) def test_Poly_to_exact(): assert Poly(2*x).to_exact() == Poly(2*x) assert Poly(x/2).to_exact() == Poly(x/2) assert Poly(0.1*x).to_exact() == Poly(x/10) def test_Poly_retract(): f = Poly(x**2 + 1, x, domain=QQ[y]) assert f.retract() == Poly(x**2 + 1, x, domain='ZZ') assert f.retract(field=True) == Poly(x**2 + 1, x, domain='QQ') assert Poly(0, x, y).retract() == Poly(0, x, y) def test_Poly_slice(): f = Poly(x**3 + 2*x**2 + 3*x + 4) assert f.slice(0, 0) == Poly(0, x) assert f.slice(0, 1) == Poly(4, x) assert f.slice(0, 2) == Poly(3*x + 4, x) assert f.slice(0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 0) == Poly(0, x) assert f.slice(x, 0, 1) == Poly(4, x) assert f.slice(x, 0, 2) == Poly(3*x + 4, x) assert f.slice(x, 0, 3) == Poly(2*x**2 + 3*x + 4, x) assert f.slice(x, 0, 4) == Poly(x**3 + 2*x**2 + 3*x + 4, x) def test_Poly_coeffs(): assert Poly(0, x).coeffs() == [0] assert Poly(1, x).coeffs() == [1] assert Poly(2*x + 1, x).coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).coeffs() == [7, 2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('lex') == [2, 1] assert Poly(x*y**7 + 2*x**2*y**3).coeffs('grlex') == [1, 2] def test_Poly_monoms(): assert Poly(0, x).monoms() == [(0,)] assert Poly(1, x).monoms() == [(0,)] assert Poly(2*x + 1, x).monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).monoms() == [(4,), (1,), (0,)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('lex') == [(2, 3), (1, 7)] assert Poly(x*y**7 + 2*x**2*y**3).monoms('grlex') == [(1, 7), (2, 3)] def test_Poly_terms(): assert Poly(0, x).terms() == [((0,), 0)] assert Poly(1, x).terms() == [((0,), 1)] assert Poly(2*x + 1, x).terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).terms() == [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).terms() == [((4,), 7), ((1,), 2), ((0,), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('lex') == [((2, 3), 2), ((1, 7), 1)] assert Poly( x*y**7 + 2*x**2*y**3).terms('grlex') == [((1, 7), 1), ((2, 3), 2)] def test_Poly_all_coeffs(): assert Poly(0, x).all_coeffs() == [0] assert Poly(1, x).all_coeffs() == [1] assert Poly(2*x + 1, x).all_coeffs() == [2, 1] assert Poly(7*x**2 + 2*x + 1, x).all_coeffs() == [7, 2, 1] assert Poly(7*x**4 + 2*x + 1, x).all_coeffs() == [7, 0, 0, 2, 1] def test_Poly_all_monoms(): assert Poly(0, x).all_monoms() == [(0,)] assert Poly(1, x).all_monoms() == [(0,)] assert Poly(2*x + 1, x).all_monoms() == [(1,), (0,)] assert Poly(7*x**2 + 2*x + 1, x).all_monoms() == [(2,), (1,), (0,)] assert Poly(7*x**4 + 2*x + 1, x).all_monoms() == [(4,), (3,), (2,), (1,), (0,)] def test_Poly_all_terms(): assert Poly(0, x).all_terms() == [((0,), 0)] assert Poly(1, x).all_terms() == [((0,), 1)] assert Poly(2*x + 1, x).all_terms() == [((1,), 2), ((0,), 1)] assert Poly(7*x**2 + 2*x + 1, x).all_terms() == \ [((2,), 7), ((1,), 2), ((0,), 1)] assert Poly(7*x**4 + 2*x + 1, x).all_terms() == \ [((4,), 7), ((3,), 0), ((2,), 0), ((1,), 2), ((0,), 1)] def test_Poly_termwise(): f = Poly(x**2 + 20*x + 400) g = Poly(x**2 + 2*x + 4) def func(monom, coeff): (k,) = monom return coeff//10**(2 - k) assert f.termwise(func) == g def func(monom, coeff): (k,) = monom return (k,), coeff//10**(2 - k) assert f.termwise(func) == g def test_Poly_length(): assert Poly(0, x).length() == 0 assert Poly(1, x).length() == 1 assert Poly(x, x).length() == 1 assert Poly(x + 1, x).length() == 2 assert Poly(x**2 + 1, x).length() == 2 assert Poly(x**2 + x + 1, x).length() == 3 def test_Poly_as_dict(): assert Poly(0, x).as_dict() == {} assert Poly(0, x, y, z).as_dict() == {} assert Poly(1, x).as_dict() == {(0,): 1} assert Poly(1, x, y, z).as_dict() == {(0, 0, 0): 1} assert Poly(x**2 + 3, x).as_dict() == {(2,): 1, (0,): 3} assert Poly(x**2 + 3, x, y, z).as_dict() == {(2, 0, 0): 1, (0, 0, 0): 3} assert Poly(3*x**2*y*z**3 + 4*x*y + 5*x*z).as_dict() == {(2, 1, 3): 3, (1, 1, 0): 4, (1, 0, 1): 5} def test_Poly_as_expr(): assert Poly(0, x).as_expr() == 0 assert Poly(0, x, y, z).as_expr() == 0 assert Poly(1, x).as_expr() == 1 assert Poly(1, x, y, z).as_expr() == 1 assert Poly(x**2 + 3, x).as_expr() == x**2 + 3 assert Poly(x**2 + 3, x, y, z).as_expr() == x**2 + 3 assert Poly( 3*x**2*y*z**3 + 4*x*y + 5*x*z).as_expr() == 3*x**2*y*z**3 + 4*x*y + 5*x*z f = Poly(x**2 + 2*x*y**2 - y, x, y) assert f.as_expr() == -y + x**2 + 2*x*y**2 assert f.as_expr({x: 5}) == 25 - y + 10*y**2 assert f.as_expr({y: 6}) == -6 + 72*x + x**2 assert f.as_expr({x: 5, y: 6}) == 379 assert f.as_expr(5, 6) == 379 raises(GeneratorsError, lambda: f.as_expr({z: 7})) def test_Poly_lift(): assert Poly(x**4 - I*x + 17*I, x, gaussian=True).lift() == \ Poly(x**16 + 2*x**10 + 578*x**8 + x**4 - 578*x**2 + 83521, x, domain='QQ') def test_Poly_deflate(): assert Poly(0, x).deflate() == ((1,), Poly(0, x)) assert Poly(1, x).deflate() == ((1,), Poly(1, x)) assert Poly(x, x).deflate() == ((1,), Poly(x, x)) assert Poly(x**2, x).deflate() == ((2,), Poly(x, x)) assert Poly(x**17, x).deflate() == ((17,), Poly(x, x)) assert Poly( x**2*y*z**11 + x**4*z**11).deflate() == ((2, 1, 11), Poly(x*y*z + x**2*z)) def test_Poly_inject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x) assert f.inject() == Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.inject(front=True) == Poly(y**3*x + y*x**2 + y*x + 1, y, x) def test_Poly_eject(): f = Poly(x**2*y + x*y**3 + x*y + 1, x, y) assert f.eject(x) == Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]') assert f.eject(y) == Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]') ex = x + y + z + t + w g = Poly(ex, x, y, z, t, w) assert g.eject(x) == Poly(ex, y, z, t, w, domain='ZZ[x]') assert g.eject(x, y) == Poly(ex, z, t, w, domain='ZZ[x, y]') assert g.eject(x, y, z) == Poly(ex, t, w, domain='ZZ[x, y, z]') assert g.eject(w) == Poly(ex, x, y, z, t, domain='ZZ[w]') assert g.eject(t, w) == Poly(ex, x, y, z, domain='ZZ[w, t]') assert g.eject(z, t, w) == Poly(ex, x, y, domain='ZZ[w, t, z]') raises(DomainError, lambda: Poly(x*y, x, y, domain=ZZ[z]).eject(y)) raises(NotImplementedError, lambda: Poly(x*y, x, y, z).eject(y)) def test_Poly_exclude(): assert Poly(x, x, y).exclude() == Poly(x, x) assert Poly(x*y, x, y).exclude() == Poly(x*y, x, y) assert Poly(1, x, y).exclude() == Poly(1, x, y) def test_Poly__gen_to_level(): assert Poly(1, x, y)._gen_to_level(-2) == 0 assert Poly(1, x, y)._gen_to_level(-1) == 1 assert Poly(1, x, y)._gen_to_level( 0) == 0 assert Poly(1, x, y)._gen_to_level( 1) == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(-3)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level( 2)) assert Poly(1, x, y)._gen_to_level(x) == 0 assert Poly(1, x, y)._gen_to_level(y) == 1 assert Poly(1, x, y)._gen_to_level('x') == 0 assert Poly(1, x, y)._gen_to_level('y') == 1 raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level(z)) raises(PolynomialError, lambda: Poly(1, x, y)._gen_to_level('z')) def test_Poly_degree(): assert Poly(0, x).degree() is -oo assert Poly(1, x).degree() == 0 assert Poly(x, x).degree() == 1 assert Poly(0, x).degree(gen=0) is -oo assert Poly(1, x).degree(gen=0) == 0 assert Poly(x, x).degree(gen=0) == 1 assert Poly(0, x).degree(gen=x) is -oo assert Poly(1, x).degree(gen=x) == 0 assert Poly(x, x).degree(gen=x) == 1 assert Poly(0, x).degree(gen='x') is -oo assert Poly(1, x).degree(gen='x') == 0 assert Poly(x, x).degree(gen='x') == 1 raises(PolynomialError, lambda: Poly(1, x).degree(gen=1)) raises(PolynomialError, lambda: Poly(1, x).degree(gen=y)) raises(PolynomialError, lambda: Poly(1, x).degree(gen='y')) assert Poly(1, x, y).degree() == 0 assert Poly(2*y, x, y).degree() == 0 assert Poly(x*y, x, y).degree() == 1 assert Poly(1, x, y).degree(gen=x) == 0 assert Poly(2*y, x, y).degree(gen=x) == 0 assert Poly(x*y, x, y).degree(gen=x) == 1 assert Poly(1, x, y).degree(gen=y) == 0 assert Poly(2*y, x, y).degree(gen=y) == 1 assert Poly(x*y, x, y).degree(gen=y) == 1 assert degree(0, x) is -oo assert degree(1, x) == 0 assert degree(x, x) == 1 assert degree(x*y**2, x) == 1 assert degree(x*y**2, y) == 2 assert degree(x*y**2, z) == 0 assert degree(pi) == 1 raises(TypeError, lambda: degree(y**2 + x**3)) raises(TypeError, lambda: degree(y**2 + x**3, 1)) raises(PolynomialError, lambda: degree(x, 1.1)) raises(PolynomialError, lambda: degree(x**2/(x**3 + 1), x)) assert degree(Poly(0,x),z) is -oo assert degree(Poly(1,x),z) == 0 assert degree(Poly(x**2+y**3,y)) == 3 assert degree(Poly(y**2 + x**3, y, x), 1) == 3 assert degree(Poly(y**2 + x**3, x), z) == 0 assert degree(Poly(y**2 + x**3 + z**4, x), z) == 4 def test_Poly_degree_list(): assert Poly(0, x).degree_list() == (-oo,) assert Poly(0, x, y).degree_list() == (-oo, -oo) assert Poly(0, x, y, z).degree_list() == (-oo, -oo, -oo) assert Poly(1, x).degree_list() == (0,) assert Poly(1, x, y).degree_list() == (0, 0) assert Poly(1, x, y, z).degree_list() == (0, 0, 0) assert Poly(x**2*y + x**3*z**2 + 1).degree_list() == (3, 1, 2) assert degree_list(1, x) == (0,) assert degree_list(x, x) == (1,) assert degree_list(x*y**2) == (1, 2) raises(ComputationFailed, lambda: degree_list(1)) def test_Poly_total_degree(): assert Poly(x**2*y + x**3*z**2 + 1).total_degree() == 5 assert Poly(x**2 + z**3).total_degree() == 3 assert Poly(x*y*z + z**4).total_degree() == 4 assert Poly(x**3 + x + 1).total_degree() == 3 assert total_degree(x*y + z**3) == 3 assert total_degree(x*y + z**3, x, y) == 2 assert total_degree(1) == 0 assert total_degree(Poly(y**2 + x**3 + z**4)) == 4 assert total_degree(Poly(y**2 + x**3 + z**4, x)) == 3 assert total_degree(Poly(y**2 + x**3 + z**4, x), z) == 4 assert total_degree(Poly(x**9 + x*z*y + x**3*z**2 + z**7,x), z) == 7 def test_Poly_homogenize(): assert Poly(x**2+y).homogenize(z) == Poly(x**2+y*z) assert Poly(x+y).homogenize(z) == Poly(x+y, x, y, z) assert Poly(x+y**2).homogenize(y) == Poly(x*y+y**2) def test_Poly_homogeneous_order(): assert Poly(0, x, y).homogeneous_order() is -oo assert Poly(1, x, y).homogeneous_order() == 0 assert Poly(x, x, y).homogeneous_order() == 1 assert Poly(x*y, x, y).homogeneous_order() == 2 assert Poly(x + 1, x, y).homogeneous_order() is None assert Poly(x*y + x, x, y).homogeneous_order() is None assert Poly(x**5 + 2*x**3*y**2 + 9*x*y**4).homogeneous_order() == 5 assert Poly(x**5 + 2*x**3*y**3 + 9*x*y**4).homogeneous_order() is None def test_Poly_LC(): assert Poly(0, x).LC() == 0 assert Poly(1, x).LC() == 1 assert Poly(2*x**2 + x, x).LC() == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('lex') == 2 assert Poly(x*y**7 + 2*x**2*y**3).LC('grlex') == 1 assert LC(x*y**7 + 2*x**2*y**3, order='lex') == 2 assert LC(x*y**7 + 2*x**2*y**3, order='grlex') == 1 def test_Poly_TC(): assert Poly(0, x).TC() == 0 assert Poly(1, x).TC() == 1 assert Poly(2*x**2 + x, x).TC() == 0 def test_Poly_EC(): assert Poly(0, x).EC() == 0 assert Poly(1, x).EC() == 1 assert Poly(2*x**2 + x, x).EC() == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('lex') == 1 assert Poly(x*y**7 + 2*x**2*y**3).EC('grlex') == 2 def test_Poly_coeff(): assert Poly(0, x).coeff_monomial(1) == 0 assert Poly(0, x).coeff_monomial(x) == 0 assert Poly(1, x).coeff_monomial(1) == 1 assert Poly(1, x).coeff_monomial(x) == 0 assert Poly(x**8, x).coeff_monomial(1) == 0 assert Poly(x**8, x).coeff_monomial(x**7) == 0 assert Poly(x**8, x).coeff_monomial(x**8) == 1 assert Poly(x**8, x).coeff_monomial(x**9) == 0 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(1) == 1 assert Poly(3*x*y**2 + 1, x, y).coeff_monomial(x*y**2) == 3 p = Poly(24*x*y*exp(8) + 23*x, x, y) assert p.coeff_monomial(x) == 23 assert p.coeff_monomial(y) == 0 assert p.coeff_monomial(x*y) == 24*exp(8) assert p.as_expr().coeff(x) == 24*y*exp(8) + 23 raises(NotImplementedError, lambda: p.coeff(x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(0)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x)) raises(ValueError, lambda: Poly(x + 1).coeff_monomial(3*x*y)) def test_Poly_nth(): assert Poly(0, x).nth(0) == 0 assert Poly(0, x).nth(1) == 0 assert Poly(1, x).nth(0) == 1 assert Poly(1, x).nth(1) == 0 assert Poly(x**8, x).nth(0) == 0 assert Poly(x**8, x).nth(7) == 0 assert Poly(x**8, x).nth(8) == 1 assert Poly(x**8, x).nth(9) == 0 assert Poly(3*x*y**2 + 1, x, y).nth(0, 0) == 1 assert Poly(3*x*y**2 + 1, x, y).nth(1, 2) == 3 raises(ValueError, lambda: Poly(x*y + 1, x, y).nth(1)) def test_Poly_LM(): assert Poly(0, x).LM() == (0,) assert Poly(1, x).LM() == (0,) assert Poly(2*x**2 + x, x).LM() == (2,) assert Poly(x*y**7 + 2*x**2*y**3).LM('lex') == (2, 3) assert Poly(x*y**7 + 2*x**2*y**3).LM('grlex') == (1, 7) assert LM(x*y**7 + 2*x**2*y**3, order='lex') == x**2*y**3 assert LM(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_LM_custom_order(): f = Poly(x**2*y**3*z + x**2*y*z**3 + x*y*z + 1) rev_lex = lambda monom: tuple(reversed(monom)) assert f.LM(order='lex') == (2, 3, 1) assert f.LM(order=rev_lex) == (2, 1, 3) def test_Poly_EM(): assert Poly(0, x).EM() == (0,) assert Poly(1, x).EM() == (0,) assert Poly(2*x**2 + x, x).EM() == (1,) assert Poly(x*y**7 + 2*x**2*y**3).EM('lex') == (1, 7) assert Poly(x*y**7 + 2*x**2*y**3).EM('grlex') == (2, 3) def test_Poly_LT(): assert Poly(0, x).LT() == ((0,), 0) assert Poly(1, x).LT() == ((0,), 1) assert Poly(2*x**2 + x, x).LT() == ((2,), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('lex') == ((2, 3), 2) assert Poly(x*y**7 + 2*x**2*y**3).LT('grlex') == ((1, 7), 1) assert LT(x*y**7 + 2*x**2*y**3, order='lex') == 2*x**2*y**3 assert LT(x*y**7 + 2*x**2*y**3, order='grlex') == x*y**7 def test_Poly_ET(): assert Poly(0, x).ET() == ((0,), 0) assert Poly(1, x).ET() == ((0,), 1) assert Poly(2*x**2 + x, x).ET() == ((1,), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('lex') == ((1, 7), 1) assert Poly(x*y**7 + 2*x**2*y**3).ET('grlex') == ((2, 3), 2) def test_Poly_max_norm(): assert Poly(-1, x).max_norm() == 1 assert Poly( 0, x).max_norm() == 0 assert Poly( 1, x).max_norm() == 1 def test_Poly_l1_norm(): assert Poly(-1, x).l1_norm() == 1 assert Poly( 0, x).l1_norm() == 0 assert Poly( 1, x).l1_norm() == 1 def test_Poly_clear_denoms(): coeff, poly = Poly(x + 2, x).clear_denoms() assert coeff == 1 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/2 + 1, x).clear_denoms() assert coeff == 2 and poly == Poly( x + 2, x, domain='QQ') and poly.get_domain() == QQ coeff, poly = Poly(x/2 + 1, x).clear_denoms(convert=True) assert coeff == 2 and poly == Poly( x + 2, x, domain='ZZ') and poly.get_domain() == ZZ coeff, poly = Poly(x/y + 1, x).clear_denoms(convert=True) assert coeff == y and poly == Poly( x + y, x, domain='ZZ[y]') and poly.get_domain() == ZZ[y] coeff, poly = Poly(x/3 + sqrt(2), x, domain='EX').clear_denoms() assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX coeff, poly = Poly( x/3 + sqrt(2), x, domain='EX').clear_denoms(convert=True) assert coeff == 3 and poly == Poly( x + 3*sqrt(2), x, domain='EX') and poly.get_domain() == EX def test_Poly_rat_clear_denoms(): f = Poly(x**2/y + 1, x) g = Poly(x**3 + y, x) assert f.rat_clear_denoms(g) == \ (Poly(x**2 + y, x), Poly(y*x**3 + y**2, x)) f = f.set_domain(EX) g = g.set_domain(EX) assert f.rat_clear_denoms(g) == (f, g) def test_Poly_integrate(): assert Poly(x + 1).integrate() == Poly(x**2/2 + x) assert Poly(x + 1).integrate(x) == Poly(x**2/2 + x) assert Poly(x + 1).integrate((x, 1)) == Poly(x**2/2 + x) assert Poly(x*y + 1).integrate(x) == Poly(x**2*y/2 + x) assert Poly(x*y + 1).integrate(y) == Poly(x*y**2/2 + y) assert Poly(x*y + 1).integrate(x, x) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate(y, y) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate((x, 2)) == Poly(x**3*y/6 + x**2/2) assert Poly(x*y + 1).integrate((y, 2)) == Poly(x*y**3/6 + y**2/2) assert Poly(x*y + 1).integrate(x, y) == Poly(x**2*y**2/4 + x*y) assert Poly(x*y + 1).integrate(y, x) == Poly(x**2*y**2/4 + x*y) def test_Poly_diff(): assert Poly(x**2 + x).diff() == Poly(2*x + 1) assert Poly(x**2 + x).diff(x) == Poly(2*x + 1) assert Poly(x**2 + x).diff((x, 1)) == Poly(2*x + 1) assert Poly(x**2*y**2 + x*y).diff(x) == Poly(2*x*y**2 + y) assert Poly(x**2*y**2 + x*y).diff(y) == Poly(2*x**2*y + x) assert Poly(x**2*y**2 + x*y).diff(x, x) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff(y, y) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff((x, 2)) == Poly(2*y**2, x, y) assert Poly(x**2*y**2 + x*y).diff((y, 2)) == Poly(2*x**2, x, y) assert Poly(x**2*y**2 + x*y).diff(x, y) == Poly(4*x*y + 1) assert Poly(x**2*y**2 + x*y).diff(y, x) == Poly(4*x*y + 1) def test_issue_9585(): assert diff(Poly(x**2 + x)) == Poly(2*x + 1) assert diff(Poly(x**2 + x), x, evaluate=False) == \ Derivative(Poly(x**2 + x), x) assert Derivative(Poly(x**2 + x), x).doit() == Poly(2*x + 1) def test_Poly_eval(): assert Poly(0, x).eval(7) == 0 assert Poly(1, x).eval(7) == 1 assert Poly(x, x).eval(7) == 7 assert Poly(0, x).eval(0, 7) == 0 assert Poly(1, x).eval(0, 7) == 1 assert Poly(x, x).eval(0, 7) == 7 assert Poly(0, x).eval(x, 7) == 0 assert Poly(1, x).eval(x, 7) == 1 assert Poly(x, x).eval(x, 7) == 7 assert Poly(0, x).eval('x', 7) == 0 assert Poly(1, x).eval('x', 7) == 1 assert Poly(x, x).eval('x', 7) == 7 raises(PolynomialError, lambda: Poly(1, x).eval(1, 7)) raises(PolynomialError, lambda: Poly(1, x).eval(y, 7)) raises(PolynomialError, lambda: Poly(1, x).eval('y', 7)) assert Poly(123, x, y).eval(7) == Poly(123, y) assert Poly(2*y, x, y).eval(7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(7) == Poly(7*y, y) assert Poly(123, x, y).eval(x, 7) == Poly(123, y) assert Poly(2*y, x, y).eval(x, 7) == Poly(2*y, y) assert Poly(x*y, x, y).eval(x, 7) == Poly(7*y, y) assert Poly(123, x, y).eval(y, 7) == Poly(123, x) assert Poly(2*y, x, y).eval(y, 7) == Poly(14, x) assert Poly(x*y, x, y).eval(y, 7) == Poly(7*x, x) assert Poly(x*y + y, x, y).eval({x: 7}) == Poly(8*y, y) assert Poly(x*y + y, x, y).eval({y: 7}) == Poly(7*x + 7, x) assert Poly(x*y + y, x, y).eval({x: 6, y: 7}) == 49 assert Poly(x*y + y, x, y).eval({x: 7, y: 6}) == 48 assert Poly(x*y + y, x, y).eval((6, 7)) == 49 assert Poly(x*y + y, x, y).eval([6, 7]) == 49 assert Poly(x + 1, domain='ZZ').eval(S.Half) == Rational(3, 2) assert Poly(x + 1, domain='ZZ').eval(sqrt(2)) == sqrt(2) + 1 raises(ValueError, lambda: Poly(x*y + y, x, y).eval((6, 7, 8))) raises(DomainError, lambda: Poly(x + 1, domain='ZZ').eval(S.Half, auto=False)) # issue 6344 alpha = Symbol('alpha') result = (2*alpha*z - 2*alpha + z**2 + 3)/(z**2 - 2*z + 1) f = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, domain='ZZ[alpha]') assert f.eval((z + 1)/(z - 1)) == result g = Poly(x**2 + (alpha - 1)*x - alpha + 1, x, y, domain='ZZ[alpha]') assert g.eval((z + 1)/(z - 1)) == Poly(result, y, domain='ZZ(alpha,z)') def test_Poly___call__(): f = Poly(2*x*y + 3*x + y + 2*z) assert f(2) == Poly(5*y + 2*z + 6) assert f(2, 5) == Poly(2*z + 31) assert f(2, 5, 7) == 45 def test_parallel_poly_from_expr(): assert parallel_poly_from_expr( [x - 1, x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr([Poly( x - 1, x), Poly(x**2 - 1, x)], x)[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly( x - 1, x), x**2 - 1], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([x - 1, Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr([Poly(x - 1, x), Poly( x**2 - 1, x)], x, y)[0] == [Poly(x - 1, x, y), Poly(x**2 - 1, x, y)] assert parallel_poly_from_expr( [x - 1, x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), x**2 - 1])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x - 1, Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [Poly(x - 1, x), Poly(x**2 - 1, x)])[0] == [Poly(x - 1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, x**2 - 1])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [1, Poly(x**2 - 1, x)])[0] == [Poly(1, x), Poly(x**2 - 1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [x**2 - 1, 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr( [Poly(x**2 - 1, x), 1])[0] == [Poly(x**2 - 1, x), Poly(1, x)] assert parallel_poly_from_expr([Poly(x, x, y), Poly(y, x, y)], x, y, order='lex')[0] == \ [Poly(x, x, y, domain='ZZ'), Poly(y, x, y, domain='ZZ')] raises(PolificationFailed, lambda: parallel_poly_from_expr([0, 1])) def test_pdiv(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.pdiv(G) == (Q, R) assert F.prem(G) == R assert F.pquo(G) == Q assert F.pexquo(G) == Q assert pdiv(f, g) == (q, r) assert prem(f, g) == r assert pquo(f, g) == q assert pexquo(f, g) == q assert pdiv(f, g, x, y) == (q, r) assert prem(f, g, x, y) == r assert pquo(f, g, x, y) == q assert pexquo(f, g, x, y) == q assert pdiv(f, g, (x, y)) == (q, r) assert prem(f, g, (x, y)) == r assert pquo(f, g, (x, y)) == q assert pexquo(f, g, (x, y)) == q assert pdiv(F, G) == (Q, R) assert prem(F, G) == R assert pquo(F, G) == Q assert pexquo(F, G) == Q assert pdiv(f, g, polys=True) == (Q, R) assert prem(f, g, polys=True) == R assert pquo(f, g, polys=True) == Q assert pexquo(f, g, polys=True) == Q assert pdiv(F, G, polys=False) == (q, r) assert prem(F, G, polys=False) == r assert pquo(F, G, polys=False) == q assert pexquo(F, G, polys=False) == q raises(ComputationFailed, lambda: pdiv(4, 2)) raises(ComputationFailed, lambda: prem(4, 2)) raises(ComputationFailed, lambda: pquo(4, 2)) raises(ComputationFailed, lambda: pexquo(4, 2)) def test_div(): f, g = x**2 - y**2, x - y q, r = x + y, 0 F, G, Q, R = [ Poly(h, x, y) for h in (f, g, q, r) ] assert F.div(G) == (Q, R) assert F.rem(G) == R assert F.quo(G) == Q assert F.exquo(G) == Q assert div(f, g) == (q, r) assert rem(f, g) == r assert quo(f, g) == q assert exquo(f, g) == q assert div(f, g, x, y) == (q, r) assert rem(f, g, x, y) == r assert quo(f, g, x, y) == q assert exquo(f, g, x, y) == q assert div(f, g, (x, y)) == (q, r) assert rem(f, g, (x, y)) == r assert quo(f, g, (x, y)) == q assert exquo(f, g, (x, y)) == q assert div(F, G) == (Q, R) assert rem(F, G) == R assert quo(F, G) == Q assert exquo(F, G) == Q assert div(f, g, polys=True) == (Q, R) assert rem(f, g, polys=True) == R assert quo(f, g, polys=True) == Q assert exquo(f, g, polys=True) == Q assert div(F, G, polys=False) == (q, r) assert rem(F, G, polys=False) == r assert quo(F, G, polys=False) == q assert exquo(F, G, polys=False) == q raises(ComputationFailed, lambda: div(4, 2)) raises(ComputationFailed, lambda: rem(4, 2)) raises(ComputationFailed, lambda: quo(4, 2)) raises(ComputationFailed, lambda: exquo(4, 2)) f, g = x**2 + 1, 2*x - 4 qz, rz = 0, x**2 + 1 qq, rq = x/2 + 1, 5 assert div(f, g) == (qq, rq) assert div(f, g, auto=True) == (qq, rq) assert div(f, g, auto=False) == (qz, rz) assert div(f, g, domain=ZZ) == (qz, rz) assert div(f, g, domain=QQ) == (qq, rq) assert div(f, g, domain=ZZ, auto=True) == (qq, rq) assert div(f, g, domain=ZZ, auto=False) == (qz, rz) assert div(f, g, domain=QQ, auto=True) == (qq, rq) assert div(f, g, domain=QQ, auto=False) == (qq, rq) assert rem(f, g) == rq assert rem(f, g, auto=True) == rq assert rem(f, g, auto=False) == rz assert rem(f, g, domain=ZZ) == rz assert rem(f, g, domain=QQ) == rq assert rem(f, g, domain=ZZ, auto=True) == rq assert rem(f, g, domain=ZZ, auto=False) == rz assert rem(f, g, domain=QQ, auto=True) == rq assert rem(f, g, domain=QQ, auto=False) == rq assert quo(f, g) == qq assert quo(f, g, auto=True) == qq assert quo(f, g, auto=False) == qz assert quo(f, g, domain=ZZ) == qz assert quo(f, g, domain=QQ) == qq assert quo(f, g, domain=ZZ, auto=True) == qq assert quo(f, g, domain=ZZ, auto=False) == qz assert quo(f, g, domain=QQ, auto=True) == qq assert quo(f, g, domain=QQ, auto=False) == qq f, g, q = x**2, 2*x, x/2 assert exquo(f, g) == q assert exquo(f, g, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, auto=False)) raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ)) assert exquo(f, g, domain=QQ) == q assert exquo(f, g, domain=ZZ, auto=True) == q raises(ExactQuotientFailed, lambda: exquo(f, g, domain=ZZ, auto=False)) assert exquo(f, g, domain=QQ, auto=True) == q assert exquo(f, g, domain=QQ, auto=False) == q f, g = Poly(x**2), Poly(x) q, r = f.div(g) assert q.get_domain().is_ZZ and r.get_domain().is_ZZ r = f.rem(g) assert r.get_domain().is_ZZ q = f.quo(g) assert q.get_domain().is_ZZ q = f.exquo(g) assert q.get_domain().is_ZZ f, g = Poly(x+y, x), Poly(2*x+y, x) q, r = f.div(g) assert q.get_domain().is_Frac and r.get_domain().is_Frac def test_issue_7864(): q, r = div(a, .408248290463863*a) assert abs(q - 2.44948974278318) < 1e-14 assert r == 0 def test_gcdex(): f, g = 2*x, x**2 - 16 s, t, h = x/32, Rational(-1, 16), 1 F, G, S, T, H = [ Poly(u, x, domain='QQ') for u in (f, g, s, t, h) ] assert F.half_gcdex(G) == (S, H) assert F.gcdex(G) == (S, T, H) assert F.invert(G) == S assert half_gcdex(f, g) == (s, h) assert gcdex(f, g) == (s, t, h) assert invert(f, g) == s assert half_gcdex(f, g, x) == (s, h) assert gcdex(f, g, x) == (s, t, h) assert invert(f, g, x) == s assert half_gcdex(f, g, (x,)) == (s, h) assert gcdex(f, g, (x,)) == (s, t, h) assert invert(f, g, (x,)) == s assert half_gcdex(F, G) == (S, H) assert gcdex(F, G) == (S, T, H) assert invert(F, G) == S assert half_gcdex(f, g, polys=True) == (S, H) assert gcdex(f, g, polys=True) == (S, T, H) assert invert(f, g, polys=True) == S assert half_gcdex(F, G, polys=False) == (s, h) assert gcdex(F, G, polys=False) == (s, t, h) assert invert(F, G, polys=False) == s assert half_gcdex(100, 2004) == (-20, 4) assert gcdex(100, 2004) == (-20, 1, 4) assert invert(3, 7) == 5 raises(DomainError, lambda: half_gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: gcdex(x + 1, 2*x + 1, auto=False)) raises(DomainError, lambda: invert(x + 1, 2*x + 1, auto=False)) def test_revert(): f = Poly(1 - x**2/2 + x**4/24 - x**6/720) g = Poly(61*x**6/720 + 5*x**4/24 + x**2/2 + 1) assert f.revert(8) == g def test_subresultants(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2 F, G, H = Poly(f), Poly(g), Poly(h) assert F.subresultants(G) == [F, G, H] assert subresultants(f, g) == [f, g, h] assert subresultants(f, g, x) == [f, g, h] assert subresultants(f, g, (x,)) == [f, g, h] assert subresultants(F, G) == [F, G, H] assert subresultants(f, g, polys=True) == [F, G, H] assert subresultants(F, G, polys=False) == [f, g, h] raises(ComputationFailed, lambda: subresultants(4, 2)) def test_resultant(): f, g, h = x**2 - 2*x + 1, x**2 - 1, 0 F, G = Poly(f), Poly(g) assert F.resultant(G) == h assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == h assert resultant(f, g, polys=True) == h assert resultant(F, G, polys=False) == h assert resultant(f, g, includePRS=True) == (h, [f, g, 2*x - 2]) f, g, h = x - a, x - b, a - b F, G, H = Poly(f), Poly(g), Poly(h) assert F.resultant(G) == H assert resultant(f, g) == h assert resultant(f, g, x) == h assert resultant(f, g, (x,)) == h assert resultant(F, G) == H assert resultant(f, g, polys=True) == H assert resultant(F, G, polys=False) == h raises(ComputationFailed, lambda: resultant(4, 2)) def test_discriminant(): f, g = x**3 + 3*x**2 + 9*x - 13, -11664 F = Poly(f) assert F.discriminant() == g assert discriminant(f) == g assert discriminant(f, x) == g assert discriminant(f, (x,)) == g assert discriminant(F) == g assert discriminant(f, polys=True) == g assert discriminant(F, polys=False) == g f, g = a*x**2 + b*x + c, b**2 - 4*a*c F, G = Poly(f), Poly(g) assert F.discriminant() == G assert discriminant(f) == g assert discriminant(f, x, a, b, c) == g assert discriminant(f, (x, a, b, c)) == g assert discriminant(F) == G assert discriminant(f, polys=True) == G assert discriminant(F, polys=False) == g raises(ComputationFailed, lambda: discriminant(4)) def test_dispersion(): # We test only the API here. For more mathematical # tests see the dedicated test file. fp = poly((x + 1)*(x + 2), x) assert sorted(fp.dispersionset()) == [0, 1] assert fp.dispersion() == 1 fp = poly(x**4 - 3*x**2 + 1, x) gp = fp.shift(-3) assert sorted(fp.dispersionset(gp)) == [2, 3, 4] assert fp.dispersion(gp) == 4 def test_gcd_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert gcd_list(F) == x - 1 assert gcd_list(F, polys=True) == Poly(x - 1) assert gcd_list([]) == 0 assert gcd_list([1, 2]) == 1 assert gcd_list([4, 6, 8]) == 2 assert gcd_list([x*(y + 42) - x*y - x*42]) == 0 gcd = gcd_list([], x) assert gcd.is_Number and gcd is S.Zero gcd = gcd_list([], x, polys=True) assert gcd.is_Poly and gcd.is_zero raises(ComputationFailed, lambda: gcd_list([], polys=True)) def test_lcm_list(): F = [x**3 - 1, x**2 - 1, x**2 - 3*x + 2] assert lcm_list(F) == x**5 - x**4 - 2*x**3 - x**2 + x + 2 assert lcm_list(F, polys=True) == Poly(x**5 - x**4 - 2*x**3 - x**2 + x + 2) assert lcm_list([]) == 1 assert lcm_list([1, 2]) == 2 assert lcm_list([4, 6, 8]) == 24 assert lcm_list([x*(y + 42) - x*y - x*42]) == 0 lcm = lcm_list([], x) assert lcm.is_Number and lcm is S.One lcm = lcm_list([], x, polys=True) assert lcm.is_Poly and lcm.is_one raises(ComputationFailed, lambda: lcm_list([], polys=True)) def test_gcd(): f, g = x**3 - 1, x**2 - 1 s, t = x**2 + x + 1, x + 1 h, r = x - 1, x**4 + x**3 - x - 1 F, G, S, T, H, R = [ Poly(u) for u in (f, g, s, t, h, r) ] assert F.cofactors(G) == (H, S, T) assert F.gcd(G) == H assert F.lcm(G) == R assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == r assert cofactors(f, g, x) == (h, s, t) assert gcd(f, g, x) == h assert lcm(f, g, x) == r assert cofactors(f, g, (x,)) == (h, s, t) assert gcd(f, g, (x,)) == h assert lcm(f, g, (x,)) == r assert cofactors(F, G) == (H, S, T) assert gcd(F, G) == H assert lcm(F, G) == R assert cofactors(f, g, polys=True) == (H, S, T) assert gcd(f, g, polys=True) == H assert lcm(f, g, polys=True) == R assert cofactors(F, G, polys=False) == (h, s, t) assert gcd(F, G, polys=False) == h assert lcm(F, G, polys=False) == r f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f f, g = 1.0*x**2 - 1.0, 1.0*x - 1.0 h, s, t = g, 1.0*x + 1.0, 1.0 assert cofactors(f, g) == (h, s, t) assert gcd(f, g) == h assert lcm(f, g) == f assert cofactors(8, 6) == (2, 4, 3) assert gcd(8, 6) == 2 assert lcm(8, 6) == 24 f, g = x**2 - 3*x - 4, x**3 - 4*x**2 + x - 4 l = x**4 - 3*x**3 - 3*x**2 - 3*x - 4 h, s, t = x - 4, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11) == (h, s, t) assert gcd(f, g, modulus=11) == h assert lcm(f, g, modulus=11) == l f, g = x**2 + 8*x + 7, x**3 + 7*x**2 + x + 7 l = x**4 + 8*x**3 + 8*x**2 + 8*x + 7 h, s, t = x + 7, x + 1, x**2 + 1 assert cofactors(f, g, modulus=11, symmetric=False) == (h, s, t) assert gcd(f, g, modulus=11, symmetric=False) == h assert lcm(f, g, modulus=11, symmetric=False) == l raises(TypeError, lambda: gcd(x)) raises(TypeError, lambda: lcm(x)) def test_gcd_numbers_vs_polys(): assert isinstance(gcd(3, 9), Integer) assert isinstance(gcd(3*x, 9), Integer) assert gcd(3, 9) == 3 assert gcd(3*x, 9) == 3 assert isinstance(gcd(Rational(3, 2), Rational(9, 4)), Rational) assert isinstance(gcd(Rational(3, 2)*x, Rational(9, 4)), Rational) assert gcd(Rational(3, 2), Rational(9, 4)) == Rational(3, 4) assert gcd(Rational(3, 2)*x, Rational(9, 4)) == 1 assert isinstance(gcd(3.0, 9.0), Float) assert isinstance(gcd(3.0*x, 9.0), Float) assert gcd(3.0, 9.0) == 1.0 assert gcd(3.0*x, 9.0) == 1.0 def test_terms_gcd(): assert terms_gcd(1) == 1 assert terms_gcd(1, x) == 1 assert terms_gcd(x - 1) == x - 1 assert terms_gcd(-x - 1) == -x - 1 assert terms_gcd(2*x + 3) == 2*x + 3 assert terms_gcd(6*x + 4) == Mul(2, 3*x + 2, evaluate=False) assert terms_gcd(x**3*y + x*y**3) == x*y*(x**2 + y**2) assert terms_gcd(2*x**3*y + 2*x*y**3) == 2*x*y*(x**2 + y**2) assert terms_gcd(x**3*y/2 + x*y**3/2) == x*y/2*(x**2 + y**2) assert terms_gcd(x**3*y + 2*x*y**3) == x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y + 4*x*y**3) == 2*x*y*(x**2 + 2*y**2) assert terms_gcd(2*x**3*y/3 + 4*x*y**3/5) == x*y*Rational(2, 15)*(5*x**2 + 6*y**2) assert terms_gcd(2.0*x**3*y + 4.1*x*y**3) == x*y*(2.0*x**2 + 4.1*y**2) assert _aresame(terms_gcd(2.0*x + 3), 2.0*x + 3) assert terms_gcd((3 + 3*x)*(x + x*y), expand=False) == \ (3*x + 3)*(x*y + x) assert terms_gcd((3 + 3*x)*(x + x*sin(3 + 3*y)), expand=False, deep=True) == \ 3*x*(x + 1)*(sin(Mul(3, y + 1, evaluate=False)) + 1) assert terms_gcd(sin(x + x*y), deep=True) == \ sin(x*(y + 1)) eq = Eq(2*x, 2*y + 2*z*y) assert terms_gcd(eq) == eq assert terms_gcd(eq, deep=True) == Eq(2*x, 2*y*(z + 1)) def test_trunc(): f, g = x**5 + 2*x**4 + 3*x**3 + 4*x**2 + 5*x + 6, x**5 - x**4 + x**2 - x F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f, g = 6*x**5 + 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, -x**4 + x**3 - x + 1 F, G = Poly(f), Poly(g) assert F.trunc(3) == G assert trunc(f, 3) == g assert trunc(f, 3, x) == g assert trunc(f, 3, (x,)) == g assert trunc(F, 3) == G assert trunc(f, 3, polys=True) == G assert trunc(F, 3, polys=False) == g f = Poly(x**2 + 2*x + 3, modulus=5) assert f.trunc(2) == Poly(x**2 + 1, modulus=5) def test_monic(): f, g = 2*x - 1, x - S.Half F, G = Poly(f, domain='QQ'), Poly(g) assert F.monic() == G assert monic(f) == g assert monic(f, x) == g assert monic(f, (x,)) == g assert monic(F) == G assert monic(f, polys=True) == G assert monic(F, polys=False) == g raises(ComputationFailed, lambda: monic(4)) assert monic(2*x**2 + 6*x + 4, auto=False) == x**2 + 3*x + 2 raises(ExactQuotientFailed, lambda: monic(2*x + 6*x + 1, auto=False)) assert monic(2.0*x**2 + 6.0*x + 4.0) == 1.0*x**2 + 3.0*x + 2.0 assert monic(2*x**2 + 3*x + 4, modulus=5) == x**2 - x + 2 def test_content(): f, F = 4*x + 2, Poly(4*x + 2) assert F.content() == 2 assert content(f) == 2 raises(ComputationFailed, lambda: content(4)) f = Poly(2*x, modulus=3) assert f.content() == 1 def test_primitive(): f, g = 4*x + 2, 2*x + 1 F, G = Poly(f), Poly(g) assert F.primitive() == (2, G) assert primitive(f) == (2, g) assert primitive(f, x) == (2, g) assert primitive(f, (x,)) == (2, g) assert primitive(F) == (2, G) assert primitive(f, polys=True) == (2, G) assert primitive(F, polys=False) == (2, g) raises(ComputationFailed, lambda: primitive(4)) f = Poly(2*x, modulus=3) g = Poly(2.0*x, domain=RR) assert f.primitive() == (1, f) assert g.primitive() == (1.0, g) assert primitive(S('-3*x/4 + y + 11/8')) == \ S('(1/8, -6*x + 8*y + 11)') def test_compose(): f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9 g = x**4 - 2*x + 9 h = x**3 + 5*x F, G, H = map(Poly, (f, g, h)) assert G.compose(H) == F assert compose(g, h) == f assert compose(g, h, x) == f assert compose(g, h, (x,)) == f assert compose(G, H) == F assert compose(g, h, polys=True) == F assert compose(G, H, polys=False) == f assert F.decompose() == [G, H] assert decompose(f) == [g, h] assert decompose(f, x) == [g, h] assert decompose(f, (x,)) == [g, h] assert decompose(F) == [G, H] assert decompose(f, polys=True) == [G, H] assert decompose(F, polys=False) == [g, h] raises(ComputationFailed, lambda: compose(4, 2)) raises(ComputationFailed, lambda: decompose(4)) assert compose(x**2 - y**2, x - y, x, y) == x**2 - 2*x*y assert compose(x**2 - y**2, x - y, y, x) == -y**2 + 2*x*y def test_shift(): assert Poly(x**2 - 2*x + 1, x).shift(2) == Poly(x**2 + 2*x + 1, x) def test_transform(): # Also test that 3-way unification is done correctly assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(4, x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - x/2 + 1, x).transform(Poly(x + 1), Poly(x - 1)) == \ Poly(3*x**2/2 + Rational(5, 2), x) == \ cancel((x - 1)**2*(x**2 - x/2 + 1).subs(x, (x + 1)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + S.Half), Poly(x - 1)) == \ Poly(Rational(9, 4), x) == \ cancel((x - 1)**2*(x**2 - 2*x + 1).subs(x, (x + S.Half)/(x - 1))) assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1)/(x - S.Half))) # Unify ZZ, QQ, and RR assert Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1.0), Poly(x - S.Half)) == \ Poly(Rational(9, 4), x) == \ cancel((x - S.Half)**2*(x**2 - 2*x + 1).subs(x, (x + 1.0)/(x - S.Half))) raises(ValueError, lambda: Poly(x*y).transform(Poly(x + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(y - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x*y + 1), Poly(x - 1))) raises(ValueError, lambda: Poly(x).transform(Poly(x + 1), Poly(x*y - 1))) def test_sturm(): f, F = x, Poly(x, domain='QQ') g, G = 1, Poly(1, x, domain='QQ') assert F.sturm() == [F, G] assert sturm(f) == [f, g] assert sturm(f, x) == [f, g] assert sturm(f, (x,)) == [f, g] assert sturm(F) == [F, G] assert sturm(f, polys=True) == [F, G] assert sturm(F, polys=False) == [f, g] raises(ComputationFailed, lambda: sturm(4)) raises(DomainError, lambda: sturm(f, auto=False)) f = Poly(S(1024)/(15625*pi**8)*x**5 - S(4096)/(625*pi**8)*x**4 + S(32)/(15625*pi**4)*x**3 - S(128)/(625*pi**4)*x**2 + Rational(1, 62500)*x - Rational(1, 625), x, domain='ZZ(pi)') assert sturm(f) == \ [Poly(x**3 - 100*x**2 + pi**4/64*x - 25*pi**4/16, x, domain='ZZ(pi)'), Poly(3*x**2 - 200*x + pi**4/64, x, domain='ZZ(pi)'), Poly((Rational(20000, 9) - pi**4/96)*x + 25*pi**4/18, x, domain='ZZ(pi)'), Poly((-3686400000000*pi**4 - 11520000*pi**8 - 9*pi**12)/(26214400000000 - 245760000*pi**4 + 576*pi**8), x, domain='ZZ(pi)')] def test_gff(): f = x**5 + 2*x**4 - x**3 - 2*x**2 assert Poly(f).gff_list() == [(Poly(x), 1), (Poly(x + 2), 4)] assert gff_list(f) == [(x, 1), (x + 2, 4)] raises(NotImplementedError, lambda: gff(f)) f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5) assert Poly(f).gff_list() == [( Poly(x**2 - 5*x + 4), 1), (Poly(x**2 - 5*x + 4), 2), (Poly(x), 3)] assert gff_list(f) == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)] raises(NotImplementedError, lambda: gff(f)) def test_norm(): a, b = sqrt(2), sqrt(3) f = Poly(a*x + b*y, x, y, extension=(a, b)) assert f.norm() == Poly(4*x**4 - 12*x**2*y**2 + 9*y**4, x, y, domain='QQ') def test_sqf_norm(): assert sqf_norm(x**2 - 2, extension=sqrt(3)) == \ (1, x**2 - 2*sqrt(3)*x + 1, x**4 - 10*x**2 + 1) assert sqf_norm(x**2 - 3, extension=sqrt(2)) == \ (1, x**2 - 2*sqrt(2)*x - 1, x**4 - 10*x**2 + 1) assert Poly(x**2 - 2, extension=sqrt(3)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(3)*x + 1, x, extension=sqrt(3)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) assert Poly(x**2 - 3, extension=sqrt(2)).sqf_norm() == \ (1, Poly(x**2 - 2*sqrt(2)*x - 1, x, extension=sqrt(2)), Poly(x**4 - 10*x**2 + 1, x, domain='QQ')) def test_sqf(): f = x**5 - x**3 - x**2 + 1 g = x**3 + 2*x**2 + 2*x + 1 h = x - 1 p = x**4 + x**3 - x - 1 F, G, H, P = map(Poly, (f, g, h, p)) assert F.sqf_part() == P assert sqf_part(f) == p assert sqf_part(f, x) == p assert sqf_part(f, (x,)) == p assert sqf_part(F) == P assert sqf_part(f, polys=True) == P assert sqf_part(F, polys=False) == p assert F.sqf_list() == (1, [(G, 1), (H, 2)]) assert sqf_list(f) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, x) == (1, [(g, 1), (h, 2)]) assert sqf_list(f, (x,)) == (1, [(g, 1), (h, 2)]) assert sqf_list(F) == (1, [(G, 1), (H, 2)]) assert sqf_list(f, polys=True) == (1, [(G, 1), (H, 2)]) assert sqf_list(F, polys=False) == (1, [(g, 1), (h, 2)]) assert F.sqf_list_include() == [(G, 1), (H, 2)] raises(ComputationFailed, lambda: sqf_part(4)) assert sqf(1) == 1 assert sqf_list(1) == (1, []) assert sqf((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert sqf(f) == g*h**2 assert sqf(f, x) == g*h**2 assert sqf(f, (x,)) == g*h**2 d = x**2 + y**2 assert sqf(f/d) == (g*h**2)/d assert sqf(f/d, x) == (g*h**2)/d assert sqf(f/d, (x,)) == (g*h**2)/d assert sqf(x - 1) == x - 1 assert sqf(-x - 1) == -x - 1 assert sqf(x - 1) == x - 1 assert sqf(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert sqf((6*x - 10)/(3*x - 6)) == Rational(2, 3)*((3*x - 5)/(x - 2)) assert sqf(Poly(x**2 - 2*x + 1)) == (x - 1)**2 f = 3 + x - x*(1 + x) + x**2 assert sqf(f) == 3 f = (x**2 + 2*x + 1)**20000000000 assert sqf(f) == (x + 1)**40000000000 assert sqf_list(f) == (1, [(x + 1, 40000000000)]) def test_factor(): f = x**5 - x**3 - x**2 + 1 u = x + 1 v = x - 1 w = x**2 + x + 1 F, U, V, W = map(Poly, (f, u, v, w)) assert F.factor_list() == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, x) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(f, (x,)) == (1, [(u, 1), (v, 2), (w, 1)]) assert factor_list(F) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(f, polys=True) == (1, [(U, 1), (V, 2), (W, 1)]) assert factor_list(F, polys=False) == (1, [(u, 1), (v, 2), (w, 1)]) assert F.factor_list_include() == [(U, 1), (V, 2), (W, 1)] assert factor_list(1) == (1, []) assert factor_list(6) == (6, []) assert factor_list(sqrt(3), x) == (sqrt(3), []) assert factor_list((-1)**x, x) == (1, [(-1, x)]) assert factor_list((2*x)**y, x) == (1, [(2, y), (x, y)]) assert factor_list(sqrt(x*y), x) == (1, [(x*y, S.Half)]) assert factor(6) == 6 and factor(6).is_Integer assert factor_list(3*x) == (3, [(x, 1)]) assert factor_list(3*x**2) == (3, [(x, 2)]) assert factor(3*x) == 3*x assert factor(3*x**2) == 3*x**2 assert factor((2*x**2 + 2)**7) == 128*(x**2 + 1)**7 assert factor(f) == u*v**2*w assert factor(f, x) == u*v**2*w assert factor(f, (x,)) == u*v**2*w g, p, q, r = x**2 - y**2, x - y, x + y, x**2 + 1 assert factor(f/g) == (u*v**2*w)/(p*q) assert factor(f/g, x) == (u*v**2*w)/(p*q) assert factor(f/g, (x,)) == (u*v**2*w)/(p*q) p = Symbol('p', positive=True) i = Symbol('i', integer=True) r = Symbol('r', real=True) assert factor(sqrt(x*y)).is_Pow is True assert factor(sqrt(3*x**2 - 3)) == sqrt(3)*sqrt((x - 1)*(x + 1)) assert factor(sqrt(3*x**2 + 3)) == sqrt(3)*sqrt(x**2 + 1) assert factor((y*x**2 - y)**i) == y**i*(x - 1)**i*(x + 1)**i assert factor((y*x**2 + y)**i) == y**i*(x**2 + 1)**i assert factor((y*x**2 - y)**t) == (y*(x - 1)*(x + 1))**t assert factor((y*x**2 + y)**t) == (y*(x**2 + 1))**t f = sqrt(expand((r**2 + 1)*(p + 1)*(p - 1)*(p - 2)**3)) g = sqrt((p - 2)**3*(p - 1))*sqrt(p + 1)*sqrt(r**2 + 1) assert factor(f) == g assert factor(g) == g g = (x - 1)**5*(r**2 + 1) f = sqrt(expand(g)) assert factor(f) == sqrt(g) f = Poly(sin(1)*x + 1, x, domain=EX) assert f.factor_list() == (1, [(f, 1)]) f = x**4 + 1 assert factor(f) == f assert factor(f, extension=I) == (x**2 - I)*(x**2 + I) assert factor(f, gaussian=True) == (x**2 - I)*(x**2 + I) assert factor( f, extension=sqrt(2)) == (x**2 + sqrt(2)*x + 1)*(x**2 - sqrt(2)*x + 1) f = x**2 + 2*sqrt(2)*x + 2 assert factor(f, extension=sqrt(2)) == (x + sqrt(2))**2 assert factor(f**3, extension=sqrt(2)) == (x + sqrt(2))**6 assert factor(x**2 - 2*y**2, extension=sqrt(2)) == \ (x + sqrt(2)*y)*(x - sqrt(2)*y) assert factor(2*x**2 - 4*y**2, extension=sqrt(2)) == \ 2*((x + sqrt(2)*y)*(x - sqrt(2)*y)) assert factor(x - 1) == x - 1 assert factor(-x - 1) == -x - 1 assert factor(x - 1) == x - 1 assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor(x**11 + x + 1, modulus=65537, symmetric=True) == \ (x**2 + x + 1)*(x**9 - x**8 + x**6 - x**5 + x**3 - x** 2 + 1) assert factor(x**11 + x + 1, modulus=65537, symmetric=False) == \ (x**2 + x + 1)*(x**9 + 65536*x**8 + x**6 + 65536*x**5 + x**3 + 65536*x** 2 + 1) f = x/pi + x*sin(x)/pi g = y/(pi**2 + 2*pi + 1) + y*sin(x)/(pi**2 + 2*pi + 1) assert factor(f) == x*(sin(x) + 1)/pi assert factor(g) == y*(sin(x) + 1)/(pi + 1)**2 assert factor(Eq( x**2 + 2*x + 1, x**3 + 1)) == Eq((x + 1)**2, (x + 1)*(x**2 - x + 1)) f = (x**2 - 1)/(x**2 + 4*x + 4) assert factor(f) == (x + 1)*(x - 1)/(x + 2)**2 assert factor(f, x) == (x + 1)*(x - 1)/(x + 2)**2 f = 3 + x - x*(1 + x) + x**2 assert factor(f) == 3 assert factor(f, x) == 3 assert factor(1/(x**2 + 2*x + 1/x) - 1) == -((1 - x + 2*x**2 + x**3)/(1 + 2*x**2 + x**3)) assert factor(f, expand=False) == f raises(PolynomialError, lambda: factor(f, x, expand=False)) raises(FlagError, lambda: factor(x**2 - 1, polys=True)) assert factor([x, Eq(x**2 - y**2, Tuple(x**2 - z**2, 1/x + 1/y))]) == \ [x, Eq((x - y)*(x + y), Tuple((x - z)*(x + z), (x + y)/x/y))] assert not isinstance( Poly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert isinstance( PurePoly(x**3 + x + 1).factor_list()[1][0][0], PurePoly) is True assert factor(sqrt(-x)) == sqrt(-x) # issue 5917 e = (-2*x*(-x + 1)*(x - 1)*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2)*(x**2*(x - 1) - x*(x - 1) - x) - (-2*x**2*(x - 1)**2 - x*(-x + 1)*(-x*(-x + 1) + x*(x - 1)))*(x**2*(x - 1)**4 - x*(-x*(-x + 1)*(x - 1) - x*(x - 1)**2))) assert factor(e) == 0 # deep option assert factor(sin(x**2 + x) + x, deep=True) == sin(x*(x + 1)) + x assert factor(sin(x**2 + x)*x, deep=True) == sin(x*(x + 1))*x assert factor(sqrt(x**2)) == sqrt(x**2) # issue 13149 assert factor(expand((0.5*x+1)*(0.5*y+1))) == Mul(1.0, 0.5*x + 1.0, 0.5*y + 1.0, evaluate = False) assert factor(expand((0.5*x+0.5)**2)) == 0.25*(1.0*x + 1.0)**2 eq = x**2*y**2 + 11*x**2*y + 30*x**2 + 7*x*y**2 + 77*x*y + 210*x + 12*y**2 + 132*y + 360 assert factor(eq, x) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, x, deep=True) == (x + 3)*(x + 4)*(y**2 + 11*y + 30) assert factor(eq, y, deep=True) == (y + 5)*(y + 6)*(x**2 + 7*x + 12) # fraction option f = 5*x + 3*exp(2 - 7*x) assert factor(f, deep=True) == factor(f, deep=True, fraction=True) assert factor(f, deep=True, fraction=False) == 5*x + 3*exp(2)*exp(-7*x) def test_factor_large(): f = (x**2 + 4*x + 4)**10000000*(x**2 + 1)*(x**2 + 2*x + 1)**1234567 g = ((x**2 + 2*x + 1)**3000*y**2 + (x**2 + 2*x + 1)**3000*2*y + ( x**2 + 2*x + 1)**3000) assert factor(f) == (x + 2)**20000000*(x**2 + 1)*(x + 1)**2469134 assert factor(g) == (x + 1)**6000*(y + 1)**2 assert factor_list( f) == (1, [(x + 1, 2469134), (x + 2, 20000000), (x**2 + 1, 1)]) assert factor_list(g) == (1, [(y + 1, 2), (x + 1, 6000)]) f = (x**2 - y**2)**200000*(x**7 + 1) g = (x**2 + y**2)**200000*(x**7 + 1) assert factor(f) == \ (x + 1)*(x - y)**200000*(x + y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor(g, gaussian=True) == \ (x + 1)*(x - I*y)**200000*(x + I*y)**200000*(x**6 - x**5 + x**4 - x**3 + x**2 - x + 1) assert factor_list(f) == \ (1, [(x + 1, 1), (x - y, 200000), (x + y, 200000), (x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) assert factor_list(g, gaussian=True) == \ (1, [(x + 1, 1), (x - I*y, 200000), (x + I*y, 200000), ( x**6 - x**5 + x**4 - x**3 + x**2 - x + 1, 1)]) def test_factor_noeval(): assert factor(6*x - 10) == Mul(2, 3*x - 5, evaluate=False) assert factor((6*x - 10)/(3*x - 6)) == Mul(Rational(2, 3), 3*x - 5, 1/(x - 2)) def test_intervals(): assert intervals(0) == [] assert intervals(1) == [] assert intervals(x, sqf=True) == [(0, 0)] assert intervals(x) == [((0, 0), 1)] assert intervals(x**128) == [((0, 0), 128)] assert intervals([x**2, x**4]) == [((0, 0), {0: 2, 1: 4})] f = Poly((x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257))) assert f.intervals(sqf=True) == [(-1, 0), (14, 15)] assert f.intervals() == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(fast=True, sqf=True) == [(-1, 0), (14, 15)] assert f.intervals(fast=True) == [((-1, 0), 1), ((14, 15), 1)] assert f.intervals(eps=Rational(1, 10)) == f.intervals(eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 100)) == f.intervals(eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 1000)) == f.intervals(eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert f.intervals(eps=Rational(1, 10000)) == f.intervals(eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = (x*Rational(2, 5) - Rational(17, 3))*(4*x + Rational(1, 257)) assert intervals(f, sqf=True) == [(-1, 0), (14, 15)] assert intervals(f) == [((-1, 0), 1), ((14, 15), 1)] assert intervals(f, eps=Rational(1, 10)) == intervals(f, eps=0.1) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 100)) == intervals(f, eps=0.01) == \ [((Rational(-1, 258), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 1000)) == intervals(f, eps=0.001) == \ [((Rational(-1, 1002), 0), 1), ((Rational(85, 6), Rational(85, 6)), 1)] assert intervals(f, eps=Rational(1, 10000)) == intervals(f, eps=0.0001) == \ [((Rational(-1, 1028), Rational(-1, 1028)), 1), ((Rational(85, 6), Rational(85, 6)), 1)] f = Poly((x**2 - 2)*(x**2 - 3)**7*(x + 1)*(7*x + 3)**3) assert f.intervals() == \ [((-2, Rational(-3, 2)), 7), ((Rational(-3, 2), -1), 1), ((-1, -1), 1), ((-1, 0), 3), ((1, Rational(3, 2)), 1), ((Rational(3, 2), 2), 7)] assert intervals([x**5 - 200, x**5 - 201]) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**5 - 200, x**5 - 201], fast=True) == \ [((Rational(75, 26), Rational(101, 35)), {0: 1}), ((Rational(309, 107), Rational(26, 9)), {1: 1})] assert intervals([x**2 - 200, x**2 - 201]) == \ [((Rational(-71, 5), Rational(-85, 6)), {1: 1}), ((Rational(-85, 6), -14), {0: 1}), ((14, Rational(85, 6)), {0: 1}), ((Rational(85, 6), Rational(71, 5)), {1: 1})] assert intervals([x + 1, x + 2, x - 1, x + 1, 1, x - 1, x - 1, (x - 2)**2]) == \ [((-2, -2), {1: 1}), ((-1, -1), {0: 1, 3: 1}), ((1, 1), {2: 1, 5: 1, 6: 1}), ((2, 2), {7: 2})] f, g, h = x**2 - 2, x**4 - 4*x**2 + 4, x - 1 assert intervals(f, inf=Rational(7, 4), sqf=True) == [] assert intervals(f, inf=Rational(7, 5), sqf=True) == [(Rational(7, 5), Rational(3, 2))] assert intervals(f, sup=Rational(7, 4), sqf=True) == [(-2, -1), (1, Rational(3, 2))] assert intervals(f, sup=Rational(7, 5), sqf=True) == [(-2, -1)] assert intervals(g, inf=Rational(7, 4)) == [] assert intervals(g, inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 4)) == [((-2, -1), 2), ((1, Rational(3, 2)), 2)] assert intervals(g, sup=Rational(7, 5)) == [((-2, -1), 2)] assert intervals([g, h], inf=Rational(7, 4)) == [] assert intervals([g, h], inf=Rational(7, 5)) == [((Rational(7, 5), Rational(3, 2)), {0: 2})] assert intervals([g, h], sup=S( 7)/4) == [((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, Rational(3, 2)), {0: 2})] assert intervals( [g, h], sup=Rational(7, 5)) == [((-2, -1), {0: 2}), ((1, 1), {1: 1})] assert intervals([x + 2, x**2 - 2]) == \ [((-2, -2), {0: 1}), ((-2, -1), {1: 1}), ((1, 2), {1: 1})] assert intervals([x + 2, x**2 - 2], strict=True) == \ [((-2, -2), {0: 1}), ((Rational(-3, 2), -1), {1: 1}), ((1, 2), {1: 1})] f = 7*z**4 - 19*z**3 + 20*z**2 + 17*z + 20 assert intervals(f) == [] real_part, complex_part = intervals(f, all=True, sqf=True) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) assert complex_part == [(Rational(-40, 7) - I*Rational(40, 7), 0), (Rational(-40, 7), I*Rational(40, 7)), (I*Rational(-40, 7), Rational(40, 7)), (0, Rational(40, 7) + I*Rational(40, 7))] real_part, complex_part = intervals(f, all=True, sqf=True, eps=Rational(1, 10)) assert real_part == [] assert all(re(a) < re(r) < re(b) and im( a) < im(r) < im(b) for (a, b), r in zip(complex_part, nroots(f))) raises(ValueError, lambda: intervals(x**2 - 2, eps=10**-100000)) raises(ValueError, lambda: Poly(x**2 - 2).intervals(eps=10**-100000)) raises( ValueError, lambda: intervals([x**2 - 2, x**2 - 3], eps=10**-100000)) def test_refine_root(): f = Poly(x**2 - 2) assert f.refine_root(1, 2, steps=0) == (1, 2) assert f.refine_root(-2, -1, steps=0) == (-2, -1) assert f.refine_root(1, 2, steps=None) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=None) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert f.refine_root(-2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert f.refine_root(1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert f.refine_root(1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: (f**2).refine_root(1, 2, check_sqf=True)) raises(RefinementFailed, lambda: (f**2).refine_root(1, 2)) raises(RefinementFailed, lambda: (f**2).refine_root(2, 3)) f = x**2 - 2 assert refine_root(f, 1, 2, steps=1) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, steps=1, fast=True) == (1, Rational(3, 2)) assert refine_root(f, -2, -1, steps=1, fast=True) == (Rational(-3, 2), -1) assert refine_root(f, 1, 2, eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) assert refine_root(f, 1, 2, eps=1e-2) == (Rational(24, 17), Rational(17, 12)) raises(PolynomialError, lambda: refine_root(1, 7, 8, eps=Rational(1, 100))) raises(ValueError, lambda: Poly(f).refine_root(1, 2, eps=10**-100000)) raises(ValueError, lambda: refine_root(f, 1, 2, eps=10**-100000)) def test_count_roots(): assert count_roots(x**2 - 2) == 2 assert count_roots(x**2 - 2, inf=-oo) == 2 assert count_roots(x**2 - 2, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-oo, sup=+oo) == 2 assert count_roots(x**2 - 2, inf=-2) == 2 assert count_roots(x**2 - 2, inf=-1) == 1 assert count_roots(x**2 - 2, sup=1) == 1 assert count_roots(x**2 - 2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 - 2, inf=-1, sup=1) == 0 assert count_roots(x**2 - 2, inf=-2, sup=2) == 2 assert count_roots(x**2 + 2) == 0 assert count_roots(x**2 + 2, inf=-2*I) == 2 assert count_roots(x**2 + 2, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=-2*I, sup=+2*I) == 2 assert count_roots(x**2 + 2, inf=0) == 0 assert count_roots(x**2 + 2, sup=0) == 0 assert count_roots(x**2 + 2, inf=-I) == 1 assert count_roots(x**2 + 2, sup=+I) == 1 assert count_roots(x**2 + 2, inf=+I/2, sup=+I) == 0 assert count_roots(x**2 + 2, inf=-I, sup=-I/2) == 0 raises(PolynomialError, lambda: count_roots(1)) def test_Poly_root(): f = Poly(2*x**3 - 7*x**2 + 4*x + 4) assert f.root(0) == Rational(-1, 2) assert f.root(1) == 2 assert f.root(2) == 2 raises(IndexError, lambda: f.root(3)) assert Poly(x**5 + x + 1).root(0) == rootof(x**3 - x**2 + 1, 0) def test_real_roots(): assert real_roots(x) == [0] assert real_roots(x, multiple=False) == [(0, 1)] assert real_roots(x**3) == [0, 0, 0] assert real_roots(x**3, multiple=False) == [(0, 3)] assert real_roots(x*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0] assert real_roots(x*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 1)] assert real_roots( x**3*(x**3 + x + 3)) == [rootof(x**3 + x + 3, 0), 0, 0, 0] assert real_roots(x**3*(x**3 + x + 3), multiple=False) == [(rootof( x**3 + x + 3, 0), 1), (0, 3)] f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).real_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).real_roots() == [rootof(g, 0)] def test_all_roots(): f = 2*x**3 - 7*x**2 + 4*x + 4 g = x**3 + x + 1 assert Poly(f).all_roots() == [Rational(-1, 2), 2, 2] assert Poly(g).all_roots() == [rootof(g, 0), rootof(g, 1), rootof(g, 2)] def test_nroots(): assert Poly(0, x).nroots() == [] assert Poly(1, x).nroots() == [] assert Poly(x**2 - 1, x).nroots() == [-1.0, 1.0] assert Poly(x**2 + 1, x).nroots() == [-1.0*I, 1.0*I] roots = Poly(x**2 - 1, x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2 + 1, x).nroots() assert roots == [-1.0*I, 1.0*I] roots = Poly(x**2/3 - Rational(1, 3), x).nroots() assert roots == [-1.0, 1.0] roots = Poly(x**2/3 + Rational(1, 3), x).nroots() assert roots == [-1.0*I, 1.0*I] assert Poly(x**2 + 2*I, x).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly( x**2 + 2*I, x, extension=I).nroots() == [-1.0 + 1.0*I, 1.0 - 1.0*I] assert Poly(0.2*x + 0.1).nroots() == [-0.5] roots = nroots(x**5 + x + 1, n=5) eps = Float("1e-5") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.true assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.true assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.true assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.true assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.true assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.true eps = Float("1e-6") assert re(roots[0]).epsilon_eq(-0.75487, eps) is S.false assert im(roots[0]) == 0.0 assert re(roots[1]) == -0.5 assert im(roots[1]).epsilon_eq(-0.86602, eps) is S.false assert re(roots[2]) == -0.5 assert im(roots[2]).epsilon_eq(+0.86602, eps) is S.false assert re(roots[3]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[3]).epsilon_eq(-0.74486, eps) is S.false assert re(roots[4]).epsilon_eq(+0.87743, eps) is S.false assert im(roots[4]).epsilon_eq(+0.74486, eps) is S.false raises(DomainError, lambda: Poly(x + y, x).nroots()) raises(MultivariatePolynomialError, lambda: Poly(x + y).nroots()) assert nroots(x**2 - 1) == [-1.0, 1.0] roots = nroots(x**2 - 1) assert roots == [-1.0, 1.0] assert nroots(x + I) == [-1.0*I] assert nroots(x + 2*I) == [-2.0*I] raises(PolynomialError, lambda: nroots(0)) # issue 8296 f = Poly(x**4 - 1) assert f.nroots(2) == [w.n(2) for w in f.all_roots()] assert str(Poly(x**16 + 32*x**14 + 508*x**12 + 5440*x**10 + 39510*x**8 + 204320*x**6 + 755548*x**4 + 1434496*x**2 + 877969).nroots(2)) == ('[-1.7 - 1.9*I, -1.7 + 1.9*I, -1.7 ' '- 2.5*I, -1.7 + 2.5*I, -1.0*I, 1.0*I, -1.7*I, 1.7*I, -2.8*I, ' '2.8*I, -3.4*I, 3.4*I, 1.7 - 1.9*I, 1.7 + 1.9*I, 1.7 - 2.5*I, ' '1.7 + 2.5*I]') def test_ground_roots(): f = x**6 - 4*x**4 + 4*x**3 - x**2 assert Poly(f).ground_roots() == {S.One: 2, S.Zero: 2} assert ground_roots(f) == {S.One: 2, S.Zero: 2} def test_nth_power_roots_poly(): f = x**4 - x**2 + 1 f_2 = (x**2 - x + 1)**2 f_3 = (x**2 + 1)**2 f_4 = (x**2 + x + 1)**2 f_12 = (x - 1)**4 assert nth_power_roots_poly(f, 1) == f raises(ValueError, lambda: nth_power_roots_poly(f, 0)) raises(ValueError, lambda: nth_power_roots_poly(f, x)) assert factor(nth_power_roots_poly(f, 2)) == f_2 assert factor(nth_power_roots_poly(f, 3)) == f_3 assert factor(nth_power_roots_poly(f, 4)) == f_4 assert factor(nth_power_roots_poly(f, 12)) == f_12 raises(MultivariatePolynomialError, lambda: nth_power_roots_poly( x + y, 2, x, y)) def test_torational_factor_list(): p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))})) assert _torational_factor_list(p, x) == (-2, [ (-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)]) p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + 2**Rational(1, 4))})) assert _torational_factor_list(p, x) is None def test_cancel(): assert cancel(0) == 0 assert cancel(7) == 7 assert cancel(x) == x assert cancel(oo) is oo assert cancel((2, 3)) == (1, 2, 3) assert cancel((1, 0), x) == (1, 1, 0) assert cancel((0, 1), x) == (1, 0, 1) f, g, p, q = 4*x**2 - 4, 2*x - 2, 2*x + 2, 1 F, G, P, Q = [ Poly(u, x) for u in (f, g, p, q) ] assert F.cancel(G) == (1, P, Q) assert cancel((f, g)) == (1, p, q) assert cancel((f, g), x) == (1, p, q) assert cancel((f, g), (x,)) == (1, p, q) assert cancel((F, G)) == (1, P, Q) assert cancel((f, g), polys=True) == (1, P, Q) assert cancel((F, G), polys=False) == (1, p, q) f = (x**2 - 2)/(x + sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x - sqrt(2) f = (x**2 - 2)/(x - sqrt(2)) assert cancel(f) == f assert cancel(f, greedy=False) == x + sqrt(2) assert cancel((x**2/4 - 1, x/2 - 1)) == (S.Half, x + 2, 1) assert cancel((x**2 - y)/(x - y)) == 1/(x - y)*(x**2 - y) assert cancel((x**2 - y**2)/(x - y), x) == x + y assert cancel((x**2 - y**2)/(x - y), y) == x + y assert cancel((x**2 - y**2)/(x - y)) == x + y assert cancel((x**3 - 1)/(x**2 - 1)) == (x**2 + x + 1)/(x + 1) assert cancel((x**3/2 - S.Half)/(x**2 - 1)) == (x**2 + x + 1)/(2*x + 2) assert cancel((exp(2*x) + 2*exp(x) + 1)/(exp(x) + 1)) == exp(x) + 1 f = Poly(x**2 - a**2, x) g = Poly(x - a, x) F = Poly(x + a, x) G = Poly(1, x) assert cancel((f, g)) == (1, F, G) f = x**3 + (sqrt(2) - 2)*x**2 - (2*sqrt(2) + 3)*x - 3*sqrt(2) g = x**2 - 2 assert cancel((f, g), extension=True) == (1, x**2 - 2*x - 3, x - sqrt(2)) f = Poly(-2*x + 3, x) g = Poly(-x**9 + x**8 + x**6 - x**5 + 2*x**2 - 3*x + 1, x) assert cancel((f, g)) == (1, -f, -g) f = Poly(y, y, domain='ZZ(x)') g = Poly(1, y, domain='ZZ[x]') assert f.cancel( g) == (1, Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) assert f.cancel(g, include=True) == ( Poly(y, y, domain='ZZ(x)'), Poly(1, y, domain='ZZ(x)')) f = Poly(5*x*y + x, y, domain='ZZ(x)') g = Poly(2*x**2*y, y, domain='ZZ(x)') assert f.cancel(g, include=True) == ( Poly(5*y + 1, y, domain='ZZ(x)'), Poly(2*x*y, y, domain='ZZ(x)')) f = -(-2*x - 4*y + 0.005*(z - y)**2)/((z - y)*(-z + y + 2)) assert cancel(f).is_Mul == True P = tanh(x - 3.0) Q = tanh(x + 3.0) f = ((-2*P**2 + 2)*(-P**2 + 1)*Q**2/2 + (-2*P**2 + 2)*(-2*Q**2 + 2)*P*Q - (-2*P**2 + 2)*P**2*Q**2 + (-2*Q**2 + 2)*(-Q**2 + 1)*P**2/2 - (-2*Q**2 + 2)*P**2*Q**2)/(2*sqrt(P**2*Q**2 + 0.0001)) \ + (-(-2*P**2 + 2)*P*Q**2/2 - (-2*Q**2 + 2)*P**2*Q/2)*((-2*P**2 + 2)*P*Q**2/2 + (-2*Q**2 + 2)*P**2*Q/2)/(2*(P**2*Q**2 + 0.0001)**Rational(3, 2)) assert cancel(f).is_Mul == True # issue 7022 A = Symbol('A', commutative=False) p1 = Piecewise((A*(x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p2 = Piecewise((A*(x - 1), x > 1), (1/x, True)) assert cancel(p1) == p2 assert cancel(2*p1) == 2*p2 assert cancel(1 + p1) == 1 + p2 assert cancel((x**2 - 1)/(x + 1)*p1) == (x - 1)*p2 assert cancel((x**2 - 1)/(x + 1) + p1) == (x - 1) + p2 p3 = Piecewise(((x**2 - 1)/(x + 1), x > 1), ((x + 2)/(x**2 + 2*x), True)) p4 = Piecewise(((x - 1), x > 1), (1/x, True)) assert cancel(p3) == p4 assert cancel(2*p3) == 2*p4 assert cancel(1 + p3) == 1 + p4 assert cancel((x**2 - 1)/(x + 1)*p3) == (x - 1)*p4 assert cancel((x**2 - 1)/(x + 1) + p3) == (x - 1) + p4 # issue 9363 M = MatrixSymbol('M', 5, 5) assert cancel(M[0,0] + 7) == M[0,0] + 7 expr = sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2] / z assert cancel(expr) == (z*sin(M[1, 4] + M[2, 1] * 5 * M[4, 0]) - 5 * M[1, 2]) / z def test_reduced(): f = 2*x**4 + y**2 - x**2 + y**3 G = [x**3 - x, y**3 - y] Q = [2*x, 1] r = x**2 + y**2 + y assert reduced(f, G) == (Q, r) assert reduced(f, G, x, y) == (Q, r) H = groebner(G) assert H.reduce(f) == (Q, r) Q = [Poly(2*x, x, y), Poly(1, x, y)] r = Poly(x**2 + y**2 + y, x, y) assert _strict_eq(reduced(f, G, polys=True), (Q, r)) assert _strict_eq(reduced(f, G, x, y, polys=True), (Q, r)) H = groebner(G, polys=True) assert _strict_eq(H.reduce(f), (Q, r)) f = 2*x**3 + y**3 + 3*y G = groebner([x**2 + y**2 - 1, x*y - 2]) Q = [x**2 - x*y**3/2 + x*y/2 + y**6/4 - y**4/2 + y**2/4, -y**5/4 + y**3/2 + y*Rational(3, 4)] r = 0 assert reduced(f, G) == (Q, r) assert G.reduce(f) == (Q, r) assert reduced(f, G, auto=False)[1] != 0 assert G.reduce(f, auto=False)[1] != 0 assert G.contains(f) is True assert G.contains(f + 1) is False assert reduced(1, [1], x) == ([1], 0) raises(ComputationFailed, lambda: reduced(1, [1])) def test_groebner(): assert groebner([], x, y, z) == [] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex') == [1 + x**2, -1 + y**4] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex') == [-1 + y**4, z**3, 1 + x**2] assert groebner([x**2 + 1, y**4*x + x**3], x, y, order='lex', polys=True) == \ [Poly(1 + x**2, x, y), Poly(-1 + y**4, x, y)] assert groebner([x**2 + 1, y**4*x + x**3, x*y*z**3], x, y, z, order='grevlex', polys=True) == \ [Poly(-1 + y**4, x, y, z), Poly(z**3, x, y, z), Poly(1 + x**2, x, y, z)] assert groebner([x**3 - 1, x**2 - 1]) == [x - 1] assert groebner([Eq(x**3, 1), Eq(x**2, 1)]) == [x - 1] F = [3*x**2 + y*z - 5*x - 1, 2*x + 3*x*y + y**2, x - 3*y + x*z - 2*z**2] f = z**9 - x**2*y**3 - 3*x*y**2*z + 11*y*z**2 + x**2*z**2 - 5 G = groebner(F, x, y, z, modulus=7, symmetric=False) assert G == [1 + x + y + 3*z + 2*z**2 + 2*z**3 + 6*z**4 + z**5, 1 + 3*y + y**2 + 6*z**2 + 3*z**3 + 3*z**4 + 3*z**5 + 4*z**6, 1 + 4*y + 4*z + y*z + 4*z**3 + z**4 + z**6, 6 + 6*z + z**2 + 4*z**3 + 3*z**4 + 6*z**5 + 3*z**6 + z**7] Q, r = reduced(f, G, x, y, z, modulus=7, symmetric=False, polys=True) assert sum([ q*g for q, g in zip(Q, G.polys)], r) == Poly(f, modulus=7) F = [x*y - 2*y, 2*y**2 - x**2] assert groebner(F, x, y, order='grevlex') == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner(F, y, x, order='grevlex') == \ [x**3 - 2*x**2, -x**2 + 2*y**2, x*y - 2*y] assert groebner(F, order='grevlex', field=True) == \ [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] assert groebner([1], x) == [1] assert groebner([x**2 + 2.0*y], x, y) == [1.0*x**2 + 2.0*y] raises(ComputationFailed, lambda: groebner([1])) assert groebner([x**2 - 1, x**3 + 1], method='buchberger') == [x + 1] assert groebner([x**2 - 1, x**3 + 1], method='f5b') == [x + 1] raises(ValueError, lambda: groebner([x, y], method='unknown')) def test_fglm(): F = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] G = groebner(F, a, b, c, d, order=grlex) B = [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1, ] assert groebner(F, a, b, c, d, order=lex) == B assert G.fglm(lex) == B F = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, -72*t*x**7 - 252*t*x**6 + 192*t*x**5 + 1260*t*x**4 + 312*t*x**3 - 404*t*x**2 - 576*t*x + \ 108*t - 72*x**7 - 256*x**6 + 192*x**5 + 1280*x**4 + 312*x**3 - 576*x + 96] G = groebner(F, t, x, order=grlex) B = [ 203577793572507451707*t + 627982239411707112*x**7 - 666924143779443762*x**6 - \ 10874593056632447619*x**5 + 5119998792707079562*x**4 + 72917161949456066376*x**3 + \ 20362663855832380362*x**2 - 142079311455258371571*x + 183756699868981873194, 9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, ] assert groebner(F, t, x, order=lex) == B assert G.fglm(lex) == B F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] G = groebner(F, x, y, order=lex) B = [ x**2 - x - 3*y + 1, y**2 - 2*x + y - 1, ] assert groebner(F, x, y, order=grlex) == B assert G.fglm(grlex) == B def test_is_zero_dimensional(): assert is_zero_dimensional([x, y], x, y) is True assert is_zero_dimensional([x**3 + y**2], x, y) is False assert is_zero_dimensional([x, y, z], x, y, z) is True assert is_zero_dimensional([x, y, z], x, y, z, t) is False F = [x*y - z, y*z - x, x*y - y] assert is_zero_dimensional(F, x, y, z) is True F = [x**2 - 2*x*z + 5, x*y**2 + y*z**3, 3*y**2 - 8*z**2] assert is_zero_dimensional(F, x, y, z) is True def test_GroebnerBasis(): F = [x*y - 2*y, 2*y**2 - x**2] G = groebner(F, x, y, order='grevlex') H = [y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y] P = [ Poly(h, x, y) for h in H ] assert groebner(F + [0], x, y, order='grevlex') == G assert isinstance(G, GroebnerBasis) is True assert len(G) == 3 assert G[0] == H[0] and not G[0].is_Poly assert G[1] == H[1] and not G[1].is_Poly assert G[2] == H[2] and not G[2].is_Poly assert G[1:] == H[1:] and not any(g.is_Poly for g in G[1:]) assert G[:2] == H[:2] and not any(g.is_Poly for g in G[1:]) assert G.exprs == H assert G.polys == P assert G.gens == (x, y) assert G.domain == ZZ assert G.order == grevlex assert G == H assert G == tuple(H) assert G == P assert G == tuple(P) assert G != [] G = groebner(F, x, y, order='grevlex', polys=True) assert G[0] == P[0] and G[0].is_Poly assert G[1] == P[1] and G[1].is_Poly assert G[2] == P[2] and G[2].is_Poly assert G[1:] == P[1:] and all(g.is_Poly for g in G[1:]) assert G[:2] == P[:2] and all(g.is_Poly for g in G[1:]) def test_poly(): assert poly(x) == Poly(x, x) assert poly(y) == Poly(y, y) assert poly(x + y) == Poly(x + y, x, y) assert poly(x + sin(x)) == Poly(x + sin(x), x, sin(x)) assert poly(x + y, wrt=y) == Poly(x + y, y, x) assert poly(x + sin(x), wrt=sin(x)) == Poly(x + sin(x), sin(x), x) assert poly(x*y + 2*x*z**2 + 17) == Poly(x*y + 2*x*z**2 + 17, x, y, z) assert poly(2*(y + z)**2 - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - 1, y, z) assert poly( x*(y + z)**2 - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - 1, x, y, z) assert poly(2*x*( y + z)**2 - 1) == Poly(2*x*y**2 + 4*x*y*z + 2*x*z**2 - 1, x, y, z) assert poly(2*( y + z)**2 - x - 1) == Poly(2*y**2 + 4*y*z + 2*z**2 - x - 1, x, y, z) assert poly(x*( y + z)**2 - x - 1) == Poly(x*y**2 + 2*x*y*z + x*z**2 - x - 1, x, y, z) assert poly(2*x*(y + z)**2 - x - 1) == Poly(2*x*y**2 + 4*x*y*z + 2* x*z**2 - x - 1, x, y, z) assert poly(x*y + (x + y)**2 + (x + z)**2) == \ Poly(2*x*z + 3*x*y + y**2 + z**2 + 2*x**2, x, y, z) assert poly(x*y*(x + y)*(x + z)**2) == \ Poly(x**3*y**2 + x*y**2*z**2 + y*x**2*z**2 + 2*z*x**2* y**2 + 2*y*z*x**3 + y*x**4, x, y, z) assert poly(Poly(x + y + z, y, x, z)) == Poly(x + y + z, y, x, z) assert poly((x + y)**2, x) == Poly(x**2 + 2*x*y + y**2, x, domain=ZZ[y]) assert poly((x + y)**2, y) == Poly(x**2 + 2*x*y + y**2, y, domain=ZZ[x]) assert poly(1, x) == Poly(1, x) raises(GeneratorsNeeded, lambda: poly(1)) # issue 6184 assert poly(x + y, x, y) == Poly(x + y, x, y) assert poly(x + y, y, x) == Poly(x + y, y, x) def test_keep_coeff(): u = Mul(2, x + 1, evaluate=False) assert _keep_coeff(S.One, x) == x assert _keep_coeff(S.NegativeOne, x) == -x assert _keep_coeff(S(1.0), x) == 1.0*x assert _keep_coeff(S(-1.0), x) == -1.0*x assert _keep_coeff(S.One, 2*x) == 2*x assert _keep_coeff(S(2), x/2) == x assert _keep_coeff(S(2), sin(x)) == 2*sin(x) assert _keep_coeff(S(2), x + 1) == u assert _keep_coeff(x, 1/x) == 1 assert _keep_coeff(x + 1, S(2)) == u # @XFAIL # Seems to pass on Python 3.X, but not on Python 2.7 def test_poly_matching_consistency(): # Test for this issue: # https://github.com/sympy/sympy/issues/5514 assert I * Poly(x, x) == Poly(I*x, x) assert Poly(x, x) * I == Poly(I*x, x) if not PY3: test_poly_matching_consistency = XFAIL(test_poly_matching_consistency) @XFAIL def test_issue_5786(): assert expand(factor(expand( (x - I*y)*(z - I*t)), extension=[I])) == -I*t*x - t*y + x*z - I*y*z def test_noncommutative(): class foo(Expr): is_commutative=False e = x/(x + x*y) c = 1/( 1 + y) assert cancel(foo(e)) == foo(c) assert cancel(e + foo(e)) == c + foo(c) assert cancel(e*foo(c)) == c*foo(c) def test_to_rational_coeffs(): assert to_rational_coeffs( Poly(x**3 + y*x**2 + sqrt(y), x, domain='EX')) is None def test_factor_terms(): # issue 7067 assert factor_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) assert sqf_list(x*(x + y)) == (1, [(x, 1), (x + y, 1)]) def test_as_list(): # issue 14496 assert Poly(x**3 + 2, x, domain='ZZ').as_list() == [1, 0, 0, 2] assert Poly(x**2 + y + 1, x, y, domain='ZZ').as_list() == [[1], [], [1, 1]] assert Poly(x**2 + y + 1, x, y, z, domain='ZZ').as_list() == \ [[[1]], [[]], [[1], [1]]] def test_issue_11198(): assert factor_list(sqrt(2)*x) == (sqrt(2), [(x, 1)]) assert factor_list(sqrt(2)*sin(x), sin(x)) == (sqrt(2), [(sin(x), 1)]) def test_Poly_precision(): # Make sure Poly doesn't lose precision p = Poly(pi.evalf(100)*x) assert p.as_expr() == pi.evalf(100)*x def test_issue_12400(): # Correction of check for negative exponents assert poly(1/(1+sqrt(2)), x) == \ Poly(1/(1+sqrt(2)), x , domain='EX') def test_issue_14364(): assert gcd(S(6)*(1 + sqrt(3))/5, S(3)*(1 + sqrt(3))/10) == Rational(3, 10) * (1 + sqrt(3)) assert gcd(sqrt(5)*Rational(4, 7), sqrt(5)*Rational(2, 3)) == sqrt(5)*Rational(2, 21) assert lcm(Rational(2, 3)*sqrt(3), Rational(5, 6)*sqrt(3)) == S(10)*sqrt(3)/3 assert lcm(3*sqrt(3), 4/sqrt(3)) == 12*sqrt(3) assert lcm(S(5)*(1 + 2**Rational(1, 3))/6, S(3)*(1 + 2**Rational(1, 3))/8) == Rational(15, 2) * (1 + 2**Rational(1, 3)) assert gcd(Rational(2, 3)*sqrt(3), Rational(5, 6)/sqrt(3)) == sqrt(3)/18 assert gcd(S(4)*sqrt(13)/7, S(3)*sqrt(13)/14) == sqrt(13)/14 # gcd_list and lcm_list assert gcd([S(2)*sqrt(47)/7, S(6)*sqrt(47)/5, S(8)*sqrt(47)/5]) == sqrt(47)*Rational(2, 35) assert gcd([S(6)*(1 + sqrt(7))/5, S(2)*(1 + sqrt(7))/7, S(4)*(1 + sqrt(7))/13]) == (1 + sqrt(7))*Rational(2, 455) assert lcm((Rational(7, 2)/sqrt(15), Rational(5, 6)/sqrt(15), Rational(5, 8)/sqrt(15))) == Rational(35, 2)/sqrt(15) assert lcm([S(5)*(2 + 2**Rational(5, 7))/6, S(7)*(2 + 2**Rational(5, 7))/2, S(13)*(2 + 2**Rational(5, 7))/4]) == Rational(455, 2) * (2 + 2**Rational(5, 7)) def test_issue_15669(): x = Symbol("x", positive=True) expr = (16*x**3/(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**2 - 2*2**Rational(4, 5)*x*(-x**2 + sqrt(8*x**2 + (x**2 - 2)**2) + 2)**Rational(3, 5) + 10*x) assert factor(expr, deep=True) == x*(x**2 + 2) def test_issue_17988(): x = Symbol('x') p = poly(x - 1) M = Matrix([[poly(x + 1), poly(x + 1)]]) assert p * M == M * p == Matrix([[poly(x**2 - 1), poly(x**2 - 1)]])
78522c584f302fabff55ff9ef23618028debdd55cb0892d20bb7035bdf4913a2
from sympy.polys.galoistools import ( gf_crt, gf_crt1, gf_crt2, gf_int, gf_degree, gf_strip, gf_trunc, gf_normal, gf_from_dict, gf_to_dict, gf_from_int_poly, gf_to_int_poly, gf_neg, gf_add_ground, gf_sub_ground, gf_mul_ground, gf_add, gf_sub, gf_add_mul, gf_sub_mul, gf_mul, gf_sqr, gf_div, gf_rem, gf_quo, gf_exquo, gf_lshift, gf_rshift, gf_expand, gf_pow, gf_pow_mod, gf_gcdex, gf_gcd, gf_lcm, gf_cofactors, gf_LC, gf_TC, gf_monic, gf_eval, gf_multi_eval, gf_compose, gf_compose_mod, gf_trace_map, gf_diff, gf_irreducible, gf_irreducible_p, gf_irred_p_ben_or, gf_irred_p_rabin, gf_sqf_list, gf_sqf_part, gf_sqf_p, gf_Qmatrix, gf_Qbasis, gf_ddf_zassenhaus, gf_ddf_shoup, gf_edf_zassenhaus, gf_edf_shoup, gf_berlekamp, gf_factor_sqf, gf_factor, gf_value, linear_congruence, csolve_prime, gf_csolve, gf_frobenius_map, gf_frobenius_monomial_base ) from sympy.polys.polyerrors import ( ExactQuotientFailed, ) from sympy.polys import polyconfig as config from sympy.polys.domains import ZZ from sympy import pi, nextprime from sympy.utilities.pytest import raises def test_gf_crt(): U = [49, 76, 65] M = [99, 97, 95] p = 912285 u = 639985 assert gf_crt(U, M, ZZ) == u E = [9215, 9405, 9603] S = [62, 24, 12] assert gf_crt1(M, ZZ) == (p, E, S) assert gf_crt2(U, M, p, E, S, ZZ) == u def test_gf_int(): assert gf_int(0, 5) == 0 assert gf_int(1, 5) == 1 assert gf_int(2, 5) == 2 assert gf_int(3, 5) == -2 assert gf_int(4, 5) == -1 assert gf_int(5, 5) == 0 def test_gf_degree(): assert gf_degree([]) == -1 assert gf_degree([1]) == 0 assert gf_degree([1, 0]) == 1 assert gf_degree([1, 0, 0, 0, 1]) == 4 def test_gf_strip(): assert gf_strip([]) == [] assert gf_strip([0]) == [] assert gf_strip([0, 0, 0]) == [] assert gf_strip([1]) == [1] assert gf_strip([0, 1]) == [1] assert gf_strip([0, 0, 0, 1]) == [1] assert gf_strip([1, 2, 0]) == [1, 2, 0] assert gf_strip([0, 1, 2, 0]) == [1, 2, 0] assert gf_strip([0, 0, 0, 1, 2, 0]) == [1, 2, 0] def test_gf_trunc(): assert gf_trunc([], 11) == [] assert gf_trunc([1], 11) == [1] assert gf_trunc([22], 11) == [] assert gf_trunc([12], 11) == [1] assert gf_trunc([11, 22, 17, 1, 0], 11) == [6, 1, 0] assert gf_trunc([12, 23, 17, 1, 0], 11) == [1, 1, 6, 1, 0] def test_gf_normal(): assert gf_normal([11, 22, 17, 1, 0], 11, ZZ) == [6, 1, 0] def test_gf_from_to_dict(): f = {11: 12, 6: 2, 0: 25} F = {11: 1, 6: 2, 0: 3} g = [1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3] assert gf_from_dict(f, 11, ZZ) == g assert gf_to_dict(g, 11) == F f = {11: -5, 4: 0, 3: 1, 0: 12} F = {11: -5, 3: 1, 0: 1} g = [6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1] assert gf_from_dict(f, 11, ZZ) == g assert gf_to_dict(g, 11) == F assert gf_to_dict([10], 11, symmetric=True) == {0: -1} assert gf_to_dict([10], 11, symmetric=False) == {0: 10} def test_gf_from_to_int_poly(): assert gf_from_int_poly([1, 0, 7, 2, 20], 5) == [1, 0, 2, 2, 0] assert gf_to_int_poly([1, 0, 4, 2, 3], 5) == [1, 0, -1, 2, -2] assert gf_to_int_poly([10], 11, symmetric=True) == [-1] assert gf_to_int_poly([10], 11, symmetric=False) == [10] def test_gf_LC(): assert gf_LC([], ZZ) == 0 assert gf_LC([1], ZZ) == 1 assert gf_LC([1, 2], ZZ) == 1 def test_gf_TC(): assert gf_TC([], ZZ) == 0 assert gf_TC([1], ZZ) == 1 assert gf_TC([1, 2], ZZ) == 2 def test_gf_monic(): assert gf_monic(ZZ.map([]), 11, ZZ) == (0, []) assert gf_monic(ZZ.map([1]), 11, ZZ) == (1, [1]) assert gf_monic(ZZ.map([2]), 11, ZZ) == (2, [1]) assert gf_monic(ZZ.map([1, 2, 3, 4]), 11, ZZ) == (1, [1, 2, 3, 4]) assert gf_monic(ZZ.map([2, 3, 4, 5]), 11, ZZ) == (2, [1, 7, 2, 8]) def test_gf_arith(): assert gf_neg([], 11, ZZ) == [] assert gf_neg([1], 11, ZZ) == [10] assert gf_neg([1, 2, 3], 11, ZZ) == [10, 9, 8] assert gf_add_ground([], 0, 11, ZZ) == [] assert gf_sub_ground([], 0, 11, ZZ) == [] assert gf_add_ground([], 3, 11, ZZ) == [3] assert gf_sub_ground([], 3, 11, ZZ) == [8] assert gf_add_ground([1], 3, 11, ZZ) == [4] assert gf_sub_ground([1], 3, 11, ZZ) == [9] assert gf_add_ground([8], 3, 11, ZZ) == [] assert gf_sub_ground([3], 3, 11, ZZ) == [] assert gf_add_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 6] assert gf_sub_ground([1, 2, 3], 3, 11, ZZ) == [1, 2, 0] assert gf_mul_ground([], 0, 11, ZZ) == [] assert gf_mul_ground([], 1, 11, ZZ) == [] assert gf_mul_ground([1], 0, 11, ZZ) == [] assert gf_mul_ground([1], 1, 11, ZZ) == [1] assert gf_mul_ground([1, 2, 3], 0, 11, ZZ) == [] assert gf_mul_ground([1, 2, 3], 1, 11, ZZ) == [1, 2, 3] assert gf_mul_ground([1, 2, 3], 7, 11, ZZ) == [7, 3, 10] assert gf_add([], [], 11, ZZ) == [] assert gf_add([1], [], 11, ZZ) == [1] assert gf_add([], [1], 11, ZZ) == [1] assert gf_add([1], [1], 11, ZZ) == [2] assert gf_add([1], [2], 11, ZZ) == [3] assert gf_add([1, 2], [1], 11, ZZ) == [1, 3] assert gf_add([1], [1, 2], 11, ZZ) == [1, 3] assert gf_add([1, 2, 3], [8, 9, 10], 11, ZZ) == [9, 0, 2] assert gf_sub([], [], 11, ZZ) == [] assert gf_sub([1], [], 11, ZZ) == [1] assert gf_sub([], [1], 11, ZZ) == [10] assert gf_sub([1], [1], 11, ZZ) == [] assert gf_sub([1], [2], 11, ZZ) == [10] assert gf_sub([1, 2], [1], 11, ZZ) == [1, 1] assert gf_sub([1], [1, 2], 11, ZZ) == [10, 10] assert gf_sub([3, 2, 1], [8, 9, 10], 11, ZZ) == [6, 4, 2] assert gf_add_mul( [1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [1, 2, 10, 8, 9] assert gf_sub_mul( [1, 5, 6], [7, 3], [8, 0, 6, 1], 11, ZZ) == [10, 9, 3, 2, 3] assert gf_mul([], [], 11, ZZ) == [] assert gf_mul([], [1], 11, ZZ) == [] assert gf_mul([1], [], 11, ZZ) == [] assert gf_mul([1], [1], 11, ZZ) == [1] assert gf_mul([5], [7], 11, ZZ) == [2] assert gf_mul([3, 0, 0, 6, 1, 2], [4, 0, 1, 0], 11, ZZ) == [1, 0, 3, 2, 4, 3, 1, 2, 0] assert gf_mul([4, 0, 1, 0], [3, 0, 0, 6, 1, 2], 11, ZZ) == [1, 0, 3, 2, 4, 3, 1, 2, 0] assert gf_mul([2, 0, 0, 1, 7], [2, 0, 0, 1, 7], 11, ZZ) == [4, 0, 0, 4, 6, 0, 1, 3, 5] assert gf_sqr([], 11, ZZ) == [] assert gf_sqr([2], 11, ZZ) == [4] assert gf_sqr([1, 2], 11, ZZ) == [1, 4, 4] assert gf_sqr([2, 0, 0, 1, 7], 11, ZZ) == [4, 0, 0, 4, 6, 0, 1, 3, 5] def test_gf_division(): raises(ZeroDivisionError, lambda: gf_div([1, 2, 3], [], 11, ZZ)) raises(ZeroDivisionError, lambda: gf_rem([1, 2, 3], [], 11, ZZ)) raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ)) raises(ZeroDivisionError, lambda: gf_quo([1, 2, 3], [], 11, ZZ)) assert gf_div([1], [1, 2, 3], 7, ZZ) == ([], [1]) assert gf_rem([1], [1, 2, 3], 7, ZZ) == [1] assert gf_quo([1], [1, 2, 3], 7, ZZ) == [] f = ZZ.map([5, 4, 3, 2, 1, 0]) g = ZZ.map([1, 2, 3]) q = [5, 1, 0, 6] r = [3, 3] assert gf_div(f, g, 7, ZZ) == (q, r) assert gf_rem(f, g, 7, ZZ) == r assert gf_quo(f, g, 7, ZZ) == q raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ)) f = ZZ.map([5, 4, 3, 2, 1, 0]) g = ZZ.map([1, 2, 3, 0]) q = [5, 1, 0] r = [6, 1, 0] assert gf_div(f, g, 7, ZZ) == (q, r) assert gf_rem(f, g, 7, ZZ) == r assert gf_quo(f, g, 7, ZZ) == q raises(ExactQuotientFailed, lambda: gf_exquo(f, g, 7, ZZ)) assert gf_quo(ZZ.map([1, 2, 1]), ZZ.map([1, 1]), 11, ZZ) == [1, 1] def test_gf_shift(): f = [1, 2, 3, 4, 5] assert gf_lshift([], 5, ZZ) == [] assert gf_rshift([], 5, ZZ) == ([], []) assert gf_lshift(f, 1, ZZ) == [1, 2, 3, 4, 5, 0] assert gf_lshift(f, 2, ZZ) == [1, 2, 3, 4, 5, 0, 0] assert gf_rshift(f, 0, ZZ) == (f, []) assert gf_rshift(f, 1, ZZ) == ([1, 2, 3, 4], [5]) assert gf_rshift(f, 3, ZZ) == ([1, 2], [3, 4, 5]) assert gf_rshift(f, 5, ZZ) == ([], f) def test_gf_expand(): F = [([1, 1], 2), ([1, 2], 3)] assert gf_expand(F, 11, ZZ) == [1, 8, 3, 5, 6, 8] assert gf_expand((4, F), 11, ZZ) == [4, 10, 1, 9, 2, 10] def test_gf_powering(): assert gf_pow([1, 0, 0, 1, 8], 0, 11, ZZ) == [1] assert gf_pow([1, 0, 0, 1, 8], 1, 11, ZZ) == [1, 0, 0, 1, 8] assert gf_pow([1, 0, 0, 1, 8], 2, 11, ZZ) == [1, 0, 0, 2, 5, 0, 1, 5, 9] assert gf_pow([1, 0, 0, 1, 8], 5, 11, ZZ) == \ [1, 0, 0, 5, 7, 0, 10, 6, 2, 10, 9, 6, 10, 6, 6, 0, 5, 2, 5, 9, 10] assert gf_pow([1, 0, 0, 1, 8], 8, 11, ZZ) == \ [1, 0, 0, 8, 9, 0, 6, 8, 10, 1, 2, 5, 10, 7, 7, 9, 1, 2, 0, 0, 6, 2, 5, 2, 5, 7, 7, 9, 10, 10, 7, 5, 5] assert gf_pow([1, 0, 0, 1, 8], 45, 11, ZZ) == \ [ 1, 0, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 6, 4, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 10, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 9, 0, 0, 9, 6, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 2, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 10, 0, 0, 10, 3, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 5, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 10] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 0, ZZ.map([2, 0, 7]), 11, ZZ) == [1] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 1, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 1] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 2, ZZ.map([2, 0, 7]), 11, ZZ) == [2, 3] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 5, ZZ.map([2, 0, 7]), 11, ZZ) == [7, 8] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 8, ZZ.map([2, 0, 7]), 11, ZZ) == [1, 5] assert gf_pow_mod(ZZ.map([1, 0, 0, 1, 8]), 45, ZZ.map([2, 0, 7]), 11, ZZ) == [5, 4] def test_gf_gcdex(): assert gf_gcdex(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([1], [], []) assert gf_gcdex(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([6], [], [1]) assert gf_gcdex(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([], [6], [1]) assert gf_gcdex(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([], [6], [1]) assert gf_gcdex(ZZ.map([]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0]) assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([]), 11, ZZ) == ([4], [], [1, 0]) assert gf_gcdex(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == ([], [4], [1, 0]) assert gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == ([5, 6], [6], [1, 7]) def test_gf_gcd(): assert gf_gcd(ZZ.map([]), ZZ.map([]), 11, ZZ) == [] assert gf_gcd(ZZ.map([2]), ZZ.map([]), 11, ZZ) == [1] assert gf_gcd(ZZ.map([]), ZZ.map([2]), 11, ZZ) == [1] assert gf_gcd(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1] assert gf_gcd(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == [1, 0] assert gf_gcd(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == [1, 0] assert gf_gcd(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0] assert gf_gcd(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 7] def test_gf_lcm(): assert gf_lcm(ZZ.map([]), ZZ.map([]), 11, ZZ) == [] assert gf_lcm(ZZ.map([2]), ZZ.map([]), 11, ZZ) == [] assert gf_lcm(ZZ.map([]), ZZ.map([2]), 11, ZZ) == [] assert gf_lcm(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == [1] assert gf_lcm(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == [] assert gf_lcm(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == [] assert gf_lcm(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == [1, 0] assert gf_lcm(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == [1, 8, 8, 8, 7] def test_gf_cofactors(): assert gf_cofactors(ZZ.map([]), ZZ.map([]), 11, ZZ) == ([], [], []) assert gf_cofactors(ZZ.map([2]), ZZ.map([]), 11, ZZ) == ([1], [2], []) assert gf_cofactors(ZZ.map([]), ZZ.map([2]), 11, ZZ) == ([1], [], [2]) assert gf_cofactors(ZZ.map([2]), ZZ.map([2]), 11, ZZ) == ([1], [2], [2]) assert gf_cofactors(ZZ.map([]), ZZ.map([1, 0]), 11, ZZ) == ([1, 0], [], [1]) assert gf_cofactors(ZZ.map([1, 0]), ZZ.map([]), 11, ZZ) == ([1, 0], [1], []) assert gf_cofactors(ZZ.map([3, 0]), ZZ.map([3, 0]), 11, ZZ) == ( [1, 0], [3], [3]) assert gf_cofactors(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) == ( ([1, 7], [1, 1], [1, 0, 1])) def test_gf_diff(): assert gf_diff([], 11, ZZ) == [] assert gf_diff([7], 11, ZZ) == [] assert gf_diff([7, 3], 11, ZZ) == [7] assert gf_diff([7, 3, 1], 11, ZZ) == [3, 3] assert gf_diff([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], 11, ZZ) == [] def test_gf_eval(): assert gf_eval([], 4, 11, ZZ) == 0 assert gf_eval([], 27, 11, ZZ) == 0 assert gf_eval([7], 4, 11, ZZ) == 7 assert gf_eval([7], 27, 11, ZZ) == 7 assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 0, 11, ZZ) == 0 assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 4, 11, ZZ) == 9 assert gf_eval([1, 0, 3, 2, 4, 3, 1, 2, 0], 27, 11, ZZ) == 5 assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 0, 11, ZZ) == 5 assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 4, 11, ZZ) == 3 assert gf_eval([4, 0, 0, 4, 6, 0, 1, 3, 5], 27, 11, ZZ) == 9 assert gf_multi_eval([3, 2, 1], [0, 1, 2, 3], 11, ZZ) == [1, 6, 6, 1] def test_gf_compose(): assert gf_compose([], [1, 0], 11, ZZ) == [] assert gf_compose_mod([], [1, 0], [1, 0], 11, ZZ) == [] assert gf_compose([1], [], 11, ZZ) == [1] assert gf_compose([1, 0], [], 11, ZZ) == [] assert gf_compose([1, 0], [1, 0], 11, ZZ) == [1, 0] f = ZZ.map([1, 1, 4, 9, 1]) g = ZZ.map([1, 1, 1]) h = ZZ.map([1, 0, 0, 2]) assert gf_compose(g, h, 11, ZZ) == [1, 0, 0, 5, 0, 0, 7] assert gf_compose_mod(g, h, f, 11, ZZ) == [3, 9, 6, 10] def test_gf_trace_map(): f = ZZ.map([1, 1, 4, 9, 1]) a = [1, 1, 1] c = ZZ.map([1, 0]) b = gf_pow_mod(c, 11, f, 11, ZZ) assert gf_trace_map(a, b, c, 0, f, 11, ZZ) == \ ([1, 1, 1], [1, 1, 1]) assert gf_trace_map(a, b, c, 1, f, 11, ZZ) == \ ([5, 2, 10, 3], [5, 3, 0, 4]) assert gf_trace_map(a, b, c, 2, f, 11, ZZ) == \ ([5, 9, 5, 3], [10, 1, 5, 7]) assert gf_trace_map(a, b, c, 3, f, 11, ZZ) == \ ([1, 10, 6, 0], [7]) assert gf_trace_map(a, b, c, 4, f, 11, ZZ) == \ ([1, 1, 1], [1, 1, 8]) assert gf_trace_map(a, b, c, 5, f, 11, ZZ) == \ ([5, 2, 10, 3], [5, 3, 0, 0]) assert gf_trace_map(a, b, c, 11, f, 11, ZZ) == \ ([1, 10, 6, 0], [10]) def test_gf_irreducible(): assert gf_irreducible_p(gf_irreducible(1, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(2, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(3, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(4, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(5, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(6, 11, ZZ), 11, ZZ) is True assert gf_irreducible_p(gf_irreducible(7, 11, ZZ), 11, ZZ) is True def test_gf_irreducible_p(): assert gf_irred_p_ben_or(ZZ.map([7]), 11, ZZ) is True assert gf_irred_p_ben_or(ZZ.map([7, 3]), 11, ZZ) is True assert gf_irred_p_ben_or(ZZ.map([7, 3, 1]), 11, ZZ) is False assert gf_irred_p_rabin(ZZ.map([7]), 11, ZZ) is True assert gf_irred_p_rabin(ZZ.map([7, 3]), 11, ZZ) is True assert gf_irred_p_rabin(ZZ.map([7, 3, 1]), 11, ZZ) is False config.setup('GF_IRRED_METHOD', 'ben-or') assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False config.setup('GF_IRRED_METHOD', 'rabin') assert gf_irreducible_p(ZZ.map([7]), 11, ZZ) is True assert gf_irreducible_p(ZZ.map([7, 3]), 11, ZZ) is True assert gf_irreducible_p(ZZ.map([7, 3, 1]), 11, ZZ) is False config.setup('GF_IRRED_METHOD', 'other') raises(KeyError, lambda: gf_irreducible_p([7], 11, ZZ)) config.setup('GF_IRRED_METHOD') f = ZZ.map([1, 9, 9, 13, 16, 15, 6, 7, 7, 7, 10]) g = ZZ.map([1, 7, 16, 7, 15, 13, 13, 11, 16, 10, 9]) h = gf_mul(f, g, 17, ZZ) assert gf_irred_p_ben_or(f, 17, ZZ) is True assert gf_irred_p_ben_or(g, 17, ZZ) is True assert gf_irred_p_ben_or(h, 17, ZZ) is False assert gf_irred_p_rabin(f, 17, ZZ) is True assert gf_irred_p_rabin(g, 17, ZZ) is True assert gf_irred_p_rabin(h, 17, ZZ) is False def test_gf_squarefree(): assert gf_sqf_list([], 11, ZZ) == (0, []) assert gf_sqf_list([1], 11, ZZ) == (1, []) assert gf_sqf_list([1, 1], 11, ZZ) == (1, [([1, 1], 1)]) assert gf_sqf_p([], 11, ZZ) is True assert gf_sqf_p([1], 11, ZZ) is True assert gf_sqf_p([1, 1], 11, ZZ) is True f = gf_from_dict({11: 1, 0: 1}, 11, ZZ) assert gf_sqf_p(f, 11, ZZ) is False assert gf_sqf_list(f, 11, ZZ) == \ (1, [([1, 1], 11)]) f = [1, 5, 8, 4] assert gf_sqf_p(f, 11, ZZ) is False assert gf_sqf_list(f, 11, ZZ) == \ (1, [([1, 1], 1), ([1, 2], 2)]) assert gf_sqf_part(f, 11, ZZ) == [1, 3, 2] f = [1, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0] assert gf_sqf_list(f, 3, ZZ) == \ (1, [([1, 0], 1), ([1, 1], 3), ([1, 2], 6)]) def test_gf_frobenius_map(): f = ZZ.map([2, 0, 1, 0, 2, 2, 0, 2, 2, 2]) g = ZZ.map([1,1,0,2,0,1,0,2,0,1]) p = 3 b = gf_frobenius_monomial_base(g, p, ZZ) h = gf_frobenius_map(f, g, b, p, ZZ) h1 = gf_pow_mod(f, p, g, p, ZZ) assert h == h1 def test_gf_berlekamp(): f = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11) Q = [[1, 0, 0, 0, 0, 0], [3, 5, 8, 8, 6, 5], [3, 6, 6, 1, 10, 0], [9, 4, 10, 3, 7, 9], [7, 8, 10, 0, 0, 8], [8, 10, 7, 8, 10, 8]] V = [[1, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 0], [0, 0, 7, 9, 0, 1]] assert gf_Qmatrix(f, 11, ZZ) == Q assert gf_Qbasis(Q, 11, ZZ) == V assert gf_berlekamp(f, 11, ZZ) == \ [[1, 1], [1, 5, 3], [1, 2, 3, 4]] f = ZZ.map([1, 0, 1, 0, 10, 10, 8, 2, 8]) Q = ZZ.map([[1, 0, 0, 0, 0, 0, 0, 0], [2, 1, 7, 11, 10, 12, 5, 11], [3, 6, 4, 3, 0, 4, 7, 2], [4, 3, 6, 5, 1, 6, 2, 3], [2, 11, 8, 8, 3, 1, 3, 11], [6, 11, 8, 6, 2, 7, 10, 9], [5, 11, 7, 10, 0, 11, 7, 12], [3, 3, 12, 5, 0, 11, 9, 12]]) V = [[1, 0, 0, 0, 0, 0, 0, 0], [0, 5, 5, 0, 9, 5, 1, 0], [0, 9, 11, 9, 10, 12, 0, 1]] assert gf_Qmatrix(f, 13, ZZ) == Q assert gf_Qbasis(Q, 13, ZZ) == V assert gf_berlekamp(f, 13, ZZ) == \ [[1, 3], [1, 8, 4, 12], [1, 2, 3, 4, 6]] def test_gf_ddf(): f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ) g = [([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)] assert gf_ddf_zassenhaus(f, 11, ZZ) == g assert gf_ddf_shoup(f, 11, ZZ) == g f = gf_from_dict({63: ZZ(1), 0: ZZ(1)}, 2, ZZ) g = [([1, 1], 1), ([1, 1, 1], 2), ([1, 1, 1, 1, 1, 1, 1], 3), ([1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1], 6)] assert gf_ddf_zassenhaus(f, 2, ZZ) == g assert gf_ddf_shoup(f, 2, ZZ) == g f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ) g = [([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)] assert gf_ddf_zassenhaus(f, 3, ZZ) == g assert gf_ddf_shoup(f, 3, ZZ) == g f = ZZ.map([1, 2, 5, 26, 677, 436, 791, 325, 456, 24, 577]) g = [([1, 701], 1), ([1, 110, 559, 532, 694, 151, 110, 70, 735, 122], 9)] assert gf_ddf_zassenhaus(f, 809, ZZ) == g assert gf_ddf_shoup(f, 809, ZZ) == g p = ZZ(nextprime(int((2**15 * pi).evalf()))) f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ) g = [([1, 22730, 68144], 2), ([1, 64876, 83977, 10787, 12561, 68608, 52650, 88001, 84356], 4), ([1, 15347, 95022, 84569, 94508, 92335], 5)] assert gf_ddf_zassenhaus(f, p, ZZ) == g assert gf_ddf_shoup(f, p, ZZ) == g def test_gf_edf(): f = ZZ.map([1, 1, 0, 1, 2]) g = ZZ.map([[1, 0, 1], [1, 1, 2]]) assert gf_edf_zassenhaus(f, 2, 3, ZZ) == g assert gf_edf_shoup(f, 2, 3, ZZ) == g def test_gf_factor(): assert gf_factor([], 11, ZZ) == (0, []) assert gf_factor([1], 11, ZZ) == (1, []) assert gf_factor([1, 1], 11, ZZ) == (1, [([1, 1], 1)]) assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf([], 11, ZZ) == (0, []) assert gf_factor_sqf([1], 11, ZZ) == (1, []) assert gf_factor_sqf([1, 1], 11, ZZ) == (1, [[1, 1]]) config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(ZZ.map([]), 11, ZZ) == (0, []) assert gf_factor_sqf(ZZ.map([1]), 11, ZZ) == (1, []) assert gf_factor_sqf(ZZ.map([1, 1]), 11, ZZ) == (1, [[1, 1]]) f, p = ZZ.map([1, 0, 0, 1, 0]), 2 g = (1, [([1, 0], 1), ([1, 1], 1), ([1, 1, 1], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 0], [1, 1], [1, 1, 1]]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g f, p = gf_from_int_poly([1, -3, 1, -3, -1, -3, 1], 11), 11 g = (1, [([1, 1], 1), ([1, 5, 3], 1), ([1, 2, 3, 4], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = [1, 5, 8, 4], 11 g = (1, [([1, 1], 1), ([1, 2], 2)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = [1, 1, 10, 1, 0, 10, 10, 10, 0, 0], 11 g = (1, [([1, 0], 2), ([1, 9, 5], 1), ([1, 3, 0, 8, 5, 2], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({32: 1, 0: 1}, 11, ZZ), 11 g = (1, [([1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 10], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({32: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11 g = (8, [([1, 3], 1), ([1, 8], 1), ([1, 0, 9], 1), ([1, 2, 2], 1), ([1, 9, 2], 1), ([1, 0, 5, 0, 7], 1), ([1, 0, 6, 0, 7], 1), ([1, 0, 0, 0, 1, 0, 0, 0, 6], 1), ([1, 0, 0, 0, 10, 0, 0, 0, 6], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g f, p = gf_from_dict({63: ZZ(8), 0: ZZ(5)}, 11, ZZ), 11 g = (8, [([1, 7], 1), ([1, 4, 5], 1), ([1, 6, 8, 2], 1), ([1, 9, 9, 2], 1), ([1, 0, 0, 9, 0, 0, 4], 1), ([1, 2, 0, 8, 4, 6, 4], 1), ([1, 2, 3, 8, 0, 6, 4], 1), ([1, 2, 6, 0, 8, 4, 4], 1), ([1, 3, 3, 1, 6, 8, 4], 1), ([1, 5, 6, 0, 8, 6, 4], 1), ([1, 6, 2, 7, 9, 8, 4], 1), ([1, 10, 4, 7, 10, 7, 4], 1), ([1, 10, 10, 1, 4, 9, 4], 1)]) config.setup('GF_FACTOR_METHOD', 'berlekamp') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g # Gathen polynomials: x**n + x + 1 (mod p > 2**n * pi) p = ZZ(nextprime(int((2**15 * pi).evalf()))) f = gf_from_dict({15: 1, 1: 1, 0: 1}, p, ZZ) assert gf_sqf_p(f, p, ZZ) is True g = (1, [([1, 22730, 68144], 1), ([1, 81553, 77449, 86810, 4724], 1), ([1, 86276, 56779, 14859, 31575], 1), ([1, 15347, 95022, 84569, 94508, 92335], 1)]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 22730, 68144], [1, 81553, 77449, 86810, 4724], [1, 86276, 56779, 14859, 31575], [1, 15347, 95022, 84569, 94508, 92335]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g # Shoup polynomials: f = a_0 x**n + a_1 x**(n-1) + ... + a_n # (mod p > 2**(n-2) * pi), where a_n = a_{n-1}**2 + 1, a_0 = 1 p = ZZ(nextprime(int((2**4 * pi).evalf()))) f = ZZ.map([1, 2, 5, 26, 41, 39, 38]) assert gf_sqf_p(f, p, ZZ) is True g = (1, [([1, 44, 26], 1), ([1, 11, 25, 18, 30], 1)]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor(f, p, ZZ) == g g = (1, [[1, 44, 26], [1, 11, 25, 18, 30]]) config.setup('GF_FACTOR_METHOD', 'zassenhaus') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'shoup') assert gf_factor_sqf(f, p, ZZ) == g config.setup('GF_FACTOR_METHOD', 'other') raises(KeyError, lambda: gf_factor([1, 1], 11, ZZ)) config.setup('GF_FACTOR_METHOD') def test_gf_csolve(): assert gf_value([1, 7, 2, 4], 11) == 2204 assert linear_congruence(4, 3, 5) == [2] assert linear_congruence(0, 3, 5) == [] assert linear_congruence(6, 1, 4) == [] assert linear_congruence(0, 5, 5) == [0, 1, 2, 3, 4] assert linear_congruence(3, 12, 15) == [4, 9, 14] assert linear_congruence(6, 0, 18) == [0, 3, 6, 9, 12, 15] # with power = 1 assert csolve_prime([1, 3, 2, 17], 7) == [3] assert csolve_prime([1, 3, 1, 5], 5) == [0, 1] assert csolve_prime([3, 6, 9, 3], 3) == [0, 1, 2] # with power > 1 assert csolve_prime( [1, 1, 223], 3, 4) == [4, 13, 22, 31, 40, 49, 58, 67, 76] assert csolve_prime([3, 5, 2, 25], 5, 3) == [16, 50, 99] assert csolve_prime([3, 2, 2, 49], 7, 3) == [147, 190, 234] assert gf_csolve([1, 1, 7], 189) == [13, 49, 76, 112, 139, 175] assert gf_csolve([1, 3, 4, 1, 30], 60) == [10, 30] assert gf_csolve([1, 1, 7], 15) == []
55f12842792309aa534625a5871edbb9c28e5b0924b550a688f891968152cb65
"""Tests for functions for generating interesting polynomials. """ from sympy import Poly, ZZ, symbols, sqrt, prime, Add, S from sympy.utilities.iterables import permute_signs from sympy.utilities.pytest import raises from sympy.polys.specialpolys import ( swinnerton_dyer_poly, cyclotomic_poly, symmetric_poly, random_poly, interpolating_poly, fateman_poly_F_1, dmp_fateman_poly_F_1, fateman_poly_F_2, dmp_fateman_poly_F_2, fateman_poly_F_3, dmp_fateman_poly_F_3, ) from sympy.abc import x, y, z def test_swinnerton_dyer_poly(): raises(ValueError, lambda: swinnerton_dyer_poly(0, x)) assert swinnerton_dyer_poly(1, x, polys=True) == Poly(x**2 - 2) assert swinnerton_dyer_poly(1, x) == x**2 - 2 assert swinnerton_dyer_poly(2, x) == x**4 - 10*x**2 + 1 assert swinnerton_dyer_poly( 3, x) == x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576 # we only need to check that the polys arg works but # we may as well test that the roots are correct p = [sqrt(prime(i)) for i in range(1, 5)] assert str([i.n(3) for i in swinnerton_dyer_poly(4, polys=True).all_roots()] ) == str(sorted([Add(*i).n(3) for i in permute_signs(p)])) def test_cyclotomic_poly(): raises(ValueError, lambda: cyclotomic_poly(0, x)) assert cyclotomic_poly(1, x, polys=True) == Poly(x - 1) assert cyclotomic_poly(1, x) == x - 1 assert cyclotomic_poly(2, x) == x + 1 assert cyclotomic_poly(3, x) == x**2 + x + 1 assert cyclotomic_poly(4, x) == x**2 + 1 assert cyclotomic_poly(5, x) == x**4 + x**3 + x**2 + x + 1 assert cyclotomic_poly(6, x) == x**2 - x + 1 def test_symmetric_poly(): raises(ValueError, lambda: symmetric_poly(-1, x, y, z)) raises(ValueError, lambda: symmetric_poly(5, x, y, z)) assert symmetric_poly(1, x, y, z, polys=True) == Poly(x + y + z) assert symmetric_poly(1, (x, y, z), polys=True) == Poly(x + y + z) assert symmetric_poly(0, x, y, z) == 1 assert symmetric_poly(1, x, y, z) == x + y + z assert symmetric_poly(2, x, y, z) == x*y + x*z + y*z assert symmetric_poly(3, x, y, z) == x*y*z def test_random_poly(): poly = random_poly(x, 10, -100, 100, polys=False) assert Poly(poly).degree() == 10 assert all(-100 <= coeff <= 100 for coeff in Poly(poly).coeffs()) is True poly = random_poly(x, 10, -100, 100, polys=True) assert poly.degree() == 10 assert all(-100 <= coeff <= 100 for coeff in poly.coeffs()) is True def test_interpolating_poly(): x0, x1, x2, x3, y0, y1, y2, y3 = symbols('x:4, y:4') assert interpolating_poly(0, x) == 0 assert interpolating_poly(1, x) == y0 assert interpolating_poly(2, x) == \ y0*(x - x1)/(x0 - x1) + y1*(x - x0)/(x1 - x0) assert interpolating_poly(3, x) == \ y0*(x - x1)*(x - x2)/((x0 - x1)*(x0 - x2)) + \ y1*(x - x0)*(x - x2)/((x1 - x0)*(x1 - x2)) + \ y2*(x - x0)*(x - x1)/((x2 - x0)*(x2 - x1)) assert interpolating_poly(4, x) == \ y0*(x - x1)*(x - x2)*(x - x3)/((x0 - x1)*(x0 - x2)*(x0 - x3)) + \ y1*(x - x0)*(x - x2)*(x - x3)/((x1 - x0)*(x1 - x2)*(x1 - x3)) + \ y2*(x - x0)*(x - x1)*(x - x3)/((x2 - x0)*(x2 - x1)*(x2 - x3)) + \ y3*(x - x0)*(x - x1)*(x - x2)/((x3 - x0)*(x3 - x1)*(x3 - x2)) raises(ValueError, lambda: interpolating_poly(2, x, (x, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, x, (x + y, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, x + y, (x, 2), (1, 3))) raises(ValueError, lambda: interpolating_poly(2, 3, (4, 5), (6, 7))) raises(ValueError, lambda: interpolating_poly(2, 3, (4, 5), (6, 7, 8))) assert interpolating_poly(0, x, (1, 2), (3, 4)) == 0 assert interpolating_poly(1, x, (1, 2), (3, 4)) == 3 assert interpolating_poly(2, x, (1, 2), (3, 4)) == x + 2 def test_fateman_poly_F_1(): f, g, h = fateman_poly_F_1(1) F, G, H = dmp_fateman_poly_F_1(1, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_1(3) F, G, H = dmp_fateman_poly_F_1(3, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H] def test_fateman_poly_F_2(): f, g, h = fateman_poly_F_2(1) F, G, H = dmp_fateman_poly_F_2(1, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_2(3) F, G, H = dmp_fateman_poly_F_2(3, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H] def test_fateman_poly_F_3(): f, g, h = fateman_poly_F_3(1) F, G, H = dmp_fateman_poly_F_3(1, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H] f, g, h = fateman_poly_F_3(3) F, G, H = dmp_fateman_poly_F_3(3, ZZ) assert [ t.rep.rep for t in [f, g, h] ] == [F, G, H]
0f7d46929f01dee66278bf03839d2337cd8dd22cf8421ac8cd2246b7f5349014
"""Tests for Groebner bases. """ from sympy.polys.groebnertools import ( groebner, sig, sig_key, lbp, lbp_key, critical_pair, cp_key, is_rewritable_or_comparable, Sign, Polyn, Num, s_poly, f5_reduce, groebner_lcm, groebner_gcd, is_groebner, is_reduced ) from sympy.polys.fglmtools import _representing_matrices from sympy.polys.orderings import lex, grlex from sympy.polys.rings import ring, xring from sympy.polys.domains import ZZ, QQ from sympy.utilities.pytest import slow from sympy.polys import polyconfig as config from sympy.core.compatibility import range def _do_test_groebner(): R, x,y = ring("x,y", QQ, lex) f = x**2 + 2*x*y**2 g = x*y + 2*y**3 - 1 assert groebner([f, g], R) == [x, y**3 - QQ(1,2)] R, y,x = ring("y,x", QQ, lex) f = 2*x**2*y + y**2 g = 2*x**3 + x*y - 1 assert groebner([f, g], R) == [y, x**3 - QQ(1,2)] R, x,y,z = ring("x,y,z", QQ, lex) f = x - z**2 g = y - z**3 assert groebner([f, g], R) == [f, g] R, x,y = ring("x,y", QQ, grlex) f = x**3 - 2*x*y g = x**2*y + x - 2*y**2 assert groebner([f, g], R) == [x**2, x*y, -QQ(1,2)*x + y**2] R, x,y,z = ring("x,y,z", QQ, lex) f = -x**2 + y g = -x**3 + z assert groebner([f, g], R) == [x**2 - y, x*y - z, x*z - y**2, y**3 - z**2] R, x,y,z = ring("x,y,z", QQ, grlex) f = -x**2 + y g = -x**3 + z assert groebner([f, g], R) == [y**3 - z**2, x**2 - y, x*y - z, x*z - y**2] R, x,y,z = ring("x,y,z", QQ, lex) f = -x**2 + z g = -x**3 + y assert groebner([f, g], R) == [x**2 - z, x*y - z**2, x*z - y, y**2 - z**3] R, x,y,z = ring("x,y,z", QQ, grlex) f = -x**2 + z g = -x**3 + y assert groebner([f, g], R) == [-y**2 + z**3, x**2 - z, x*y - z**2, x*z - y] R, x,y,z = ring("x,y,z", QQ, lex) f = x - y**2 g = -y**3 + z assert groebner([f, g], R) == [x - y**2, y**3 - z] R, x,y,z = ring("x,y,z", QQ, grlex) f = x - y**2 g = -y**3 + z assert groebner([f, g], R) == [x**2 - y*z, x*y - z, -x + y**2] R, x,y,z = ring("x,y,z", QQ, lex) f = x - z**2 g = y - z**3 assert groebner([f, g], R) == [x - z**2, y - z**3] R, x,y,z = ring("x,y,z", QQ, grlex) f = x - z**2 g = y - z**3 assert groebner([f, g], R) == [x**2 - y*z, x*z - y, -x + z**2] R, x,y,z = ring("x,y,z", QQ, lex) f = -y**2 + z g = x - y**3 assert groebner([f, g], R) == [x - y*z, y**2 - z] R, x,y,z = ring("x,y,z", QQ, grlex) f = -y**2 + z g = x - y**3 assert groebner([f, g], R) == [-x**2 + z**3, x*y - z**2, y**2 - z, -x + y*z] R, x,y,z = ring("x,y,z", QQ, lex) f = y - z**2 g = x - z**3 assert groebner([f, g], R) == [x - z**3, y - z**2] R, x,y,z = ring("x,y,z", QQ, grlex) f = y - z**2 g = x - z**3 assert groebner([f, g], R) == [-x**2 + y**3, x*z - y**2, -x + y*z, -y + z**2] R, x,y,z = ring("x,y,z", QQ, lex) f = 4*x**2*y**2 + 4*x*y + 1 g = x**2 + y**2 - 1 assert groebner([f, g], R) == [ x - 4*y**7 + 8*y**5 - 7*y**3 + 3*y, y**8 - 2*y**6 + QQ(3,2)*y**4 - QQ(1,2)*y**2 + QQ(1,16), ] def test_groebner_buchberger(): with config.using(groebner='buchberger'): _do_test_groebner() def test_groebner_f5b(): with config.using(groebner='f5b'): _do_test_groebner() def _do_test_benchmark_minpoly(): R, x,y,z = ring("x,y,z", QQ, lex) F = [x**3 + x + 1, y**2 + y + 1, (x + y) * z - (x**2 + y)] G = [x + QQ(155,2067)*z**5 - QQ(355,689)*z**4 + QQ(6062,2067)*z**3 - QQ(3687,689)*z**2 + QQ(6878,2067)*z - QQ(25,53), y + QQ(4,53)*z**5 - QQ(91,159)*z**4 + QQ(523,159)*z**3 - QQ(387,53)*z**2 + QQ(1043,159)*z - QQ(308,159), z**6 - 7*z**5 + 41*z**4 - 82*z**3 + 89*z**2 - 46*z + 13] assert groebner(F, R) == G def test_benchmark_minpoly_buchberger(): with config.using(groebner='buchberger'): _do_test_benchmark_minpoly() def test_benchmark_minpoly_f5b(): with config.using(groebner='f5b'): _do_test_benchmark_minpoly() def test_benchmark_coloring(): V = range(1, 12 + 1) E = [(1, 2), (2, 3), (1, 4), (1, 6), (1, 12), (2, 5), (2, 7), (3, 8), (3, 10), (4, 11), (4, 9), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (5, 12), (5, 9), (6, 10), (7, 11), (8, 12), (3, 4)] R, V = xring([ "x%d" % v for v in V ], QQ, lex) E = [(V[i - 1], V[j - 1]) for i, j in E] x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 = V I3 = [x**3 - 1 for x in V] Ig = [x**2 + x*y + y**2 for x, y in E] I = I3 + Ig assert groebner(I[:-1], R) == [ x1 + x11 + x12, x2 - x11, x3 - x12, x4 - x12, x5 + x11 + x12, x6 - x11, x7 - x12, x8 + x11 + x12, x9 - x11, x10 + x11 + x12, x11**2 + x11*x12 + x12**2, x12**3 - 1, ] assert groebner(I, R) == [1] def _do_test_benchmark_katsura_3(): R, x0,x1,x2 = ring("x:3", ZZ, lex) I = [x0 + 2*x1 + 2*x2 - 1, x0**2 + 2*x1**2 + 2*x2**2 - x0, 2*x0*x1 + 2*x1*x2 - x1] assert groebner(I, R) == [ -7 + 7*x0 + 8*x2 + 158*x2**2 - 420*x2**3, 7*x1 + 3*x2 - 79*x2**2 + 210*x2**3, x2 + x2**2 - 40*x2**3 + 84*x2**4, ] R, x0,x1,x2 = ring("x:3", ZZ, grlex) I = [ i.set_ring(R) for i in I ] assert groebner(I, R) == [ 7*x1 + 3*x2 - 79*x2**2 + 210*x2**3, -x1 + x2 - 3*x2**2 + 5*x1**2, -x1 - 4*x2 + 10*x1*x2 + 12*x2**2, -1 + x0 + 2*x1 + 2*x2, ] def test_benchmark_katsura3_buchberger(): with config.using(groebner='buchberger'): _do_test_benchmark_katsura_3() def test_benchmark_katsura3_f5b(): with config.using(groebner='f5b'): _do_test_benchmark_katsura_3() def _do_test_benchmark_katsura_4(): R, x0,x1,x2,x3 = ring("x:4", ZZ, lex) I = [x0 + 2*x1 + 2*x2 + 2*x3 - 1, x0**2 + 2*x1**2 + 2*x2**2 + 2*x3**2 - x0, 2*x0*x1 + 2*x1*x2 + 2*x2*x3 - x1, x1**2 + 2*x0*x2 + 2*x1*x3 - x2] assert groebner(I, R) == [ 5913075*x0 - 159690237696*x3**7 + 31246269696*x3**6 + 27439610544*x3**5 - 6475723368*x3**4 - 838935856*x3**3 + 275119624*x3**2 + 4884038*x3 - 5913075, 1971025*x1 - 97197721632*x3**7 + 73975630752*x3**6 - 12121915032*x3**5 - 2760941496*x3**4 + 814792828*x3**3 - 1678512*x3**2 - 9158924*x3, 5913075*x2 + 371438283744*x3**7 - 237550027104*x3**6 + 22645939824*x3**5 + 11520686172*x3**4 - 2024910556*x3**3 - 132524276*x3**2 + 30947828*x3, 128304*x3**8 - 93312*x3**7 + 15552*x3**6 + 3144*x3**5 - 1120*x3**4 + 36*x3**3 + 15*x3**2 - x3, ] R, x0,x1,x2,x3 = ring("x:4", ZZ, grlex) I = [ i.set_ring(R) for i in I ] assert groebner(I, R) == [ 393*x1 - 4662*x2**2 + 4462*x2*x3 - 59*x2 + 224532*x3**4 - 91224*x3**3 - 678*x3**2 + 2046*x3, -x1 + 196*x2**3 - 21*x2**2 + 60*x2*x3 - 18*x2 - 168*x3**3 + 83*x3**2 - 9*x3, -6*x1 + 1134*x2**2*x3 - 189*x2**2 - 466*x2*x3 + 32*x2 - 630*x3**3 + 57*x3**2 + 51*x3, 33*x1 + 63*x2**2 + 2268*x2*x3**2 - 188*x2*x3 + 34*x2 + 2520*x3**3 - 849*x3**2 + 3*x3, 7*x1**2 - x1 - 7*x2**2 - 24*x2*x3 + 3*x2 - 15*x3**2 + 5*x3, 14*x1*x2 - x1 + 14*x2**2 + 18*x2*x3 - 4*x2 + 6*x3**2 - 2*x3, 14*x1*x3 - x1 + 7*x2**2 + 32*x2*x3 - 4*x2 + 27*x3**2 - 9*x3, x0 + 2*x1 + 2*x2 + 2*x3 - 1, ] def test_benchmark_kastura_4_buchberger(): with config.using(groebner='buchberger'): _do_test_benchmark_katsura_4() def test_benchmark_kastura_4_f5b(): with config.using(groebner='f5b'): _do_test_benchmark_katsura_4() def _do_test_benchmark_czichowski(): R, x,t = ring("x,t", ZZ, lex) I = [9*x**8 + 36*x**7 - 32*x**6 - 252*x**5 - 78*x**4 + 468*x**3 + 288*x**2 - 108*x + 9, (-72 - 72*t)*x**7 + (-256 - 252*t)*x**6 + (192 + 192*t)*x**5 + (1280 + 1260*t)*x**4 + (312 + 312*t)*x**3 + (-404*t)*x**2 + (-576 - 576*t)*x + 96 + 108*t] assert groebner(I, R) == [ 3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*x - 160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*t**7 - 1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*t**6 - 5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*t**5 - 10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*t**4 - 13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*t**3 - 9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*t**2 - 3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*t - 632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000, 610733380717522355121*t**8 + 6243748742141230639968*t**7 + 27761407182086143225024*t**6 + 70066148869420956398592*t**5 + 109701225644313784229376*t**4 + 109009005495588442152960*t**3 + 67072101084384786432000*t**2 + 23339979742629593088000*t + 3513592776846090240000, ] R, x,t = ring("x,t", ZZ, grlex) I = [ i.set_ring(R) for i in I ] assert groebner(I, R) == [ 16996618586000601590732959134095643086442*t**3*x - 32936701459297092865176560282688198064839*t**3 + 78592411049800639484139414821529525782364*t**2*x - 120753953358671750165454009478961405619916*t**2 + 120988399875140799712152158915653654637280*t*x - 144576390266626470824138354942076045758736*t + 60017634054270480831259316163620768960*x**2 + 61976058033571109604821862786675242894400*x - 56266268491293858791834120380427754600960, 576689018321912327136790519059646508441672750656050290242749*t**4 + 2326673103677477425562248201573604572527893938459296513327336*t**3 + 110743790416688497407826310048520299245819959064297990236000*t**2*x + 3308669114229100853338245486174247752683277925010505284338016*t**2 + 323150205645687941261103426627818874426097912639158572428800*t*x + 1914335199925152083917206349978534224695445819017286960055680*t + 861662882561803377986838989464278045397192862768588480000*x**2 + 235296483281783440197069672204341465480107019878814196672000*x + 361850798943225141738895123621685122544503614946436727532800, -117584925286448670474763406733005510014188341867*t**3 + 68566565876066068463853874568722190223721653044*t**2*x - 435970731348366266878180788833437896139920683940*t**2 + 196297602447033751918195568051376792491869233408*t*x - 525011527660010557871349062870980202067479780112*t + 517905853447200553360289634770487684447317120*x**3 + 569119014870778921949288951688799397569321920*x**2 + 138877356748142786670127389526667463202210102080*x - 205109210539096046121625447192779783475018619520, -3725142681462373002731339445216700112264527*t**3 + 583711207282060457652784180668273817487940*t**2*x - 12381382393074485225164741437227437062814908*t**2 + 151081054097783125250959636747516827435040*t*x**2 + 1814103857455163948531448580501928933873280*t*x - 13353115629395094645843682074271212731433648*t + 236415091385250007660606958022544983766080*x**2 + 1390443278862804663728298060085399578417600*x - 4716885828494075789338754454248931750698880, ] # NOTE: This is very slow (> 2 minutes on 3.4 GHz) without GMPY @slow def test_benchmark_czichowski_buchberger(): with config.using(groebner='buchberger'): _do_test_benchmark_czichowski() def test_benchmark_czichowski_f5b(): with config.using(groebner='f5b'): _do_test_benchmark_czichowski() def _do_test_benchmark_cyclic_4(): R, a,b,c,d = ring("a,b,c,d", ZZ, lex) I = [a + b + c + d, a*b + a*d + b*c + b*d, a*b*c + a*b*d + a*c*d + b*c*d, a*b*c*d - 1] assert groebner(I, R) == [ 4*a + 3*d**9 - 4*d**5 - 3*d, 4*b + 4*c - 3*d**9 + 4*d**5 + 7*d, 4*c**2 + 3*d**10 - 4*d**6 - 3*d**2, 4*c*d**4 + 4*c - d**9 + 4*d**5 + 5*d, d**12 - d**8 - d**4 + 1 ] R, a,b,c,d = ring("a,b,c,d", ZZ, grlex) I = [ i.set_ring(R) for i in I ] assert groebner(I, R) == [ 3*b*c - c**2 + d**6 - 3*d**2, -b + 3*c**2*d**3 - c - d**5 - 4*d, -b + 3*c*d**4 + 2*c + 2*d**5 + 2*d, c**4 + 2*c**2*d**2 - d**4 - 2, c**3*d + c*d**3 + d**4 + 1, b*c**2 - c**3 - c**2*d - 2*c*d**2 - d**3, b**2 - c**2, b*d + c**2 + c*d + d**2, a + b + c + d ] def test_benchmark_cyclic_4_buchberger(): with config.using(groebner='buchberger'): _do_test_benchmark_cyclic_4() def test_benchmark_cyclic_4_f5b(): with config.using(groebner='f5b'): _do_test_benchmark_cyclic_4() def test_sig_key(): s1 = sig((0,) * 3, 2) s2 = sig((1,) * 3, 4) s3 = sig((2,) * 3, 2) assert sig_key(s1, lex) > sig_key(s2, lex) assert sig_key(s2, lex) < sig_key(s3, lex) def test_lbp_key(): R, x,y,z,t = ring("x,y,z,t", ZZ, lex) p1 = lbp(sig((0,) * 4, 3), R.zero, 12) p2 = lbp(sig((0,) * 4, 4), R.zero, 13) p3 = lbp(sig((0,) * 4, 4), R.zero, 12) assert lbp_key(p1) > lbp_key(p2) assert lbp_key(p2) < lbp_key(p3) def test_critical_pair(): # from cyclic4 with grlex R, x,y,z,t = ring("x,y,z,t", QQ, grlex) p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4) q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2) p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5) q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13) assert critical_pair(p1, q1, R) == ( ((0, 0, 1, 2), 2), ((0, 0, 1, 2), QQ(-1, 1)), (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2), ((0, 1, 0, 0), 4), ((0, 1, 0, 0), QQ(1, 1)), (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4) ) assert critical_pair(p2, q2, R) == ( ((0, 0, 4, 2), 2), ((0, 0, 2, 0), QQ(1, 1)), (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13), ((0, 0, 0, 5), 3), ((0, 0, 0, 3), QQ(1, 1)), (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5) ) def test_cp_key(): # from cyclic4 with grlex R, x,y,z,t = ring("x,y,z,t", QQ, grlex) p1 = (((0, 0, 0, 0), 4), y*z*t**2 + z**2*t**2 - t**4 - 1, 4) q1 = (((0, 0, 0, 0), 2), -y**2 - y*t - z*t - t**2, 2) p2 = (((0, 0, 0, 2), 3), z**3*t**2 + z**2*t**3 - z - t, 5) q2 = (((0, 0, 2, 2), 2), y*z + z*t**5 + z*t + t**6, 13) cp1 = critical_pair(p1, q1, R) cp2 = critical_pair(p2, q2, R) assert cp_key(cp1, R) < cp_key(cp2, R) cp1 = critical_pair(p1, p2, R) cp2 = critical_pair(q1, q2, R) assert cp_key(cp1, R) < cp_key(cp2, R) def test_is_rewritable_or_comparable(): # from katsura4 with grlex R, x,y,z,t = ring("x,y,z,t", QQ, grlex) p = lbp(sig((0, 0, 2, 1), 2), R.zero, 2) B = [lbp(sig((0, 0, 0, 1), 2), QQ(2,45)*y**2 + QQ(1,5)*y*z + QQ(5,63)*y*t + z**2*t + QQ(4,45)*z**2 + QQ(76,35)*z*t**2 - QQ(32,105)*z*t + QQ(13,7)*t**3 - QQ(13,21)*t**2, 6)] # rewritable: assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True p = lbp(sig((0, 1, 1, 0), 2), R.zero, 7) B = [lbp(sig((0, 0, 0, 0), 3), QQ(10,3)*y*z + QQ(4,3)*y*t - QQ(1,3)*y + 4*z**2 + QQ(22,3)*z*t - QQ(4,3)*z + 4*t**2 - QQ(4,3)*t, 3)] # comparable: assert is_rewritable_or_comparable(Sign(p), Num(p), B) is True def test_f5_reduce(): # katsura3 with lex R, x,y,z = ring("x,y,z", QQ, lex) F = [(((0, 0, 0), 1), x + 2*y + 2*z - 1, 1), (((0, 0, 0), 2), 6*y**2 + 8*y*z - 2*y + 6*z**2 - 2*z, 2), (((0, 0, 0), 3), QQ(10,3)*y*z - QQ(1,3)*y + 4*z**2 - QQ(4,3)*z, 3), (((0, 0, 1), 2), y + 30*z**3 - QQ(79,7)*z**2 + QQ(3,7)*z, 4), (((0, 0, 2), 2), z**4 - QQ(10,21)*z**3 + QQ(1,84)*z**2 + QQ(1,84)*z, 5)] cp = critical_pair(F[0], F[1], R) s = s_poly(cp) assert f5_reduce(s, F) == (((0, 2, 0), 1), R.zero, 1) s = lbp(sig(Sign(s)[0], 100), Polyn(s), Num(s)) assert f5_reduce(s, F) == s def test_representing_matrices(): R, x,y = ring("x,y", QQ, grlex) basis = [(0, 0), (0, 1), (1, 0), (1, 1)] F = [x**2 - x - 3*y + 1, -2*x + y**2 + y - 1] assert _representing_matrices(basis, F, R) == [ [[QQ(0, 1), QQ(0, 1),-QQ(1, 1), QQ(3, 1)], [QQ(0, 1), QQ(0, 1), QQ(3, 1),-QQ(4, 1)], [QQ(1, 1), QQ(0, 1), QQ(1, 1), QQ(6, 1)], [QQ(0, 1), QQ(1, 1), QQ(0, 1), QQ(1, 1)]], [[QQ(0, 1), QQ(1, 1), QQ(0, 1),-QQ(2, 1)], [QQ(1, 1),-QQ(1, 1), QQ(0, 1), QQ(6, 1)], [QQ(0, 1), QQ(2, 1), QQ(0, 1), QQ(3, 1)], [QQ(0, 1), QQ(0, 1), QQ(1, 1),-QQ(1, 1)]]] def test_groebner_lcm(): R, x,y,z = ring("x,y,z", ZZ) assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2 assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2 R, x,y,z = ring("x,y,z", QQ) assert groebner_lcm(x**2 - y**2, x - y) == x**2 - y**2 assert groebner_lcm(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x**2 - 2*y**2 R, x,y = ring("x,y", ZZ) assert groebner_lcm(x**2*y, x*y**2) == x**2*y**2 f = 2*x*y**5 - 3*x*y**4 - 2*x*y**3 + 3*x*y**2 g = y**5 - 2*y**3 + y h = 2*x*y**7 - 3*x*y**6 - 4*x*y**5 + 6*x*y**4 + 2*x*y**3 - 3*x*y**2 assert groebner_lcm(f, g) == h f = x**3 - 3*x**2*y - 9*x*y**2 - 5*y**3 g = x**4 + 6*x**3*y + 12*x**2*y**2 + 10*x*y**3 + 3*y**4 h = x**5 + x**4*y - 18*x**3*y**2 - 50*x**2*y**3 - 47*x*y**4 - 15*y**5 assert groebner_lcm(f, g) == h def test_groebner_gcd(): R, x,y,z = ring("x,y,z", ZZ) assert groebner_gcd(x**2 - y**2, x - y) == x - y assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == 2*x - 2*y R, x,y,z = ring("x,y,z", QQ) assert groebner_gcd(x**2 - y**2, x - y) == x - y assert groebner_gcd(2*x**2 - 2*y**2, 2*x - 2*y) == x - y def test_is_groebner(): R, x,y = ring("x,y", QQ, grlex) valid_groebner = [x**2, x*y, -QQ(1,2)*x + y**2] invalid_groebner = [x**3, x*y, -QQ(1,2)*x + y**2] assert is_groebner(valid_groebner, R) is True assert is_groebner(invalid_groebner, R) is False def test_is_reduced(): R, x, y = ring("x,y", QQ, lex) f = x**2 + 2*x*y**2 g = x*y + 2*y**3 - 1 assert is_reduced([f, g], R) == False G = groebner([f, g], R) assert is_reduced(G, R) == True
86ea1e74d5888093b393b6f5ed8667e4c3d1b192ed7c6fa8e3f3bd5e3d75f424
"""Tests for algorithms for computing symbolic roots of polynomials. """ from sympy import (S, symbols, Symbol, Wild, Rational, sqrt, powsimp, sin, cos, pi, I, Interval, re, im, exp, ZZ, Piecewise, acos, root, conjugate) from sympy.polys import Poly, cyclotomic_poly, intervals, nroots, rootof from sympy.polys.polyroots import (root_factors, roots_linear, roots_quadratic, roots_cubic, roots_quartic, roots_cyclotomic, roots_binomial, preprocess_roots, roots) from sympy.polys.orthopolys import legendre_poly from sympy.polys.polyutils import _nsort from sympy.utilities.iterables import cartes from sympy.utilities.pytest import raises, slow from sympy.utilities.randtest import verify_numerically from sympy.core.compatibility import range import mpmath a, b, c, d, e, q, t, x, y, z = symbols('a,b,c,d,e,q,t,x,y,z') def _check(roots): # this is the desired invariant for roots returned # by all_roots. It is trivially true for linear # polynomials. nreal = sum([1 if i.is_real else 0 for i in roots]) assert list(sorted(roots[:nreal])) == list(roots[:nreal]) for ix in range(nreal, len(roots), 2): if not ( roots[ix + 1] == roots[ix] or roots[ix + 1] == conjugate(roots[ix])): return False return True def test_roots_linear(): assert roots_linear(Poly(2*x + 1, x)) == [Rational(-1, 2)] def test_roots_quadratic(): assert roots_quadratic(Poly(2*x**2, x)) == [0, 0] assert roots_quadratic(Poly(2*x**2 + 3*x, x)) == [Rational(-3, 2), 0] assert roots_quadratic(Poly(2*x**2 + 3, x)) == [-I*sqrt(6)/2, I*sqrt(6)/2] assert roots_quadratic(Poly(2*x**2 + 4*x + 3, x)) == [-1 - I*sqrt(2)/2, -1 + I*sqrt(2)/2] _check(Poly(2*x**2 + 4*x + 3, x).all_roots()) f = x**2 + (2*a*e + 2*c*e)/(a - c)*x + (d - b + a*e**2 - c*e**2)/(a - c) assert roots_quadratic(Poly(f, x)) == \ [-e*(a + c)/(a - c) - sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2))/(a - c), -e*(a + c)/(a - c) + sqrt((a*b + c*d - a*d - b*c + 4*a*c*e**2))/(a - c)] # check for simplification f = Poly(y*x**2 - 2*x - 2*y, x) assert roots_quadratic(f) == \ [-sqrt(2*y**2 + 1)/y + 1/y, sqrt(2*y**2 + 1)/y + 1/y] f = Poly(x**2 + (-y**2 - 2)*x + y**2 + 1, x) assert roots_quadratic(f) == \ [1,y**2 + 1] f = Poly(sqrt(2)*x**2 - 1, x) r = roots_quadratic(f) assert r == _nsort(r) # issue 8255 f = Poly(-24*x**2 - 180*x + 264) assert [w.n(2) for w in f.all_roots(radicals=True)] == \ [w.n(2) for w in f.all_roots(radicals=False)] for _a, _b, _c in cartes((-2, 2), (-2, 2), (0, -1)): f = Poly(_a*x**2 + _b*x + _c) roots = roots_quadratic(f) assert roots == _nsort(roots) def test_issue_8438(): p = Poly([1, y, -2, -3], x).as_expr() roots = roots_cubic(Poly(p, x), x) z = Rational(-3, 2) - I*Rational(7, 2) # this will fail in code given in commit msg post = [r.subs(y, z) for r in roots] assert set(post) == \ set(roots_cubic(Poly(p.subs(y, z), x))) # /!\ if p is not made an expression, this is *very* slow assert all(p.subs({y: z, x: i}).n(2, chop=True) == 0 for i in post) def test_issue_8285(): roots = (Poly(4*x**8 - 1, x)*Poly(x**2 + 1)).all_roots() assert _check(roots) f = Poly(x**4 + 5*x**2 + 6, x) ro = [rootof(f, i) for i in range(4)] roots = Poly(x**4 + 5*x**2 + 6, x).all_roots() assert roots == ro assert _check(roots) # more than 2 complex roots from which to identify the # imaginary ones roots = Poly(2*x**8 - 1).all_roots() assert _check(roots) assert len(Poly(2*x**10 - 1).all_roots()) == 10 # doesn't fail def test_issue_8289(): roots = (Poly(x**2 + 2)*Poly(x**4 + 2)).all_roots() assert _check(roots) roots = Poly(x**6 + 3*x**3 + 2, x).all_roots() assert _check(roots) roots = Poly(x**6 - x + 1).all_roots() assert _check(roots) # all imaginary roots with multiplicity of 2 roots = Poly(x**4 + 4*x**2 + 4, x).all_roots() assert _check(roots) def test_issue_14291(): assert Poly(((x - 1)**2 + 1)*((x - 1)**2 + 2)*(x - 1) ).all_roots() == [1, 1 - I, 1 + I, 1 - sqrt(2)*I, 1 + sqrt(2)*I] p = x**4 + 10*x**2 + 1 ans = [rootof(p, i) for i in range(4)] assert Poly(p).all_roots() == ans _check(ans) def test_issue_13340(): eq = Poly(y**3 + exp(x)*y + x, y, domain='EX') roots_d = roots(eq) assert len(roots_d) == 3 def test_issue_14522(): eq = Poly(x**4 + x**3*(16 + 32*I) + x**2*(-285 + 386*I) + x*(-2824 - 448*I) - 2058 - 6053*I, x) roots_eq = roots(eq) assert all(eq(r) == 0 for r in roots_eq) def test_issue_15076(): sol = roots_quartic(Poly(t**4 - 6*t**2 + t/x - 3, t)) assert sol[0].has(x) def test_issue_16589(): eq = Poly(x**4 - 8*sqrt(2)*x**3 + 4*x**3 - 64*sqrt(2)*x**2 + 1024*x, x) roots_eq = roots(eq) assert 0 in roots_eq def test_roots_cubic(): assert roots_cubic(Poly(2*x**3, x)) == [0, 0, 0] assert roots_cubic(Poly(x**3 - 3*x**2 + 3*x - 1, x)) == [1, 1, 1] assert roots_cubic(Poly(x**3 + 1, x)) == \ [-1, S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cubic(Poly(2*x**3 - 3*x**2 - 3*x - 1, x))[0] == \ S.Half + 3**Rational(1, 3)/2 + 3**Rational(2, 3)/2 eq = -x**3 + 2*x**2 + 3*x - 2 assert roots(eq, trig=True, multiple=True) == \ roots_cubic(Poly(eq, x), trig=True) == [ Rational(2, 3) + 2*sqrt(13)*cos(acos(8*sqrt(13)/169)/3)/3, -2*sqrt(13)*sin(-acos(8*sqrt(13)/169)/3 + pi/6)/3 + Rational(2, 3), -2*sqrt(13)*cos(-acos(8*sqrt(13)/169)/3 + pi/3)/3 + Rational(2, 3), ] def test_roots_quartic(): assert roots_quartic(Poly(x**4, x)) == [0, 0, 0, 0] assert roots_quartic(Poly(x**4 + x**3, x)) in [ [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1] ] assert roots_quartic(Poly(x**4 - x**3, x)) in [ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ] lhs = roots_quartic(Poly(x**4 + x, x)) rhs = [S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2, S.Zero, -S.One] assert sorted(lhs, key=hash) == sorted(rhs, key=hash) # test of all branches of roots quartic for i, (a, b, c, d) in enumerate([(1, 2, 3, 0), (3, -7, -9, 9), (1, 2, 3, 4), (1, 2, 3, 4), (-7, -3, 3, -6), (-3, 5, -6, -4), (6, -5, -10, -3)]): if i == 2: c = -a*(a**2/S(8) - b/S(2)) elif i == 3: d = a*(a*(a**2*Rational(3, 256) - b/S(16)) + c/S(4)) eq = x**4 + a*x**3 + b*x**2 + c*x + d ans = roots_quartic(Poly(eq, x)) assert all(eq.subs(x, ai).n(chop=True) == 0 for ai in ans) # not all symbolic quartics are unresolvable eq = Poly(q*x + q/4 + x**4 + x**3 + 2*x**2 - Rational(1, 3), x) sol = roots_quartic(eq) assert all(verify_numerically(eq.subs(x, i), 0) for i in sol) z = symbols('z', negative=True) eq = x**4 + 2*x**3 + 3*x**2 + x*(z + 11) + 5 zans = roots_quartic(Poly(eq, x)) assert all([verify_numerically(eq.subs(((x, i), (z, -1))), 0) for i in zans]) # but some are (see also issue 4989) # it's ok if the solution is not Piecewise, but the tests below should pass eq = Poly(y*x**4 + x**3 - x + z, x) ans = roots_quartic(eq) assert all(type(i) == Piecewise for i in ans) reps = ( dict(y=Rational(-1, 3), z=Rational(-1, 4)), # 4 real dict(y=Rational(-1, 3), z=Rational(-1, 2)), # 2 real dict(y=Rational(-1, 3), z=-2)) # 0 real for rep in reps: sol = roots_quartic(Poly(eq.subs(rep), x)) assert all([verify_numerically(w.subs(rep) - s, 0) for w, s in zip(ans, sol)]) def test_roots_cyclotomic(): assert roots_cyclotomic(cyclotomic_poly(1, x, polys=True)) == [1] assert roots_cyclotomic(cyclotomic_poly(2, x, polys=True)) == [-1] assert roots_cyclotomic(cyclotomic_poly( 3, x, polys=True)) == [Rational(-1, 2) - I*sqrt(3)/2, Rational(-1, 2) + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True)) == [-I, I] assert roots_cyclotomic(cyclotomic_poly( 6, x, polys=True)) == [S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2] assert roots_cyclotomic(cyclotomic_poly(7, x, polys=True)) == [ -cos(pi/7) - I*sin(pi/7), -cos(pi/7) + I*sin(pi/7), -cos(pi*Rational(3, 7)) - I*sin(pi*Rational(3, 7)), -cos(pi*Rational(3, 7)) + I*sin(pi*Rational(3, 7)), cos(pi*Rational(2, 7)) - I*sin(pi*Rational(2, 7)), cos(pi*Rational(2, 7)) + I*sin(pi*Rational(2, 7)), ] assert roots_cyclotomic(cyclotomic_poly(8, x, polys=True)) == [ -sqrt(2)/2 - I*sqrt(2)/2, -sqrt(2)/2 + I*sqrt(2)/2, sqrt(2)/2 - I*sqrt(2)/2, sqrt(2)/2 + I*sqrt(2)/2, ] assert roots_cyclotomic(cyclotomic_poly(12, x, polys=True)) == [ -sqrt(3)/2 - I/2, -sqrt(3)/2 + I/2, sqrt(3)/2 - I/2, sqrt(3)/2 + I/2, ] assert roots_cyclotomic( cyclotomic_poly(1, x, polys=True), factor=True) == [1] assert roots_cyclotomic( cyclotomic_poly(2, x, polys=True), factor=True) == [-1] assert roots_cyclotomic(cyclotomic_poly(3, x, polys=True), factor=True) == \ [-root(-1, 3), -1 + root(-1, 3)] assert roots_cyclotomic(cyclotomic_poly(4, x, polys=True), factor=True) == \ [-I, I] assert roots_cyclotomic(cyclotomic_poly(5, x, polys=True), factor=True) == \ [-root(-1, 5), -root(-1, 5)**3, root(-1, 5)**2, -1 - root(-1, 5)**2 + root(-1, 5) + root(-1, 5)**3] assert roots_cyclotomic(cyclotomic_poly(6, x, polys=True), factor=True) == \ [1 - root(-1, 3), root(-1, 3)] def test_roots_binomial(): assert roots_binomial(Poly(5*x, x)) == [0] assert roots_binomial(Poly(5*x**4, x)) == [0, 0, 0, 0] assert roots_binomial(Poly(5*x + 2, x)) == [Rational(-2, 5)] A = 10**Rational(3, 4)/10 assert roots_binomial(Poly(5*x**4 + 2, x)) == \ [-A - A*I, -A + A*I, A - A*I, A + A*I] _check(roots_binomial(Poly(x**8 - 2))) a1 = Symbol('a1', nonnegative=True) b1 = Symbol('b1', nonnegative=True) r0 = roots_quadratic(Poly(a1*x**2 + b1, x)) r1 = roots_binomial(Poly(a1*x**2 + b1, x)) assert powsimp(r0[0]) == powsimp(r1[0]) assert powsimp(r0[1]) == powsimp(r1[1]) for a, b, s, n in cartes((1, 2), (1, 2), (-1, 1), (2, 3, 4, 5)): if a == b and a != 1: # a == b == 1 is sufficient continue p = Poly(a*x**n + s*b) ans = roots_binomial(p) assert ans == _nsort(ans) # issue 8813 assert roots(Poly(2*x**3 - 16*y**3, x)) == { 2*y*(Rational(-1, 2) - sqrt(3)*I/2): 1, 2*y: 1, 2*y*(Rational(-1, 2) + sqrt(3)*I/2): 1} def test_roots_preprocessing(): f = a*y*x**2 + y - b coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1 assert poly == Poly(a*y*x**2 + y - b, x) f = c**3*x**3 + c**2*x**2 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + x + a, x) f = c**3*x**3 + c**2*x**2 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x**2 + a, x) f = c**3*x**3 + c*x + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + x + a, x) f = c**3*x**3 + a coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 1/c assert poly == Poly(x**3 + a, x) E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 coeff, poly = preprocess_roots(Poly(f, x)) assert coeff == 20*E*J/(F*L**2) assert poly == 633*x**8 - 115300*x**7 + 4383520*x**6 + 296804300*x**5 - 27633173750*x**4 + \ 809735812500*x**3 - 10673859375000*x**2 + 63529101562500*x - 135006591796875 f = Poly(-y**2 + x**2*exp(x), y, domain=ZZ[x, exp(x)]) g = Poly(-y**2 + exp(x), y, domain=ZZ[exp(x)]) assert preprocess_roots(f) == (x, g) def test_roots0(): assert roots(1, x) == {} assert roots(x, x) == {S.Zero: 1} assert roots(x**9, x) == {S.Zero: 9} assert roots(((x - 2)*(x + 3)*(x - 4)).expand(), x) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(2*x + 1, x) == {Rational(-1, 2): 1} assert roots((2*x + 1)**2, x) == {Rational(-1, 2): 2} assert roots((2*x + 1)**5, x) == {Rational(-1, 2): 5} assert roots((2*x + 1)**10, x) == {Rational(-1, 2): 10} assert roots(x**4 - 1, x) == {I: 1, S.One: 1, -S.One: 1, -I: 1} assert roots((x**4 - 1)**2, x) == {I: 2, S.One: 2, -S.One: 2, -I: 2} assert roots(((2*x - 3)**2).expand(), x) == {Rational( 3, 2): 2} assert roots(((2*x + 3)**2).expand(), x) == {Rational(-3, 2): 2} assert roots(((2*x - 3)**3).expand(), x) == {Rational( 3, 2): 3} assert roots(((2*x + 3)**3).expand(), x) == {Rational(-3, 2): 3} assert roots(((2*x - 3)**5).expand(), x) == {Rational( 3, 2): 5} assert roots(((2*x + 3)**5).expand(), x) == {Rational(-3, 2): 5} assert roots(((a*x - b)**5).expand(), x) == { b/a: 5} assert roots(((a*x + b)**5).expand(), x) == {-b/a: 5} assert roots(x**2 + (-a - 1)*x + a, x) == {a: 1, S.One: 1} assert roots(x**4 - 2*x**2 + 1, x) == {S.One: 2, S.NegativeOne: 2} assert roots(x**6 - 4*x**4 + 4*x**3 - x**2, x) == \ {S.One: 2, -1 - sqrt(2): 1, S.Zero: 2, -1 + sqrt(2): 1} assert roots(x**8 - 1, x) == { sqrt(2)/2 + I*sqrt(2)/2: 1, sqrt(2)/2 - I*sqrt(2)/2: 1, -sqrt(2)/2 + I*sqrt(2)/2: 1, -sqrt(2)/2 - I*sqrt(2)/2: 1, S.One: 1, -S.One: 1, I: 1, -I: 1 } f = -2016*x**2 - 5616*x**3 - 2056*x**4 + 3324*x**5 + 2176*x**6 - \ 224*x**7 - 384*x**8 - 64*x**9 assert roots(f) == {S.Zero: 2, -S(2): 2, S(2): 1, Rational(-7, 2): 1, Rational(-3, 2): 1, Rational(-1, 2): 1, Rational(3, 2): 1} assert roots((a + b + c)*x - (a + b + c + d), x) == {(a + b + c + d)/(a + b + c): 1} assert roots(x**3 + x**2 - x + 1, x, cubics=False) == {} assert roots(((x - 2)*( x + 3)*(x - 4)).expand(), x, cubics=False) == {-S(3): 1, S(2): 1, S(4): 1} assert roots(((x - 2)*(x + 3)*(x - 4)*(x - 5)).expand(), x, cubics=False) == \ {-S(3): 1, S(2): 1, S(4): 1, S(5): 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x) == {-S(2): 1, -2*I: 1, 2*I: 1} assert roots(x**3 + 2*x**2 + 4*x + 8, x, cubics=True) == \ {-2*I: 1, 2*I: 1, -S(2): 1} assert roots((x**2 - x)*(x**3 + 2*x**2 + 4*x + 8), x ) == \ {S.One: 1, S.Zero: 1, -S(2): 1, -2*I: 1, 2*I: 1} r1_2, r1_3 = S.Half, Rational(1, 3) x0 = (3*sqrt(33) + 19)**r1_3 x1 = 4/x0/3 x2 = x0/3 x3 = sqrt(3)*I/2 x4 = x3 - r1_2 x5 = -x3 - r1_2 assert roots(x**3 + x**2 - x + 1, x, cubics=True) == { -x1 - x2 - r1_3: 1, -x1/x4 - x2*x4 - r1_3: 1, -x1/x5 - x2*x5 - r1_3: 1, } f = (x**2 + 2*x + 3).subs(x, 2*x**2 + 3*x).subs(x, 5*x - 4) r13_20, r1_20 = [ Rational(*r) for r in ((13, 20), (1, 20)) ] s2 = sqrt(2) assert roots(f, x) == { r13_20 + r1_20*sqrt(1 - 8*I*s2): 1, r13_20 - r1_20*sqrt(1 - 8*I*s2): 1, r13_20 + r1_20*sqrt(1 + 8*I*s2): 1, r13_20 - r1_20*sqrt(1 + 8*I*s2): 1, } f = x**4 + x**3 + x**2 + x + 1 r1_4, r1_8, r5_8 = [ Rational(*r) for r in ((1, 4), (1, 8), (5, 8)) ] assert roots(f, x) == { -r1_4 + r1_4*5**r1_2 + I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 + r1_4*5**r1_2 - I*(r5_8 + r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 + I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, -r1_4 - r1_4*5**r1_2 - I*(r5_8 - r1_8*5**r1_2)**r1_2: 1, } f = z**3 + (-2 - y)*z**2 + (1 + 2*y - 2*x**2)*z - y + 2*x**2 assert roots(f, z) == { S.One: 1, S.Half + S.Half*y + S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, S.Half + S.Half*y - S.Half*sqrt(1 - 2*y + y**2 + 8*x**2): 1, } assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=False) == {} assert roots(a*b*c*x**3 + 2*x**2 + 4*x + 8, x, cubics=True) != {} assert roots(x**4 - 1, x, filter='Z') == {S.One: 1, -S.One: 1} assert roots(x**4 - 1, x, filter='I') == {I: 1, -I: 1} assert roots((x - 1)*(x + 1), x) == {S.One: 1, -S.One: 1} assert roots( (x - 1)*(x + 1), x, predicate=lambda r: r.is_positive) == {S.One: 1} assert roots(x**4 - 1, x, filter='Z', multiple=True) == [-S.One, S.One] assert roots(x**4 - 1, x, filter='I', multiple=True) == [I, -I] ar, br = symbols('a, b', real=True) p = x**2*(ar-br)**2 + 2*x*(br-ar) + 1 assert roots(p, x, filter='R') == {1/(ar - br): 2} assert roots(x**3, x, multiple=True) == [S.Zero, S.Zero, S.Zero] assert roots(1234, x, multiple=True) == [] f = x**6 - x**5 + x**4 - x**3 + x**2 - x + 1 assert roots(f) == { -I*sin(pi/7) + cos(pi/7): 1, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, I*sin(pi/7) + cos(pi/7): 1, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 1, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 1, } g = ((x**2 + 1)*f**2).expand() assert roots(g) == { -I*sin(pi/7) + cos(pi/7): 2, -I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, -I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, I*sin(pi/7) + cos(pi/7): 2, I*sin(pi*Rational(2, 7)) - cos(pi*Rational(2, 7)): 2, I*sin(pi*Rational(3, 7)) + cos(pi*Rational(3, 7)): 2, -I: 1, I: 1, } r = roots(x**3 + 40*x + 64) real_root = [rx for rx in r if rx.is_real][0] cr = 108 + 6*sqrt(1074) assert real_root == -2*root(cr, 3)/3 + 20/root(cr, 3) eq = Poly((7 + 5*sqrt(2))*x**3 + (-6 - 4*sqrt(2))*x**2 + (-sqrt(2) - 1)*x + 2, x, domain='EX') assert roots(eq) == {-1 + sqrt(2): 1, -2 + 2*sqrt(2): 1, -sqrt(2) + 1: 1} eq = Poly(41*x**5 + 29*sqrt(2)*x**5 - 153*x**4 - 108*sqrt(2)*x**4 + 175*x**3 + 125*sqrt(2)*x**3 - 45*x**2 - 30*sqrt(2)*x**2 - 26*sqrt(2)*x - 26*x + 24, x, domain='EX') assert roots(eq) == {-sqrt(2) + 1: 1, -2 + 2*sqrt(2): 1, -1 + sqrt(2): 1, -4 + 4*sqrt(2): 1, -3 + 3*sqrt(2): 1} eq = Poly(x**3 - 2*x**2 + 6*sqrt(2)*x**2 - 8*sqrt(2)*x + 23*x - 14 + 14*sqrt(2), x, domain='EX') assert roots(eq) == {-2*sqrt(2) + 2: 1, -2*sqrt(2) + 1: 1, -2*sqrt(2) - 1: 1} assert roots(Poly((x + sqrt(2))**3 - 7, x, domain='EX')) == \ {-sqrt(2) - root(7, 3)/2 - sqrt(3)*root(7, 3)*I/2: 1, -sqrt(2) - root(7, 3)/2 + sqrt(3)*root(7, 3)*I/2: 1, -sqrt(2) + root(7, 3): 1} def test_roots_slow(): """Just test that calculating these roots does not hang. """ a, b, c, d, x = symbols("a,b,c,d,x") f1 = x**2*c + (a/b) + x*c*d - a f2 = x**2*(a + b*(c - d)*a) + x*a*b*c/(b*d - d) + (a*d - c/d) assert list(roots(f1, x).values()) == [1, 1] assert list(roots(f2, x).values()) == [1, 1] (zz, yy, xx, zy, zx, yx, k) = symbols("zz,yy,xx,zy,zx,yx,k") e1 = (zz - k)*(yy - k)*(xx - k) + zy*yx*zx + zx - zy - yx e2 = (zz - k)*yx*yx + zx*(yy - k)*zx + zy*zy*(xx - k) assert list(roots(e1 - e2, k).values()) == [1, 1, 1] f = x**3 + 2*x**2 + 8 R = list(roots(f).keys()) assert not any(i for i in [f.subs(x, ri).n(chop=True) for ri in R]) def test_roots_inexact(): R1 = roots(x**2 + x + 1, x, multiple=True) R2 = roots(x**2 + x + 1.0, x, multiple=True) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-12 f = x**4 + 3.0*sqrt(2.0)*x**3 - (78.0 + 24.0*sqrt(3.0))*x**2 \ + 144.0*(2*sqrt(3.0) + 9.0) R1 = roots(f, multiple=True) R2 = (-12.7530479110482, -3.85012393732929, 4.89897948556636, 7.46155167569183) for r1, r2 in zip(R1, R2): assert abs(r1 - r2) < 1e-10 def test_roots_preprocessed(): E, F, J, L = symbols("E,F,J,L") f = -21601054687500000000*E**8*J**8/L**16 + \ 508232812500000000*F*x*E**7*J**7/L**14 - \ 4269543750000000*E**6*F**2*J**6*x**2/L**12 + \ 16194716250000*E**5*F**3*J**5*x**3/L**10 - \ 27633173750*E**4*F**4*J**4*x**4/L**8 + \ 14840215*E**3*F**5*J**3*x**5/L**6 + \ 54794*E**2*F**6*J**2*x**6/(5*L**4) - \ 1153*E*J*F**7*x**7/(80*L**2) + \ 633*F**8*x**8/160000 assert roots(f, x) == {} R1 = roots(f.evalf(), x, multiple=True) R2 = [-1304.88375606366, 97.1168816800648, 186.946430171876, 245.526792947065, 503.441004174773, 791.549343830097, 1273.16678129348, 1850.10650616851] w = Wild('w') p = w*E*J/(F*L**2) assert len(R1) == len(R2) for r1, r2 in zip(R1, R2): match = r1.match(p) assert match is not None and abs(match[w] - r2) < 1e-10 def test_roots_mixed(): f = -1936 - 5056*x - 7592*x**2 + 2704*x**3 - 49*x**4 _re, _im = intervals(f, all=True) _nroots = nroots(f) _sroots = roots(f, multiple=True) _re = [ Interval(a, b) for (a, b), _ in _re ] _im = [ Interval(re(a), re(b))*Interval(im(a), im(b)) for (a, b), _ in _im ] _intervals = _re + _im _sroots = [ r.evalf() for r in _sroots ] _nroots = sorted(_nroots, key=lambda x: x.sort_key()) _sroots = sorted(_sroots, key=lambda x: x.sort_key()) for _roots in (_nroots, _sroots): for i, r in zip(_intervals, _roots): if r.is_real: assert r in i else: assert (re(r), im(r)) in i def test_root_factors(): assert root_factors(Poly(1, x)) == [Poly(1, x)] assert root_factors(Poly(x, x)) == [Poly(x, x)] assert root_factors(x**2 - 1, x) == [x + 1, x - 1] assert root_factors(x**2 - y, x) == [x - sqrt(y), x + sqrt(y)] assert root_factors((x**4 - 1)**2) == \ [x + 1, x + 1, x - 1, x - 1, x - I, x - I, x + I, x + I] assert root_factors(Poly(x**4 - 1, x), filter='Z') == \ [Poly(x + 1, x), Poly(x - 1, x), Poly(x**2 + 1, x)] assert root_factors(8*x**2 + 12*x**4 + 6*x**6 + x**8, x, filter='Q') == \ [x, x, x**6 + 6*x**4 + 12*x**2 + 8] @slow def test_nroots1(): n = 64 p = legendre_poly(n, x, polys=True) raises(mpmath.mp.NoConvergence, lambda: p.nroots(n=3, maxsteps=5)) roots = p.nroots(n=3) # The order of roots matters. They are ordered from smallest to the # largest. assert [str(r) for r in roots] == \ ['-0.999', '-0.996', '-0.991', '-0.983', '-0.973', '-0.961', '-0.946', '-0.930', '-0.911', '-0.889', '-0.866', '-0.841', '-0.813', '-0.784', '-0.753', '-0.720', '-0.685', '-0.649', '-0.611', '-0.572', '-0.531', '-0.489', '-0.446', '-0.402', '-0.357', '-0.311', '-0.265', '-0.217', '-0.170', '-0.121', '-0.0730', '-0.0243', '0.0243', '0.0730', '0.121', '0.170', '0.217', '0.265', '0.311', '0.357', '0.402', '0.446', '0.489', '0.531', '0.572', '0.611', '0.649', '0.685', '0.720', '0.753', '0.784', '0.813', '0.841', '0.866', '0.889', '0.911', '0.930', '0.946', '0.961', '0.973', '0.983', '0.991', '0.996', '0.999'] def test_nroots2(): p = Poly(x**5 + 3*x + 1, x) roots = p.nroots(n=3) # The order of roots matters. The roots are ordered by their real # components (if they agree, then by their imaginary components), # with real roots appearing first. assert [str(r) for r in roots] == \ ['-0.332', '-0.839 - 0.944*I', '-0.839 + 0.944*I', '1.01 - 0.937*I', '1.01 + 0.937*I'] roots = p.nroots(n=5) assert [str(r) for r in roots] == \ ['-0.33199', '-0.83907 - 0.94385*I', '-0.83907 + 0.94385*I', '1.0051 - 0.93726*I', '1.0051 + 0.93726*I'] def test_roots_composite(): assert len(roots(Poly(y**3 + y**2*sqrt(x) + y + x, y, composite=True))) == 3
7da8695a81bfd0b828a8e5c19c30494b5e898f57c4d7f54a1bb79d337a99d871
"""Module for algebraic geometry and commutative algebra.""" from .homomorphisms import homomorphism __all__ = ['homomorphism']
0edaf59bdfa8a361ad706caffb7b0ec2009e2c68bd1856458b18fa93607d28f2
from sympy import Add, Basic, symbols, Symbol, And from sympy.unify.core import Compound, Variable from sympy.unify.usympy import (deconstruct, construct, unify, is_associative, is_commutative) from sympy.abc import x, y, z, n def test_deconstruct(): expr = Basic(1, 2, 3) expected = Compound(Basic, (1, 2, 3)) assert deconstruct(expr) == expected assert deconstruct(1) == 1 assert deconstruct(x) == x assert deconstruct(x, variables=(x,)) == Variable(x) assert deconstruct(Add(1, x, evaluate=False)) == Compound(Add, (1, x)) assert deconstruct(Add(1, x, evaluate=False), variables=(x,)) == \ Compound(Add, (1, Variable(x))) def test_construct(): expr = Compound(Basic, (1, 2, 3)) expected = Basic(1, 2, 3) assert construct(expr) == expected def test_nested(): expr = Basic(1, Basic(2), 3) cmpd = Compound(Basic, (1, Compound(Basic, (2,)), 3)) assert deconstruct(expr) == cmpd assert construct(cmpd) == expr def test_unify(): expr = Basic(1, 2, 3) a, b, c = map(Symbol, 'abc') pattern = Basic(a, b, c) assert list(unify(expr, pattern, {}, (a, b, c))) == [{a: 1, b: 2, c: 3}] assert list(unify(expr, pattern, variables=(a, b, c))) == \ [{a: 1, b: 2, c: 3}] def test_unify_variables(): assert list(unify(Basic(1, 2), Basic(1, x), {}, variables=(x,))) == [{x: 2}] def test_s_input(): expr = Basic(1, 2) a, b = map(Symbol, 'ab') pattern = Basic(a, b) assert list(unify(expr, pattern, {}, (a, b))) == [{a: 1, b: 2}] assert list(unify(expr, pattern, {a: 5}, (a, b))) == [] def iterdicteq(a, b): a = tuple(a) b = tuple(b) return len(a) == len(b) and all(x in b for x in a) def test_unify_commutative(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, b, c, evaluate=False) result = tuple(unify(expr, pattern, {}, (a, b, c))) expected = ({a: 1, b: 2, c: 3}, {a: 1, b: 3, c: 2}, {a: 2, b: 1, c: 3}, {a: 2, b: 3, c: 1}, {a: 3, b: 1, c: 2}, {a: 3, b: 2, c: 1}) assert iterdicteq(result, expected) def test_unify_iter(): expr = Add(1, 2, 3, evaluate=False) a, b, c = map(Symbol, 'abc') pattern = Add(a, c, evaluate=False) assert is_associative(deconstruct(pattern)) assert is_commutative(deconstruct(pattern)) result = list(unify(expr, pattern, {}, (a, c))) expected = [{a: 1, c: Add(2, 3, evaluate=False)}, {a: 1, c: Add(3, 2, evaluate=False)}, {a: 2, c: Add(1, 3, evaluate=False)}, {a: 2, c: Add(3, 1, evaluate=False)}, {a: 3, c: Add(1, 2, evaluate=False)}, {a: 3, c: Add(2, 1, evaluate=False)}, {a: Add(1, 2, evaluate=False), c: 3}, {a: Add(2, 1, evaluate=False), c: 3}, {a: Add(1, 3, evaluate=False), c: 2}, {a: Add(3, 1, evaluate=False), c: 2}, {a: Add(2, 3, evaluate=False), c: 1}, {a: Add(3, 2, evaluate=False), c: 1}] assert iterdicteq(result, expected) def test_hard_match(): from sympy import sin, cos expr = sin(x) + cos(x)**2 p, q = map(Symbol, 'pq') pattern = sin(p) + cos(p)**2 assert list(unify(expr, pattern, {}, (p, q))) == [{p: x}] def test_matrix(): from sympy import MatrixSymbol X = MatrixSymbol('X', n, n) Y = MatrixSymbol('Y', 2, 2) Z = MatrixSymbol('Z', 2, 3) assert list(unify(X, Y, {}, variables=[n, Symbol('X')])) == [{Symbol('X'): Symbol('Y'), n: 2}] assert list(unify(X, Z, {}, variables=[n, Symbol('X')])) == [] def test_non_frankenAdds(): # the is_commutative property used to fail because of Basic.__new__ # This caused is_commutative and str calls to fail expr = x+y*2 rebuilt = construct(deconstruct(expr)) # Ensure that we can run these commands without causing an error str(rebuilt) rebuilt.is_commutative def test_FiniteSet_commutivity(): from sympy import FiniteSet a, b, c, x, y = symbols('a,b,c,x,y') s = FiniteSet(a, b, c) t = FiniteSet(x, y) variables = (x, y) assert {x: FiniteSet(a, c), y: b} in tuple(unify(s, t, variables=variables)) def test_FiniteSet_complex(): from sympy import FiniteSet a, b, c, x, y, z = symbols('a,b,c,x,y,z') expr = FiniteSet(Basic(1, x), y, Basic(x, z)) pattern = FiniteSet(a, Basic(x, b)) variables = a, b expected = tuple([{b: 1, a: FiniteSet(y, Basic(x, z))}, {b: z, a: FiniteSet(y, Basic(1, x))}]) assert iterdicteq(unify(expr, pattern, variables=variables), expected) def test_and(): variables = x, y expected = tuple([{x: z > 0, y: n < 3}]) assert iterdicteq(unify((z>0) & (n<3), And(x, y), variables=variables), expected) def test_Union(): from sympy import Interval assert list(unify(Interval(0, 1) + Interval(10, 11), Interval(0, 1) + Interval(12, 13), variables=(Interval(12, 13),))) def test_is_commutative(): assert is_commutative(deconstruct(x+y)) assert is_commutative(deconstruct(x*y)) assert not is_commutative(deconstruct(x**y)) def test_commutative_in_commutative(): from sympy.abc import a,b,c,d from sympy import sin, cos eq = sin(3)*sin(4)*sin(5) + 4*cos(3)*cos(4) pat = a*cos(b)*cos(c) + d*sin(b)*sin(c) assert next(unify(eq, pat, variables=(a,b,c,d)))
b5c58d26842b40dfa9ffecf7040a35eb43f4c13efe8dffed22f2c208002abd14
from sympy.unify.core import Compound, Variable, CondVariable, allcombinations from sympy.unify import core a,b,c = 'abc' w,x,y,z = map(Variable, 'wxyz') C = Compound def is_associative(x): return isinstance(x, Compound) and (x.op in ('Add', 'Mul', 'CAdd', 'CMul')) def is_commutative(x): return isinstance(x, Compound) and (x.op in ('CAdd', 'CMul')) def unify(a, b, s={}): return core.unify(a, b, s=s, is_associative=is_associative, is_commutative=is_commutative) def test_basic(): assert list(unify(a, x, {})) == [{x: a}] assert list(unify(a, x, {x: 10})) == [] assert list(unify(1, x, {})) == [{x: 1}] assert list(unify(a, a, {})) == [{}] assert list(unify((w, x), (y, z), {})) == [{w: y, x: z}] assert list(unify(x, (a, b), {})) == [{x: (a, b)}] assert list(unify((a, b), (x, x), {})) == [] assert list(unify((y, z), (x, x), {}))!= [] assert list(unify((a, (b, c)), (a, (x, y)), {})) == [{x: b, y: c}] def test_ops(): assert list(unify(C('Add', (a,b,c)), C('Add', (a,x,y)), {})) == \ [{x:b, y:c}] assert list(unify(C('Add', (C('Mul', (1,2)), b,c)), C('Add', (x,y,c)), {})) == \ [{x: C('Mul', (1,2)), y:b}] def test_associative(): c1 = C('Add', (1,2,3)) c2 = C('Add', (x,y)) assert tuple(unify(c1, c2, {})) == ({x: 1, y: C('Add', (2, 3))}, {x: C('Add', (1, 2)), y: 3}) def test_commutative(): c1 = C('CAdd', (1,2,3)) c2 = C('CAdd', (x,y)) result = list(unify(c1, c2, {})) assert {x: 1, y: C('CAdd', (2, 3))} in result assert ({x: 2, y: C('CAdd', (1, 3))} in result or {x: 2, y: C('CAdd', (3, 1))} in result) def _test_combinations_assoc(): assert set(allcombinations((1,2,3), (a,b), True)) == \ set(((((1, 2), (3,)), (a, b)), (((1,), (2, 3)), (a, b)))) def _test_combinations_comm(): assert set(allcombinations((1,2,3), (a,b), None)) == \ set(((((1,), (2, 3)), ('a', 'b')), (((2,), (3, 1)), ('a', 'b')), (((3,), (1, 2)), ('a', 'b')), (((1, 2), (3,)), ('a', 'b')), (((2, 3), (1,)), ('a', 'b')), (((3, 1), (2,)), ('a', 'b')))) def test_allcombinations(): assert set(allcombinations((1,2), (1,2), 'commutative')) ==\ set(((((1,),(2,)), ((1,),(2,))), (((1,),(2,)), ((2,),(1,))))) def test_commutativity(): c1 = Compound('CAdd', (a, b)) c2 = Compound('CAdd', (x, y)) assert is_commutative(c1) and is_commutative(c2) assert len(list(unify(c1, c2, {}))) == 2 def test_CondVariable(): expr = C('CAdd', (1, 2)) x = Variable('x') y = CondVariable('y', lambda a: a % 2 == 0) z = CondVariable('z', lambda a: a > 3) pattern = C('CAdd', (x, y)) assert list(unify(expr, pattern, {})) == \ [{x: 1, y: 2}] z = CondVariable('z', lambda a: a > 3) pattern = C('CAdd', (z, y)) assert list(unify(expr, pattern, {})) == [] def test_defaultdict(): assert next(unify(Variable('x'), 'foo')) == {Variable('x'): 'foo'}
48af9a3432031950083e2f8ff3f3b2652d1175fa7643b501292e91b49702d850
from sympy import sin, cos, symbols, pi, ImmutableMatrix as Matrix, \ simplify from sympy.vector import (CoordSys3D, Vector, Dyadic, DyadicAdd, DyadicMul, DyadicZero, BaseDyadic, express) from sympy.utilities.pytest import nocache_fail A = CoordSys3D('A') @nocache_fail def test_dyadic(): a, b = symbols('a, b') assert Dyadic.zero != 0 assert isinstance(Dyadic.zero, DyadicZero) assert BaseDyadic(A.i, A.j) != BaseDyadic(A.j, A.i) assert (BaseDyadic(Vector.zero, A.i) == BaseDyadic(A.i, Vector.zero) == Dyadic.zero) d1 = A.i | A.i d2 = A.j | A.j d3 = A.i | A.j assert isinstance(d1, BaseDyadic) d_mul = a*d1 assert isinstance(d_mul, DyadicMul) assert d_mul.base_dyadic == d1 assert d_mul.measure_number == a assert isinstance(a*d1 + b*d3, DyadicAdd) assert d1 == A.i.outer(A.i) assert d3 == A.i.outer(A.j) v1 = a*A.i - A.k v2 = A.i + b*A.j assert v1 | v2 == v1.outer(v2) == a * (A.i|A.i) + (a*b) * (A.i|A.j) +\ - (A.k|A.i) - b * (A.k|A.j) assert d1 * 0 == Dyadic.zero assert d1 != Dyadic.zero assert d1 * 2 == 2 * (A.i | A.i) assert d1 / 2. == 0.5 * d1 assert d1.dot(0 * d1) == Vector.zero assert d1 & d2 == Dyadic.zero assert d1.dot(A.i) == A.i == d1 & A.i assert d1.cross(Vector.zero) == Dyadic.zero assert d1.cross(A.i) == Dyadic.zero assert d1 ^ A.j == d1.cross(A.j) assert d1.cross(A.k) == - A.i | A.j assert d2.cross(A.i) == - A.j | A.k == d2 ^ A.i assert A.i ^ d1 == Dyadic.zero assert A.j.cross(d1) == - A.k | A.i == A.j ^ d1 assert Vector.zero.cross(d1) == Dyadic.zero assert A.k ^ d1 == A.j | A.i assert A.i.dot(d1) == A.i & d1 == A.i assert A.j.dot(d1) == Vector.zero assert Vector.zero.dot(d1) == Vector.zero assert A.j & d2 == A.j assert d1.dot(d3) == d1 & d3 == A.i | A.j == d3 assert d3 & d1 == Dyadic.zero q = symbols('q') B = A.orient_new_axis('B', q, A.k) assert express(d1, B) == express(d1, B, B) # This assertion fails when running with the cache off: assert express(d1, B) == ((cos(q)**2) * (B.i | B.i) + (-sin(q) * cos(q)) * (B.i | B.j) + (-sin(q) * cos(q)) * (B.j | B.i) + (sin(q)**2) * (B.j | B.j)) assert express(d1, B, A) == (cos(q)) * (B.i | A.i) + (-sin(q)) * (B.j | A.i) assert express(d1, A, B) == (cos(q)) * (A.i | B.i) + (-sin(q)) * (A.i | B.j) assert d1.to_matrix(A) == Matrix([[1, 0, 0], [0, 0, 0], [0, 0, 0]]) assert d1.to_matrix(A, B) == Matrix([[cos(q), -sin(q), 0], [0, 0, 0], [0, 0, 0]]) assert d3.to_matrix(A) == Matrix([[0, 1, 0], [0, 0, 0], [0, 0, 0]]) a, b, c, d, e, f = symbols('a, b, c, d, e, f') v1 = a * A.i + b * A.j + c * A.k v2 = d * A.i + e * A.j + f * A.k d4 = v1.outer(v2) assert d4.to_matrix(A) == Matrix([[a * d, a * e, a * f], [b * d, b * e, b * f], [c * d, c * e, c * f]]) d5 = v1.outer(v1) C = A.orient_new_axis('C', q, A.i) for expected, actual in zip(C.rotation_matrix(A) * d5.to_matrix(A) * \ C.rotation_matrix(A).T, d5.to_matrix(C)): assert (expected - actual).simplify() == 0 def test_dyadic_simplify(): x, y, z, k, n, m, w, f, s, A = symbols('x, y, z, k, n, m, w, f, s, A') N = CoordSys3D('N') dy = N.i | N.i test1 = (1 / x + 1 / y) * dy assert (N.i & test1 & N.i) != (x + y) / (x * y) test1 = test1.simplify() assert test1.simplify() == simplify(test1) assert (N.i & test1 & N.i) == (x + y) / (x * y) test2 = (A**2 * s**4 / (4 * pi * k * m**3)) * dy test2 = test2.simplify() assert (N.i & test2 & N.i) == (A**2 * s**4 / (4 * pi * k * m**3)) test3 = ((4 + 4 * x - 2 * (2 + 2 * x)) / (2 + 2 * x)) * dy test3 = test3.simplify() assert (N.i & test3 & N.i) == 0 test4 = ((-4 * x * y**2 - 2 * y**3 - 2 * x**2 * y) / (x + y)**2) * dy test4 = test4.simplify() assert (N.i & test4 & N.i) == -2 * y
6f73055d0e0bf83ed75a54f65f9f1f0cec121f12723b4098a304cfceae625fad
from sympy import Rational, S from sympy.geometry import Circle, Line, Point, Polygon, Segment from sympy.sets import FiniteSet, Union, Intersection, EmptySet def test_booleans(): """ test basic unions and intersections """ half = S.Half p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)]) p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)]) l1 = Line(Point(0,0), Point(1,1)) l2 = Line(Point(half, half), Point(5,5)) l3 = Line(p2, p3) l4 = Line(p3, p4) poly1 = Polygon(p1, p2, p3, p4) poly2 = Polygon(p5, p6, p7) poly3 = Polygon(p1, p2, p5) assert Union(l1, l2).equals(l1) assert Intersection(l1, l2).equals(l1) assert Intersection(l1, l4) == FiniteSet(Point(1,1)) assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1)) assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0)) assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1) assert Union(l1, FiniteSet(p1)) == l1 fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1)) # test the intersection of polygons assert Intersection(poly1, poly2) == fs # make sure if we union polygons with subsets, the subsets go away assert Union(poly1, poly2, fs) == Union(poly1, poly2) # make sure that if we union with a FiniteSet that isn't a subset, # that the points in the intersection stop being listed assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5))) # intersect two polygons that share an edge assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
9a797020b1217a0380afa777ae14180c4829f8dc3b6159b246efce28ffa51eb8
from sympy import I, Rational, Symbol, pi, sqrt, S from sympy.geometry import Line, Point, Point2D, Point3D, Line3D, Plane from sympy.geometry.entity import rotate, scale, translate from sympy.matrices import Matrix from sympy.utilities.iterables import subsets, permutations, cartes from sympy.utilities.pytest import raises, warns def test_point(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) half = S.Half p1 = Point(x1, x2) p2 = Point(y1, y2) p3 = Point(0, 0) p4 = Point(1, 1) p5 = Point(0, 1) line = Line(Point(1, 0), slope=1) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point(y1 - x1, y2 - x2) assert -p2 == Point(-y1, -y2) raises(ValueError, lambda: Point(3, I)) raises(ValueError, lambda: Point(2*I, I)) raises(ValueError, lambda: Point(3 + I, I)) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point.midpoint(p3, p4) == Point(half, half) assert Point.midpoint(p1, p4) == Point(half + half*x1, half + half*x2) assert Point.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point.distance(p3, p4) == sqrt(2) assert Point.distance(p1, p1) == 0 assert Point.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2) # distance should be symmetric assert p1.distance(line) == line.distance(p1) assert p4.distance(line) == line.distance(p4) assert Point.taxicab_distance(p4, p3) == 2 assert Point.canberra_distance(p4, p5) == 1 p1_1 = Point(x1, x1) p1_2 = Point(y2, y2) p1_3 = Point(x1 + 1, x1) assert Point.is_collinear(p3) with warns(UserWarning): assert Point.is_collinear(p3, Point(p3, dim=4)) assert p3.is_collinear() assert Point.is_collinear(p3, p4) assert Point.is_collinear(p3, p4, p1_1, p1_2) assert Point.is_collinear(p3, p4, p1_1, p1_3) is False assert Point.is_collinear(p3, p3, p4, p5) is False raises(TypeError, lambda: Point.is_collinear(line)) raises(TypeError, lambda: p1_1.is_collinear(line)) assert p3.intersection(Point(0, 0)) == [p3] assert p3.intersection(p4) == [] x_pos = Symbol('x', real=True, positive=True) p2_1 = Point(x_pos, 0) p2_2 = Point(0, x_pos) p2_3 = Point(-x_pos, 0) p2_4 = Point(0, -x_pos) p2_5 = Point(x_pos, 5) assert Point.is_concyclic(p2_1) assert Point.is_concyclic(p2_1, p2_2) assert Point.is_concyclic(p2_1, p2_2, p2_3, p2_4) for pts in permutations((p2_1, p2_2, p2_3, p2_5)): assert Point.is_concyclic(*pts) is False assert Point.is_concyclic(p4, p4 * 2, p4 * 3) is False assert Point(0, 0).is_concyclic((1, 1), (2, 2), (2, 1)) is False assert p4.scale(2, 3) == Point(2, 3) assert p3.scale(2, 3) == p3 assert p4.rotate(pi, Point(0.5, 0.5)) == p3 assert p1.__radd__(p2) == p1.midpoint(p2).scale(2, 2) assert (-p3).__rsub__(p4) == p3.midpoint(p4).scale(2, 2) assert p4 * 5 == Point(5, 5) assert p4 / 5 == Point(0.2, 0.2) assert 5 * p4 == Point(5, 5) raises(ValueError, lambda: Point(0, 0) + 10) # Point differences should be simplified assert Point(x*(x - 1), y) - Point(x**2 - x, y + 1) == Point(0, -1) a, b = S.Half, Rational(1, 3) assert Point(a, b).evalf(2) == \ Point(a.n(2), b.n(2), evaluate=False) raises(ValueError, lambda: Point(1, 2) + 1) # test transformations p = Point(1, 0) assert p.rotate(pi/2) == Point(0, 1) assert p.rotate(pi/2, p) == p p = Point(1, 1) assert p.scale(2, 3) == Point(2, 3) assert p.translate(1, 2) == Point(2, 3) assert p.translate(1) == Point(2, 1) assert p.translate(y=1) == Point(1, 2) assert p.translate(*p.args) == Point(2, 2) # Check invalid input for transform raises(ValueError, lambda: p3.transform(p3)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) def test_point3D(): x = Symbol('x', real=True) y = Symbol('y', real=True) x1 = Symbol('x1', real=True) x2 = Symbol('x2', real=True) x3 = Symbol('x3', real=True) y1 = Symbol('y1', real=True) y2 = Symbol('y2', real=True) y3 = Symbol('y3', real=True) half = S.Half p1 = Point3D(x1, x2, x3) p2 = Point3D(y1, y2, y3) p3 = Point3D(0, 0, 0) p4 = Point3D(1, 1, 1) p5 = Point3D(0, 1, 2) assert p1 in p1 assert p1 not in p2 assert p2.y == y2 assert (p3 + p4) == p4 assert (p2 - p1) == Point3D(y1 - x1, y2 - x2, y3 - x3) assert -p2 == Point3D(-y1, -y2, -y3) assert Point(34.05, sqrt(3)) == Point(Rational(681, 20), sqrt(3)) assert Point3D.midpoint(p3, p4) == Point3D(half, half, half) assert Point3D.midpoint(p1, p4) == Point3D(half + half*x1, half + half*x2, half + half*x3) assert Point3D.midpoint(p2, p2) == p2 assert p2.midpoint(p2) == p2 assert Point3D.distance(p3, p4) == sqrt(3) assert Point3D.distance(p1, p1) == 0 assert Point3D.distance(p3, p2) == sqrt(p2.x**2 + p2.y**2 + p2.z**2) p1_1 = Point3D(x1, x1, x1) p1_2 = Point3D(y2, y2, y2) p1_3 = Point3D(x1 + 1, x1, x1) Point3D.are_collinear(p3) assert Point3D.are_collinear(p3, p4) assert Point3D.are_collinear(p3, p4, p1_1, p1_2) assert Point3D.are_collinear(p3, p4, p1_1, p1_3) is False assert Point3D.are_collinear(p3, p3, p4, p5) is False assert p3.intersection(Point3D(0, 0, 0)) == [p3] assert p3.intersection(p4) == [] assert p4 * 5 == Point3D(5, 5, 5) assert p4 / 5 == Point3D(0.2, 0.2, 0.2) assert 5 * p4 == Point3D(5, 5, 5) raises(ValueError, lambda: Point3D(0, 0, 0) + 10) # Point differences should be simplified assert Point3D(x*(x - 1), y, 2) - Point3D(x**2 - x, y + 1, 1) == \ Point3D(0, -1, 1) a, b, c = S.Half, Rational(1, 3), Rational(1, 4) assert Point3D(a, b, c).evalf(2) == \ Point(a.n(2), b.n(2), c.n(2), evaluate=False) raises(ValueError, lambda: Point3D(1, 2, 3) + 1) # test transformations p = Point3D(1, 1, 1) assert p.scale(2, 3) == Point3D(2, 3, 1) assert p.translate(1, 2) == Point3D(2, 3, 1) assert p.translate(1) == Point3D(2, 1, 1) assert p.translate(z=1) == Point3D(1, 1, 2) assert p.translate(*p.args) == Point3D(2, 2, 2) # Test __new__ assert Point3D(0.1, 0.2, evaluate=False, on_morph='ignore').args[0].is_Float # Test length property returns correctly assert p.length == 0 assert p1_1.length == 0 assert p1_2.length == 0 # Test are_colinear type error raises(TypeError, lambda: Point3D.are_collinear(p, x)) # Test are_coplanar assert Point.are_coplanar() assert Point.are_coplanar((1, 2, 0), (1, 2, 0), (1, 3, 0)) assert Point.are_coplanar((1, 2, 0), (1, 2, 3)) with warns(UserWarning): raises(ValueError, lambda: Point2D.are_coplanar((1, 2), (1, 2, 3))) assert Point3D.are_coplanar((1, 2, 0), (1, 2, 3)) assert Point.are_coplanar((0, 0, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1)) is False planar2 = Point3D(1, -1, 1) planar3 = Point3D(-1, 1, 1) assert Point3D.are_coplanar(p, planar2, planar3) == True assert Point3D.are_coplanar(p, planar2, planar3, p3) == False assert Point.are_coplanar(p, planar2) planar2 = Point3D(1, 1, 2) planar3 = Point3D(1, 1, 3) assert Point3D.are_coplanar(p, planar2, planar3) # line, not plane plane = Plane((1, 2, 1), (2, 1, 0), (3, 1, 2)) assert Point.are_coplanar(*[plane.projection(((-1)**i, i)) for i in range(4)]) # all 2D points are coplanar assert Point.are_coplanar(Point(x, y), Point(x, x + y), Point(y, x + 2)) is True # Test Intersection assert planar2.intersection(Line3D(p, planar3)) == [Point3D(1, 1, 2)] # Test Scale assert planar2.scale(1, 1, 1) == planar2 assert planar2.scale(2, 2, 2, planar3) == Point3D(1, 1, 1) assert planar2.scale(1, 1, 1, p3) == planar2 # Test Transform identity = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) assert p.transform(identity) == p trans = Matrix([[1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1], [0, 0, 0, 1]]) assert p.transform(trans) == Point3D(2, 2, 2) raises(ValueError, lambda: p.transform(p)) raises(ValueError, lambda: p.transform(Matrix([[1, 0], [0, 1]]))) # Test Equals assert p.equals(x1) == False # Test __sub__ p_4d = Point(0, 0, 0, 1) with warns(UserWarning): assert p - p_4d == Point(1, 1, 1, -1) p_4d3d = Point(0, 0, 1, 0) with warns(UserWarning): assert p - p_4d3d == Point(1, 1, 0, 0) def test_Point2D(): # Test Distance p1 = Point2D(1, 5) p2 = Point2D(4, 2.5) p3 = (6, 3) assert p1.distance(p2) == sqrt(61)/2 assert p2.distance(p3) == sqrt(17)/2 def test_issue_9214(): p1 = Point3D(4, -2, 6) p2 = Point3D(1, 2, 3) p3 = Point3D(7, 2, 3) assert Point3D.are_collinear(p1, p2, p3) is False def test_issue_11617(): p1 = Point3D(1,0,2) p2 = Point2D(2,0) with warns(UserWarning): assert p1.distance(p2) == sqrt(5) def test_transform(): p = Point(1, 1) assert p.transform(rotate(pi/2)) == Point(-1, 1) assert p.transform(scale(3, 2)) == Point(3, 2) assert p.transform(translate(1, 2)) == Point(2, 3) assert Point(1, 1).scale(2, 3, (4, 5)) == \ Point(-2, -7) assert Point(1, 1).translate(4, 5) == \ Point(5, 6) def test_concyclic_doctest_bug(): p1, p2 = Point(-1, 0), Point(1, 0) p3, p4 = Point(0, 1), Point(-1, 2) assert Point.is_concyclic(p1, p2, p3) assert not Point.is_concyclic(p1, p2, p3, p4) def test_arguments(): """Functions accepting `Point` objects in `geometry` should also accept tuples and lists and automatically convert them to points.""" singles2d = ((1,2), [1,2], Point(1,2)) singles2d2 = ((1,3), [1,3], Point(1,3)) doubles2d = cartes(singles2d, singles2d2) p2d = Point2D(1,2) singles3d = ((1,2,3), [1,2,3], Point(1,2,3)) doubles3d = subsets(singles3d, 2) p3d = Point3D(1,2,3) singles4d = ((1,2,3,4), [1,2,3,4], Point(1,2,3,4)) doubles4d = subsets(singles4d, 2) p4d = Point(1,2,3,4) # test 2D test_single = ['distance', 'is_scalar_multiple', 'taxicab_distance', 'midpoint', 'intersection', 'dot', 'equals', '__add__', '__sub__'] test_double = ['is_concyclic', 'is_collinear'] for p in singles2d: Point2D(p) for func in test_single: for p in singles2d: getattr(p2d, func)(p) for func in test_double: for p in doubles2d: getattr(p2d, func)(*p) # test 3D test_double = ['is_collinear'] for p in singles3d: Point3D(p) for func in test_single: for p in singles3d: getattr(p3d, func)(p) for func in test_double: for p in doubles3d: getattr(p3d, func)(*p) # test 4D test_double = ['is_collinear'] for p in singles4d: Point(p) for func in test_single: for p in singles4d: getattr(p4d, func)(p) for func in test_double: for p in doubles4d: getattr(p4d, func)(*p) # test evaluate=False for ops x = Symbol('x') a = Point(0, 1) assert a + (0.1, x) == Point(0.1, 1 + x, evaluate=False) a = Point(0, 1) assert a/10.0 == Point(0, 0.1, evaluate=False) a = Point(0, 1) assert a*10.0 == Point(0.0, 10.0, evaluate=False) # test evaluate=False when changing dimensions u = Point(.1, .2, evaluate=False) u4 = Point(u, dim=4, on_morph='ignore') assert u4.args == (.1, .2, 0, 0) assert all(i.is_Float for i in u4.args[:2]) # and even when *not* changing dimensions assert all(i.is_Float for i in Point(u).args) # never raise error if creating an origin assert Point(dim=3, on_morph='error') def test_unit(): assert Point(1, 1).unit == Point(sqrt(2)/2, sqrt(2)/2) def test_dot(): raises(TypeError, lambda: Point(1, 2).dot(Line((0, 0), (1, 1)))) def test__normalize_dimension(): assert Point._normalize_dimension(Point(1, 2), Point(3, 4)) == [ Point(1, 2), Point(3, 4)] assert Point._normalize_dimension( Point(1, 2), Point(3, 4, 0), on_morph='ignore') == [ Point(1, 2, 0), Point(3, 4, 0)] def test_direction_cosine(): p1 = Point3D(0, 0, 0) p2 = Point3D(1, 1, 1) assert p1.direction_cosine(Point3D(1, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, 1, 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, pi)) == [0, 0, 1] assert p1.direction_cosine(Point3D(5, 0, 0)) == [1, 0, 0] assert p1.direction_cosine(Point3D(0, sqrt(3), 0)) == [0, 1, 0] assert p1.direction_cosine(Point3D(0, 0, 5)) == [0, 0, 1] assert p1.direction_cosine(Point3D(2.4, 2.4, 0)) == [sqrt(2)/2, sqrt(2)/2, 0] assert p1.direction_cosine(Point3D(1, 1, 1)) == [sqrt(3) / 3, sqrt(3) / 3, sqrt(3) / 3] assert p1.direction_cosine(Point3D(-12, 0 -15)) == [-4*sqrt(41)/41, -5*sqrt(41)/41, 0] assert p2.direction_cosine(Point3D(0, 0, 0)) == [-sqrt(3) / 3, -sqrt(3) / 3, -sqrt(3) / 3] assert p2.direction_cosine(Point3D(1, 1, 12)) == [0, 0, 1] assert p2.direction_cosine(Point3D(12, 1, 12)) == [sqrt(2) / 2, 0, sqrt(2) / 2]
33767da00537bbe5c972b481a02dcfd91c42a5c51d4e1529f380871d64d59dad
from sympy import Abs, Rational, Float, S, Symbol, symbols, cos, pi, sqrt, oo from sympy.functions.elementary.trigonometric import tan from sympy.geometry import (Circle, Ellipse, GeometryError, Point, Point2D, \ Polygon, Ray, RegularPolygon, Segment, Triangle, \ are_similar,convex_hull, intersection, Line) from sympy.utilities.pytest import raises, slow, warns from sympy.utilities.randtest import verify_numerically from sympy.geometry.polygon import rad, deg from sympy import integrate def feq(a, b): """Test if two floating point values are 'equal'.""" t_float = Float("1.0E-10") return -t_float < a - b < t_float @slow def test_polygon(): x = Symbol('x', real=True) y = Symbol('y', real=True) q = Symbol('q', real=True) u = Symbol('u', real=True) v = Symbol('v', real=True) w = Symbol('w', real=True) x1 = Symbol('x1', real=True) half = S.Half a, b, c = Point(0, 0), Point(2, 0), Point(3, 3) t = Triangle(a, b, c) assert Polygon(a, Point(1, 0), b, c) == t assert Polygon(Point(1, 0), b, c, a) == t assert Polygon(b, c, a, Point(1, 0)) == t # 2 "remove folded" tests assert Polygon(a, Point(3, 0), b, c) == t assert Polygon(a, b, Point(3, -1), b, c) == t # remove multiple collinear points assert Polygon(Point(-4, 15), Point(-11, 15), Point(-15, 15), Point(-15, 33/5), Point(-15, -87/10), Point(-15, -15), Point(-42/5, -15), Point(-2, -15), Point(7, -15), Point(15, -15), Point(15, -3), Point(15, 10), Point(15, 15)) == \ Polygon(Point(-15,-15), Point(15,-15), Point(15,15), Point(-15,15)) p1 = Polygon( Point(0, 0), Point(3, -1), Point(6, 0), Point(4, 5), Point(2, 3), Point(0, 3)) p2 = Polygon( Point(6, 0), Point(3, -1), Point(0, 0), Point(0, 3), Point(2, 3), Point(4, 5)) p3 = Polygon( Point(0, 0), Point(3, 0), Point(5, 2), Point(4, 4)) p4 = Polygon( Point(0, 0), Point(4, 4), Point(5, 2), Point(3, 0)) p5 = Polygon( Point(0, 0), Point(4, 4), Point(0, 4)) p6 = Polygon( Point(-11, 1), Point(-9, 6.6), Point(-4, -3), Point(-8.4, -8.7)) p7 = Polygon( Point(x, y), Point(q, u), Point(v, w)) p8 = Polygon( Point(x, y), Point(v, w), Point(q, u)) p9 = Polygon( Point(0, 0), Point(4, 4), Point(3, 0), Point(5, 2)) p10 = Polygon( Point(0, 2), Point(2, 2), Point(0, 0), Point(2, 0)) p11 = Polygon(Point(0, 0), 1, n=3) r = Ray(Point(-9,6.6), Point(-9,5.5)) # # General polygon # assert p1 == p2 assert len(p1.args) == 6 assert len(p1.sides) == 6 assert p1.perimeter == 5 + 2*sqrt(10) + sqrt(29) + sqrt(8) assert p1.area == 22 assert not p1.is_convex() assert Polygon((-1, 1), (2, -1), (2, 1), (-1, -1), (3, 0) ).is_convex() is False # ensure convex for both CW and CCW point specification assert p3.is_convex() assert p4.is_convex() dict5 = p5.angles assert dict5[Point(0, 0)] == pi / 4 assert dict5[Point(0, 4)] == pi / 2 assert p5.encloses_point(Point(x, y)) is None assert p5.encloses_point(Point(1, 3)) assert p5.encloses_point(Point(0, 0)) is False assert p5.encloses_point(Point(4, 0)) is False assert p1.encloses(Circle(Point(2.5,2.5),5)) is False assert p1.encloses(Ellipse(Point(2.5,2),5,6)) is False p5.plot_interval('x') == [x, 0, 1] assert p5.distance( Polygon(Point(10, 10), Point(14, 14), Point(10, 14))) == 6 * sqrt(2) assert p5.distance( Polygon(Point(1, 8), Point(5, 8), Point(8, 12), Point(1, 12))) == 4 with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): Polygon(Point(0, 0), Point(1, 0), Point(1, 1)).distance( Polygon(Point(0, 0), Point(0, 1), Point(1, 1))) assert hash(p5) == hash(Polygon(Point(0, 0), Point(4, 4), Point(0, 4))) assert hash(p1) == hash(p2) assert hash(p7) == hash(p8) assert hash(p3) != hash(p9) assert p5 == Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) assert Polygon(Point(4, 4), Point(0, 4), Point(0, 0)) in p5 assert p5 != Point(0, 4) assert Point(0, 1) in p5 assert p5.arbitrary_point('t').subs(Symbol('t', real=True), 0) == \ Point(0, 0) raises(ValueError, lambda: Polygon( Point(x, 0), Point(0, y), Point(x, y)).arbitrary_point('x')) assert p6.intersection(r) == [Point(-9, Rational(-84, 13)), Point(-9, Rational(33, 5))] assert p10.area == 0 assert p11 == RegularPolygon(Point(0, 0), 1, 3, 0) assert p11.vertices[0] == Point(1, 0) assert p11.args[0] == Point(0, 0) p11.spin(pi/2) assert p11.vertices[0] == Point(0, 1) # # Regular polygon # p1 = RegularPolygon(Point(0, 0), 10, 5) p2 = RegularPolygon(Point(0, 0), 5, 5) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), Point(0, 1), Point(1, 1))) raises(GeometryError, lambda: RegularPolygon(Point(0, 0), 1, 2)) raises(ValueError, lambda: RegularPolygon(Point(0, 0), 1, 2.5)) assert p1 != p2 assert p1.interior_angle == pi*Rational(3, 5) assert p1.exterior_angle == pi*Rational(2, 5) assert p2.apothem == 5*cos(pi/5) assert p2.circumcenter == p1.circumcenter == Point(0, 0) assert p1.circumradius == p1.radius == 10 assert p2.circumcircle == Circle(Point(0, 0), 5) assert p2.incircle == Circle(Point(0, 0), p2.apothem) assert p2.inradius == p2.apothem == (5 * (1 + sqrt(5)) / 4) p2.spin(pi / 10) dict1 = p2.angles assert dict1[Point(0, 5)] == 3 * pi / 5 assert p1.is_convex() assert p1.rotation == 0 assert p1.encloses_point(Point(0, 0)) assert p1.encloses_point(Point(11, 0)) is False assert p2.encloses_point(Point(0, 4.9)) p1.spin(pi/3) assert p1.rotation == pi/3 assert p1.vertices[0] == Point(5, 5*sqrt(3)) for var in p1.args: if isinstance(var, Point): assert var == Point(0, 0) else: assert var == 5 or var == 10 or var == pi / 3 assert p1 != Point(0, 0) assert p1 != p5 # while spin works in place (notice that rotation is 2pi/3 below) # rotate returns a new object p1_old = p1 assert p1.rotate(pi/3) == RegularPolygon(Point(0, 0), 10, 5, pi*Rational(2, 3)) assert p1 == p1_old assert p1.area == (-250*sqrt(5) + 1250)/(4*tan(pi/5)) assert p1.length == 20*sqrt(-sqrt(5)/8 + Rational(5, 8)) assert p1.scale(2, 2) == \ RegularPolygon(p1.center, p1.radius*2, p1._n, p1.rotation) assert RegularPolygon((0, 0), 1, 4).scale(2, 3) == \ Polygon(Point(2, 0), Point(0, 3), Point(-2, 0), Point(0, -3)) assert repr(p1) == str(p1) # # Angles # angles = p4.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) angles = p3.angles assert feq(angles[Point(0, 0)].evalf(), Float("0.7853981633974483")) assert feq(angles[Point(4, 4)].evalf(), Float("1.2490457723982544")) assert feq(angles[Point(5, 2)].evalf(), Float("1.8925468811915388")) assert feq(angles[Point(3, 0)].evalf(), Float("2.3561944901923449")) # # Triangle # p1 = Point(0, 0) p2 = Point(5, 0) p3 = Point(0, 5) t1 = Triangle(p1, p2, p3) t2 = Triangle(p1, p2, Point(Rational(5, 2), sqrt(Rational(75, 4)))) t3 = Triangle(p1, Point(x1, 0), Point(0, x1)) s1 = t1.sides assert Triangle(p1, p2, p1) == Polygon(p1, p2, p1) == Segment(p1, p2) raises(GeometryError, lambda: Triangle(Point(0, 0))) # Basic stuff assert Triangle(p1, p1, p1) == p1 assert Triangle(p2, p2*2, p2*3) == Segment(p2, p2*3) assert t1.area == Rational(25, 2) assert t1.is_right() assert t2.is_right() is False assert t3.is_right() assert p1 in t1 assert t1.sides[0] in t1 assert Segment((0, 0), (1, 0)) in t1 assert Point(5, 5) not in t2 assert t1.is_convex() assert feq(t1.angles[p1].evalf(), pi.evalf()/2) assert t1.is_equilateral() is False assert t2.is_equilateral() assert t3.is_equilateral() is False assert are_similar(t1, t2) is False assert are_similar(t1, t3) assert are_similar(t2, t3) is False assert t1.is_similar(Point(0, 0)) is False assert t1.is_similar(t2) is False # Bisectors bisectors = t1.bisectors() assert bisectors[p1] == Segment( p1, Point(Rational(5, 2), Rational(5, 2))) assert t2.bisectors()[p2] == Segment( Point(5, 0), Point(Rational(5, 4), 5*sqrt(3)/4)) p4 = Point(0, x1) assert t3.bisectors()[p4] == Segment(p4, Point(x1*(sqrt(2) - 1), 0)) ic = (250 - 125*sqrt(2))/50 assert t1.incenter == Point(ic, ic) # Inradius assert t1.inradius == t1.incircle.radius == 5 - 5*sqrt(2)/2 assert t2.inradius == t2.incircle.radius == 5*sqrt(3)/6 assert t3.inradius == t3.incircle.radius == x1**2/((2 + sqrt(2))*Abs(x1)) # Exradius assert t1.exradii[t1.sides[2]] == 5*sqrt(2)/2 # Excenters assert t1.excenters[t1.sides[2]] == Point2D(25*sqrt(2), -5*sqrt(2)/2) # Circumcircle assert t1.circumcircle.center == Point(2.5, 2.5) # Medians + Centroid m = t1.medians assert t1.centroid == Point(Rational(5, 3), Rational(5, 3)) assert m[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert t3.medians[p1] == Segment(p1, Point(x1/2, x1/2)) assert intersection(m[p1], m[p2], m[p3]) == [t1.centroid] assert t1.medial == Triangle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) # Nine-point circle assert t1.nine_point_circle == Circle(Point(2.5, 0), Point(0, 2.5), Point(2.5, 2.5)) assert t1.nine_point_circle == Circle(Point(0, 0), Point(0, 2.5), Point(2.5, 2.5)) # Perpendicular altitudes = t1.altitudes assert altitudes[p1] == Segment(p1, Point(Rational(5, 2), Rational(5, 2))) assert altitudes[p2].equals(s1[0]) assert altitudes[p3] == s1[2] assert t1.orthocenter == p1 t = S('''Triangle( Point(100080156402737/5000000000000, 79782624633431/500000000000), Point(39223884078253/2000000000000, 156345163124289/1000000000000), Point(31241359188437/1250000000000, 338338270939941/1000000000000000))''') assert t.orthocenter == S('''Point(-780660869050599840216997''' '''79471538701955848721853/80368430960602242240789074233100000000000000,''' '''20151573611150265741278060334545897615974257/16073686192120448448157''' '''8148466200000000000)''') # Ensure assert len(intersection(*bisectors.values())) == 1 assert len(intersection(*altitudes.values())) == 1 assert len(intersection(*m.values())) == 1 # Distance p1 = Polygon( Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1)) p2 = Polygon( Point(0, Rational(5)/4), Point(1, Rational(5)/4), Point(1, Rational(9)/4), Point(0, Rational(9)/4)) p3 = Polygon( Point(1, 2), Point(2, 2), Point(2, 1)) p4 = Polygon( Point(1, 1), Point(Rational(6)/5, 1), Point(1, Rational(6)/5)) pt1 = Point(half, half) pt2 = Point(1, 1) '''Polygon to Point''' assert p1.distance(pt1) == half assert p1.distance(pt2) == 0 assert p2.distance(pt1) == Rational(3)/4 assert p3.distance(pt2) == sqrt(2)/2 '''Polygon to Polygon''' # p1.distance(p2) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p1.distance(p2) == half/2 assert p1.distance(p3) == sqrt(2)/2 # p3.distance(p4) emits a warning with warns(UserWarning, \ match="Polygons may intersect producing erroneous output"): assert p3.distance(p4) == (sqrt(2)/2 - sqrt(Rational(2)/25)/2) def test_convex_hull(): p = [Point(-5, -1), Point(-2, 1), Point(-2, -1), Point(-1, -3), \ Point(0, 0), Point(1, 1), Point(2, 2), Point(2, -1), Point(3, 1), \ Point(4, -1), Point(6, 2)] ch = Polygon(p[0], p[3], p[9], p[10], p[6], p[1]) #test handling of duplicate points p.append(p[3]) #more than 3 collinear points another_p = [Point(-45, -85), Point(-45, 85), Point(-45, 26), \ Point(-45, -24)] ch2 = Segment(another_p[0], another_p[1]) assert convex_hull(*another_p) == ch2 assert convex_hull(*p) == ch assert convex_hull(p[0]) == p[0] assert convex_hull(p[0], p[1]) == Segment(p[0], p[1]) # no unique points assert convex_hull(*[p[-1]]*3) == p[-1] # collection of items assert convex_hull(*[Point(0, 0), \ Segment(Point(1, 0), Point(1, 1)), \ RegularPolygon(Point(2, 0), 2, 4)]) == \ Polygon(Point(0, 0), Point(2, -2), Point(4, 0), Point(2, 2)) def test_encloses(): # square with a dimpled left side s = Polygon(Point(0, 0), Point(1, 0), Point(1, 1), Point(0, 1), \ Point(S.Half, S.Half)) # the following is True if the polygon isn't treated as closing on itself assert s.encloses(Point(0, S.Half)) is False assert s.encloses(Point(S.Half, S.Half)) is False # it's a vertex assert s.encloses(Point(Rational(3, 4), S.Half)) is True def test_triangle_kwargs(): assert Triangle(sss=(3, 4, 5)) == \ Triangle(Point(0, 0), Point(3, 0), Point(3, 4)) assert Triangle(asa=(30, 2, 30)) == \ Triangle(Point(0, 0), Point(2, 0), Point(1, sqrt(3)/3)) assert Triangle(sas=(1, 45, 2)) == \ Triangle(Point(0, 0), Point(2, 0), Point(sqrt(2)/2, sqrt(2)/2)) assert Triangle(sss=(1, 2, 5)) is None assert deg(rad(180)) == 180 def test_transform(): pts = [Point(0, 0), Point(S.Half, Rational(1, 4)), Point(1, 1)] pts_out = [Point(-4, -10), Point(-3, Rational(-37, 4)), Point(-2, -7)] assert Triangle(*pts).scale(2, 3, (4, 5)) == Triangle(*pts_out) assert RegularPolygon((0, 0), 1, 4).scale(2, 3, (4, 5)) == \ Polygon(Point(-2, -10), Point(-4, -7), Point(-6, -10), Point(-4, -13)) def test_reflect(): x = Symbol('x', real=True) y = Symbol('y', real=True) b = Symbol('b') m = Symbol('m') l = Line((0, b), slope=m) p = Point(x, y) r = p.reflect(l) dp = l.perpendicular_segment(p).length dr = l.perpendicular_segment(r).length assert verify_numerically(dp, dr) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=oo)) \ == Triangle(Point(5, 0), Point(4, 0), Point(4, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=oo)) \ == Triangle(Point(-1, 0), Point(-2, 0), Point(-2, 2)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((0, 3), slope=0)) \ == Triangle(Point(1, 6), Point(2, 6), Point(2, 4)) assert Polygon((1, 0), (2, 0), (2, 2)).reflect(Line((3, 0), slope=0)) \ == Triangle(Point(1, 0), Point(2, 0), Point(2, -2)) def test_bisectors(): p1, p2, p3 = Point(0, 0), Point(1, 0), Point(0, 1) t = Triangle(p1, p2, p3) assert t.bisectors()[p2] == Segment(Point(1, 0), Point(0, sqrt(2) - 1)) def test_incenter(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).incenter \ == Point(1 - sqrt(2)/2, 1 - sqrt(2)/2) def test_inradius(): assert Triangle(Point(0, 0), Point(4, 0), Point(0, 3)).inradius == 1 def test_incircle(): assert Triangle(Point(0, 0), Point(2, 0), Point(0, 2)).incircle \ == Circle(Point(2 - sqrt(2), 2 - sqrt(2)), 2 - sqrt(2)) def test_exradii(): t = Triangle(Point(0, 0), Point(6, 0), Point(0, 2)) assert t.exradii[t.sides[2]] == (-2 + sqrt(10)) def test_medians(): t = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) assert t.medians[Point(0, 0)] == Segment(Point(0, 0), Point(S.Half, S.Half)) def test_medial(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).medial \ == Triangle(Point(S.Half, 0), Point(S.Half, S.Half), Point(0, S.Half)) def test_nine_point_circle(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).nine_point_circle \ == Circle(Point2D(Rational(1, 4), Rational(1, 4)), sqrt(2)/4) def test_eulerline(): assert Triangle(Point(0, 0), Point(1, 0), Point(0, 1)).eulerline \ == Line(Point2D(0, 0), Point2D(S.Half, S.Half)) assert Triangle(Point(0, 0), Point(10, 0), Point(5, 5*sqrt(3))).eulerline \ == Point2D(5, 5*sqrt(3)/3) assert Triangle(Point(4, -6), Point(4, -1), Point(-3, 3)).eulerline \ == Line(Point2D(Rational(64, 7), 3), Point2D(Rational(-29, 14), Rational(-7, 2))) def test_intersection(): poly1 = Triangle(Point(0, 0), Point(1, 0), Point(0, 1)) poly2 = Polygon(Point(0, 1), Point(-5, 0), Point(0, -4), Point(0, Rational(1, 5)), Point(S.Half, -0.1), Point(1,0), Point(0, 1)) assert poly1.intersection(poly2) == [Point2D(Rational(1, 3), 0), Segment(Point(0, Rational(1, 5)), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly1) == [Point(Rational(1, 3), 0), Segment(Point(0, 0), Point(0, Rational(1, 5))), Segment(Point(1, 0), Point(0, 1))] assert poly1.intersection(Point(0, 0)) == [Point(0, 0)] assert poly1.intersection(Point(-12, -43)) == [] assert poly2.intersection(Line((-12, 0), (12, 0))) == [Point(-5, 0), Point(0, 0),Point(Rational(1, 3), 0), Point(1, 0)] assert poly2.intersection(Line((-12, 12), (12, 12))) == [] assert poly2.intersection(Ray((-3,4), (1,0))) == [Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Circle((0, -1), 1)) == [Point(0, -2), Point(0, 0)] assert poly1.intersection(poly1) == [Segment(Point(0, 0), Point(1, 0)), Segment(Point(0, 1), Point(0, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(poly2) == [Segment(Point(-5, 0), Point(0, -4)), Segment(Point(0, -4), Point(0, Rational(1, 5))), Segment(Point(0, Rational(1, 5)), Point(S.Half, Rational(-1, 10))), Segment(Point(0, 1), Point(-5, 0)), Segment(Point(S.Half, Rational(-1, 10)), Point(1, 0)), Segment(Point(1, 0), Point(0, 1))] assert poly2.intersection(Triangle(Point(0, 1), Point(1, 0), Point(-1, 1))) \ == [Point(Rational(-5, 7), Rational(6, 7)), Segment(Point2D(0, 1), Point(1, 0))] assert poly1.intersection(RegularPolygon((-12, -15), 3, 3)) == [] def test_parameter_value(): t = Symbol('t') sq = Polygon((0, 0), (0, 1), (1, 1), (1, 0)) assert sq.parameter_value((0.5, 1), t) == {t: Rational(3, 8)} q = Polygon((0, 0), (2, 1), (2, 4), (4, 0)) assert q.parameter_value((4, 0), t) == {t: -6 + 3*sqrt(5)} # ~= 0.708 raises(ValueError, lambda: sq.parameter_value((5, 6), t)) def test_issue_12966(): poly = Polygon(Point(0, 0), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0)) t = Symbol('t') pt = poly.arbitrary_point(t) DELTA = 5/poly.perimeter assert [pt.subs(t, DELTA*i) for i in range(int(1/DELTA))] == [ Point(0, 0), Point(0, 5), Point(0, 10), Point(5, 10), Point(5, 5), Point(10, 5), Point(10, 0), Point(5, 0)] def test_second_moment_of_area(): x, y = symbols('x, y') # triangle p1, p2, p3 = [(0, 0), (4, 0), (0, 2)] p = (0, 0) # equation of hypotenuse eq_y = (1-x/4)*2 I_yy = integrate((x**2) * (integrate(1, (y, 0, eq_y))), (x, 0, 4)) I_xx = integrate(1 * (integrate(y**2, (y, 0, eq_y))), (x, 0, 4)) I_xy = integrate(x * (integrate(y, (y, 0, eq_y))), (x, 0, 4)) triangle = Polygon(p1, p2, p3) assert (I_xx - triangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - triangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - triangle.second_moment_of_area(p)[2]) == 0 # rectangle p1, p2, p3, p4=[(0, 0), (4, 0), (4, 2), (0, 2)] I_yy = integrate((x**2) * integrate(1, (y, 0, 2)), (x, 0, 4)) I_xx = integrate(1 * integrate(y**2, (y, 0, 2)), (x, 0, 4)) I_xy = integrate(x * integrate(y, (y, 0, 2)), (x, 0, 4)) rectangle = Polygon(p1, p2, p3, p4) assert (I_xx - rectangle.second_moment_of_area(p)[0]) == 0 assert (I_yy - rectangle.second_moment_of_area(p)[1]) == 0 assert (I_xy - rectangle.second_moment_of_area(p)[2]) == 0 r = RegularPolygon(Point(0, 0), 5, 3) assert r.second_moment_of_area() == (1875*sqrt(3)/S(32), 1875*sqrt(3)/S(32), 0) def test_first_moment(): a, b = symbols('a, b', positive=True) # rectangle p1 = Polygon((0, 0), (a, 0), (a, b), (0, b)) assert p1.first_moment_of_area() == (a*b**2/8, a**2*b/8) assert p1.first_moment_of_area((a/3, b/4)) == (-3*a*b**2/32, -a**2*b/9) p1 = Polygon((0, 0), (40, 0), (40, 30), (0, 30)) assert p1.first_moment_of_area() == (4500, 6000) # triangle p2 = Polygon((0, 0), (a, 0), (a/2, b)) assert p2.first_moment_of_area() == (4*a*b**2/81, a**2*b/24) assert p2.first_moment_of_area((a/8, b/6)) == (-25*a*b**2/648, -5*a**2*b/768) p2 = Polygon((0, 0), (12, 0), (12, 30)) p2.first_moment_of_area() == (1600/3, -640/3) def test_section_modulus_and_polar_second_moment_of_area(): a, b = symbols('a, b', positive=True) x, y = symbols('x, y') rectangle = Polygon((0, b), (0, 0), (a, 0), (a, b)) assert rectangle.section_modulus(Point(x, y)) == (a*b**3/12/(-b/2 + y), a**3*b/12/(-a/2 + x)) assert rectangle.polar_second_moment_of_area() == a**3*b/12 + a*b**3/12 convex = RegularPolygon((0, 0), 1, 6) assert convex.section_modulus() == (Rational(5, 8), sqrt(3)*Rational(5, 16)) assert convex.polar_second_moment_of_area() == 5*sqrt(3)/S(8) concave = Polygon((0, 0), (1, 8), (3, 4), (4, 6), (7, 1)) assert concave.section_modulus() == (Rational(-6371, 429), Rational(-9778, 519)) assert concave.polar_second_moment_of_area() == Rational(-38669, 252) def test_cut_section(): # concave polygon p = Polygon((-1, -1), (1, Rational(5, 2)), (2, 1), (3, Rational(5, 2)), (4, 2), (5, 3), (-1, 3)) l = Line((0, 0), (Rational(9, 2), 3)) p1 = p.cut_section(l)[0] p2 = p.cut_section(l)[1] assert p1 == Polygon( Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(1, Rational(5, 2)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(3, Rational(5, 2)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(Rational(9, 2), 3), Point2D(-1, 3), Point2D(-1, Rational(-2, 3))) assert p2 == Polygon(Point2D(-1, -1), Point2D(Rational(-9, 13), Rational(-6, 13)), Point2D(Rational(24, 13), Rational(16, 13)), Point2D(2, 1), Point2D(Rational(12, 5), Rational(8, 5)), Point2D(Rational(24, 7), Rational(16, 7)), Point2D(4, 2), Point2D(5, 3), Point2D(Rational(9, 2), 3), Point2D(-1, Rational(-2, 3))) # convex polygon p = RegularPolygon(Point2D(0,0), 6, 6) s = p.cut_section(Line((0, 0), slope=1)) assert s[0] == Polygon(Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(3, 3*sqrt(3)), Point2D(-3, 3*sqrt(3)), Point2D(-6, 0), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3))) assert s[1] == Polygon(Point2D(6, 0), Point2D(-3*sqrt(3) + 9, -3*sqrt(3) + 9), Point2D(-9 + 3*sqrt(3), -9 + 3*sqrt(3)), Point2D(-3, -3*sqrt(3)), Point2D(3, -3*sqrt(3))) # case where line does not intersects but coincides with the edge of polygon a, b = 20, 10 t1, t2, t3, t4 = [(0, b), (0, 0), (a, 0), (a, b)] p = Polygon(t1, t2, t3, t4) p1, p2 = p.cut_section(Line((0, b), slope=0)) assert p1 == None assert p2 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) p3, p4 = p.cut_section(Line((0, 0), slope=0)) assert p3 == Polygon(Point2D(0, 10), Point2D(0, 0), Point2D(20, 0), Point2D(20, 10)) assert p4 == None
67feb4055b1dd507e18fc377222e9a90b73a0db92cb6fbee89dbcc99c7d61f3c
from sympy.holonomic import (DifferentialOperator, HolonomicFunction, DifferentialOperators, from_hyper, from_meijerg, expr_to_holonomic) from sympy.holonomic.recurrence import RecurrenceOperators, HolonomicSequence from sympy import (symbols, hyper, S, sqrt, pi, exp, erf, erfc, sstr, Symbol, O, I, meijerg, sin, cos, log, cosh, besselj, hyperexpand, Ci, EulerGamma, Si, asinh, gamma, beta, Rational) from sympy import ZZ, QQ, RR def test_DifferentialOperator(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') assert Dx == R.derivative_operator assert Dx == DifferentialOperator([R.base.zero, R.base.one], R) assert x * Dx + x**2 * Dx**2 == DifferentialOperator([0, x, x**2], R) assert (x**2 + 1) + Dx + x * \ Dx**5 == DifferentialOperator([x**2 + 1, 1, 0, 0, 0, x], R) assert (x * Dx + x**2 + 1 - Dx * (x**3 + x))**3 == (-48 * x**6) + \ (-57 * x**7) * Dx + (-15 * x**8) * Dx**2 + (-x**9) * Dx**3 p = (x * Dx**2 + (x**2 + 3) * Dx**5) * (Dx + x**2) q = (2 * x) + (4 * x**2) * Dx + (x**3) * Dx**2 + \ (20 * x**2 + x + 60) * Dx**3 + (10 * x**3 + 30 * x) * Dx**4 + \ (x**4 + 3 * x**2) * Dx**5 + (x**2 + 3) * Dx**6 assert p == q def test_HolonomicFunction_addition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 * x, x) q = HolonomicFunction((2) * Dx + (x) * Dx**2, x) assert p == q p = HolonomicFunction(x * Dx + 1, x) q = HolonomicFunction(Dx + 1, x) r = HolonomicFunction((x - 2) + (x**2 - 2) * Dx + (x**2 - x) * Dx**2, x) assert p + q == r p = HolonomicFunction(x * Dx + Dx**2 * (x**2 + 2), x) q = HolonomicFunction(Dx - 3, x) r = HolonomicFunction((-54 * x**2 - 126 * x - 150) + (-135 * x**3 - 252 * x**2 - 270 * x + 140) * Dx +\ (-27 * x**4 - 24 * x**2 + 14 * x - 150) * Dx**2 + \ (9 * x**4 + 15 * x**3 + 38 * x**2 + 30 * x +40) * Dx**3, x) assert p + q == r p = HolonomicFunction(Dx**5 - 1, x) q = HolonomicFunction(x**3 + Dx, x) r = HolonomicFunction((-x**18 + 45*x**14 - 525*x**10 + 1575*x**6 - x**3 - 630*x**2) + \ (-x**15 + 30*x**11 - 195*x**7 + 210*x**3 - 1)*Dx + (x**18 - 45*x**14 + 525*x**10 - \ 1575*x**6 + x**3 + 630*x**2)*Dx**5 + (x**15 - 30*x**11 + 195*x**7 - 210*x**3 + \ 1)*Dx**6, x) assert p+q == r p = x**2 + 3*x + 8 q = x**3 - 7*x + 5 p = p*Dx - p.diff() q = q*Dx - q.diff() r = HolonomicFunction(p, x) + HolonomicFunction(q, x) s = HolonomicFunction((6*x**2 + 18*x + 14) + (-4*x**3 - 18*x**2 - 62*x + 10)*Dx +\ (x**4 + 6*x**3 + 31*x**2 - 10*x - 71)*Dx**2, x) assert r == s def test_HolonomicFunction_multiplication(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx+x+x*Dx**2, x) q = HolonomicFunction(x*Dx+Dx*x+Dx**2, x) r = HolonomicFunction((8*x**6 + 4*x**4 + 6*x**2 + 3) + (24*x**5 - 4*x**3 + 24*x)*Dx + \ (8*x**6 + 20*x**4 + 12*x**2 + 2)*Dx**2 + (8*x**5 + 4*x**3 + 4*x)*Dx**3 + \ (2*x**4 + x**2)*Dx**4, x) assert p*q == r p = HolonomicFunction(Dx**2+1, x) q = HolonomicFunction(Dx-1, x) r = HolonomicFunction((2) + (-2)*Dx + (1)*Dx**2, x) assert p*q == r p = HolonomicFunction(Dx**2+1+x+Dx, x) q = HolonomicFunction((Dx*x-1)**2, x) r = HolonomicFunction((4*x**7 + 11*x**6 + 16*x**5 + 4*x**4 - 6*x**3 - 7*x**2 - 8*x - 2) + \ (8*x**6 + 26*x**5 + 24*x**4 - 3*x**3 - 11*x**2 - 6*x - 2)*Dx + \ (8*x**6 + 18*x**5 + 15*x**4 - 3*x**3 - 6*x**2 - 6*x - 2)*Dx**2 + (8*x**5 + \ 10*x**4 + 6*x**3 - 2*x**2 - 4*x)*Dx**3 + (4*x**5 + 3*x**4 - x**2)*Dx**4, x) assert p*q == r p = HolonomicFunction(x*Dx**2-1, x) q = HolonomicFunction(Dx*x-x, x) r = HolonomicFunction((x - 3) + (-2*x + 2)*Dx + (x)*Dx**2, x) assert p*q == r def test_addition_initial_condition(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx-1, x, 0, [3]) q = HolonomicFunction(Dx**2+1, x, 0, [1, 0]) r = HolonomicFunction(-1 + Dx - Dx**2 + Dx**3, x, 0, [4, 3, 2]) assert p + q == r p = HolonomicFunction(Dx - x + Dx**2, x, 0, [1, 2]) q = HolonomicFunction(Dx**2 + x, x, 0, [1, 0]) r = HolonomicFunction((-x**4 - x**3/4 - x**2 + Rational(1, 4)) + (x**3 + x**2/4 + x*Rational(3, 4) + 1)*Dx + \ (x*Rational(-3, 2) + Rational(7, 4))*Dx**2 + (x**2 - x*Rational(7, 4) + Rational(1, 4))*Dx**3 + (x**2 + x/4 + S.Half)*Dx**4, x, 0, [2, 2, -2, 2]) assert p + q == r p = HolonomicFunction(Dx**2 + 4*x*Dx + x**2, x, 0, [3, 4]) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]) r = HolonomicFunction((x**6 + 2*x**4 - 5*x**2 - 6) + (4*x**5 + 36*x**3 - 32*x)*Dx + \ (x**6 + 3*x**4 + 5*x**2 - 9)*Dx**2 + (4*x**5 + 36*x**3 - 32*x)*Dx**3 + (x**4 + \ 10*x**2 - 3)*Dx**4, x, 0, [4, 5, -1, -17]) assert p + q == r q = HolonomicFunction(Dx**3 + x, x, 2, [3, 0, 1]) p = HolonomicFunction(Dx - 1, x, 2, [1]) r = HolonomicFunction((-x**2 - x + 1) + (x**2 + x)*Dx + (-x - 2)*Dx**3 + \ (x + 1)*Dx**4, x, 2, [4, 1, 2, -5 ]) assert p + q == r p = expr_to_holonomic(sin(x)) q = expr_to_holonomic(1/x, x0=1) r = HolonomicFunction((x**2 + 6) + (x**3 + 2*x)*Dx + (x**2 + 6)*Dx**2 + (x**3 + 2*x)*Dx**3, \ x, 1, [sin(1) + 1, -1 + cos(1), -sin(1) + 2]) assert p + q == r C_1 = symbols('C_1') p = expr_to_holonomic(sqrt(x)) q = expr_to_holonomic(sqrt(x**2-x)) r = (p + q).to_expr().subs(C_1, -I/2).expand() assert r == I*sqrt(x)*sqrt(-x + 1) + sqrt(x) def test_multiplication_initial_condition(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 + x*Dx - 1, x, 0, [3, 1]) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 1]) r = HolonomicFunction((x**4 + 14*x**2 + 60) + 4*x*Dx + (x**4 + 9*x**2 + 20)*Dx**2 + \ (2*x**3 + 18*x)*Dx**3 + (x**2 + 10)*Dx**4, x, 0, [3, 4, 2, 3]) assert p * q == r p = HolonomicFunction(Dx**2 + x, x, 0, [1, 0]) q = HolonomicFunction(Dx**3 - x**2, x, 0, [3, 3, 3]) r = HolonomicFunction((x**8 - 37*x**7/27 - 10*x**6/27 - 164*x**5/9 - 184*x**4/9 + \ 160*x**3/27 + 404*x**2/9 + 8*x + Rational(40, 3)) + (6*x**7 - 128*x**6/9 - 98*x**5/9 - 28*x**4/9 + \ 8*x**3/9 + 28*x**2 + x*Rational(40, 9) - 40)*Dx + (3*x**6 - 82*x**5/9 + 76*x**4/9 + 4*x**3/3 + \ 220*x**2/9 - x*Rational(80, 3))*Dx**2 + (-2*x**6 + 128*x**5/27 - 2*x**4/3 -80*x**2/9 + Rational(200, 9))*Dx**3 + \ (3*x**5 - 64*x**4/9 - 28*x**3/9 + 6*x**2 - x*Rational(20, 9) - Rational(20, 3))*Dx**4 + (-4*x**3 + 64*x**2/9 + \ x*Rational(8, 3))*Dx**5 + (x**4 - 64*x**3/27 - 4*x**2/3 + Rational(20, 9))*Dx**6, x, 0, [3, 3, 3, -3, -12, -24]) assert p * q == r p = HolonomicFunction(Dx - 1, x, 0, [2]) q = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) r = HolonomicFunction(2 -2*Dx + Dx**2, x, 0, [0, 2]) assert p * q == r q = HolonomicFunction(x*Dx**2 + 1 + 2*Dx, x, 0,[0, 1]) r = HolonomicFunction((x - 1) + (-2*x + 2)*Dx + x*Dx**2, x, 0, [0, 2]) assert p * q == r p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 3]) q = HolonomicFunction(Dx**3 + 1, x, 0, [1, 2, 1]) r = HolonomicFunction(6*Dx + 3*Dx**2 + 2*Dx**3 - 3*Dx**4 + Dx**6, x, 0, [1, 5, 14, 17, 17, 2]) assert p * q == r p = expr_to_holonomic(sin(x)) q = expr_to_holonomic(1/x, x0=1) r = HolonomicFunction(x + 2*Dx + x*Dx**2, x, 1, [sin(1), -sin(1) + cos(1)]) assert p * q == r p = expr_to_holonomic(sqrt(x)) q = expr_to_holonomic(sqrt(x**2-x)) r = (p * q).to_expr() assert r == I*x*sqrt(-x + 1) def test_HolonomicFunction_composition(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx-1, x).composition(x**2+x) r = HolonomicFunction((-2*x - 1) + Dx, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(x**5+x**2+1) r = HolonomicFunction((125*x**12 + 150*x**9 + 60*x**6 + 8*x**3) + (-20*x**3 - 2)*Dx + \ (5*x**4 + 2*x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2*x+x, x).composition(2*x**3+x**2+1) r = HolonomicFunction((216*x**9 + 324*x**8 + 180*x**7 + 152*x**6 + 112*x**5 + \ 36*x**4 + 4*x**3) + (24*x**4 + 16*x**3 + 3*x**2 - 6*x - 1)*Dx + (6*x**5 + 5*x**4 + \ x**3 + 3*x**2 + x)*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(1-x**2) r = HolonomicFunction((4*x**3) - Dx + x*Dx**2, x) assert p == r p = HolonomicFunction(Dx**2+1, x).composition(x - 2/(x**2 + 1)) r = HolonomicFunction((x**12 + 6*x**10 + 12*x**9 + 15*x**8 + 48*x**7 + 68*x**6 + \ 72*x**5 + 111*x**4 + 112*x**3 + 54*x**2 + 12*x + 1) + (12*x**8 + 32*x**6 + \ 24*x**4 - 4)*Dx + (x**12 + 6*x**10 + 4*x**9 + 15*x**8 + 16*x**7 + 20*x**6 + 24*x**5+ \ 15*x**4 + 16*x**3 + 6*x**2 + 4*x + 1)*Dx**2, x) assert p == r def test_from_hyper(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = hyper([1, 1], [Rational(3, 2)], x**2/4) q = HolonomicFunction((4*x) + (5*x**2 - 8)*Dx + (x**3 - 4*x)*Dx**2, x, 1, [2*sqrt(3)*pi/9, -4*sqrt(3)*pi/27 + Rational(4, 3)]) r = from_hyper(p) assert r == q p = from_hyper(hyper([1], [Rational(3, 2)], x**2/4)) q = HolonomicFunction(-x + (-x**2/2 + 2)*Dx + x*Dx**2, x) # x0 = 1 y0 = '[sqrt(pi)*exp(1/4)*erf(1/2), -sqrt(pi)*exp(1/4)*erf(1/2)/2 + 1]' assert sstr(p.y0) == y0 assert q.annihilator == p.annihilator def test_from_meijerg(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = from_meijerg(meijerg(([], [Rational(3, 2)]), ([S.Half], [S.Half, 1]), x)) q = HolonomicFunction(x/2 - Rational(1, 4) + (-x**2 + x/4)*Dx + x**2*Dx**2 + x**3*Dx**3, x, 1, \ [1/sqrt(pi), 1/(2*sqrt(pi)), -1/(4*sqrt(pi))]) assert p == q p = from_meijerg(meijerg(([], []), ([0], []), x)) q = HolonomicFunction(1 + Dx, x, 0, [1]) assert p == q p = from_meijerg(meijerg(([1], []), ([S.Half], [0]), x)) q = HolonomicFunction((x + S.Half)*Dx + x*Dx**2, x, 1, [sqrt(pi)*erf(1), exp(-1)]) assert p == q p = from_meijerg(meijerg(([0], [1]), ([0], []), 2*x**2)) q = HolonomicFunction((3*x**2 - 1)*Dx + x**3*Dx**2, x, 1, [-exp(Rational(-1, 2)) + 1, -exp(Rational(-1, 2))]) assert p == q def test_to_Sequence(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') n = symbols('n', integer=True) _, Sn = RecurrenceOperators(ZZ.old_poly_ring(n), 'Sn') p = HolonomicFunction(x**2*Dx**4 + x + Dx, x).to_sequence() q = [(HolonomicSequence(1 + (n + 2)*Sn**2 + (n**4 + 6*n**3 + 11*n**2 + 6*n)*Sn**3), 0, 1)] assert p == q p = HolonomicFunction(x**2*Dx**4 + x**3 + Dx**2, x).to_sequence() q = [(HolonomicSequence(1 + (n**4 + 14*n**3 + 72*n**2 + 163*n + 140)*Sn**5), 0, 0)] assert p == q p = HolonomicFunction(x**3*Dx**4 + 1 + Dx**2, x).to_sequence() q = [(HolonomicSequence(1 + (n**4 - 2*n**3 - n**2 + 2*n)*Sn + (n**2 + 3*n + 2)*Sn**2), 0, 0)] assert p == q p = HolonomicFunction(3*x**3*Dx**4 + 2*x*Dx + x*Dx**3, x).to_sequence() q = [(HolonomicSequence(2*n + (3*n**4 - 6*n**3 - 3*n**2 + 6*n)*Sn + (n**3 + 3*n**2 + 2*n)*Sn**2), 0, 1)] assert p == q def test_to_Sequence_Initial_Coniditons(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') n = symbols('n', integer=True) _, Sn = RecurrenceOperators(QQ.old_poly_ring(n), 'Sn') p = HolonomicFunction(Dx - 1, x, 0, [1]).to_sequence() q = [(HolonomicSequence(-1 + (n + 1)*Sn, 1), 0)] assert p == q p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]).to_sequence() q = [(HolonomicSequence(1 + (n**2 + 3*n + 2)*Sn**2, [0, 1]), 0)] assert p == q p = HolonomicFunction(Dx**2 + 1 + x**3*Dx, x, 0, [2, 3]).to_sequence() q = [(HolonomicSequence(n + Sn**2 + (n**2 + 7*n + 12)*Sn**4, [2, 3, -1, Rational(-1, 2), Rational(1, 12)]), 1)] assert p == q p = HolonomicFunction(x**3*Dx**5 + 1 + Dx, x).to_sequence() q = [(HolonomicSequence(1 + (n + 1)*Sn + (n**5 - 5*n**3 + 4*n)*Sn**2), 0, 3)] assert p == q C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') p = expr_to_holonomic(log(1+x**2)) q = [(HolonomicSequence(n**2 + (n**2 + 2*n)*Sn**2, [0, 0, C_2]), 0, 1)] assert p.to_sequence() == q p = p.diff() q = [(HolonomicSequence((n + 2) + (n + 2)*Sn**2, [C_0, 0]), 1, 0)] assert p.to_sequence() == q p = expr_to_holonomic(erf(x) + x).to_sequence() q = [(HolonomicSequence((2*n**2 - 2*n) + (n**3 + 2*n**2 - n - 2)*Sn**2, [0, 1 + 2/sqrt(pi), 0, C_3]), 0, 2)] assert p == q def test_series(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx**2 + 2*x*Dx, x, 0, [0, 1]).series(n=10) q = x - x**3/3 + x**5/10 - x**7/42 + x**9/216 + O(x**10) assert p == q p = HolonomicFunction(Dx - 1, x).composition(x**2, 0, [1]) # e^(x**2) q = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # cos(x) r = (p * q).series(n=10) # expansion of cos(x) * exp(x**2) s = 1 + x**2/2 + x**4/24 - 31*x**6/720 - 179*x**8/8064 + O(x**10) assert r == s t = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # log(1 + x) r = (p * t + q).series(n=10) s = 1 + x - x**2 + 4*x**3/3 - 17*x**4/24 + 31*x**5/30 - 481*x**6/720 +\ 71*x**7/105 - 20159*x**8/40320 + 379*x**9/840 + O(x**10) assert r == s p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [0, 1]).series(n=7) q = x + x**3/6 - 3*x**4/16 + x**5/20 - 23*x**6/960 + O(x**7) assert p == q p = HolonomicFunction((6+6*x-3*x**2) - (10*x-3*x**2-3*x**3)*Dx + \ (4-6*x**3+2*x**4)*Dx**2, x, 0, [1, 0]).series(n=7) q = 1 - 3*x**2/4 - x**3/4 - 5*x**4/32 - 3*x**5/40 - 17*x**6/384 + O(x**7) assert p == q p = expr_to_holonomic(erf(x) + x).series(n=10) C_3 = symbols('C_3') q = (erf(x) + x).series(n=10) assert p.subs(C_3, -2/(3*sqrt(pi))) == q assert expr_to_holonomic(sqrt(x**3 + x)).series(n=10) == sqrt(x**3 + x).series(n=10) assert expr_to_holonomic((2*x - 3*x**2)**Rational(1, 3)).series() == ((2*x - 3*x**2)**Rational(1, 3)).series() assert expr_to_holonomic(sqrt(x**2-x)).series() == (sqrt(x**2-x)).series() assert expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).series(n=10) == (cos(x)**2/x**2).series(n=10) assert expr_to_holonomic(cos(x)**2/x**2, x0=1).series(n=10) == (cos(x)**2/x**2).series(n=10, x0=1) assert expr_to_holonomic(cos(x-1)**2/(x-1)**2, x0=1, y0={-2: [1, 0, -1]}).series(n=10) \ == (cos(x-1)**2/(x-1)**2).series(x0=1, n=10) def test_evalf_euler(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # log(1+x) p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # path taken is a straight line from 0 to 1, on the real axis r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] s = '0.699525841805253' # approx. equal to log(2) i.e. 0.693147180559945 assert sstr(p.evalf(r, method='Euler')[-1]) == s # path taken is a traingle 0-->1+i-->2 r = [0.1 + 0.1*I] for i in range(9): r.append(r[-1]+0.1+0.1*I) for i in range(10): r.append(r[-1]+0.1-0.1*I) # close to the exact solution 1.09861228866811 # imaginary part also close to zero s = '1.07530466271334 - 0.0251200594793912*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # sin(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) s = '0.905546532085401 - 6.93889390390723e-18*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # computing sin(pi/2) using this method # using a linear path from 0 to pi/2 r = [0.1] for i in range(14): r.append(r[-1] + 0.1) r.append(pi/2) s = '1.08016557252834' # close to 1.0 (exact solution) assert sstr(p.evalf(r, method='Euler')[-1]) == s # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2) # computing the same value sin(pi/2) using different path r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(15): r.append(r[-1]+0.1) r.append(pi/2+I) for i in range(10): r.append(r[-1]-0.1*I) # close to 1.0 s = '0.976882381836257 - 1.65557671738537e-16*I' assert sstr(p.evalf(r, method='Euler')[-1]) == s # cos(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # compute cos(pi) along 0-->pi r = [0.05] for i in range(61): r.append(r[-1]+0.05) r.append(pi) # close to -1 (exact answer) s = '-1.08140824719196' assert sstr(p.evalf(r, method='Euler')[-1]) == s # a rectangular path (0 -> i -> 2+i -> 2) r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(20): r.append(r[-1]+0.1) for i in range(10): r.append(r[-1]-0.1*I) p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r, method='Euler') s = '0.501421652861245 - 3.88578058618805e-16*I' assert sstr(p[-1]) == s def test_evalf_rk4(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') # log(1+x) p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]) # path taken is a straight line from 0 to 1, on the real axis r = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1] s = '0.693146363174626' # approx. equal to log(2) i.e. 0.693147180559945 assert sstr(p.evalf(r)[-1]) == s # path taken is a traingle 0-->1+i-->2 r = [0.1 + 0.1*I] for i in range(9): r.append(r[-1]+0.1+0.1*I) for i in range(10): r.append(r[-1]+0.1-0.1*I) # close to the exact solution 1.09861228866811 # imaginary part also close to zero s = '1.098616 + 1.36083e-7*I' assert sstr(p.evalf(r)[-1].n(7)) == s # sin(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [0, 1]) s = '0.90929463522785 + 1.52655665885959e-16*I' assert sstr(p.evalf(r)[-1]) == s # computing sin(pi/2) using this method # using a linear path from 0 to pi/2 r = [0.1] for i in range(14): r.append(r[-1] + 0.1) r.append(pi/2) s = '0.999999895088917' # close to 1.0 (exact solution) assert sstr(p.evalf(r)[-1]) == s # trying different path, a rectangle (0-->i-->pi/2 + i-->pi/2) # computing the same value sin(pi/2) using different path r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(15): r.append(r[-1]+0.1) r.append(pi/2+I) for i in range(10): r.append(r[-1]-0.1*I) # close to 1.0 s = '1.00000003415141 + 6.11940487991086e-16*I' assert sstr(p.evalf(r)[-1]) == s # cos(x) p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]) # compute cos(pi) along 0-->pi r = [0.05] for i in range(61): r.append(r[-1]+0.05) r.append(pi) # close to -1 (exact answer) s = '-0.999999993238714' assert sstr(p.evalf(r)[-1]) == s # a rectangular path (0 -> i -> 2+i -> 2) r = [0.1*I] for i in range(9): r.append(r[-1]+0.1*I) for i in range(20): r.append(r[-1]+0.1) for i in range(10): r.append(r[-1]-0.1*I) p = HolonomicFunction(Dx**2 + 1, x, 0, [1,1]).evalf(r) s = '0.493152791638442 - 1.41553435639707e-15*I' assert sstr(p[-1]) == s def test_expr_to_holonomic(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = expr_to_holonomic((sin(x)/x)**2) q = HolonomicFunction(8*x + (4*x**2 + 6)*Dx + 6*x*Dx**2 + x**2*Dx**3, x, 0, \ [1, 0, Rational(-2, 3)]) assert p == q p = expr_to_holonomic(1/(1+x**2)**2) q = HolonomicFunction(4*x + (x**2 + 1)*Dx, x, 0, [1]) assert p == q p = expr_to_holonomic(exp(x)*sin(x)+x*log(1+x)) q = HolonomicFunction((2*x**3 + 10*x**2 + 20*x + 18) + (-2*x**4 - 10*x**3 - 20*x**2 \ - 18*x)*Dx + (2*x**5 + 6*x**4 + 7*x**3 + 8*x**2 + 10*x - 4)*Dx**2 + \ (-2*x**5 - 5*x**4 - 2*x**3 + 2*x**2 - x + 4)*Dx**3 + (x**5 + 2*x**4 - x**3 - \ 7*x**2/2 + x + Rational(5, 2))*Dx**4, x, 0, [0, 1, 4, -1]) assert p == q p = expr_to_holonomic(x*exp(x)+cos(x)+1) q = HolonomicFunction((-x - 3)*Dx + (x + 2)*Dx**2 + (-x - 3)*Dx**3 + (x + 2)*Dx**4, x, \ 0, [2, 1, 1, 3]) assert p == q assert (x*exp(x)+cos(x)+1).series(n=10) == p.series(n=10) p = expr_to_holonomic(log(1 + x)**2 + 1) q = HolonomicFunction(Dx + (3*x + 3)*Dx**2 + (x**2 + 2*x + 1)*Dx**3, x, 0, [1, 0, 2]) assert p == q p = expr_to_holonomic(erf(x)**2 + x) q = HolonomicFunction((8*x**4 - 2*x**2 + 2)*Dx**2 + (6*x**3 - x/2)*Dx**3 + \ (x**2+ Rational(1, 4))*Dx**4, x, 0, [0, 1, 8/pi, 0]) assert p == q p = expr_to_holonomic(cosh(x)*x) q = HolonomicFunction((-x**2 + 2) -2*x*Dx + x**2*Dx**2, x, 0, [0, 1]) assert p == q p = expr_to_holonomic(besselj(2, x)) q = HolonomicFunction((x**2 - 4) + x*Dx + x**2*Dx**2, x, 0, [0, 0]) assert p == q p = expr_to_holonomic(besselj(0, x) + exp(x)) q = HolonomicFunction((-x**2 - x/2 + S.Half) + (x**2 - x/2 - Rational(3, 2))*Dx + (-x**2 + x/2 + 1)*Dx**2 +\ (x**2 + x/2)*Dx**3, x, 0, [2, 1, S.Half]) assert p == q p = expr_to_holonomic(sin(x)**2/x) q = HolonomicFunction(4 + 4*x*Dx + 3*Dx**2 + x*Dx**3, x, 0, [0, 1, 0]) assert p == q p = expr_to_holonomic(sin(x)**2/x, x0=2) q = HolonomicFunction((4) + (4*x)*Dx + (3)*Dx**2 + (x)*Dx**3, x, 2, [sin(2)**2/2, sin(2)*cos(2) - sin(2)**2/4, -3*sin(2)**2/4 + cos(2)**2 - sin(2)*cos(2)]) assert p == q p = expr_to_holonomic(log(x)/2 - Ci(2*x)/2 + Ci(2)/2) q = HolonomicFunction(4*Dx + 4*x*Dx**2 + 3*Dx**3 + x*Dx**4, x, 0, \ [-log(2)/2 - EulerGamma/2 + Ci(2)/2, 0, 1, 0]) assert p == q p = p.to_expr() q = log(x)/2 - Ci(2*x)/2 + Ci(2)/2 assert p == q p = expr_to_holonomic(x**S.Half, x0=1) q = HolonomicFunction(x*Dx - S.Half, x, 1, [1]) assert p == q p = expr_to_holonomic(sqrt(1 + x**2)) q = HolonomicFunction((-x) + (x**2 + 1)*Dx, x, 0, [1]) assert p == q assert (expr_to_holonomic(sqrt(x) + sqrt(2*x)).to_expr()-\ (sqrt(x) + sqrt(2*x))).simplify() == 0 assert expr_to_holonomic(3*x+2*sqrt(x)).to_expr() == 3*x+2*sqrt(x) p = expr_to_holonomic((x**4+x**3+5*x**2+3*x+2)/x**2, lenics=3) q = HolonomicFunction((-2*x**4 - x**3 + 3*x + 4) + (x**5 + x**4 + 5*x**3 + 3*x**2 + \ 2*x)*Dx, x, 0, {-2: [2, 3, 5]}) assert p == q p = expr_to_holonomic(1/(x-1)**2, lenics=3, x0=1) q = HolonomicFunction((2) + (x - 1)*Dx, x, 1, {-2: [1, 0, 0]}) assert p == q a = symbols("a") p = expr_to_holonomic(sqrt(a*x), x=x) assert p.to_expr() == sqrt(a)*sqrt(x) def test_to_hyper(): x = symbols('x') R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 2, x, 0, [3]).to_hyper() q = 3 * hyper([], [], 2*x) assert p == q p = hyperexpand(HolonomicFunction((1 + x) * Dx - 3, x, 0, [2]).to_hyper()).expand() q = 2*x**3 + 6*x**2 + 6*x + 2 assert p == q p = HolonomicFunction((1 + x)*Dx**2 + Dx, x, 0, [0, 1]).to_hyper() q = -x**2*hyper((2, 2, 1), (3, 2), -x)/2 + x assert p == q p = HolonomicFunction(2*x*Dx + Dx**2, x, 0, [0, 2/sqrt(pi)]).to_hyper() q = 2*x*hyper((S.Half,), (Rational(3, 2),), -x**2)/sqrt(pi) assert p == q p = hyperexpand(HolonomicFunction(2*x*Dx + Dx**2, x, 0, [1, -2/sqrt(pi)]).to_hyper()) q = erfc(x) assert p.rewrite(erfc) == q p = hyperexpand(HolonomicFunction((x**2 - 1) + x*Dx + x**2*Dx**2, x, 0, [0, S.Half]).to_hyper()) q = besselj(1, x) assert p == q p = hyperexpand(HolonomicFunction(x*Dx**2 + Dx + x, x, 0, [1, 0]).to_hyper()) q = besselj(0, x) assert p == q def test_to_expr(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(Dx - 1, x, 0, [1]).to_expr() q = exp(x) assert p == q p = HolonomicFunction(Dx**2 + 1, x, 0, [1, 0]).to_expr() q = cos(x) assert p == q p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]).to_expr() q = cosh(x) assert p == q p = HolonomicFunction(2 + (4*x - 1)*Dx + \ (x**2 - x)*Dx**2, x, 0, [1, 2]).to_expr().expand() q = 1/(x**2 - 2*x + 1) assert p == q p = expr_to_holonomic(sin(x)**2/x).integrate((x, 0, x)).to_expr() q = (sin(x)**2/x).integrate((x, 0, x)) assert p == q C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') p = expr_to_holonomic(log(1+x**2)).to_expr() q = C_2*log(x**2 + 1) assert p == q p = expr_to_holonomic(log(1+x**2)).diff().to_expr() q = C_0*x/(x**2 + 1) assert p == q p = expr_to_holonomic(erf(x) + x).to_expr() q = 3*C_3*x - 3*sqrt(pi)*C_3*erf(x)/2 + x + 2*x/sqrt(pi) assert p == q p = expr_to_holonomic(sqrt(x), x0=1).to_expr() assert p == sqrt(x) assert expr_to_holonomic(sqrt(x)).to_expr() == sqrt(x) p = expr_to_holonomic(sqrt(1 + x**2)).to_expr() assert p == sqrt(1+x**2) p = expr_to_holonomic((2*x**2 + 1)**Rational(2, 3)).to_expr() assert p == (2*x**2 + 1)**Rational(2, 3) p = expr_to_holonomic(sqrt(-x**2+2*x)).to_expr() assert p == sqrt(x)*sqrt(-x + 2) p = expr_to_holonomic((-2*x**3+7*x)**Rational(2, 3)).to_expr() q = x**Rational(2, 3)*(-2*x**2 + 7)**Rational(2, 3) assert p == q p = from_hyper(hyper((-2, -3), (S.Half, ), x)) s = hyperexpand(hyper((-2, -3), (S.Half, ), x)) D_0 = Symbol('D_0') C_0 = Symbol('C_0') assert (p.to_expr().subs({C_0:1, D_0:0}) - s).simplify() == 0 p.y0 = {0: [1], S.Half: [0]} assert p.to_expr() == s assert expr_to_holonomic(x**5).to_expr() == x**5 assert expr_to_holonomic(2*x**3-3*x**2).to_expr().expand() == \ 2*x**3-3*x**2 a = symbols("a") p = (expr_to_holonomic(1.4*x)*expr_to_holonomic(a*x, x)).to_expr() q = 1.4*a*x**2 assert p == q p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(a*x, x)).to_expr() q = x*(a + 1.4) assert p == q p = (expr_to_holonomic(1.4*x)+expr_to_holonomic(x)).to_expr() assert p == 2.4*x def test_integrate(): x = symbols('x') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 2, 3)) q = '0.166270406994788' assert sstr(p) == q p = expr_to_holonomic(sin(x)).integrate((x, 0, x)).to_expr() q = 1 - cos(x) assert p == q p = expr_to_holonomic(sin(x)).integrate((x, 0, 3)) q = 1 - cos(3) assert p == q p = expr_to_holonomic(sin(x)/x, x0=1).integrate((x, 1, 2)) q = '0.659329913368450' assert sstr(p) == q p = expr_to_holonomic(sin(x)**2/x, x0=1).integrate((x, 1, 0)) q = '-0.423690480850035' assert sstr(p) == q p = expr_to_holonomic(sin(x)/x) assert p.integrate(x).to_expr() == Si(x) assert p.integrate((x, 0, 2)) == Si(2) p = expr_to_holonomic(sin(x)**2/x) q = p.to_expr() assert p.integrate(x).to_expr() == q.integrate((x, 0, x)) assert p.integrate((x, 0, 1)) == q.integrate((x, 0, 1)) assert expr_to_holonomic(1/x, x0=1).integrate(x).to_expr() == log(x) p = expr_to_holonomic((x + 1)**3*exp(-x), x0=-1).integrate(x).to_expr() q = (-x**3 - 6*x**2 - 15*x + 6*exp(x + 1) - 16)*exp(-x) assert p == q p = expr_to_holonomic(cos(x)**2/x**2, y0={-2: [1, 0, -1]}).integrate(x).to_expr() q = -Si(2*x) - cos(x)**2/x assert p == q p = expr_to_holonomic(sqrt(x**2+x)).integrate(x).to_expr() q = (x**Rational(3, 2)*(2*x**2 + 3*x + 1) - x*sqrt(x + 1)*asinh(sqrt(x)))/(4*x*sqrt(x + 1)) assert p == q p = expr_to_holonomic(sqrt(x**2+1)).integrate(x).to_expr() q = (sqrt(x**2+1)).integrate(x) assert (p-q).simplify() == 0 p = expr_to_holonomic(1/x**2, y0={-2:[1, 0, 0]}) r = expr_to_holonomic(1/x**2, lenics=3) assert p == r q = expr_to_holonomic(cos(x)**2) assert (r*q).integrate(x).to_expr() == -Si(2*x) - cos(x)**2/x def test_diff(): x, y = symbols('x, y') R, Dx = DifferentialOperators(ZZ.old_poly_ring(x), 'Dx') p = HolonomicFunction(x*Dx**2 + 1, x, 0, [0, 1]) assert p.diff().to_expr() == p.to_expr().diff().simplify() p = HolonomicFunction(Dx**2 - 1, x, 0, [1, 0]) assert p.diff(x, 2).to_expr() == p.to_expr() p = expr_to_holonomic(Si(x)) assert p.diff().to_expr() == sin(x)/x assert p.diff(y) == 0 C_0, C_1, C_2, C_3 = symbols('C_0, C_1, C_2, C_3') q = Si(x) assert p.diff(x).to_expr() == q.diff() assert p.diff(x, 2).to_expr().subs(C_0, Rational(-1, 3)) == q.diff(x, 2).simplify() assert p.diff(x, 3).series().subs({C_3: Rational(-1, 3), C_0: 0}) == q.diff(x, 3).series() def test_extended_domain_in_expr_to_holonomic(): x = symbols('x') p = expr_to_holonomic(1.2*cos(3.1*x)) assert p.to_expr() == 1.2*cos(3.1*x) assert sstr(p.integrate(x).to_expr()) == '0.387096774193548*sin(3.1*x)' _, Dx = DifferentialOperators(RR.old_poly_ring(x), 'Dx') p = expr_to_holonomic(1.1329138213*x) q = HolonomicFunction((-1.1329138213) + (1.1329138213*x)*Dx, x, 0, {1: [1.1329138213]}) assert p == q assert p.to_expr() == 1.1329138213*x assert sstr(p.integrate((x, 1, 2))) == sstr((1.1329138213*x).integrate((x, 1, 2))) y, z = symbols('y, z') p = expr_to_holonomic(sin(x*y*z), x=x) assert p.to_expr() == sin(x*y*z) assert p.integrate(x).to_expr() == (-cos(x*y*z) + 1)/(y*z) p = expr_to_holonomic(sin(x*y + z), x=x).integrate(x).to_expr() q = (cos(z) - cos(x*y + z))/y assert p == q a = symbols('a') p = expr_to_holonomic(a*x, x) assert p.to_expr() == a*x assert p.integrate(x).to_expr() == a*x**2/2 D_2, C_1 = symbols("D_2, C_1") p = expr_to_holonomic(x) + expr_to_holonomic(1.2*cos(x)) p = p.to_expr().subs(D_2, 0) assert p - x - 1.2*cos(1.0*x) == 0 p = expr_to_holonomic(x) * expr_to_holonomic(1.2*cos(x)) p = p.to_expr().subs(C_1, 0) assert p - 1.2*x*cos(1.0*x) == 0 def test_to_meijerg(): x = symbols('x') assert hyperexpand(expr_to_holonomic(sin(x)).to_meijerg()) == sin(x) assert hyperexpand(expr_to_holonomic(cos(x)).to_meijerg()) == cos(x) assert hyperexpand(expr_to_holonomic(exp(x)).to_meijerg()) == exp(x) assert hyperexpand(expr_to_holonomic(log(x)).to_meijerg()).simplify() == log(x) assert expr_to_holonomic(4*x**2/3 + 7).to_meijerg() == 4*x**2/3 + 7 assert hyperexpand(expr_to_holonomic(besselj(2, x), lenics=3).to_meijerg()) == besselj(2, x) p = hyper((Rational(-1, 2), -3), (), x) assert from_hyper(p).to_meijerg() == hyperexpand(p) p = hyper((S.One, S(3)), (S(2), ), x) assert (hyperexpand(from_hyper(p).to_meijerg()) - hyperexpand(p)).expand() == 0 p = from_hyper(hyper((-2, -3), (S.Half, ), x)) s = hyperexpand(hyper((-2, -3), (S.Half, ), x)) C_0 = Symbol('C_0') C_1 = Symbol('C_1') D_0 = Symbol('D_0') assert (hyperexpand(p.to_meijerg()).subs({C_0:1, D_0:0}) - s).simplify() == 0 p.y0 = {0: [1], S.Half: [0]} assert (hyperexpand(p.to_meijerg()) - s).simplify() == 0 p = expr_to_holonomic(besselj(S.Half, x), initcond=False) assert (p.to_expr() - (D_0*sin(x) + C_0*cos(x) + C_1*sin(x))/sqrt(x)).simplify() == 0 p = expr_to_holonomic(besselj(S.Half, x), y0={Rational(-1, 2): [sqrt(2)/sqrt(pi), sqrt(2)/sqrt(pi)]}) assert (p.to_expr() - besselj(S.Half, x) - besselj(Rational(-1, 2), x)).simplify() == 0 def test_gaussian(): mu, x = symbols("mu x") sd = symbols("sd", positive=True) Q = QQ[mu, sd].get_field() e = sqrt(2)*exp(-(-mu + x)**2/(2*sd**2))/(2*sqrt(pi)*sd) h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((-mu/sd**2 + x/sd**2) + (1)*Dx, x) assert h1 == h2 def test_beta(): a, b, x = symbols("a b x", positive=True) e = x**(a - 1)*(-x + 1)**(b - 1)/beta(a, b) Q = QQ[a, b].get_field() h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((a + x*(-a - b + 2) - 1) + (x**2 - x)*Dx, x) assert h1 == h2 def test_gamma(): a, b, x = symbols("a b x", positive=True) e = b**(-a)*x**(a - 1)*exp(-x/b)/gamma(a) Q = QQ[a, b].get_field() h1 = expr_to_holonomic(e, x, domain=Q) _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h2 = HolonomicFunction((-a + 1 + x/b) + (x)*Dx, x) assert h1 == h2 def test_symbolic_power(): x, n = symbols("x n") Q = QQ[n].get_field() _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -n h2 = HolonomicFunction((n) + (x)*Dx, x) assert h1 == h2 def test_negative_power(): x = symbols("x") _, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** -2 h2 = HolonomicFunction((2) + (x)*Dx, x) assert h1 == h2 def test_expr_in_power(): x, n = symbols("x n") Q = QQ[n].get_field() _, Dx = DifferentialOperators(Q.old_poly_ring(x), 'Dx') h1 = HolonomicFunction((-1) + (x)*Dx, x) ** (n - 3) h2 = HolonomicFunction((-n + 3) + (x)*Dx, x) assert h1 == h2 def test_DifferentialOperatorEqPoly(): x = symbols('x', integer=True) R, Dx = DifferentialOperators(QQ.old_poly_ring(x), 'Dx') do = DifferentialOperator([x**2, R.base.zero, R.base.zero], R) do2 = DifferentialOperator([x**2, 1, x], R) assert not do == do2 # polynomial comparison issue, see https://github.com/sympy/sympy/pull/15799 # should work once that is solved # p = do.listofpoly[0] # assert do == p p2 = do2.listofpoly[0] assert not do2 == p2
129562f8a6f945f9085136d789936ed13dfcead85e821dded006bf5cb13d1eeb
from __future__ import unicode_literals, print_function from sympy.external import import_module import os cin = import_module('clang.cindex', __import__kwargs = {'fromlist': ['cindex']}) """ This module contains all the necessary Classes and Function used to Parse C and C++ code into SymPy expression The module serves as a backend for SymPyExpression to parse C code It is also dependent on Clang's AST and Sympy's Codegen AST. The module only supports the features currently supported by the Clang and codegen AST which will be updated as the development of codegen AST and this module progresses. You might find unexpected bugs and exceptions while using the module, feel free to report them to the SymPy Issue Tracker Features Supported ================== - Variable Declarations (integers and reals) - Assignment (using integer & floating literal and function calls) - Function Definitions nad Declaration - Function Calls - Compound statements, Return statements Notes ===== The module is dependent on an external dependency which needs to be installed to use the features of this module. Clang: The C and C++ compiler which is used to extract an AST from the provided C source code. Refrences ========= .. [1] https://github.com/sympy/sympy/issues .. [2] https://clang.llvm.org/docs/ .. [3] https://clang.llvm.org/docs/IntroductionToTheClangAST.html """ if cin: from sympy.codegen.ast import (Variable, IntBaseType, FloatBaseType, String, Integer, Float, FunctionPrototype, FunctionDefinition, FunctionCall, none, Return) import sys import tempfile class BaseParser(object): """Base Class for the C parser""" def __init__(self): """Initializes the Base parser creating a Clang AST index""" self.index = cin.Index.create() def diagnostics(self, out): """Diagostics function for the Clang AST""" for diag in self.tu.diagnostics: print('%s %s (line %s, col %s) %s' % ( { 4: 'FATAL', 3: 'ERROR', 2: 'WARNING', 1: 'NOTE', 0: 'IGNORED', }[diag.severity], diag.location.file, diag.location.line, diag.location.column, diag.spelling ), file=out) class CCodeConverter(BaseParser): """The Code Convereter for Clang AST The converter object takes the C source code or file as input and converts them to SymPy Expressions. """ def __init__(self, name): """Initializes the code converter""" super(CCodeConverter, self).__init__() self._py_nodes = [] def parse(self, filenames, flags): """Function to parse a file with C source code It takes the filename as an attribute and creates a Clang AST Translation Unit parsing the file. Then the transformation function is called on the transaltion unit, whose reults are collected into a list which is returned by the function. Parameters ========== filenames : string Path to the C file to be parsed flags: list Arguments to be passed to Clang while parsing the C code Returns ======= py_nodes: list A list of sympy AST nodes """ filename = os.path.abspath(filenames) self.tu = self.index.parse( filename, args=flags, options=cin.TranslationUnit.PARSE_DETAILED_PROCESSING_RECORD ) for child in self.tu.cursor.get_children(): if child.kind == cin.CursorKind.VAR_DECL: self._py_nodes.append(self.transform(child)) elif (child.kind == cin.CursorKind.FUNCTION_DECL): self._py_nodes.append(self.transform(child)) else: pass return self._py_nodes def parse_str(self, source, flags): """Function to parse a string with C source code It takes the source code as an attribute, stores it in a temporary file and creates a Clang AST Translation Unit parsing the file. Then the transformation function is called on the transaltion unit, whose reults are collected into a list which is returned by the function. Parameters ========== source : string Path to the C file to be parsed flags: list Arguments to be passed to Clang while parsing the C code Returns ======= py_nodes: list A list of sympy AST nodes """ file = tempfile.NamedTemporaryFile(mode = 'w+', suffix = '.h') file.write(source) file.seek(0) self.tu = self.index.parse( file.name, args=flags, options=cin.TranslationUnit.PARSE_DETAILED_PROCESSING_RECORD ) file.close() for child in self.tu.cursor.get_children(): if child.kind == cin.CursorKind.VAR_DECL: self._py_nodes.append(self.transform(child)) elif (child.kind == cin.CursorKind.FUNCTION_DECL): self._py_nodes.append(self.transform(child)) else: pass return self._py_nodes def transform(self, node): """Transformation Function for a Clang AST nodes It determines the kind of node and calss the respective transforation function for that node. Raises ====== NotImplementedError : if the transformation for the provided node is not implemented """ try: handler = getattr(self, 'transform_%s' % node.kind.name.lower()) except AttributeError: print( "Ignoring node of type %s (%s)" % ( node.kind, ' '.join( t.spelling for t in node.get_tokens()) ), file=sys.stderr ) handler = None if handler: result = handler(node) return result def transform_var_decl(self, node): """Transformation Function for Variable Declaration Used to create nodes for variable declarations and assignments with values or function call for the respective nodes in the clang AST Returns ======= A variable node as Declaration, with the given value or 0 if the value is not provided Raises ====== NotImplementedError : if called for data types not currently implemented Notes ===== This function currently only supports basic Integer and Float data types """ try: children = node.get_children() child = next(children) #ignoring namespace and type details for the variable while child.kind == cin.CursorKind.NAMESPACE_REF: child = next(children) while child.kind == cin.CursorKind.TYPE_REF: child = next(children) val = self.transform(child) # List in case of variable assignment, FunctionCall node in case of a funcion call if (child.kind == cin.CursorKind.INTEGER_LITERAL or child.kind == cin.CursorKind.UNEXPOSED_EXPR): if (node.type.kind == cin.TypeKind.INT): type = IntBaseType(String('integer')) value = Integer(val) elif (node.type.kind == cin.TypeKind.FLOAT): type = FloatBaseType(String('real')) value = Float(val) else: raise NotImplementedError() return Variable( node.spelling ).as_Declaration( type = type, value = value ) elif (child.kind == cin.CursorKind.CALL_EXPR): return Variable( node.spelling ).as_Declaration( value = val ) else: raise NotImplementedError() except StopIteration: if (node.type.kind == cin.TypeKind.INT): type = IntBaseType(String('integer')) value = Integer(0) elif (node.type.kind == cin.TypeKind.FLOAT): type = FloatBaseType(String('real')) value = Float(0.0) else: raise NotImplementedError() return Variable( node.spelling ).as_Declaration( type = type, value = value ) def transform_function_decl(self, node): """Transformation Function For Function Declaration Used to create nodes for function declarations and definitions for the respective nodes in the clang AST Returns ======= function : Codegen AST node - FunctionPrototype node if function body is not present - FunctionDefinition node if the function body is present """ token = node.get_tokens() c_ret_type = next(token).spelling if (c_ret_type == 'void'): ret_type = none elif(c_ret_type == 'int'): ret_type = type = IntBaseType(String('integer')) elif (c_ret_type == 'float'): ret_type = FloatBaseType(String('real')) else: raise NotImplementedError("Variable not yet supported") body = [] param = [] try: children = node.get_children() child = next(children) # If the node has any children, the first children will be the # return type and namespace for the function declaration. These # nodes can be ignored. while child.kind == cin.CursorKind.NAMESPACE_REF: child = next(children) while child.kind == cin.CursorKind.TYPE_REF: child = next(children) # Subsequent nodes will be the parameters for the function. try: while True: decl = self.transform(child) if (child.kind == cin.CursorKind.PARM_DECL): param.append(decl) elif (child.kind == cin.CursorKind.COMPOUND_STMT): for val in decl: body.append(val) else: body.append(decl) child = next(children) except StopIteration: pass except StopIteration: pass if body == []: function = FunctionPrototype( return_type = ret_type, name = node.spelling, parameters = param ) else: function = FunctionDefinition( return_type = ret_type, name = node.spelling, parameters = param, body = body ) return function def transform_parm_decl(self, node): """Transformation function for Parameter Declaration Used to create parameter nodes for the required functions for the respective nodes in the clang AST Returns ======= param : Codegen AST Node Variable node with the value nad type of the variable Raises ====== ValueError if multiple children encountered in the parameter node """ if (node.type.kind == cin.TypeKind.INT): type = IntBaseType(String('integer')) value = Integer(0) elif (node.type.kind == cin.TypeKind.FLOAT): type = FloatBaseType(String('real')) value = Float(0.0) try: children = node.get_children() child = next(children) # Any namespace nodes can be ignored while child.kind in [cin.CursorKind.NAMESPACE_REF, cin.CursorKind.TYPE_REF, cin.CursorKind.TEMPLATE_REF]: child = next(children) # If there is a child, it is the default value of the parameter. lit = self.transform(child) if (node.type.kind == cin.TypeKind.INT): val = Integer(lit) elif (node.type.kind == cin.TypeKind.FLOAT): val = Float(lit) param = Variable( node.spelling ).as_Declaration( type = type, value = val ) except StopIteration: param = Variable( node.spelling ).as_Declaration( type = type, value = value ) try: value = self.transform(next(children)) raise ValueError("Can't handle multiple children on parameter") except StopIteration: pass return param def transform_integer_literal(self, node): """Transformation function for integer literal Used to get the value and type of the given integer literal. Returns ======= val : list List with two arguments type and Value type contains the type of the integer value contains the value stored in the variable Notes ===== Only Base Integer type supported for now """ try: value = next(node.get_tokens()).spelling except StopIteration: # No tokens value = node.literal return int(value) def transform_floating_literal(self, node): """Transformation function for floating literal Used to get the value and type of the given floating literal. Returns ======= val : list List with two arguments type and Value type contains the type of float value contains the value stored in the variable Notes ===== Only Base Float type supported for now """ try: value = next(node.get_tokens()).spelling except (StopIteration, ValueError): # No tokens value = node.literal return float(value) def transform_string_literal(self, node): #TODO: No string type in AST #type = #try: # value = next(node.get_tokens()).spelling #except (StopIteration, ValueError): # No tokens # value = node.literal #val = [type, value] #return val pass def transform_character_literal(self, node): #TODO: No string Type in AST #type = #try: # value = next(node.get_tokens()).spelling #except (StopIteration, ValueError): # No tokens # value = node.literal #val = [type, value] #return val pass def transform_unexposed_decl(self,node): """Transformation function for unexposed declarations""" pass def transform_unexposed_expr(self, node): """Transformation function for unexposed expression Unexposed expressions are used to wrap float, double literals and expressions Returns ======= expr : Codegen AST Node the result from the wrapped expression None : NoneType No childs are found for the node Raises ====== ValueError if the expression contains multiple children """ # Ignore unexposed nodes; pass whatever is the first # (and should be only) child unaltered. try: children = node.get_children() expr = self.transform(next(children)) except StopIteration: return None try: next(children) raise ValueError("Unexposed expression has > 1 children.") except StopIteration: pass return expr def transform_decl_ref_expr(self, node): """Returns the name of the declaration reference""" return node.spelling def transform_call_expr(self, node): """Transformation function for a call expression Used to create function call nodes for the function calls present in the C code Returns ======= FunctionCall : Codegen AST Node FunctionCall node with parameters if any parameters are present """ param = [] children = node.get_children() child = next(children) while child.kind == cin.CursorKind.NAMESPACE_REF: child = next(children) while child.kind == cin.CursorKind.TYPE_REF: child = next(children) first_child = self.transform(child) try: for child in children: arg = self.transform(child) if (child.kind == cin.CursorKind.INTEGER_LITERAL): param.append(Integer(arg)) elif (child.kind == cin.CursorKind.FLOATING_LITERAL): param.append(Float(arg)) else: param.append(arg) return FunctionCall(first_child, param) except StopIteration: return FunctionCall(first_child) def transform_return_stmt(self, node): """Returns the Return Node for a return statement""" return Return(next(node.get_children()).spelling) def transform_compound_stmt(self, node): """Transformation function for compond statemets Returns ======= expr : list list of Nodes for the expressions present in the statement None : NoneType if the compound statement is empty """ try: expr = [] children = node.get_children() for child in children: expr.append(self.transform(child)) except StopIteration: return None return expr def transform_decl_stmt(self, node): """Transformation function for declaration statements These statements are used to wrap different kinds of declararions like variable or function declaration The function calls the transformer function for the child of the given node Returns ======= statement : Codegen AST Node contains the node returned by the children node for the type of declaration Raises ====== ValueError if multiple children present """ try: children = node.get_children() statement = self.transform(next(children)) except StopIteration: pass try: self.transform(next(children)) raise ValueError("Don't know how to handle multiple statements") except StopIteration: pass return statement else: class CCodeConverter(): def __init__(self, *args, **kwargs): raise ImportError("Module not Installed") def parse_c(source): """Function for converting a C source code The function reads the source code present in the given file and parses it to give out SymPy Expressions Returns ======= src : list List of Python expression strings """ converter = CCodeConverter('output') if os.path.exists(source): src = converter.parse(source, flags = []) else: src = converter.parse_str(source, flags = []) return src
92f4f6b39e20cb9608703e96ecec4b6c4a6e2620822b890c32b45170c00f4f0d
from sympy import symbols, S, Rational, Lambda from sympy.parsing.ast_parser import parse_expr from sympy.utilities.pytest import raises from sympy.core.sympify import SympifyError def test_parse_expr(): a, b = symbols('a, b') # tests issue_16393 parse_expr('a + b', {}) == a + b raises(SympifyError, lambda: parse_expr('a + ', {})) # tests Transform.visit_Num parse_expr('1 + 2', {}) == S(3) parse_expr('1 + 2.0', {}) == S(3.0) # tests Transform.visit_Name parse_expr('Rational(1, 2)', {}) == S(1)/2 parse_expr('a', {'a': a}) == a
4cc894b348d33c270cf5c5410ebd23a70cc4dc35bff8dce96fbf82537a02d733
from sympy.parsing.sym_expr import SymPyExpression from sympy.utilities.pytest import raises from sympy.external import import_module cin = import_module('clang.cindex', __import__kwargs = {'fromlist': ['cindex']}) if cin: from sympy.codegen.ast import (Variable, IntBaseType, FloatBaseType, String, Return, FunctionDefinition, Integer, Float, Declaration, CodeBlock, FunctionPrototype, FunctionCall, NoneToken) from sympy import Symbol import os def test_variable(): c_src1 = ( 'int a;' + '\n' + 'int b;' + '\n' ) c_src2 = ( 'float a;' + '\n' + 'float b;' + '\n' ) c_src3 = ( 'int a;' + '\n' + 'float b;' + '\n' + 'int c;' ) c_src4 = ( 'int x = 1, y = 6.78;' + '\n' + 'float p = 2, q = 9.67;' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res1[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ) assert res3[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res3[1] == Declaration( Variable( Symbol('b'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ) assert res3[2] == Declaration( Variable( Symbol('c'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res4[0] == Declaration( Variable( Symbol('x'), type=IntBaseType(String('integer')), value=Integer(1) ) ) assert res4[1] == Declaration( Variable( Symbol('y'), type=IntBaseType(String('integer')), value=Integer(6) ) ) assert res4[2] == Declaration( Variable( Symbol('p'), type=FloatBaseType(String('real')), value=Float('2.0', precision=53) ) ) assert res4[3] == Declaration( Variable( Symbol('q'), type=FloatBaseType(String('real')), value=Float('9.67', precision=53) ) ) def test_int(): c_src1 = 'int a = 1;' c_src2 = ( 'int a = 1;' + '\n' + 'int b = 2;' + '\n' ) c_src3 = 'int a = 2.345, b = 5.67;' c_src4 = 'int p = 6, q = 23.45;' res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(1) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(1) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('integer')), value=Integer(2) ) ) assert res3[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(2) ) ) assert res3[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('integer')), value=Integer(5) ) ) assert res4[0] == Declaration( Variable( Symbol('p'), type=IntBaseType(String('integer')), value=Integer(6) ) ) assert res4[1] == Declaration( Variable( Symbol('q'), type=IntBaseType(String('integer')), value=Integer(23) ) ) def test_float(): c_src1 = 'float a = 1.0;' c_src2 = ( 'float a = 1.25;' + '\n' + 'float b = 2.39;' + '\n' ) c_src3 = 'float x = 1, y = 2;' c_src4 = 'float p = 5, e = 7.89;' res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('a'), type=FloatBaseType(String('real')), value=Float('1.0', precision=53) ) ) assert res2[0] == Declaration( Variable( Symbol('a'), type=FloatBaseType(String('real')), value=Float('1.25', precision=53) ) ) assert res2[1] == Declaration( Variable( Symbol('b'), type=FloatBaseType(String('real')), value=Float('2.3900000000000001', precision=53) ) ) assert res3[0] == Declaration( Variable( Symbol('x'), type=FloatBaseType(String('real')), value=Float('1.0', precision=53) ) ) assert res3[1] == Declaration( Variable( Symbol('y'), type=FloatBaseType(String('real')), value=Float('2.0', precision=53) ) ) assert res4[0] == Declaration( Variable( Symbol('p'), type=FloatBaseType(String('real')), value=Float('5.0', precision=53) ) ) assert res4[1] == Declaration( Variable( Symbol('e'), type=FloatBaseType(String('real')), value=Float('7.89', precision=53) ) ) def test_function(): c_src1 = ( 'void fun1()' + '\n' + '{' + '\n' + 'int a;' + '\n' + '}' ) c_src2 = ( 'int fun2()' + '\n' + '{'+ '\n' + 'int a;' + '\n' + 'return a;' + '\n' + '}' ) c_src3 = ( 'float fun3()' + '\n' + '{' + '\n' + 'float b;' + '\n' + 'return b;' + '\n' + '}' ) c_src4 = ( 'float fun4()' + '\n' + '{}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ) ) ) assert res2[0] == FunctionDefinition( IntBaseType(String('integer')), name=String('fun2'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ), Return('a') ) ) assert res3[0] == FunctionDefinition( FloatBaseType(String('real')), name=String('fun3'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('b'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ), Return('b') ) ) assert res4[0] == FunctionPrototype( FloatBaseType(String('real')), name=String('fun4'), parameters=() ) def test_parameters(): c_src1 = ( 'void fun1( int a)' + '\n' + '{' + '\n' + 'int i;' + '\n' + '}' ) c_src2 = ( 'int fun2(float x, float y)' + '\n' + '{'+ '\n' + 'int a;' + '\n' + 'return a;' + '\n' + '}' ) c_src3 = ( 'float fun3(int p, float q, int r)' + '\n' + '{' + '\n' + 'float b;' + '\n' + 'return b;' + '\n' + '}' ) res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() assert res1[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ), ), body=CodeBlock( Declaration( Variable( Symbol('i'), type=IntBaseType(String('integer')), value=Integer(0) ) ) ) ) assert res2[0] == FunctionDefinition( IntBaseType(String('integer')), name=String('fun2'), parameters=( Variable( Symbol('x'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ), Variable( Symbol('y'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ), Return('a') ) ) assert res3[0] == FunctionDefinition( FloatBaseType(String('real')), name=String('fun3'), parameters=( Variable( Symbol('p'), type=IntBaseType(String('integer')), value=Integer(0) ), Variable( Symbol('q'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ), Variable( Symbol('r'), type=IntBaseType(String('integer')), value=Integer(0) ) ), body=CodeBlock( Declaration( Variable( Symbol('b'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ), Return('b') ) ) def test_function_call(): c_src1 = 'x = fun1(2);' c_src2 = 'y = fun2(2, 3, 4);' c_src3 = ( 'int p, q, r;' + '\n' + 'z = fun3(p, q, r);' ) c_src4 = ( 'float x, y;' + '\n' + 'int z;' + '\n' + 'i = fun4(x, y, z)' ) c_src5 = 'a = fun()' res1 = SymPyExpression(c_src1, 'c').return_expr() res2 = SymPyExpression(c_src2, 'c').return_expr() res3 = SymPyExpression(c_src3, 'c').return_expr() res4 = SymPyExpression(c_src4, 'c').return_expr() res5 = SymPyExpression(c_src5, 'c').return_expr() assert res1[0] == Declaration( Variable( Symbol('x'), value=FunctionCall( String('fun1'), function_args=([2, ]) ) ) ) assert res2[0] == Declaration( Variable( Symbol('y'), value=FunctionCall( String('fun2'), function_args=([2, 3, 4]) ) ) ) assert res3[0] == Declaration( Variable( Symbol('p'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res3[1] == Declaration( Variable( Symbol('q'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res3[2] == Declaration( Variable( Symbol('r'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res3[3] == Declaration( Variable( Symbol('z'), value=FunctionCall( String('fun3'), function_args=([Symbol('p'), Symbol('q'), Symbol('r')]) ) ) ) assert res4[0] == Declaration( Variable( Symbol('x'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ) assert res4[1] == Declaration( Variable( Symbol('y'), type=FloatBaseType(String('real')), value=Float('0.0', precision=53) ) ) assert res4[2] == Declaration( Variable( Symbol('z'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res4[3] == Declaration( Variable( Symbol('i'), value=FunctionCall( String('fun4'), function_args=([Symbol('x'), Symbol('y'), Symbol('z')]) ) ) ) assert res5[0] == Declaration( Variable( Symbol('a'), value=FunctionCall(String('fun'), function_args=()) ) ) def test_parse(): c_src1 = ( 'int a;' + '\n' + 'int b;' + '\n' ) c_src2 = ( 'void fun1()' + '\n' + '{' + '\n' + 'int a;' + '\n' + '}' ) f1 = open('..a.h', 'w') f2 = open('..b.h', 'w') f1.write(c_src1) f2. write(c_src2) f1.close() f2.close() res1 = SymPyExpression('..a.h', 'c').return_expr() res2 = SymPyExpression('..b.h', 'c').return_expr() os.remove('..a.h') os.remove('..b.h') assert res1[0] == Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res1[1] == Declaration( Variable( Symbol('b'), type=IntBaseType(String('integer')), value=Integer(0) ) ) assert res2[0] == FunctionDefinition( NoneToken(), name=String('fun1'), parameters=(), body=CodeBlock( Declaration( Variable( Symbol('a'), type=IntBaseType(String('integer')), value=Integer(0) ) ) ) ) else: def test_raise(): from sympy.parsing.c.c_parser import CCodeConverter raises(ImportError, lambda: CCodeConverter()) raises(ImportError, lambda: SymPyExpression(' ', mode = 'c'))
1b0624d014b3cacb0d4ff5baa396e643c75c08b585dc7b6ca26ec3f6172a133f
from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on @doctest_depends_on(modules=('antlr4',)) def parse_autolev(autolev_code, include_numeric=False): """Parses Autolev code (version 4.1) to SymPy code. Parameters ========= autolev_code : Can be an str or any object with a readlines() method (such as a file handle or StringIO). include_numeric : boolean, optional If True NumPy, PyDy, or other numeric code is included for numeric evaluation lines in the Autolev code. Returns ======= sympy_code : str Equivalent sympy and/or numpy/pydy code as the input code. Example (Double Pendulum) ========================= >>> my_al_text = ("MOTIONVARIABLES' Q{2}', U{2}'", ... "CONSTANTS L,M,G", ... "NEWTONIAN N", ... "FRAMES A,B", ... "SIMPROT(N, A, 3, Q1)", ... "SIMPROT(N, B, 3, Q2)", ... "W_A_N>=U1*N3>", ... "W_B_N>=U2*N3>", ... "POINT O", ... "PARTICLES P,R", ... "P_O_P> = L*A1>", ... "P_P_R> = L*B1>", ... "V_O_N> = 0>", ... "V2PTS(N, A, O, P)", ... "V2PTS(N, B, P, R)", ... "MASS P=M, R=M", ... "Q1' = U1", ... "Q2' = U2", ... "GRAVITY(G*N1>)", ... "ZERO = FR() + FRSTAR()", ... "KANE()", ... "INPUT M=1,G=9.81,L=1", ... "INPUT Q1=.1,Q2=.2,U1=0,U2=0", ... "INPUT TFINAL=10, INTEGSTP=.01", ... "CODE DYNAMICS() some_filename.c") >>> my_al_text = '\\n'.join(my_al_text) >>> from sympy.parsing.autolev import parse_autolev >>> print(parse_autolev(my_al_text, include_numeric=True)) import sympy.physics.mechanics as me import sympy as sm import math as m import numpy as np <BLANKLINE> q1, q2, u1, u2 = me.dynamicsymbols('q1 q2 u1 u2') q1d, q2d, u1d, u2d = me.dynamicsymbols('q1 q2 u1 u2', 1) l, m, g = sm.symbols('l m g', real=True) frame_n = me.ReferenceFrame('n') frame_a = me.ReferenceFrame('a') frame_b = me.ReferenceFrame('b') frame_a.orient(frame_n, 'Axis', [q1, frame_n.z]) frame_b.orient(frame_n, 'Axis', [q2, frame_n.z]) frame_a.set_ang_vel(frame_n, u1*frame_n.z) frame_b.set_ang_vel(frame_n, u2*frame_n.z) point_o = me.Point('o') particle_p = me.Particle('p', me.Point('p_pt'), sm.Symbol('m')) particle_r = me.Particle('r', me.Point('r_pt'), sm.Symbol('m')) particle_p.point.set_pos(point_o, l*frame_a.x) particle_r.point.set_pos(particle_p.point, l*frame_b.x) point_o.set_vel(frame_n, 0) particle_p.point.v2pt_theory(point_o,frame_n,frame_a) particle_r.point.v2pt_theory(particle_p.point,frame_n,frame_b) particle_p.mass = m particle_r.mass = m force_p = particle_p.mass*(g*frame_n.x) force_r = particle_r.mass*(g*frame_n.x) kd_eqs = [q1d - u1, q2d - u2] forceList = [(particle_p.point,particle_p.mass*(g*frame_n.x)), (particle_r.point,particle_r.mass*(g*frame_n.x))] kane = me.KanesMethod(frame_n, q_ind=[q1,q2], u_ind=[u1, u2], kd_eqs = kd_eqs) fr, frstar = kane.kanes_equations([particle_p, particle_r], forceList) zero = fr+frstar from pydy.system import System sys = System(kane, constants = {l:1, m:1, g:9.81}, specifieds={}, initial_conditions={q1:.1, q2:.2, u1:0, u2:0}, times = np.linspace(0.0, 10, 10/.01)) <BLANKLINE> y=sys.integrate() <BLANKLINE> """ _autolev = import_module( 'sympy.parsing.autolev._parse_autolev_antlr', __import__kwargs={'fromlist': ['X']}) if _autolev is not None: return _autolev.parse_autolev(autolev_code, include_numeric)
e691c7e49122d8480bdfb9b17d4facf087cb518687faf5136dca1d5aa3686676
from sympy.external import import_module from sympy.utilities.decorator import doctest_depends_on from .errors import LaTeXParsingError # noqa @doctest_depends_on(modules=('antlr4',)) def parse_latex(s): r"""Converts the string ``s`` to a SymPy ``Expr`` Parameters ========== s : str The LaTeX string to parse. In Python source containing LaTeX, *raw strings* (denoted with ``r"``, like this one) are preferred, as LaTeX makes liberal use of the ``\`` character, which would trigger escaping in normal Python strings. Examples ======== >>> from sympy.parsing.latex import parse_latex >>> expr = parse_latex(r"\frac {1 + \sqrt {\a}} {\b}") >>> expr (sqrt(a) + 1)/b >>> expr.evalf(4, subs=dict(a=5, b=2)) 1.618 """ _latex = import_module( 'sympy.parsing.latex._parse_latex_antlr', __import__kwargs={'fromlist': ['X']}) if _latex is not None: return _latex.parse_latex(s)
668437f0b6f51fd625f307756250bb05409d50086f6f546da15e0d42d7c0baab
# Names exposed by 'from sympy.physics.quantum import *' __all__ = [ 'AntiCommutator', 'qapply', 'Commutator', 'Dagger', 'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace', 'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2', 'FockSpace', 'InnerProduct', 'Operator', 'HermitianOperator', 'UnitaryOperator', 'IdentityOperator', 'OuterProduct', 'DifferentialOperator', 'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result', 'get_basis', 'enumerate_states', 'KetBase', 'BraBase', 'StateBase', 'State', 'Ket', 'Bra', 'TimeDepState', 'TimeDepBra', 'TimeDepKet', 'Wavefunction', 'TensorProduct', 'tensor_product_simp', 'hbar', 'HBar', ] from .anticommutator import AntiCommutator from .qapply import qapply from .commutator import Commutator from .dagger import Dagger from .hilbert import (HilbertSpaceError, HilbertSpace, TensorProductHilbertSpace, TensorPowerHilbertSpace, DirectSumHilbertSpace, ComplexSpace, L2, FockSpace) from .innerproduct import InnerProduct from .operator import (Operator, HermitianOperator, UnitaryOperator, IdentityOperator, OuterProduct, DifferentialOperator) from .represent import (represent, rep_innerproduct, rep_expectation, integrate_result, get_basis, enumerate_states) from .state import (KetBase, BraBase, StateBase, State, Ket, Bra, TimeDepState, TimeDepBra, TimeDepKet, Wavefunction) from .tensorproduct import TensorProduct, tensor_product_simp from .constants import hbar, HBar
64aed2c591cd1fc8678477b838bb1a5184d0b8a598a2306f1575e4658c406f2c
"""Logic for representing operators in state in various bases. TODO: * Get represent working with continuous hilbert spaces. * Document default basis functionality. """ from __future__ import print_function, division from sympy import Add, Expr, I, integrate, Mul, Pow from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.matrixutils import flatten_scalar from sympy.physics.quantum.state import KetBase, BraBase, StateBase from sympy.physics.quantum.operator import Operator, OuterProduct from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.operatorset import operators_to_state, state_to_operators __all__ = [ 'represent', 'rep_innerproduct', 'rep_expectation', 'integrate_result', 'get_basis', 'enumerate_states' ] #----------------------------------------------------------------------------- # Represent #----------------------------------------------------------------------------- def _sympy_to_scalar(e): """Convert from a sympy scalar to a Python scalar.""" if isinstance(e, Expr): if e.is_Integer: return int(e) elif e.is_Float: return float(e) elif e.is_Rational: return float(e) elif e.is_Number or e.is_NumberSymbol or e == I: return complex(e) raise TypeError('Expected number, got: %r' % e) def represent(expr, **options): """Represent the quantum expression in the given basis. In quantum mechanics abstract states and operators can be represented in various basis sets. Under this operation the follow transforms happen: * Ket -> column vector or function * Bra -> row vector of function * Operator -> matrix or differential operator This function is the top-level interface for this action. This function walks the sympy expression tree looking for ``QExpr`` instances that have a ``_represent`` method. This method is then called and the object is replaced by the representation returned by this method. By default, the ``_represent`` method will dispatch to other methods that handle the representation logic for a particular basis set. The naming convention for these methods is the following:: def _represent_FooBasis(self, e, basis, **options) This function will have the logic for representing instances of its class in the basis set having a class named ``FooBasis``. Parameters ========== expr : Expr The expression to represent. basis : Operator, basis set An object that contains the information about the basis set. If an operator is used, the basis is assumed to be the orthonormal eigenvectors of that operator. In general though, the basis argument can be any object that contains the basis set information. options : dict Key/value pairs of options that are passed to the underlying method that finds the representation. These options can be used to control how the representation is done. For example, this is where the size of the basis set would be set. Returns ======= e : Expr The SymPy expression of the represented quantum expression. Examples ======== Here we subclass ``Operator`` and ``Ket`` to create the z-spin operator and its spin 1/2 up eigenstate. By defining the ``_represent_SzOp`` method, the ket can be represented in the z-spin basis. >>> from sympy.physics.quantum import Operator, represent, Ket >>> from sympy import Matrix >>> class SzUpKet(Ket): ... def _represent_SzOp(self, basis, **options): ... return Matrix([1,0]) ... >>> class SzOp(Operator): ... pass ... >>> sz = SzOp('Sz') >>> up = SzUpKet('up') >>> represent(up, basis=sz) Matrix([ [1], [0]]) Here we see an example of representations in a continuous basis. We see that the result of representing various combinations of cartesian position operators and kets give us continuous expressions involving DiracDelta functions. >>> from sympy.physics.quantum.cartesian import XOp, XKet, XBra >>> X = XOp() >>> x = XKet() >>> y = XBra('y') >>> represent(X*x) x*DiracDelta(x - x_2) >>> represent(X*x*y) x*DiracDelta(x - x_3)*DiracDelta(x_1 - y) """ format = options.get('format', 'sympy') if isinstance(expr, QExpr) and not isinstance(expr, OuterProduct): options['replace_none'] = False temp_basis = get_basis(expr, **options) if temp_basis is not None: options['basis'] = temp_basis try: return expr._represent(**options) except NotImplementedError as strerr: #If no _represent_FOO method exists, map to the #appropriate basis state and try #the other methods of representation options['replace_none'] = True if isinstance(expr, (KetBase, BraBase)): try: return rep_innerproduct(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) elif isinstance(expr, Operator): try: return rep_expectation(expr, **options) except NotImplementedError: raise NotImplementedError(strerr) else: raise NotImplementedError(strerr) elif isinstance(expr, Add): result = represent(expr.args[0], **options) for args in expr.args[1:]: # scipy.sparse doesn't support += so we use plain = here. result = result + represent(args, **options) return result elif isinstance(expr, Pow): base, exp = expr.as_base_exp() if format == 'numpy' or format == 'scipy.sparse': exp = _sympy_to_scalar(exp) base = represent(base, **options) # scipy.sparse doesn't support negative exponents # and warns when inverting a matrix in csr format. if format == 'scipy.sparse' and exp < 0: from scipy.sparse.linalg import inv exp = - exp base = inv(base.tocsc()).tocsr() return base ** exp elif isinstance(expr, TensorProduct): new_args = [represent(arg, **options) for arg in expr.args] return TensorProduct(*new_args) elif isinstance(expr, Dagger): return Dagger(represent(expr.args[0], **options)) elif isinstance(expr, Commutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B - B*A elif isinstance(expr, AntiCommutator): A = represent(expr.args[0], **options) B = represent(expr.args[1], **options) return A*B + B*A elif isinstance(expr, InnerProduct): return represent(Mul(expr.bra, expr.ket), **options) elif not (isinstance(expr, Mul) or isinstance(expr, OuterProduct)): # For numpy and scipy.sparse, we can only handle numerical prefactors. if format == 'numpy' or format == 'scipy.sparse': return _sympy_to_scalar(expr) return expr if not (isinstance(expr, Mul) or isinstance(expr, OuterProduct)): raise TypeError('Mul expected, got: %r' % expr) if "index" in options: options["index"] += 1 else: options["index"] = 1 if not "unities" in options: options["unities"] = [] result = represent(expr.args[-1], **options) last_arg = expr.args[-1] for arg in reversed(expr.args[:-1]): if isinstance(last_arg, Operator): options["index"] += 1 options["unities"].append(options["index"]) elif isinstance(last_arg, BraBase) and isinstance(arg, KetBase): options["index"] += 1 elif isinstance(last_arg, KetBase) and isinstance(arg, Operator): options["unities"].append(options["index"]) elif isinstance(last_arg, KetBase) and isinstance(arg, BraBase): options["unities"].append(options["index"]) result = represent(arg, **options)*result last_arg = arg # All three matrix formats create 1 by 1 matrices when inner products of # vectors are taken. In these cases, we simply return a scalar. result = flatten_scalar(result) result = integrate_result(expr, result, **options) return result def rep_innerproduct(expr, **options): """ Returns an innerproduct like representation (e.g. ``<x'|x>``) for the given state. Attempts to calculate inner product with a bra from the specified basis. Should only be passed an instance of KetBase or BraBase Parameters ========== expr : KetBase or BraBase The expression to be represented Examples ======== >>> from sympy.physics.quantum.represent import rep_innerproduct >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> rep_innerproduct(XKet()) DiracDelta(x - x_1) >>> rep_innerproduct(XKet(), basis=PxOp()) sqrt(2)*exp(-I*px_1*x/hbar)/(2*sqrt(hbar)*sqrt(pi)) >>> rep_innerproduct(PxKet(), basis=XOp()) sqrt(2)*exp(I*px*x_1/hbar)/(2*sqrt(hbar)*sqrt(pi)) """ if not isinstance(expr, (KetBase, BraBase)): raise TypeError("expr passed is not a Bra or Ket") basis = get_basis(expr, **options) if not isinstance(basis, StateBase): raise NotImplementedError("Can't form this representation!") if not "index" in options: options["index"] = 1 basis_kets = enumerate_states(basis, options["index"], 2) if isinstance(expr, BraBase): bra = expr ket = (basis_kets[1] if basis_kets[0].dual == expr else basis_kets[0]) else: bra = (basis_kets[1].dual if basis_kets[0] == expr else basis_kets[0].dual) ket = expr prod = InnerProduct(bra, ket) result = prod.doit() format = options.get('format', 'sympy') return expr._format_represent(result, format) def rep_expectation(expr, **options): """ Returns an ``<x'|A|x>`` type representation for the given operator. Parameters ========== expr : Operator Operator to be represented in the specified basis Examples ======== >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> from sympy.physics.quantum.represent import rep_expectation >>> rep_expectation(XOp()) x_1*DiracDelta(x_1 - x_2) >>> rep_expectation(XOp(), basis=PxOp()) <px_2|*X*|px_1> >>> rep_expectation(XOp(), basis=PxKet()) <px_2|*X*|px_1> """ if not "index" in options: options["index"] = 1 if not isinstance(expr, Operator): raise TypeError("The passed expression is not an operator") basis_state = get_basis(expr, **options) if basis_state is None or not isinstance(basis_state, StateBase): raise NotImplementedError("Could not get basis kets for this operator") basis_kets = enumerate_states(basis_state, options["index"], 2) bra = basis_kets[1].dual ket = basis_kets[0] return qapply(bra*expr*ket) def integrate_result(orig_expr, result, **options): """ Returns the result of integrating over any unities ``(|x><x|)`` in the given expression. Intended for integrating over the result of representations in continuous bases. This function integrates over any unities that may have been inserted into the quantum expression and returns the result. It uses the interval of the Hilbert space of the basis state passed to it in order to figure out the limits of integration. The unities option must be specified for this to work. Note: This is mostly used internally by represent(). Examples are given merely to show the use cases. Parameters ========== orig_expr : quantum expression The original expression which was to be represented result: Expr The resulting representation that we wish to integrate over Examples ======== >>> from sympy import symbols, DiracDelta >>> from sympy.physics.quantum.represent import integrate_result >>> from sympy.physics.quantum.cartesian import XOp, XKet >>> x_ket = XKet() >>> X_op = XOp() >>> x, x_1, x_2 = symbols('x, x_1, x_2') >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2)) x*DiracDelta(x - x_1)*DiracDelta(x_1 - x_2) >>> integrate_result(X_op*x_ket, x*DiracDelta(x-x_1)*DiracDelta(x_1-x_2), ... unities=[1]) x*DiracDelta(x - x_2) """ if not isinstance(result, Expr): return result options['replace_none'] = True if not "basis" in options: arg = orig_expr.args[-1] options["basis"] = get_basis(arg, **options) elif not isinstance(options["basis"], StateBase): options["basis"] = get_basis(orig_expr, **options) basis = options.pop("basis", None) if basis is None: return result unities = options.pop("unities", []) if len(unities) == 0: return result kets = enumerate_states(basis, unities) coords = [k.label[0] for k in kets] for coord in coords: if coord in result.free_symbols: #TODO: Add support for sets of operators basis_op = state_to_operators(basis) start = basis_op.hilbert_space.interval.start end = basis_op.hilbert_space.interval.end result = integrate(result, (coord, start, end)) return result def get_basis(expr, **options): """ Returns a basis state instance corresponding to the basis specified in options=s. If no basis is specified, the function tries to form a default basis state of the given expression. There are three behaviors: 1. The basis specified in options is already an instance of StateBase. If this is the case, it is simply returned. If the class is specified but not an instance, a default instance is returned. 2. The basis specified is an operator or set of operators. If this is the case, the operator_to_state mapping method is used. 3. No basis is specified. If expr is a state, then a default instance of its class is returned. If expr is an operator, then it is mapped to the corresponding state. If it is neither, then we cannot obtain the basis state. If the basis cannot be mapped, then it is not changed. This will be called from within represent, and represent will only pass QExpr's. TODO (?): Support for Muls and other types of expressions? Parameters ========== expr : Operator or StateBase Expression whose basis is sought Examples ======== >>> from sympy.physics.quantum.represent import get_basis >>> from sympy.physics.quantum.cartesian import XOp, XKet, PxOp, PxKet >>> x = XKet() >>> X = XOp() >>> get_basis(x) |x> >>> get_basis(X) |x> >>> get_basis(x, basis=PxOp()) |px> >>> get_basis(x, basis=PxKet) |px> """ basis = options.pop("basis", None) replace_none = options.pop("replace_none", True) if basis is None and not replace_none: return None if basis is None: if isinstance(expr, KetBase): return _make_default(expr.__class__) elif isinstance(expr, BraBase): return _make_default((expr.dual_class())) elif isinstance(expr, Operator): state_inst = operators_to_state(expr) return (state_inst if state_inst is not None else None) else: return None elif (isinstance(basis, Operator) or (not isinstance(basis, StateBase) and issubclass(basis, Operator))): state = operators_to_state(basis) if state is None: return None elif isinstance(state, StateBase): return state else: return _make_default(state) elif isinstance(basis, StateBase): return basis elif issubclass(basis, StateBase): return _make_default(basis) else: return None def _make_default(expr): try: expr = expr() except Exception: return expr return expr def enumerate_states(*args, **options): """ Returns instances of the given state with dummy indices appended Operates in two different modes: 1. Two arguments are passed to it. The first is the base state which is to be indexed, and the second argument is a list of indices to append. 2. Three arguments are passed. The first is again the base state to be indexed. The second is the start index for counting. The final argument is the number of kets you wish to receive. Tries to call state._enumerate_state. If this fails, returns an empty list Parameters ========== args : list See list of operation modes above for explanation Examples ======== >>> from sympy.physics.quantum.cartesian import XBra, XKet >>> from sympy.physics.quantum.represent import enumerate_states >>> test = XKet('foo') >>> enumerate_states(test, 1, 3) [|foo_1>, |foo_2>, |foo_3>] >>> test2 = XBra('bar') >>> enumerate_states(test2, [4, 5, 10]) [<bar_4|, <bar_5|, <bar_10|] """ state = args[0] if not (len(args) == 2 or len(args) == 3): raise NotImplementedError("Wrong number of arguments!") if not isinstance(state, StateBase): raise TypeError("First argument is not a state!") if len(args) == 3: num_states = args[2] options['start_index'] = args[1] else: num_states = len(args[1]) options['index_list'] = args[1] try: ret = state._enumerate_state(num_states, **options) except NotImplementedError: ret = [] return ret
3c99928018b0a1ed213cfb1fa47e6e2c886e2f46f89130ed862d033046b35785
from __future__ import print_function, division from itertools import product from sympy import Tuple, Add, Mul, Matrix, log, expand, S from sympy.core.trace import Tr from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.operator import HermitianOperator from sympy.physics.quantum.represent import represent from sympy.physics.quantum.matrixutils import numpy_ndarray, scipy_sparse_matrix, to_numpy from sympy.physics.quantum.tensorproduct import TensorProduct, tensor_product_simp class Density(HermitianOperator): """Density operator for representing mixed states. TODO: Density operator support for Qubits Parameters ========== values : tuples/lists Each tuple/list should be of form (state, prob) or [state,prob] Examples ======== Create a density operator with 2 states represented by Kets. >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d 'Density'((|0>, 0.5),(|1>, 0.5)) """ @classmethod def _eval_args(cls, args): # call this to qsympify the args args = super(Density, cls)._eval_args(args) for arg in args: # Check if arg is a tuple if not (isinstance(arg, Tuple) and len(arg) == 2): raise ValueError("Each argument should be of form [state,prob]" " or ( state, prob )") return args def states(self): """Return list of all states. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states() (|0>, |1>) """ return Tuple(*[arg[0] for arg in self.args]) def probs(self): """Return list of all probabilities. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs() (0.5, 0.5) """ return Tuple(*[arg[1] for arg in self.args]) def get_state(self, index): """Return specific state by index. Parameters ========== index : index of state to be returned Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.states()[1] |1> """ state = self.args[index][0] return state def get_prob(self, index): """Return probability of specific state by index. Parameters =========== index : index of states whose probability is returned. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.probs()[1] 0.500000000000000 """ prob = self.args[index][1] return prob def apply_op(self, op): """op will operate on each individual state. Parameters ========== op : Operator Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.apply_op(A) 'Density'((A*|0>, 0.5),(A*|1>, 0.5)) """ new_args = [(op*state, prob) for (state, prob) in self.args] return Density(*new_args) def doit(self, **hints): """Expand the density operator into an outer product format. Examples ======== >>> from sympy.physics.quantum.state import Ket >>> from sympy.physics.quantum.density import Density >>> from sympy.physics.quantum.operator import Operator >>> A = Operator('A') >>> d = Density([Ket(0), 0.5], [Ket(1),0.5]) >>> d.doit() 0.5*|0><0| + 0.5*|1><1| """ terms = [] for (state, prob) in self.args: state = state.expand() # needed to break up (a+b)*c if (isinstance(state, Add)): for arg in product(state.args, repeat=2): terms.append(prob * self._generate_outer_prod(arg[0], arg[1])) else: terms.append(prob * self._generate_outer_prod(state, state)) return Add(*terms) def _generate_outer_prod(self, arg1, arg2): c_part1, nc_part1 = arg1.args_cnc() c_part2, nc_part2 = arg2.args_cnc() if ( len(nc_part1) == 0 or len(nc_part2) == 0 ): raise ValueError('Atleast one-pair of' ' Non-commutative instance required' ' for outer product.') # Muls of Tensor Products should be expanded # before this function is called if (isinstance(nc_part1[0], TensorProduct) and len(nc_part1) == 1 and len(nc_part2) == 1): op = tensor_product_simp(nc_part1[0] * Dagger(nc_part2[0])) else: op = Mul(*nc_part1) * Dagger(Mul(*nc_part2)) return Mul(*c_part1)*Mul(*c_part2)*op def _represent(self, **options): return represent(self.doit(), **options) def _print_operator_name_latex(self, printer, *args): return printer._print(r'\rho', *args) def _print_operator_name_pretty(self, printer, *args): return prettyForm('\N{GREEK SMALL LETTER RHO}') def _eval_trace(self, **kwargs): indices = kwargs.get('indices', []) return Tr(self.doit(), indices).doit() def entropy(self): """ Compute the entropy of a density matrix. Refer to density.entropy() method for examples. """ return entropy(self) def entropy(density): """Compute the entropy of a matrix/density object. This computes -Tr(density*ln(density)) using the eigenvalue decomposition of density, which is given as either a Density instance or a matrix (numpy.ndarray, sympy.Matrix or scipy.sparse). Parameters ========== density : density matrix of type Density, sympy matrix, scipy.sparse or numpy.ndarray Examples ======== >>> from sympy.physics.quantum.density import Density, entropy >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.matrixutils import scipy_sparse_matrix >>> from sympy.physics.quantum.spin import JzKet, Jz >>> from sympy import S, log >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> d = Density((up,S(1)/2),(down,S(1)/2)) >>> entropy(d) log(2)/2 """ if isinstance(density, Density): density = represent(density) # represent in Matrix if isinstance(density, scipy_sparse_matrix): density = to_numpy(density) if isinstance(density, Matrix): eigvals = density.eigenvals().keys() return expand(-sum(e*log(e) for e in eigvals)) elif isinstance(density, numpy_ndarray): import numpy as np eigvals = np.linalg.eigvals(density) return -np.sum(eigvals*np.log(eigvals)) else: raise ValueError( "numpy.ndarray, scipy.sparse or sympy matrix expected") def fidelity(state1, state2): """ Computes the fidelity [1]_ between two quantum states The arguments provided to this function should be a square matrix or a Density object. If it is a square matrix, it is assumed to be diagonalizable. Parameters ========== state1, state2 : a density matrix or Matrix Examples ======== >>> from sympy import S, sqrt >>> from sympy.physics.quantum.dagger import Dagger >>> from sympy.physics.quantum.spin import JzKet >>> from sympy.physics.quantum.density import Density, fidelity >>> from sympy.physics.quantum.represent import represent >>> >>> up = JzKet(S(1)/2,S(1)/2) >>> down = JzKet(S(1)/2,-S(1)/2) >>> amp = 1/sqrt(2) >>> updown = (amp * up) + (amp * down) >>> >>> # represent turns Kets into matrices >>> up_dm = represent(up * Dagger(up)) >>> down_dm = represent(down * Dagger(down)) >>> updown_dm = represent(updown * Dagger(updown)) >>> >>> fidelity(up_dm, up_dm) 1 >>> fidelity(up_dm, down_dm) #orthogonal states 0 >>> fidelity(up_dm, updown_dm).evalf().round(3) 0.707 References ========== .. [1] https://en.wikipedia.org/wiki/Fidelity_of_quantum_states """ state1 = represent(state1) if isinstance(state1, Density) else state1 state2 = represent(state2) if isinstance(state2, Density) else state2 if (not isinstance(state1, Matrix) or not isinstance(state2, Matrix)): raise ValueError("state1 and state2 must be of type Density or Matrix " "received type=%s for state1 and type=%s for state2" % (type(state1), type(state2))) if ( state1.shape != state2.shape and state1.is_square): raise ValueError("The dimensions of both args should be equal and the " "matrix obtained should be a square matrix") sqrt_state1 = state1**S.Half return Tr((sqrt_state1 * state2 * sqrt_state1)**S.Half).doit()
82b4e73d59436a407b84123bea0cfc48b63f1c88742ad28e7319ed243f1a174f
"""Quantum mechanical angular momemtum.""" from __future__ import print_function, division from sympy import (Add, binomial, cos, exp, Expr, factorial, I, Integer, Mul, pi, Rational, S, sin, simplify, sqrt, Sum, symbols, sympify, Tuple, Dummy) from sympy.core.compatibility import unicode, range from sympy.matrices import zeros from sympy.printing.pretty.stringpict import prettyForm, stringPict from sympy.printing.pretty.pretty_symbology import pretty_symbol from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.operator import (HermitianOperator, Operator, UnitaryOperator) from sympy.physics.quantum.state import Bra, Ket, State from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.hilbert import ComplexSpace, DirectSumHilbertSpace from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.cg import CG from sympy.physics.quantum.qapply import qapply __all__ = [ 'm_values', 'Jplus', 'Jminus', 'Jx', 'Jy', 'Jz', 'J2', 'Rotation', 'WignerD', 'JxKet', 'JxBra', 'JyKet', 'JyBra', 'JzKet', 'JzBra', 'JzOp', 'J2Op', 'JxKetCoupled', 'JxBraCoupled', 'JyKetCoupled', 'JyBraCoupled', 'JzKetCoupled', 'JzBraCoupled', 'couple', 'uncouple' ] def m_values(j): j = sympify(j) size = 2*j + 1 if not size.is_Integer or not size > 0: raise ValueError( 'Only integer or half-integer values allowed for j, got: : %r' % j ) return size, [j - i for i in range(int(2*j + 1))] #----------------------------------------------------------------------------- # Spin Operators #----------------------------------------------------------------------------- class SpinOpBase(object): """Base class for spin operators.""" @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def name(self): return self.args[0] def _print_contents(self, printer, *args): return '%s%s' % (unicode(self.name), self._coord) def _print_contents_pretty(self, printer, *args): a = stringPict(unicode(self.name)) b = stringPict(self._coord) return self._print_subscript_pretty(a, b) def _print_contents_latex(self, printer, *args): return r'%s_%s' % ((unicode(self.name), self._coord)) def _represent_base(self, basis, **options): j = options.get('j', S.Half) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) result[p, q] = me return result def _apply_op(self, ket, orig_basis, **options): state = ket.rewrite(self.basis) # If the state has only one term if isinstance(state, State): ret = (hbar*state.m) * state # state is a linear combination of states elif isinstance(state, Sum): ret = self._apply_operator_Sum(state, **options) else: ret = qapply(self*state) if ret == self*state: raise NotImplementedError return ret.rewrite(orig_basis) def _apply_operator_JxKet(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jx', **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jy', **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_op(ket, 'Jz', **options) def _apply_operator_TensorProduct(self, tp, **options): # Uncoupling operator is only easily found for coordinate basis spin operators # TODO: add methods for uncoupling operators if not (isinstance(self, JxOp) or isinstance(self, JyOp) or isinstance(self, JzOp)): raise NotImplementedError result = [] for n in range(len(tp.args)): arg = [] arg.extend(tp.args[:n]) arg.append(self._apply_operator(tp.args[n])) arg.extend(tp.args[n + 1:]) result.append(tp.__class__(*arg)) return Add(*result).expand() # TODO: move this to qapply_Mul def _apply_operator_Sum(self, s, **options): new_func = qapply(self * s.function) if new_func == self*s.function: raise NotImplementedError return Sum(new_func, *s.limits) def _eval_trace(self, **options): #TODO: use options to use different j values #For now eval at default basis # is it efficient to represent each time # to do a trace? return self._represent_default_basis().trace() class JplusOp(SpinOpBase, Operator): """The J+ operator.""" _coord = '+' basis = 'Jz' def _eval_commutator_JminusOp(self, other): return 2*hbar*JzOp(self.name) def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKet(j, m + S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m >= j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m + S.One))*JzKetCoupled(j, m + S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp + S.One)) result *= KroneckerDelta(m, mp + 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) + I*JyOp(args[0]) class JminusOp(SpinOpBase, Operator): """The J- operator.""" _coord = '-' basis = 'Jz' def _apply_operator_JzKet(self, ket, **options): j = ket.j m = ket.m if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKet(j, m - S.One) def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if m.is_Number and j.is_Number: if m <= -j: return S.Zero return hbar*sqrt(j*(j + S.One) - m*(m - S.One))*JzKetCoupled(j, m - S.One, jn, coupling) def matrix_element(self, j, m, jp, mp): result = hbar*sqrt(j*(j + S.One) - mp*(mp - S.One)) result *= KroneckerDelta(m, mp - 1) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0]) - I*JyOp(args[0]) class JxOp(SpinOpBase, HermitianOperator): """The Jx operator.""" _coord = 'x' basis = 'Jx' def _eval_commutator_JyOp(self, other): return I*hbar*JzOp(self.name) def _eval_commutator_JzOp(self, other): return -I*hbar*JyOp(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp + jm)/Integer(2) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp + jm)/Integer(2) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp + jm)/Integer(2) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) + JminusOp(args[0]))/2 class JyOp(SpinOpBase, HermitianOperator): """The Jy operator.""" _coord = 'y' basis = 'Jy' def _eval_commutator_JzOp(self, other): return I*hbar*JxOp(self.name) def _eval_commutator_JxOp(self, other): return -I*hbar*J2Op(self.name) def _apply_operator_JzKet(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKet(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKet(ket, **options) return (jp - jm)/(Integer(2)*I) def _apply_operator_JzKetCoupled(self, ket, **options): jp = JplusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) jm = JminusOp(self.name)._apply_operator_JzKetCoupled(ket, **options) return (jp - jm)/(Integer(2)*I) def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): jp = JplusOp(self.name)._represent_JzOp(basis, **options) jm = JminusOp(self.name)._represent_JzOp(basis, **options) return (jp - jm)/(Integer(2)*I) def _eval_rewrite_as_plusminus(self, *args, **kwargs): return (JplusOp(args[0]) - JminusOp(args[0]))/(2*I) class JzOp(SpinOpBase, HermitianOperator): """The Jz operator.""" _coord = 'z' basis = 'Jz' def _eval_commutator_JxOp(self, other): return I*hbar*JyOp(self.name) def _eval_commutator_JyOp(self, other): return -I*hbar*JxOp(self.name) def _eval_commutator_JplusOp(self, other): return hbar*JplusOp(self.name) def _eval_commutator_JminusOp(self, other): return -hbar*JminusOp(self.name) def matrix_element(self, j, m, jp, mp): result = hbar*mp result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) class J2Op(SpinOpBase, HermitianOperator): """The J^2 operator.""" _coord = '2' def _eval_commutator_JxOp(self, other): return S.Zero def _eval_commutator_JyOp(self, other): return S.Zero def _eval_commutator_JzOp(self, other): return S.Zero def _eval_commutator_JplusOp(self, other): return S.Zero def _eval_commutator_JminusOp(self, other): return S.Zero def _apply_operator_JxKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JxKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JyKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKet(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def _apply_operator_JzKetCoupled(self, ket, **options): j = ket.j return hbar**2*j*(j + 1)*ket def matrix_element(self, j, m, jp, mp): result = (hbar**2)*j*(j + 1) result *= KroneckerDelta(m, mp) result *= KroneckerDelta(j, jp) return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _print_contents_pretty(self, printer, *args): a = prettyForm(unicode(self.name)) b = prettyForm(u'2') return a**b def _print_contents_latex(self, printer, *args): return r'%s^2' % str(self.name) def _eval_rewrite_as_xyz(self, *args, **kwargs): return JxOp(args[0])**2 + JyOp(args[0])**2 + JzOp(args[0])**2 def _eval_rewrite_as_plusminus(self, *args, **kwargs): a = args[0] return JzOp(a)**2 + \ S.Half*(JplusOp(a)*JminusOp(a) + JminusOp(a)*JplusOp(a)) class Rotation(UnitaryOperator): """Wigner D operator in terms of Euler angles. Defines the rotation operator in terms of the Euler angles defined by the z-y-z convention for a passive transformation. That is the coordinate axes are rotated first about the z-axis, giving the new x'-y'-z' axes. Then this new coordinate system is rotated about the new y'-axis, giving new x''-y''-z'' axes. Then this new coordinate system is rotated about the z''-axis. Conventions follow those laid out in [1]_. Parameters ========== alpha : Number, Symbol First Euler Angle beta : Number, Symbol Second Euler angle gamma : Number, Symbol Third Euler angle Examples ======== A simple example rotation operator: >>> from sympy import pi >>> from sympy.physics.quantum.spin import Rotation >>> Rotation(pi, 0, pi/2) R(pi,0,pi/2) With symbolic Euler angles and calculating the inverse rotation operator: >>> from sympy import symbols >>> a, b, c = symbols('a b c') >>> Rotation(a, b, c) R(a,b,c) >>> Rotation(a, b, c).inverse() R(-c,-b,-a) See Also ======== WignerD: Symbolic Wigner-D function D: Wigner-D function d: Wigner small-d function References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ @classmethod def _eval_args(cls, args): args = QExpr._eval_args(args) if len(args) != 3: raise ValueError('3 Euler angles required, got: %r' % args) return args @classmethod def _eval_hilbert_space(cls, label): # We consider all j values so our space is infinite. return ComplexSpace(S.Infinity) @property def alpha(self): return self.label[0] @property def beta(self): return self.label[1] @property def gamma(self): return self.label[2] def _print_operator_name(self, printer, *args): return 'R' def _print_operator_name_pretty(self, printer, *args): if printer._use_unicode: return prettyForm(u'\N{SCRIPT CAPITAL R}' + u' ') else: return prettyForm("R ") def _print_operator_name_latex(self, printer, *args): return r'\mathcal{R}' def _eval_inverse(self): return Rotation(-self.gamma, -self.beta, -self.alpha) @classmethod def D(cls, j, m, mp, alpha, beta, gamma): """Wigner D-function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> alpha, beta, gamma = symbols('alpha beta gamma') >>> Rotation.D(1, 1, 0,pi, pi/2,-pi) WignerD(1, 1, 0, pi, pi/2, -pi) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, alpha, beta, gamma) @classmethod def d(cls, j, m, mp, beta): """Wigner small-d function. Returns an instance of the WignerD class corresponding to the Wigner-D function specified by the parameters with the alpha and gamma angles given as 0. Parameters =========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis beta : Number, Symbol Second Euler angle of rotation Examples ======== Return the Wigner-D matrix element for a defined rotation, both numerical and symbolic: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi, symbols >>> beta = symbols('beta') >>> Rotation.d(1, 1, 0, pi/2) WignerD(1, 1, 0, 0, pi/2, 0) See Also ======== WignerD: Symbolic Wigner-D function """ return WignerD(j, m, mp, 0, beta, 0) def matrix_element(self, j, m, jp, mp): result = self.__class__.D( jp, m, mp, self.alpha, self.beta, self.gamma ) result *= KroneckerDelta(j, jp) return result def _represent_base(self, basis, **options): j = sympify(options.get('j', S.Half)) # TODO: move evaluation up to represent function/implement elsewhere evaluate = sympify(options.get('doit')) size, mvals = m_values(j) result = zeros(size, size) for p in range(size): for q in range(size): me = self.matrix_element(j, mvals[p], j, mvals[q]) if evaluate: result[p, q] = me.doit() else: result[p, q] = me return result def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(basis, **options) def _apply_operator_uncoupled(self, state, ket, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z * state(j, mp)) return Add(*s) else: if options.pop('dummy', True): mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g) * state(j, mp), (mp, -j, j)) def _apply_operator_JxKet(self, ket, **options): return self._apply_operator_uncoupled(JxKet, ket, **options) def _apply_operator_JyKet(self, ket, **options): return self._apply_operator_uncoupled(JyKet, ket, **options) def _apply_operator_JzKet(self, ket, **options): return self._apply_operator_uncoupled(JzKet, ket, **options) def _apply_operator_coupled(self, state, ket, **options): a = self.alpha b = self.beta g = self.gamma j = ket.j m = ket.m jn = ket.jn coupling = ket.coupling if j.is_number: s = [] size = m_values(j) sz = size[1] for mp in sz: r = Rotation.D(j, m, mp, a, b, g) z = r.doit() s.append(z * state(j, mp, jn, coupling)) return Add(*s) else: if options.pop('dummy', True): mp = Dummy('mp') else: mp = symbols('mp') return Sum(Rotation.D(j, m, mp, a, b, g) * state( j, mp, jn, coupling), (mp, -j, j)) def _apply_operator_JxKetCoupled(self, ket, **options): return self._apply_operator_coupled(JxKetCoupled, ket, **options) def _apply_operator_JyKetCoupled(self, ket, **options): return self._apply_operator_coupled(JyKetCoupled, ket, **options) def _apply_operator_JzKetCoupled(self, ket, **options): return self._apply_operator_coupled(JzKetCoupled, ket, **options) class WignerD(Expr): r"""Wigner-D function The Wigner D-function gives the matrix elements of the rotation operator in the jm-representation. For the Euler angles `\alpha`, `\beta`, `\gamma`, the D-function is defined such that: .. math :: <j,m| \mathcal{R}(\alpha, \beta, \gamma ) |j',m'> = \delta_{jj'} D(j, m, m', \alpha, \beta, \gamma) Where the rotation operator is as defined by the Rotation class [1]_. The Wigner D-function defined in this way gives: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the Wigner small-d function, which is given by Rotation.d. The Wigner small-d function gives the component of the Wigner D-function that is determined by the second Euler angle. That is the Wigner D-function is: .. math :: D(j, m, m', \alpha, \beta, \gamma) = e^{-i m \alpha} d(j, m, m', \beta) e^{-i m' \gamma} Where d is the small-d function. The Wigner D-function is given by Rotation.D. Note that to evaluate the D-function, the j, m and mp parameters must be integer or half integer numbers. Parameters ========== j : Number Total angular momentum m : Number Eigenvalue of angular momentum along axis after rotation mp : Number Eigenvalue of angular momentum along rotated axis alpha : Number, Symbol First Euler angle of rotation beta : Number, Symbol Second Euler angle of rotation gamma : Number, Symbol Third Euler angle of rotation Examples ======== Evaluate the Wigner-D matrix elements of a simple rotation: >>> from sympy.physics.quantum.spin import Rotation >>> from sympy import pi >>> rot = Rotation.D(1, 1, 0, pi, pi/2, 0) >>> rot WignerD(1, 1, 0, pi, pi/2, 0) >>> rot.doit() sqrt(2)/2 Evaluate the Wigner-d matrix elements of a simple rotation >>> rot = Rotation.d(1, 1, 0, pi/2) >>> rot WignerD(1, 1, 0, 0, pi/2, 0) >>> rot.doit() -sqrt(2)/2 See Also ======== Rotation: Rotation operator References ========== .. [1] Varshalovich, D A, Quantum Theory of Angular Momentum. 1988. """ is_commutative = True def __new__(cls, *args, **hints): if not len(args) == 6: raise ValueError('6 parameters expected, got %s' % args) args = sympify(args) evaluate = hints.get('evaluate', False) if evaluate: return Expr.__new__(cls, *args)._eval_wignerd() return Expr.__new__(cls, *args) @property def j(self): return self.args[0] @property def m(self): return self.args[1] @property def mp(self): return self.args[2] @property def alpha(self): return self.args[3] @property def beta(self): return self.args[4] @property def gamma(self): return self.args[5] def _latex(self, printer, *args): if self.alpha == 0 and self.gamma == 0: return r'd^{%s}_{%s,%s}\left(%s\right)' % \ ( printer._print(self.j), printer._print( self.m), printer._print(self.mp), printer._print(self.beta) ) return r'D^{%s}_{%s,%s}\left(%s,%s,%s\right)' % \ ( printer._print( self.j), printer._print(self.m), printer._print(self.mp), printer._print(self.alpha), printer._print(self.beta), printer._print(self.gamma) ) def _pretty(self, printer, *args): top = printer._print(self.j) bot = printer._print(self.m) bot = prettyForm(*bot.right(',')) bot = prettyForm(*bot.right(printer._print(self.mp))) pad = max(top.width(), bot.width()) top = prettyForm(*top.left(' ')) bot = prettyForm(*bot.left(' ')) if pad > top.width(): top = prettyForm(*top.right(' ' * (pad - top.width()))) if pad > bot.width(): bot = prettyForm(*bot.right(' ' * (pad - bot.width()))) if self.alpha == 0 and self.gamma == 0: args = printer._print(self.beta) s = stringPict('d' + ' '*pad) else: args = printer._print(self.alpha) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.beta))) args = prettyForm(*args.right(',')) args = prettyForm(*args.right(printer._print(self.gamma))) s = stringPict('D' + ' '*pad) args = prettyForm(*args.parens()) s = prettyForm(*s.above(top)) s = prettyForm(*s.below(bot)) s = prettyForm(*s.right(args)) return s def doit(self, **hints): hints['evaluate'] = True return WignerD(*self.args, **hints) def _eval_wignerd(self): j = sympify(self.j) m = sympify(self.m) mp = sympify(self.mp) alpha = sympify(self.alpha) beta = sympify(self.beta) gamma = sympify(self.gamma) if not j.is_number: raise ValueError( 'j parameter must be numerical to evaluate, got %s' % j) r = 0 if beta == pi/2: # Varshalovich Equation (5), Section 4.16, page 113, setting # alpha=gamma=0. for k in range(2*j + 1): if k > j + mp or k > j - m or k < mp - m: continue r += (S.NegativeOne)**k * binomial(j + mp, k) * binomial(j - mp, k + m - mp) r *= (S.NegativeOne)**(m - mp) / 2**j * sqrt(factorial(j + m) * factorial(j - m) / (factorial(j + mp) * factorial(j - mp))) else: # Varshalovich Equation(5), Section 4.7.2, page 87, where we set # beta1=beta2=pi/2, and we get alpha=gamma=pi/2 and beta=phi+pi, # then we use the Eq. (1), Section 4.4. page 79, to simplify: # d(j, m, mp, beta+pi) = (-1)**(j-mp) * d(j, m, -mp, beta) # This happens to be almost the same as in Eq.(10), Section 4.16, # except that we need to substitute -mp for mp. size, mvals = m_values(j) for mpp in mvals: r += Rotation.d(j, m, mpp, pi/2).doit() * (cos(-mpp*beta) + I*sin(-mpp*beta)) * \ Rotation.d(j, mpp, -mp, pi/2).doit() # Empirical normalization factor so results match Varshalovich # Tables 4.3-4.12 # Note that this exact normalization does not follow from the # above equations r = r * I**(2*j - m - mp) * (-1)**(2*m) # Finally, simplify the whole expression r = simplify(r) r *= exp(-I*m*alpha)*exp(-I*mp*gamma) return r Jx = JxOp('J') Jy = JyOp('J') Jz = JzOp('J') J2 = J2Op('J') Jplus = JplusOp('J') Jminus = JminusOp('J') #----------------------------------------------------------------------------- # Spin States #----------------------------------------------------------------------------- class SpinState(State): """Base class for angular momentum states.""" _label_separator = ',' def __new__(cls, j, m): j = sympify(j) m = sympify(m) if j.is_number: if 2*j != int(2*j): raise ValueError( 'j must be integer or half-integer, got: %s' % j) if j < 0: raise ValueError('j must be >= 0, got: %s' % j) if m.is_number: if 2*m != int(2*m): raise ValueError( 'm must be integer or half-integer, got: %s' % m) if j.is_number and m.is_number: if abs(m) > j: raise ValueError('Allowed values for m are -j <= m <= j, got j, m: %s, %s' % (j, m)) if int(j - m) != j - m: raise ValueError('Both j and m must be integer or half-integer, got j, m: %s, %s' % (j, m)) return State.__new__(cls, j, m) @property def j(self): return self.label[0] @property def m(self): return self.label[1] @classmethod def _eval_hilbert_space(cls, label): return ComplexSpace(2*label[0] + 1) def _represent_base(self, **options): j = self.j m = self.m alpha = sympify(options.get('alpha', 0)) beta = sympify(options.get('beta', 0)) gamma = sympify(options.get('gamma', 0)) size, mvals = m_values(j) result = zeros(size, 1) # TODO: Use KroneckerDelta if all Euler angles == 0 # breaks finding angles on L930 for p, mval in enumerate(mvals): if m.is_number: result[p, 0] = Rotation.D( self.j, mval, self.m, alpha, beta, gamma).doit() else: result[p, 0] = Rotation.D(self.j, mval, self.m, alpha, beta, gamma) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBra, **options) return self._rewrite_basis(Jx, JxKet, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBra, **options) return self._rewrite_basis(Jy, JyKet, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBra, **options) return self._rewrite_basis(Jz, JzKet, **options) def _rewrite_basis(self, basis, evect, **options): from sympy.physics.quantum.represent import represent j = self.j args = self.args[2:] if j.is_number: if isinstance(self, CoupledSpinState): if j == int(j): start = j**2 else: start = (2*j - 1)*(2*j + 1)/4 else: start = 0 vect = represent(self, basis=basis, **options) result = Add( *[vect[start + i] * evect(j, j - i, *args) for i in range(2*j + 1)]) if isinstance(self, CoupledSpinState) and options.get('coupled') is False: return uncouple(result) return result else: i = 0 mi = symbols('mi') # make sure not to introduce a symbol already in the state while self.subs(mi, 0) != self: i += 1 mi = symbols('mi%d' % i) break # TODO: better way to get angles of rotation if isinstance(self, CoupledSpinState): test_args = (0, mi, (0, 0)) else: test_args = (0, mi) if isinstance(self, Ket): angles = represent( self.__class__(*test_args), basis=basis)[0].args[3:6] else: angles = represent(self.__class__( *test_args), basis=basis)[0].args[0].args[3:6] if angles == (0, 0, 0): return self else: state = evect(j, mi, *args) lt = Rotation.D(j, mi, self.m, *angles) return Sum(lt * state, (mi, -j, j)) def _eval_innerproduct_JxBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JxOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JyBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JyOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result def _eval_innerproduct_JzBra(self, bra, **hints): result = KroneckerDelta(self.j, bra.j) if bra.dual_class() is not self.__class__: result *= self._represent_JzOp(None)[bra.j - bra.m] else: result *= KroneckerDelta( self.j, bra.j) * KroneckerDelta(self.m, bra.m) return result def _eval_trace(self, bra, **hints): # One way to implement this method is to assume the basis set k is # passed. # Then we can apply the discrete form of Trace formula here # Tr(|i><j| ) = \Sum_k <k|i><j|k> #then we do qapply() on each each inner product and sum over them. # OR # Inner product of |i><j| = Trace(Outer Product). # we could just use this unless there are cases when this is not true return (bra*self).doit() class JxKet(SpinState, Ket): """Eigenket of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxBra @classmethod def coupled_class(self): return JxKetCoupled def _represent_default_basis(self, **options): return self._represent_JxOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_base(beta=pi/2, **options) class JxBra(SpinState, Bra): """Eigenbra of Jx. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JxKet @classmethod def coupled_class(self): return JxBraCoupled class JyKet(SpinState, Ket): """Eigenket of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyBra @classmethod def coupled_class(self): return JyKetCoupled def _represent_default_basis(self, **options): return self._represent_JyOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBra(SpinState, Bra): """Eigenbra of Jy. See JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JyKet @classmethod def coupled_class(self): return JyBraCoupled class JzKet(SpinState, Ket): """Eigenket of Jz. Spin state which is an eigenstate of the Jz operator. Uncoupled states, that is states representing the interaction of multiple separate spin states, are defined as a tensor product of states. Parameters ========== j : Number, Symbol Total spin angular momentum m : Number, Symbol Eigenvalue of the Jz spin operator Examples ======== *Normal States:* Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKet, JxKet >>> from sympy import symbols >>> JzKet(1, 0) |1,0> >>> j, m = symbols('j m') >>> JzKet(j, m) |j,m> Rewriting the JzKet in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKet's >>> JzKet(1,1).rewrite("Jx") |1,-1>/2 - sqrt(2)*|1,0>/2 + |1,1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx, Jz >>> represent(JzKet(1,-1), basis=Jx) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2]]) Apply innerproducts between states: >>> from sympy.physics.quantum.innerproduct import InnerProduct >>> from sympy.physics.quantum.spin import JxBra >>> i = InnerProduct(JxBra(1,1), JzKet(1,1)) >>> i <1,1|1,1> >>> i.doit() 1/2 *Uncoupled States:* Define an uncoupled state as a TensorProduct between two Jz eigenkets: >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> TensorProduct(JzKet(1,0), JzKet(1,1)) |1,0>x|1,1> >>> TensorProduct(JzKet(j1,m1), JzKet(j2,m2)) |j1,m1>x|j2,m2> A TensorProduct can be rewritten, in which case the eigenstates that make up the tensor product is rewritten to the new basis: >>> TensorProduct(JzKet(1,1),JxKet(1,1)).rewrite('Jz') |1,1>x|1,-1>/2 + sqrt(2)*|1,1>x|1,0>/2 + |1,1>x|1,1>/2 The represent method for TensorProduct's gives the vector representation of the state. Note that the state in the product basis is the equivalent of the tensor product of the vector representation of the component eigenstates: >>> represent(TensorProduct(JzKet(1,0),JzKet(1,1))) Matrix([ [0], [0], [0], [1], [0], [0], [0], [0], [0]]) >>> represent(TensorProduct(JzKet(1,1),JxKet(1,1)), basis=Jz) Matrix([ [ 1/2], [sqrt(2)/2], [ 1/2], [ 0], [ 0], [ 0], [ 0], [ 0], [ 0]]) See Also ======== JzKetCoupled: Coupled eigenstates sympy.physics.quantum.tensorproduct.TensorProduct: Used to specify uncoupled states uncouple: Uncouples states given coupling parameters couple: Couples uncoupled states """ @classmethod def dual_class(self): return JzBra @classmethod def coupled_class(self): return JzKetCoupled def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_base(**options) class JzBra(SpinState, Bra): """Eigenbra of Jz. See the JzKet for the usage of spin eigenstates. See Also ======== JzKet: Usage of spin states """ @classmethod def dual_class(self): return JzKet @classmethod def coupled_class(self): return JzBraCoupled # Method used primarily to create coupled_n and coupled_jn by __new__ in # CoupledSpinState # This same method is also used by the uncouple method, and is separated from # the CoupledSpinState class to maintain consistency in defining coupling def _build_coupled(jcoupling, length): n_list = [ [n + 1] for n in range(length) ] coupled_jn = [] coupled_n = [] for n1, n2, j_new in jcoupling: coupled_jn.append(j_new) coupled_n.append( (n_list[n1 - 1], n_list[n2 - 1]) ) n_sort = sorted(n_list[n1 - 1] + n_list[n2 - 1]) n_list[n_sort[0] - 1] = n_sort return coupled_n, coupled_jn class CoupledSpinState(SpinState): """Base class for coupled angular momentum states.""" def __new__(cls, j, m, jn, *jcoupling): # Check j and m values using SpinState SpinState(j, m) # Build and check coupling scheme from arguments if len(jcoupling) == 0: # Use default coupling scheme jcoupling = [] for n in range(2, len(jn)): jcoupling.append( (1, n, Add(*[jn[i] for i in range(n)])) ) jcoupling.append( (1, len(jn), j) ) elif len(jcoupling) == 1: # Use specified coupling scheme jcoupling = jcoupling[0] else: raise TypeError("CoupledSpinState only takes 3 or 4 arguments, got: %s" % (len(jcoupling) + 3) ) # Check arguments have correct form if not (isinstance(jn, list) or isinstance(jn, tuple) or isinstance(jn, Tuple)): raise TypeError('jn must be Tuple, list or tuple, got %s' % jn.__class__.__name__) if not (isinstance(jcoupling, list) or isinstance(jcoupling, tuple) or isinstance(jcoupling, Tuple)): raise TypeError('jcoupling must be Tuple, list or tuple, got %s' % jcoupling.__class__.__name__) if not all(isinstance(term, list) or isinstance(term, tuple) or isinstance(term, Tuple) for term in jcoupling): raise TypeError( 'All elements of jcoupling must be list, tuple or Tuple') if not len(jn) - 1 == len(jcoupling): raise ValueError('jcoupling must have length of %d, got %d' % (len(jn) - 1, len(jcoupling))) if not all(len(x) == 3 for x in jcoupling): raise ValueError('All elements of jcoupling must have length 3') # Build sympified args j = sympify(j) m = sympify(m) jn = Tuple( *[sympify(ji) for ji in jn] ) jcoupling = Tuple( *[Tuple(sympify( n1), sympify(n2), sympify(ji)) for (n1, n2, ji) in jcoupling] ) # Check values in coupling scheme give physical state if any(2*ji != int(2*ji) for ji in jn if ji.is_number): raise ValueError('All elements of jn must be integer or half-integer, got: %s' % jn) if any(n1 != int(n1) or n2 != int(n2) for (n1, n2, _) in jcoupling): raise ValueError('Indices in jcoupling must be integers') if any(n1 < 1 or n2 < 1 or n1 > len(jn) or n2 > len(jn) for (n1, n2, _) in jcoupling): raise ValueError('Indices must be between 1 and the number of coupled spin spaces') if any(2*ji != int(2*ji) for (_, _, ji) in jcoupling if ji.is_number): raise ValueError('All coupled j values in coupling scheme must be integer or half-integer') coupled_n, coupled_jn = _build_coupled(jcoupling, len(jn)) jvals = list(jn) for n, (n1, n2) in enumerate(coupled_n): j1 = jvals[min(n1) - 1] j2 = jvals[min(n2) - 1] j3 = coupled_jn[n] if sympify(j1).is_number and sympify(j2).is_number and sympify(j3).is_number: if j1 + j2 < j3: raise ValueError('All couplings must have j1+j2 >= j3, ' 'in coupling number %d got j1,j2,j3: %d,%d,%d' % (n + 1, j1, j2, j3)) if abs(j1 - j2) > j3: raise ValueError("All couplings must have |j1+j2| <= j3, " "in coupling number %d got j1,j2,j3: %d,%d,%d" % (n + 1, j1, j2, j3)) if int(j1 + j2) == j1 + j2: pass jvals[min(n1 + n2) - 1] = j3 if len(jcoupling) > 0 and jcoupling[-1][2] != j: raise ValueError('Last j value coupled together must be the final j of the state') # Return state return State.__new__(cls, j, m, jn, jcoupling) def _print_label(self, printer, *args): label = [printer._print(self.j), printer._print(self.m)] for i, ji in enumerate(self.jn, start=1): label.append('j%d=%s' % ( i, printer._print(ji) )) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): label.append('j(%s)=%s' % ( ','.join(str(i) for i in sorted(n1 + n2)), printer._print(jn) )) return ','.join(label) def _print_label_pretty(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): symb = 'j%d' % i symb = pretty_symbol(symb) symb = prettyForm(symb + '=') item = prettyForm(*symb.right(printer._print(ji))) label.append(item) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(pretty_symbol("j%d" % i)[-1] for i in sorted(n1 + n2)) symb = prettyForm('j' + n + '=') item = prettyForm(*symb.right(printer._print(jn))) label.append(item) return self._print_sequence_pretty( label, self._label_separator, printer, *args ) def _print_label_latex(self, printer, *args): label = [self.j, self.m] for i, ji in enumerate(self.jn, start=1): label.append('j_{%d}=%s' % (i, printer._print(ji)) ) for jn, (n1, n2) in zip(self.coupled_jn[:-1], self.coupled_n[:-1]): n = ','.join(str(i) for i in sorted(n1 + n2)) label.append('j_{%s}=%s' % (n, printer._print(jn)) ) return self._print_sequence( label, self._label_separator, printer, *args ) @property def jn(self): return self.label[2] @property def coupling(self): return self.label[3] @property def coupled_jn(self): return _build_coupled(self.label[3], len(self.label[2]))[1] @property def coupled_n(self): return _build_coupled(self.label[3], len(self.label[2]))[0] @classmethod def _eval_hilbert_space(cls, label): j = Add(*label[2]) if j.is_number: return DirectSumHilbertSpace(*[ ComplexSpace(x) for x in range(int(2*j + 1), 0, -2) ]) else: # TODO: Need hilbert space fix, see issue 5732 # Desired behavior: #ji = symbols('ji') #ret = Sum(ComplexSpace(2*ji + 1), (ji, 0, j)) # Temporary fix: return ComplexSpace(2*j + 1) def _represent_coupled_base(self, **options): evect = self.uncoupled_class() if not self.j.is_number: raise ValueError( 'State must not have symbolic j value to represent') if not self.hilbert_space.dimension.is_number: raise ValueError( 'State must not have symbolic j values to represent') result = zeros(self.hilbert_space.dimension, 1) if self.j == int(self.j): start = self.j**2 else: start = (2*self.j - 1)*(1 + 2*self.j)/4 result[start:start + 2*self.j + 1, 0] = evect( self.j, self.m)._represent_base(**options) return result def _eval_rewrite_as_Jx(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jx, JxBraCoupled, **options) return self._rewrite_basis(Jx, JxKetCoupled, **options) def _eval_rewrite_as_Jy(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jy, JyBraCoupled, **options) return self._rewrite_basis(Jy, JyKetCoupled, **options) def _eval_rewrite_as_Jz(self, *args, **options): if isinstance(self, Bra): return self._rewrite_basis(Jz, JzBraCoupled, **options) return self._rewrite_basis(Jz, JzKetCoupled, **options) class JxKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxBraCoupled @classmethod def uncoupled_class(self): return JxKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(beta=pi/2, **options) class JxBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jx. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JxKetCoupled @classmethod def uncoupled_class(self): return JxBra class JyKetCoupled(CoupledSpinState, Ket): """Coupled eigenket of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyBraCoupled @classmethod def uncoupled_class(self): return JyKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(gamma=pi/2, **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(**options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=-pi/2, gamma=pi/2, **options) class JyBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jy. See JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JyKetCoupled @classmethod def uncoupled_class(self): return JyBra class JzKetCoupled(CoupledSpinState, Ket): r"""Coupled eigenket of Jz Spin state that is an eigenket of Jz which represents the coupling of separate spin spaces. The arguments for creating instances of JzKetCoupled are ``j``, ``m``, ``jn`` and an optional ``jcoupling`` argument. The ``j`` and ``m`` options are the total angular momentum quantum numbers, as used for normal states (e.g. JzKet). The other required parameter in ``jn``, which is a tuple defining the `j_n` angular momentum quantum numbers of the product spaces. So for example, if a state represented the coupling of the product basis state `\left|j_1,m_1\right\rangle\times\left|j_2,m_2\right\rangle`, the ``jn`` for this state would be ``(j1,j2)``. The final option is ``jcoupling``, which is used to define how the spaces specified by ``jn`` are coupled, which includes both the order these spaces are coupled together and the quantum numbers that arise from these couplings. The ``jcoupling`` parameter itself is a list of lists, such that each of the sublists defines a single coupling between the spin spaces. If there are N coupled angular momentum spaces, that is ``jn`` has N elements, then there must be N-1 sublists. Each of these sublists making up the ``jcoupling`` parameter have length 3. The first two elements are the indices of the product spaces that are considered to be coupled together. For example, if we want to couple `j_1` and `j_4`, the indices would be 1 and 4. If a state has already been coupled, it is referenced by the smallest index that is coupled, so if `j_2` and `j_4` has already been coupled to some `j_{24}`, then this value can be coupled by referencing it with index 2. The final element of the sublist is the quantum number of the coupled state. So putting everything together, into a valid sublist for ``jcoupling``, if `j_1` and `j_2` are coupled to an angular momentum space with quantum number `j_{12}` with the value ``j12``, the sublist would be ``(1,2,j12)``, N-1 of these sublists are used in the list for ``jcoupling``. Note the ``jcoupling`` parameter is optional, if it is not specified, the default coupling is taken. This default value is to coupled the spaces in order and take the quantum number of the coupling to be the maximum value. For example, if the spin spaces are `j_1`, `j_2`, `j_3`, `j_4`, then the default coupling couples `j_1` and `j_2` to `j_{12}=j_1+j_2`, then, `j_{12}` and `j_3` are coupled to `j_{123}=j_{12}+j_3`, and finally `j_{123}` and `j_4` to `j=j_{123}+j_4`. The jcoupling value that would correspond to this is: ``((1,2,j1+j2),(1,3,j1+j2+j3))`` Parameters ========== args : tuple The arguments that must be passed are ``j``, ``m``, ``jn``, and ``jcoupling``. The ``j`` value is the total angular momentum. The ``m`` value is the eigenvalue of the Jz spin operator. The ``jn`` list are the j values of argular momentum spaces coupled together. The ``jcoupling`` parameter is an optional parameter defining how the spaces are coupled together. See the above description for how these coupling parameters are defined. Examples ======== Defining simple spin states, both numerical and symbolic: >>> from sympy.physics.quantum.spin import JzKetCoupled >>> from sympy import symbols >>> JzKetCoupled(1, 0, (1, 1)) |1,0,j1=1,j2=1> >>> j, m, j1, j2 = symbols('j m j1 j2') >>> JzKetCoupled(j, m, (j1, j2)) |j,m,j1=j1,j2=j2> Defining coupled spin states for more than 2 coupled spaces with various coupling parameters: >>> JzKetCoupled(2, 1, (1, 1, 1)) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((1,2,2),(1,3,2)) ) |2,1,j1=1,j2=1,j3=1,j(1,2)=2> >>> JzKetCoupled(2, 1, (1, 1, 1), ((2,3,1),(1,2,2)) ) |2,1,j1=1,j2=1,j3=1,j(2,3)=1> Rewriting the JzKetCoupled in terms of eigenkets of the Jx operator: Note: that the resulting eigenstates are JxKetCoupled >>> JzKetCoupled(1,1,(1,1)).rewrite("Jx") |1,-1,j1=1,j2=1>/2 - sqrt(2)*|1,0,j1=1,j2=1>/2 + |1,1,j1=1,j2=1>/2 The rewrite method can be used to convert a coupled state to an uncoupled state. This is done by passing coupled=False to the rewrite function: >>> JzKetCoupled(1, 0, (1, 1)).rewrite('Jz', coupled=False) -sqrt(2)*|1,-1>x|1,1>/2 + sqrt(2)*|1,1>x|1,-1>/2 Get the vector representation of a state in terms of the basis elements of the Jx operator: >>> from sympy.physics.quantum.represent import represent >>> from sympy.physics.quantum.spin import Jx >>> from sympy import S >>> represent(JzKetCoupled(1,-1,(S(1)/2,S(1)/2)), basis=Jx) Matrix([ [ 0], [ 1/2], [sqrt(2)/2], [ 1/2]]) See Also ======== JzKet: Normal spin eigenstates uncouple: Uncoupling of coupling spin states couple: Coupling of uncoupled spin states """ @classmethod def dual_class(self): return JzBraCoupled @classmethod def uncoupled_class(self): return JzKet def _represent_default_basis(self, **options): return self._represent_JzOp(None, **options) def _represent_JxOp(self, basis, **options): return self._represent_coupled_base(beta=pi*Rational(3, 2), **options) def _represent_JyOp(self, basis, **options): return self._represent_coupled_base(alpha=pi*Rational(3, 2), beta=pi/2, gamma=pi/2, **options) def _represent_JzOp(self, basis, **options): return self._represent_coupled_base(**options) class JzBraCoupled(CoupledSpinState, Bra): """Coupled eigenbra of Jz. See the JzKetCoupled for the usage of coupled spin eigenstates. See Also ======== JzKetCoupled: Usage of coupled spin states """ @classmethod def dual_class(self): return JzKetCoupled @classmethod def uncoupled_class(self): return JzBra #----------------------------------------------------------------------------- # Coupling/uncoupling #----------------------------------------------------------------------------- def couple(expr, jcoupling_list=None): """ Couple a tensor product of spin states This function can be used to couple an uncoupled tensor product of spin states. All of the eigenstates to be coupled must be of the same class. It will return a linear combination of eigenstates that are subclasses of CoupledSpinState determined by Clebsch-Gordan angular momentum coupling coefficients. Parameters ========== expr : Expr An expression involving TensorProducts of spin states to be coupled. Each state must be a subclass of SpinState and they all must be the same class. jcoupling_list : list or tuple Elements of this list are sub-lists of length 2 specifying the order of the coupling of the spin spaces. The length of this must be N-1, where N is the number of states in the tensor product to be coupled. The elements of this sublist are the same as the first two elements of each sublist in the ``jcoupling`` parameter defined for JzKetCoupled. If this parameter is not specified, the default value is taken, which couples the first and second product basis spaces, then couples this new coupled space to the third product space, etc Examples ======== Couple a tensor product of numerical states for two spaces: >>> from sympy.physics.quantum.spin import JzKet, couple >>> from sympy.physics.quantum.tensorproduct import TensorProduct >>> couple(TensorProduct(JzKet(1,0), JzKet(1,1))) -sqrt(2)*|1,1,j1=1,j2=1>/2 + sqrt(2)*|2,1,j1=1,j2=1>/2 Numerical coupling of three spaces using the default coupling method, i.e. first and second spaces couple, then this couples to the third space: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0))) sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,2)=2>/3 Perform this same coupling, but we define the coupling to first couple the first and third spaces: >>> couple(TensorProduct(JzKet(1,1), JzKet(1,1), JzKet(1,0)), ((1,3),(1,2)) ) sqrt(2)*|2,2,j1=1,j2=1,j3=1,j(1,3)=1>/2 - sqrt(6)*|2,2,j1=1,j2=1,j3=1,j(1,3)=2>/6 + sqrt(3)*|3,2,j1=1,j2=1,j3=1,j(1,3)=2>/3 Couple a tensor product of symbolic states: >>> from sympy import symbols >>> j1,m1,j2,m2 = symbols('j1 m1 j2 m2') >>> couple(TensorProduct(JzKet(j1,m1), JzKet(j2,m2))) Sum(CG(j1, m1, j2, m2, j, m1 + m2)*|j,m1 + m2,j1=j1,j2=j2>, (j, m1 + m2, j1 + j2)) """ a = expr.atoms(TensorProduct) for tp in a: # Allow other tensor products to be in expression if not all([ isinstance(state, SpinState) for state in tp.args]): continue # If tensor product has all spin states, raise error for invalid tensor product state if not all([state.__class__ is tp.args[0].__class__ for state in tp.args]): raise TypeError('All states must be the same basis') expr = expr.subs(tp, _couple(tp, jcoupling_list)) return expr def _couple(tp, jcoupling_list): states = tp.args coupled_evect = states[0].coupled_class() # Define default coupling if none is specified if jcoupling_list is None: jcoupling_list = [] for n in range(1, len(states)): jcoupling_list.append( (1, n + 1) ) # Check jcoupling_list valid if not len(jcoupling_list) == len(states) - 1: raise TypeError('jcoupling_list must be length %d, got %d' % (len(states) - 1, len(jcoupling_list))) if not all( len(coupling) == 2 for coupling in jcoupling_list): raise ValueError('Each coupling must define 2 spaces') if any([n1 == n2 for n1, n2 in jcoupling_list]): raise ValueError('Spin spaces cannot couple to themselves') if all([sympify(n1).is_number and sympify(n2).is_number for n1, n2 in jcoupling_list]): j_test = [0]*len(states) for n1, n2 in jcoupling_list: if j_test[n1 - 1] == -1 or j_test[n2 - 1] == -1: raise ValueError('Spaces coupling j_n\'s are referenced by smallest n value') j_test[max(n1, n2) - 1] = -1 # j values of states to be coupled together jn = [state.j for state in states] mn = [state.m for state in states] # Create coupling_list, which defines all the couplings between all # the spaces from jcoupling_list coupling_list = [] n_list = [ [i + 1] for i in range(len(states)) ] for j_coupling in jcoupling_list: # Least n for all j_n which is coupled as first and second spaces n1, n2 = j_coupling # List of all n's coupled in first and second spaces j1_n = list(n_list[n1 - 1]) j2_n = list(n_list[n2 - 1]) coupling_list.append( (j1_n, j2_n) ) # Set new j_n to be coupling of all j_n in both first and second spaces n_list[ min(n1, n2) - 1 ] = sorted(j1_n + j2_n) if all(state.j.is_number and state.m.is_number for state in states): # Numerical coupling # Iterate over difference between maximum possible j value of each coupling and the actual value diff_max = [ Add( *[ jn[n - 1] - mn[n - 1] for n in coupling[0] + coupling[1] ] ) for coupling in coupling_list ] result = [] for diff in range(diff_max[-1] + 1): # Determine available configurations n = len(coupling_list) tot = binomial(diff + n - 1, diff) for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) # Skip the configuration if non-physical # This is a lazy check for physical states given the loose restrictions of diff_max if any( [ d > m for d, m in zip(diff_list, diff_max) ] ): continue # Determine term cg_terms = [] coupled_j = list(jn) jcoupling = [] for (j1_n, j2_n), coupling_diff in zip(coupling_list, diff_list): j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] j3 = j1 + j2 - coupling_diff coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) # Better checks that state is physical if any([ abs(term[5]) > term[4] for term in cg_terms ]): continue if any([ term[0] + term[2] < term[4] for term in cg_terms ]): continue if any([ abs(term[0] - term[2]) > term[4] for term in cg_terms ]): continue coeff = Mul( *[ CG(*term).doit() for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) result.append(coeff*state) return Add(*result) else: # Symbolic coupling cg_terms = [] jcoupling = [] sum_terms = [] coupled_j = list(jn) for j1_n, j2_n in coupling_list: j1 = coupled_j[ min(j1_n) - 1 ] j2 = coupled_j[ min(j2_n) - 1 ] if len(j1_n + j2_n) == len(states): j3 = symbols('j') else: j3_name = 'j' + ''.join(["%s" % n for n in j1_n + j2_n]) j3 = symbols(j3_name) coupled_j[ min(j1_n + j2_n) - 1 ] = j3 m1 = Add( *[ mn[x - 1] for x in j1_n] ) m2 = Add( *[ mn[x - 1] for x in j2_n] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) jcoupling.append( (min(j1_n), min(j2_n), j3) ) sum_terms.append((j3, m3, j1 + j2)) coeff = Mul( *[ CG(*term) for term in cg_terms] ) state = coupled_evect(j3, m3, jn, jcoupling) return Sum(coeff*state, *sum_terms) def uncouple(expr, jn=None, jcoupling_list=None): """ Uncouple a coupled spin state Gives the uncoupled representation of a coupled spin state. Arguments must be either a spin state that is a subclass of CoupledSpinState or a spin state that is a subclass of SpinState and an array giving the j values of the spaces that are to be coupled Parameters ========== expr : Expr The expression containing states that are to be coupled. If the states are a subclass of SpinState, the ``jn`` and ``jcoupling`` parameters must be defined. If the states are a subclass of CoupledSpinState, ``jn`` and ``jcoupling`` will be taken from the state. jn : list or tuple The list of the j-values that are coupled. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jn`` parameter of JzKetCoupled. jcoupling_list : list or tuple The list defining how the j-values are coupled together. If state is a CoupledSpinState, this parameter is ignored. This must be defined if state is not a subclass of CoupledSpinState. The syntax of this parameter is the same as the ``jcoupling`` parameter of JzKetCoupled. Examples ======== Uncouple a numerical state using a CoupledSpinState state: >>> from sympy.physics.quantum.spin import JzKetCoupled, uncouple >>> from sympy import S >>> uncouple(JzKetCoupled(1, 0, (S(1)/2, S(1)/2))) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Perform the same calculation using a SpinState state: >>> from sympy.physics.quantum.spin import JzKet >>> uncouple(JzKet(1, 0), (S(1)/2, S(1)/2)) sqrt(2)*|1/2,-1/2>x|1/2,1/2>/2 + sqrt(2)*|1/2,1/2>x|1/2,-1/2>/2 Uncouple a numerical state of three coupled spaces using a CoupledSpinState state: >>> uncouple(JzKetCoupled(1, 1, (1, 1, 1), ((1,3,1),(1,2,1)) )) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Perform the same calculation using a SpinState state: >>> uncouple(JzKet(1, 1), (1, 1, 1), ((1,3,1),(1,2,1)) ) |1,-1>x|1,1>x|1,1>/2 - |1,0>x|1,0>x|1,1>/2 + |1,1>x|1,0>x|1,0>/2 - |1,1>x|1,1>x|1,-1>/2 Uncouple a symbolic state using a CoupledSpinState state: >>> from sympy import symbols >>> j,m,j1,j2 = symbols('j m j1 j2') >>> uncouple(JzKetCoupled(j, m, (j1, j2))) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) Perform the same calculation using a SpinState state >>> uncouple(JzKet(j, m), (j1, j2)) Sum(CG(j1, m1, j2, m2, j, m)*|j1,m1>x|j2,m2>, (m1, -j1, j1), (m2, -j2, j2)) """ a = expr.atoms(SpinState) for state in a: expr = expr.subs(state, _uncouple(state, jn, jcoupling_list)) return expr def _uncouple(state, jn, jcoupling_list): if isinstance(state, CoupledSpinState): jn = state.jn coupled_n = state.coupled_n coupled_jn = state.coupled_jn evect = state.uncoupled_class() elif isinstance(state, SpinState): if jn is None: raise ValueError("Must specify j-values for coupled state") if not (isinstance(jn, list) or isinstance(jn, tuple)): raise TypeError("jn must be list or tuple") if jcoupling_list is None: # Use default jcoupling_list = [] for i in range(1, len(jn)): jcoupling_list.append( (1, 1 + i, Add(*[jn[j] for j in range(i + 1)])) ) if not (isinstance(jcoupling_list, list) or isinstance(jcoupling_list, tuple)): raise TypeError("jcoupling must be a list or tuple") if not len(jcoupling_list) == len(jn) - 1: raise ValueError("Must specify 2 fewer coupling terms than the number of j values") coupled_n, coupled_jn = _build_coupled(jcoupling_list, len(jn)) evect = state.__class__ else: raise TypeError("state must be a spin state") j = state.j m = state.m coupling_list = [] j_list = list(jn) # Create coupling, which defines all the couplings between all the spaces for j3, (n1, n2) in zip(coupled_jn, coupled_n): # j's which are coupled as first and second spaces j1 = j_list[n1[0] - 1] j2 = j_list[n2[0] - 1] # Build coupling list coupling_list.append( (n1, n2, j1, j2, j3) ) # Set new value in j_list j_list[min(n1 + n2) - 1] = j3 if j.is_number and m.is_number: diff_max = [ 2*x for x in jn ] diff = Add(*jn) - m n = len(jn) tot = binomial(diff + n - 1, diff) result = [] for config_num in range(tot): diff_list = _confignum_to_difflist(config_num, diff, n) if any( [ d > p for d, p in zip(diff_list, diff_max) ] ): continue cg_terms = [] for coupling in coupling_list: j1_n, j2_n, j1, j2, j3 = coupling m1 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j1_n ] ) m2 = Add( *[ jn[x - 1] - diff_list[x - 1] for x in j2_n ] ) m3 = m1 + m2 cg_terms.append( (j1, m1, j2, m2, j3, m3) ) coeff = Mul( *[ CG(*term).doit() for term in cg_terms ] ) state = TensorProduct( *[ evect(j, j - d) for j, d in zip(jn, diff_list) ] ) result.append(coeff*state) return Add(*result) else: # Symbolic coupling m_str = "m1:%d" % (len(jn) + 1) mvals = symbols(m_str) cg_terms = [(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j3, Add(*[mvals[n - 1] for n in j1_n + j2_n])) for j1_n, j2_n, j1, j2, j3 in coupling_list[:-1] ] cg_terms.append(*[(j1, Add(*[mvals[n - 1] for n in j1_n]), j2, Add(*[mvals[n - 1] for n in j2_n]), j, m) for j1_n, j2_n, j1, j2, j3 in [coupling_list[-1]] ]) cg_coeff = Mul(*[CG(*cg_term) for cg_term in cg_terms]) sum_terms = [ (m, -j, j) for j, m in zip(jn, mvals) ] state = TensorProduct( *[ evect(j, m) for j, m in zip(jn, mvals) ] ) return Sum(cg_coeff*state, *sum_terms) def _confignum_to_difflist(config_num, diff, list_len): # Determines configuration of diffs into list_len number of slots diff_list = [] for n in range(list_len): prev_diff = diff # Number of spots after current one rem_spots = list_len - n - 1 # Number of configurations of distributing diff among the remaining spots rem_configs = binomial(diff + rem_spots - 1, diff) while config_num >= rem_configs: config_num -= rem_configs diff -= 1 rem_configs = binomial(diff + rem_spots - 1, diff) diff_list.append(prev_diff - diff) return diff_list
23b138aab16f50dacfd355113c3b6b552c92e3247c308145c7067fcb1e4cd340
"""Constants (like hbar) related to quantum mechanics.""" from __future__ import print_function, division from sympy.core.numbers import NumberSymbol from sympy.core.singleton import Singleton from sympy.core.compatibility import with_metaclass from sympy.printing.pretty.stringpict import prettyForm import mpmath.libmp as mlib #----------------------------------------------------------------------------- # Constants #----------------------------------------------------------------------------- __all__ = [ 'hbar', 'HBar', ] class HBar(with_metaclass(Singleton, NumberSymbol)): """Reduced Plank's constant in numerical and symbolic form [1]_. Examples ======== >>> from sympy.physics.quantum.constants import hbar >>> hbar.evalf() 1.05457162000000e-34 References ========== .. [1] https://en.wikipedia.org/wiki/Planck_constant """ is_real = True is_positive = True is_negative = False is_irrational = True __slots__ = [] def _as_mpf_val(self, prec): return mlib.from_float(1.05457162e-34, prec) def _sympyrepr(self, printer, *args): return 'HBar()' def _sympystr(self, printer, *args): return 'hbar' def _pretty(self, printer, *args): if printer._use_unicode: return prettyForm(u'\N{PLANCK CONSTANT OVER TWO PI}') return prettyForm('hbar') def _latex(self, printer, *args): return r'\hbar' # Create an instance for everyone to use. hbar = HBar()
e9fe49f13132960b01c74f6a15902872f7bf3bb22a3714e858f5f02bccd6a728
"""Matplotlib based plotting of quantum circuits. Todo: * Optimize printing of large circuits. * Get this to work with single gates. * Do a better job checking the form of circuits to make sure it is a Mul of Gates. * Get multi-target gates plotting. * Get initial and final states to plot. * Get measurements to plot. Might need to rethink measurement as a gate issue. * Get scale and figsize to be handled in a better way. * Write some tests/examples! """ from __future__ import print_function, division from sympy import Mul from sympy.core.compatibility import range from sympy.external import import_module from sympy.physics.quantum.gate import Gate, OneQubitGate, CGate, CGateS from sympy.core.core import BasicMeta from sympy.core.assumptions import ManagedProperties __all__ = [ 'CircuitPlot', 'circuit_plot', 'labeller', 'Mz', 'Mx', 'CreateOneQubitGate', 'CreateCGate', ] np = import_module('numpy') matplotlib = import_module( 'matplotlib', __import__kwargs={'fromlist': ['pyplot']}, catch=(RuntimeError,)) # This is raised in environments that have no display. if not np or not matplotlib: class CircuitPlot(object): def __init__(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') def circuit_plot(*args, **kwargs): raise ImportError('numpy or matplotlib not available.') else: pyplot = matplotlib.pyplot Line2D = matplotlib.lines.Line2D Circle = matplotlib.patches.Circle #from matplotlib import rc #rc('text',usetex=True) class CircuitPlot(object): """A class for managing a circuit plot.""" scale = 1.0 fontsize = 20.0 linewidth = 1.0 control_radius = 0.05 not_radius = 0.15 swap_delta = 0.05 labels = [] inits = {} label_buffer = 0.5 def __init__(self, c, nqubits, **kwargs): self.circuit = c self.ngates = len(self.circuit.args) self.nqubits = nqubits self.update(kwargs) self._create_grid() self._create_figure() self._plot_wires() self._plot_gates() self._finish() def update(self, kwargs): """Load the kwargs into the instance dict.""" self.__dict__.update(kwargs) def _create_grid(self): """Create the grid of wires.""" scale = self.scale wire_grid = np.arange(0.0, self.nqubits*scale, scale, dtype=float) gate_grid = np.arange(0.0, self.ngates*scale, scale, dtype=float) self._wire_grid = wire_grid self._gate_grid = gate_grid def _create_figure(self): """Create the main matplotlib figure.""" self._figure = pyplot.figure( figsize=(self.ngates*self.scale, self.nqubits*self.scale), facecolor='w', edgecolor='w' ) ax = self._figure.add_subplot( 1, 1, 1, frameon=True ) ax.set_axis_off() offset = 0.5*self.scale ax.set_xlim(self._gate_grid[0] - offset, self._gate_grid[-1] + offset) ax.set_ylim(self._wire_grid[0] - offset, self._wire_grid[-1] + offset) ax.set_aspect('equal') self._axes = ax def _plot_wires(self): """Plot the wires of the circuit diagram.""" xstart = self._gate_grid[0] xstop = self._gate_grid[-1] xdata = (xstart - self.scale, xstop + self.scale) for i in range(self.nqubits): ydata = (self._wire_grid[i], self._wire_grid[i]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) if self.labels: init_label_buffer = 0 if self.inits.get(self.labels[i]): init_label_buffer = 0.25 self._axes.text( xdata[0]-self.label_buffer-init_label_buffer,ydata[0], render_label(self.labels[i],self.inits), size=self.fontsize, color='k',ha='center',va='center') self._plot_measured_wires() def _plot_measured_wires(self): ismeasured = self._measurements() xstop = self._gate_grid[-1] dy = 0.04 # amount to shift wires when doubled # Plot doubled wires after they are measured for im in ismeasured: xdata = (self._gate_grid[ismeasured[im]],xstop+self.scale) ydata = (self._wire_grid[im]+dy,self._wire_grid[im]+dy) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) # Also double any controlled lines off these wires for i,g in enumerate(self._gates()): if isinstance(g, CGate) or isinstance(g, CGateS): wires = g.controls + g.targets for wire in wires: if wire in ismeasured and \ self._gate_grid[i] > self._gate_grid[ismeasured[wire]]: ydata = min(wires), max(wires) xdata = self._gate_grid[i]-dy, self._gate_grid[i]-dy line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def _gates(self): """Create a list of all gates in the circuit plot.""" gates = [] if isinstance(self.circuit, Mul): for g in reversed(self.circuit.args): if isinstance(g, Gate): gates.append(g) elif isinstance(self.circuit, Gate): gates.append(self.circuit) return gates def _plot_gates(self): """Iterate through the gates and plot each of them.""" for i, gate in enumerate(self._gates()): gate.plot_gate(self, i) def _measurements(self): """Return a dict {i:j} where i is the index of the wire that has been measured, and j is the gate where the wire is measured. """ ismeasured = {} for i,g in enumerate(self._gates()): if getattr(g,'measurement',False): for target in g.targets: if target in ismeasured: if ismeasured[target] > i: ismeasured[target] = i else: ismeasured[target] = i return ismeasured def _finish(self): # Disable clipping to make panning work well for large circuits. for o in self._figure.findobj(): o.set_clip_on(False) def one_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a single qubit gate.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] self._axes.text( x, y, t, color='k', ha='center', va='center', bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), size=self.fontsize ) def two_qubit_box(self, t, gate_idx, wire_idx): """Draw a box for a two qubit gate. Doesn't work yet. """ # x = self._gate_grid[gate_idx] # y = self._wire_grid[wire_idx]+0.5 print(self._gate_grid) print(self._wire_grid) # unused: # obj = self._axes.text( # x, y, t, # color='k', # ha='center', # va='center', # bbox=dict(ec='k', fc='w', fill=True, lw=self.linewidth), # size=self.fontsize # ) def control_line(self, gate_idx, min_wire, max_wire): """Draw a vertical control line.""" xdata = (self._gate_grid[gate_idx], self._gate_grid[gate_idx]) ydata = (self._wire_grid[min_wire], self._wire_grid[max_wire]) line = Line2D( xdata, ydata, color='k', lw=self.linewidth ) self._axes.add_line(line) def control_point(self, gate_idx, wire_idx): """Draw a control point.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.control_radius c = Circle( (x, y), radius*self.scale, ec='k', fc='k', fill=True, lw=self.linewidth ) self._axes.add_patch(c) def not_point(self, gate_idx, wire_idx): """Draw a NOT gates as the circle with plus in the middle.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] radius = self.not_radius c = Circle( (x, y), radius, ec='k', fc='w', fill=False, lw=self.linewidth ) self._axes.add_patch(c) l = Line2D( (x, x), (y - radius, y + radius), color='k', lw=self.linewidth ) self._axes.add_line(l) def swap_point(self, gate_idx, wire_idx): """Draw a swap point as a cross.""" x = self._gate_grid[gate_idx] y = self._wire_grid[wire_idx] d = self.swap_delta l1 = Line2D( (x - d, x + d), (y - d, y + d), color='k', lw=self.linewidth ) l2 = Line2D( (x - d, x + d), (y + d, y - d), color='k', lw=self.linewidth ) self._axes.add_line(l1) self._axes.add_line(l2) def circuit_plot(c, nqubits, **kwargs): """Draw the circuit diagram for the circuit with nqubits. Parameters ========== c : circuit The circuit to plot. Should be a product of Gate instances. nqubits : int The number of qubits to include in the circuit. Must be at least as big as the largest `min_qubits`` of the gates. """ return CircuitPlot(c, nqubits, **kwargs) def render_label(label, inits={}): """Slightly more flexible way to render labels. >>> from sympy.physics.quantum.circuitplot import render_label >>> render_label('q0') '$\\\\left|q0\\\\right\\\\rangle$' >>> render_label('q0', {'q0':'0'}) '$\\\\left|q0\\\\right\\\\rangle=\\\\left|0\\\\right\\\\rangle$' """ init = inits.get(label) if init: return r'$\left|%s\right\rangle=\left|%s\right\rangle$' % (label, init) return r'$\left|%s\right\rangle$' % label def labeller(n, symbol='q'): """Autogenerate labels for wires of quantum circuits. Parameters ========== n : int number of qubits in the circuit symbol : string A character string to precede all gate labels. E.g. 'q_0', 'q_1', etc. >>> from sympy.physics.quantum.circuitplot import labeller >>> labeller(2) ['q_1', 'q_0'] >>> labeller(3,'j') ['j_2', 'j_1', 'j_0'] """ return ['%s_%d' % (symbol,n-i-1) for i in range(n)] class Mz(OneQubitGate): """Mock-up of a z measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mz' gate_name_latex=u'M_z' class Mx(OneQubitGate): """Mock-up of an x measurement gate. This is in circuitplot rather than gate.py because it's not a real gate, it just draws one. """ measurement = True gate_name='Mx' gate_name_latex=u'M_x' class CreateOneQubitGate(ManagedProperties): def __new__(mcl, name, latexname=None): if not latexname: latexname = name return BasicMeta.__new__(mcl, name + "Gate", (OneQubitGate,), {'gate_name': name, 'gate_name_latex': latexname}) def CreateCGate(name, latexname=None): """Use a lexical closure to make a controlled gate. """ if not latexname: latexname = name onequbitgate = CreateOneQubitGate(name, latexname) def ControlledGate(ctrls,target): return CGate(tuple(ctrls),onequbitgate(target)) return ControlledGate
325624f5ce8b6cfeb16d30b3e57744d06aeb1b805f87d6e970a39286f1bb644f
"""Hilbert spaces for quantum mechanics. Authors: * Brian Granger * Matt Curry """ from __future__ import print_function, division from sympy import Basic, Interval, oo, sympify from sympy.core.compatibility import range from sympy.printing.pretty.stringpict import prettyForm from sympy.physics.quantum.qexpr import QuantumError from sympy.core.compatibility import reduce __all__ = [ 'HilbertSpaceError', 'HilbertSpace', 'TensorProductHilbertSpace', 'TensorPowerHilbertSpace', 'DirectSumHilbertSpace', 'ComplexSpace', 'L2', 'FockSpace' ] #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpaceError(QuantumError): pass #----------------------------------------------------------------------------- # Main objects #----------------------------------------------------------------------------- class HilbertSpace(Basic): """An abstract Hilbert space for quantum mechanics. In short, a Hilbert space is an abstract vector space that is complete with inner products defined [1]_. Examples ======== >>> from sympy.physics.quantum.hilbert import HilbertSpace >>> hs = HilbertSpace() >>> hs H References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): """Return the Hilbert dimension of the space.""" raise NotImplementedError('This Hilbert space has no dimension.') def __add__(self, other): return DirectSumHilbertSpace(self, other) def __radd__(self, other): return DirectSumHilbertSpace(other, self) def __mul__(self, other): return TensorProductHilbertSpace(self, other) def __rmul__(self, other): return TensorProductHilbertSpace(other, self) def __pow__(self, other, mod=None): if mod is not None: raise ValueError('The third argument to __pow__ is not supported \ for Hilbert spaces.') return TensorPowerHilbertSpace(self, other) def __contains__(self, other): """Is the operator or state in this Hilbert space. This is checked by comparing the classes of the Hilbert spaces, not the instances. This is to allow Hilbert Spaces with symbolic dimensions. """ if other.hilbert_space.__class__ == self.__class__: return True else: return False def _sympystr(self, printer, *args): return u'H' def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER H}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{H}' class ComplexSpace(HilbertSpace): """Finite dimensional Hilbert space of complex vectors. The elements of this Hilbert space are n-dimensional complex valued vectors with the usual inner product that takes the complex conjugate of the vector on the right. A classic example of this type of Hilbert space is spin-1/2, which is ``ComplexSpace(2)``. Generalizing to spin-s, the space is ``ComplexSpace(2*s+1)``. Quantum computing with N qubits is done with the direct product space ``ComplexSpace(2)**N``. Examples ======== >>> from sympy import symbols >>> from sympy.physics.quantum.hilbert import ComplexSpace >>> c1 = ComplexSpace(2) >>> c1 C(2) >>> c1.dimension 2 >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> c2 C(n) >>> c2.dimension n """ def __new__(cls, dimension): dimension = sympify(dimension) r = cls.eval(dimension) if isinstance(r, Basic): return r obj = Basic.__new__(cls, dimension) return obj @classmethod def eval(cls, dimension): if len(dimension.atoms()) == 1: if not (dimension.is_Integer and dimension > 0 or dimension is oo or dimension.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' 'be a positive integer, oo, or a Symbol: %r' % dimension) else: for dim in dimension.atoms(): if not (dim.is_Integer or dim is oo or dim.is_Symbol): raise TypeError('The dimension of a ComplexSpace can only' ' contain integers, oo, or a Symbol: %r' % dim) @property def dimension(self): return self.args[0] def _sympyrepr(self, printer, *args): return "%s(%s)" % (self.__class__.__name__, printer._print(self.dimension, *args)) def _sympystr(self, printer, *args): return "C(%s)" % printer._print(self.dimension, *args) def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER C}' pform_exp = printer._print(self.dimension, *args) pform_base = prettyForm(ustr) return pform_base**pform_exp def _latex(self, printer, *args): return r'\mathcal{C}^{%s}' % printer._print(self.dimension, *args) class L2(HilbertSpace): """The Hilbert space of square integrable functions on an interval. An L2 object takes in a single sympy Interval argument which represents the interval its functions (vectors) are defined on. Examples ======== >>> from sympy import Interval, oo >>> from sympy.physics.quantum.hilbert import L2 >>> hs = L2(Interval(0,oo)) >>> hs L2(Interval(0, oo)) >>> hs.dimension oo >>> hs.interval Interval(0, oo) """ def __new__(cls, interval): if not isinstance(interval, Interval): raise TypeError('L2 interval must be an Interval instance: %r' % interval) obj = Basic.__new__(cls, interval) return obj @property def dimension(self): return oo @property def interval(self): return self.args[0] def _sympyrepr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _sympystr(self, printer, *args): return "L2(%s)" % printer._print(self.interval, *args) def _pretty(self, printer, *args): pform_exp = prettyForm(u'2') pform_base = prettyForm(u'L') return pform_base**pform_exp def _latex(self, printer, *args): interval = printer._print(self.interval, *args) return r'{\mathcal{L}^2}\left( %s \right)' % interval class FockSpace(HilbertSpace): """The Hilbert space for second quantization. Technically, this Hilbert space is a infinite direct sum of direct products of single particle Hilbert spaces [1]_. This is a mess, so we have a class to represent it directly. Examples ======== >>> from sympy.physics.quantum.hilbert import FockSpace >>> hs = FockSpace() >>> hs F >>> hs.dimension oo References ========== .. [1] https://en.wikipedia.org/wiki/Fock_space """ def __new__(cls): obj = Basic.__new__(cls) return obj @property def dimension(self): return oo def _sympyrepr(self, printer, *args): return "FockSpace()" def _sympystr(self, printer, *args): return "F" def _pretty(self, printer, *args): ustr = u'\N{LATIN CAPITAL LETTER F}' return prettyForm(ustr) def _latex(self, printer, *args): return r'\mathcal{F}' class TensorProductHilbertSpace(HilbertSpace): """A tensor product of Hilbert spaces [1]_. The tensor product between Hilbert spaces is represented by the operator ``*`` Products of the same Hilbert space will be combined into tensor powers. A ``TensorProductHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. In addition, multiplication of ``HilbertSpace`` objects will automatically return this tensor product object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c*f >>> hs C(2)*F >>> hs.dimension oo >>> hs.spaces (C(2), F) >>> c1 = ComplexSpace(2) >>> n = symbols('n') >>> c2 = ComplexSpace(n) >>> hs = c1*c2 >>> hs C(2)*C(n) >>> hs.dimension 2*n References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, TensorProductHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, (HilbertSpace, TensorPowerHilbertSpace)): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be multiplied by \ other Hilbert spaces: %r' % arg) #combine like arguments into direct powers comb_args = [] prev_arg = None for new_arg in new_args: if prev_arg is not None: if isinstance(new_arg, TensorPowerHilbertSpace) and \ isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg.base: prev_arg = new_arg.base**(new_arg.exp + prev_arg.exp) elif isinstance(new_arg, TensorPowerHilbertSpace) and \ new_arg.base == prev_arg: prev_arg = prev_arg**(new_arg.exp + 1) elif isinstance(prev_arg, TensorPowerHilbertSpace) and \ new_arg == prev_arg.base: prev_arg = new_arg**(prev_arg.exp + 1) elif new_arg == prev_arg: prev_arg = new_arg**2 else: comb_args.append(prev_arg) prev_arg = new_arg elif prev_arg is None: prev_arg = new_arg comb_args.append(prev_arg) if recall: return TensorProductHilbertSpace(*comb_args) elif len(comb_args) == 1: return TensorPowerHilbertSpace(comb_args[0].base, comb_args[0].exp) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x*y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this tensor product.""" return self.args def _spaces_printer(self, printer, *args): spaces_strs = [] for arg in self.args: s = printer._print(arg, *args) if isinstance(arg, DirectSumHilbertSpace): s = '(%s)' % s spaces_strs.append(s) return spaces_strs def _sympyrepr(self, printer, *args): spaces_reprs = self._spaces_printer(printer, *args) return "TensorProductHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = self._spaces_printer(printer, *args) return '*'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u' ' + u'\N{N-ARY CIRCLED TIMES OPERATOR}' + u' ')) else: pform = prettyForm(*pform.right(' x ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\otimes ' return s class DirectSumHilbertSpace(HilbertSpace): """A direct sum of Hilbert spaces [1]_. This class uses the ``+`` operator to represent direct sums between different Hilbert spaces. A ``DirectSumHilbertSpace`` object takes in an arbitrary number of ``HilbertSpace`` objects as its arguments. Also, addition of ``HilbertSpace`` objects will automatically return a direct sum object. Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> c = ComplexSpace(2) >>> f = FockSpace() >>> hs = c+f >>> hs C(2)+F >>> hs.dimension oo >>> list(hs.spaces) [C(2), F] References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Direct_sums """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r obj = Basic.__new__(cls, *args) return obj @classmethod def eval(cls, args): """Evaluates the direct product.""" new_args = [] recall = False #flatten arguments for arg in args: if isinstance(arg, DirectSumHilbertSpace): new_args.extend(arg.args) recall = True elif isinstance(arg, HilbertSpace): new_args.append(arg) else: raise TypeError('Hilbert spaces can only be summed with other \ Hilbert spaces: %r' % arg) if recall: return DirectSumHilbertSpace(*new_args) else: return None @property def dimension(self): arg_list = [arg.dimension for arg in self.args] if oo in arg_list: return oo else: return reduce(lambda x, y: x + y, arg_list) @property def spaces(self): """A tuple of the Hilbert spaces in this direct sum.""" return self.args def _sympyrepr(self, printer, *args): spaces_reprs = [printer._print(arg, *args) for arg in self.args] return "DirectSumHilbertSpace(%s)" % ','.join(spaces_reprs) def _sympystr(self, printer, *args): spaces_strs = [printer._print(arg, *args) for arg in self.args] return '+'.join(spaces_strs) def _pretty(self, printer, *args): length = len(self.args) pform = printer._print('', *args) for i in range(length): next_pform = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): next_pform = prettyForm( *next_pform.parens(left='(', right=')') ) pform = prettyForm(*pform.right(next_pform)) if i != length - 1: if printer._use_unicode: pform = prettyForm(*pform.right(u' \N{CIRCLED PLUS} ')) else: pform = prettyForm(*pform.right(' + ')) return pform def _latex(self, printer, *args): length = len(self.args) s = '' for i in range(length): arg_s = printer._print(self.args[i], *args) if isinstance(self.args[i], (DirectSumHilbertSpace, TensorProductHilbertSpace)): arg_s = r'\left(%s\right)' % arg_s s = s + arg_s if i != length - 1: s = s + r'\oplus ' return s class TensorPowerHilbertSpace(HilbertSpace): """An exponentiated Hilbert space [1]_. Tensor powers (repeated tensor products) are represented by the operator ``**`` Identical Hilbert spaces that are multiplied together will be automatically combined into a single tensor power object. Any Hilbert space, product, or sum may be raised to a tensor power. The ``TensorPowerHilbertSpace`` takes two arguments: the Hilbert space; and the tensor power (number). Examples ======== >>> from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace >>> from sympy import symbols >>> n = symbols('n') >>> c = ComplexSpace(2) >>> hs = c**n >>> hs C(2)**n >>> hs.dimension 2**n >>> c = ComplexSpace(2) >>> c*c C(2)**2 >>> f = FockSpace() >>> c*f*f C(2)*F**2 References ========== .. [1] https://en.wikipedia.org/wiki/Hilbert_space#Tensor_products """ def __new__(cls, *args): r = cls.eval(args) if isinstance(r, Basic): return r return Basic.__new__(cls, *r) @classmethod def eval(cls, args): new_args = args[0], sympify(args[1]) exp = new_args[1] #simplify hs**1 -> hs if exp == 1: return args[0] #simplify hs**0 -> 1 if exp == 0: return sympify(1) #check (and allow) for hs**(x+42+y...) case if len(exp.atoms()) == 1: if not (exp.is_Integer and exp >= 0 or exp.is_Symbol): raise ValueError('Hilbert spaces can only be raised to \ positive integers or Symbols: %r' % exp) else: for power in exp.atoms(): if not (power.is_Integer or power.is_Symbol): raise ValueError('Tensor powers can only contain integers \ or Symbols: %r' % power) return new_args @property def base(self): return self.args[0] @property def exp(self): return self.args[1] @property def dimension(self): if self.base.dimension is oo: return oo else: return self.base.dimension**self.exp def _sympyrepr(self, printer, *args): return "TensorPowerHilbertSpace(%s,%s)" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _sympystr(self, printer, *args): return "%s**%s" % (printer._print(self.base, *args), printer._print(self.exp, *args)) def _pretty(self, printer, *args): pform_exp = printer._print(self.exp, *args) if printer._use_unicode: pform_exp = prettyForm(*pform_exp.left(prettyForm(u'\N{N-ARY CIRCLED TIMES OPERATOR}'))) else: pform_exp = prettyForm(*pform_exp.left(prettyForm('x'))) pform_base = printer._print(self.base, *args) return pform_base**pform_exp def _latex(self, printer, *args): base = printer._print(self.base, *args) exp = printer._print(self.exp, *args) return r'{%s}^{\otimes %s}' % (base, exp)
3acf683b47a2ff67b28364645a981035648cd7ced5fbc8991afca18bdf445203
from sympy.core.backend import Symbol from sympy.physics.vector import Point, Vector, ReferenceFrame from sympy.physics.mechanics import RigidBody, Particle, inertia __all__ = ['Body'] class Body(RigidBody, Particle): """ Body is a common representation of either a RigidBody or a Particle SymPy object depending on what is passed in during initialization. If a mass is passed in and central_inertia is left as None, the Particle object is created. Otherwise a RigidBody object will be created. The attributes that Body possesses will be the same as a Particle instance or a Rigid Body instance depending on which was created. Additional attributes are listed below. Attributes ========== name : string The body's name masscenter : Point The point which represents the center of mass of the rigid body frame : ReferenceFrame The reference frame which the body is fixed in mass : Sympifyable The body's mass inertia : (Dyadic, Point) The body's inertia around its center of mass. This attribute is specific to the rigid body form of Body and is left undefined for the Particle form loads : iterable This list contains information on the different loads acting on the Body. Forces are listed as a (point, vector) tuple and torques are listed as (reference frame, vector) tuples. Parameters ========== name : String Defines the name of the body. It is used as the base for defining body specific properties. masscenter : Point, optional A point that represents the center of mass of the body or particle. If no point is given, a point is generated. mass : Sympifyable, optional A Sympifyable object which represents the mass of the body. If no mass is passed, one is generated. frame : ReferenceFrame, optional The ReferenceFrame that represents the reference frame of the body. If no frame is given, a frame is generated. central_inertia : Dyadic, optional Central inertia dyadic of the body. If none is passed while creating RigidBody, a default inertia is generated. Examples ======== Default behaviour. This results in the creation of a RigidBody object for which the mass, mass center, frame and inertia attributes are given default values. :: >>> from sympy.physics.mechanics import Body >>> body = Body('name_of_body') This next example demonstrates the code required to specify all of the values of the Body object. Note this will also create a RigidBody version of the Body object. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import ReferenceFrame, Point, inertia >>> from sympy.physics.mechanics import Body >>> mass = Symbol('mass') >>> masscenter = Point('masscenter') >>> frame = ReferenceFrame('frame') >>> ixx = Symbol('ixx') >>> body_inertia = inertia(frame, ixx, 0, 0) >>> body = Body('name_of_body', masscenter, mass, frame, body_inertia) The minimal code required to create a Particle version of the Body object involves simply passing in a name and a mass. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> mass = Symbol('mass') >>> body = Body('name_of_body', mass=mass) The Particle version of the Body object can also receive a masscenter point and a reference frame, just not an inertia. """ def __init__(self, name, masscenter=None, mass=None, frame=None, central_inertia=None): self.name = name self.loads = [] if frame is None: frame = ReferenceFrame(name + '_frame') if masscenter is None: masscenter = Point(name + '_masscenter') if central_inertia is None and mass is None: ixx = Symbol(name + '_ixx') iyy = Symbol(name + '_iyy') izz = Symbol(name + '_izz') izx = Symbol(name + '_izx') ixy = Symbol(name + '_ixy') iyz = Symbol(name + '_iyz') _inertia = (inertia(frame, ixx, iyy, izz, ixy, iyz, izx), masscenter) else: _inertia = (central_inertia, masscenter) if mass is None: _mass = Symbol(name + '_mass') else: _mass = mass masscenter.set_vel(frame, 0) # If user passes masscenter and mass then a particle is created # otherwise a rigidbody. As a result a body may or may not have inertia. if central_inertia is None and mass is not None: self.frame = frame self.masscenter = masscenter Particle.__init__(self, name, masscenter, _mass) else: RigidBody.__init__(self, name, masscenter, frame, _mass, _inertia) def apply_force(self, vec, point=None): """ Adds a force to a point (center of mass by default) on the body. Parameters ========== vec: Vector Defines the force vector. Can be any vector w.r.t any frame or combinations of frames. point: Point, optional Defines the point on which the force is applied. Default is the Body's center of mass. Example ======= The first example applies a gravitational force in the x direction of Body's frame to the body's center of mass. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> g = Symbol('g') >>> body.apply_force(body.mass * g * body.frame.x) To apply force to any other point than center of mass, pass that point as well. This example applies a gravitational force to a point a distance l from the body's center of mass in the y direction. The force is again applied in the x direction. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> g = Symbol('g') >>> l = Symbol('l') >>> point = body.masscenter.locatenew('force_point', l * ... body.frame.y) >>> body.apply_force(body.mass * g * body.frame.x, point) """ if not isinstance(point, Point): if point is None: point = self.masscenter # masscenter else: raise TypeError("A Point must be supplied to apply force to.") if not isinstance(vec, Vector): raise TypeError("A Vector must be supplied to apply force.") self.loads.append((point, vec)) def apply_torque(self, vec): """ Adds a torque to the body. Parameters ========== vec: Vector Defines the torque vector. Can be any vector w.r.t any frame or combinations of frame. Example ======= This example adds a simple torque around the body's z axis. :: >>> from sympy import Symbol >>> from sympy.physics.mechanics import Body >>> body = Body('body') >>> T = Symbol('T') >>> body.apply_torque(T * body.frame.z) """ if not isinstance(vec, Vector): raise TypeError("A Vector must be supplied to add torque.") self.loads.append((self.frame, vec))
e6822ad34c9342cf918149e4043ac079c853124e9a00ca266462117f9ff391cd
__all__ = [ 'vector', 'CoordinateSym', 'ReferenceFrame', 'Dyadic', 'Vector', 'Point', 'cross', 'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations', 'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting', 'curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal', 'scalar_potential', 'scalar_potential_difference', 'KanesMethod', 'RigidBody', 'inertia', 'inertia_of_point_mass', 'linear_momentum', 'angular_momentum', 'kinetic_energy', 'potential_energy', 'Lagrangian', 'mechanics_printing', 'mprint', 'msprint', 'mpprint', 'mlatex', 'msubs', 'find_dynamicsymbols', 'Particle', 'LagrangesMethod', 'Linearizer', 'Body', 'SymbolicSystem', ] from sympy.physics import vector from sympy.physics.vector import (CoordinateSym, ReferenceFrame, Dyadic, Vector, Point, cross, dot, express, time_derivative, outer, kinematic_equations, get_motion_params, partial_velocity, dynamicsymbols, vprint, vsstrrepr, vsprint, vpprint, vlatex, init_vprinting, curl, divergence, gradient, is_conservative, is_solenoidal, scalar_potential, scalar_potential_difference) from .kane import KanesMethod from .rigidbody import RigidBody from .functions import (inertia, inertia_of_point_mass, linear_momentum, angular_momentum, kinetic_energy, potential_energy, Lagrangian, mechanics_printing, mprint, msprint, mpprint, mlatex, msubs, find_dynamicsymbols) from .particle import Particle from .lagrange import LagrangesMethod from .linearize import Linearizer from .body import Body from .system import SymbolicSystem
9230e192c3d0e14a19b617251dd3496793f7400fb575f95b6c88a3b108f9c34f
from __future__ import print_function, division from sympy.core.backend import zeros, Matrix, diff, eye from sympy import solve_linear_system_LU from sympy.core.compatibility import range from sympy.utilities import default_sort_key from sympy.physics.vector import (ReferenceFrame, dynamicsymbols, partial_velocity) from sympy.physics.mechanics.particle import Particle from sympy.physics.mechanics.rigidbody import RigidBody from sympy.physics.mechanics.functions import (msubs, find_dynamicsymbols, _f_list_parser) from sympy.physics.mechanics.linearize import Linearizer from sympy.utilities.exceptions import SymPyDeprecationWarning from sympy.utilities.iterables import iterable __all__ = ['KanesMethod'] class KanesMethod(object): """Kane's method object. This object is used to do the "book-keeping" as you go through and form equations of motion in the way Kane presents in: Kane, T., Levinson, D. Dynamics Theory and Applications. 1985 McGraw-Hill The attributes are for equations in the form [M] udot = forcing. Attributes ========== q, u : Matrix Matrices of the generalized coordinates and speeds bodylist : iterable Iterable of Point and RigidBody objects in the system. forcelist : iterable Iterable of (Point, vector) or (ReferenceFrame, vector) tuples describing the forces on the system. auxiliary : Matrix If applicable, the set of auxiliary Kane's equations used to solve for non-contributing forces. mass_matrix : Matrix The system's mass matrix forcing : Matrix The system's forcing vector mass_matrix_full : Matrix The "mass matrix" for the u's and q's forcing_full : Matrix The "forcing vector" for the u's and q's Examples ======== This is a simple example for a one degree of freedom translational spring-mass-damper. In this example, we first need to do the kinematics. This involves creating generalized speeds and coordinates and their derivatives. Then we create a point and set its velocity in a frame. >>> from sympy import symbols >>> from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame >>> from sympy.physics.mechanics import Point, Particle, KanesMethod >>> q, u = dynamicsymbols('q u') >>> qd, ud = dynamicsymbols('q u', 1) >>> m, c, k = symbols('m c k') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) Next we need to arrange/store information in the way that KanesMethod requires. The kinematic differential equations need to be stored in a dict. A list of forces/torques must be constructed, where each entry in the list is a (Point, Vector) or (ReferenceFrame, Vector) tuple, where the Vectors represent the Force or Torque. Next a particle needs to be created, and it needs to have a point and mass assigned to it. Finally, a list of all bodies and particles needs to be created. >>> kd = [qd - u] >>> FL = [(P, (-k * q - c * u) * N.x)] >>> pa = Particle('pa', P, m) >>> BL = [pa] Finally we can generate the equations of motion. First we create the KanesMethod object and supply an inertial frame, coordinates, generalized speeds, and the kinematic differential equations. Additional quantities such as configuration and motion constraints, dependent coordinates and speeds, and auxiliary speeds are also supplied here (see the online documentation). Next we form FR* and FR to complete: Fr + Fr* = 0. We have the equations of motion at this point. It makes sense to rearrange them though, so we calculate the mass matrix and the forcing terms, for E.o.M. in the form: [MM] udot = forcing, where MM is the mass matrix, udot is a vector of the time derivatives of the generalized speeds, and forcing is a vector representing "forcing" terms. >>> KM = KanesMethod(N, q_ind=[q], u_ind=[u], kd_eqs=kd) >>> (fr, frstar) = KM.kanes_equations(BL, FL) >>> MM = KM.mass_matrix >>> forcing = KM.forcing >>> rhs = MM.inv() * forcing >>> rhs Matrix([[(-c*u(t) - k*q(t))/m]]) >>> KM.linearize(A_and_B=True)[0] Matrix([ [ 0, 1], [-k/m, -c/m]]) Please look at the documentation pages for more information on how to perform linearization and how to deal with dependent coordinates & speeds, and how do deal with bringing non-contributing forces into evidence. """ def __init__(self, frame, q_ind, u_ind, kd_eqs=None, q_dependent=None, configuration_constraints=None, u_dependent=None, velocity_constraints=None, acceleration_constraints=None, u_auxiliary=None): """Please read the online documentation. """ if not q_ind: q_ind = [dynamicsymbols('dummy_q')] kd_eqs = [dynamicsymbols('dummy_kd')] if not isinstance(frame, ReferenceFrame): raise TypeError('An inertial ReferenceFrame must be supplied') self._inertial = frame self._fr = None self._frstar = None self._forcelist = None self._bodylist = None self._initialize_vectors(q_ind, q_dependent, u_ind, u_dependent, u_auxiliary) self._initialize_kindiffeq_matrices(kd_eqs) self._initialize_constraint_matrices(configuration_constraints, velocity_constraints, acceleration_constraints) def _initialize_vectors(self, q_ind, q_dep, u_ind, u_dep, u_aux): """Initialize the coordinate and speed vectors.""" none_handler = lambda x: Matrix(x) if x else Matrix() # Initialize generalized coordinates q_dep = none_handler(q_dep) if not iterable(q_ind): raise TypeError('Generalized coordinates must be an iterable.') if not iterable(q_dep): raise TypeError('Dependent coordinates must be an iterable.') q_ind = Matrix(q_ind) self._qdep = q_dep self._q = Matrix([q_ind, q_dep]) self._qdot = self.q.diff(dynamicsymbols._t) # Initialize generalized speeds u_dep = none_handler(u_dep) if not iterable(u_ind): raise TypeError('Generalized speeds must be an iterable.') if not iterable(u_dep): raise TypeError('Dependent speeds must be an iterable.') u_ind = Matrix(u_ind) self._udep = u_dep self._u = Matrix([u_ind, u_dep]) self._udot = self.u.diff(dynamicsymbols._t) self._uaux = none_handler(u_aux) def _initialize_constraint_matrices(self, config, vel, acc): """Initializes constraint matrices.""" # Define vector dimensions o = len(self.u) m = len(self._udep) p = o - m none_handler = lambda x: Matrix(x) if x else Matrix() # Initialize configuration constraints config = none_handler(config) if len(self._qdep) != len(config): raise ValueError('There must be an equal number of dependent ' 'coordinates and configuration constraints.') self._f_h = none_handler(config) # Initialize velocity and acceleration constraints vel = none_handler(vel) acc = none_handler(acc) if len(vel) != m: raise ValueError('There must be an equal number of dependent ' 'speeds and velocity constraints.') if acc and (len(acc) != m): raise ValueError('There must be an equal number of dependent ' 'speeds and acceleration constraints.') if vel: u_zero = dict((i, 0) for i in self.u) udot_zero = dict((i, 0) for i in self._udot) # When calling kanes_equations, another class instance will be # created if auxiliary u's are present. In this case, the # computation of kinetic differential equation matrices will be # skipped as this was computed during the original KanesMethod # object, and the qd_u_map will not be available. if self._qdot_u_map is not None: vel = msubs(vel, self._qdot_u_map) self._f_nh = msubs(vel, u_zero) self._k_nh = (vel - self._f_nh).jacobian(self.u) # If no acceleration constraints given, calculate them. if not acc: _f_dnh = (self._k_nh.diff(dynamicsymbols._t) * self.u + self._f_nh.diff(dynamicsymbols._t)) if self._qdot_u_map is not None: _f_dnh = msubs(_f_dnh, self._qdot_u_map) self._f_dnh = _f_dnh self._k_dnh = self._k_nh else: if self._qdot_u_map is not None: acc = msubs(acc, self._qdot_u_map) self._f_dnh = msubs(acc, udot_zero) self._k_dnh = (acc - self._f_dnh).jacobian(self._udot) # Form of non-holonomic constraints is B*u + C = 0. # We partition B into independent and dependent columns: # Ars is then -B_dep.inv() * B_ind, and it relates dependent speeds # to independent speeds as: udep = Ars*uind, neglecting the C term. B_ind = self._k_nh[:, :p] B_dep = self._k_nh[:, p:o] self._Ars = -B_dep.LUsolve(B_ind) else: self._f_nh = Matrix() self._k_nh = Matrix() self._f_dnh = Matrix() self._k_dnh = Matrix() self._Ars = Matrix() def _initialize_kindiffeq_matrices(self, kdeqs): """Initialize the kinematic differential equation matrices.""" if kdeqs: if len(self.q) != len(kdeqs): raise ValueError('There must be an equal number of kinematic ' 'differential equations and coordinates.') kdeqs = Matrix(kdeqs) u = self.u qdot = self._qdot # Dictionaries setting things to zero u_zero = dict((i, 0) for i in u) uaux_zero = dict((i, 0) for i in self._uaux) qdot_zero = dict((i, 0) for i in qdot) f_k = msubs(kdeqs, u_zero, qdot_zero) k_ku = (msubs(kdeqs, qdot_zero) - f_k).jacobian(u) k_kqdot = (msubs(kdeqs, u_zero) - f_k).jacobian(qdot) f_k = k_kqdot.LUsolve(f_k) k_ku = k_kqdot.LUsolve(k_ku) k_kqdot = eye(len(qdot)) self._qdot_u_map = solve_linear_system_LU( Matrix([k_kqdot.T, -(k_ku * u + f_k).T]).T, qdot) self._f_k = msubs(f_k, uaux_zero) self._k_ku = msubs(k_ku, uaux_zero) self._k_kqdot = k_kqdot else: self._qdot_u_map = None self._f_k = Matrix() self._k_ku = Matrix() self._k_kqdot = Matrix() def _form_fr(self, fl): """Form the generalized active force.""" if fl is not None and (len(fl) == 0 or not iterable(fl)): raise ValueError('Force pairs must be supplied in an ' 'non-empty iterable or None.') N = self._inertial # pull out relevant velocities for constructing partial velocities vel_list, f_list = _f_list_parser(fl, N) vel_list = [msubs(i, self._qdot_u_map) for i in vel_list] f_list = [msubs(i, self._qdot_u_map) for i in f_list] # Fill Fr with dot product of partial velocities and forces o = len(self.u) b = len(f_list) FR = zeros(o, 1) partials = partial_velocity(vel_list, self.u, N) for i in range(o): FR[i] = sum(partials[j][i] & f_list[j] for j in range(b)) # In case there are dependent speeds if self._udep: p = o - len(self._udep) FRtilde = FR[:p, 0] FRold = FR[p:o, 0] FRtilde += self._Ars.T * FRold FR = FRtilde self._forcelist = fl self._fr = FR return FR def _form_frstar(self, bl): """Form the generalized inertia force.""" if not iterable(bl): raise TypeError('Bodies must be supplied in an iterable.') t = dynamicsymbols._t N = self._inertial # Dicts setting things to zero udot_zero = dict((i, 0) for i in self._udot) uaux_zero = dict((i, 0) for i in self._uaux) uauxdot = [diff(i, t) for i in self._uaux] uauxdot_zero = dict((i, 0) for i in uauxdot) # Dictionary of q' and q'' to u and u' q_ddot_u_map = dict((k.diff(t), v.diff(t)) for (k, v) in self._qdot_u_map.items()) q_ddot_u_map.update(self._qdot_u_map) # Fill up the list of partials: format is a list with num elements # equal to number of entries in body list. Each of these elements is a # list - either of length 1 for the translational components of # particles or of length 2 for the translational and rotational # components of rigid bodies. The inner most list is the list of # partial velocities. def get_partial_velocity(body): if isinstance(body, RigidBody): vlist = [body.masscenter.vel(N), body.frame.ang_vel_in(N)] elif isinstance(body, Particle): vlist = [body.point.vel(N),] else: raise TypeError('The body list may only contain either ' 'RigidBody or Particle as list elements.') v = [msubs(vel, self._qdot_u_map) for vel in vlist] return partial_velocity(v, self.u, N) partials = [get_partial_velocity(body) for body in bl] # Compute fr_star in two components: # fr_star = -(MM*u' + nonMM) o = len(self.u) MM = zeros(o, o) nonMM = zeros(o, 1) zero_uaux = lambda expr: msubs(expr, uaux_zero) zero_udot_uaux = lambda expr: msubs(msubs(expr, udot_zero), uaux_zero) for i, body in enumerate(bl): if isinstance(body, RigidBody): M = zero_uaux(body.mass) I = zero_uaux(body.central_inertia) vel = zero_uaux(body.masscenter.vel(N)) omega = zero_uaux(body.frame.ang_vel_in(N)) acc = zero_udot_uaux(body.masscenter.acc(N)) inertial_force = (M.diff(t) * vel + M * acc) inertial_torque = zero_uaux((I.dt(body.frame) & omega) + msubs(I & body.frame.ang_acc_in(N), udot_zero) + (omega ^ (I & omega))) for j in range(o): tmp_vel = zero_uaux(partials[i][0][j]) tmp_ang = zero_uaux(I & partials[i][1][j]) for k in range(o): # translational MM[j, k] += M * (tmp_vel & partials[i][0][k]) # rotational MM[j, k] += (tmp_ang & partials[i][1][k]) nonMM[j] += inertial_force & partials[i][0][j] nonMM[j] += inertial_torque & partials[i][1][j] else: M = zero_uaux(body.mass) vel = zero_uaux(body.point.vel(N)) acc = zero_udot_uaux(body.point.acc(N)) inertial_force = (M.diff(t) * vel + M * acc) for j in range(o): temp = zero_uaux(partials[i][0][j]) for k in range(o): MM[j, k] += M * (temp & partials[i][0][k]) nonMM[j] += inertial_force & partials[i][0][j] # Compose fr_star out of MM and nonMM MM = zero_uaux(msubs(MM, q_ddot_u_map)) nonMM = msubs(msubs(nonMM, q_ddot_u_map), udot_zero, uauxdot_zero, uaux_zero) fr_star = -(MM * msubs(Matrix(self._udot), uauxdot_zero) + nonMM) # If there are dependent speeds, we need to find fr_star_tilde if self._udep: p = o - len(self._udep) fr_star_ind = fr_star[:p, 0] fr_star_dep = fr_star[p:o, 0] fr_star = fr_star_ind + (self._Ars.T * fr_star_dep) # Apply the same to MM MMi = MM[:p, :] MMd = MM[p:o, :] MM = MMi + (self._Ars.T * MMd) self._bodylist = bl self._frstar = fr_star self._k_d = MM self._f_d = -msubs(self._fr + self._frstar, udot_zero) return fr_star def to_linearizer(self): """Returns an instance of the Linearizer class, initiated from the data in the KanesMethod class. This may be more desirable than using the linearize class method, as the Linearizer object will allow more efficient recalculation (i.e. about varying operating points).""" if (self._fr is None) or (self._frstar is None): raise ValueError('Need to compute Fr, Fr* first.') # Get required equation components. The Kane's method class breaks # these into pieces. Need to reassemble f_c = self._f_h if self._f_nh and self._k_nh: f_v = self._f_nh + self._k_nh*Matrix(self.u) else: f_v = Matrix() if self._f_dnh and self._k_dnh: f_a = self._f_dnh + self._k_dnh*Matrix(self._udot) else: f_a = Matrix() # Dicts to sub to zero, for splitting up expressions u_zero = dict((i, 0) for i in self.u) ud_zero = dict((i, 0) for i in self._udot) qd_zero = dict((i, 0) for i in self._qdot) qd_u_zero = dict((i, 0) for i in Matrix([self._qdot, self.u])) # Break the kinematic differential eqs apart into f_0 and f_1 f_0 = msubs(self._f_k, u_zero) + self._k_kqdot*Matrix(self._qdot) f_1 = msubs(self._f_k, qd_zero) + self._k_ku*Matrix(self.u) # Break the dynamic differential eqs into f_2 and f_3 f_2 = msubs(self._frstar, qd_u_zero) f_3 = msubs(self._frstar, ud_zero) + self._fr f_4 = zeros(len(f_2), 1) # Get the required vector components q = self.q u = self.u if self._qdep: q_i = q[:-len(self._qdep)] else: q_i = q q_d = self._qdep if self._udep: u_i = u[:-len(self._udep)] else: u_i = u u_d = self._udep # Form dictionary to set auxiliary speeds & their derivatives to 0. uaux = self._uaux uauxdot = uaux.diff(dynamicsymbols._t) uaux_zero = dict((i, 0) for i in Matrix([uaux, uauxdot])) # Checking for dynamic symbols outside the dynamic differential # equations; throws error if there is. sym_list = set(Matrix([q, self._qdot, u, self._udot, uaux, uauxdot])) if any(find_dynamicsymbols(i, sym_list) for i in [self._k_kqdot, self._k_ku, self._f_k, self._k_dnh, self._f_dnh, self._k_d]): raise ValueError('Cannot have dynamicsymbols outside dynamic \ forcing vector.') # Find all other dynamic symbols, forming the forcing vector r. # Sort r to make it canonical. r = list(find_dynamicsymbols(msubs(self._f_d, uaux_zero), sym_list)) r.sort(key=default_sort_key) # Check for any derivatives of variables in r that are also found in r. for i in r: if diff(i, dynamicsymbols._t) in r: raise ValueError('Cannot have derivatives of specified \ quantities when linearizing forcing terms.') return Linearizer(f_0, f_1, f_2, f_3, f_4, f_c, f_v, f_a, q, u, q_i, q_d, u_i, u_d, r) def linearize(self, **kwargs): """ Linearize the equations of motion about a symbolic operating point. If kwarg A_and_B is False (default), returns M, A, B, r for the linearized form, M*[q', u']^T = A*[q_ind, u_ind]^T + B*r. If kwarg A_and_B is True, returns A, B, r for the linearized form dx = A*x + B*r, where x = [q_ind, u_ind]^T. Note that this is computationally intensive if there are many symbolic parameters. For this reason, it may be more desirable to use the default A_and_B=False, returning M, A, and B. Values may then be substituted in to these matrices, and the state space form found as A = P.T*M.inv()*A, B = P.T*M.inv()*B, where P = Linearizer.perm_mat. In both cases, r is found as all dynamicsymbols in the equations of motion that are not part of q, u, q', or u'. They are sorted in canonical form. The operating points may be also entered using the ``op_point`` kwarg. This takes a dictionary of {symbol: value}, or a an iterable of such dictionaries. The values may be numeric or symbolic. The more values you can specify beforehand, the faster this computation will run. For more documentation, please see the ``Linearizer`` class.""" # TODO : Remove this after 1.1 has been released. _ = kwargs.pop('new_method', None) linearizer = self.to_linearizer() result = linearizer.linearize(**kwargs) return result + (linearizer.r,) def kanes_equations(self, bodies, loads=None): """ Method to form Kane's equations, Fr + Fr* = 0. Returns (Fr, Fr*). In the case where auxiliary generalized speeds are present (say, s auxiliary speeds, o generalized speeds, and m motion constraints) the length of the returned vectors will be o - m + s in length. The first o - m equations will be the constrained Kane's equations, then the s auxiliary Kane's equations. These auxiliary equations can be accessed with the auxiliary_eqs(). Parameters ========== bodies : iterable An iterable of all RigidBody's and Particle's in the system. A system must have at least one body. loads : iterable Takes in an iterable of (Particle, Vector) or (ReferenceFrame, Vector) tuples which represent the force at a point or torque on a frame. Must be either a non-empty iterable of tuples or None which corresponds to a system with no constraints. """ if (bodies is None and loads is not None) or isinstance(bodies[0], tuple): # This switches the order if they use the old way. bodies, loads = loads, bodies SymPyDeprecationWarning(value='The API for kanes_equations() has changed such ' 'that the loads (forces and torques) are now the second argument ' 'and is optional with None being the default.', feature='The kanes_equation() argument order', useinstead='switched argument order to update your code, For example: ' 'kanes_equations(loads, bodies) > kanes_equations(bodies, loads).', issue=10945, deprecated_since_version="1.1").warn() if not self._k_kqdot: raise AttributeError('Create an instance of KanesMethod with ' 'kinematic differential equations to use this method.') fr = self._form_fr(loads) frstar = self._form_frstar(bodies) if self._uaux: if not self._udep: km = KanesMethod(self._inertial, self.q, self._uaux, u_auxiliary=self._uaux) else: km = KanesMethod(self._inertial, self.q, self._uaux, u_auxiliary=self._uaux, u_dependent=self._udep, velocity_constraints=(self._k_nh * self.u + self._f_nh)) km._qdot_u_map = self._qdot_u_map self._km = km fraux = km._form_fr(loads) frstaraux = km._form_frstar(bodies) self._aux_eq = fraux + frstaraux self._fr = fr.col_join(fraux) self._frstar = frstar.col_join(frstaraux) return (self._fr, self._frstar) def rhs(self, inv_method=None): """Returns the system's equations of motion in first order form. The output is the right hand side of:: x' = |q'| =: f(q, u, r, p, t) |u'| The right hand side is what is needed by most numerical ODE integrators. Parameters ========== inv_method : str The specific sympy inverse matrix calculation method to use. For a list of valid methods, see :meth:`~sympy.matrices.matrices.MatrixBase.inv` """ rhs = zeros(len(self.q) + len(self.u), 1) kdes = self.kindiffdict() for i, q_i in enumerate(self.q): rhs[i] = kdes[q_i.diff()] if inv_method is None: rhs[len(self.q):, 0] = self.mass_matrix.LUsolve(self.forcing) else: rhs[len(self.q):, 0] = (self.mass_matrix.inv(inv_method, try_block_diag=True) * self.forcing) return rhs def kindiffdict(self): """Returns a dictionary mapping q' to u.""" if not self._qdot_u_map: raise AttributeError('Create an instance of KanesMethod with ' 'kinematic differential equations to use this method.') return self._qdot_u_map @property def auxiliary_eqs(self): """A matrix containing the auxiliary equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') if not self._uaux: raise ValueError('No auxiliary speeds have been declared.') return self._aux_eq @property def mass_matrix(self): """The mass matrix of the system.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') return Matrix([self._k_d, self._k_dnh]) @property def mass_matrix_full(self): """The mass matrix of the system, augmented by the kinematic differential equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') o = len(self.u) n = len(self.q) return ((self._k_kqdot).row_join(zeros(n, o))).col_join((zeros(o, n)).row_join(self.mass_matrix)) @property def forcing(self): """The forcing vector of the system.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') return -Matrix([self._f_d, self._f_dnh]) @property def forcing_full(self): """The forcing vector of the system, augmented by the kinematic differential equations.""" if not self._fr or not self._frstar: raise ValueError('Need to compute Fr, Fr* first.') f1 = self._k_ku * Matrix(self.u) + self._f_k return -Matrix([f1, self._f_d, self._f_dnh]) @property def q(self): return self._q @property def u(self): return self._u @property def bodylist(self): return self._bodylist @property def forcelist(self): return self._forcelist
ff614154b383348caa4c617c13da0d7b4e2a258d4dfd76085a240fad270c1663
from __future__ import print_function, division from sympy.core.backend import sympify from sympy.core.compatibility import string_types from sympy.physics.vector import Point, ReferenceFrame, Dyadic __all__ = ['RigidBody'] class RigidBody(object): """An idealized rigid body. This is essentially a container which holds the various components which describe a rigid body: a name, mass, center of mass, reference frame, and inertia. All of these need to be supplied on creation, but can be changed afterwards. Attributes ========== name : string The body's name. masscenter : Point The point which represents the center of mass of the rigid body. frame : ReferenceFrame The ReferenceFrame which the rigid body is fixed in. mass : Sympifyable The body's mass. inertia : (Dyadic, Point) The body's inertia about a point; stored in a tuple as shown above. Examples ======== >>> from sympy import Symbol >>> from sympy.physics.mechanics import ReferenceFrame, Point, RigidBody >>> from sympy.physics.mechanics import outer >>> m = Symbol('m') >>> A = ReferenceFrame('A') >>> P = Point('P') >>> I = outer (A.x, A.x) >>> inertia_tuple = (I, P) >>> B = RigidBody('B', P, A, m, inertia_tuple) >>> # Or you could change them afterwards >>> m2 = Symbol('m2') >>> B.mass = m2 """ def __init__(self, name, masscenter, frame, mass, inertia): if not isinstance(name, string_types): raise TypeError('Supply a valid name.') self._name = name self.masscenter = masscenter self.mass = mass self.frame = frame self.inertia = inertia self.potential_energy = 0 def __str__(self): return self._name __repr__ = __str__ @property def frame(self): return self._frame @frame.setter def frame(self, F): if not isinstance(F, ReferenceFrame): raise TypeError("RigdBody frame must be a ReferenceFrame object.") self._frame = F @property def masscenter(self): return self._masscenter @masscenter.setter def masscenter(self, p): if not isinstance(p, Point): raise TypeError("RigidBody center of mass must be a Point object.") self._masscenter = p @property def mass(self): return self._mass @mass.setter def mass(self, m): self._mass = sympify(m) @property def inertia(self): return (self._inertia, self._inertia_point) @inertia.setter def inertia(self, I): if not isinstance(I[0], Dyadic): raise TypeError("RigidBody inertia must be a Dyadic object.") if not isinstance(I[1], Point): raise TypeError("RigidBody inertia must be about a Point.") self._inertia = I[0] self._inertia_point = I[1] # have I S/O, want I S/S* # I S/O = I S/S* + I S*/O; I S/S* = I S/O - I S*/O # I_S/S* = I_S/O - I_S*/O from sympy.physics.mechanics.functions import inertia_of_point_mass I_Ss_O = inertia_of_point_mass(self.mass, self.masscenter.pos_from(I[1]), self.frame) self._central_inertia = I[0] - I_Ss_O @property def central_inertia(self): """The body's central inertia dyadic.""" return self._central_inertia def linear_momentum(self, frame): """ Linear momentum of the rigid body. The linear momentum L, of a rigid body B, with respect to frame N is given by L = M * v* where M is the mass of the rigid body and v* is the velocity of the mass center of B in the frame, N. Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols >>> M, v = dynamicsymbols('M v') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, v * N.x) >>> I = outer (N.x, N.x) >>> Inertia_tuple = (I, P) >>> B = RigidBody('B', P, N, M, Inertia_tuple) >>> B.linear_momentum(N) M*v*N.x """ return self.mass * self.masscenter.vel(frame) def angular_momentum(self, point, frame): """Returns the angular momentum of the rigid body about a point in the given frame. The angular momentum H of a rigid body B about some point O in a frame N is given by: H = I . w + r x Mv where I is the central inertia dyadic of B, w is the angular velocity of body B in the frame, N, r is the position vector from point O to the mass center of B, and v is the velocity of the mass center in the frame, N. Parameters ========== point : Point The point about which angular momentum is desired. frame : ReferenceFrame The frame in which angular momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody, dynamicsymbols >>> M, v, r, omega = dynamicsymbols('M v r omega') >>> N = ReferenceFrame('N') >>> b = ReferenceFrame('b') >>> b.set_ang_vel(N, omega * b.x) >>> P = Point('P') >>> P.set_vel(N, 1 * N.x) >>> I = outer(b.x, b.x) >>> B = RigidBody('B', P, b, M, (I, P)) >>> B.angular_momentum(P, N) omega*b.x """ I = self.central_inertia w = self.frame.ang_vel_in(frame) m = self.mass r = self.masscenter.pos_from(point) v = self.masscenter.vel(frame) return I.dot(w) + r.cross(m * v) def kinetic_energy(self, frame): """Kinetic energy of the rigid body The kinetic energy, T, of a rigid body, B, is given by 'T = 1/2 (I omega^2 + m v^2)' where I and m are the central inertia dyadic and mass of rigid body B, respectively, omega is the body's angular velocity and v is the velocity of the body's mass center in the supplied ReferenceFrame. Parameters ========== frame : ReferenceFrame The RigidBody's angular velocity and the velocity of it's mass center are typically defined with respect to an inertial frame but any relevant frame in which the velocities are known can be supplied. Examples ======== >>> from sympy.physics.mechanics import Point, ReferenceFrame, outer >>> from sympy.physics.mechanics import RigidBody >>> from sympy import symbols >>> M, v, r, omega = symbols('M v r omega') >>> N = ReferenceFrame('N') >>> b = ReferenceFrame('b') >>> b.set_ang_vel(N, omega * b.x) >>> P = Point('P') >>> P.set_vel(N, v * N.x) >>> I = outer (b.x, b.x) >>> inertia_tuple = (I, P) >>> B = RigidBody('B', P, b, M, inertia_tuple) >>> B.kinetic_energy(N) M*v**2/2 + omega**2/2 """ rotational_KE = (self.frame.ang_vel_in(frame) & (self.central_inertia & self.frame.ang_vel_in(frame)) / sympify(2)) translational_KE = (self.mass * (self.masscenter.vel(frame) & self.masscenter.vel(frame)) / sympify(2)) return rotational_KE + translational_KE @property def potential_energy(self): """The potential energy of the RigidBody. Examples ======== >>> from sympy.physics.mechanics import RigidBody, Point, outer, ReferenceFrame >>> from sympy import symbols >>> M, g, h = symbols('M g h') >>> b = ReferenceFrame('b') >>> P = Point('P') >>> I = outer (b.x, b.x) >>> Inertia_tuple = (I, P) >>> B = RigidBody('B', P, b, M, Inertia_tuple) >>> B.potential_energy = M * g * h >>> B.potential_energy M*g*h """ return self._pe @potential_energy.setter def potential_energy(self, scalar): """Used to set the potential energy of this RigidBody. Parameters ========== scalar: Sympifyable The potential energy (a scalar) of the RigidBody. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, outer >>> from sympy.physics.mechanics import RigidBody, ReferenceFrame >>> from sympy import symbols >>> b = ReferenceFrame('b') >>> M, g, h = symbols('M g h') >>> P = Point('P') >>> I = outer (b.x, b.x) >>> Inertia_tuple = (I, P) >>> B = RigidBody('B', P, b, M, Inertia_tuple) >>> B.potential_energy = M * g * h """ self._pe = sympify(scalar) def set_potential_energy(self, scalar): SymPyDeprecationWarning( feature="Method sympy.physics.mechanics." + "RigidBody.set_potential_energy(self, scalar)", useinstead="property sympy.physics.mechanics." + "RigidBody.potential_energy", deprecated_since_version="1.5", issue=9800).warn() self.potential_energy = scalar def parallel_axis(self, point): """Returns the inertia dyadic of the body with respect to another point. Parameters ========== point : sympy.physics.vector.Point The point to express the inertia dyadic about. Returns ======= inertia : sympy.physics.vector.Dyadic The inertia dyadic of the rigid body expressed about the provided point. """ # circular import issue from sympy.physics.mechanics.functions import inertia a, b, c = self.masscenter.pos_from(point).to_matrix(self.frame) I = self.mass * inertia(self.frame, b**2 + c**2, c**2 + a**2, a**2 + b**2, -a * b, -b * c, -a * c) return self.central_inertia + I
5cb3abc92b2cdb63e2bf910f93976a765cbf4e82706dd000435bc67427ebde00
from __future__ import print_function, division from sympy.core.backend import sympify from sympy.core.compatibility import string_types from sympy.physics.vector import Point __all__ = ['Particle'] class Particle(object): """A particle. Particles have a non-zero mass and lack spatial extension; they take up no space. Values need to be supplied on initialization, but can be changed later. Parameters ========== name : str Name of particle point : Point A physics/mechanics Point which represents the position, velocity, and acceleration of this Particle mass : sympifyable A SymPy expression representing the Particle's mass Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import Symbol >>> po = Point('po') >>> m = Symbol('m') >>> pa = Particle('pa', po, m) >>> # Or you could change these later >>> pa.mass = m >>> pa.point = po """ def __init__(self, name, point, mass): if not isinstance(name, string_types): raise TypeError('Supply a valid name.') self._name = name self.mass = mass self.point = point self.potential_energy = 0 def __str__(self): return self._name __repr__ = __str__ @property def mass(self): """Mass of the particle.""" return self._mass @mass.setter def mass(self, value): self._mass = sympify(value) @property def point(self): """Point of the particle.""" return self._point @point.setter def point(self, p): if not isinstance(p, Point): raise TypeError("Particle point attribute must be a Point object.") self._point = p def linear_momentum(self, frame): """Linear momentum of the particle. The linear momentum L, of a particle P, with respect to frame N is given by L = m * v where m is the mass of the particle, and v is the velocity of the particle in the frame N. Parameters ========== frame : ReferenceFrame The frame in which linear momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy.physics.mechanics import dynamicsymbols >>> m, v = dynamicsymbols('m v') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> A = Particle('A', P, m) >>> P.set_vel(N, v * N.x) >>> A.linear_momentum(N) m*v*N.x """ return self.mass * self.point.vel(frame) def angular_momentum(self, point, frame): """Angular momentum of the particle about the point. The angular momentum H, about some point O of a particle, P, is given by: H = r x m * v where r is the position vector from point O to the particle P, m is the mass of the particle, and v is the velocity of the particle in the inertial frame, N. Parameters ========== point : Point The point about which angular momentum of the particle is desired. frame : ReferenceFrame The frame in which angular momentum is desired. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy.physics.mechanics import dynamicsymbols >>> m, v, r = dynamicsymbols('m v r') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> A = O.locatenew('A', r * N.x) >>> P = Particle('P', A, m) >>> P.point.set_vel(N, v * N.y) >>> P.angular_momentum(O, N) m*r*v*N.z """ return self.point.pos_from(point) ^ (self.mass * self.point.vel(frame)) def kinetic_energy(self, frame): """Kinetic energy of the particle The kinetic energy, T, of a particle, P, is given by 'T = 1/2 m v^2' where m is the mass of particle P, and v is the velocity of the particle in the supplied ReferenceFrame. Parameters ========== frame : ReferenceFrame The Particle's velocity is typically defined with respect to an inertial frame but any relevant frame in which the velocity is known can be supplied. Examples ======== >>> from sympy.physics.mechanics import Particle, Point, ReferenceFrame >>> from sympy import symbols >>> m, v, r = symbols('m v r') >>> N = ReferenceFrame('N') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.point.set_vel(N, v * N.y) >>> P.kinetic_energy(N) m*v**2/2 """ return (self.mass / sympify(2) * self.point.vel(frame) & self.point.vel(frame)) @property def potential_energy(self): """The potential energy of the Particle. Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import symbols >>> m, g, h = symbols('m g h') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.potential_energy = m * g * h >>> P.potential_energy g*h*m """ return self._pe @potential_energy.setter def potential_energy(self, scalar): """Used to set the potential energy of the Particle. Parameters ========== scalar : Sympifyable The potential energy (a scalar) of the Particle. Examples ======== >>> from sympy.physics.mechanics import Particle, Point >>> from sympy import symbols >>> m, g, h = symbols('m g h') >>> O = Point('O') >>> P = Particle('P', O, m) >>> P.potential_energy = m * g * h """ self._pe = sympify(scalar) def set_potential_energy(self, scalar): SymPyDeprecationWarning( feature="Method sympy.physics.mechanics." + "Particle.set_potential_energy(self, scalar)", useinstead="property sympy.physics.mechanics." + "Particle.potential_energy", deprecated_since_version="1.5", issue=9800).warn() self.potential_energy = scalar def parallel_axis(self, point, frame): """Returns an inertia dyadic of the particle with respect to another point and frame. Parameters ========== point : sympy.physics.vector.Point The point to express the inertia dyadic about. frame : sympy.physics.vector.ReferenceFrame The reference frame used to construct the dyadic. Returns ======= inertia : sympy.physics.vector.Dyadic The inertia dyadic of the particle expressed about the provided point and frame. """ # circular import issue from sympy.physics.mechanics import inertia_of_point_mass return inertia_of_point_mass(self.mass, self.point.pos_from(point), frame)
ad524f2932b144ad9ea0bf5947dbbb8fe36a612fa39c723982a26c1ddce7d613
# isort:skip_file """ Dimensional analysis and unit systems. This module defines dimension/unit systems and physical quantities. It is based on a group-theoretical construction where dimensions are represented as vectors (coefficients being the exponents), and units are defined as a dimension to which we added a scale. Quantities are built from a factor and a unit, and are the basic objects that one will use when doing computations. All objects except systems and prefixes can be used in sympy expressions. Note that as part of a CAS, various objects do not combine automatically under operations. Details about the implementation can be found in the documentation, and we will not repeat all the explanations we gave there concerning our approach. Ideas about future developments can be found on the `Github wiki <https://github.com/sympy/sympy/wiki/Unit-systems>`_, and you should consult this page if you are willing to help. Useful functions: - ``find_unit``: easily lookup pre-defined units. - ``convert_to(expr, newunit)``: converts an expression into the same expression expressed in another unit. """ from sympy.core.compatibility import string_types from .dimensions import Dimension, DimensionSystem from .unitsystem import UnitSystem from .util import convert_to from .quantities import Quantity from .definitions.dimension_definitions import ( amount_of_substance, acceleration, action, capacitance, charge, conductance, current, energy, force, frequency, impedance, inductance, length, luminous_intensity, magnetic_density, magnetic_flux, mass, momentum, power, pressure, temperature, time, velocity, voltage, volume ) Unit = Quantity speed = velocity luminosity = luminous_intensity magnetic_flux_density = magnetic_density amount = amount_of_substance from .prefixes import ( # 10-power based: yotta, zetta, exa, peta, tera, giga, mega, kilo, hecto, deca, deci, centi, milli, micro, nano, pico, femto, atto, zepto, yocto, # 2-power based: kibi, mebi, gibi, tebi, pebi, exbi, ) from .definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, l, liter, liters, dl, deciliter, deciliters, cl, centiliter, centiliters, ml, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, G, gravitational_constant, c, speed_of_light, elementary_charge, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, amu, amus, atomic_mass_unit, atomic_mass_constant, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, ) from .systems import ( mks, mksa, si ) def find_unit(quantity, unit_system="SI"): """ Return a list of matching units or dimension names. - If ``quantity`` is a string -- units/dimensions containing the string `quantity`. - If ``quantity`` is a unit or dimension -- units having matching base units or dimensions. Examples ======== >>> from sympy.physics import units as u >>> u.find_unit('charge') ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit(u.charge) ['C', 'coulomb', 'coulombs', 'planck_charge', 'elementary_charge'] >>> u.find_unit("ampere") ['ampere', 'amperes'] >>> u.find_unit('volt') ['volt', 'volts', 'electronvolt', 'electronvolts', 'planck_voltage'] >>> u.find_unit(u.inch**3)[:5] ['l', 'cl', 'dl', 'ml', 'liter'] """ unit_system = UnitSystem.get_unit_system(unit_system) import sympy.physics.units as u rv = [] if isinstance(quantity, string_types): rv = [i for i in dir(u) if quantity in i and isinstance(getattr(u, i), Quantity)] dim = getattr(u, quantity) if isinstance(dim, Dimension): rv.extend(find_unit(dim)) else: for i in sorted(dir(u)): other = getattr(u, i) if not isinstance(other, Quantity): continue if isinstance(quantity, Quantity): if quantity.dimension == other.dimension: rv.append(str(i)) elif isinstance(quantity, Dimension): if other.dimension == quantity: rv.append(str(i)) elif other.dimension == Dimension(unit_system.get_dimensional_expr(quantity)): rv.append(str(i)) return sorted(set(rv), key=lambda x: (len(x), x)) # NOTE: the old units module had additional variables: # 'density', 'illuminance', 'resistance'. # They were not dimensions, but units (old Unit class). __all__ = [ 'string_types', 'Dimension', 'DimensionSystem', 'UnitSystem', 'convert_to', 'Quantity', 'amount_of_substance', 'acceleration', 'action', 'capacitance', 'charge', 'conductance', 'current', 'energy', 'force', 'frequency', 'impedance', 'inductance', 'length', 'luminous_intensity', 'magnetic_density', 'magnetic_flux', 'mass', 'momentum', 'power', 'pressure', 'temperature', 'time', 'velocity', 'voltage', 'volume', 'Unit', 'speed', 'luminosity', 'magnetic_flux_density', 'amount', 'yotta', 'zetta', 'exa', 'peta', 'tera', 'giga', 'mega', 'kilo', 'hecto', 'deca', 'deci', 'centi', 'milli', 'micro', 'nano', 'pico', 'femto', 'atto', 'zepto', 'yocto', 'kibi', 'mebi', 'gibi', 'tebi', 'pebi', 'exbi', 'percent', 'percents', 'permille', 'rad', 'radian', 'radians', 'deg', 'degree', 'degrees', 'sr', 'steradian', 'steradians', 'mil', 'angular_mil', 'angular_mils', 'm', 'meter', 'meters', 'kg', 'kilogram', 'kilograms', 's', 'second', 'seconds', 'A', 'ampere', 'amperes', 'K', 'kelvin', 'kelvins', 'mol', 'mole', 'moles', 'cd', 'candela', 'candelas', 'g', 'gram', 'grams', 'mg', 'milligram', 'milligrams', 'ug', 'microgram', 'micrograms', 'newton', 'newtons', 'N', 'joule', 'joules', 'J', 'watt', 'watts', 'W', 'pascal', 'pascals', 'Pa', 'pa', 'hertz', 'hz', 'Hz', 'coulomb', 'coulombs', 'C', 'volt', 'volts', 'v', 'V', 'ohm', 'ohms', 'siemens', 'S', 'mho', 'mhos', 'farad', 'farads', 'F', 'henry', 'henrys', 'H', 'tesla', 'teslas', 'T', 'weber', 'webers', 'Wb', 'wb', 'optical_power', 'dioptre', 'D', 'lux', 'lx', 'katal', 'kat', 'gray', 'Gy', 'becquerel', 'Bq', 'km', 'kilometer', 'kilometers', 'dm', 'decimeter', 'decimeters', 'cm', 'centimeter', 'centimeters', 'mm', 'millimeter', 'millimeters', 'um', 'micrometer', 'micrometers', 'micron', 'microns', 'nm', 'nanometer', 'nanometers', 'pm', 'picometer', 'picometers', 'ft', 'foot', 'feet', 'inch', 'inches', 'yd', 'yard', 'yards', 'mi', 'mile', 'miles', 'nmi', 'nautical_mile', 'nautical_miles', 'l', 'liter', 'liters', 'dl', 'deciliter', 'deciliters', 'cl', 'centiliter', 'centiliters', 'ml', 'milliliter', 'milliliters', 'ms', 'millisecond', 'milliseconds', 'us', 'microsecond', 'microseconds', 'ns', 'nanosecond', 'nanoseconds', 'ps', 'picosecond', 'picoseconds', 'minute', 'minutes', 'h', 'hour', 'hours', 'day', 'days', 'anomalistic_year', 'anomalistic_years', 'sidereal_year', 'sidereal_years', 'tropical_year', 'tropical_years', 'common_year', 'common_years', 'julian_year', 'julian_years', 'draconic_year', 'draconic_years', 'gaussian_year', 'gaussian_years', 'full_moon_cycle', 'full_moon_cycles', 'year', 'years', 'G', 'gravitational_constant', 'c', 'speed_of_light', 'elementary_charge', 'hbar', 'planck', 'eV', 'electronvolt', 'electronvolts', 'avogadro_number', 'avogadro', 'avogadro_constant', 'boltzmann', 'boltzmann_constant', 'stefan', 'stefan_boltzmann_constant', 'R', 'molar_gas_constant', 'faraday_constant', 'josephson_constant', 'von_klitzing_constant', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant', 'gee', 'gees', 'acceleration_due_to_gravity', 'u0', 'magnetic_constant', 'vacuum_permeability', 'e0', 'electric_constant', 'vacuum_permittivity', 'Z0', 'vacuum_impedance', 'coulomb_constant', 'electric_force_constant', 'atmosphere', 'atmospheres', 'atm', 'kPa', 'bar', 'bars', 'pound', 'pounds', 'psi', 'dHg0', 'mmHg', 'torr', 'mmu', 'mmus', 'milli_mass_unit', 'quart', 'quarts', 'ly', 'lightyear', 'lightyears', 'au', 'astronomical_unit', 'astronomical_units', 'planck_mass', 'planck_time', 'planck_temperature', 'planck_length', 'planck_charge', 'planck_area', 'planck_volume', 'planck_momentum', 'planck_energy', 'planck_force', 'planck_power', 'planck_density', 'planck_energy_density', 'planck_intensity', 'planck_angular_frequency', 'planck_pressure', 'planck_current', 'planck_voltage', 'planck_impedance', 'planck_acceleration', 'bit', 'bits', 'byte', 'kibibyte', 'kibibytes', 'mebibyte', 'mebibytes', 'gibibyte', 'gibibytes', 'tebibyte', 'tebibytes', 'pebibyte', 'pebibytes', 'exbibyte', 'exbibytes', 'mks', 'mksa', 'si', ]
ca0a7c5628fea81af45147e87fb3d82db10a638895cec36415c28654015812de
""" Unit system for physical quantities; include definition of constants. """ from __future__ import division from sympy import S, Mul, Pow, Add, Function, Derivative from sympy.physics.units.dimensions import _QuantityMapper from sympy.utilities.exceptions import SymPyDeprecationWarning from .dimensions import Dimension class UnitSystem(_QuantityMapper): """ UnitSystem represents a coherent set of units. A unit system is basically a dimension system with notions of scales. Many of the methods are defined in the same way. It is much better if all base units have a symbol. """ _unit_systems = {} def __init__(self, base_units, units=(), name="", descr="", dimension_system=None): UnitSystem._unit_systems[name] = self self.name = name self.descr = descr self._base_units = base_units self._dimension_system = dimension_system self._units = tuple(set(base_units) | set(units)) self._base_units = tuple(base_units) super(UnitSystem, self).__init__() def __str__(self): """ Return the name of the system. If it does not exist, then it makes a list of symbols (or names) of the base dimensions. """ if self.name != "": return self.name else: return "UnitSystem((%s))" % ", ".join( str(d) for d in self._base_units) def __repr__(self): return '<UnitSystem: %s>' % repr(self._base_units) def extend(self, base, units=(), name="", description="", dimension_system=None): """Extend the current system into a new one. Take the base and normal units of the current system to merge them to the base and normal units given in argument. If not provided, name and description are overridden by empty strings. """ base = self._base_units + tuple(base) units = self._units + tuple(units) return UnitSystem(base, units, name, description, dimension_system) def print_unit_base(self, unit): """ Useless method. DO NOT USE, use instead ``convert_to``. Give the string expression of a unit in term of the basis. Units are displayed by decreasing power. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="print_unit_base", useinstead="convert_to", ).warn() from sympy.physics.units import convert_to return convert_to(unit, self._base_units) def get_dimension_system(self): return self._dimension_system def get_quantity_dimension(self, unit): qdm = self.get_dimension_system()._quantity_dimension_map if unit in qdm: return qdm[unit] return super(UnitSystem, self).get_quantity_dimension(unit) def get_quantity_scale_factor(self, unit): qsfm = self.get_dimension_system()._quantity_scale_factors if unit in qsfm: return qsfm[unit] return super(UnitSystem, self).get_quantity_scale_factor(unit) @staticmethod def get_unit_system(unit_system): if isinstance(unit_system, UnitSystem): return unit_system if unit_system not in UnitSystem._unit_systems: raise ValueError( "Unit system is not supported. Currently" "supported unit systems are {}".format( ", ".join(sorted(UnitSystem._unit_systems)) ) ) return UnitSystem._unit_systems[unit_system] @staticmethod def get_default_unit_system(): return UnitSystem._unit_systems["SI"] @property def dim(self): """ Give the dimension of the system. That is return the number of units forming the basis. """ return len(self._base_units) @property def is_consistent(self): """ Check if the underlying dimension system is consistent. """ # test is performed in DimensionSystem return self.get_dimension_system().is_consistent def get_dimensional_expr(self, expr): from sympy import Mul, Add, Pow, Derivative from sympy import Function from sympy.physics.units import Quantity if isinstance(expr, Mul): return Mul(*[self.get_dimensional_expr(i) for i in expr.args]) elif isinstance(expr, Pow): return self.get_dimensional_expr(expr.base) ** expr.exp elif isinstance(expr, Add): return self.get_dimensional_expr(expr.args[0]) elif isinstance(expr, Derivative): dim = self.get_dimensional_expr(expr.expr) for independent, count in expr.variable_count: dim /= self.get_dimensional_expr(independent)**count return dim elif isinstance(expr, Function): args = [self.get_dimensional_expr(arg) for arg in expr.args] if all(i == 1 for i in args): return S.One return expr.func(*args) elif isinstance(expr, Quantity): return self.get_quantity_dimension(expr).name return S.One def _collect_factor_and_dimension(self, expr): """ Return tuple with scale factor expression and dimension expression. """ from sympy.physics.units import Quantity if isinstance(expr, Quantity): return expr.scale_factor, expr.dimension elif isinstance(expr, Mul): factor = 1 dimension = Dimension(1) for arg in expr.args: arg_factor, arg_dim = self._collect_factor_and_dimension(arg) factor *= arg_factor dimension *= arg_dim return factor, dimension elif isinstance(expr, Pow): factor, dim = self._collect_factor_and_dimension(expr.base) exp_factor, exp_dim = self._collect_factor_and_dimension(expr.exp) if exp_dim.is_dimensionless: exp_dim = 1 return factor ** exp_factor, dim ** (exp_factor * exp_dim) elif isinstance(expr, Add): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for addend in expr.args[1:]: addend_factor, addend_dim = \ self._collect_factor_and_dimension(addend) if dim != addend_dim: raise ValueError( 'Dimension of "{0}" is {1}, ' 'but it should be {2}'.format( addend, addend_dim, dim)) factor += addend_factor return factor, dim elif isinstance(expr, Derivative): factor, dim = self._collect_factor_and_dimension(expr.args[0]) for independent, count in expr.variable_count: ifactor, idim = self._collect_factor_and_dimension(independent) factor /= ifactor**count dim /= idim**count return factor, dim elif isinstance(expr, Function): fds = [self._collect_factor_and_dimension( arg) for arg in expr.args] return (expr.func(*(f[0] for f in fds)), expr.func(*(d[1] for d in fds))) elif isinstance(expr, Dimension): return 1, expr else: return expr, Dimension(1)
a8188877e4b3f0cfe4055dd4aff0d09b5a1c939256a2fff82a3761204d66560e
""" Definition of physical dimensions. Unit systems will be constructed on top of these dimensions. Most of the examples in the doc use MKS system and are presented from the computer point of view: from a human point, adding length to time is not legal in MKS but it is in natural system; for a computer in natural system there is no time dimension (but a velocity dimension instead) - in the basis - so the question of adding time to length has no meaning. """ from __future__ import division import collections from sympy import Integer, Matrix, S, Symbol, sympify, Basic, Tuple, Dict, default_sort_key from sympy.core.compatibility import reduce, string_types from sympy.core.expr import Expr from sympy.core.power import Pow from sympy.utilities.exceptions import SymPyDeprecationWarning class _QuantityMapper(object): _quantity_scale_factors_global = {} _quantity_dimensional_equivalence_map_global = {} _quantity_dimension_global = {} def __init__(self, *args, **kwargs): self._quantity_dimension_map = {} self._quantity_scale_factors = {} def set_quantity_dimension(self, unit, dimension): from sympy.physics.units import Quantity dimension = sympify(dimension) if not isinstance(dimension, Dimension): if dimension == 1: dimension = Dimension(1) else: raise ValueError("expected dimension or 1") elif isinstance(dimension, Quantity): dimension = self.get_quantity_dimension(dimension) self._quantity_dimension_map[unit] = dimension def set_quantity_scale_factor(self, unit, scale_factor): from sympy.physics.units import Quantity from sympy.physics.units.prefixes import Prefix scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) # replace all quantities by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Quantity), lambda x: self.get_quantity_scale_factor(x) ) self._quantity_scale_factors[unit] = scale_factor def get_quantity_dimension(self, unit): from sympy.physics.units import Quantity # First look-up the local dimension map, then the global one: if unit in self._quantity_dimension_map: return self._quantity_dimension_map[unit] if unit in self._quantity_dimension_global: return self._quantity_dimension_global[unit] if unit in self._quantity_dimensional_equivalence_map_global: dep_unit = self._quantity_dimensional_equivalence_map_global[unit] if isinstance(dep_unit, Quantity): return self.get_quantity_dimension(dep_unit) else: return Dimension(self.get_dimensional_expr(dep_unit)) if isinstance(unit, Quantity): return Dimension(unit.name) else: return Dimension(1) def get_quantity_scale_factor(self, unit): if unit in self._quantity_scale_factors: return self._quantity_scale_factors[unit] if unit in self._quantity_scale_factors_global: mul_factor, other_unit = self._quantity_scale_factors_global[unit] return mul_factor*self.get_quantity_scale_factor(other_unit) return S.One class Dimension(Expr): """ This class represent the dimension of a physical quantities. The ``Dimension`` constructor takes as parameters a name and an optional symbol. For example, in classical mechanics we know that time is different from temperature and dimensions make this difference (but they do not provide any measure of these quantites. >>> from sympy.physics.units import Dimension >>> length = Dimension('length') >>> length Dimension(length) >>> time = Dimension('time') >>> time Dimension(time) Dimensions can be composed using multiplication, division and exponentiation (by a number) to give new dimensions. Addition and subtraction is defined only when the two objects are the same dimension. >>> velocity = length / time >>> velocity Dimension(length/time) It is possible to use a dimension system object to get the dimensionsal dependencies of a dimension, for example the dimension system used by the SI units convention can be used: >>> from sympy.physics.units.systems.si import dimsys_SI >>> dimsys_SI.get_dimensional_dependencies(velocity) {'length': 1, 'time': -1} >>> length + length Dimension(length) >>> l2 = length**2 >>> l2 Dimension(length**2) >>> dimsys_SI.get_dimensional_dependencies(l2) {'length': 2} """ _op_priority = 13.0 _dimensional_dependencies = dict() is_commutative = True is_number = False # make sqrt(M**2) --> M is_positive = True is_real = True def __new__(cls, name, symbol=None): if isinstance(name, string_types): name = Symbol(name) else: name = sympify(name) if not isinstance(name, Expr): raise TypeError("Dimension name needs to be a valid math expression") if isinstance(symbol, string_types): symbol = Symbol(symbol) elif symbol is not None: assert isinstance(symbol, Symbol) if symbol is not None: obj = Expr.__new__(cls, name, symbol) else: obj = Expr.__new__(cls, name) obj._name = name obj._symbol = symbol return obj @property def name(self): return self._name @property def symbol(self): return self._symbol def __hash__(self): return Expr.__hash__(self) def __eq__(self, other): if isinstance(other, Dimension): return self.name == other.name return False def __str__(self): """ Display the string representation of the dimension. """ if self.symbol is None: return "Dimension(%s)" % (self.name) else: return "Dimension(%s, %s)" % (self.name, self.symbol) def __repr__(self): return self.__str__() def __neg__(self): return self def __add__(self, other): from sympy.physics.units.quantities import Quantity other = sympify(other) if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension) and self == other: return self return super(Dimension, self).__add__(other) return self def __radd__(self, other): return self.__add__(other) def __sub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __rsub__(self, other): # there is no notion of ordering (or magnitude) among dimension, # subtraction is equivalent to addition when the operation is legal return self + other def __pow__(self, other): return self._eval_power(other) def _eval_power(self, other): other = sympify(other) return Dimension(self.name**other) def __mul__(self, other): from sympy.physics.units.quantities import Quantity if isinstance(other, Basic): if other.has(Quantity): raise TypeError("cannot sum dimension and quantity") if isinstance(other, Dimension): return Dimension(self.name*other.name) if not other.free_symbols: # other.is_number cannot be used return self return super(Dimension, self).__mul__(other) return self def __rmul__(self, other): return self.__mul__(other) def __div__(self, other): return self*Pow(other, -1) def __rdiv__(self, other): return other * pow(self, -1) __truediv__ = __div__ __rtruediv__ = __rdiv__ @classmethod def _from_dimensional_dependencies(cls, dependencies): return reduce(lambda x, y: x * y, ( Dimension(d)**e for d, e in dependencies.items() )) @classmethod def _get_dimensional_dependencies_for_name(cls, name): from sympy.physics.units.unitsystem.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="do not call from `Dimension` objects.", useinstead="DimensionSystem" ).warn() return dimsys_default.get_dimensional_dependencies(name) @property def is_dimensionless(self, dimensional_dependencies=None): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if self.name == 1: return True if dimensional_dependencies is None: from sympy.physics.units.unitsystem.si import dimsys_default SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="wrong class", ).warn() dimensional_dependencies=dimsys_default return dimensional_dependencies.get_dimensional_dependencies(self) == {} def has_integer_powers(self, dim_sys): """ Check if the dimension object has only integer powers. All the dimension powers should be integers, but rational powers may appear in intermediate steps. This method may be used to check that the final result is well-defined. """ for dpow in dim_sys.get_dimensional_dependencies(self).values(): if not isinstance(dpow, (int, Integer)): return False return True # Create dimensions according the the base units in MKSA. # For other unit systems, they can be derived by transforming the base # dimensional dependency dictionary. class DimensionSystem(Basic, _QuantityMapper): r""" DimensionSystem represents a coherent set of dimensions. The constructor takes three parameters: - base dimensions; - derived dimensions: these are defined in terms of the base dimensions (for example velocity is defined from the division of length by time); - dependency of dimensions: how the derived dimensions depend on the base dimensions. Optionally either the ``derived_dims`` or the ``dimensional_dependencies`` may be omitted. """ def __new__(cls, base_dims, derived_dims=[], dimensional_dependencies={}, name=None, descr=None): dimensional_dependencies = dict(dimensional_dependencies) if (name is not None) or (descr is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, useinstead="do not define a `name` or `descr`", ).warn() def parse_dim(dim): if isinstance(dim, string_types): dim = Dimension(Symbol(dim)) elif isinstance(dim, Dimension): pass elif isinstance(dim, Symbol): dim = Dimension(dim) else: raise TypeError("%s wrong type" % dim) return dim base_dims = [parse_dim(i) for i in base_dims] derived_dims = [parse_dim(i) for i in derived_dims] for dim in base_dims: dim = dim.name if (dim in dimensional_dependencies and (len(dimensional_dependencies[dim]) != 1 or dimensional_dependencies[dim].get(dim, None) != 1)): raise IndexError("Repeated value in base dimensions") dimensional_dependencies[dim] = Dict({dim: 1}) def parse_dim_name(dim): if isinstance(dim, Dimension): return dim.name elif isinstance(dim, string_types): return Symbol(dim) elif isinstance(dim, Symbol): return dim else: raise TypeError("unrecognized type %s for %s" % (type(dim), dim)) for dim in dimensional_dependencies.keys(): dim = parse_dim(dim) if (dim not in derived_dims) and (dim not in base_dims): derived_dims.append(dim) def parse_dict(d): return Dict({parse_dim_name(i): j for i, j in d.items()}) # Make sure everything is a SymPy type: dimensional_dependencies = {parse_dim_name(i): parse_dict(j) for i, j in dimensional_dependencies.items()} for dim in derived_dims: if dim in base_dims: raise ValueError("Dimension %s both in base and derived" % dim) if dim.name not in dimensional_dependencies: # TODO: should this raise a warning? dimensional_dependencies[dim] = Dict({dim.name: 1}) base_dims.sort(key=default_sort_key) derived_dims.sort(key=default_sort_key) base_dims = Tuple(*base_dims) derived_dims = Tuple(*derived_dims) dimensional_dependencies = Dict({i: Dict(j) for i, j in dimensional_dependencies.items()}) obj = Basic.__new__(cls, base_dims, derived_dims, dimensional_dependencies) return obj @property def base_dims(self): return self.args[0] @property def derived_dims(self): return self.args[1] @property def dimensional_dependencies(self): return self.args[2] def _get_dimensional_dependencies_for_name(self, name): if name.is_Symbol: # Dimensions not included in the dependencies are considered # as base dimensions: return dict(self.dimensional_dependencies.get(name, {name: 1})) if name.is_Number: return {} get_for_name = self._get_dimensional_dependencies_for_name if name.is_Mul: ret = collections.defaultdict(int) dicts = [get_for_name(i) for i in name.args] for d in dicts: for k, v in d.items(): ret[k] += v return {k: v for (k, v) in ret.items() if v != 0} if name.is_Pow: dim = get_for_name(name.base) return {k: v*name.exp for (k, v) in dim.items()} if name.is_Function: args = (Dimension._from_dimensional_dependencies( get_for_name(arg)) for arg in name.args) result = name.func(*args) if isinstance(result, Dimension): return self.get_dimensional_dependencies(result) elif result.func == name.func: return {} else: return get_for_name(result) def get_dimensional_dependencies(self, name, mark_dimensionless=False): if isinstance(name, Dimension): name = name.name if isinstance(name, string_types): name = Symbol(name) dimdep = self._get_dimensional_dependencies_for_name(name) if mark_dimensionless and dimdep == {}: return {'dimensionless': 1} return {str(i): j for i, j in dimdep.items()} def equivalent_dims(self, dim1, dim2): deps1 = self.get_dimensional_dependencies(dim1) deps2 = self.get_dimensional_dependencies(dim2) return deps1 == deps2 def extend(self, new_base_dims, new_derived_dims=[], new_dim_deps={}, name=None, description=None): if (name is not None) or (description is not None): SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="name and descriptions of DimensionSystem", useinstead="do not specify `name` or `description`", ).warn() deps = dict(self.dimensional_dependencies) deps.update(new_dim_deps) new_dim_sys = DimensionSystem( tuple(self.base_dims) + tuple(new_base_dims), tuple(self.derived_dims) + tuple(new_derived_dims), deps ) new_dim_sys._quantity_dimension_map.update(self._quantity_dimension_map) new_dim_sys._quantity_scale_factors.update(self._quantity_scale_factors) return new_dim_sys @staticmethod def sort_dims(dims): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Sort dimensions given in argument using their str function. This function will ensure that we get always the same tuple for a given set of dimensions. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="sort_dims", useinstead="sorted(..., key=default_sort_key)", ).warn() return tuple(sorted(dims, key=str)) def __getitem__(self, key): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Shortcut to the get_dim method, using key access. """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="the get [ ] operator", useinstead="the dimension definition", ).warn() d = self.get_dim(key) #TODO: really want to raise an error? if d is None: raise KeyError(key) return d def __call__(self, unit): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Wrapper to the method print_dim_base """ SymPyDeprecationWarning( deprecated_since_version="1.2", issue=13336, feature="call DimensionSystem", useinstead="the dimension definition", ).warn() return self.print_dim_base(unit) def is_dimensionless(self, dimension): """ Check if the dimension object really has a dimension. A dimension should have at least one component with non-zero power. """ if dimension.name == 1: return True return self.get_dimensional_dependencies(dimension) == {} @property def list_can_dims(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. List all canonical dimension names. """ dimset = set([]) for i in self.base_dims: dimset.update(set(self.get_dimensional_dependencies(i).keys())) return tuple(sorted(dimset, key=str)) @property def inv_can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Compute the inverse transformation matrix from the base to the canonical dimension basis. It corresponds to the matrix where columns are the vector of base dimensions in canonical basis. This matrix will almost never be used because dimensions are always defined with respect to the canonical basis, so no work has to be done to get them in this basis. Nonetheless if this matrix is not square (or not invertible) it means that we have chosen a bad basis. """ matrix = reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in self.base_dims]) return matrix @property def can_transf_matrix(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Return the canonical transformation matrix from the canonical to the base dimension basis. It is the inverse of the matrix computed with inv_can_transf_matrix(). """ #TODO: the inversion will fail if the system is inconsistent, for # example if the matrix is not a square return reduce(lambda x, y: x.row_join(y), [self.dim_can_vector(d) for d in sorted(self.base_dims, key=str)] ).inv() def dim_can_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Dimensional representation in terms of the canonical base dimensions. """ vec = [] for d in self.list_can_dims: vec.append(self.get_dimensional_dependencies(dim).get(d, 0)) return Matrix(vec) def dim_vector(self, dim): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Vector representation in terms of the base dimensions. """ return self.can_transf_matrix * Matrix(self.dim_can_vector(dim)) def print_dim_base(self, dim): """ Give the string expression of a dimension in term of the basis symbols. """ dims = self.dim_vector(dim) symbols = [i.symbol if i.symbol is not None else i.name for i in self.base_dims] res = S.One for (s, p) in zip(symbols, dims): res *= s**p return res @property def dim(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Give the dimension of the system. That is return the number of dimensions forming the basis. """ return len(self.base_dims) @property def is_consistent(self): """ Useless method, kept for compatibility with previous versions. DO NOT USE. Check if the system is well defined. """ # not enough or too many base dimensions compared to independent # dimensions # in vector language: the set of vectors do not form a basis return self.inv_can_transf_matrix.is_square
441645ef04ec0e2ddbae941c10129d20f5c9f467b258546b8793b721c76e0214
""" Module defining unit prefixe class and some constants. Constant dict for SI and binary prefixes are defined as PREFIXES and BIN_PREFIXES. """ from sympy import Expr, sympify class Prefix(Expr): """ This class represent prefixes, with their name, symbol and factor. Prefixes are used to create derived units from a given unit. They should always be encapsulated into units. The factor is constructed from a base (default is 10) to some power, and it gives the total multiple or fraction. For example the kilometer km is constructed from the meter (factor 1) and the kilo (10 to the power 3, i.e. 1000). The base can be changed to allow e.g. binary prefixes. A prefix multiplied by something will always return the product of this other object times the factor, except if the other object: - is a prefix and they can be combined into a new prefix; - defines multiplication with prefixes (which is the case for the Unit class). """ _op_priority = 13.0 is_commutative = True def __new__(cls, name, abbrev, exponent, base=sympify(10)): name = sympify(name) abbrev = sympify(abbrev) exponent = sympify(exponent) base = sympify(base) obj = Expr.__new__(cls, name, abbrev, exponent, base) obj._name = name obj._abbrev = abbrev obj._scale_factor = base**exponent obj._exponent = exponent obj._base = base return obj @property def name(self): return self._name @property def abbrev(self): return self._abbrev @property def scale_factor(self): return self._scale_factor @property def base(self): return self._base def __str__(self): # TODO: add proper printers and tests: if self.base == 10: return "Prefix(%r, %r, %r)" % ( str(self.name), str(self.abbrev), self._exponent) else: return "Prefix(%r, %r, %r, %r)" % ( str(self.name), str(self.abbrev), self._exponent, self.base) __repr__ = __str__ def __mul__(self, other): from sympy.physics.units import Quantity if not isinstance(other, (Quantity, Prefix)): return super(Prefix, self).__mul__(other) fact = self.scale_factor * other.scale_factor if fact == 1: return 1 elif isinstance(other, Prefix): # simplify prefix for p in PREFIXES: if PREFIXES[p].scale_factor == fact: return PREFIXES[p] return fact return self.scale_factor * other def __div__(self, other): if not hasattr(other, "scale_factor"): return super(Prefix, self).__div__(other) fact = self.scale_factor / other.scale_factor if fact == 1: return 1 elif isinstance(other, Prefix): for p in PREFIXES: if PREFIXES[p].scale_factor == fact: return PREFIXES[p] return fact return self.scale_factor / other __truediv__ = __div__ def __rdiv__(self, other): if other == 1: for p in PREFIXES: if PREFIXES[p].scale_factor == 1 / self.scale_factor: return PREFIXES[p] return other / self.scale_factor __rtruediv__ = __rdiv__ def prefix_unit(unit, prefixes): """ Return a list of all units formed by unit and the given prefixes. You can use the predefined PREFIXES or BIN_PREFIXES, but you can also pass as argument a subdict of them if you don't want all prefixed units. >>> from sympy.physics.units.prefixes import (PREFIXES, ... prefix_unit) >>> from sympy.physics.units.systems import MKS >>> from sympy.physics.units import m >>> pref = {"m": PREFIXES["m"], "c": PREFIXES["c"], "d": PREFIXES["d"]} >>> prefix_unit(m, pref) # doctest: +SKIP [millimeter, centimeter, decimeter] """ from sympy.physics.units.quantities import Quantity from sympy.physics.units import UnitSystem prefixed_units = [] for prefix_abbr, prefix in prefixes.items(): quantity = Quantity( "%s%s" % (prefix.name, unit.name), abbrev=("%s%s" % (prefix.abbrev, unit.abbrev)) ) UnitSystem._quantity_dimensional_equivalence_map_global[quantity] = unit UnitSystem._quantity_scale_factors_global[quantity] = (prefix.scale_factor, unit) prefixed_units.append(quantity) return prefixed_units yotta = Prefix('yotta', 'Y', 24) zetta = Prefix('zetta', 'Z', 21) exa = Prefix('exa', 'E', 18) peta = Prefix('peta', 'P', 15) tera = Prefix('tera', 'T', 12) giga = Prefix('giga', 'G', 9) mega = Prefix('mega', 'M', 6) kilo = Prefix('kilo', 'k', 3) hecto = Prefix('hecto', 'h', 2) deca = Prefix('deca', 'da', 1) deci = Prefix('deci', 'd', -1) centi = Prefix('centi', 'c', -2) milli = Prefix('milli', 'm', -3) micro = Prefix('micro', 'mu', -6) nano = Prefix('nano', 'n', -9) pico = Prefix('pico', 'p', -12) femto = Prefix('femto', 'f', -15) atto = Prefix('atto', 'a', -18) zepto = Prefix('zepto', 'z', -21) yocto = Prefix('yocto', 'y', -24) # http://physics.nist.gov/cuu/Units/prefixes.html PREFIXES = { 'Y': yotta, 'Z': zetta, 'E': exa, 'P': peta, 'T': tera, 'G': giga, 'M': mega, 'k': kilo, 'h': hecto, 'da': deca, 'd': deci, 'c': centi, 'm': milli, 'mu': micro, 'n': nano, 'p': pico, 'f': femto, 'a': atto, 'z': zepto, 'y': yocto, } kibi = Prefix('kibi', 'Y', 10, 2) mebi = Prefix('mebi', 'Y', 20, 2) gibi = Prefix('gibi', 'Y', 30, 2) tebi = Prefix('tebi', 'Y', 40, 2) pebi = Prefix('pebi', 'Y', 50, 2) exbi = Prefix('exbi', 'Y', 60, 2) # http://physics.nist.gov/cuu/Units/binary.html BIN_PREFIXES = { 'Ki': kibi, 'Mi': mebi, 'Gi': gibi, 'Ti': tebi, 'Pi': pebi, 'Ei': exbi, }
55174f25164cb29172225e4defd15194b696f0b81ff0ef412082162295f1bea3
""" Several methods to simplify expressions involving unit objects. """ from __future__ import division from sympy import Add, Mul, Pow, Tuple, sympify from sympy.core.compatibility import reduce, Iterable, ordered from sympy.physics.units.dimensions import Dimension from sympy.physics.units.prefixes import Prefix from sympy.physics.units.quantities import Quantity from sympy.utilities.iterables import sift def _get_conversion_matrix_for_expr(expr, target_units, unit_system): from sympy import Matrix dimension_system = unit_system.get_dimension_system() expr_dim = Dimension(unit_system.get_dimensional_expr(expr)) dim_dependencies = dimension_system.get_dimensional_dependencies(expr_dim, mark_dimensionless=True) target_dims = [Dimension(unit_system.get_dimensional_expr(x)) for x in target_units] canon_dim_units = [i for x in target_dims for i in dimension_system.get_dimensional_dependencies(x, mark_dimensionless=True)] canon_expr_units = {i for i in dim_dependencies} if not canon_expr_units.issubset(set(canon_dim_units)): return None seen = set([]) canon_dim_units = [i for i in canon_dim_units if not (i in seen or seen.add(i))] camat = Matrix([[dimension_system.get_dimensional_dependencies(i, mark_dimensionless=True).get(j, 0) for i in target_dims] for j in canon_dim_units]) exprmat = Matrix([dim_dependencies.get(k, 0) for k in canon_dim_units]) res_exponents = camat.solve_least_squares(exprmat, method=None) return res_exponents def convert_to(expr, target_units, unit_system="SI"): """ Convert ``expr`` to the same expression with all of its units and quantities represented as factors of ``target_units``, whenever the dimension is compatible. ``target_units`` may be a single unit/quantity, or a collection of units/quantities. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, gram, second, day >>> from sympy.physics.units import mile, newton, kilogram, atomic_mass_constant >>> from sympy.physics.units import kilometer, centimeter >>> from sympy.physics.units import gravitational_constant, hbar >>> from sympy.physics.units import convert_to >>> convert_to(mile, kilometer) 25146*kilometer/15625 >>> convert_to(mile, kilometer).n() 1.609344*kilometer >>> convert_to(speed_of_light, meter/second) 299792458*meter/second >>> convert_to(day, second) 86400*second >>> 3*newton 3*newton >>> convert_to(3*newton, kilogram*meter/second**2) 3*kilogram*meter/second**2 >>> convert_to(atomic_mass_constant, gram) 1.660539060e-24*gram Conversion to multiple units: >>> convert_to(speed_of_light, [meter, second]) 299792458*meter/second >>> convert_to(3*newton, [centimeter, gram, second]) 300000*centimeter*gram/second**2 Conversion to Planck units: >>> from sympy.physics.units import gravitational_constant, hbar >>> convert_to(atomic_mass_constant, [gravitational_constant, speed_of_light, hbar]).n() 7.62963085040767e-20*gravitational_constant**(-0.5)*hbar**0.5*speed_of_light**0.5 """ from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) if not isinstance(target_units, (Iterable, Tuple)): target_units = [target_units] if isinstance(expr, Add): return Add.fromiter(convert_to(i, target_units, unit_system) for i in expr.args) expr = sympify(expr) if not isinstance(expr, Quantity) and expr.has(Quantity): expr = expr.replace(lambda x: isinstance(x, Quantity), lambda x: x.convert_to(target_units, unit_system)) def get_total_scale_factor(expr): if isinstance(expr, Mul): return reduce(lambda x, y: x * y, [get_total_scale_factor(i) for i in expr.args]) elif isinstance(expr, Pow): return get_total_scale_factor(expr.base) ** expr.exp elif isinstance(expr, Quantity): return unit_system.get_quantity_scale_factor(expr) return expr depmat = _get_conversion_matrix_for_expr(expr, target_units, unit_system) if depmat is None: return expr expr_scale_factor = get_total_scale_factor(expr) return expr_scale_factor * Mul.fromiter((1/get_total_scale_factor(u) * u) ** p for u, p in zip(target_units, depmat)) def quantity_simplify(expr): """Return an equivalent expression in which prefixes are replaced with numerical values and all units of a given dimension are the unified in a canonical manner. Examples ======== >>> from sympy.physics.units.util import quantity_simplify >>> from sympy.physics.units.prefixes import kilo >>> from sympy.physics.units import foot, inch >>> quantity_simplify(kilo*foot*inch) 250*foot**2/3 >>> quantity_simplify(foot - 6*inch) foot/2 """ if expr.is_Atom or not expr.has(Prefix, Quantity): return expr # replace all prefixes with numerical values p = expr.atoms(Prefix) expr = expr.xreplace({p: p.scale_factor for p in p}) # replace all quantities of given dimension with a canonical # quantity, chosen from those in the expression d = sift(expr.atoms(Quantity), lambda i: i.dimension) for k in d: if len(d[k]) == 1: continue v = list(ordered(d[k])) ref = v[0]/v[0].scale_factor expr = expr.xreplace({vi: ref*vi.scale_factor for vi in v[1:]}) return expr def check_dimensions(expr, unit_system="SI"): """Return expr if there are not unitless values added to dimensional quantities, else raise a ValueError.""" # the case of adding a number to a dimensional quantity # is ignored for the sake of SymPy core routines, so this # function will raise an error now if such an addend is # found. # Also, when doing substitutions, multiplicative constants # might be introduced, so remove those now from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) adds = expr.atoms(Add) DIM_OF = unit_system.get_dimension_system().get_dimensional_dependencies for a in adds: deset = set() for ai in a.args: if ai.is_number: deset.add(()) continue dims = [] skip = False for i in Mul.make_args(ai): if i.has(Quantity): i = Dimension(unit_system.get_dimensional_expr(i)) if i.has(Dimension): dims.extend(DIM_OF(i).items()) elif i.free_symbols: skip = True break if not skip: deset.add(tuple(sorted(dims))) if len(deset) > 1: raise ValueError( "addends have incompatible dimensions") # clear multiplicative constants on Dimensions which may be # left after substitution reps = {} for m in expr.atoms(Mul): if any(isinstance(i, Dimension) for i in m.args): reps[m] = m.func(*[ i for i in m.args if not i.is_number]) return expr.xreplace(reps)
9b1c90806e50d6050db638bb6f86f7d2118fe0e8f3aaf3dbc1697a6a1087828e
""" Physical quantities. """ from __future__ import division from sympy import AtomicExpr, Symbol, sympify from sympy.core.compatibility import string_types from sympy.physics.units.dimensions import _QuantityMapper from sympy.physics.units.prefixes import Prefix from sympy.utilities.exceptions import SymPyDeprecationWarning class Quantity(AtomicExpr): """ Physical quantity: can be a unit of measure, a constant or a generic quantity. """ is_commutative = True is_real = True is_number = False is_nonzero = True _diff_wrt = True def __new__(cls, name, abbrev=None, dimension=None, scale_factor=None, latex_repr=None, pretty_unicode_repr=None, pretty_ascii_repr=None, mathml_presentation_repr=None, **assumptions): if not isinstance(name, Symbol): name = Symbol(name) # For Quantity(name, dim, scale, abbrev) to work like in the # old version of Sympy: if not isinstance(abbrev, string_types) and not \ isinstance(abbrev, Symbol): dimension, scale_factor, abbrev = abbrev, dimension, scale_factor if dimension is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="unit_system.set_quantity_dimension_map", ).warn() if scale_factor is not None: SymPyDeprecationWarning( deprecated_since_version="1.3", issue=14319, feature="Quantity arguments", useinstead="SI_quantity_scale_factors", ).warn() if abbrev is None: abbrev = name elif isinstance(abbrev, string_types): abbrev = Symbol(abbrev) obj = AtomicExpr.__new__(cls, name, abbrev) obj._name = name obj._abbrev = abbrev obj._latex_repr = latex_repr obj._unicode_repr = pretty_unicode_repr obj._ascii_repr = pretty_ascii_repr obj._mathml_repr = mathml_presentation_repr if dimension is not None: # TODO: remove after deprecation: obj.set_dimension(dimension) if scale_factor is not None: # TODO: remove after deprecation: obj.set_scale_factor(scale_factor) return obj def set_dimension(self, dimension, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_dimension or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_dimension(self, dimension) def set_scale_factor(self, scale_factor, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="Moving method to UnitSystem class", useinstead="unit_system.set_quantity_scale_factor or {}.set_global_relative_scale_factor".format(self), ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) unit_system.set_quantity_scale_factor(self, scale_factor) def set_global_dimension(self, dimension): _QuantityMapper._quantity_dimension_global[self] = dimension def set_global_relative_scale_factor(self, scale_factor, reference_quantity): """ Setting a scale factor that is valid across all unit system. """ from sympy.physics.units import UnitSystem scale_factor = sympify(scale_factor) # replace all prefixes by their ratio to canonical units: scale_factor = scale_factor.replace( lambda x: isinstance(x, Prefix), lambda x: x.scale_factor ) scale_factor = sympify(scale_factor) UnitSystem._quantity_scale_factors_global[self] = (scale_factor, reference_quantity) UnitSystem._quantity_dimensional_equivalence_map_global[self] = reference_quantity @property def name(self): return self._name @property def dimension(self, unit_system=None): from sympy.physics.units import UnitSystem if unit_system is None: unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_dimension(self) @property def abbrev(self): """ Symbol representing the unit name. Prepend the abbreviation with the prefix symbol if it is defines. """ return self._abbrev @property def scale_factor(self, unit_system=None): """ Overall magnitude of the quantity as compared to the canonical units. """ from sympy.physics.units import UnitSystem if unit_system is None: unit_system = UnitSystem.get_default_unit_system() return unit_system.get_quantity_scale_factor(self) def _eval_is_positive(self): return True def _eval_is_constant(self): return True def _eval_Abs(self): return self def _eval_subs(self, old, new): if isinstance(new, Quantity) and self != old: return self @staticmethod def get_dimensional_expr(expr, unit_system="SI"): SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="get_dimensional_expr() is now associated with UnitSystem objects. " \ "The dimensional relations depend on the unit system used.", useinstead="unit_system.get_dimensional_expr" ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system.get_dimensional_expr(expr) @staticmethod def _collect_factor_and_dimension(expr, unit_system="SI"): """Return tuple with scale factor expression and dimension expression.""" SymPyDeprecationWarning( deprecated_since_version="1.5", issue=17765, feature="This method has been moved to the UnitSystem class.", useinstead="unit_system._collect_factor_and_dimension", ).warn() from sympy.physics.units import UnitSystem unit_system = UnitSystem.get_unit_system(unit_system) return unit_system._collect_factor_and_dimension(expr) def _latex(self, printer): if self._latex_repr: return self._latex_repr else: return r'\text{{{}}}'.format(self.args[1] \ if len(self.args) >= 2 else self.args[0]) def convert_to(self, other, unit_system="SI"): """ Convert the quantity to another quantity of same dimensions. Examples ======== >>> from sympy.physics.units import speed_of_light, meter, second >>> speed_of_light speed_of_light >>> speed_of_light.convert_to(meter/second) 299792458*meter/second >>> from sympy.physics.units import liter >>> liter.convert_to(meter**3) meter**3/1000 """ from .util import convert_to return convert_to(self, other, unit_system) @property def free_symbols(self): """Return free symbols from quantity.""" return set([])
c07b9914029210452488b4581fb467d23a72db4d6e4247131ee36a0aff602d75
""" Module to handle gamma matrices expressed as tensor objects. Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex >>> from sympy.tensor.tensor import tensor_indices >>> i = tensor_indices('i', LorentzIndex) >>> G(i) GammaMatrix(i) Note that there is already an instance of GammaMatrixHead in four dimensions: GammaMatrix, which is simply declare as >>> from sympy.physics.hep.gamma_matrices import GammaMatrix >>> from sympy.tensor.tensor import tensor_indices >>> i = tensor_indices('i', LorentzIndex) >>> GammaMatrix(i) GammaMatrix(i) To access the metric tensor >>> LorentzIndex.metric metric(LorentzIndex,LorentzIndex) """ from sympy import S, Mul, eye, trace from sympy.tensor.tensor import TensorIndexType, TensorIndex,\ TensMul, TensAdd, tensor_mul, Tensor, TensorHead, TensorSymmetry from sympy.core.compatibility import range # DiracSpinorIndex = TensorIndexType('DiracSpinorIndex', dim=4, dummy_name="S") LorentzIndex = TensorIndexType('LorentzIndex', dim=4, dummy_name="L") GammaMatrix = TensorHead("GammaMatrix", [LorentzIndex], TensorSymmetry.no_symmetry(1), comm=None) def extract_type_tens(expression, component): """ Extract from a ``TensExpr`` all tensors with `component`. Returns two tensor expressions: * the first contains all ``Tensor`` of having `component`. * the second contains all remaining. """ if isinstance(expression, Tensor): sp = [expression] elif isinstance(expression, TensMul): sp = expression.args else: raise ValueError('wrong type') # Collect all gamma matrices of the same dimension new_expr = S.One residual_expr = S.One for i in sp: if isinstance(i, Tensor) and i.component == component: new_expr *= i else: residual_expr *= i return new_expr, residual_expr def simplify_gamma_expression(expression): extracted_expr, residual_expr = extract_type_tens(expression, GammaMatrix) res_expr = _simplify_single_line(extracted_expr) return res_expr * residual_expr def simplify_gpgp(ex, sort=True): """ simplify products ``G(i)*p(-i)*G(j)*p(-j) -> p(i)*p(-i)`` Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, simplify_gpgp >>> from sympy.tensor.tensor import tensor_indices, tensor_heads >>> p, q = tensor_heads('p, q', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> ps = p(i0)*G(-i0) >>> qs = q(i0)*G(-i0) >>> simplify_gpgp(ps*qs*qs) GammaMatrix(-L_0)*p(L_0)*q(L_1)*q(-L_1) """ def _simplify_gpgp(ex): components = ex.components a = [] comp_map = [] for i, comp in enumerate(components): comp_map.extend([i]*comp.rank) dum = [(i[0], i[1], comp_map[i[0]], comp_map[i[1]]) for i in ex.dum] for i in range(len(components)): if components[i] != GammaMatrix: continue for dx in dum: if dx[2] == i: p_pos1 = dx[3] elif dx[3] == i: p_pos1 = dx[2] else: continue comp1 = components[p_pos1] if comp1.comm == 0 and comp1.rank == 1: a.append((i, p_pos1)) if not a: return ex elim = set() tv = [] hit = True coeff = S.One ta = None while hit: hit = False for i, ai in enumerate(a[:-1]): if ai[0] in elim: continue if ai[0] != a[i + 1][0] - 1: continue if components[ai[1]] != components[a[i + 1][1]]: continue elim.add(ai[0]) elim.add(ai[1]) elim.add(a[i + 1][0]) elim.add(a[i + 1][1]) if not ta: ta = ex.split() mu = TensorIndex('mu', LorentzIndex) hit = True if i == 0: coeff = ex.coeff tx = components[ai[1]](mu)*components[ai[1]](-mu) if len(a) == 2: tx *= 4 # eye(4) tv.append(tx) break if tv: a = [x for j, x in enumerate(ta) if j not in elim] a.extend(tv) t = tensor_mul(*a)*coeff # t = t.replace(lambda x: x.is_Matrix, lambda x: 1) return t else: return ex if sort: ex = ex.sorted_components() # this would be better off with pattern matching while 1: t = _simplify_gpgp(ex) if t != ex: ex = t else: return t def gamma_trace(t): """ trace of a single line of gamma matrices Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ gamma_trace, LorentzIndex >>> from sympy.tensor.tensor import tensor_indices, tensor_heads >>> p, q = tensor_heads('p, q', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> ps = p(i0)*G(-i0) >>> qs = q(i0)*G(-i0) >>> gamma_trace(G(i0)*G(i1)) 4*metric(i0, i1) >>> gamma_trace(ps*ps) - 4*p(i0)*p(-i0) 0 >>> gamma_trace(ps*qs + ps*ps) - 4*p(i0)*p(-i0) - 4*p(i0)*q(-i0) 0 """ if isinstance(t, TensAdd): res = TensAdd(*[_trace_single_line(x) for x in t.args]) return res t = _simplify_single_line(t) res = _trace_single_line(t) return res def _simplify_single_line(expression): """ Simplify single-line product of gamma matrices. Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, _simplify_single_line >>> from sympy.tensor.tensor import tensor_indices, TensorHead >>> p = TensorHead('p', [LorentzIndex]) >>> i0,i1 = tensor_indices('i0:2', LorentzIndex) >>> _simplify_single_line(G(i0)*G(i1)*p(-i1)*G(-i0)) + 2*G(i0)*p(-i0) 0 """ t1, t2 = extract_type_tens(expression, GammaMatrix) if t1 != 1: t1 = kahane_simplify(t1) res = t1*t2 return res def _trace_single_line(t): """ Evaluate the trace of a single gamma matrix line inside a ``TensExpr``. Notes ===== If there are ``DiracSpinorIndex.auto_left`` and ``DiracSpinorIndex.auto_right`` indices trace over them; otherwise traces are not implied (explain) Examples ======== >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, \ LorentzIndex, _trace_single_line >>> from sympy.tensor.tensor import tensor_indices, TensorHead >>> p = TensorHead('p', [LorentzIndex]) >>> i0,i1,i2,i3,i4,i5 = tensor_indices('i0:6', LorentzIndex) >>> _trace_single_line(G(i0)*G(i1)) 4*metric(i0, i1) >>> _trace_single_line(G(i0)*p(-i0)*G(i1)*p(-i1)) - 4*p(i0)*p(-i0) 0 """ def _trace_single_line1(t): t = t.sorted_components() components = t.components ncomps = len(components) g = LorentzIndex.metric # gamma matirices are in a[i:j] hit = 0 for i in range(ncomps): if components[i] == GammaMatrix: hit = 1 break for j in range(i + hit, ncomps): if components[j] != GammaMatrix: break else: j = ncomps numG = j - i if numG == 0: tcoeff = t.coeff return t.nocoeff if tcoeff else t if numG % 2 == 1: return TensMul.from_data(S.Zero, [], [], []) elif numG > 4: # find the open matrix indices and connect them: a = t.split() ind1 = a[i].get_indices()[0] ind2 = a[i + 1].get_indices()[0] aa = a[:i] + a[i + 2:] t1 = tensor_mul(*aa)*g(ind1, ind2) t1 = t1.contract_metric(g) args = [t1] sign = 1 for k in range(i + 2, j): sign = -sign ind2 = a[k].get_indices()[0] aa = a[:i] + a[i + 1:k] + a[k + 1:] t2 = sign*tensor_mul(*aa)*g(ind1, ind2) t2 = t2.contract_metric(g) t2 = simplify_gpgp(t2, False) args.append(t2) t3 = TensAdd(*args) t3 = _trace_single_line(t3) return t3 else: a = t.split() t1 = _gamma_trace1(*a[i:j]) a2 = a[:i] + a[j:] t2 = tensor_mul(*a2) t3 = t1*t2 if not t3: return t3 t3 = t3.contract_metric(g) return t3 t = t.expand() if isinstance(t, TensAdd): a = [_trace_single_line1(x)*x.coeff for x in t.args] return TensAdd(*a) elif isinstance(t, (Tensor, TensMul)): r = t.coeff*_trace_single_line1(t) return r else: return trace(t) def _gamma_trace1(*a): gctr = 4 # FIXME specific for d=4 g = LorentzIndex.metric if not a: return gctr n = len(a) if n%2 == 1: #return TensMul.from_data(S.Zero, [], [], []) return S.Zero if n == 2: ind0 = a[0].get_indices()[0] ind1 = a[1].get_indices()[0] return gctr*g(ind0, ind1) if n == 4: ind0 = a[0].get_indices()[0] ind1 = a[1].get_indices()[0] ind2 = a[2].get_indices()[0] ind3 = a[3].get_indices()[0] return gctr*(g(ind0, ind1)*g(ind2, ind3) - \ g(ind0, ind2)*g(ind1, ind3) + g(ind0, ind3)*g(ind1, ind2)) def kahane_simplify(expression): r""" This function cancels contracted elements in a product of four dimensional gamma matrices, resulting in an expression equal to the given one, without the contracted gamma matrices. Parameters ========== `expression` the tensor expression containing the gamma matrices to simplify. Notes ===== If spinor indices are given, the matrices must be given in the order given in the product. Algorithm ========= The idea behind the algorithm is to use some well-known identities, i.e., for contractions enclosing an even number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N}} \gamma_\mu = 2 (\gamma_{a_{2N}} \gamma_{a_1} \cdots \gamma_{a_{2N-1}} + \gamma_{a_{2N-1}} \cdots \gamma_{a_1} \gamma_{a_{2N}} )` for an odd number of `\gamma` matrices `\gamma^\mu \gamma_{a_1} \cdots \gamma_{a_{2N+1}} \gamma_\mu = -2 \gamma_{a_{2N+1}} \gamma_{a_{2N}} \cdots \gamma_{a_{1}}` Instead of repeatedly applying these identities to cancel out all contracted indices, it is possible to recognize the links that would result from such an operation, the problem is thus reduced to a simple rearrangement of free gamma matrices. Examples ======== When using, always remember that the original expression coefficient has to be handled separately >>> from sympy.physics.hep.gamma_matrices import GammaMatrix as G, LorentzIndex >>> from sympy.physics.hep.gamma_matrices import kahane_simplify >>> from sympy.tensor.tensor import tensor_indices >>> i0, i1, i2 = tensor_indices('i0:3', LorentzIndex) >>> ta = G(i0)*G(-i0) >>> kahane_simplify(ta) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> tb = G(i0)*G(i1)*G(-i0) >>> kahane_simplify(tb) -2*GammaMatrix(i1) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) >>> t = G(i0)*G(-i0) >>> kahane_simplify(t) Matrix([ [4, 0, 0, 0], [0, 4, 0, 0], [0, 0, 4, 0], [0, 0, 0, 4]]) If there are no contractions, the same expression is returned >>> tc = G(i0)*G(i1) >>> kahane_simplify(tc) GammaMatrix(i0)*GammaMatrix(i1) References ========== [1] Algorithm for Reducing Contracted Products of gamma Matrices, Joseph Kahane, Journal of Mathematical Physics, Vol. 9, No. 10, October 1968. """ if isinstance(expression, Mul): return expression if isinstance(expression, TensAdd): return TensAdd(*[kahane_simplify(arg) for arg in expression.args]) if isinstance(expression, Tensor): return expression assert isinstance(expression, TensMul) gammas = expression.args for gamma in gammas: assert gamma.component == GammaMatrix free = expression.free # spinor_free = [_ for _ in expression.free_in_args if _[1] != 0] # if len(spinor_free) == 2: # spinor_free.sort(key=lambda x: x[2]) # assert spinor_free[0][1] == 1 and spinor_free[-1][1] == 2 # assert spinor_free[0][2] == 0 # elif spinor_free: # raise ValueError('spinor indices do not match') dum = [] for dum_pair in expression.dum: if expression.index_types[dum_pair[0]] == LorentzIndex: dum.append((dum_pair[0], dum_pair[1])) dum = sorted(dum) if len(dum) == 0: # or GammaMatrixHead: # no contractions in `expression`, just return it. return expression # find the `first_dum_pos`, i.e. the position of the first contracted # gamma matrix, Kahane's algorithm as described in his paper requires the # gamma matrix expression to start with a contracted gamma matrix, this is # a workaround which ignores possible initial free indices, and re-adds # them later. first_dum_pos = min(map(min, dum)) # for p1, p2, a1, a2 in expression.dum_in_args: # if p1 != 0 or p2 != 0: # # only Lorentz indices, skip Dirac indices: # continue # first_dum_pos = min(p1, p2) # break total_number = len(free) + len(dum)*2 number_of_contractions = len(dum) free_pos = [None]*total_number for i in free: free_pos[i[1]] = i[0] # `index_is_free` is a list of booleans, to identify index position # and whether that index is free or dummy. index_is_free = [False]*total_number for i, indx in enumerate(free): index_is_free[indx[1]] = True # `links` is a dictionary containing the graph described in Kahane's paper, # to every key correspond one or two values, representing the linked indices. # All values in `links` are integers, negative numbers are used in the case # where it is necessary to insert gamma matrices between free indices, in # order to make Kahane's algorithm work (see paper). links = dict() for i in range(first_dum_pos, total_number): links[i] = [] # `cum_sign` is a step variable to mark the sign of every index, see paper. cum_sign = -1 # `cum_sign_list` keeps storage for all `cum_sign` (every index). cum_sign_list = [None]*total_number block_free_count = 0 # multiply `resulting_coeff` by the coefficient parameter, the rest # of the algorithm ignores a scalar coefficient. resulting_coeff = S.One # initialize a list of lists of indices. The outer list will contain all # additive tensor expressions, while the inner list will contain the # free indices (rearranged according to the algorithm). resulting_indices = [[]] # start to count the `connected_components`, which together with the number # of contractions, determines a -1 or +1 factor to be multiplied. connected_components = 1 # First loop: here we fill `cum_sign_list`, and draw the links # among consecutive indices (they are stored in `links`). Links among # non-consecutive indices will be drawn later. for i, is_free in enumerate(index_is_free): # if `expression` starts with free indices, they are ignored here; # they are later added as they are to the beginning of all # `resulting_indices` list of lists of indices. if i < first_dum_pos: continue if is_free: block_free_count += 1 # if previous index was free as well, draw an arch in `links`. if block_free_count > 1: links[i - 1].append(i) links[i].append(i - 1) else: # Change the sign of the index (`cum_sign`) if the number of free # indices preceding it is even. cum_sign *= 1 if (block_free_count % 2) else -1 if block_free_count == 0 and i != first_dum_pos: # check if there are two consecutive dummy indices: # in this case create virtual indices with negative position, # these "virtual" indices represent the insertion of two # gamma^0 matrices to separate consecutive dummy indices, as # Kahane's algorithm requires dummy indices to be separated by # free indices. The product of two gamma^0 matrices is unity, # so the new expression being examined is the same as the # original one. if cum_sign == -1: links[-1-i] = [-1-i+1] links[-1-i+1] = [-1-i] if (i - cum_sign) in links: if i != first_dum_pos: links[i].append(i - cum_sign) if block_free_count != 0: if i - cum_sign < len(index_is_free): if index_is_free[i - cum_sign]: links[i - cum_sign].append(i) block_free_count = 0 cum_sign_list[i] = cum_sign # The previous loop has only created links between consecutive free indices, # it is necessary to properly create links among dummy (contracted) indices, # according to the rules described in Kahane's paper. There is only one exception # to Kahane's rules: the negative indices, which handle the case of some # consecutive free indices (Kahane's paper just describes dummy indices # separated by free indices, hinting that free indices can be added without # altering the expression result). for i in dum: # get the positions of the two contracted indices: pos1 = i[0] pos2 = i[1] # create Kahane's upper links, i.e. the upper arcs between dummy # (i.e. contracted) indices: links[pos1].append(pos2) links[pos2].append(pos1) # create Kahane's lower links, this corresponds to the arcs below # the line described in the paper: # first we move `pos1` and `pos2` according to the sign of the indices: linkpos1 = pos1 + cum_sign_list[pos1] linkpos2 = pos2 + cum_sign_list[pos2] # otherwise, perform some checks before creating the lower arcs: # make sure we are not exceeding the total number of indices: if linkpos1 >= total_number: continue if linkpos2 >= total_number: continue # make sure we are not below the first dummy index in `expression`: if linkpos1 < first_dum_pos: continue if linkpos2 < first_dum_pos: continue # check if the previous loop created "virtual" indices between dummy # indices, in such a case relink `linkpos1` and `linkpos2`: if (-1-linkpos1) in links: linkpos1 = -1-linkpos1 if (-1-linkpos2) in links: linkpos2 = -1-linkpos2 # move only if not next to free index: if linkpos1 >= 0 and not index_is_free[linkpos1]: linkpos1 = pos1 if linkpos2 >=0 and not index_is_free[linkpos2]: linkpos2 = pos2 # create the lower arcs: if linkpos2 not in links[linkpos1]: links[linkpos1].append(linkpos2) if linkpos1 not in links[linkpos2]: links[linkpos2].append(linkpos1) # This loop starts from the `first_dum_pos` index (first dummy index) # walks through the graph deleting the visited indices from `links`, # it adds a gamma matrix for every free index in encounters, while it # completely ignores dummy indices and virtual indices. pointer = first_dum_pos previous_pointer = 0 while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] else: break if pointer == previous_pointer: break if pointer >=0 and free_pos[pointer] is not None: for ri in resulting_indices: ri.append(free_pos[pointer]) # The following loop removes the remaining connected components in `links`. # If there are free indices inside a connected component, it gives a # contribution to the resulting expression given by the factor # `gamma_a gamma_b ... gamma_z + gamma_z ... gamma_b gamma_a`, in Kahanes's # paper represented as {gamma_a, gamma_b, ... , gamma_z}, # virtual indices are ignored. The variable `connected_components` is # increased by one for every connected component this loop encounters. # If the connected component has virtual and dummy indices only # (no free indices), it contributes to `resulting_indices` by a factor of two. # The multiplication by two is a result of the # factor {gamma^0, gamma^0} = 2 I, as it appears in Kahane's paper. # Note: curly brackets are meant as in the paper, as a generalized # multi-element anticommutator! while links: connected_components += 1 pointer = min(links.keys()) previous_pointer = pointer # the inner loop erases the visited indices from `links`, and it adds # all free indices to `prepend_indices` list, virtual indices are # ignored. prepend_indices = [] while True: if pointer in links: next_ones = links.pop(pointer) else: break if previous_pointer in next_ones: if len(next_ones) > 1: next_ones.remove(previous_pointer) previous_pointer = pointer if next_ones: pointer = next_ones[0] if pointer >= first_dum_pos and free_pos[pointer] is not None: prepend_indices.insert(0, free_pos[pointer]) # if `prepend_indices` is void, it means there are no free indices # in the loop (and it can be shown that there must be a virtual index), # loops of virtual indices only contribute by a factor of two: if len(prepend_indices) == 0: resulting_coeff *= 2 # otherwise, add the free indices in `prepend_indices` to # the `resulting_indices`: else: expr1 = prepend_indices expr2 = list(reversed(prepend_indices)) resulting_indices = [expri + ri for ri in resulting_indices for expri in (expr1, expr2)] # sign correction, as described in Kahane's paper: resulting_coeff *= -1 if (number_of_contractions - connected_components + 1) % 2 else 1 # power of two factor, as described in Kahane's paper: resulting_coeff *= 2**(number_of_contractions) # If `first_dum_pos` is not zero, it means that there are trailing free gamma # matrices in front of `expression`, so multiply by them: for i in range(0, first_dum_pos): [ri.insert(0, free_pos[i]) for ri in resulting_indices] resulting_expr = S.Zero for i in resulting_indices: temp_expr = S.One for j in i: temp_expr *= GammaMatrix(j) resulting_expr += temp_expr t = resulting_coeff * resulting_expr t1 = None if isinstance(t, TensAdd): t1 = t.args[0] elif isinstance(t, TensMul): t1 = t if t1: pass else: t = eye(4)*t return t
6adcc93079f63ba6bfc6c98d7e55d0c123e8ecb0c9d15c3258b472280f771e3e
from sympy import Derivative from sympy.core.function import UndefinedFunction, AppliedUndef from sympy.core.symbol import Symbol from sympy.interactive.printing import init_printing from sympy.printing.conventions import split_super_sub from sympy.printing.latex import LatexPrinter, translate from sympy.printing.pretty.pretty import PrettyPrinter from sympy.printing.pretty.pretty_symbology import center_accent from sympy.printing.str import StrPrinter __all__ = ['vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] class VectorStrPrinter(StrPrinter): """String Printer for vector expressions. """ def _print_Derivative(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if (bool(sum([i == t for i in e.variables])) & isinstance(type(e.args[0]), UndefinedFunction)): ol = str(e.args[0].func) for i, v in enumerate(e.variables): ol += dynamicsymbols._str return ol else: return StrPrinter().doprint(e) def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t if isinstance(type(e), UndefinedFunction): return StrPrinter().doprint(e).replace("(%s)" % t, '') return e.func.__name__ + "(%s)" % self.stringify(e.args, ", ") class VectorStrReprPrinter(VectorStrPrinter): """String repr printer for vector expressions.""" def _print_str(self, s): return repr(s) class VectorLatexPrinter(LatexPrinter): """Latex Printer for vector expressions. """ def _print_Function(self, expr, exp=None): from sympy.physics.vector.functions import dynamicsymbols func = expr.func.__name__ t = dynamicsymbols._t if hasattr(self, '_print_' + func) and \ not isinstance(type(expr), UndefinedFunction): return getattr(self, '_print_' + func)(expr, exp) elif isinstance(type(expr), UndefinedFunction) and (expr.args == (t,)): name, supers, subs = split_super_sub(func) name = translate(name) supers = [translate(sup) for sup in supers] subs = [translate(sub) for sub in subs] if len(supers) != 0: supers = r"^{%s}" % "".join(supers) else: supers = r"" if len(subs) != 0: subs = r"_{%s}" % "".join(subs) else: subs = r"" if exp: supers += r"^{%s}" % self._print(exp) return r"%s" % (name + supers + subs) else: args = [str(self._print(arg)) for arg in expr.args] # How inverse trig functions should be displayed, formats are: # abbreviated: asin, full: arcsin, power: sin^-1 inv_trig_style = self._settings['inv_trig_style'] # If we are dealing with a power-style inverse trig function inv_trig_power_case = False # If it is applicable to fold the argument brackets can_fold_brackets = self._settings['fold_func_brackets'] and \ len(args) == 1 and \ not self._needs_function_brackets(expr.args[0]) inv_trig_table = ["asin", "acos", "atan", "acot"] # If the function is an inverse trig function, handle the style if func in inv_trig_table: if inv_trig_style == "abbreviated": pass elif inv_trig_style == "full": func = "arc" + func[1:] elif inv_trig_style == "power": func = func[1:] inv_trig_power_case = True # Can never fold brackets if we're raised to a power if exp is not None: can_fold_brackets = False if inv_trig_power_case: name = r"\operatorname{%s}^{-1}" % func elif exp is not None: name = r"\operatorname{%s}^{%s}" % (func, exp) else: name = r"\operatorname{%s}" % func if can_fold_brackets: name += r"%s" else: name += r"\left(%s\right)" if inv_trig_power_case and exp is not None: name += r"^{%s}" % exp return name % ",".join(args) def _print_Derivative(self, der_expr): from sympy.physics.vector.functions import dynamicsymbols # make sure it is in the right form der_expr = der_expr.doit() if not isinstance(der_expr, Derivative): return r"\left(%s\right)" % self.doprint(der_expr) # check if expr is a dynamicsymbol t = dynamicsymbols._t expr = der_expr.expr red = expr.atoms(AppliedUndef) syms = der_expr.variables test1 = not all([True for i in red if i.free_symbols == {t}]) test2 = not all([(t == i) for i in syms]) if test1 or test2: return LatexPrinter().doprint(der_expr) # done checking dots = len(syms) base = self._print_Function(expr) base_split = base.split('_', 1) base = base_split[0] if dots == 1: base = r"\dot{%s}" % base elif dots == 2: base = r"\ddot{%s}" % base elif dots == 3: base = r"\dddot{%s}" % base elif dots == 4: base = r"\ddddot{%s}" % base else: # Fallback to standard printing return LatexPrinter().doprint(der_expr) if len(base_split) != 1: base += '_' + base_split[1] return base class VectorPrettyPrinter(PrettyPrinter): """Pretty Printer for vectorialexpressions. """ def _print_Derivative(self, deriv): from sympy.physics.vector.functions import dynamicsymbols # XXX use U('PARTIAL DIFFERENTIAL') here ? t = dynamicsymbols._t dot_i = 0 syms = list(reversed(deriv.variables)) while len(syms) > 0: if syms[-1] == t: syms.pop() dot_i += 1 else: return super(VectorPrettyPrinter, self)._print_Derivative(deriv) if not (isinstance(type(deriv.expr), UndefinedFunction) and (deriv.expr.args == (t,))): return super(VectorPrettyPrinter, self)._print_Derivative(deriv) else: pform = self._print_Function(deriv.expr) # the following condition would happen with some sort of non-standard # dynamic symbol I guess, so we'll just print the SymPy way if len(pform.picture) > 1: return super(VectorPrettyPrinter, self)._print_Derivative(deriv) # There are only special symbols up to fourth-order derivatives if dot_i >= 5: return super(VectorPrettyPrinter, self)._print_Derivative(deriv) # Deal with special symbols dots = {0 : u"", 1 : u"\N{COMBINING DOT ABOVE}", 2 : u"\N{COMBINING DIAERESIS}", 3 : u"\N{COMBINING THREE DOTS ABOVE}", 4 : u"\N{COMBINING FOUR DOTS ABOVE}"} d = pform.__dict__ #if unicode is false then calculate number of apostrophes needed and add to output if not self._use_unicode: apostrophes = "" for i in range(0, dot_i): apostrophes += "'" d['picture'][0] += apostrophes + "(t)" else: d['picture'] = [center_accent(d['picture'][0], dots[dot_i])] d['unicode'] = center_accent(d['unicode'], dots[dot_i]) return pform def _print_Function(self, e): from sympy.physics.vector.functions import dynamicsymbols t = dynamicsymbols._t # XXX works only for applied functions func = e.func args = e.args func_name = func.__name__ pform = self._print_Symbol(Symbol(func_name)) # If this function is an Undefined function of t, it is probably a # dynamic symbol, so we'll skip the (t). The rest of the code is # identical to the normal PrettyPrinter code if not (isinstance(func, UndefinedFunction) and (args == (t,))): return super(VectorPrettyPrinter, self)._print_Function(e) return pform def vprint(expr, **settings): r"""Function for printing of expressions generated in the sympy.physics vector package. Extends SymPy's StrPrinter, takes the same setting accepted by SymPy's :func:`~.sstr`, and is equivalent to ``print(sstr(foo))``. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vprint, dynamicsymbols >>> u1 = dynamicsymbols('u1') >>> print(u1) u1(t) >>> vprint(u1) u1 """ outstr = vsprint(expr, **settings) from sympy.core.compatibility import builtins if (outstr != 'None'): builtins._ = outstr print(outstr) def vsstrrepr(expr, **settings): """Function for displaying expression representation's with vector printing enabled. Parameters ========== expr : valid SymPy object SymPy expression to print. settings : args Same as the settings accepted by SymPy's sstrrepr(). """ p = VectorStrReprPrinter(settings) return p.doprint(expr) def vsprint(expr, **settings): r"""Function for displaying expressions generated in the sympy.physics vector package. Returns the output of vprint() as a string. Parameters ========== expr : valid SymPy object SymPy expression to print settings : args Same as the settings accepted by SymPy's sstr(). Examples ======== >>> from sympy.physics.vector import vsprint, dynamicsymbols >>> u1, u2 = dynamicsymbols('u1 u2') >>> u2d = dynamicsymbols('u2', level=1) >>> print("%s = %s" % (u1, u2 + u2d)) u1(t) = u2(t) + Derivative(u2(t), t) >>> print("%s = %s" % (vsprint(u1), vsprint(u2 + u2d))) u1 = u2 + u2' """ string_printer = VectorStrPrinter(settings) return string_printer.doprint(expr) def vpprint(expr, **settings): r"""Function for pretty printing of expressions generated in the sympy.physics vector package. Mainly used for expressions not inside a vector; the output of running scripts and generating equations of motion. Takes the same options as SymPy's :func:`~.pretty_print`; see that function for more information. Parameters ========== expr : valid SymPy object SymPy expression to pretty print settings : args Same as those accepted by SymPy's pretty_print. """ pp = VectorPrettyPrinter(settings) # Note that this is copied from sympy.printing.pretty.pretty_print: # XXX: this is an ugly hack, but at least it works use_unicode = pp._settings['use_unicode'] from sympy.printing.pretty.pretty_symbology import pretty_use_unicode uflag = pretty_use_unicode(use_unicode) try: return pp.doprint(expr) finally: pretty_use_unicode(uflag) def vlatex(expr, **settings): r"""Function for printing latex representation of sympy.physics.vector objects. For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the same options as SymPy's :func:`~.latex`; see that function for more information; Parameters ========== expr : valid SymPy object SymPy expression to represent in LaTeX form settings : args Same as latex() Examples ======== >>> from sympy.physics.vector import vlatex, ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> q1, q2 = dynamicsymbols('q1 q2') >>> q1d, q2d = dynamicsymbols('q1 q2', 1) >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2) >>> vlatex(N.x + N.y) '\\mathbf{\\hat{n}_x} + \\mathbf{\\hat{n}_y}' >>> vlatex(q1 + q2) 'q_{1} + q_{2}' >>> vlatex(q1d) '\\dot{q}_{1}' >>> vlatex(q1 * q2d) 'q_{1} \\dot{q}_{2}' >>> vlatex(q1dd * q1 / q1d) '\\frac{q_{1} \\ddot{q}_{1}}{\\dot{q}_{1}}' """ latex_printer = VectorLatexPrinter(settings) return latex_printer.doprint(expr) def init_vprinting(**kwargs): """Initializes time derivative printing for all SymPy objects, i.e. any functions of time will be displayed in a more compact notation. The main benefit of this is for printing of time derivatives; instead of displaying as ``Derivative(f(t),t)``, it will display ``f'``. This is only actually needed for when derivatives are present and are not in a physics.vector.Vector or physics.vector.Dyadic object. This function is a light wrapper to :func:`~.init_printing`. Any keyword arguments for it are valid here. {0} Examples ======== >>> from sympy import Function, symbols >>> from sympy.physics.vector import init_vprinting >>> t, x = symbols('t, x') >>> omega = Function('omega') >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() Derivative(omega(t), t) Now use the string printer: >>> init_vprinting(pretty_print=False) >>> omega(x).diff() Derivative(omega(x), x) >>> omega(t).diff() omega' """ kwargs['str_printer'] = vsstrrepr kwargs['pretty_printer'] = vpprint kwargs['latex_printer'] = vlatex init_printing(**kwargs) params = init_printing.__doc__.split('Examples\n ========')[0] init_vprinting.__doc__ = init_vprinting.__doc__.format(params)
8d99ab341e997d8ecd38ff27c7c19671f2362316f69afee55ee1879fade4c8ec
__all__ = [ 'CoordinateSym', 'ReferenceFrame', 'Dyadic', 'Vector', 'Point', 'cross', 'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations', 'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint', 'vsstrrepr', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting', 'curl', 'divergence', 'gradient', 'is_conservative', 'is_solenoidal', 'scalar_potential', 'scalar_potential_difference', ] from .frame import CoordinateSym, ReferenceFrame from .dyadic import Dyadic from .vector import Vector from .point import Point from .functions import (cross, dot, express, time_derivative, outer, kinematic_equations, get_motion_params, partial_velocity, dynamicsymbols) from .printing import (vprint, vsstrrepr, vsprint, vpprint, vlatex, init_vprinting) from .fieldfunctions import (curl, divergence, gradient, is_conservative, is_solenoidal, scalar_potential, scalar_potential_difference)
3818e68b1b4966ca8c9ba3d8e596deb60ad6649c35654d2dae543389867f6dda
from __future__ import print_function, division from sympy.core.compatibility import range, string_types from .vector import Vector, _check_vector from .frame import _check_frame __all__ = ['Point'] class Point(object): """This object represents a point in a dynamic system. It stores the: position, velocity, and acceleration of a point. The position is a vector defined as the vector distance from a parent point to this point. Parameters ========== name : string The display name of the Point Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> O = Point('O') >>> P = Point('P') >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3') >>> O.set_vel(N, u1 * N.x + u2 * N.y + u3 * N.z) >>> O.acc(N) u1'*N.x + u2'*N.y + u3'*N.z symbols() can be used to create multiple Points in a single step, for example: >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> from sympy import symbols >>> N = ReferenceFrame('N') >>> u1, u2 = dynamicsymbols('u1 u2') >>> A, B = symbols('A B', cls=Point) >>> type(A) <class 'sympy.physics.vector.point.Point'> >>> A.set_vel(N, u1 * N.x + u2 * N.y) >>> B.set_vel(N, u2 * N.x + u1 * N.y) >>> A.acc(N) - B.acc(N) (u1' - u2')*N.x + (-u1' + u2')*N.y """ def __init__(self, name): """Initialization of a Point object. """ self.name = name self._pos_dict = {} self._vel_dict = {} self._acc_dict = {} self._pdlist = [self._pos_dict, self._vel_dict, self._acc_dict] def __str__(self): return self.name __repr__ = __str__ def _check_point(self, other): if not isinstance(other, Point): raise TypeError('A Point must be supplied') def _pdict_list(self, other, num): """Creates a list from self to other using _dcm_dict. """ outlist = [[self]] oldlist = [[]] while outlist != oldlist: oldlist = outlist[:] for i, v in enumerate(outlist): templist = v[-1]._pdlist[num].keys() for i2, v2 in enumerate(templist): if not v.__contains__(v2): littletemplist = v + [v2] if not outlist.__contains__(littletemplist): outlist.append(littletemplist) for i, v in enumerate(oldlist): if v[-1] != other: outlist.remove(v) outlist.sort(key=len) if len(outlist) != 0: return outlist[0] raise ValueError('No Connecting Path found between ' + other.name + ' and ' + self.name) def a1pt_theory(self, otherpoint, outframe, interframe): """Sets the acceleration of this point with the 1-point theory. The 1-point theory for point acceleration looks like this: ^N a^P = ^B a^P + ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP) + 2 ^N omega^B x ^B v^P where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 1-point theory (O) outframe : ReferenceFrame The frame we want this point's acceleration defined in (N) fixedframe : ReferenceFrame The intermediate frame in this calculation (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import Vector, dynamicsymbols >>> q = dynamicsymbols('q') >>> q2 = dynamicsymbols('q2') >>> qd = dynamicsymbols('q', 1) >>> q2d = dynamicsymbols('q2', 1) >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B.set_ang_vel(N, 5 * B.y) >>> O = Point('O') >>> P = O.locatenew('P', q * B.x) >>> P.set_vel(B, qd * B.x + q2d * B.y) >>> O.set_vel(N, 0) >>> P.a1pt_theory(O, N, B) (-25*q + q'')*B.x + q2''*B.y - 10*q'*B.z """ _check_frame(outframe) _check_frame(interframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v = self.vel(interframe) a1 = otherpoint.acc(outframe) a2 = self.acc(interframe) omega = interframe.ang_vel_in(outframe) alpha = interframe.ang_acc_in(outframe) self.set_acc(outframe, a2 + 2 * (omega ^ v) + a1 + (alpha ^ dist) + (omega ^ (omega ^ dist))) return self.acc(outframe) def a2pt_theory(self, otherpoint, outframe, fixedframe): """Sets the acceleration of this point with the 2-point theory. The 2-point theory for point acceleration looks like this: ^N a^P = ^N a^O + ^N alpha^B x r^OP + ^N omega^B x (^N omega^B x r^OP) where O and P are both points fixed in frame B, which is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's acceleration defined in (N) fixedframe : ReferenceFrame The frame in which both points are fixed (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> N = ReferenceFrame('N') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> O = Point('O') >>> P = O.locatenew('P', 10 * B.x) >>> O.set_vel(N, 5 * N.x) >>> P.a2pt_theory(O, N, B) - 10*q'**2*B.x + 10*q''*B.y """ _check_frame(outframe) _check_frame(fixedframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) a = otherpoint.acc(outframe) omega = fixedframe.ang_vel_in(outframe) alpha = fixedframe.ang_acc_in(outframe) self.set_acc(outframe, a + (alpha ^ dist) + (omega ^ (omega ^ dist))) return self.acc(outframe) def acc(self, frame): """The acceleration Vector of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which the returned acceleration vector will be defined in Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_acc(N, 10 * N.x) >>> p1.acc(N) 10*N.x """ _check_frame(frame) if not (frame in self._acc_dict): if self._vel_dict[frame] != 0: return (self._vel_dict[frame]).dt(frame) else: return Vector(0) return self._acc_dict[frame] def locatenew(self, name, value): """Creates a new point with a position defined from this point. Parameters ========== name : str The name for the new point value : Vector The position of the new point relative to this point Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Point >>> N = ReferenceFrame('N') >>> P1 = Point('P1') >>> P2 = P1.locatenew('P2', 10 * N.x) """ if not isinstance(name, string_types): raise TypeError('Must supply a valid name') if value == 0: value = Vector(0) value = _check_vector(value) p = Point(name) p.set_pos(self, value) self.set_pos(p, -value) return p def pos_from(self, otherpoint): """Returns a Vector distance between this Point and the other Point. Parameters ========== otherpoint : Point The otherpoint we are locating this one relative to Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p2 = Point('p2') >>> p1.set_pos(p2, 10 * N.x) >>> p1.pos_from(p2) 10*N.x """ outvec = Vector(0) plist = self._pdict_list(otherpoint, 0) for i in range(len(plist) - 1): outvec += plist[i]._pos_dict[plist[i + 1]] return outvec def set_acc(self, frame, value): """Used to set the acceleration of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which this point's acceleration is defined value : Vector The vector value of this point's acceleration in the frame Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_acc(N, 10 * N.x) >>> p1.acc(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(frame) self._acc_dict.update({frame: value}) def set_pos(self, otherpoint, value): """Used to set the position of this point w.r.t. another point. Parameters ========== otherpoint : Point The other point which this point's location is defined relative to value : Vector The vector which defines the location of this point Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p2 = Point('p2') >>> p1.set_pos(p2, 10 * N.x) >>> p1.pos_from(p2) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) self._check_point(otherpoint) self._pos_dict.update({otherpoint: value}) otherpoint._pos_dict.update({self: -value}) def set_vel(self, frame, value): """Sets the velocity Vector of this Point in a ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which this point's velocity is defined value : Vector The vector value of this point's velocity in the frame Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_vel(N, 10 * N.x) >>> p1.vel(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(frame) self._vel_dict.update({frame: value}) def v1pt_theory(self, otherpoint, outframe, interframe): """Sets the velocity of this point with the 1-point theory. The 1-point theory for point velocity looks like this: ^N v^P = ^B v^P + ^N v^O + ^N omega^B x r^OP where O is a point fixed in B, P is a point moving in B, and B is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's velocity defined in (N) interframe : ReferenceFrame The intermediate frame in this calculation (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import Vector, dynamicsymbols >>> q = dynamicsymbols('q') >>> q2 = dynamicsymbols('q2') >>> qd = dynamicsymbols('q', 1) >>> q2d = dynamicsymbols('q2', 1) >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B.set_ang_vel(N, 5 * B.y) >>> O = Point('O') >>> P = O.locatenew('P', q * B.x) >>> P.set_vel(B, qd * B.x + q2d * B.y) >>> O.set_vel(N, 0) >>> P.v1pt_theory(O, N, B) q'*B.x + q2'*B.y - 5*q*B.z """ _check_frame(outframe) _check_frame(interframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v1 = self.vel(interframe) v2 = otherpoint.vel(outframe) omega = interframe.ang_vel_in(outframe) self.set_vel(outframe, v1 + v2 + (omega ^ dist)) return self.vel(outframe) def v2pt_theory(self, otherpoint, outframe, fixedframe): """Sets the velocity of this point with the 2-point theory. The 2-point theory for point velocity looks like this: ^N v^P = ^N v^O + ^N omega^B x r^OP where O and P are both points fixed in frame B, which is rotating in frame N. Parameters ========== otherpoint : Point The first point of the 2-point theory (O) outframe : ReferenceFrame The frame we want this point's velocity defined in (N) fixedframe : ReferenceFrame The frame in which both points are fixed (B) Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame, dynamicsymbols >>> q = dynamicsymbols('q') >>> qd = dynamicsymbols('q', 1) >>> N = ReferenceFrame('N') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> O = Point('O') >>> P = O.locatenew('P', 10 * B.x) >>> O.set_vel(N, 5 * N.x) >>> P.v2pt_theory(O, N, B) 5*N.x + 10*q'*B.y """ _check_frame(outframe) _check_frame(fixedframe) self._check_point(otherpoint) dist = self.pos_from(otherpoint) v = otherpoint.vel(outframe) omega = fixedframe.ang_vel_in(outframe) self.set_vel(outframe, v + (omega ^ dist)) return self.vel(outframe) def vel(self, frame): """The velocity Vector of this Point in the ReferenceFrame. Parameters ========== frame : ReferenceFrame The frame in which the returned velocity vector will be defined in Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> N = ReferenceFrame('N') >>> p1 = Point('p1') >>> p1.set_vel(N, 10 * N.x) >>> p1.vel(N) 10*N.x """ _check_frame(frame) if not (frame in self._vel_dict): raise ValueError('Velocity of point ' + self.name + ' has not been' ' defined in ReferenceFrame ' + frame.name) return self._vel_dict[frame] def partial_velocity(self, frame, *gen_speeds): """Returns the partial velocities of the linear velocity vector of this point in the given frame with respect to one or more provided generalized speeds. Parameters ========== frame : ReferenceFrame The frame with which the velocity is defined in. gen_speeds : functions of time The generalized speeds. Returns ======= partial_velocities : tuple of Vector The partial velocity vectors corresponding to the provided generalized speeds. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Point >>> from sympy.physics.vector import dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> p = Point('p') >>> u1, u2 = dynamicsymbols('u1, u2') >>> p.set_vel(N, u1 * N.x + u2 * A.y) >>> p.partial_velocity(N, u1) N.x >>> p.partial_velocity(N, u1, u2) (N.x, A.y) """ partials = [self.vel(frame).diff(speed, frame, var_in_dcm=False) for speed in gen_speeds] if len(partials) == 1: return partials[0] else: return tuple(partials)
f03ac069d960708f0a01b15b38c4faab71427036c5b4afffd966e8dc151f78b4
from __future__ import print_function, division from sympy.core.backend import (sympify, diff, sin, cos, Matrix, symbols, Function, S, Symbol) from sympy import integrate, trigsimp from sympy.core.compatibility import reduce from .vector import Vector, _check_vector from .frame import CoordinateSym, _check_frame from .dyadic import Dyadic from .printing import vprint, vsprint, vpprint, vlatex, init_vprinting from sympy.utilities.iterables import iterable from sympy.utilities.misc import translate __all__ = ['cross', 'dot', 'express', 'time_derivative', 'outer', 'kinematic_equations', 'get_motion_params', 'partial_velocity', 'dynamicsymbols', 'vprint', 'vsprint', 'vpprint', 'vlatex', 'init_vprinting'] def cross(vec1, vec2): """Cross product convenience wrapper for Vector.cross(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Cross product is between two vectors') return vec1 ^ vec2 cross.__doc__ += Vector.cross.__doc__ def dot(vec1, vec2): """Dot product convenience wrapper for Vector.dot(): \n""" if not isinstance(vec1, (Vector, Dyadic)): raise TypeError('Dot product is between two vectors') return vec1 & vec2 dot.__doc__ += Vector.dot.__doc__ def express(expr, frame, frame2=None, variables=False): """ Global function for 'express' functionality. Re-expresses a Vector, scalar(sympyfiable) or Dyadic in given frame. Refer to the local methods of Vector and Dyadic for details. If 'variables' is True, then the coordinate variables (CoordinateSym instances) of other frames present in the vector/scalar field or dyadic expression are also substituted in terms of the base scalars of this frame. Parameters ========== expr : Vector/Dyadic/scalar(sympyfiable) The expression to re-express in ReferenceFrame 'frame' frame: ReferenceFrame The reference frame to express expr in frame2 : ReferenceFrame The other frame required for re-expression(only for Dyadic expr) variables : boolean Specifies whether to substitute the coordinate variables present in expr, in terms of those of frame Examples ======== >>> from sympy.physics.vector import ReferenceFrame, outer, dynamicsymbols >>> N = ReferenceFrame('N') >>> q = dynamicsymbols('q') >>> B = N.orientnew('B', 'Axis', [q, N.z]) >>> d = outer(N.x, N.x) >>> from sympy.physics.vector import express >>> express(d, B, N) cos(q)*(B.x|N.x) - sin(q)*(B.y|N.x) >>> express(B.x, N) cos(q)*N.x + sin(q)*N.y >>> express(N[0], B, variables=True) B_x*cos(q(t)) - B_y*sin(q(t)) """ _check_frame(frame) if expr == 0: return expr if isinstance(expr, Vector): #Given expr is a Vector if variables: #If variables attribute is True, substitute #the coordinate variables in the Vector frame_list = [x[-1] for x in expr.args] subs_dict = {} for f in frame_list: subs_dict.update(f.variable_map(frame)) expr = expr.subs(subs_dict) #Re-express in this frame outvec = Vector([]) for i, v in enumerate(expr.args): if v[1] != frame: temp = frame.dcm(v[1]) * v[0] if Vector.simp: temp = temp.applyfunc(lambda x: trigsimp(x, method='fu')) outvec += Vector([(temp, frame)]) else: outvec += Vector([v]) return outvec if isinstance(expr, Dyadic): if frame2 is None: frame2 = frame _check_frame(frame2) ol = Dyadic(0) for i, v in enumerate(expr.args): ol += express(v[0], frame, variables=variables) * \ (express(v[1], frame, variables=variables) | express(v[2], frame2, variables=variables)) return ol else: if variables: #Given expr is a scalar field frame_set = set([]) expr = sympify(expr) #Substitute all the coordinate variables for x in expr.free_symbols: if isinstance(x, CoordinateSym)and x.frame != frame: frame_set.add(x.frame) subs_dict = {} for f in frame_set: subs_dict.update(f.variable_map(frame)) return expr.subs(subs_dict) return expr def time_derivative(expr, frame, order=1): """ Calculate the time derivative of a vector/scalar field function or dyadic expression in given frame. References ========== https://en.wikipedia.org/wiki/Rotating_reference_frame#Time_derivatives_in_the_two_frames Parameters ========== expr : Vector/Dyadic/sympifyable The expression whose time derivative is to be calculated frame : ReferenceFrame The reference frame to calculate the time derivative in order : integer The order of the derivative to be calculated Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> from sympy import Symbol >>> q1 = Symbol('q1') >>> u1 = dynamicsymbols('u1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', [q1, N.x]) >>> v = u1 * N.x >>> A.set_ang_vel(N, 10*A.x) >>> from sympy.physics.vector import time_derivative >>> time_derivative(v, N) u1'*N.x >>> time_derivative(u1*A[0], N) N_x*Derivative(u1(t), t) >>> B = N.orientnew('B', 'Axis', [u1, N.z]) >>> from sympy.physics.vector import outer >>> d = outer(N.x, N.x) >>> time_derivative(d, B) - u1'*(N.y|N.x) - u1'*(N.x|N.y) """ t = dynamicsymbols._t _check_frame(frame) if order == 0: return expr if order % 1 != 0 or order < 0: raise ValueError("Unsupported value of order entered") if isinstance(expr, Vector): outlist = [] for i, v in enumerate(expr.args): if v[1] == frame: outlist += [(express(v[0], frame, variables=True).diff(t), frame)] else: outlist += (time_derivative(Vector([v]), v[1]) + \ (v[1].ang_vel_in(frame) ^ Vector([v]))).args outvec = Vector(outlist) return time_derivative(outvec, frame, order - 1) if isinstance(expr, Dyadic): ol = Dyadic(0) for i, v in enumerate(expr.args): ol += (v[0].diff(t) * (v[1] | v[2])) ol += (v[0] * (time_derivative(v[1], frame) | v[2])) ol += (v[0] * (v[1] | time_derivative(v[2], frame))) return time_derivative(ol, frame, order - 1) else: return diff(express(expr, frame, variables=True), t, order) def outer(vec1, vec2): """Outer product convenience wrapper for Vector.outer():\n""" if not isinstance(vec1, Vector): raise TypeError('Outer product is between two Vectors') return vec1 | vec2 outer.__doc__ += Vector.outer.__doc__ def kinematic_equations(speeds, coords, rot_type, rot_order=''): """Gives equations relating the qdot's to u's for a rotation type. Supply rotation type and order as in orient. Speeds are assumed to be body-fixed; if we are defining the orientation of B in A using by rot_type, the angular velocity of B in A is assumed to be in the form: speed[0]*B.x + speed[1]*B.y + speed[2]*B.z Parameters ========== speeds : list of length 3 The body fixed angular velocity measure numbers. coords : list of length 3 or 4 The coordinates used to define the orientation of the two frames. rot_type : str The type of rotation used to create the equations. Body, Space, or Quaternion only rot_order : str or int If applicable, the order of a series of rotations. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import kinematic_equations, vprint >>> u1, u2, u3 = dynamicsymbols('u1 u2 u3') >>> q1, q2, q3 = dynamicsymbols('q1 q2 q3') >>> vprint(kinematic_equations([u1,u2,u3], [q1,q2,q3], 'body', '313'), ... order=None) [-(u1*sin(q3) + u2*cos(q3))/sin(q2) + q1', -u1*cos(q3) + u2*sin(q3) + q2', (u1*sin(q3) + u2*cos(q3))*cos(q2)/sin(q2) - u3 + q3'] """ # Code below is checking and sanitizing input approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '1', '2', '3', '') # make sure XYZ => 123 and rot_type is in lower case rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.lower() if not isinstance(speeds, (list, tuple)): raise TypeError('Need to supply speeds in a list') if len(speeds) != 3: raise TypeError('Need to supply 3 body-fixed speeds') if not isinstance(coords, (list, tuple)): raise TypeError('Need to supply coordinates in a list') if rot_type in ['body', 'space']: if rot_order not in approved_orders: raise ValueError('Not an acceptable rotation order') if len(coords) != 3: raise ValueError('Need 3 coordinates for body or space') # Actual hard-coded kinematic differential equations w1, w2, w3 = speeds if w1 == w2 == w3 == 0: return [S.Zero]*3 q1, q2, q3 = coords q1d, q2d, q3d = [diff(i, dynamicsymbols._t) for i in coords] s1, s2, s3 = [sin(q1), sin(q2), sin(q3)] c1, c2, c3 = [cos(q1), cos(q2), cos(q3)] if rot_type == 'body': if rot_order == '123': return [q1d - (w1 * c3 - w2 * s3) / c2, q2d - w1 * s3 - w2 * c3, q3d - (-w1 * c3 + w2 * s3) * s2 / c2 - w3] if rot_order == '231': return [q1d - (w2 * c3 - w3 * s3) / c2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (- w2 * c3 + w3 * s3) * s2 / c2] if rot_order == '312': return [q1d - (-w1 * s3 + w3 * c3) / c2, q2d - w1 * c3 - w3 * s3, q3d - (w1 * s3 - w3 * c3) * s2 / c2 - w2] if rot_order == '132': return [q1d - (w1 * c3 + w3 * s3) / c2, q2d + w1 * s3 - w3 * c3, q3d - (w1 * c3 + w3 * s3) * s2 / c2 - w2] if rot_order == '213': return [q1d - (w1 * s3 + w2 * c3) / c2, q2d - w1 * c3 + w2 * s3, q3d - (w1 * s3 + w2 * c3) * s2 / c2 - w3] if rot_order == '321': return [q1d - (w2 * s3 + w3 * c3) / c2, q2d - w2 * c3 + w3 * s3, q3d - w1 - (w2 * s3 + w3 * c3) * s2 / c2] if rot_order == '121': return [q1d - (w2 * s3 + w3 * c3) / s2, q2d - w2 * c3 + w3 * s3, q3d - w1 + (w2 * s3 + w3 * c3) * c2 / s2] if rot_order == '131': return [q1d - (-w2 * c3 + w3 * s3) / s2, q2d - w2 * s3 - w3 * c3, q3d - w1 - (w2 * c3 - w3 * s3) * c2 / s2] if rot_order == '212': return [q1d - (w1 * s3 - w3 * c3) / s2, q2d - w1 * c3 - w3 * s3, q3d - (-w1 * s3 + w3 * c3) * c2 / s2 - w2] if rot_order == '232': return [q1d - (w1 * c3 + w3 * s3) / s2, q2d + w1 * s3 - w3 * c3, q3d + (w1 * c3 + w3 * s3) * c2 / s2 - w2] if rot_order == '313': return [q1d - (w1 * s3 + w2 * c3) / s2, q2d - w1 * c3 + w2 * s3, q3d + (w1 * s3 + w2 * c3) * c2 / s2 - w3] if rot_order == '323': return [q1d - (-w1 * c3 + w2 * s3) / s2, q2d - w1 * s3 - w2 * c3, q3d - (w1 * c3 - w2 * s3) * c2 / s2 - w3] if rot_type == 'space': if rot_order == '123': return [q1d - w1 - (w2 * s1 + w3 * c1) * s2 / c2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / c2] if rot_order == '231': return [q1d - (w1 * c1 + w3 * s1) * s2 / c2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / c2] if rot_order == '312': return [q1d - (w1 * s1 + w2 * c1) * s2 / c2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / c2] if rot_order == '132': return [q1d - w1 - (-w2 * c1 + w3 * s1) * s2 / c2, q2d - w2 * s1 - w3 * c1, q3d - (w2 * c1 - w3 * s1) / c2] if rot_order == '213': return [q1d - (w1 * s1 - w3 * c1) * s2 / c2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (-w1 * s1 + w3 * c1) / c2] if rot_order == '321': return [q1d - (-w1 * c1 + w2 * s1) * s2 / c2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (w1 * c1 - w2 * s1) / c2] if rot_order == '121': return [q1d - w1 + (w2 * s1 + w3 * c1) * c2 / s2, q2d - w2 * c1 + w3 * s1, q3d - (w2 * s1 + w3 * c1) / s2] if rot_order == '131': return [q1d - w1 - (w2 * c1 - w3 * s1) * c2 / s2, q2d - w2 * s1 - w3 * c1, q3d - (-w2 * c1 + w3 * s1) / s2] if rot_order == '212': return [q1d - (-w1 * s1 + w3 * c1) * c2 / s2 - w2, q2d - w1 * c1 - w3 * s1, q3d - (w1 * s1 - w3 * c1) / s2] if rot_order == '232': return [q1d + (w1 * c1 + w3 * s1) * c2 / s2 - w2, q2d + w1 * s1 - w3 * c1, q3d - (w1 * c1 + w3 * s1) / s2] if rot_order == '313': return [q1d + (w1 * s1 + w2 * c1) * c2 / s2 - w3, q2d - w1 * c1 + w2 * s1, q3d - (w1 * s1 + w2 * c1) / s2] if rot_order == '323': return [q1d - (w1 * c1 - w2 * s1) * c2 / s2 - w3, q2d - w1 * s1 - w2 * c1, q3d - (-w1 * c1 + w2 * s1) / s2] elif rot_type == 'quaternion': if rot_order != '': raise ValueError('Cannot have rotation order for quaternion') if len(coords) != 4: raise ValueError('Need 4 coordinates for quaternion') # Actual hard-coded kinematic differential equations e0, e1, e2, e3 = coords w = Matrix(speeds + [0]) E = Matrix([[e0, -e3, e2, e1], [e3, e0, -e1, e2], [-e2, e1, e0, e3], [-e1, -e2, -e3, e0]]) edots = Matrix([diff(i, dynamicsymbols._t) for i in [e1, e2, e3, e0]]) return list(edots.T - 0.5 * w.T * E.T) else: raise ValueError('Not an approved rotation type for this function') def get_motion_params(frame, **kwargs): """ Returns the three motion parameters - (acceleration, velocity, and position) as vectorial functions of time in the given frame. If a higher order differential function is provided, the lower order functions are used as boundary conditions. For example, given the acceleration, the velocity and position parameters are taken as boundary conditions. The values of time at which the boundary conditions are specified are taken from timevalue1(for position boundary condition) and timevalue2(for velocity boundary condition). If any of the boundary conditions are not provided, they are taken to be zero by default (zero vectors, in case of vectorial inputs). If the boundary conditions are also functions of time, they are converted to constants by substituting the time values in the dynamicsymbols._t time Symbol. This function can also be used for calculating rotational motion parameters. Have a look at the Parameters and Examples for more clarity. Parameters ========== frame : ReferenceFrame The frame to express the motion parameters in acceleration : Vector Acceleration of the object/frame as a function of time velocity : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 position : Vector Velocity as function of time or as boundary condition of velocity at time = timevalue1 timevalue1 : sympyfiable Value of time for position boundary condition timevalue2 : sympyfiable Value of time for velocity boundary condition Examples ======== >>> from sympy.physics.vector import ReferenceFrame, get_motion_params, dynamicsymbols >>> from sympy import symbols >>> R = ReferenceFrame('R') >>> v1, v2, v3 = dynamicsymbols('v1 v2 v3') >>> v = v1*R.x + v2*R.y + v3*R.z >>> get_motion_params(R, position = v) (v1''*R.x + v2''*R.y + v3''*R.z, v1'*R.x + v2'*R.y + v3'*R.z, v1*R.x + v2*R.y + v3*R.z) >>> a, b, c = symbols('a b c') >>> v = a*R.x + b*R.y + c*R.z >>> get_motion_params(R, velocity = v) (0, a*R.x + b*R.y + c*R.z, a*t*R.x + b*t*R.y + c*t*R.z) >>> parameters = get_motion_params(R, acceleration = v) >>> parameters[1] a*t*R.x + b*t*R.y + c*t*R.z >>> parameters[2] a*t**2/2*R.x + b*t**2/2*R.y + c*t**2/2*R.z """ ##Helper functions def _process_vector_differential(vectdiff, condition, \ variable, ordinate, frame): """ Helper function for get_motion methods. Finds derivative of vectdiff wrt variable, and its integral using the specified boundary condition at value of variable = ordinate. Returns a tuple of - (derivative, function and integral) wrt vectdiff """ #Make sure boundary condition is independent of 'variable' if condition != 0: condition = express(condition, frame, variables=True) #Special case of vectdiff == 0 if vectdiff == Vector(0): return (0, 0, condition) #Express vectdiff completely in condition's frame to give vectdiff1 vectdiff1 = express(vectdiff, frame) #Find derivative of vectdiff vectdiff2 = time_derivative(vectdiff, frame) #Integrate and use boundary condition vectdiff0 = Vector(0) lims = (variable, ordinate, variable) for dim in frame: function1 = vectdiff1.dot(dim) abscissa = dim.dot(condition).subs({variable : ordinate}) # Indefinite integral of 'function1' wrt 'variable', using # the given initial condition (ordinate, abscissa). vectdiff0 += (integrate(function1, lims) + abscissa) * dim #Return tuple return (vectdiff2, vectdiff, vectdiff0) ##Function body _check_frame(frame) #Decide mode of operation based on user's input if 'acceleration' in kwargs: mode = 2 elif 'velocity' in kwargs: mode = 1 else: mode = 0 #All the possible parameters in kwargs #Not all are required for every case #If not specified, set to default values(may or may not be used in #calculations) conditions = ['acceleration', 'velocity', 'position', 'timevalue', 'timevalue1', 'timevalue2'] for i, x in enumerate(conditions): if x not in kwargs: if i < 3: kwargs[x] = Vector(0) else: kwargs[x] = S.Zero elif i < 3: _check_vector(kwargs[x]) else: kwargs[x] = sympify(kwargs[x]) if mode == 2: vel = _process_vector_differential(kwargs['acceleration'], kwargs['velocity'], dynamicsymbols._t, kwargs['timevalue2'], frame)[2] pos = _process_vector_differential(vel, kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame)[2] return (kwargs['acceleration'], vel, pos) elif mode == 1: return _process_vector_differential(kwargs['velocity'], kwargs['position'], dynamicsymbols._t, kwargs['timevalue1'], frame) else: vel = time_derivative(kwargs['position'], frame) acc = time_derivative(vel, frame) return (acc, vel, kwargs['position']) def partial_velocity(vel_vecs, gen_speeds, frame): """Returns a list of partial velocities with respect to the provided generalized speeds in the given reference frame for each of the supplied velocity vectors. The output is a list of lists. The outer list has a number of elements equal to the number of supplied velocity vectors. The inner lists are, for each velocity vector, the partial derivatives of that velocity vector with respect to the generalized speeds supplied. Parameters ========== vel_vecs : iterable An iterable of velocity vectors (angular or linear). gen_speeds : iterable An iterable of generalized speeds. frame : ReferenceFrame The reference frame that the partial derivatives are going to be taken in. Examples ======== >>> from sympy.physics.vector import Point, ReferenceFrame >>> from sympy.physics.vector import dynamicsymbols >>> from sympy.physics.vector import partial_velocity >>> u = dynamicsymbols('u') >>> N = ReferenceFrame('N') >>> P = Point('P') >>> P.set_vel(N, u * N.x) >>> vel_vecs = [P.vel(N)] >>> gen_speeds = [u] >>> partial_velocity(vel_vecs, gen_speeds, N) [[N.x]] """ if not iterable(vel_vecs): raise TypeError('Velocity vectors must be contained in an iterable.') if not iterable(gen_speeds): raise TypeError('Generalized speeds must be contained in an iterable') vec_partials = [] for vec in vel_vecs: partials = [] for speed in gen_speeds: partials.append(vec.diff(speed, frame, var_in_dcm=False)) vec_partials.append(partials) return vec_partials def dynamicsymbols(names, level=0,**assumptions): """Uses symbols and Function for functions of time. Creates a SymPy UndefinedFunction, which is then initialized as a function of a variable, the default being Symbol('t'). Parameters ========== names : str Names of the dynamic symbols you want to create; works the same way as inputs to symbols level : int Level of differentiation of the returned function; d/dt once of t, twice of t, etc. assumptions : - real(bool) : This is used to set the dynamicsymbol as real, by default is False. - positive(bool) : This is used to set the dynamicsymbol as positive, by default is False. - commutative(bool) : This is used to set the commutative property of a dynamicsymbol, by default is True. - integer(bool) : This is used to set the dynamicsymbol as integer, by default is False. Examples ======== >>> from sympy.physics.vector import dynamicsymbols >>> from sympy import diff, Symbol >>> q1 = dynamicsymbols('q1') >>> q1 q1(t) >>> q2 = dynamicsymbols('q2', real=True) >>> q2.is_real True >>> q3 = dynamicsymbols('q3', positive=True) >>> q3.is_positive True >>> q4, q5 = dynamicsymbols('q4,q5', commutative=False) >>> bool(q4*q5 != q5*q4) True >>> q6 = dynamicsymbols('q6', integer=True) >>> q6.is_integer True >>> diff(q1, Symbol('t')) Derivative(q1(t), t) """ esses = symbols(names, cls=Function,**assumptions) t = dynamicsymbols._t if iterable(esses): esses = [reduce(diff, [t] * level, e(t)) for e in esses] return esses else: return reduce(diff, [t] * level, esses(t)) dynamicsymbols._t = Symbol('t') dynamicsymbols._str = '\''
99c40d38d4d6e043e455136469cf70c44604e6d23e931ddbfe30c51d648833f4
from sympy.core.backend import (diff, expand, sin, cos, sympify, eye, symbols, ImmutableMatrix as Matrix, MatrixBase) from sympy import (trigsimp, solve, Symbol, Dummy) from sympy.core.compatibility import string_types, range from sympy.physics.vector.vector import Vector, _check_vector from sympy.utilities.misc import translate __all__ = ['CoordinateSym', 'ReferenceFrame'] class CoordinateSym(Symbol): """ A coordinate symbol/base scalar associated wrt a Reference Frame. Ideally, users should not instantiate this class. Instances of this class must only be accessed through the corresponding frame as 'frame[index]'. CoordinateSyms having the same frame and index parameters are equal (even though they may be instantiated separately). Parameters ========== name : string The display name of the CoordinateSym frame : ReferenceFrame The reference frame this base scalar belongs to index : 0, 1 or 2 The index of the dimension denoted by this coordinate variable Examples ======== >>> from sympy.physics.vector import ReferenceFrame, CoordinateSym >>> A = ReferenceFrame('A') >>> A[1] A_y >>> type(A[0]) <class 'sympy.physics.vector.frame.CoordinateSym'> >>> a_y = CoordinateSym('a_y', A, 1) >>> a_y == A[1] True """ def __new__(cls, name, frame, index): # We can't use the cached Symbol.__new__ because this class depends on # frame and index, which are not passed to Symbol.__xnew__. assumptions = {} super(CoordinateSym, cls)._sanitize(assumptions, cls) obj = super(CoordinateSym, cls).__xnew__(cls, name, **assumptions) _check_frame(frame) if index not in range(0, 3): raise ValueError("Invalid index specified") obj._id = (frame, index) return obj @property def frame(self): return self._id[0] def __eq__(self, other): #Check if the other object is a CoordinateSym of the same frame #and same index if isinstance(other, CoordinateSym): if other._id == self._id: return True return False def __ne__(self, other): return not self == other def __hash__(self): return tuple((self._id[0].__hash__(), self._id[1])).__hash__() class ReferenceFrame(object): """A reference frame in classical mechanics. ReferenceFrame is a class used to represent a reference frame in classical mechanics. It has a standard basis of three unit vectors in the frame's x, y, and z directions. It also can have a rotation relative to a parent frame; this rotation is defined by a direction cosine matrix relating this frame's basis vectors to the parent frame's basis vectors. It can also have an angular velocity vector, defined in another frame. """ _count = 0 def __init__(self, name, indices=None, latexs=None, variables=None): """ReferenceFrame initialization method. A ReferenceFrame has a set of orthonormal basis vectors, along with orientations relative to other ReferenceFrames and angular velocities relative to other ReferenceFrames. Parameters ========== indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> N = ReferenceFrame('N') >>> N.x N.x >>> O = ReferenceFrame('O', indices=('1', '2', '3')) >>> O.x O['1'] >>> O['1'] O['1'] >>> P = ReferenceFrame('P', latexs=('A1', 'A2', 'A3')) >>> vlatex(P.x) 'A1' symbols() can be used to create multiple Reference Frames in one step, for example: >>> from sympy.physics.vector import ReferenceFrame >>> from sympy import symbols >>> A, B, C = symbols('A B C', cls=ReferenceFrame) >>> D, E = symbols('D E', cls=ReferenceFrame, indices=('1', '2', '3')) >>> A[0] A_x >>> D.x D['1'] >>> E.y E['2'] >>> type(A) == type(D) True """ if not isinstance(name, string_types): raise TypeError('Need to supply a valid name') # The if statements below are for custom printing of basis-vectors for # each frame. # First case, when custom indices are supplied if indices is not None: if not isinstance(indices, (tuple, list)): raise TypeError('Supply the indices as a list') if len(indices) != 3: raise ValueError('Supply 3 indices') for i in indices: if not isinstance(i, string_types): raise TypeError('Indices must be strings') self.str_vecs = [(name + '[\'' + indices[0] + '\']'), (name + '[\'' + indices[1] + '\']'), (name + '[\'' + indices[2] + '\']')] self.pretty_vecs = [(name.lower() + u"_" + indices[0]), (name.lower() + u"_" + indices[1]), (name.lower() + u"_" + indices[2])] self.latex_vecs = [(r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[0])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[1])), (r"\mathbf{\hat{%s}_{%s}}" % (name.lower(), indices[2]))] self.indices = indices # Second case, when no custom indices are supplied else: self.str_vecs = [(name + '.x'), (name + '.y'), (name + '.z')] self.pretty_vecs = [name.lower() + u"_x", name.lower() + u"_y", name.lower() + u"_z"] self.latex_vecs = [(r"\mathbf{\hat{%s}_x}" % name.lower()), (r"\mathbf{\hat{%s}_y}" % name.lower()), (r"\mathbf{\hat{%s}_z}" % name.lower())] self.indices = ['x', 'y', 'z'] # Different step, for custom latex basis vectors if latexs is not None: if not isinstance(latexs, (tuple, list)): raise TypeError('Supply the indices as a list') if len(latexs) != 3: raise ValueError('Supply 3 indices') for i in latexs: if not isinstance(i, string_types): raise TypeError('Latex entries must be strings') self.latex_vecs = latexs self.name = name self._var_dict = {} #The _dcm_dict dictionary will only store the dcms of parent-child #relationships. The _dcm_cache dictionary will work as the dcm #cache. self._dcm_dict = {} self._dcm_cache = {} self._ang_vel_dict = {} self._ang_acc_dict = {} self._dlist = [self._dcm_dict, self._ang_vel_dict, self._ang_acc_dict] self._cur = 0 self._x = Vector([(Matrix([1, 0, 0]), self)]) self._y = Vector([(Matrix([0, 1, 0]), self)]) self._z = Vector([(Matrix([0, 0, 1]), self)]) #Associate coordinate symbols wrt this frame if variables is not None: if not isinstance(variables, (tuple, list)): raise TypeError('Supply the variable names as a list/tuple') if len(variables) != 3: raise ValueError('Supply 3 variable names') for i in variables: if not isinstance(i, string_types): raise TypeError('Variable names must be strings') else: variables = [name + '_x', name + '_y', name + '_z'] self.varlist = (CoordinateSym(variables[0], self, 0), \ CoordinateSym(variables[1], self, 1), \ CoordinateSym(variables[2], self, 2)) ReferenceFrame._count += 1 self.index = ReferenceFrame._count def __getitem__(self, ind): """ Returns basis vector for the provided index, if the index is a string. If the index is a number, returns the coordinate variable correspon- -ding to that index. """ if not isinstance(ind, string_types): if ind < 3: return self.varlist[ind] else: raise ValueError("Invalid index provided") if self.indices[0] == ind: return self.x if self.indices[1] == ind: return self.y if self.indices[2] == ind: return self.z else: raise ValueError('Not a defined index') def __iter__(self): return iter([self.x, self.y, self.z]) def __str__(self): """Returns the name of the frame. """ return self.name __repr__ = __str__ def _dict_list(self, other, num): """Creates a list from self to other using _dcm_dict. """ outlist = [[self]] oldlist = [[]] while outlist != oldlist: oldlist = outlist[:] for i, v in enumerate(outlist): templist = v[-1]._dlist[num].keys() for i2, v2 in enumerate(templist): if not v.__contains__(v2): littletemplist = v + [v2] if not outlist.__contains__(littletemplist): outlist.append(littletemplist) for i, v in enumerate(oldlist): if v[-1] != other: outlist.remove(v) outlist.sort(key=len) if len(outlist) != 0: return outlist[0] raise ValueError('No Connecting Path found between ' + self.name + ' and ' + other.name) def _w_diff_dcm(self, otherframe): """Angular velocity from time differentiating the DCM. """ from sympy.physics.vector.functions import dynamicsymbols dcm2diff = otherframe.dcm(self) diffed = dcm2diff.diff(dynamicsymbols._t) angvelmat = diffed * dcm2diff.T w1 = trigsimp(expand(angvelmat[7]), recursive=True) w2 = trigsimp(expand(angvelmat[2]), recursive=True) w3 = trigsimp(expand(angvelmat[3]), recursive=True) return Vector([(Matrix([w1, w2, w3]), otherframe)]) def variable_map(self, otherframe): """ Returns a dictionary which expresses the coordinate variables of this frame in terms of the variables of otherframe. If Vector.simp is True, returns a simplified version of the mapped values. Else, returns them without simplification. Simplification of the expressions may take time. Parameters ========== otherframe : ReferenceFrame The other frame to map the variables to Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> A = ReferenceFrame('A') >>> q = dynamicsymbols('q') >>> B = A.orientnew('B', 'Axis', [q, A.z]) >>> A.variable_map(B) {A_x: B_x*cos(q(t)) - B_y*sin(q(t)), A_y: B_x*sin(q(t)) + B_y*cos(q(t)), A_z: B_z} """ _check_frame(otherframe) if (otherframe, Vector.simp) in self._var_dict: return self._var_dict[(otherframe, Vector.simp)] else: vars_matrix = self.dcm(otherframe) * Matrix(otherframe.varlist) mapping = {} for i, x in enumerate(self): if Vector.simp: mapping[self.varlist[i]] = trigsimp(vars_matrix[i], method='fu') else: mapping[self.varlist[i]] = vars_matrix[i] self._var_dict[(otherframe, Vector.simp)] = mapping return mapping def ang_acc_in(self, otherframe): """Returns the angular acceleration Vector of the ReferenceFrame. Effectively returns the Vector: ^N alpha ^B which represent the angular acceleration of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular acceleration is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ _check_frame(otherframe) if otherframe in self._ang_acc_dict: return self._ang_acc_dict[otherframe] else: return self.ang_vel_in(otherframe).dt(otherframe) def ang_vel_in(self, otherframe): """Returns the angular velocity Vector of the ReferenceFrame. Effectively returns the Vector: ^N omega ^B which represent the angular velocity of B in N, where B is self, and N is otherframe. Parameters ========== otherframe : ReferenceFrame The ReferenceFrame which the angular velocity is returned in. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ _check_frame(otherframe) flist = self._dict_list(otherframe, 1) outvec = Vector(0) for i in range(len(flist) - 1): outvec += flist[i]._ang_vel_dict[flist[i + 1]] return outvec def dcm(self, otherframe): r"""Returns the direction cosine matrix relative to the provided reference frame. The returned matrix can be used to express the orthogonal unit vectors of this frame in terms of the orthogonal unit vectors of ``otherframe``. Parameters ========== otherframe : ReferenceFrame The reference frame which the direction cosine matrix of this frame is formed relative to. Examples ======== The following example rotates the reference frame A relative to N by a simple rotation and then calculates the direction cosine matrix of N relative to A. >>> from sympy import symbols, sin, cos >>> from sympy.physics.vector import ReferenceFrame >>> q1 = symbols('q1') >>> N = ReferenceFrame('N') >>> A = N.orientnew('A', 'Axis', (q1, N.x)) >>> N.dcm(A) Matrix([ [1, 0, 0], [0, cos(q1), -sin(q1)], [0, sin(q1), cos(q1)]]) The second row of the above direction cosine matrix represents the ``N.y`` unit vector in N expressed in A. Like so: >>> Ny = 0*A.x + cos(q1)*A.y - sin(q1)*A.z Thus, expressing ``N.y`` in A should return the same result: >>> N.y.express(A) cos(q1)*A.y - sin(q1)*A.z Notes ===== It is import to know what form of the direction cosine matrix is returned. If ``B.dcm(A)`` is called, it means the "direction cosine matrix of B relative to A". This is the matrix :math:`{}^A\mathbf{R}^B` shown in the following relationship: .. math:: \begin{bmatrix} \hat{\mathbf{b}}_1 \\ \hat{\mathbf{b}}_2 \\ \hat{\mathbf{b}}_3 \end{bmatrix} = {}^A\mathbf{R}^B \begin{bmatrix} \hat{\mathbf{a}}_1 \\ \hat{\mathbf{a}}_2 \\ \hat{\mathbf{a}}_3 \end{bmatrix}. :math:`^{}A\mathbf{R}^B` is the matrix that expresses the B unit vectors in terms of the A unit vectors. """ _check_frame(otherframe) # Check if the dcm wrt that frame has already been calculated if otherframe in self._dcm_cache: return self._dcm_cache[otherframe] flist = self._dict_list(otherframe, 0) outdcm = eye(3) for i in range(len(flist) - 1): outdcm = outdcm * flist[i]._dcm_dict[flist[i + 1]] # After calculation, store the dcm in dcm cache for faster future # retrieval self._dcm_cache[otherframe] = outdcm otherframe._dcm_cache[self] = outdcm.T return outdcm def orient(self, parent, rot_type, amounts, rot_order=''): """Sets the orientation of this reference frame relative to another (parent) reference frame. Parameters ========== parent : ReferenceFrame Reference frame that this reference frame will be rotated relative to. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. Examples ======== Setup variables for the examples: >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') >>> B = ReferenceFrame('B') >>> B1 = ReferenceFrame('B') >>> B2 = ReferenceFrame('B2') Axis ---- ``rot_type='Axis'`` creates a direction cosine matrix defined by a simple rotation about a single axis fixed in both reference frames. This is a rotation about an arbitrary, non-time-varying axis by some angle. The axis is supplied as a Vector. This is how simple rotations are defined. >>> B.orient(N, 'Axis', (q1, N.x)) The ``orient()`` method generates a direction cosine matrix and its transpose which defines the orientation of B relative to N and vice versa. Once orient is called, ``dcm()`` outputs the appropriate direction cosine matrix. >>> B.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) The following two lines show how the sense of the rotation can be defined. Both lines produce the same result. >>> B.orient(N, 'Axis', (q1, -N.x)) >>> B.orient(N, 'Axis', (-q1, N.x)) The axis does not have to be defined by a unit vector, it can be any vector in the parent frame. >>> B.orient(N, 'Axis', (q1, N.x + 2 * N.y)) DCM --- The direction cosine matrix can be set directly. The orientation of a frame A can be set to be the same as the frame B above like so: >>> B.orient(N, 'Axis', (q1, N.x)) >>> A = ReferenceFrame('A') >>> A.orient(N, 'DCM', N.dcm(B)) >>> A.dcm(N) Matrix([ [1, 0, 0], [0, cos(q1), sin(q1)], [0, -sin(q1), cos(q1)]]) **Note carefully that** ``N.dcm(B)`` **was passed into** ``orient()`` **for** ``A.dcm(N)`` **to match** ``B.dcm(N)``. Body ---- ``rot_type='Body'`` rotates this reference frame relative to the provided reference frame by rotating through three successive simple rotations. Each subsequent axis of rotation is about the "body fixed" unit vectors of the new intermediate reference frame. This type of rotation is also referred to rotating through the `Euler and Tait-Bryan Angles <https://en.wikipedia.org/wiki/Euler_angles>`_. For example, the classic Euler Angle rotation can be done by: >>> B.orient(N, 'Body', (q1, q2, q3), 'XYX') >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) This rotates B relative to N through ``q1`` about ``N.x``, then rotates B again through q2 about B.y, and finally through q3 about B.x. It is equivalent to: >>> B1.orient(N, 'Axis', (q1, N.x)) >>> B2.orient(B1, 'Axis', (q2, B1.y)) >>> B.orient(B2, 'Axis', (q3, B2.x)) >>> B.dcm(N) Matrix([ [ cos(q2), sin(q1)*sin(q2), -sin(q2)*cos(q1)], [sin(q2)*sin(q3), -sin(q1)*sin(q3)*cos(q2) + cos(q1)*cos(q3), sin(q1)*cos(q3) + sin(q3)*cos(q1)*cos(q2)], [sin(q2)*cos(q3), -sin(q1)*cos(q2)*cos(q3) - sin(q3)*cos(q1), -sin(q1)*sin(q3) + cos(q1)*cos(q2)*cos(q3)]]) Acceptable rotation orders are of length 3, expressed in as a string ``'XYZ'`` or ``'123'`` or integer ``123``. Rotations about an axis twice in a row are prohibited. >>> B.orient(N, 'Body', (q1, q2, 0), 'ZXZ') >>> B.orient(N, 'Body', (q1, q2, 0), '121') >>> B.orient(N, 'Body', (q1, q2, q3), 123) Space ----- ``rot_type='Space'`` also rotates the reference frame in three successive simple rotations but the axes of rotation are the "Space-fixed" axes. For example: >>> B.orient(N, 'Space', (q1, q2, q3), '312') >>> B.dcm(N) Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) is equivalent to: >>> B1.orient(N, 'Axis', (q1, N.z)) >>> B2.orient(B1, 'Axis', (q2, N.x)) >>> B.orient(B2, 'Axis', (q3, N.y)) >>> B.dcm(N).simplify() # doctest: +SKIP Matrix([ [ sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3), sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1)], [-sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1), cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3)], [ sin(q3)*cos(q2), -sin(q2), cos(q2)*cos(q3)]]) It is worth noting that space-fixed and body-fixed rotations are related by the order of the rotations, i.e. the reverse order of body fixed will give space fixed and vice versa. >>> B.orient(N, 'Space', (q1, q2, q3), '231') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) >>> B.orient(N, 'Body', (q3, q2, q1), '132') >>> B.dcm(N) Matrix([ [cos(q1)*cos(q2), sin(q1)*sin(q3) + sin(q2)*cos(q1)*cos(q3), -sin(q1)*cos(q3) + sin(q2)*sin(q3)*cos(q1)], [ -sin(q2), cos(q2)*cos(q3), sin(q3)*cos(q2)], [sin(q1)*cos(q2), sin(q1)*sin(q2)*cos(q3) - sin(q3)*cos(q1), sin(q1)*sin(q2)*sin(q3) + cos(q1)*cos(q3)]]) Quaternion ---------- ``rot_type='Quaternion'`` orients the reference frame using quaternions. Quaternion rotation is defined as a finite rotation about lambda, a unit vector, by an amount theta. This orientation is described by four parameters: - ``q0 = cos(theta/2)`` - ``q1 = lambda_x sin(theta/2)`` - ``q2 = lambda_y sin(theta/2)`` - ``q3 = lambda_z sin(theta/2)`` This type does not need a ``rot_order``. >>> B.orient(N, 'Quaternion', (q0, q1, q2, q3)) >>> B.dcm(N) Matrix([ [q0**2 + q1**2 - q2**2 - q3**2, 2*q0*q3 + 2*q1*q2, -2*q0*q2 + 2*q1*q3], [ -2*q0*q3 + 2*q1*q2, q0**2 - q1**2 + q2**2 - q3**2, 2*q0*q1 + 2*q2*q3], [ 2*q0*q2 + 2*q1*q3, -2*q0*q1 + 2*q2*q3, q0**2 - q1**2 - q2**2 + q3**2]]) """ from sympy.physics.vector.functions import dynamicsymbols _check_frame(parent) # Allow passing a rotation matrix manually. if rot_type == 'DCM': # When rot_type == 'DCM', then amounts must be a Matrix type object # (e.g. sympy.matrices.dense.MutableDenseMatrix). if not isinstance(amounts, MatrixBase): raise TypeError("Amounts must be a sympy Matrix type object.") else: amounts = list(amounts) for i, v in enumerate(amounts): if not isinstance(v, Vector): amounts[i] = sympify(v) def _rot(axis, angle): """DCM for simple axis 1,2,or 3 rotations. """ if axis == 1: return Matrix([[1, 0, 0], [0, cos(angle), -sin(angle)], [0, sin(angle), cos(angle)]]) elif axis == 2: return Matrix([[cos(angle), 0, sin(angle)], [0, 1, 0], [-sin(angle), 0, cos(angle)]]) elif axis == 3: return Matrix([[cos(angle), -sin(angle), 0], [sin(angle), cos(angle), 0], [0, 0, 1]]) approved_orders = ('123', '231', '312', '132', '213', '321', '121', '131', '212', '232', '313', '323', '') # make sure XYZ => 123 and rot_type is in upper case rot_order = translate(str(rot_order), 'XYZxyz', '123123') rot_type = rot_type.upper() if rot_order not in approved_orders: raise TypeError('The supplied order is not an approved type') parent_orient = [] if rot_type == 'AXIS': if not rot_order == '': raise TypeError('Axis orientation takes no rotation order') if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 2)): raise TypeError('Amounts are a list or tuple of length 2') theta = amounts[0] axis = amounts[1] axis = _check_vector(axis) if not axis.dt(parent) == 0: raise ValueError('Axis cannot be time-varying') axis = axis.express(parent).normalize() axis = axis.args[0][0] parent_orient = ((eye(3) - axis * axis.T) * cos(theta) + Matrix([[0, -axis[2], axis[1]], [axis[2], 0, -axis[0]], [-axis[1], axis[0], 0]]) * sin(theta) + axis * axis.T) elif rot_type == 'QUATERNION': if not rot_order == '': raise TypeError( 'Quaternion orientation takes no rotation order') if not (isinstance(amounts, (list, tuple)) & (len(amounts) == 4)): raise TypeError('Amounts are a list or tuple of length 4') q0, q1, q2, q3 = amounts parent_orient = (Matrix([[q0**2 + q1**2 - q2**2 - q3**2, 2 * (q1 * q2 - q0 * q3), 2 * (q0 * q2 + q1 * q3)], [2 * (q1 * q2 + q0 * q3), q0**2 - q1**2 + q2**2 - q3**2, 2 * (q2 * q3 - q0 * q1)], [2 * (q1 * q3 - q0 * q2), 2 * (q0 * q1 + q2 * q3), q0**2 - q1**2 - q2**2 + q3**2]])) elif rot_type == 'BODY': if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Body orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient = (_rot(a1, amounts[0]) * _rot(a2, amounts[1]) * _rot(a3, amounts[2])) elif rot_type == 'SPACE': if not (len(amounts) == 3 & len(rot_order) == 3): raise TypeError('Space orientation takes 3 values & 3 orders') a1 = int(rot_order[0]) a2 = int(rot_order[1]) a3 = int(rot_order[2]) parent_orient = (_rot(a3, amounts[2]) * _rot(a2, amounts[1]) * _rot(a1, amounts[0])) elif rot_type == 'DCM': parent_orient = amounts else: raise NotImplementedError('That is not an implemented rotation') # Reset the _dcm_cache of this frame, and remove it from the # _dcm_caches of the frames it is linked to. Also remove it from the # _dcm_dict of its parent frames = self._dcm_cache.keys() dcm_dict_del = [] dcm_cache_del = [] for frame in frames: if frame in self._dcm_dict: dcm_dict_del += [frame] dcm_cache_del += [frame] for frame in dcm_dict_del: del frame._dcm_dict[self] for frame in dcm_cache_del: del frame._dcm_cache[self] # Add the dcm relationship to _dcm_dict self._dcm_dict = self._dlist[0] = {} self._dcm_dict.update({parent: parent_orient.T}) parent._dcm_dict.update({self: parent_orient}) # Also update the dcm cache after resetting it self._dcm_cache = {} self._dcm_cache.update({parent: parent_orient.T}) parent._dcm_cache.update({self: parent_orient}) if rot_type == 'QUATERNION': t = dynamicsymbols._t q0, q1, q2, q3 = amounts q0d = diff(q0, t) q1d = diff(q1, t) q2d = diff(q2, t) q3d = diff(q3, t) w1 = 2 * (q1d * q0 + q2d * q3 - q3d * q2 - q0d * q1) w2 = 2 * (q2d * q0 + q3d * q1 - q1d * q3 - q0d * q2) w3 = 2 * (q3d * q0 + q1d * q2 - q2d * q1 - q0d * q3) wvec = Vector([(Matrix([w1, w2, w3]), self)]) elif rot_type == 'AXIS': thetad = (amounts[0]).diff(dynamicsymbols._t) wvec = thetad * amounts[1].express(parent).normalize() elif rot_type == 'DCM': wvec = self._w_diff_dcm(parent) else: try: from sympy.polys.polyerrors import CoercionFailed from sympy.physics.vector.functions import kinematic_equations q1, q2, q3 = amounts u1, u2, u3 = symbols('u1, u2, u3', cls=Dummy) templist = kinematic_equations([u1, u2, u3], [q1, q2, q3], rot_type, rot_order) templist = [expand(i) for i in templist] td = solve(templist, [u1, u2, u3]) u1 = expand(td[u1]) u2 = expand(td[u2]) u3 = expand(td[u3]) wvec = u1 * self.x + u2 * self.y + u3 * self.z except (CoercionFailed, AssertionError): wvec = self._w_diff_dcm(parent) self._ang_vel_dict.update({parent: wvec}) parent._ang_vel_dict.update({self: -wvec}) self._var_dict = {} def orientnew(self, newname, rot_type, amounts, rot_order='', variables=None, indices=None, latexs=None): r"""Returns a new reference frame oriented with respect to this reference frame. See ``ReferenceFrame.orient()`` for detailed examples of how to orient reference frames. Parameters ========== newname : str Name for the new reference frame. rot_type : str The method used to generate the direction cosine matrix. Supported methods are: - ``'Axis'``: simple rotations about a single common axis - ``'DCM'``: for setting the direction cosine matrix directly - ``'Body'``: three successive rotations about new intermediate axes, also called "Euler and Tait-Bryan angles" - ``'Space'``: three successive rotations about the parent frames' unit vectors - ``'Quaternion'``: rotations defined by four parameters which result in a singularity free direction cosine matrix amounts : Expressions defining the rotation angles or direction cosine matrix. These must match the ``rot_type``. See examples below for details. The input types are: - ``'Axis'``: 2-tuple (expr/sym/func, Vector) - ``'DCM'``: Matrix, shape(3,3) - ``'Body'``: 3-tuple of expressions, symbols, or functions - ``'Space'``: 3-tuple of expressions, symbols, or functions - ``'Quaternion'``: 4-tuple of expressions, symbols, or functions rot_order : str or int, optional If applicable, the order of the successive of rotations. The string ``'123'`` and integer ``123`` are equivalent, for example. Required for ``'Body'`` and ``'Space'``. indices : tuple of str Enables the reference frame's basis unit vectors to be accessed by Python's square bracket indexing notation using the provided three indice strings and alters the printing of the unit vectors to reflect this choice. latexs : tuple of str Alters the LaTeX printing of the reference frame's basis unit vectors to the provided three valid LaTeX strings. Examples ======== >>> from sympy import symbols >>> from sympy.physics.vector import ReferenceFrame, vlatex >>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3') >>> N = ReferenceFrame('N') Create a new reference frame A rotated relative to N through a simple rotation. >>> A = N.orientnew('A', 'Axis', (q0, N.x)) Create a new reference frame B rotated relative to N through body-fixed rotations. >>> B = N.orientnew('B', 'Body', (q1, q2, q3), '123') Create a new reference frame C rotated relative to N through a simple rotation with unique indices and LaTeX printing. >>> C = N.orientnew('C', 'Axis', (q0, N.x), indices=('1', '2', '3'), ... latexs=(r'\hat{\mathbf{c}}_1',r'\hat{\mathbf{c}}_2', ... r'\hat{\mathbf{c}}_3')) >>> C['1'] C['1'] >>> print(vlatex(C['1'])) \hat{\mathbf{c}}_1 """ newframe = self.__class__(newname, variables=variables, indices=indices, latexs=latexs) newframe.orient(self, rot_type, amounts, rot_order) return newframe def set_ang_acc(self, otherframe, value): """Define the angular acceleration Vector in a ReferenceFrame. Defines the angular acceleration of this ReferenceFrame, in another. Angular acceleration can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular acceleration in value : Vector The Vector representing angular acceleration Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_acc(N, V) >>> A.ang_acc_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_acc_dict.update({otherframe: value}) otherframe._ang_acc_dict.update({self: -value}) def set_ang_vel(self, otherframe, value): """Define the angular velocity vector in a ReferenceFrame. Defines the angular velocity of this ReferenceFrame, in another. Angular velocity can be defined with respect to multiple different ReferenceFrames. Care must be taken to not create loops which are inconsistent. Parameters ========== otherframe : ReferenceFrame A ReferenceFrame to define the angular velocity in value : Vector The Vector representing angular velocity Examples ======== >>> from sympy.physics.vector import ReferenceFrame, Vector >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> V = 10 * N.x >>> A.set_ang_vel(N, V) >>> A.ang_vel_in(N) 10*N.x """ if value == 0: value = Vector(0) value = _check_vector(value) _check_frame(otherframe) self._ang_vel_dict.update({otherframe: value}) otherframe._ang_vel_dict.update({self: -value}) @property def x(self): """The basis Vector for the ReferenceFrame, in the x direction. """ return self._x @property def y(self): """The basis Vector for the ReferenceFrame, in the y direction. """ return self._y @property def z(self): """The basis Vector for the ReferenceFrame, in the z direction. """ return self._z def partial_velocity(self, frame, *gen_speeds): """Returns the partial angular velocities of this frame in the given frame with respect to one or more provided generalized speeds. Parameters ========== frame : ReferenceFrame The frame with which the angular velocity is defined in. gen_speeds : functions of time The generalized speeds. Returns ======= partial_velocities : tuple of Vector The partial angular velocity vectors corresponding to the provided generalized speeds. Examples ======== >>> from sympy.physics.vector import ReferenceFrame, dynamicsymbols >>> N = ReferenceFrame('N') >>> A = ReferenceFrame('A') >>> u1, u2 = dynamicsymbols('u1, u2') >>> A.set_ang_vel(N, u1 * A.x + u2 * N.y) >>> A.partial_velocity(N, u1) A.x >>> A.partial_velocity(N, u1, u2) (A.x, N.y) """ partials = [self.ang_vel_in(frame).diff(speed, frame, var_in_dcm=False) for speed in gen_speeds] if len(partials) == 1: return partials[0] else: return tuple(partials) def _check_frame(other): from .vector import VectorTypeError if not isinstance(other, ReferenceFrame): raise VectorTypeError(other, ReferenceFrame('A'))
06ac78af38682d7c0abca1887862302b5a08a97ba6e362b33a85ea12aa895ea7
from sympy import (S, sqrt, pi, Ynm, symbols, exp, sin, cos, I, Matrix) from sympy.physics.wigner import (clebsch_gordan, wigner_9j, wigner_6j, gaunt, racah, dot_rot_grad_Ynm, wigner_3j, wigner_d_small, wigner_d) from sympy.core.numbers import Rational # for test cases, refer : https://en.wikipedia.org/wiki/Table_of_Clebsch%E2%80%93Gordan_coefficients def test_clebsch_gordan_docs(): assert clebsch_gordan(Rational(3, 2), S.Half, 2, Rational(3, 2), S.Half, 2) == 1 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(3, 2), Rational(-1, 2), 1) == sqrt(3)/2 assert clebsch_gordan(Rational(3, 2), S.Half, 1, Rational(-1, 2), S.Half, 0) == -sqrt(2)/2 def test_clebsch_gordan1(): j_1 = S.Half j_2 = S.Half m = 1 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = -1 j = 1 m_1 = Rational(-1, 2) m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = S.Half m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 1 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/2 j_1 = S.Half j_2 = S.Half m = 0 j = 0 m_1 = Rational(-1, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -sqrt(2)/2 def test_clebsch_gordan2(): j_1 = S.One j_2 = S.Half m = Rational(3, 2) j = Rational(3, 2) m_1 = 1 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 1 m_2 = Rational(-1, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = S.Half m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(3) j_1 = S.One j_2 = S.Half m = S.Half j = Rational(3, 2) m_1 = 0 m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(2)/sqrt(3) j_1 = S.One j_2 = S.One m = S(2) j = S(2) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = S(2) m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 1 m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S.One j_2 = S.One m = 1 j = 1 m_1 = 0 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == -1/sqrt(2) def test_clebsch_gordan3(): j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(3) j = S(3) m_1 = Rational(3, 2) m_2 = Rational(3, 2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(2) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = Rational(3, 2) j_2 = Rational(3, 2) m = S(2) j = S(3) m_1 = Rational(3, 2) m_2 = S.Half assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) def test_clebsch_gordan4(): j_1 = S(2) j_2 = S(2) m = S(4) j = S(4) m_1 = S(2) m_2 = S(2) assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = S(2) j_2 = S(2) m = S(3) j = S(3) m_1 = S(2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(2) j_1 = S(2) j_2 = S(2) m = S(2) j = S(3) m_1 = 1 m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 0 def test_clebsch_gordan5(): j_1 = Rational(5, 2) j_2 = S.One m = Rational(7, 2) j = Rational(7, 2) m_1 = Rational(5, 2) m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1 j_1 = Rational(5, 2) j_2 = S.One m = Rational(5, 2) j = Rational(5, 2) m_1 = Rational(5, 2) m_2 = 0 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == sqrt(5)/sqrt(7) j_1 = Rational(5, 2) j_2 = S.One m = Rational(3, 2) j = Rational(3, 2) m_1 = S.Half m_2 = 1 assert clebsch_gordan(j_1, j_2, j, m_1, m_2, m) == 1/sqrt(15) def test_wigner(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert tn(wigner_9j(1, 1, 1, 1, 1, 1, 1, 1, 0, prec=64), Rational(1, 18)) assert wigner_9j(3, 3, 2, 3, 3, 2, 3, 3, 2) == 3221*sqrt( 70)/(246960*sqrt(105)) - 365/(3528*sqrt(70)*sqrt(105)) assert wigner_6j(5, 5, 5, 5, 5, 5) == Rational(1, 52) assert tn(wigner_6j(8, 8, 8, 8, 8, 8, prec=64), Rational(-12219, 965770)) # regression test for #8747 half = S.Half assert wigner_9j(0, 0, 0, 0, half, half, 0, half, half) == half assert (wigner_9j(3, 5, 4, 7 * half, 5 * half, 4, 9 * half, 9 * half, 0) == -sqrt(Rational(361, 205821000))) assert (wigner_9j(1, 4, 3, 5 * half, 4, 5 * half, 5 * half, 2, 7 * half) == -sqrt(Rational(3971, 373403520))) assert (wigner_9j(4, 9 * half, 5 * half, 2, 4, 4, 5, 7 * half, 7 * half) == -sqrt(Rational(3481, 5042614500))) def test_gaunt(): def tn(a, b): return (a - b).n(64) < S('1e-64') assert gaunt(1, 0, 1, 1, 0, -1) == -1/(2*sqrt(pi)) assert isinstance(gaunt(1, 1, 0, -1, 1, 0).args[0], Rational) assert isinstance(gaunt(0, 1, 1, 0, -1, 1).args[0], Rational) assert tn(gaunt( 10, 10, 12, 9, 3, -12, prec=64), (Rational(-98, 62031)) * sqrt(6279)/sqrt(pi)) def gaunt_ref(l1, l2, l3, m1, m2, m3): return ( sqrt((2 * l1 + 1) * (2 * l2 + 1) * (2 * l3 + 1) / (4 * pi)) * wigner_3j(l1, l2, l3, 0, 0, 0) * wigner_3j(l1, l2, l3, m1, m2, m3) ) threshold = 1e-10 l_max = 3 l3_max = 24 for l1 in range(l_max + 1): for l2 in range(l_max + 1): for l3 in range(l3_max + 1): for m1 in range(-l1, l1 + 1): for m2 in range(-l2, l2 + 1): for m3 in range(-l3, l3 + 1): args = l1, l2, l3, m1, m2, m3 g = gaunt(*args) g0 = gaunt_ref(*args) assert abs(g - g0) < threshold if m1 + m2 + m3 != 0: assert abs(g) < threshold if (l1 + l2 + l3) % 2: assert abs(g) < threshold def test_racah(): assert racah(3,3,3,3,3,3) == Rational(-1,14) assert racah(2,2,2,2,2,2) == Rational(-3,70) assert racah(7,8,7,1,7,7, prec=4).is_Float assert racah(5.5,7.5,9.5,6.5,8,9) == -719*sqrt(598)/1158924 assert abs(racah(5.5,7.5,9.5,6.5,8,9, prec=4) - (-0.01517)) < S('1e-4') def test_dot_rota_grad_SH(): theta, phi = symbols("theta phi") assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0) != \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 1, 1, 1, 1, 0).doit() == \ sqrt(30)*Ynm(2, 2, 1, 0)/(10*sqrt(pi)) assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2) != \ 0 assert dot_rot_grad_Ynm(1, 5, 1, 1, 1, 2).doit() == \ 0 assert dot_rot_grad_Ynm(3, 3, 3, 3, theta, phi).doit() == \ 15*sqrt(3003)*Ynm(6, 6, theta, phi)/(143*sqrt(pi)) assert dot_rot_grad_Ynm(3, 3, 1, 1, theta, phi).doit() == \ sqrt(3)*Ynm(4, 4, theta, phi)/sqrt(pi) assert dot_rot_grad_Ynm(3, 2, 2, 0, theta, phi).doit() == \ 3*sqrt(55)*Ynm(5, 2, theta, phi)/(11*sqrt(pi)) assert dot_rot_grad_Ynm(3, 2, 3, 2, theta, phi).doit().expand() == \ -sqrt(70)*Ynm(4, 4, theta, phi)/(11*sqrt(pi)) + \ 45*sqrt(182)*Ynm(6, 4, theta, phi)/(143*sqrt(pi)) def test_wigner_d(): half = S(1)/2 alpha, beta, gamma = symbols("alpha, beta, gamma", real=True) d = wigner_d_small(half, beta).subs({beta: pi/2}) d_ = Matrix([[1, 1], [-1, 1]])/sqrt(2) assert d == d_ D = wigner_d(half, alpha, beta, gamma) assert D[0, 0] == exp(I*alpha/2)*exp(I*gamma/2)*cos(beta/2) assert D[0, 1] == exp(I*alpha/2)*exp(-I*gamma/2)*sin(beta/2) assert D[1, 0] == -exp(-I*alpha/2)*exp(I*gamma/2)*sin(beta/2) assert D[1, 1] == exp(-I*alpha/2)*exp(-I*gamma/2)*cos(beta/2)
16dd386196c3c01fd75dbb8fccf41263e29e2be49281a9753abf554e0c0055ab
from sympy.physics.secondquant import ( Dagger, Bd, VarBosonicBasis, BBra, B, BKet, FixedBosonicBasis, matrix_rep, apply_operators, InnerProduct, Commutator, KroneckerDelta, AnnihilateBoson, CreateBoson, BosonicOperator, F, Fd, FKet, BosonState, CreateFermion, AnnihilateFermion, evaluate_deltas, AntiSymmetricTensor, contraction, NO, wicks, PermutationOperator, simplify_index_permutations, _sort_anticommuting_fermions, _get_ordered_dummies, substitute_dummies, FockStateBosonKet, ContractionAppliesOnlyToFermions ) from sympy import (Dummy, expand, Function, I, S, simplify, sqrt, Sum, Symbol, symbols, srepr, Rational) from sympy.core.compatibility import range from sympy.utilities.pytest import XFAIL, slow, raises from sympy.printing.latex import latex def test_PermutationOperator(): p, q, r, s = symbols('p,q,r,s') f, g, h, i = map(Function, 'fghi') P = PermutationOperator assert P(p, q).get_permuted(f(p)*g(q)) == -f(q)*g(p) assert P(p, q).get_permuted(f(p, q)) == -f(q, p) assert P(p, q).get_permuted(f(p)) == f(p) expr = (f(p)*g(q)*h(r)*i(s) - f(q)*g(p)*h(r)*i(s) - f(p)*g(q)*h(s)*i(r) + f(q)*g(p)*h(s)*i(r)) perms = [P(p, q), P(r, s)] assert (simplify_index_permutations(expr, perms) == P(p, q)*P(r, s)*f(p)*g(q)*h(r)*i(s)) assert latex(P(p, q)) == 'P(pq)' def test_index_permutations_with_dummies(): a, b, c, d = symbols('a b c d') p, q, r, s = symbols('p q r s', cls=Dummy) f, g = map(Function, 'fg') P = PermutationOperator # No dummy substitution necessary expr = f(a, b, p, q) - f(b, a, p, q) assert simplify_index_permutations( expr, [P(a, b)]) == P(a, b)*f(a, b, p, q) # Cases where dummy substitution is needed expected = P(a, b)*substitute_dummies(f(a, b, p, q)) expr = f(a, b, p, q) - f(b, a, q, p) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) expr = f(a, b, q, p) - f(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expected == substitute_dummies(result) # A case where nothing can be done expr = f(a, b, q, p) - g(b, a, p, q) result = simplify_index_permutations(expr, [P(a, b)]) assert expr == result def test_dagger(): i, j, n, m = symbols('i,j,n,m') assert Dagger(1) == 1 assert Dagger(1.0) == 1.0 assert Dagger(2*I) == -2*I assert Dagger(S.Half*I/3.0) == I*Rational(-1, 2)/3.0 assert Dagger(BKet([n])) == BBra([n]) assert Dagger(B(0)) == Bd(0) assert Dagger(Bd(0)) == B(0) assert Dagger(B(n)) == Bd(n) assert Dagger(Bd(n)) == B(n) assert Dagger(B(0) + B(1)) == Bd(0) + Bd(1) assert Dagger(n*m) == Dagger(n)*Dagger(m) # n, m commute assert Dagger(B(n)*B(m)) == Bd(m)*Bd(n) assert Dagger(B(n)**10) == Dagger(B(n))**10 assert Dagger('a') == Dagger(Symbol('a')) assert Dagger(Dagger('a')) == Symbol('a') def test_operator(): i, j = symbols('i,j') o = BosonicOperator(i) assert o.state == i assert o.is_symbolic o = BosonicOperator(1) assert o.state == 1 assert not o.is_symbolic def test_create(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert latex(o) == "b^\\dagger_{i}" assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert latex(o) == "b_{i}" assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) assert o.apply_operator(BKet([n])) == sqrt(n)*BKet([n - 1]) o = B(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_basic_state(): i, j, n, m = symbols('i,j,n,m') s = BosonState([0, 1, 2, 3, 4]) assert len(s) == 5 assert s.args[0] == tuple(range(5)) assert s.up(0) == BosonState([1, 1, 2, 3, 4]) assert s.down(4) == BosonState([0, 1, 2, 3, 3]) for i in range(5): assert s.up(i).down(i) == s assert s.down(0) == 0 for i in range(5): assert s[i] == i s = BosonState([n, m]) assert s.down(0) == BosonState([n - 1, m]) assert s.up(0) == BosonState([n + 1, m]) def test_basic_apply(): n = symbols("n") e = B(0)*BKet([n]) assert apply_operators(e) == sqrt(n)*BKet([n - 1]) e = Bd(0)*BKet([n]) assert apply_operators(e) == sqrt(n + 1)*BKet([n + 1]) def test_complex_apply(): n, m = symbols("n,m") o = Bd(0)*B(0)*Bd(1)*B(0) e = apply_operators(o*BKet([n, m])) answer = sqrt(n)*sqrt(m + 1)*(-1 + n)*BKet([-1 + n, 1 + m]) assert expand(e) == expand(answer) def test_number_operator(): n = symbols("n") o = Bd(0)*B(0) e = apply_operators(o*BKet([n])) assert e == n*BKet([n]) def test_inner_product(): i, j, k, l = symbols('i,j,k,l') s1 = BBra([0]) s2 = BKet([1]) assert InnerProduct(s1, Dagger(s1)) == 1 assert InnerProduct(s1, s2) == 0 s1 = BBra([i, j]) s2 = BKet([k, l]) r = InnerProduct(s1, s2) assert r == KroneckerDelta(i, k)*KroneckerDelta(j, l) def test_symbolic_matrix_elements(): n, m = symbols('n,m') s1 = BBra([n]) s2 = BKet([m]) o = B(0) e = apply_operators(s1*o*s2) assert e == sqrt(m)*KroneckerDelta(n, m - 1) def test_matrix_elements(): b = VarBosonicBasis(5) o = B(0) m = matrix_rep(o, b) for i in range(4): assert m[i, i + 1] == sqrt(i + 1) o = Bd(0) m = matrix_rep(o, b) for i in range(4): assert m[i + 1, i] == sqrt(i + 1) def test_fixed_bosonic_basis(): b = FixedBosonicBasis(2, 2) # assert b == [FockState((2, 0)), FockState((1, 1)), FockState((0, 2))] state = b.state(1) assert state == FockStateBosonKet((1, 1)) assert b.index(state) == 1 assert b.state(1) == b[1] assert len(b) == 3 assert str(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert repr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' assert srepr(b) == '[FockState((2, 0)), FockState((1, 1)), FockState((0, 2))]' @slow def test_sho(): n, m = symbols('n,m') h_n = Bd(n)*B(n)*(n + S.Half) H = Sum(h_n, (n, 0, 5)) o = H.doit(deep=False) b = FixedBosonicBasis(2, 6) m = matrix_rep(o, b) # We need to double check these energy values to make sure that they # are correct and have the proper degeneracies! diag = [1, 2, 3, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 11] for i in range(len(diag)): assert diag[i] == m[i, i] def test_commutation(): n, m = symbols("n,m", above_fermi=True) c = Commutator(B(0), Bd(0)) assert c == 1 c = Commutator(Bd(0), B(0)) assert c == -1 c = Commutator(B(n), Bd(0)) assert c == KroneckerDelta(n, 0) c = Commutator(B(0), B(0)) assert c == 0 c = Commutator(B(0), Bd(0)) e = simplify(apply_operators(c*BKet([n]))) assert e == BKet([n]) c = Commutator(B(0), B(1)) e = simplify(apply_operators(c*BKet([n, m]))) assert e == 0 c = Commutator(F(m), Fd(m)) assert c == +1 - 2*NO(Fd(m)*F(m)) c = Commutator(Fd(m), F(m)) assert c.expand() == -1 + 2*NO(Fd(m)*F(m)) C = Commutator X, Y, Z = symbols('X,Y,Z', commutative=False) assert C(C(X, Y), Z) != 0 assert C(C(X, Z), Y) != 0 assert C(Y, C(X, Z)) != 0 i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') D = KroneckerDelta assert C(Fd(a), F(i)) == -2*NO(F(i)*Fd(a)) assert C(Fd(j), NO(Fd(a)*F(i))).doit(wicks=True) == -D(j, i)*Fd(a) assert C(Fd(a)*F(i), Fd(b)*F(j)).doit(wicks=True) == 0 c1 = Commutator(F(a), Fd(a)) assert Commutator.eval(c1, c1) == 0 c = Commutator(Fd(a)*F(i),Fd(b)*F(j)) assert latex(c) == r'\left[a^\dagger_{a} a_{i},a^\dagger_{b} a_{j}\right]' assert repr(c) == 'Commutator(CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j))' assert str(c) == '[CreateFermion(a)*AnnihilateFermion(i),CreateFermion(b)*AnnihilateFermion(j)]' def test_create_f(): i, j, n, m = symbols('i,j,n,m') o = Fd(i) assert isinstance(o, CreateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Fd(1) assert o.apply_operator(FKet([n])) == FKet([1, n]) assert o.apply_operator(FKet([n])) == -FKet([n, 1]) o = Fd(n) assert o.apply_operator(FKet([])) == FKet([n]) vacuum = FKet([], fermi_level=4) assert vacuum == FKet([], fermi_level=4) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert Fd(i).apply_operator(FKet([i, j, k], 4)) == FKet([j, k], 4) assert Fd(a).apply_operator(FKet([i, b, k], 4)) == FKet([a, i, b, k], 4) assert Dagger(B(p)).apply_operator(q) == q*CreateBoson(p) assert repr(Fd(p)) == 'CreateFermion(p)' assert srepr(Fd(p)) == "CreateFermion(Symbol('p'))" assert latex(Fd(p)) == r'a^\dagger_{p}' def test_annihilate_f(): i, j, n, m = symbols('i,j,n,m') o = F(i) assert isinstance(o, AnnihilateFermion) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = F(1) assert o.apply_operator(FKet([1, n])) == FKet([n]) assert o.apply_operator(FKet([n, 1])) == -FKet([n]) o = F(n) assert o.apply_operator(FKet([n])) == FKet([]) i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert F(i).apply_operator(FKet([i, j, k], 4)) == 0 assert F(a).apply_operator(FKet([i, b, k], 4)) == 0 assert F(l).apply_operator(FKet([i, j, k], 3)) == 0 assert F(l).apply_operator(FKet([i, j, k], 4)) == FKet([l, i, j, k], 4) assert str(F(p)) == 'f(p)' assert repr(F(p)) == 'AnnihilateFermion(p)' assert srepr(F(p)) == "AnnihilateFermion(Symbol('p'))" assert latex(F(p)) == 'a_{p}' def test_create_b(): i, j, n, m = symbols('i,j,n,m') o = Bd(i) assert isinstance(o, CreateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = Bd(0) assert o.apply_operator(BKet([n])) == sqrt(n + 1)*BKet([n + 1]) o = Bd(n) assert o.apply_operator(BKet([n])) == o*BKet([n]) def test_annihilate_b(): i, j, n, m = symbols('i,j,n,m') o = B(i) assert isinstance(o, AnnihilateBoson) o = o.subs(i, j) assert o.atoms(Symbol) == {j} o = B(0) def test_wicks(): p, q, r, s = symbols('p,q,r,s', above_fermi=True) # Testing for particles only str = F(p)*Fd(q) assert wicks(str) == NO(F(p)*Fd(q)) + KroneckerDelta(p, q) str = Fd(p)*F(q) assert wicks(str) == NO(Fd(p)*F(q)) str = F(p)*Fd(q)*F(r)*Fd(s) nstr = wicks(str) fasit = NO( KroneckerDelta(p, q)*KroneckerDelta(r, s) + KroneckerDelta(p, q)*AnnihilateFermion(r)*CreateFermion(s) + KroneckerDelta(r, s)*AnnihilateFermion(p)*CreateFermion(q) - KroneckerDelta(p, s)*AnnihilateFermion(r)*CreateFermion(q) - AnnihilateFermion(p)*AnnihilateFermion(r)*CreateFermion(q)*CreateFermion(s)) assert nstr == fasit assert (p*q*nstr).expand() == wicks(p*q*str) assert (nstr*p*q*2).expand() == wicks(str*p*q*2) # Testing CC equations particles and holes i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s', cls=Dummy) assert (wicks(F(a)*NO(F(i)*F(j))*Fd(b)) == NO(F(a)*F(i)*F(j)*Fd(b)) + KroneckerDelta(a, b)*NO(F(i)*F(j))) assert (wicks(F(a)*NO(F(i)*F(j)*F(k))*Fd(b)) == NO(F(a)*F(i)*F(j)*F(k)*Fd(b)) - KroneckerDelta(a, b)*NO(F(i)*F(j)*F(k))) expr = wicks(Fd(i)*NO(Fd(j)*F(k))*F(l)) assert (expr == -KroneckerDelta(i, k)*NO(Fd(j)*F(l)) - KroneckerDelta(j, l)*NO(Fd(i)*F(k)) - KroneckerDelta(i, k)*KroneckerDelta(j, l) + KroneckerDelta(i, l)*NO(Fd(j)*F(k)) + NO(Fd(i)*Fd(j)*F(k)*F(l))) expr = wicks(F(a)*NO(F(b)*Fd(c))*Fd(d)) assert (expr == -KroneckerDelta(a, c)*NO(F(b)*Fd(d)) - KroneckerDelta(b, d)*NO(F(a)*Fd(c)) - KroneckerDelta(a, c)*KroneckerDelta(b, d) + KroneckerDelta(a, d)*NO(F(b)*Fd(c)) + NO(F(a)*F(b)*Fd(c)*Fd(d))) def test_NO(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) assert (NO(Fd(p)*F(q) + Fd(a)*F(b)) == NO(Fd(p)*F(q)) + NO(Fd(a)*F(b))) assert (NO(Fd(i)*NO(F(j)*Fd(a))) == NO(Fd(i)*F(j)*Fd(a))) assert NO(1) == 1 assert NO(i) == i assert (NO(Fd(a)*Fd(b)*(F(c) + F(d))) == NO(Fd(a)*Fd(b)*F(c)) + NO(Fd(a)*Fd(b)*F(d))) assert NO(Fd(a)*F(b))._remove_brackets() == Fd(a)*F(b) assert NO(F(j)*Fd(i))._remove_brackets() == F(j)*Fd(i) assert (NO(Fd(p)*F(q)).subs(Fd(p), Fd(a) + Fd(i)) == NO(Fd(a)*F(q)) + NO(Fd(i)*F(q))) assert (NO(Fd(p)*F(q)).subs(F(q), F(a) + F(i)) == NO(Fd(p)*F(a)) + NO(Fd(p)*F(i))) expr = NO(Fd(p)*F(q))._remove_brackets() assert wicks(expr) == NO(expr) assert NO(Fd(a)*F(b)) == - NO(F(b)*Fd(a)) no = NO(Fd(a)*F(i)*F(b)*Fd(j)) l1 = [ ind for ind in no.iter_q_creators() ] assert l1 == [0, 1] l2 = [ ind for ind in no.iter_q_annihilators() ] assert l2 == [3, 2] no = NO(Fd(a)*Fd(i)) assert no.has_q_creators == 1 assert no.has_q_annihilators == -1 assert str(no) == ':CreateFermion(a)*CreateFermion(i):' assert repr(no) == 'NO(CreateFermion(a)*CreateFermion(i))' assert latex(no) == r'\left\{a^\dagger_{a} a^\dagger_{i}\right\}' raises(NotImplementedError, lambda: NO(Bd(p)*F(q))) def test_sorting(): i, j = symbols('i,j', below_fermi=True) a, b = symbols('a,b', above_fermi=True) p, q = symbols('p,q') # p, q assert _sort_anticommuting_fermions([Fd(p), F(q)]) == ([Fd(p), F(q)], 0) assert _sort_anticommuting_fermions([F(p), Fd(q)]) == ([Fd(q), F(p)], 1) # i, p assert _sort_anticommuting_fermions([F(p), Fd(i)]) == ([F(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), F(p)]) == ([F(p), Fd(i)], 1) assert _sort_anticommuting_fermions([Fd(p), Fd(i)]) == ([Fd(p), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(p)]) == ([Fd(p), Fd(i)], 1) assert _sort_anticommuting_fermions([F(p), F(i)]) == ([F(i), F(p)], 1) assert _sort_anticommuting_fermions([F(i), F(p)]) == ([F(i), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), F(i)]) == ([F(i), Fd(p)], 1) assert _sort_anticommuting_fermions([F(i), Fd(p)]) == ([F(i), Fd(p)], 0) # a, p assert _sort_anticommuting_fermions([F(p), Fd(a)]) == ([Fd(a), F(p)], 1) assert _sort_anticommuting_fermions([Fd(a), F(p)]) == ([Fd(a), F(p)], 0) assert _sort_anticommuting_fermions([Fd(p), Fd(a)]) == ([Fd(a), Fd(p)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(p)]) == ([Fd(a), Fd(p)], 0) assert _sort_anticommuting_fermions([F(p), F(a)]) == ([F(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), F(p)]) == ([F(p), F(a)], 1) assert _sort_anticommuting_fermions([Fd(p), F(a)]) == ([Fd(p), F(a)], 0) assert _sort_anticommuting_fermions([F(a), Fd(p)]) == ([Fd(p), F(a)], 1) # i, a assert _sort_anticommuting_fermions([F(i), Fd(j)]) == ([F(i), Fd(j)], 0) assert _sort_anticommuting_fermions([Fd(j), F(i)]) == ([F(i), Fd(j)], 1) assert _sort_anticommuting_fermions([Fd(a), Fd(i)]) == ([Fd(a), Fd(i)], 0) assert _sort_anticommuting_fermions([Fd(i), Fd(a)]) == ([Fd(a), Fd(i)], 1) assert _sort_anticommuting_fermions([F(a), F(i)]) == ([F(i), F(a)], 1) assert _sort_anticommuting_fermions([F(i), F(a)]) == ([F(i), F(a)], 0) def test_contraction(): i, j, k, l = symbols('i,j,k,l', below_fermi=True) a, b, c, d = symbols('a,b,c,d', above_fermi=True) p, q, r, s = symbols('p,q,r,s') assert contraction(Fd(i), F(j)) == KroneckerDelta(i, j) assert contraction(F(a), Fd(b)) == KroneckerDelta(a, b) assert contraction(F(a), Fd(i)) == 0 assert contraction(Fd(a), F(i)) == 0 assert contraction(F(i), Fd(a)) == 0 assert contraction(Fd(i), F(a)) == 0 assert contraction(Fd(i), F(p)) == KroneckerDelta(i, p) restr = evaluate_deltas(contraction(Fd(p), F(q))) assert restr.is_only_below_fermi restr = evaluate_deltas(contraction(F(p), Fd(q))) assert restr.is_only_above_fermi raises(ContractionAppliesOnlyToFermions, lambda: contraction(B(a), Fd(b))) def test_evaluate_deltas(): i, j, k = symbols('i,j,k') r = KroneckerDelta(i, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, k) r = KroneckerDelta(i, 0) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(i, 0) * KroneckerDelta(j, k) r = KroneckerDelta(1, j) * KroneckerDelta(j, k) assert evaluate_deltas(r) == KroneckerDelta(1, k) r = KroneckerDelta(j, 2) * KroneckerDelta(k, j) assert evaluate_deltas(r) == KroneckerDelta(2, k) r = KroneckerDelta(i, 0) * KroneckerDelta(i, j) * KroneckerDelta(j, 1) assert evaluate_deltas(r) == 0 r = (KroneckerDelta(0, i) * KroneckerDelta(0, j) * KroneckerDelta(1, j) * KroneckerDelta(1, j)) assert evaluate_deltas(r) == 0 def test_Tensors(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) p, q, r, s = symbols('p q r s') AT = AntiSymmetricTensor assert AT('t', (a, b), (i, j)) == -AT('t', (b, a), (i, j)) assert AT('t', (a, b), (i, j)) == AT('t', (b, a), (j, i)) assert AT('t', (a, b), (i, j)) == -AT('t', (a, b), (j, i)) assert AT('t', (a, a), (i, j)) == 0 assert AT('t', (a, b), (i, i)) == 0 assert AT('t', (a, b, c), (i, j)) == -AT('t', (b, a, c), (i, j)) assert AT('t', (a, b, c), (i, j, k)) == AT('t', (b, a, c), (i, k, j)) tabij = AT('t', (a, b), (i, j)) assert tabij.has(a) assert tabij.has(b) assert tabij.has(i) assert tabij.has(j) assert tabij.subs(b, c) == AT('t', (a, c), (i, j)) assert (2*tabij).subs(i, c) == 2*AT('t', (a, b), (c, j)) assert tabij.symbol == Symbol('t') assert latex(tabij) == 't^{ab}_{ij}' assert str(tabij) == 't((_a, _b),(_i, _j))' assert AT('t', (a, a), (i, j)).subs(a, b) == AT('t', (b, b), (i, j)) assert AT('t', (a, i), (a, j)).subs(a, b) == AT('t', (b, i), (b, j)) def test_fully_contracted(): i, j, k, l = symbols('i j k l', below_fermi=True) a, b, c, d = symbols('a b c d', above_fermi=True) p, q, r, s = symbols('p q r s', cls=Dummy) Fock = (AntiSymmetricTensor('f', (p,), (q,))* NO(Fd(p)*F(q))) V = (AntiSymmetricTensor('v', (p, q), (r, s))* NO(Fd(p)*Fd(q)*F(s)*F(r)))/4 Fai = wicks(NO(Fd(i)*F(a))*Fock, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Fai == AntiSymmetricTensor('f', (a,), (i,)) Vabij = wicks(NO(Fd(i)*Fd(j)*F(b)*F(a))*V, keep_only_fully_contracted=True, simplify_kronecker_deltas=True) assert Vabij == AntiSymmetricTensor('v', (a, b), (i, j)) def test_substitute_dummies_without_dummies(): i, j = symbols('i,j') assert substitute_dummies(att(i, j) + 2) == att(i, j) + 2 assert substitute_dummies(att(i, j) + 1) == att(i, j) + 1 def test_substitute_dummies_NO_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*NO(Fd(i)*F(j)) - att(j, i)*NO(Fd(j)*F(i))) == 0 def test_substitute_dummies_SQ_operator(): i, j = symbols('i j', cls=Dummy) assert substitute_dummies(att(i, j)*Fd(i)*F(j) - att(j, i)*Fd(j)*F(i)) == 0 def test_substitute_dummies_new_indices(): i, j = symbols('i j', below_fermi=True, cls=Dummy) a, b = symbols('a b', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) f = Function('f') assert substitute_dummies(f(i, a, p) - f(j, b, q), new_indices=True) == 0 def test_substitute_dummies_substitution_order(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) f = Function('f') from sympy.utilities.iterables import variations for permut in variations([i, j, k, l], 4): assert substitute_dummies(f(*permut) - f(i, j, k, l)) == 0 def test_dummy_order_inner_outer_lines_VT1T1T1(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v v(k, l, c, d)*t(c, ii)*t(d, l)*t(aa, k), v(l, k, c, d)*t(c, ii)*t(d, k)*t(aa, l), v(k, l, d, c)*t(d, ii)*t(c, l)*t(aa, k), v(l, k, d, c)*t(d, ii)*t(c, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 exprs = [ # permut t <=> swapping external lines, not equivalent # except if v has certain symmetries. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(k, l, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(k, l, c, d)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut v <=> swapping external lines, not equivalent # except if v has certain symmetries. # # Note that in contrast to above, these permutations have identical # dummy order. That is because the proximity to external indices # has higher influence on the canonical dummy ordering than the # position of a dummy on the factors. In fact, the terms here are # similar in structure as the result of the dummy substitutions above. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(l, k, d, c)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permut t and v <=> swapping internal lines, equivalent. # Canonical dummy order is different, and a consistent # substitution reveals the equivalence. v(k, l, c, d)*t(c, ii)*t(d, jj)*t(aa, k)*t(bb, l), v(k, l, d, c)*t(c, jj)*t(d, ii)*t(aa, k)*t(bb, l), v(l, k, c, d)*t(c, ii)*t(d, jj)*t(bb, k)*t(aa, l), v(l, k, d, c)*t(c, jj)*t(d, ii)*t(bb, k)*t(aa, l), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_get_subNO(): p, q, r = symbols('p,q,r') assert NO(F(p)*F(q)*F(r)).get_subNO(1) == NO(F(p)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(0) == NO(F(q)*F(r)) assert NO(F(p)*F(q)*F(r)).get_subNO(2) == NO(F(p)*F(q)) def test_equivalent_internal_lines_VT1T1(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Different dummy order. Not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, i)*t(b, j), v(i, j, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, b, a)*t(a, i)*t(b, j), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. v(i, j, a, b)*t(a, i)*t(b, j), v(i, j, a, b)*t(b, i)*t(a, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent v(i, j, a, b)*t(a, i)*t(b, j), v(j, i, a, b)*t(a, j)*t(b, i), v(i, j, b, a)*t(b, i)*t(a, j), v(j, i, b, a)*t(b, j)*t(a, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(ijcd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) # v(abcd)t(abij)t(jicd) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations v = Function('v') t = Function('t') dums = _get_ordered_dummies # v(abcd)t(abij)t(cdij) template = v(p1, p2, p3, p4)*t(p1, p2, i, j)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) template = v(p1, p2, p3, p4)*t(p1, p2, j, i)*t(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert dums(base) != dums(expr) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ # permute v. Same dummy order, not equivalent. # # This test show that the dummy order may not be sensitive to all # index permutations. The following expressions have identical # structure as the resulting terms from of the dummy substitutions # in the test above. Here, all expressions have the same dummy # order, so they cannot be simplified by means of dummy # substitution. In order to simplify further, it is necessary to # exploit symmetries in the objects, for instance if t or v is # antisymmetric. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, i, j), v(i, j, b, a)*t(a, b, i, j), v(j, i, b, a)*t(a, b, i, j), ] for permut in exprs[1:]: assert dums(exprs[0]) == dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. v(i, j, a, b)*t(a, b, i, j), v(i, j, a, b)*t(b, a, i, j), v(i, j, a, b)*t(a, b, j, i), v(i, j, a, b)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. v(i, j, a, b)*t(a, b, i, j), v(j, i, a, b)*t(a, b, j, i), v(i, j, b, a)*t(b, a, i, j), v(j, i, b, a)*t(b, a, j, i), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(d, bb, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(d, bb, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(c, bb, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(c, bb, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ v(k, l, c, d)*t(c, aa, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(c, aa, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(d, aa, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(d, aa, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) v = Function('v') t = Function('t') dums = _get_ordered_dummies exprs = [ v(k, l, c, d)*t(aa, c, ii, k)*t(bb, d, jj, l), v(l, k, c, d)*t(aa, c, ii, l)*t(bb, d, jj, k), v(k, l, d, c)*t(aa, d, ii, k)*t(bb, c, jj, l), v(l, k, d, c)*t(aa, d, ii, l)*t(bb, c, jj, k), ] for permut in exprs[1:]: assert dums(exprs[0]) != dums(permut) assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_well_defined(): aa, bb = symbols('a b', above_fermi=True) k, l, m = symbols('k l m', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) A = Function('A') B = Function('B') C = Function('C') dums = _get_ordered_dummies # We go through all key components in the order of increasing priority, # and consider only fully orderable expressions. Non-orderable expressions # are tested elsewhere. # pos in first factor determines sort order assert dums(A(k, l)*B(l, k)) == [k, l] assert dums(A(l, k)*B(l, k)) == [l, k] assert dums(A(k, l)*B(k, l)) == [k, l] assert dums(A(l, k)*B(k, l)) == [l, k] # factors involving the index assert dums(A(k, l)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(l, m)*C(m, k)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(k, l)*B(m, l)*C(m, k)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(k, m)) == [l, k, m] assert dums(A(l, k)*B(m, l)*C(m, k)) == [l, k, m] # same, but with factor order determined by non-dummies assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(k, aa, l)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(l, bb, m)*A(bb, m, k)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, k, m)) == [l, k, m] assert dums(A(l, aa, k)*A(m, bb, l)*A(bb, m, k)) == [l, k, m] # index range assert dums(A(p, c, k)*B(p, c, k)) == [k, c, p] assert dums(A(p, k, c)*B(p, c, k)) == [k, c, p] assert dums(A(c, k, p)*B(p, c, k)) == [k, c, p] assert dums(A(c, p, k)*B(p, c, k)) == [k, c, p] assert dums(A(k, c, p)*B(p, c, k)) == [k, c, p] assert dums(A(k, p, c)*B(p, c, k)) == [k, c, p] assert dums(B(p, c, k)*A(p, c, k)) == [k, c, p] assert dums(B(p, k, c)*A(p, c, k)) == [k, c, p] assert dums(B(c, k, p)*A(p, c, k)) == [k, c, p] assert dums(B(c, p, k)*A(p, c, k)) == [k, c, p] assert dums(B(k, c, p)*A(p, c, k)) == [k, c, p] assert dums(B(k, p, c)*A(p, c, k)) == [k, c, p] def test_dummy_order_ambiguous(): aa, bb = symbols('a b', above_fermi=True) i, j, k, l, m = symbols('i j k l m', below_fermi=True, cls=Dummy) a, b, c, d, e = symbols('a b c d e', above_fermi=True, cls=Dummy) p, q = symbols('p q', cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) p5, p6, p7, p8 = symbols('p5 p6 p7 p8', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) h5, h6, h7, h8 = symbols('h5 h6 h7 h8', below_fermi=True, cls=Dummy) A = Function('A') B = Function('B') from sympy.utilities.iterables import variations # A*A*A*A*B -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*B(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A*A*A -- an arbitrary index is assigned and the rest are figured out template = A(p1, p2)*A(p4, p1)*A(p2, p3)*A(p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # A*A*A -- ordering of p5 and p4 is used to figure out the rest template = A(p1, p2, p4, p1)*A(p2, p3, p3, p5)*A(p5, p4) permutator = variations([a, b, c, d, e], 5) base = template.subs(zip([p1, p2, p3, p4, p5], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4, p5], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def atv(*args): return AntiSymmetricTensor('v', args[:2], args[2:] ) def att(*args): if len(args) == 4: return AntiSymmetricTensor('t', args[:2], args[2:] ) elif len(args) == 2: return AntiSymmetricTensor('t', (args[0],), (args[1],)) def test_dummy_order_inner_outer_lines_VT1T1T1_AT(): ii = symbols('i', below_fermi=True) aa = symbols('a', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T1 terms with V*T1*T1*T1 # t^{a}_{k} t^{c}_{i} t^{d}_{l} v^{lk}_{dc} exprs = [ # permut v and t <=> swapping internal lines, equivalent # irrespective of symmetries in v atv(k, l, c, d)*att(c, ii)*att(d, l)*att(aa, k), atv(l, k, c, d)*att(c, ii)*att(d, k)*att(aa, l), atv(k, l, d, c)*att(d, ii)*att(c, l)*att(aa, k), atv(l, k, d, c)*att(d, ii)*att(c, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_dummy_order_inner_outer_lines_VT1T1T1T1_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) # Coupled-Cluster T2 terms with V*T1*T1*T1*T1 # non-equivalent substitutions (change of sign) exprs = [ # permut t <=> swapping external lines atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(aa, k)*att(bb, l), atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == -substitute_dummies(permut) # equivalent substitutions exprs = [ atv(k, l, c, d)*att(c, ii)*att(d, jj)*att(aa, k)*att(bb, l), # permut t <=> swapping external lines atv(k, l, c, d)*att(c, jj)*att(d, ii)*att(bb, k)*att(aa, l), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT1T1_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Different dummy order. Not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, i)*att(b, j), atv(i, j, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v. Different dummy order. Equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, b, a)*att(a, i)*att(b, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ # permute t. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, i)*att(b, j), atv(i, j, a, b)*att(b, i)*att(a, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Different dummy order, equivalent atv(i, j, a, b)*att(a, i)*att(b, j), atv(j, i, a, b)*att(a, j)*att(b, i), atv(i, j, b, a)*att(b, i)*att(a, j), atv(j, i, b, a)*att(b, j)*att(a, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_equivalent_internal_lines_VT2conjT2_AT(): # this diagram requires special handling in TCE i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(ijcd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) # atv(abcd)att(abij)att(jicd) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(j, i, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(i, j, p3, p4) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2conjT2_ambiguous_order_AT(): # These diagrams invokes _determine_ambiguous() because the # dummies can not be ordered unambiguously by the key alone i, j, k, l, m, n = symbols('i j k l m n', below_fermi=True, cls=Dummy) a, b, c, d, e, f = symbols('a b c d e f', above_fermi=True, cls=Dummy) p1, p2, p3, p4 = symbols('p1 p2 p3 p4', above_fermi=True, cls=Dummy) h1, h2, h3, h4 = symbols('h1 h2 h3 h4', below_fermi=True, cls=Dummy) from sympy.utilities.iterables import variations # atv(abcd)att(abij)att(cdij) template = atv(p1, p2, p3, p4)*att(p1, p2, i, j)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) template = atv(p1, p2, p3, p4)*att(p1, p2, j, i)*att(p3, p4, i, j) permutator = variations([a, b, c, d], 4) base = template.subs(zip([p1, p2, p3, p4], next(permutator))) for permut in permutator: subslist = zip([p1, p2, p3, p4], permut) expr = template.subs(subslist) assert substitute_dummies(expr) == substitute_dummies(base) def test_equivalent_internal_lines_VT2_AT(): i, j, k, l = symbols('i j k l', below_fermi=True, cls=Dummy) a, b, c, d = symbols('a b c d', above_fermi=True, cls=Dummy) exprs = [ # permute v. Same dummy order, not equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, i, j), atv(i, j, b, a)*att(a, b, i, j), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute t. atv(i, j, a, b)*att(a, b, i, j), atv(i, j, a, b)*att(b, a, i, j), atv(i, j, a, b)*att(a, b, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) != substitute_dummies(permut) exprs = [ # permute v and t. Relabelling of dummies should be equivalent. atv(i, j, a, b)*att(a, b, i, j), atv(j, i, a, b)*att(a, b, j, i), atv(i, j, b, a)*att(b, a, i, j), atv(j, i, b, a)*att(b, a, j, i), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_VT2T2_AT(): ii, jj = symbols('i j', below_fermi=True) aa, bb = symbols('a b', above_fermi=True) k, l = symbols('k l', below_fermi=True, cls=Dummy) c, d = symbols('c d', above_fermi=True, cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(d, bb, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(d, bb, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(c, bb, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(c, bb, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) exprs = [ atv(k, l, c, d)*att(c, aa, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(c, aa, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(d, aa, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(d, aa, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_internal_external_pqrs_AT(): ii, jj = symbols('i j') aa, bb = symbols('a b') k, l = symbols('k l', cls=Dummy) c, d = symbols('c d', cls=Dummy) exprs = [ atv(k, l, c, d)*att(aa, c, ii, k)*att(bb, d, jj, l), atv(l, k, c, d)*att(aa, c, ii, l)*att(bb, d, jj, k), atv(k, l, d, c)*att(aa, d, ii, k)*att(bb, c, jj, l), atv(l, k, d, c)*att(aa, d, ii, l)*att(bb, c, jj, k), ] for permut in exprs[1:]: assert substitute_dummies(exprs[0]) == substitute_dummies(permut) def test_canonical_ordering_AntiSymmetricTensor(): v = symbols("v") c, d = symbols(('c','d'), above_fermi=True, cls=Dummy) k, l = symbols(('k','l'), below_fermi=True, cls=Dummy) # formerly, the left gave either the left or the right assert AntiSymmetricTensor(v, (k, l), (d, c) ) == -AntiSymmetricTensor(v, (l, k), (d, c))
eb1c7110827165a28851b5f0c2ddff6a72f2208d8dd0de3c69ca9a05a7eed868
__all__ = ['Beam'] from .beam import Beam
faa877748a9ff830d79ed7cbba5bb8a3165a0a78399d4011f9963f055c5d676a
#!/usr/bin/env python # -*- coding: utf-8 -*- u""" The module implements routines to model the polarization of optical fields and can be used to calculate the effects of polarization optical elements on the fields. - Jones vectors. - Stokes vectors. - Jones matrices. - Mueller matrices. Examples -------- We calculate a generic Jones vector: >>> from sympy import symbols, pprint, zeros, simplify >>> from sympy.physics.optics.polarization import (jones_vector, stokes_vector, ... half_wave_retarder, polarizing_beam_splitter, jones_2_stokes) >>> psi, chi, p, I0 = symbols("psi, chi, p, I0", real=True) >>> x0 = jones_vector(psi, chi) >>> pprint(x0, use_unicode=True) ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤ ⎢ ⎥ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦ And the more general Stokes vector: >>> s0 = stokes_vector(psi, chi, p, I0) >>> pprint(s0, use_unicode=True) ⎡ I₀ ⎤ ⎢ ⎥ ⎢I₀⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥ ⎢ ⎥ ⎢I₀⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥ ⎢ ⎥ ⎣ I₀⋅p⋅sin(2⋅χ) ⎦ We calculate how the Jones vector is modified by a half-wave plate: >>> alpha = symbols("alpha", real=True) >>> HWP = half_wave_retarder(alpha) >>> x1 = simplify(HWP*x0) We calculate the very common operation of passing a beam through a half-wave plate and then through a polarizing beam-splitter. We do this by putting this Jones vector as the first entry of a two-Jones-vector state that is transformed by a 4x4 Jones matrix modelling the polarizing beam-splitter to get the transmitted and reflected Jones vectors: >>> PBS = polarizing_beam_splitter() >>> X1 = zeros(4, 1) >>> X1[:2, :] = x1 >>> X2 = PBS*X1 >>> transmitted_port = X2[:2, :] >>> reflected_port = X2[2:, :] This allows us to calculate how the power in both ports depends on the initial polarization: >>> transmitted_power = jones_2_stokes(transmitted_port)[0] >>> reflected_power = jones_2_stokes(reflected_port)[0] >>> print(transmitted_power) cos(-2*alpha + chi + psi)**2/2 + cos(2*alpha + chi - psi)**2/2 >>> print(reflected_power) sin(-2*alpha + chi + psi)**2/2 + sin(2*alpha + chi - psi)**2/2 Please see the description of the individual functions for further details and examples. References ========== .. [1] https://en.wikipedia.org/wiki/Jones_calculus .. [2] https://en.wikipedia.org/wiki/Mueller_calculus .. [3] https://en.wikipedia.org/wiki/Stokes_parameters """ from sympy import sin, cos, exp, I, pi, sqrt, Matrix, Abs, re, im, simplify from sympy.physics.quantum import TensorProduct def jones_vector(psi, chi): u"""A Jones vector corresponding to a polarization ellipse with `psi` tilt, and `chi` circularity. Parameters ---------- ``psi`` : numeric type or sympy Symbol The tilt of the polarization relative to the `x` axis. ``chi`` : numeric type or sympy Symbol The angle adjacent to the mayor axis of the polarization ellipse. Returns ------- Matrix A Jones vector. Examples -------- The axes on the Poincaré sphere. >>> from sympy import pprint, symbols, pi >>> from sympy.physics.optics.polarization import jones_vector >>> psi, chi = symbols("psi, chi", real=True) A general Jones vector. >>> pprint(jones_vector(psi, chi), use_unicode=True) ⎡-ⅈ⋅sin(χ)⋅sin(ψ) + cos(χ)⋅cos(ψ)⎤ ⎢ ⎥ ⎣ⅈ⋅sin(χ)⋅cos(ψ) + sin(ψ)⋅cos(χ) ⎦ Horizontal polarization. >>> pprint(jones_vector(0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎣0⎦ Vertical polarization. >>> pprint(jones_vector(pi/2, 0), use_unicode=True) ⎡0⎤ ⎢ ⎥ ⎣1⎦ Diagonal polarization. >>> pprint(jones_vector(pi/4, 0), use_unicode=True) ⎡√2⎤ ⎢──⎥ ⎢2 ⎥ ⎢ ⎥ ⎢√2⎥ ⎢──⎥ ⎣2 ⎦ Anti-diagonal polarization. >>> pprint(jones_vector(-pi/4, 0), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2 ⎥ ⎢────⎥ ⎣ 2 ⎦ Right-hand circular polarization. >>> pprint(jones_vector(0, pi/4), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢√2⋅ⅈ⎥ ⎢────⎥ ⎣ 2 ⎦ Left-hand circular polarization. >>> pprint(jones_vector(0, -pi/4), use_unicode=True) ⎡ √2 ⎤ ⎢ ── ⎥ ⎢ 2 ⎥ ⎢ ⎥ ⎢-√2⋅ⅈ ⎥ ⎢──────⎥ ⎣ 2 ⎦ """ return Matrix([-I*sin(chi)*sin(psi) + cos(chi)*cos(psi), I*sin(chi)*cos(psi) + sin(psi)*cos(chi)]) def stokes_vector(psi, chi, p=1, I=1): u"""A Stokes vector corresponding to a polarization ellipse with `psi` tilt, and `chi` circularity. Parameters ---------- ``psi`` : numeric type or sympy Symbol The tilt of the polarization relative to the `x` axis. ``chi`` : numeric type or sympy Symbol The angle adjacent to the mayor axis of the polarization ellipse. ``p`` : numeric type or sympy Symbol The degree of polarization. ``I`` : numeric type or sympy Symbol The intensity of the field. Returns ------- Matrix A Stokes vector. Examples -------- The axes on the Poincaré sphere. >>> from sympy import pprint, symbols, pi >>> from sympy.physics.optics.polarization import stokes_vector >>> psi, chi, p, I = symbols("psi, chi, p, I", real=True) >>> pprint(stokes_vector(psi, chi, p, I), use_unicode=True) ⎡ I ⎤ ⎢ ⎥ ⎢I⋅p⋅cos(2⋅χ)⋅cos(2⋅ψ)⎥ ⎢ ⎥ ⎢I⋅p⋅sin(2⋅ψ)⋅cos(2⋅χ)⎥ ⎢ ⎥ ⎣ I⋅p⋅sin(2⋅χ) ⎦ Horizontal polarization >>> pprint(stokes_vector(0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢1⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣0⎦ Vertical polarization >>> pprint(stokes_vector(pi/2, 0), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢-1⎥ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎣0 ⎦ Diagonal polarization >>> pprint(stokes_vector(pi/4, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢1⎥ ⎢ ⎥ ⎣0⎦ Anti-diagonal polarization >>> pprint(stokes_vector(-pi/4, 0), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢-1⎥ ⎢ ⎥ ⎣0 ⎦ Right-hand circular polarization >>> pprint(stokes_vector(0, pi/4), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣1⎦ Left-hand circular polarization >>> pprint(stokes_vector(0, -pi/4), use_unicode=True) ⎡1 ⎤ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎢0 ⎥ ⎢ ⎥ ⎣-1⎦ Unpolarized light >>> pprint(stokes_vector(0, 0, 0), use_unicode=True) ⎡1⎤ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎢0⎥ ⎢ ⎥ ⎣0⎦ """ S0 = I S1 = I*p*cos(2*psi)*cos(2*chi) S2 = I*p*sin(2*psi)*cos(2*chi) S3 = I*p*sin(2*chi) return Matrix([S0, S1, S2, S3]) def jones_2_stokes(e): u"""Return the Stokes vector for a Jones vector `e`. Parameters ---------- ``e`` : sympy Matrix A Jones vector. Returns ------- sympy Matrix A Jones vector. Examples -------- The axes on the Poincaré sphere. >>> from sympy import pprint, Matrix, pi >>> from sympy.physics.optics.polarization import jones_vector >>> from sympy.physics.optics.polarization import jones_2_stokes >>> H = jones_vector(0, 0) >>> V = jones_vector(pi/2, 0) >>> D = jones_vector(pi/4, 0) >>> A = jones_vector(-pi/4, 0) >>> R = jones_vector(0, pi/4) >>> L = jones_vector(0, -pi/4) >>> pprint([jones_2_stokes(e) for e in [H, V, D, A, R, L]], ... use_unicode=True) ⎡⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤ ⎡1⎤ ⎡1 ⎤⎤ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎢⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥ ⎢0⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥, ⎢ ⎥⎥ ⎢⎢0⎥ ⎢0 ⎥ ⎢1⎥ ⎢-1⎥ ⎢0⎥ ⎢0 ⎥⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎥ ⎣⎣0⎦ ⎣0 ⎦ ⎣0⎦ ⎣0 ⎦ ⎣1⎦ ⎣-1⎦⎦ """ ex, ey = e return Matrix([Abs(ex)**2 + Abs(ey)**2, Abs(ex)**2 - Abs(ey)**2, 2*re(ex*ey.conjugate()), -2*im(ex*ey.conjugate())]) def linear_polarizer(theta=0): u"""A linear polarizer Jones matrix with transmission axis at an angle `theta`. Parameters ---------- ``theta`` : numeric type or sympy Symbol The angle of the transmission axis relative to the horizontal plane. Returns ------- sympy Matrix A Jones matrix representing the polarizer. Examples -------- A generic polarizer. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import linear_polarizer >>> theta = symbols("theta", real=True) >>> J = linear_polarizer(theta) >>> pprint(J, use_unicode=True) ⎡ 2 ⎤ ⎢ cos (θ) sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ 2 ⎥ ⎣sin(θ)⋅cos(θ) sin (θ) ⎦ """ M = Matrix([[cos(theta)**2, sin(theta)*cos(theta)], [sin(theta)*cos(theta), sin(theta)**2]]) return M def phase_retarder(theta=0, delta=0): u"""A phase retarder Jones matrix with retardance `delta` at angle `theta`. Parameters ---------- ``theta`` : numeric type or sympy Symbol The angle of the fast axis relative to the horizontal plane. ``delta`` : numeric type or sympy Symbol The phase difference between the fast and slow axes of the transmitted light. Returns ------- sympy Matrix A Jones matrix representing the retarder. Examples -------- A generic retarder. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import phase_retarder >>> theta, delta = symbols("theta, delta", real=True) >>> R = phase_retarder(theta, delta) >>> pprint(R, use_unicode=True) ⎡ -ⅈ⋅δ -ⅈ⋅δ ⎤ ⎢ ───── ───── ⎥ ⎢⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎛ ⅈ⋅δ⎞ 2 ⎥ ⎢⎝ℯ ⋅sin (θ) + cos (θ)⎠⋅ℯ ⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ -ⅈ⋅δ -ⅈ⋅δ ⎥ ⎢ ───── ─────⎥ ⎢⎛ ⅈ⋅δ⎞ 2 ⎛ ⅈ⋅δ 2 2 ⎞ 2 ⎥ ⎣⎝1 - ℯ ⎠⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝ℯ ⋅cos (θ) + sin (θ)⎠⋅ℯ ⎦ """ R = Matrix([[cos(theta)**2 + exp(I*delta)*sin(theta)**2, (1-exp(I*delta))*cos(theta)*sin(theta)], [(1-exp(I*delta))*cos(theta)*sin(theta), sin(theta)**2 + exp(I*delta)*cos(theta)**2]]) return R*exp(-I*delta/2) def half_wave_retarder(theta): u"""A half-wave retarder Jones matrix at angle `theta`. Parameters ---------- ``theta`` : numeric type or sympy Symbol The angle of the fast axis relative to the horizontal plane. Returns ------- sympy Matrix A Jones matrix representing the retarder. Examples -------- A generic half-wave plate. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import half_wave_retarder >>> theta= symbols("theta", real=True) >>> HWP = half_wave_retarder(theta) >>> pprint(HWP, use_unicode=True) ⎡ ⎛ 2 2 ⎞ ⎤ ⎢-ⅈ⋅⎝- sin (θ) + cos (θ)⎠ -2⋅ⅈ⋅sin(θ)⋅cos(θ) ⎥ ⎢ ⎥ ⎢ ⎛ 2 2 ⎞⎥ ⎣ -2⋅ⅈ⋅sin(θ)⋅cos(θ) -ⅈ⋅⎝sin (θ) - cos (θ)⎠⎦ """ return phase_retarder(theta, pi) def quarter_wave_retarder(theta): u"""A quarter-wave retarder Jones matrix at angle `theta`. Parameters ---------- ``theta`` : numeric type or sympy Symbol The angle of the fast axis relative to the horizontal plane. Returns ------- sympy Matrix A Jones matrix representing the retarder. Examples -------- A generic quarter-wave plate. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import quarter_wave_retarder >>> theta= symbols("theta", real=True) >>> QWP = quarter_wave_retarder(theta) >>> pprint(QWP, use_unicode=True) ⎡ -ⅈ⋅π -ⅈ⋅π ⎤ ⎢ ───── ───── ⎥ ⎢⎛ 2 2 ⎞ 4 4 ⎥ ⎢⎝ⅈ⋅sin (θ) + cos (θ)⎠⋅ℯ (1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ)⎥ ⎢ ⎥ ⎢ -ⅈ⋅π -ⅈ⋅π ⎥ ⎢ ───── ─────⎥ ⎢ 4 ⎛ 2 2 ⎞ 4 ⎥ ⎣(1 - ⅈ)⋅ℯ ⋅sin(θ)⋅cos(θ) ⎝sin (θ) + ⅈ⋅cos (θ)⎠⋅ℯ ⎦ """ return phase_retarder(theta, pi/2) def transmissive_filter(T): u"""An attenuator Jones matrix with transmittance `T`. Parameters ---------- ``T`` : numeric type or sympy Symbol The transmittance of the attenuator. Returns ------- sympy Matrix A Jones matrix representing the filter. Examples -------- A generic filter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import transmissive_filter >>> T = symbols("T", real=True) >>> NDF = transmissive_filter(T) >>> pprint(NDF, use_unicode=True) ⎡√T 0 ⎤ ⎢ ⎥ ⎣0 √T⎦ """ return Matrix([[sqrt(T), 0], [0, sqrt(T)]]) def reflective_filter(R): u"""A reflective filter Jones matrix with reflectance `R`. Parameters ---------- ``R`` : numeric type or sympy Symbol The reflectance of the filter. Returns ------- sympy Matrix A Jones matrix representing the filter. Examples -------- A generic filter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import reflective_filter >>> R = symbols("R", real=True) >>> pprint(reflective_filter(R), use_unicode=True) ⎡√R 0 ⎤ ⎢ ⎥ ⎣0 -√R⎦ """ return Matrix([[sqrt(R), 0], [0, -sqrt(R)]]) def mueller_matrix(J): u"""The Mueller matrix corresponding to Jones matrix `J`. Parameters ---------- ``J`` : sympy Matrix A Jones matrix. Returns ------- sympy Matrix The corresponding Mueller matrix. Examples -------- Generic optical components. >>> from sympy import pprint, symbols, pi, simplify >>> from sympy.physics.optics.polarization import (mueller_matrix, ... linear_polarizer, half_wave_retarder, quarter_wave_retarder) >>> theta = symbols("theta", real=True) A linear_polarizer >>> pprint(mueller_matrix(linear_polarizer(theta)), use_unicode=True) ⎡ cos(2⋅θ) sin(2⋅θ) ⎤ ⎢ 1/2 ──────── ──────── 0⎥ ⎢ 2 2 ⎥ ⎢ ⎥ ⎢cos(2⋅θ) cos(4⋅θ) 1 sin(4⋅θ) ⎥ ⎢──────── ──────── + ─ ──────── 0⎥ ⎢ 2 4 4 4 ⎥ ⎢ ⎥ ⎢sin(2⋅θ) sin(4⋅θ) 1 cos(4⋅θ) ⎥ ⎢──────── ──────── ─ - ──────── 0⎥ ⎢ 2 4 4 4 ⎥ ⎢ ⎥ ⎣ 0 0 0 0⎦ A half-wave plate >>> pprint(mueller_matrix(half_wave_retarder(theta)), use_unicode=True) ⎡1 0 0 0 ⎤ ⎢ ⎥ ⎢ 4 2 ⎥ ⎢0 8⋅sin (θ) - 8⋅sin (θ) + 1 sin(4⋅θ) 0 ⎥ ⎢ ⎥ ⎢ 4 2 ⎥ ⎢0 sin(4⋅θ) - 8⋅sin (θ) + 8⋅sin (θ) - 1 0 ⎥ ⎢ ⎥ ⎣0 0 0 -1⎦ A quarter-wave plate >>> pprint(mueller_matrix(quarter_wave_retarder(theta)), use_unicode=True) ⎡1 0 0 0 ⎤ ⎢ ⎥ ⎢ cos(4⋅θ) 1 sin(4⋅θ) ⎥ ⎢0 ──────── + ─ ──────── -sin(2⋅θ)⎥ ⎢ 2 2 2 ⎥ ⎢ ⎥ ⎢ sin(4⋅θ) 1 cos(4⋅θ) ⎥ ⎢0 ──────── ─ - ──────── cos(2⋅θ) ⎥ ⎢ 2 2 2 ⎥ ⎢ ⎥ ⎣0 sin(2⋅θ) -cos(2⋅θ) 0 ⎦ """ A = Matrix([[1, 0, 0, 1], [1, 0, 0, -1], [0, 1, 1, 0], [0, -I, I, 0]]) return simplify(A*TensorProduct(J, J.conjugate())*A.inv()) def polarizing_beam_splitter(Tp=1, Rs=1, Ts=0, Rp=0, phia=0, phib=0): r"""A polarizing beam splitter Jones matrix at angle `theta`. Parameters ---------- ``J`` : sympy Matrix A Jones matrix. ``Tp`` : numeric type or sympy Symbol The transmissivity of the P-polarized component. ``Rs`` : numeric type or sympy Symbol The reflectivity of the S-polarized component. ``Ts`` : numeric type or sympy Symbol The transmissivity of the S-polarized component. ``Rp`` : numeric type or sympy Symbol The reflectivity of the P-polarized component. ``phia`` : numeric type or sympy Symbol The phase difference between transmitted and reflected component for output mode a. ``phib`` : numeric type or sympy Symbol The phase difference between transmitted and reflected component for output mode b. Returns ------- sympy Matrix A 4x4 matrix representing the PBS. This matrix acts on a 4x1 vector whose first two entries are the Jones vector on one of the PBS ports, and the last two entries the Jones vector on the other port. Examples -------- Generic polarizing beam-splitter. >>> from sympy import pprint, symbols >>> from sympy.physics.optics.polarization import polarizing_beam_splitter >>> Ts, Rs, Tp, Rp = symbols(r"Ts, Rs, Tp, Rp", positive=True) >>> phia, phib = symbols("phi_a, phi_b", real=True) >>> PBS = polarizing_beam_splitter(Tp, Rs, Ts, Rp, phia, phib) >>> pprint(PBS, use_unicode=False) [ ____ ____ ] [ \/ Tp 0 I*\/ Rp 0 ] [ ] [ ____ ____ I*phi_a] [ 0 \/ Ts 0 -I*\/ Rs *e ] [ ] [ ____ ____ ] [I*\/ Rp 0 \/ Tp 0 ] [ ] [ ____ I*phi_b ____ ] [ 0 -I*\/ Rs *e 0 \/ Ts ] """ PBS = Matrix([[sqrt(Tp), 0, I*sqrt(Rp), 0], [0, sqrt(Ts), 0, -I*sqrt(Rs)*exp(I*phia)], [I*sqrt(Rp), 0, sqrt(Tp), 0], [0, -I*sqrt(Rs)*exp(I*phib), 0, sqrt(Ts)]]) return PBS
fe5b10369a26ab518db91324209264d29e189aa3c90262b5e2b49e343a59b5e3
__all__ = [ 'TWave', 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction', 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter', 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab', 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj', 'conjugate_gauss_beams', 'Medium', 'refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle', 'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula', 'hyperfocal_distance', 'transverse_magnification', 'jones_vector', 'stokes_vector', 'jones_2_stokes', 'linear_polarizer', 'phase_retarder', 'half_wave_retarder', 'quarter_wave_retarder', 'transmissive_filter', 'reflective_filter', 'mueller_matrix', 'polarizing_beam_splitte', ] from .waves import TWave from .gaussopt import (RayTransferMatrix, FreeSpace, FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens, GeometricRay, BeamParameter, waist2rayleigh, rayleigh2waist, geometric_conj_ab, geometric_conj_af, geometric_conj_bf, gaussian_conj, conjugate_gauss_beams) from .medium import Medium from .utils import (refraction_angle, deviation, fresnel_coefficients, brewster_angle, critical_angle, lens_makers_formula, mirror_formula, lens_formula, hyperfocal_distance, transverse_magnification) from .polarization import (jones_vector, stokes_vector, jones_2_stokes, linear_polarizer, phase_retarder, half_wave_retarder, quarter_wave_retarder, transmissive_filter, reflective_filter, mueller_matrix, polarizing_beam_splitter)
52c1ae61d63b89c6b64447a51fc041b62ec1d65c3a94427ac1bb34e50777e8b7
""" **Contains** * refraction_angle * fresnel_coefficients * deviation * brewster_angle * critical_angle * lens_makers_formula * mirror_formula * lens_formula * hyperfocal_distance * transverse_magnification """ from __future__ import division __all__ = ['refraction_angle', 'deviation', 'fresnel_coefficients', 'brewster_angle', 'critical_angle', 'lens_makers_formula', 'mirror_formula', 'lens_formula', 'hyperfocal_distance', 'transverse_magnification' ] from sympy import Symbol, sympify, sqrt, Matrix, acos, oo, Limit, atan2, asin,\ cos, sin, tan, I, cancel, pi, Float from sympy.core.compatibility import is_sequence from sympy.geometry.line import Ray3D from sympy.geometry.util import intersection from sympy.geometry.plane import Plane from .medium import Medium def refractive_index_of_medium(medium): """ Helper function that returns refractive index, given a medium """ if isinstance(medium, Medium): n = medium.refractive_index else: n = sympify(medium) return n def refraction_angle(incident, medium1, medium2, normal=None, plane=None): """ This function calculates transmitted vector after refraction at planar surface. `medium1` and `medium2` can be `Medium` or any sympifiable object. If `incident` is a number then treated as angle of incidence (in radians) in which case refraction angle is returned. If `incident` is an object of `Ray3D`, `normal` also has to be an instance of `Ray3D` in order to get the output as a `Ray3D`. Please note that if plane of separation is not provided and normal is an instance of `Ray3D`, normal will be assumed to be intersecting incident ray at the plane of separation. This will not be the case when `normal` is a `Matrix` or any other sequence. If `incident` is an instance of `Ray3D` and `plane` has not been provided and `normal` is not `Ray3D`, output will be a `Matrix`. Parameters ========== incident : Matrix, Ray3D, sequence or a number Incident vector or angle of incidence medium1 : sympy.physics.optics.medium.Medium or sympifiable Medium 1 or its refractive index medium2 : sympy.physics.optics.medium.Medium or sympifiable Medium 2 or its refractive index normal : Matrix, Ray3D, or sequence Normal vector plane : Plane Plane of separation of the two media. Returns an angle of refraction or a refracted ray depending on inputs. Examples ======== >>> from sympy.physics.optics import refraction_angle >>> from sympy.geometry import Point3D, Ray3D, Plane >>> from sympy.matrices import Matrix >>> from sympy import symbols, pi >>> n = Matrix([0, 0, 1]) >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) >>> refraction_angle(r1, 1, 1, n) Matrix([ [ 1], [ 1], [-1]]) >>> refraction_angle(r1, 1, 1, plane=P) Ray3D(Point3D(0, 0, 0), Point3D(1, 1, -1)) With different index of refraction of the two media >>> n1, n2 = symbols('n1, n2') >>> refraction_angle(r1, n1, n2, n) Matrix([ [ n1/n2], [ n1/n2], [-sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1)]]) >>> refraction_angle(r1, n1, n2, plane=P) Ray3D(Point3D(0, 0, 0), Point3D(n1/n2, n1/n2, -sqrt(3)*sqrt(-2*n1**2/(3*n2**2) + 1))) >>> round(refraction_angle(pi/6, 1.2, 1.5), 5) 0.41152 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) # check if an incidence angle was supplied instead of a ray try: angle_of_incidence = float(incident) except TypeError: angle_of_incidence = None try: critical_angle_ = critical_angle(medium1, medium2) except (ValueError, TypeError): critical_angle_ = None if angle_of_incidence is not None: if normal is not None or plane is not None: raise ValueError('Normal/plane not allowed if incident is an angle') if not 0.0 <= angle_of_incidence < pi*0.5: raise ValueError('Angle of incidence not in range [0:pi/2)') if critical_angle_ and angle_of_incidence > critical_angle_: raise ValueError('Ray undergoes total internal reflection') return asin(n1*sin(angle_of_incidence)/n2) if angle_of_incidence and not 0 <= angle_of_incidence < pi*0.5: raise ValueError # Treat the incident as ray below # A flag to check whether to return Ray3D or not return_ray = False if plane is not None and normal is not None: raise ValueError("Either plane or normal is acceptable.") if not isinstance(incident, Matrix): if is_sequence(incident): _incident = Matrix(incident) elif isinstance(incident, Ray3D): _incident = Matrix(incident.direction_ratio) else: raise TypeError( "incident should be a Matrix, Ray3D, or sequence") else: _incident = incident # If plane is provided, get direction ratios of the normal # to the plane from the plane else go with `normal` param. if plane is not None: if not isinstance(plane, Plane): raise TypeError("plane should be an instance of geometry.plane.Plane") # If we have the plane, we can get the intersection # point of incident ray and the plane and thus return # an instance of Ray3D. if isinstance(incident, Ray3D): return_ray = True intersection_pt = plane.intersection(incident)[0] _normal = Matrix(plane.normal_vector) else: if not isinstance(normal, Matrix): if is_sequence(normal): _normal = Matrix(normal) elif isinstance(normal, Ray3D): _normal = Matrix(normal.direction_ratio) if isinstance(incident, Ray3D): intersection_pt = intersection(incident, normal) if len(intersection_pt) == 0: raise ValueError( "Normal isn't concurrent with the incident ray.") else: return_ray = True intersection_pt = intersection_pt[0] else: raise TypeError( "Normal should be a Matrix, Ray3D, or sequence") else: _normal = normal eta = n1/n2 # Relative index of refraction # Calculating magnitude of the vectors mag_incident = sqrt(sum([i**2 for i in _incident])) mag_normal = sqrt(sum([i**2 for i in _normal])) # Converting vectors to unit vectors by dividing # them with their magnitudes _incident /= mag_incident _normal /= mag_normal c1 = -_incident.dot(_normal) # cos(angle_of_incidence) cs2 = 1 - eta**2*(1 - c1**2) # cos(angle_of_refraction)**2 if cs2.is_negative: # This is the case of total internal reflection(TIR). return 0 drs = eta*_incident + (eta*c1 - sqrt(cs2))*_normal # Multiplying unit vector by its magnitude drs = drs*mag_incident if not return_ray: return drs else: return Ray3D(intersection_pt, direction_ratio=drs) def fresnel_coefficients(angle_of_incidence, medium1, medium2): """ This function uses Fresnel equations to calculate reflection and transmission coefficients. Those are obtained for both polarisations when the electric field vector is in the plane of incidence (labelled 'p') and when the electric field vector is perpendicular to the plane of incidence (labelled 's'). There are four real coefficients unless the incident ray reflects in total internal in which case there are two complex ones. Angle of incidence is the angle between the incident ray and the surface normal. ``medium1`` and ``medium2`` can be ``Medium`` or any sympifiable object. Parameters ========== angle_of_incidence : sympifiable medium1 : Medium or sympifiable Medium 1 or its refractive index medium2 : Medium or sympifiable Medium 2 or its refractive index Returns a list with four real Fresnel coefficients: [reflection p (TM), reflection s (TE), transmission p (TM), transmission s (TE)] If the ray is undergoes total internal reflection then returns a list of two complex Fresnel coefficients: [reflection p (TM), reflection s (TE)] Examples ======== >>> from sympy.physics.optics import fresnel_coefficients >>> fresnel_coefficients(0.3, 1, 2) [0.317843553417859, -0.348645229818821, 0.658921776708929, 0.651354770181179] >>> fresnel_coefficients(0.6, 2, 1) [-0.235625382192159 - 0.971843958291041*I, 0.816477005968898 - 0.577377951366403*I] References ========== https://en.wikipedia.org/wiki/Fresnel_equations """ if not 0 <= 2*angle_of_incidence < pi: raise ValueError('Angle of incidence not in range [0:pi/2)') n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) angle_of_refraction = asin(n1*sin(angle_of_incidence)/n2) try: angle_of_total_internal_reflection_onset = critical_angle(n1, n2) except ValueError: angle_of_total_internal_reflection_onset = None if angle_of_total_internal_reflection_onset == None or\ angle_of_total_internal_reflection_onset > angle_of_incidence: R_s = -sin(angle_of_incidence - angle_of_refraction)\ /sin(angle_of_incidence + angle_of_refraction) R_p = tan(angle_of_incidence - angle_of_refraction)\ /tan(angle_of_incidence + angle_of_refraction) T_s = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\ /sin(angle_of_incidence + angle_of_refraction) T_p = 2*sin(angle_of_refraction)*cos(angle_of_incidence)\ /(sin(angle_of_incidence + angle_of_refraction)\ *cos(angle_of_incidence - angle_of_refraction)) return [R_p, R_s, T_p, T_s] else: n = n2/n1 R_s = cancel((cos(angle_of_incidence)-\ I*sqrt(sin(angle_of_incidence)**2 - n**2))\ /(cos(angle_of_incidence)+\ I*sqrt(sin(angle_of_incidence)**2 - n**2))) R_p = cancel((n**2*cos(angle_of_incidence)-\ I*sqrt(sin(angle_of_incidence)**2 - n**2))\ /(n**2*cos(angle_of_incidence)+\ I*sqrt(sin(angle_of_incidence)**2 - n**2))) return [R_p, R_s] def deviation(incident, medium1, medium2, normal=None, plane=None): """ This function calculates the angle of deviation of a ray due to refraction at planar surface. Parameters ========== incident : Matrix, Ray3D, sequence or float Incident vector or angle of incidence medium1 : sympy.physics.optics.medium.Medium or sympifiable Medium 1 or its refractive index medium2 : sympy.physics.optics.medium.Medium or sympifiable Medium 2 or its refractive index normal : Matrix, Ray3D, or sequence Normal vector plane : Plane Plane of separation of the two media. Returns angular deviation between incident and refracted rays Examples ======== >>> from sympy.physics.optics import deviation >>> from sympy.geometry import Point3D, Ray3D, Plane >>> from sympy.matrices import Matrix >>> from sympy import symbols >>> n1, n2 = symbols('n1, n2') >>> n = Matrix([0, 0, 1]) >>> P = Plane(Point3D(0, 0, 0), normal_vector=[0, 0, 1]) >>> r1 = Ray3D(Point3D(-1, -1, 1), Point3D(0, 0, 0)) >>> deviation(r1, 1, 1, n) 0 >>> deviation(r1, n1, n2, plane=P) -acos(-sqrt(-2*n1**2/(3*n2**2) + 1)) + acos(-sqrt(3)/3) >>> round(deviation(0.1, 1.2, 1.5), 5) -0.02005 """ refracted = refraction_angle(incident, medium1, medium2, normal=normal, plane=plane) try: angle_of_incidence = Float(incident) except TypeError: angle_of_incidence = None if angle_of_incidence is not None: return float(refracted) - angle_of_incidence if refracted != 0: if isinstance(refracted, Ray3D): refracted = Matrix(refracted.direction_ratio) if not isinstance(incident, Matrix): if is_sequence(incident): _incident = Matrix(incident) elif isinstance(incident, Ray3D): _incident = Matrix(incident.direction_ratio) else: raise TypeError( "incident should be a Matrix, Ray3D, or sequence") else: _incident = incident if plane is None: if not isinstance(normal, Matrix): if is_sequence(normal): _normal = Matrix(normal) elif isinstance(normal, Ray3D): _normal = Matrix(normal.direction_ratio) else: raise TypeError( "normal should be a Matrix, Ray3D, or sequence") else: _normal = normal else: _normal = Matrix(plane.normal_vector) mag_incident = sqrt(sum([i**2 for i in _incident])) mag_normal = sqrt(sum([i**2 for i in _normal])) mag_refracted = sqrt(sum([i**2 for i in refracted])) _incident /= mag_incident _normal /= mag_normal refracted /= mag_refracted i = acos(_incident.dot(_normal)) r = acos(refracted.dot(_normal)) return i - r def brewster_angle(medium1, medium2): """ This function calculates the Brewster's angle of incidence to Medium 2 from Medium 1 in radians. Parameters ========== medium 1 : Medium or sympifiable Refractive index of Medium 1 medium 2 : Medium or sympifiable Refractive index of Medium 1 Examples ======== >>> from sympy.physics.optics import brewster_angle >>> brewster_angle(1, 1.33) 0.926093295503462 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) return atan2(n2, n1) def critical_angle(medium1, medium2): """ This function calculates the critical angle of incidence (marking the onset of total internal) to Medium 2 from Medium 1 in radians. Parameters ========== medium 1 : Medium or sympifiable Refractive index of Medium 1 medium 2 : Medium or sympifiable Refractive index of Medium 1 Examples ======== >>> from sympy.physics.optics import critical_angle >>> critical_angle(1.33, 1) 0.850908514477849 """ n1 = refractive_index_of_medium(medium1) n2 = refractive_index_of_medium(medium2) if n2 > n1: raise ValueError('Total internal reflection impossible for n1 < n2') else: return asin(n2/n1) def lens_makers_formula(n_lens, n_surr, r1, r2): """ This function calculates focal length of a thin lens. It follows cartesian sign convention. Parameters ========== n_lens : Medium or sympifiable Index of refraction of lens. n_surr : Medium or sympifiable Index of reflection of surrounding. r1 : sympifiable Radius of curvature of first surface. r2 : sympifiable Radius of curvature of second surface. Examples ======== >>> from sympy.physics.optics import lens_makers_formula >>> lens_makers_formula(1.33, 1, 10, -10) 15.1515151515151 """ if isinstance(n_lens, Medium): n_lens = n_lens.refractive_index else: n_lens = sympify(n_lens) if isinstance(n_surr, Medium): n_surr = n_surr.refractive_index else: n_surr = sympify(n_surr) r1 = sympify(r1) r2 = sympify(r2) return 1/((n_lens - n_surr)/n_surr*(1/r1 - 1/r2)) def mirror_formula(focal_length=None, u=None, v=None): """ This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays. Parameters ========== focal_length : sympifiable Focal length of the mirror. u : sympifiable Distance of object from the pole on the principal axis. v : sympifiable Distance of the image from the pole on the principal axis. Examples ======== >>> from sympy.physics.optics import mirror_formula >>> from sympy.abc import f, u, v >>> mirror_formula(focal_length=f, u=u) f*u/(-f + u) >>> mirror_formula(focal_length=f, v=v) f*v/(-f + v) >>> mirror_formula(u=u, v=v) u*v/(u + v) """ if focal_length and u and v: raise ValueError("Please provide only two parameters") focal_length = sympify(focal_length) u = sympify(u) v = sympify(v) if u is oo: _u = Symbol('u') if v is oo: _v = Symbol('v') if focal_length is oo: _f = Symbol('f') if focal_length is None: if u is oo and v is oo: return Limit(Limit(_v*_u/(_v + _u), _u, oo), _v, oo).doit() if u is oo: return Limit(v*_u/(v + _u), _u, oo).doit() if v is oo: return Limit(_v*u/(_v + u), _v, oo).doit() return v*u/(v + u) if u is None: if v is oo and focal_length is oo: return Limit(Limit(_v*_f/(_v - _f), _v, oo), _f, oo).doit() if v is oo: return Limit(_v*focal_length/(_v - focal_length), _v, oo).doit() if focal_length is oo: return Limit(v*_f/(v - _f), _f, oo).doit() return v*focal_length/(v - focal_length) if v is None: if u is oo and focal_length is oo: return Limit(Limit(_u*_f/(_u - _f), _u, oo), _f, oo).doit() if u is oo: return Limit(_u*focal_length/(_u - focal_length), _u, oo).doit() if focal_length is oo: return Limit(u*_f/(u - _f), _f, oo).doit() return u*focal_length/(u - focal_length) def lens_formula(focal_length=None, u=None, v=None): """ This function provides one of the three parameters when two of them are supplied. This is valid only for paraxial rays. Parameters ========== focal_length : sympifiable Focal length of the mirror. u : sympifiable Distance of object from the optical center on the principal axis. v : sympifiable Distance of the image from the optical center on the principal axis. Examples ======== >>> from sympy.physics.optics import lens_formula >>> from sympy.abc import f, u, v >>> lens_formula(focal_length=f, u=u) f*u/(f + u) >>> lens_formula(focal_length=f, v=v) f*v/(f - v) >>> lens_formula(u=u, v=v) u*v/(u - v) """ if focal_length and u and v: raise ValueError("Please provide only two parameters") focal_length = sympify(focal_length) u = sympify(u) v = sympify(v) if u is oo: _u = Symbol('u') if v is oo: _v = Symbol('v') if focal_length is oo: _f = Symbol('f') if focal_length is None: if u is oo and v is oo: return Limit(Limit(_v*_u/(_u - _v), _u, oo), _v, oo).doit() if u is oo: return Limit(v*_u/(_u - v), _u, oo).doit() if v is oo: return Limit(_v*u/(u - _v), _v, oo).doit() return v*u/(u - v) if u is None: if v is oo and focal_length is oo: return Limit(Limit(_v*_f/(_f - _v), _v, oo), _f, oo).doit() if v is oo: return Limit(_v*focal_length/(focal_length - _v), _v, oo).doit() if focal_length is oo: return Limit(v*_f/(_f - v), _f, oo).doit() return v*focal_length/(focal_length - v) if v is None: if u is oo and focal_length is oo: return Limit(Limit(_u*_f/(_u + _f), _u, oo), _f, oo).doit() if u is oo: return Limit(_u*focal_length/(_u + focal_length), _u, oo).doit() if focal_length is oo: return Limit(u*_f/(u + _f), _f, oo).doit() return u*focal_length/(u + focal_length) def hyperfocal_distance(f, N, c): """ Parameters ========== f: sympifiable Focal length of a given lens N: sympifiable F-number of a given lens c: sympifiable Circle of Confusion (CoC) of a given image format Example ======= >>> from sympy.physics.optics import hyperfocal_distance >>> from sympy.abc import f, N, c >>> round(hyperfocal_distance(f = 0.5, N = 8, c = 0.0033), 2) 9.47 """ f = sympify(f) N = sympify(N) c = sympify(c) return (1/(N * c))*(f**2) def transverse_magnification(si, so): """ Calculates the transverse magnification, which is the ratio of the image size to the object size. Parameters ========== so: sympifiable Lens-object distance si: sympifiable Lens-image distance Example ======= >>> from sympy.physics.optics import transverse_magnification >>> transverse_magnification(30, 15) -2 """ si = sympify(si) so = sympify(so) return (-(si/so))
3b8293d59cce1e48257eb6c186c7f288871ba064773eafd769b81851b5b9d890
""" Gaussian optics. The module implements: - Ray transfer matrices for geometrical and gaussian optics. See RayTransferMatrix, GeometricRay and BeamParameter - Conjugation relations for geometrical and gaussian optics. See geometric_conj*, gauss_conj and conjugate_gauss_beams The conventions for the distances are as follows: focal distance positive for convergent lenses object distance positive for real objects image distance positive for real images """ from __future__ import print_function, division __all__ = [ 'RayTransferMatrix', 'FreeSpace', 'FlatRefraction', 'CurvedRefraction', 'FlatMirror', 'CurvedMirror', 'ThinLens', 'GeometricRay', 'BeamParameter', 'waist2rayleigh', 'rayleigh2waist', 'geometric_conj_ab', 'geometric_conj_af', 'geometric_conj_bf', 'gaussian_conj', 'conjugate_gauss_beams', ] from sympy import (atan2, Expr, I, im, Matrix, pi, re, sqrt, sympify, together) from sympy.utilities.misc import filldedent ### # A, B, C, D matrices ### class RayTransferMatrix(Matrix): """ Base class for a Ray Transfer Matrix. It should be used if there isn't already a more specific subclass mentioned in See Also. Parameters ========== parameters : A, B, C and D or 2x2 matrix (Matrix(2, 2, [A, B, C, D])) Examples ======== >>> from sympy.physics.optics import RayTransferMatrix, ThinLens >>> from sympy import Symbol, Matrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat Matrix([ [1, 2], [3, 4]]) >>> RayTransferMatrix(Matrix([[1, 2], [3, 4]])) Matrix([ [1, 2], [3, 4]]) >>> mat.A 1 >>> f = Symbol('f') >>> lens = ThinLens(f) >>> lens Matrix([ [ 1, 0], [-1/f, 1]]) >>> lens.C -1/f See Also ======== GeometricRay, BeamParameter, FreeSpace, FlatRefraction, CurvedRefraction, FlatMirror, CurvedMirror, ThinLens References ========== .. [1] https://en.wikipedia.org/wiki/Ray_transfer_matrix_analysis """ def __new__(cls, *args): if len(args) == 4: temp = ((args[0], args[1]), (args[2], args[3])) elif len(args) == 1 \ and isinstance(args[0], Matrix) \ and args[0].shape == (2, 2): temp = args[0] else: raise ValueError(filldedent(''' Expecting 2x2 Matrix or the 4 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) def __mul__(self, other): if isinstance(other, RayTransferMatrix): return RayTransferMatrix(Matrix.__mul__(self, other)) elif isinstance(other, GeometricRay): return GeometricRay(Matrix.__mul__(self, other)) elif isinstance(other, BeamParameter): temp = self*Matrix(((other.q,), (1,))) q = (temp[0]/temp[1]).expand(complex=True) return BeamParameter(other.wavelen, together(re(q)), z_r=together(im(q))) else: return Matrix.__mul__(self, other) @property def A(self): """ The A parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.A 1 """ return self[0, 0] @property def B(self): """ The B parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.B 2 """ return self[0, 1] @property def C(self): """ The C parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.C 3 """ return self[1, 0] @property def D(self): """ The D parameter of the Matrix. Examples ======== >>> from sympy.physics.optics import RayTransferMatrix >>> mat = RayTransferMatrix(1, 2, 3, 4) >>> mat.D 4 """ return self[1, 1] class FreeSpace(RayTransferMatrix): """ Ray Transfer Matrix for free space. Parameters ========== distance See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FreeSpace >>> from sympy import symbols >>> d = symbols('d') >>> FreeSpace(d) Matrix([ [1, d], [0, 1]]) """ def __new__(cls, d): return RayTransferMatrix.__new__(cls, 1, d, 0, 1) class FlatRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction. Parameters ========== n1 : refractive index of one medium n2 : refractive index of other medium See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatRefraction >>> from sympy import symbols >>> n1, n2 = symbols('n1 n2') >>> FlatRefraction(n1, n2) Matrix([ [1, 0], [0, n1/n2]]) """ def __new__(cls, n1, n2): n1, n2 = map(sympify, (n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, 0, n1/n2) class CurvedRefraction(RayTransferMatrix): """ Ray Transfer Matrix for refraction on curved interface. Parameters ========== R : radius of curvature (positive for concave) n1 : refractive index of one medium n2 : refractive index of other medium See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedRefraction >>> from sympy import symbols >>> R, n1, n2 = symbols('R n1 n2') >>> CurvedRefraction(R, n1, n2) Matrix([ [ 1, 0], [(n1 - n2)/(R*n2), n1/n2]]) """ def __new__(cls, R, n1, n2): R, n1, n2 = map(sympify, (R, n1, n2)) return RayTransferMatrix.__new__(cls, 1, 0, (n1 - n2)/R/n2, n1/n2) class FlatMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection. See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import FlatMirror >>> FlatMirror() Matrix([ [1, 0], [0, 1]]) """ def __new__(cls): return RayTransferMatrix.__new__(cls, 1, 0, 0, 1) class CurvedMirror(RayTransferMatrix): """ Ray Transfer Matrix for reflection from curved surface. Parameters ========== R : radius of curvature (positive for concave) See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import CurvedMirror >>> from sympy import symbols >>> R = symbols('R') >>> CurvedMirror(R) Matrix([ [ 1, 0], [-2/R, 1]]) """ def __new__(cls, R): R = sympify(R) return RayTransferMatrix.__new__(cls, 1, 0, -2/R, 1) class ThinLens(RayTransferMatrix): """ Ray Transfer Matrix for a thin lens. Parameters ========== f : the focal distance See Also ======== RayTransferMatrix Examples ======== >>> from sympy.physics.optics import ThinLens >>> from sympy import symbols >>> f = symbols('f') >>> ThinLens(f) Matrix([ [ 1, 0], [-1/f, 1]]) """ def __new__(cls, f): f = sympify(f) return RayTransferMatrix.__new__(cls, 1, 0, -1/f, 1) ### # Representation for geometric ray ### class GeometricRay(Matrix): """ Representation for a geometric ray in the Ray Transfer Matrix formalism. Parameters ========== h : height, and angle : angle, or matrix : a 2x1 matrix (Matrix(2, 1, [height, angle])) Examples ======== >>> from sympy.physics.optics import GeometricRay, FreeSpace >>> from sympy import symbols, Matrix >>> d, h, angle = symbols('d, h, angle') >>> GeometricRay(h, angle) Matrix([ [ h], [angle]]) >>> FreeSpace(d)*GeometricRay(h, angle) Matrix([ [angle*d + h], [ angle]]) >>> GeometricRay( Matrix( ((h,), (angle,)) ) ) Matrix([ [ h], [angle]]) See Also ======== RayTransferMatrix """ def __new__(cls, *args): if len(args) == 1 and isinstance(args[0], Matrix) \ and args[0].shape == (2, 1): temp = args[0] elif len(args) == 2: temp = ((args[0],), (args[1],)) else: raise ValueError(filldedent(''' Expecting 2x1 Matrix or the 2 elements of the Matrix but got %s''' % str(args))) return Matrix.__new__(cls, temp) @property def height(self): """ The distance from the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.height h """ return self[0] @property def angle(self): """ The angle with the optical axis. Examples ======== >>> from sympy.physics.optics import GeometricRay >>> from sympy import symbols >>> h, angle = symbols('h, angle') >>> gRay = GeometricRay(h, angle) >>> gRay.angle angle """ return self[1] ### # Representation for gauss beam ### class BeamParameter(Expr): """ Representation for a gaussian ray in the Ray Transfer Matrix formalism. Parameters ========== wavelen : the wavelength, z : the distance to waist, and w : the waist, or z_r : the rayleigh range Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi >>> p.q.n() 1.0 + 5.92753330865999*I >>> p.w_0.n() 0.00100000000000000 >>> p.z_r.n() 5.92753330865999 >>> from sympy.physics.optics import FreeSpace >>> fs = FreeSpace(10) >>> p1 = fs*p >>> p.w.n() 0.00101413072159615 >>> p1.w.n() 0.00210803120913829 See Also ======== RayTransferMatrix References ========== .. [1] https://en.wikipedia.org/wiki/Complex_beam_parameter .. [2] https://en.wikipedia.org/wiki/Gaussian_beam """ #TODO A class Complex may be implemented. The BeamParameter may # subclass it. See: # https://groups.google.com/d/topic/sympy/7XkU07NRBEs/discussion __slots__ = ['z', 'z_r', 'wavelen'] def __new__(cls, wavelen, z, **kwargs): wavelen, z = map(sympify, (wavelen, z)) inst = Expr.__new__(cls, wavelen, z) inst.wavelen = wavelen inst.z = z if len(kwargs) != 1: raise ValueError('Constructor expects exactly one named argument.') elif 'z_r' in kwargs: inst.z_r = sympify(kwargs['z_r']) elif 'w' in kwargs: inst.z_r = waist2rayleigh(sympify(kwargs['w']), wavelen) else: raise ValueError('The constructor needs named argument w or z_r') return inst @property def q(self): """ The complex parameter representing the beam. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.q 1 + 1.88679245283019*I*pi """ return self.z + I*self.z_r @property def radius(self): """ The radius of curvature of the phase front. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.radius 1 + 3.55998576005696*pi**2 """ return self.z*(1 + (self.z_r/self.z)**2) @property def w(self): """ The beam radius at `1/e^2` intensity. See Also ======== w_0 : the minimal radius of beam Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w 0.001*sqrt(0.2809/pi**2 + 1) """ return self.w_0*sqrt(1 + (self.z/self.z_r)**2) @property def w_0(self): """ The beam waist (minimal radius). See Also ======== w : the beam radius at `1/e^2` intensity Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.w_0 0.00100000000000000 """ return sqrt(self.z_r/pi*self.wavelen) @property def divergence(self): """ Half of the total angular spread. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.divergence 0.00053/pi """ return self.wavelen/pi/self.w_0 @property def gouy(self): """ The Gouy phase. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.gouy atan(0.53/pi) """ return atan2(self.z, self.z_r) @property def waist_approximation_limit(self): """ The minimal waist for which the gauss beam approximation is valid. The gauss beam is a solution to the paraxial equation. For curvatures that are too great it is not a valid approximation. Examples ======== >>> from sympy.physics.optics import BeamParameter >>> p = BeamParameter(530e-9, 1, w=1e-3) >>> p.waist_approximation_limit 1.06e-6/pi """ return 2*self.wavelen/pi ### # Utilities ### def waist2rayleigh(w, wavelen): """ Calculate the rayleigh range from the waist of a gaussian beam. See Also ======== rayleigh2waist, BeamParameter Examples ======== >>> from sympy.physics.optics import waist2rayleigh >>> from sympy import symbols >>> w, wavelen = symbols('w wavelen') >>> waist2rayleigh(w, wavelen) pi*w**2/wavelen """ w, wavelen = map(sympify, (w, wavelen)) return w**2*pi/wavelen def rayleigh2waist(z_r, wavelen): """Calculate the waist from the rayleigh range of a gaussian beam. See Also ======== waist2rayleigh, BeamParameter Examples ======== >>> from sympy.physics.optics import rayleigh2waist >>> from sympy import symbols >>> z_r, wavelen = symbols('z_r wavelen') >>> rayleigh2waist(z_r, wavelen) sqrt(wavelen*z_r)/sqrt(pi) """ z_r, wavelen = map(sympify, (z_r, wavelen)) return sqrt(z_r/pi*wavelen) def geometric_conj_ab(a, b): """ Conjugation relation for geometrical beams under paraxial conditions. Takes the distances to the optical element and returns the needed focal distance. See Also ======== geometric_conj_af, geometric_conj_bf Examples ======== >>> from sympy.physics.optics import geometric_conj_ab >>> from sympy import symbols >>> a, b = symbols('a b') >>> geometric_conj_ab(a, b) a*b/(a + b) """ a, b = map(sympify, (a, b)) if a.is_infinite or b.is_infinite: return a if b.is_infinite else b else: return a*b/(a + b) def geometric_conj_af(a, f): """ Conjugation relation for geometrical beams under paraxial conditions. Takes the object distance (for geometric_conj_af) or the image distance (for geometric_conj_bf) to the optical element and the focal distance. Then it returns the other distance needed for conjugation. See Also ======== geometric_conj_ab Examples ======== >>> from sympy.physics.optics.gaussopt import geometric_conj_af, geometric_conj_bf >>> from sympy import symbols >>> a, b, f = symbols('a b f') >>> geometric_conj_af(a, f) a*f/(a - f) >>> geometric_conj_bf(b, f) b*f/(b - f) """ a, f = map(sympify, (a, f)) return -geometric_conj_ab(a, -f) geometric_conj_bf = geometric_conj_af def gaussian_conj(s_in, z_r_in, f): """ Conjugation relation for gaussian beams. Parameters ========== s_in : the distance to optical element from the waist z_r_in : the rayleigh range of the incident beam f : the focal length of the optical element Returns ======= a tuple containing (s_out, z_r_out, m) s_out : the distance between the new waist and the optical element z_r_out : the rayleigh range of the emergent beam m : the ration between the new and the old waists Examples ======== >>> from sympy.physics.optics import gaussian_conj >>> from sympy import symbols >>> s_in, z_r_in, f = symbols('s_in z_r_in f') >>> gaussian_conj(s_in, z_r_in, f)[0] 1/(-1/(s_in + z_r_in**2/(-f + s_in)) + 1/f) >>> gaussian_conj(s_in, z_r_in, f)[1] z_r_in/(1 - s_in**2/f**2 + z_r_in**2/f**2) >>> gaussian_conj(s_in, z_r_in, f)[2] 1/sqrt(1 - s_in**2/f**2 + z_r_in**2/f**2) """ s_in, z_r_in, f = map(sympify, (s_in, z_r_in, f)) s_out = 1 / ( -1/(s_in + z_r_in**2/(s_in - f)) + 1/f ) m = 1/sqrt((1 - (s_in/f)**2) + (z_r_in/f)**2) z_r_out = z_r_in / ((1 - (s_in/f)**2) + (z_r_in/f)**2) return (s_out, z_r_out, m) def conjugate_gauss_beams(wavelen, waist_in, waist_out, **kwargs): """ Find the optical setup conjugating the object/image waists. Parameters ========== wavelen : the wavelength of the beam waist_in and waist_out : the waists to be conjugated f : the focal distance of the element used in the conjugation Returns ======= a tuple containing (s_in, s_out, f) s_in : the distance before the optical element s_out : the distance after the optical element f : the focal distance of the optical element Examples ======== >>> from sympy.physics.optics import conjugate_gauss_beams >>> from sympy import symbols, factor >>> l, w_i, w_o, f = symbols('l w_i w_o f') >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[0] f*(1 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2))) >>> factor(conjugate_gauss_beams(l, w_i, w_o, f=f)[1]) f*w_o**2*(w_i**2/w_o**2 - sqrt(w_i**2/w_o**2 - pi**2*w_i**4/(f**2*l**2)))/w_i**2 >>> conjugate_gauss_beams(l, w_i, w_o, f=f)[2] f """ #TODO add the other possible arguments wavelen, waist_in, waist_out = map(sympify, (wavelen, waist_in, waist_out)) m = waist_out / waist_in z = waist2rayleigh(waist_in, wavelen) if len(kwargs) != 1: raise ValueError("The function expects only one named argument") elif 'dist' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) elif 'f' in kwargs: f = sympify(kwargs['f']) s_in = f * (1 - sqrt(1/m**2 - z**2/f**2)) s_out = gaussian_conj(s_in, z, f)[0] elif 's_in' in kwargs: raise NotImplementedError(filldedent(''' Currently only focal length is supported as a parameter''')) else: raise ValueError(filldedent(''' The functions expects the focal length as a named argument''')) return (s_in, s_out, f) #TODO #def plot_beam(): # """Plot the beam radius as it propagates in space.""" # pass #TODO #def plot_beam_conjugation(): # """ # Plot the intersection of two beams. # # Represents the conjugation relation. # # See Also # ======== # # conjugate_gauss_beams # """ # pass
df6facb68f615b771c879aa26f66acb64b03f679cbaee0fbaa7a57a58b2ba253
from sympy import symbols, S, log, Rational from sympy.core.trace import Tr from sympy.external import import_module from sympy.physics.quantum.density import Density, entropy, fidelity from sympy.physics.quantum.state import Ket, TimeDepKet from sympy.physics.quantum.qubit import Qubit from sympy.physics.quantum.represent import represent from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.cartesian import XKet, PxKet, PxOp, XOp from sympy.physics.quantum.spin import JzKet from sympy.physics.quantum.operator import OuterProduct from sympy.functions import sqrt from sympy.utilities.pytest import raises from sympy.physics.quantum.matrixutils import scipy_sparse_matrix from sympy.physics.quantum.tensorproduct import TensorProduct def test_eval_args(): # check instance created assert isinstance(Density([Ket(0), 0.5], [Ket(1), 0.5]), Density) assert isinstance(Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]), Density) #test if Qubit object type preserved d = Density([Qubit('00'), 1/sqrt(2)], [Qubit('11'), 1/sqrt(2)]) for (state, prob) in d.args: assert isinstance(state, Qubit) # check for value error, when prob is not provided raises(ValueError, lambda: Density([Ket(0)], [Ket(1)])) def test_doit(): x, y = symbols('x y') A, B, C, D, E, F = symbols('A B C D E F', commutative=False) d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (0.5*(PxKet()*Dagger(PxKet())) + 0.5*(XKet()*Dagger(XKet()))) == d.doit() # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (0.5*(PxKet(x*y)*Dagger(PxKet(x*y))) + 0.5*(XKet(x*y)*Dagger(XKet(x*y)))) == d_with_sym.doit() d = Density([(A + B)*C, 1.0]) assert d.doit() == (1.0*A*C*Dagger(C)*Dagger(A) + 1.0*A*C*Dagger(C)*Dagger(B) + 1.0*B*C*Dagger(C)*Dagger(A) + 1.0*B*C*Dagger(C)*Dagger(B)) # With TensorProducts as args # Density with simple tensor products as args t = TensorProduct(A, B, C) d = Density([t, 1.0]) assert d.doit() == \ 1.0 * TensorProduct(A*Dagger(A), B*Dagger(B), C*Dagger(C)) # Density with multiple Tensorproducts as states t2 = TensorProduct(A, B) t3 = TensorProduct(C, D) d = Density([t2, 0.5], [t3, 0.5]) assert d.doit() == (0.5 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 0.5 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density with mixed states d = Density([t2 + t3, 1.0]) assert d.doit() == (1.0 * TensorProduct(A*Dagger(A), B*Dagger(B)) + 1.0 * TensorProduct(A*Dagger(C), B*Dagger(D)) + 1.0 * TensorProduct(C*Dagger(A), D*Dagger(B)) + 1.0 * TensorProduct(C*Dagger(C), D*Dagger(D))) #Density operators with spin states tp1 = TensorProduct(JzKet(1, 1), JzKet(1, -1)) d = Density([tp1, 1]) # full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(1, -1) * Dagger(JzKet(1, -1)) t = Tr(d, [1]) assert t.doit() == JzKet(1, 1) * Dagger(JzKet(1, 1)) # with another spin state tp2 = TensorProduct(JzKet(S.Half, S.Half), JzKet(S.Half, Rational(-1, 2))) d = Density([tp2, 1]) #full trace t = Tr(d) assert t.doit() == 1 #Partial trace on density operators with spin states t = Tr(d, [0]) assert t.doit() == JzKet(S.Half, Rational(-1, 2)) * Dagger(JzKet(S.Half, Rational(-1, 2))) t = Tr(d, [1]) assert t.doit() == JzKet(S.Half, S.Half) * Dagger(JzKet(S.Half, S.Half)) def test_apply_op(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) assert d.apply_op(XOp()) == Density([XOp()*Ket(0), 0.5], [XOp()*Ket(1), 0.5]) def test_represent(): x, y = symbols('x y') d = Density([XKet(), 0.5], [PxKet(), 0.5]) assert (represent(0.5*(PxKet()*Dagger(PxKet()))) + represent(0.5*(XKet()*Dagger(XKet())))) == represent(d) # check for kets with expr in them d_with_sym = Density([XKet(x*y), 0.5], [PxKet(x*y), 0.5]) assert (represent(0.5*(PxKet(x*y)*Dagger(PxKet(x*y)))) + represent(0.5*(XKet(x*y)*Dagger(XKet(x*y))))) == \ represent(d_with_sym) # check when given explicit basis assert (represent(0.5*(XKet()*Dagger(XKet())), basis=PxOp()) + represent(0.5*(PxKet()*Dagger(PxKet())), basis=PxOp())) == \ represent(d, basis=PxOp()) def test_states(): d = Density([Ket(0), 0.5], [Ket(1), 0.5]) states = d.states() assert states[0] == Ket(0) and states[1] == Ket(1) def test_probs(): d = Density([Ket(0), .75], [Ket(1), 0.25]) probs = d.probs() assert probs[0] == 0.75 and probs[1] == 0.25 #probs can be symbols x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = d.probs() assert probs[0] == x and probs[1] == y def test_get_state(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) states = (d.get_state(0), d.get_state(1)) assert states[0] == Ket(0) and states[1] == Ket(1) def test_get_prob(): x, y = symbols('x y') d = Density([Ket(0), x], [Ket(1), y]) probs = (d.get_prob(0), d.get_prob(1)) assert probs[0] == x and probs[1] == y def test_entropy(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, S.Half), (down, S.Half)) # test for density object ent = entropy(d) assert entropy(d) == log(2)/2 assert d.entropy() == log(2)/2 np = import_module('numpy', min_module_version='1.4.0') if np: #do this test only if 'numpy' is available on test machine np_mat = represent(d, format='numpy') ent = entropy(np_mat) assert isinstance(np_mat, np.matrixlib.defmatrix.matrix) assert ent.real == 0.69314718055994529 assert ent.imag == 0 scipy = import_module('scipy', __import__kwargs={'fromlist': ['sparse']}) if scipy and np: #do this test only if numpy and scipy are available mat = represent(d, format="scipy.sparse") assert isinstance(mat, scipy_sparse_matrix) assert ent.real == 0.69314718055994529 assert ent.imag == 0 def test_eval_trace(): up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) d = Density((up, 0.5), (down, 0.5)) t = Tr(d) assert t.doit() == 1 #test dummy time dependent states class TestTimeDepKet(TimeDepKet): def _eval_trace(self, bra, **options): return 1 x, t = symbols('x t') k1 = TestTimeDepKet(0, 0.5) k2 = TestTimeDepKet(0, 1) d = Density([k1, 0.5], [k2, 0.5]) assert d.doit() == (0.5 * OuterProduct(k1, k1.dual) + 0.5 * OuterProduct(k2, k2.dual)) t = Tr(d) assert t.doit() == 1 def test_fidelity(): #test with kets up = JzKet(S.Half, S.Half) down = JzKet(S.Half, Rational(-1, 2)) updown = (S.One/sqrt(2))*up + (S.One/sqrt(2))*down #check with matrices up_dm = represent(up * Dagger(up)) down_dm = represent(down * Dagger(down)) updown_dm = represent(updown * Dagger(updown)) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert fidelity(up_dm, down_dm) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check with density up_dm = Density([up, 1.0]) down_dm = Density([down, 1.0]) updown_dm = Density([updown, 1.0]) assert abs(fidelity(up_dm, up_dm) - 1) < 1e-3 assert abs(fidelity(up_dm, down_dm)) < 1e-3 assert abs(fidelity(up_dm, updown_dm) - (S.One/sqrt(2))) < 1e-3 assert abs(fidelity(updown_dm, down_dm) - (S.One/sqrt(2))) < 1e-3 #check mixed states with density updown2 = sqrt(3)/2*up + S.Half*down d1 = Density([updown, 0.25], [updown2, 0.75]) d2 = Density([updown, 0.75], [updown2, 0.25]) assert abs(fidelity(d1, d2) - 0.991) < 1e-3 assert abs(fidelity(d2, d1) - fidelity(d1, d2)) < 1e-3 #using qubits/density(pure states) state1 = Qubit('0') state2 = Qubit('1') state3 = S.One/sqrt(2)*state1 + S.One/sqrt(2)*state2 state4 = sqrt(Rational(2, 3))*state1 + S.One/sqrt(3)*state2 state1_dm = Density([state1, 1]) state2_dm = Density([state2, 1]) state3_dm = Density([state3, 1]) assert fidelity(state1_dm, state1_dm) == 1 assert fidelity(state1_dm, state2_dm) == 0 assert abs(fidelity(state1_dm, state3_dm) - 1/sqrt(2)) < 1e-3 assert abs(fidelity(state3_dm, state2_dm) - 1/sqrt(2)) < 1e-3 #using qubits/density(mixed states) d1 = Density([state3, 0.70], [state4, 0.30]) d2 = Density([state3, 0.20], [state4, 0.80]) assert abs(fidelity(d1, d1) - 1) < 1e-3 assert abs(fidelity(d1, d2) - 0.996) < 1e-3 assert abs(fidelity(d1, d2) - fidelity(d2, d1)) < 1e-3 #TODO: test for invalid arguments # non-square matrix mat1 = [[0, 0], [0, 0], [0, 0]] mat2 = [[0, 0], [0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unequal dimensions mat1 = [[0, 0], [0, 0]] mat2 = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] raises(ValueError, lambda: fidelity(mat1, mat2)) # unsupported data-type x, y = 1, 2 # random values that is not a matrix raises(ValueError, lambda: fidelity(x, y))
ba37968442654b27c76b9723bdb7ba21fd6ba0d11f0b71f68e6d41adf867fdea
from sympy.external import import_module from sympy import Mul, Integer from sympy.core.compatibility import PY3 from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.gate import (X, Y, Z, H, CNOT, IdentityGate, CGate, PhaseGate, TGate) from sympy.physics.quantum.identitysearch import (generate_gate_rules, generate_equivalent_ids, GateIdentity, bfs_identity_search, is_scalar_sparse_matrix, is_scalar_nonsparse_matrix, is_degenerate, is_reducible) from sympy.utilities.pytest import skip, XFAIL def create_gate_sequence(qubit=0): gates = (X(qubit), Y(qubit), Z(qubit), H(qubit)) return gates def test_generate_gate_rules_1(): # Test with tuples (x, y, z, h) = create_gate_sequence() ph = PhaseGate(0) cgate_t = CGate(0, TGate(1)) assert generate_gate_rules((x,)) == {((x,), ())} gate_rules = set([((x, x), ()), ((x,), (x,))]) assert generate_gate_rules((x, x)) == gate_rules gate_rules = set([((x, y, x), ()), ((y, x, x), ()), ((x, x, y), ()), ((y, x), (x,)), ((x, y), (x,)), ((y,), (x, x))]) assert generate_gate_rules((x, y, x)) == gate_rules gate_rules = set([((x, y, z), ()), ((y, z, x), ()), ((z, x, y), ()), ((), (x, z, y)), ((), (y, x, z)), ((), (z, y, x)), ((x,), (z, y)), ((y, z), (x,)), ((y,), (x, z)), ((z, x), (y,)), ((z,), (y, x)), ((x, y), (z,))]) actual = generate_gate_rules((x, y, z)) assert actual == gate_rules gate_rules = set( [((), (h, z, y, x)), ((), (x, h, z, y)), ((), (y, x, h, z)), ((), (z, y, x, h)), ((h,), (z, y, x)), ((x,), (h, z, y)), ((y,), (x, h, z)), ((z,), (y, x, h)), ((h, x), (z, y)), ((x, y), (h, z)), ((y, z), (x, h)), ((z, h), (y, x)), ((h, x, y), (z,)), ((x, y, z), (h,)), ((y, z, h), (x,)), ((z, h, x), (y,)), ((h, x, y, z), ()), ((x, y, z, h), ()), ((y, z, h, x), ()), ((z, h, x, y), ())]) actual = generate_gate_rules((x, y, z, h)) assert actual == gate_rules gate_rules = set([((), (cgate_t**(-1), ph**(-1), x)), ((), (ph**(-1), x, cgate_t**(-1))), ((), (x, cgate_t**(-1), ph**(-1))), ((cgate_t,), (ph**(-1), x)), ((ph,), (x, cgate_t**(-1))), ((x,), (cgate_t**(-1), ph**(-1))), ((cgate_t, x), (ph**(-1),)), ((ph, cgate_t), (x,)), ((x, ph), (cgate_t**(-1),)), ((cgate_t, x, ph), ()), ((ph, cgate_t, x), ()), ((x, ph, cgate_t), ())]) actual = generate_gate_rules((x, ph, cgate_t)) assert actual == gate_rules gate_rules = set([(Integer(1), cgate_t**(-1)*ph**(-1)*x), (Integer(1), ph**(-1)*x*cgate_t**(-1)), (Integer(1), x*cgate_t**(-1)*ph**(-1)), (cgate_t, ph**(-1)*x), (ph, x*cgate_t**(-1)), (x, cgate_t**(-1)*ph**(-1)), (cgate_t*x, ph**(-1)), (ph*cgate_t, x), (x*ph, cgate_t**(-1)), (cgate_t*x*ph, Integer(1)), (ph*cgate_t*x, Integer(1)), (x*ph*cgate_t, Integer(1))]) actual = generate_gate_rules((x, ph, cgate_t), return_as_muls=True) assert actual == gate_rules def test_generate_gate_rules_2(): # Test with Muls (x, y, z, h) = create_gate_sequence() ph = PhaseGate(0) cgate_t = CGate(0, TGate(1)) # Note: 1 (type int) is not the same as 1 (type One) expected = {(x, Integer(1))} assert generate_gate_rules((x,), return_as_muls=True) == expected expected = {(Integer(1), Integer(1))} assert generate_gate_rules(x*x, return_as_muls=True) == expected expected = {((), ())} assert generate_gate_rules(x*x, return_as_muls=False) == expected gate_rules = set([(x*y*x, Integer(1)), (y, Integer(1)), (y*x, x), (x*y, x)]) assert generate_gate_rules(x*y*x, return_as_muls=True) == gate_rules gate_rules = set([(x*y*z, Integer(1)), (y*z*x, Integer(1)), (z*x*y, Integer(1)), (Integer(1), x*z*y), (Integer(1), y*x*z), (Integer(1), z*y*x), (x, z*y), (y*z, x), (y, x*z), (z*x, y), (z, y*x), (x*y, z)]) actual = generate_gate_rules(x*y*z, return_as_muls=True) assert actual == gate_rules gate_rules = set([(Integer(1), h*z*y*x), (Integer(1), x*h*z*y), (Integer(1), y*x*h*z), (Integer(1), z*y*x*h), (h, z*y*x), (x, h*z*y), (y, x*h*z), (z, y*x*h), (h*x, z*y), (z*h, y*x), (x*y, h*z), (y*z, x*h), (h*x*y, z), (x*y*z, h), (y*z*h, x), (z*h*x, y), (h*x*y*z, Integer(1)), (x*y*z*h, Integer(1)), (y*z*h*x, Integer(1)), (z*h*x*y, Integer(1))]) actual = generate_gate_rules(x*y*z*h, return_as_muls=True) assert actual == gate_rules gate_rules = set([(Integer(1), cgate_t**(-1)*ph**(-1)*x), (Integer(1), ph**(-1)*x*cgate_t**(-1)), (Integer(1), x*cgate_t**(-1)*ph**(-1)), (cgate_t, ph**(-1)*x), (ph, x*cgate_t**(-1)), (x, cgate_t**(-1)*ph**(-1)), (cgate_t*x, ph**(-1)), (ph*cgate_t, x), (x*ph, cgate_t**(-1)), (cgate_t*x*ph, Integer(1)), (ph*cgate_t*x, Integer(1)), (x*ph*cgate_t, Integer(1))]) actual = generate_gate_rules(x*ph*cgate_t, return_as_muls=True) assert actual == gate_rules gate_rules = set([((), (cgate_t**(-1), ph**(-1), x)), ((), (ph**(-1), x, cgate_t**(-1))), ((), (x, cgate_t**(-1), ph**(-1))), ((cgate_t,), (ph**(-1), x)), ((ph,), (x, cgate_t**(-1))), ((x,), (cgate_t**(-1), ph**(-1))), ((cgate_t, x), (ph**(-1),)), ((ph, cgate_t), (x,)), ((x, ph), (cgate_t**(-1),)), ((cgate_t, x, ph), ()), ((ph, cgate_t, x), ()), ((x, ph, cgate_t), ())]) actual = generate_gate_rules(x*ph*cgate_t) assert actual == gate_rules def test_generate_equivalent_ids_1(): # Test with tuples (x, y, z, h) = create_gate_sequence() assert generate_equivalent_ids((x,)) == {(x,)} assert generate_equivalent_ids((x, x)) == {(x, x)} assert generate_equivalent_ids((x, y)) == {(x, y), (y, x)} gate_seq = (x, y, z) gate_ids = set([(x, y, z), (y, z, x), (z, x, y), (z, y, x), (y, x, z), (x, z, y)]) assert generate_equivalent_ids(gate_seq) == gate_ids gate_ids = set([Mul(x, y, z), Mul(y, z, x), Mul(z, x, y), Mul(z, y, x), Mul(y, x, z), Mul(x, z, y)]) assert generate_equivalent_ids(gate_seq, return_as_muls=True) == gate_ids gate_seq = (x, y, z, h) gate_ids = set([(x, y, z, h), (y, z, h, x), (h, x, y, z), (h, z, y, x), (z, y, x, h), (y, x, h, z), (z, h, x, y), (x, h, z, y)]) assert generate_equivalent_ids(gate_seq) == gate_ids gate_seq = (x, y, x, y) gate_ids = {(x, y, x, y), (y, x, y, x)} assert generate_equivalent_ids(gate_seq) == gate_ids cgate_y = CGate((1,), y) gate_seq = (y, cgate_y, y, cgate_y) gate_ids = {(y, cgate_y, y, cgate_y), (cgate_y, y, cgate_y, y)} assert generate_equivalent_ids(gate_seq) == gate_ids cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) gate_seq = (cnot, h, cgate_z, h) gate_ids = set([(cnot, h, cgate_z, h), (h, cgate_z, h, cnot), (h, cnot, h, cgate_z), (cgate_z, h, cnot, h)]) assert generate_equivalent_ids(gate_seq) == gate_ids def test_generate_equivalent_ids_2(): # Test with Muls (x, y, z, h) = create_gate_sequence() assert generate_equivalent_ids((x,), return_as_muls=True) == {x} gate_ids = {Integer(1)} assert generate_equivalent_ids(x*x, return_as_muls=True) == gate_ids gate_ids = {x*y, y*x} assert generate_equivalent_ids(x*y, return_as_muls=True) == gate_ids gate_ids = {(x, y), (y, x)} assert generate_equivalent_ids(x*y) == gate_ids circuit = Mul(*(x, y, z)) gate_ids = set([x*y*z, y*z*x, z*x*y, z*y*x, y*x*z, x*z*y]) assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids circuit = Mul(*(x, y, z, h)) gate_ids = set([x*y*z*h, y*z*h*x, h*x*y*z, h*z*y*x, z*y*x*h, y*x*h*z, z*h*x*y, x*h*z*y]) assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids circuit = Mul(*(x, y, x, y)) gate_ids = {x*y*x*y, y*x*y*x} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids cgate_y = CGate((1,), y) circuit = Mul(*(y, cgate_y, y, cgate_y)) gate_ids = {y*cgate_y*y*cgate_y, cgate_y*y*cgate_y*y} assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids cnot = CNOT(1, 0) cgate_z = CGate((0,), Z(1)) circuit = Mul(*(cnot, h, cgate_z, h)) gate_ids = set([cnot*h*cgate_z*h, h*cgate_z*h*cnot, h*cnot*h*cgate_z, cgate_z*h*cnot*h]) assert generate_equivalent_ids(circuit, return_as_muls=True) == gate_ids def test_is_scalar_nonsparse_matrix(): numqubits = 2 id_only = False id_gate = (IdentityGate(1),) actual = is_scalar_nonsparse_matrix(id_gate, numqubits, id_only) assert actual is True x0 = X(0) xx_circuit = (x0, x0) actual = is_scalar_nonsparse_matrix(xx_circuit, numqubits, id_only) assert actual is True x1 = X(1) y1 = Y(1) xy_circuit = (x1, y1) actual = is_scalar_nonsparse_matrix(xy_circuit, numqubits, id_only) assert actual is False z1 = Z(1) xyz_circuit = (x1, y1, z1) actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only) assert actual is True cnot = CNOT(1, 0) cnot_circuit = (cnot, cnot) actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only) assert actual is True h = H(0) hh_circuit = (h, h) actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only) assert actual is True h1 = H(1) xhzh_circuit = (x1, h1, z1, h1) actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only) assert actual is True id_only = True actual = is_scalar_nonsparse_matrix(xhzh_circuit, numqubits, id_only) assert actual is True actual = is_scalar_nonsparse_matrix(xyz_circuit, numqubits, id_only) assert actual is False actual = is_scalar_nonsparse_matrix(cnot_circuit, numqubits, id_only) assert actual is True actual = is_scalar_nonsparse_matrix(hh_circuit, numqubits, id_only) assert actual is True def test_is_scalar_sparse_matrix(): np = import_module('numpy') if not np: skip("numpy not installed.") scipy = import_module('scipy', __import__kwargs={'fromlist': ['sparse']}) if not scipy: skip("scipy not installed.") numqubits = 2 id_only = False id_gate = (IdentityGate(1),) assert is_scalar_sparse_matrix(id_gate, numqubits, id_only) is True x0 = X(0) xx_circuit = (x0, x0) assert is_scalar_sparse_matrix(xx_circuit, numqubits, id_only) is True x1 = X(1) y1 = Y(1) xy_circuit = (x1, y1) assert is_scalar_sparse_matrix(xy_circuit, numqubits, id_only) is False z1 = Z(1) xyz_circuit = (x1, y1, z1) assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is True cnot = CNOT(1, 0) cnot_circuit = (cnot, cnot) assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True h = H(0) hh_circuit = (h, h) assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True # NOTE: # The elements of the sparse matrix for the following circuit # is actually 1.0000000000000002+0.0j. h1 = H(1) xhzh_circuit = (x1, h1, z1, h1) assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True id_only = True assert is_scalar_sparse_matrix(xhzh_circuit, numqubits, id_only) is True assert is_scalar_sparse_matrix(xyz_circuit, numqubits, id_only) is False assert is_scalar_sparse_matrix(cnot_circuit, numqubits, id_only) is True assert is_scalar_sparse_matrix(hh_circuit, numqubits, id_only) is True def test_is_degenerate(): (x, y, z, h) = create_gate_sequence() gate_id = GateIdentity(x, y, z) ids = {gate_id} another_id = (z, y, x) assert is_degenerate(ids, another_id) is True def test_is_reducible(): nqubits = 2 (x, y, z, h) = create_gate_sequence() circuit = (x, y, y) assert is_reducible(circuit, nqubits, 1, 3) is True circuit = (x, y, x) assert is_reducible(circuit, nqubits, 1, 3) is False circuit = (x, y, y, x) assert is_reducible(circuit, nqubits, 0, 4) is True circuit = (x, y, y, x) assert is_reducible(circuit, nqubits, 1, 3) is True circuit = (x, y, z, y, y) assert is_reducible(circuit, nqubits, 1, 5) is True def test_bfs_identity_search(): assert bfs_identity_search([], 1) == set() (x, y, z, h) = create_gate_sequence() gate_list = [x] id_set = {GateIdentity(x, x)} assert bfs_identity_search(gate_list, 1, max_depth=2) == id_set # Set should not contain degenerate quantum circuits gate_list = [x, y, z] id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(x, y, z)]) assert bfs_identity_search(gate_list, 1) == id_set id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(y, z, y, z)]) assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set gate_list = [x, y, z, h] id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(x, h, z, h), GateIdentity(y, z, y, z), GateIdentity(y, h, y, h)]) assert bfs_identity_search(gate_list, 1) == id_set id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h)]) assert id_set == bfs_identity_search(gate_list, 1, max_depth=3, identity_only=True) id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, y, z), GateIdentity(x, y, x, y), GateIdentity(x, z, x, z), GateIdentity(x, h, z, h), GateIdentity(y, z, y, z), GateIdentity(y, h, y, h), GateIdentity(x, y, h, x, h), GateIdentity(x, z, h, y, h), GateIdentity(y, z, h, z, h)]) assert bfs_identity_search(gate_list, 1, max_depth=5) == id_set id_set = set([GateIdentity(x, x), GateIdentity(y, y), GateIdentity(z, z), GateIdentity(h, h), GateIdentity(x, h, z, h)]) assert id_set == bfs_identity_search(gate_list, 1, max_depth=4, identity_only=True) cnot = CNOT(1, 0) gate_list = [x, cnot] id_set = set([GateIdentity(x, x), GateIdentity(cnot, cnot), GateIdentity(x, cnot, x, cnot)]) assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set cgate_x = CGate((1,), x) gate_list = [x, cgate_x] id_set = set([GateIdentity(x, x), GateIdentity(cgate_x, cgate_x), GateIdentity(x, cgate_x, x, cgate_x)]) assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set cgate_z = CGate((0,), Z(1)) gate_list = [cnot, cgate_z, h] id_set = set([GateIdentity(h, h), GateIdentity(cgate_z, cgate_z), GateIdentity(cnot, cnot), GateIdentity(cnot, h, cgate_z, h)]) assert bfs_identity_search(gate_list, 2, max_depth=4) == id_set s = PhaseGate(0) t = TGate(0) gate_list = [s, t] id_set = {GateIdentity(s, s, s, s)} assert bfs_identity_search(gate_list, 1, max_depth=4) == id_set def test_bfs_identity_search_xfail(): s = PhaseGate(0) t = TGate(0) gate_list = [Dagger(s), t] id_set = {GateIdentity(Dagger(s), t, t)} assert bfs_identity_search(gate_list, 1, max_depth=3) == id_set
08d32fbd33463522173c62da623c403852a4fb64e7e32a772fdc3e85cd483271
from sympy.physics.quantum import Dagger from sympy.physics.quantum.boson import BosonOp from sympy.physics.quantum.fermion import FermionOp from sympy.physics.quantum.operatorordering import (normal_order, normal_ordered_form) def test_normal_order(): a = BosonOp('a') c = FermionOp('c') assert normal_order(a * Dagger(a)) == Dagger(a) * a assert normal_order(Dagger(a) * a) == Dagger(a) * a assert normal_order(a * Dagger(a) ** 2) == Dagger(a) ** 2 * a assert normal_order(c * Dagger(c)) == - Dagger(c) * c assert normal_order(Dagger(c) * c) == Dagger(c) * c assert normal_order(c * Dagger(c) ** 2) == Dagger(c) ** 2 * c def test_normal_ordered_form(): a = BosonOp('a') c = FermionOp('c') assert normal_ordered_form(Dagger(a) * a) == Dagger(a) * a assert normal_ordered_form(a * Dagger(a)) == 1 + Dagger(a) * a assert normal_ordered_form(a ** 2 * Dagger(a)) == \ 2 * a + Dagger(a) * a ** 2 assert normal_ordered_form(a ** 3 * Dagger(a)) == \ 3 * a ** 2 + Dagger(a) * a ** 3 assert normal_ordered_form(Dagger(c) * c) == Dagger(c) * c assert normal_ordered_form(c * Dagger(c)) == 1 - Dagger(c) * c assert normal_ordered_form(c ** 2 * Dagger(c)) == Dagger(c) * c ** 2 assert normal_ordered_form(c ** 3 * Dagger(c)) == \ c ** 2 - Dagger(c) * c ** 3
c2af8fe01973fa439b72470b6cdeae7126acd9ae6b4479678352c52d481f191e
from sympy.physics.quantum.qasm import Qasm, prod, flip_index, trim,\ get_index, nonblank, fullsplit, fixcommand, stripquotes, read_qasm from sympy.physics.quantum.gate import X, Z, H, S, T from sympy.physics.quantum.gate import CNOT, SWAP, CPHASE, CGate, CGateS from sympy.physics.quantum.circuitplot import Mz def test_qasm_readqasm(): qasm_lines = """\ qubit q_0 qubit q_1 h q_0 cnot q_0,q_1 """ q = read_qasm(qasm_lines) assert q.get_circuit() == CNOT(1,0)*H(1) def test_qasm_ex1(): q = Qasm('qubit q0', 'qubit q1', 'h q0', 'cnot q0,q1') assert q.get_circuit() == CNOT(1,0)*H(1) def test_qasm_ex1_methodcalls(): q = Qasm() q.qubit('q_0') q.qubit('q_1') q.h('q_0') q.cnot('q_0', 'q_1') assert q.get_circuit() == CNOT(1,0)*H(1) def test_qasm_swap(): q = Qasm('qubit q0', 'qubit q1', 'cnot q0,q1', 'cnot q1,q0', 'cnot q0,q1') assert q.get_circuit() == CNOT(1,0)*CNOT(0,1)*CNOT(1,0) def test_qasm_ex2(): q = Qasm('qubit q_0', 'qubit q_1', 'qubit q_2', 'h q_1', 'cnot q_1,q_2', 'cnot q_0,q_1', 'h q_0', 'measure q_1', 'measure q_0', 'c-x q_1,q_2', 'c-z q_0,q_2') assert q.get_circuit() == CGate(2,Z(0))*CGate(1,X(0))*Mz(2)*Mz(1)*H(2)*CNOT(2,1)*CNOT(1,0)*H(1) def test_qasm_1q(): for symbol, gate in [('x', X), ('z', Z), ('h', H), ('s', S), ('t', T), ('measure', Mz)]: q = Qasm('qubit q_0', '%s q_0' % symbol) assert q.get_circuit() == gate(0) def test_qasm_2q(): for symbol, gate in [('cnot', CNOT), ('swap', SWAP), ('cphase', CPHASE)]: q = Qasm('qubit q_0', 'qubit q_1', '%s q_0,q_1' % symbol) assert q.get_circuit() == gate(1,0) def test_qasm_3q(): q = Qasm('qubit q0', 'qubit q1', 'qubit q2', 'toffoli q2,q1,q0') assert q.get_circuit() == CGateS((0,1),X(2)) def test_qasm_prod(): assert prod([1, 2, 3]) == 6 assert prod([H(0), X(1)])== H(0)*X(1) def test_qasm_flip_index(): assert flip_index(0, 2) == 1 assert flip_index(1, 2) == 0 def test_qasm_trim(): assert trim('nothing happens here') == 'nothing happens here' assert trim("Something #happens here") == "Something " def test_qasm_get_index(): assert get_index('q0', ['q0', 'q1']) == 1 assert get_index('q1', ['q0', 'q1']) == 0 def test_qasm_nonblank(): assert list(nonblank('abcd')) == list('abcd') assert list(nonblank('abc ')) == list('abc') def test_qasm_fullsplit(): assert fullsplit('g q0,q1,q2, q3') == ('g', ['q0', 'q1', 'q2', 'q3']) def test_qasm_fixcommand(): assert fixcommand('foo') == 'foo' assert fixcommand('def') == 'qdef' def test_qasm_stripquotes(): assert stripquotes("'S'") == 'S' assert stripquotes('"S"') == 'S' assert stripquotes('S') == 'S' def test_qasm_qdef(): # weaker test condition (str) since we don't have access to the actual class q = Qasm("def Q,0,Q",'qubit q0','Q q0') assert str(q.get_circuit()) == 'Q(0)' q = Qasm("def CQ,1,Q", 'qubit q0', 'qubit q1', 'CQ q0,q1') assert str(q.get_circuit()) == 'C((1),Q(0))'
37c3bb81d172fba7856c894c4b1bf4733ddd5246a3ac8fa6d02db72636f84a9b
# -*- encoding: utf-8 -*- """ TODO: * Address Issue 2251, printing of spin states """ from sympy.physics.quantum.anticommutator import AntiCommutator from sympy.physics.quantum.cg import CG, Wigner3j, Wigner6j, Wigner9j from sympy.physics.quantum.commutator import Commutator from sympy.physics.quantum.constants import hbar from sympy.physics.quantum.dagger import Dagger from sympy.physics.quantum.gate import CGate, CNotGate, IdentityGate, UGate, XGate from sympy.physics.quantum.hilbert import ComplexSpace, FockSpace, HilbertSpace, L2 from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.operator import Operator, OuterProduct, DifferentialOperator from sympy.physics.quantum.qexpr import QExpr from sympy.physics.quantum.qubit import Qubit, IntQubit from sympy.physics.quantum.spin import Jz, J2, JzBra, JzBraCoupled, JzKet, JzKetCoupled, Rotation, WignerD from sympy.physics.quantum.state import Bra, Ket, TimeDepBra, TimeDepKet from sympy.physics.quantum.tensorproduct import TensorProduct from sympy.physics.quantum.sho1d import RaisingOp from sympy import Derivative, Function, Interval, Matrix, Pow, S, symbols, Symbol, oo from sympy.core.compatibility import exec_ from sympy.utilities.pytest import XFAIL # Imports used in srepr strings from sympy.physics.quantum.spin import JzOp from sympy.printing import srepr from sympy.printing.pretty import pretty as xpretty from sympy.printing.latex import latex from sympy.core.compatibility import u_decode as u MutableDenseMatrix = Matrix ENV = {} exec_('from sympy import *', ENV) exec_('from sympy.physics.quantum import *', ENV) exec_('from sympy.physics.quantum.cg import *', ENV) exec_('from sympy.physics.quantum.spin import *', ENV) exec_('from sympy.physics.quantum.hilbert import *', ENV) exec_('from sympy.physics.quantum.qubit import *', ENV) exec_('from sympy.physics.quantum.qexpr import *', ENV) exec_('from sympy.physics.quantum.gate import *', ENV) exec_('from sympy.physics.quantum.constants import *', ENV) def sT(expr, string): """ sT := sreprTest from sympy/printing/tests/test_repr.py """ assert srepr(expr) == string assert eval(string, ENV) == expr def pretty(expr): """ASCII pretty-printing""" return xpretty(expr, use_unicode=False, wrap_line=False) def upretty(expr): """Unicode pretty-printing""" return xpretty(expr, use_unicode=True, wrap_line=False) def test_anticommutator(): A = Operator('A') B = Operator('B') ac = AntiCommutator(A, B) ac_tall = AntiCommutator(A**2, B) assert str(ac) == '{A,B}' assert pretty(ac) == '{A,B}' assert upretty(ac) == u'{A,B}' assert latex(ac) == r'\left\{A,B\right\}' sT(ac, "AntiCommutator(Operator(Symbol('A')),Operator(Symbol('B')))") assert str(ac_tall) == '{A**2,B}' ascii_str = \ """\ / 2 \\\n\ <A ,B>\n\ \\ /\ """ ucode_str = \ u("""\ ⎧ 2 ⎫\n\ ⎨A ,B⎬\n\ ⎩ ⎭\ """) assert pretty(ac_tall) == ascii_str assert upretty(ac_tall) == ucode_str assert latex(ac_tall) == r'\left\{A^{2},B\right\}' sT(ac_tall, "AntiCommutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") def test_cg(): cg = CG(1, 2, 3, 4, 5, 6) wigner3j = Wigner3j(1, 2, 3, 4, 5, 6) wigner6j = Wigner6j(1, 2, 3, 4, 5, 6) wigner9j = Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9) assert str(cg) == 'CG(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ 5,6 \n\ C \n\ 1,2,3,4\ """ ucode_str = \ u("""\ 5,6 \n\ C \n\ 1,2,3,4\ """) assert pretty(cg) == ascii_str assert upretty(cg) == ucode_str assert latex(cg) == r'C^{5,6}_{1,2,3,4}' sT(cg, "CG(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner3j) == 'Wigner3j(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ /1 3 5\\\n\ | |\n\ \\2 4 6/\ """ ucode_str = \ u("""\ ⎛1 3 5⎞\n\ ⎜ ⎟\n\ ⎝2 4 6⎠\ """) assert pretty(wigner3j) == ascii_str assert upretty(wigner3j) == ucode_str assert latex(wigner3j) == \ r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right)' sT(wigner3j, "Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner6j) == 'Wigner6j(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ /1 2 3\\\n\ < >\n\ \\4 5 6/\ """ ucode_str = \ u("""\ ⎧1 2 3⎫\n\ ⎨ ⎬\n\ ⎩4 5 6⎭\ """) assert pretty(wigner6j) == ascii_str assert upretty(wigner6j) == ucode_str assert latex(wigner6j) == \ r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right\}' sT(wigner6j, "Wigner6j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(wigner9j) == 'Wigner9j(1, 2, 3, 4, 5, 6, 7, 8, 9)' ascii_str = \ """\ /1 2 3\\\n\ | |\n\ <4 5 6>\n\ | |\n\ \\7 8 9/\ """ ucode_str = \ u("""\ ⎧1 2 3⎫\n\ ⎪ ⎪\n\ ⎨4 5 6⎬\n\ ⎪ ⎪\n\ ⎩7 8 9⎭\ """) assert pretty(wigner9j) == ascii_str assert upretty(wigner9j) == ucode_str assert latex(wigner9j) == \ r'\left\{\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{array}\right\}' sT(wigner9j, "Wigner9j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6), Integer(7), Integer(8), Integer(9))") def test_commutator(): A = Operator('A') B = Operator('B') c = Commutator(A, B) c_tall = Commutator(A**2, B) assert str(c) == '[A,B]' assert pretty(c) == '[A,B]' assert upretty(c) == u'[A,B]' assert latex(c) == r'\left[A,B\right]' sT(c, "Commutator(Operator(Symbol('A')),Operator(Symbol('B')))") assert str(c_tall) == '[A**2,B]' ascii_str = \ """\ [ 2 ]\n\ [A ,B]\ """ ucode_str = \ u("""\ ⎡ 2 ⎤\n\ ⎣A ,B⎦\ """) assert pretty(c_tall) == ascii_str assert upretty(c_tall) == ucode_str assert latex(c_tall) == r'\left[A^{2},B\right]' sT(c_tall, "Commutator(Pow(Operator(Symbol('A')), Integer(2)),Operator(Symbol('B')))") def test_constants(): assert str(hbar) == 'hbar' assert pretty(hbar) == 'hbar' assert upretty(hbar) == u'ℏ' assert latex(hbar) == r'\hbar' sT(hbar, "HBar()") def test_dagger(): x = symbols('x') expr = Dagger(x) assert str(expr) == 'Dagger(x)' ascii_str = \ """\ +\n\ x \ """ ucode_str = \ u("""\ †\n\ x \ """) assert pretty(expr) == ascii_str assert upretty(expr) == ucode_str assert latex(expr) == r'x^{\dagger}' sT(expr, "Dagger(Symbol('x'))") @XFAIL def test_gate_failing(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) g = UGate((0,), uMat) assert str(g) == 'U(0)' def test_gate(): a, b, c, d = symbols('a,b,c,d') uMat = Matrix([[a, b], [c, d]]) q = Qubit(1, 0, 1, 0, 1) g1 = IdentityGate(2) g2 = CGate((3, 0), XGate(1)) g3 = CNotGate(1, 0) g4 = UGate((0,), uMat) assert str(g1) == '1(2)' assert pretty(g1) == '1 \n 2' assert upretty(g1) == u'1 \n 2' assert latex(g1) == r'1_{2}' sT(g1, "IdentityGate(Integer(2))") assert str(g1*q) == '1(2)*|10101>' ascii_str = \ """\ 1 *|10101>\n\ 2 \ """ ucode_str = \ u("""\ 1 ⋅❘10101⟩\n\ 2 \ """) assert pretty(g1*q) == ascii_str assert upretty(g1*q) == ucode_str assert latex(g1*q) == r'1_{2} {\left|10101\right\rangle }' sT(g1*q, "Mul(IdentityGate(Integer(2)), Qubit(Integer(1),Integer(0),Integer(1),Integer(0),Integer(1)))") assert str(g2) == 'C((3,0),X(1))' ascii_str = \ """\ C /X \\\n\ 3,0\\ 1/\ """ ucode_str = \ u("""\ C ⎛X ⎞\n\ 3,0⎝ 1⎠\ """) assert pretty(g2) == ascii_str assert upretty(g2) == ucode_str assert latex(g2) == r'C_{3,0}{\left(X_{1}\right)}' sT(g2, "CGate(Tuple(Integer(3), Integer(0)),XGate(Integer(1)))") assert str(g3) == 'CNOT(1,0)' ascii_str = \ """\ CNOT \n\ 1,0\ """ ucode_str = \ u("""\ CNOT \n\ 1,0\ """) assert pretty(g3) == ascii_str assert upretty(g3) == ucode_str assert latex(g3) == r'CNOT_{1,0}' sT(g3, "CNotGate(Integer(1),Integer(0))") ascii_str = \ """\ U \n\ 0\ """ ucode_str = \ u("""\ U \n\ 0\ """) assert str(g4) == \ """\ U((0,),Matrix([\n\ [a, b],\n\ [c, d]]))\ """ assert pretty(g4) == ascii_str assert upretty(g4) == ucode_str assert latex(g4) == r'U_{0}' sT(g4, "UGate(Tuple(Integer(0)),MutableDenseMatrix([[Symbol('a'), Symbol('b')], [Symbol('c'), Symbol('d')]]))") def test_hilbert(): h1 = HilbertSpace() h2 = ComplexSpace(2) h3 = FockSpace() h4 = L2(Interval(0, oo)) assert str(h1) == 'H' assert pretty(h1) == 'H' assert upretty(h1) == u'H' assert latex(h1) == r'\mathcal{H}' sT(h1, "HilbertSpace()") assert str(h2) == 'C(2)' ascii_str = \ """\ 2\n\ C \ """ ucode_str = \ u("""\ 2\n\ C \ """) assert pretty(h2) == ascii_str assert upretty(h2) == ucode_str assert latex(h2) == r'\mathcal{C}^{2}' sT(h2, "ComplexSpace(Integer(2))") assert str(h3) == 'F' assert pretty(h3) == 'F' assert upretty(h3) == u'F' assert latex(h3) == r'\mathcal{F}' sT(h3, "FockSpace()") assert str(h4) == 'L2(Interval(0, oo))' ascii_str = \ """\ 2\n\ L \ """ ucode_str = \ u("""\ 2\n\ L \ """) assert pretty(h4) == ascii_str assert upretty(h4) == ucode_str assert latex(h4) == r'{\mathcal{L}^2}\left( \left[0, \infty\right) \right)' sT(h4, "L2(Interval(Integer(0), oo, false, true))") assert str(h1 + h2) == 'H+C(2)' ascii_str = \ """\ 2\n\ H + C \ """ ucode_str = \ u("""\ 2\n\ H ⊕ C \ """) assert pretty(h1 + h2) == ascii_str assert upretty(h1 + h2) == ucode_str assert latex(h1 + h2) sT(h1 + h2, "DirectSumHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") assert str(h1*h2) == "H*C(2)" ascii_str = \ """\ 2\n\ H x C \ """ ucode_str = \ u("""\ 2\n\ H ⨂ C \ """) assert pretty(h1*h2) == ascii_str assert upretty(h1*h2) == ucode_str assert latex(h1*h2) sT(h1*h2, "TensorProductHilbertSpace(HilbertSpace(),ComplexSpace(Integer(2)))") assert str(h1**2) == 'H**2' ascii_str = \ """\ x2\n\ H \ """ ucode_str = \ u("""\ ⨂2\n\ H \ """) assert pretty(h1**2) == ascii_str assert upretty(h1**2) == ucode_str assert latex(h1**2) == r'{\mathcal{H}}^{\otimes 2}' sT(h1**2, "TensorPowerHilbertSpace(HilbertSpace(),Integer(2))") def test_innerproduct(): x = symbols('x') ip1 = InnerProduct(Bra(), Ket()) ip2 = InnerProduct(TimeDepBra(), TimeDepKet()) ip3 = InnerProduct(JzBra(1, 1), JzKet(1, 1)) ip4 = InnerProduct(JzBraCoupled(1, 1, (1, 1)), JzKetCoupled(1, 1, (1, 1))) ip_tall1 = InnerProduct(Bra(x/2), Ket(x/2)) ip_tall2 = InnerProduct(Bra(x), Ket(x/2)) ip_tall3 = InnerProduct(Bra(x/2), Ket(x)) assert str(ip1) == '<psi|psi>' assert pretty(ip1) == '<psi|psi>' assert upretty(ip1) == u'⟨ψ❘ψ⟩' assert latex( ip1) == r'\left\langle \psi \right. {\left|\psi\right\rangle }' sT(ip1, "InnerProduct(Bra(Symbol('psi')),Ket(Symbol('psi')))") assert str(ip2) == '<psi;t|psi;t>' assert pretty(ip2) == '<psi;t|psi;t>' assert upretty(ip2) == u'⟨ψ;t❘ψ;t⟩' assert latex(ip2) == \ r'\left\langle \psi;t \right. {\left|\psi;t\right\rangle }' sT(ip2, "InnerProduct(TimeDepBra(Symbol('psi'),Symbol('t')),TimeDepKet(Symbol('psi'),Symbol('t')))") assert str(ip3) == "<1,1|1,1>" assert pretty(ip3) == '<1,1|1,1>' assert upretty(ip3) == u'⟨1,1❘1,1⟩' assert latex(ip3) == r'\left\langle 1,1 \right. {\left|1,1\right\rangle }' sT(ip3, "InnerProduct(JzBra(Integer(1),Integer(1)),JzKet(Integer(1),Integer(1)))") assert str(ip4) == "<1,1,j1=1,j2=1|1,1,j1=1,j2=1>" assert pretty(ip4) == '<1,1,j1=1,j2=1|1,1,j1=1,j2=1>' assert upretty(ip4) == u'⟨1,1,j₁=1,j₂=1❘1,1,j₁=1,j₂=1⟩' assert latex(ip4) == \ r'\left\langle 1,1,j_{1}=1,j_{2}=1 \right. {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }' sT(ip4, "InnerProduct(JzBraCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))),JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))))") assert str(ip_tall1) == '<x/2|x/2>' ascii_str = \ """\ / | \\ \n\ / x|x \\\n\ \\ -|- /\n\ \\2|2/ \ """ ucode_str = \ u("""\ ╱ │ ╲ \n\ ╱ x│x ╲\n\ ╲ ─│─ ╱\n\ ╲2│2╱ \ """) assert pretty(ip_tall1) == ascii_str assert upretty(ip_tall1) == ucode_str assert latex(ip_tall1) == \ r'\left\langle \frac{x}{2} \right. {\left|\frac{x}{2}\right\rangle }' sT(ip_tall1, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Mul(Rational(1, 2), Symbol('x'))))") assert str(ip_tall2) == '<x|x/2>' ascii_str = \ """\ / | \\ \n\ / |x \\\n\ \\ x|- /\n\ \\ |2/ \ """ ucode_str = \ u("""\ ╱ │ ╲ \n\ ╱ │x ╲\n\ ╲ x│─ ╱\n\ ╲ │2╱ \ """) assert pretty(ip_tall2) == ascii_str assert upretty(ip_tall2) == ucode_str assert latex(ip_tall2) == \ r'\left\langle x \right. {\left|\frac{x}{2}\right\rangle }' sT(ip_tall2, "InnerProduct(Bra(Symbol('x')),Ket(Mul(Rational(1, 2), Symbol('x'))))") assert str(ip_tall3) == '<x/2|x>' ascii_str = \ """\ / | \\ \n\ / x| \\\n\ \\ -|x /\n\ \\2| / \ """ ucode_str = \ u("""\ ╱ │ ╲ \n\ ╱ x│ ╲\n\ ╲ ─│x ╱\n\ ╲2│ ╱ \ """) assert pretty(ip_tall3) == ascii_str assert upretty(ip_tall3) == ucode_str assert latex(ip_tall3) == \ r'\left\langle \frac{x}{2} \right. {\left|x\right\rangle }' sT(ip_tall3, "InnerProduct(Bra(Mul(Rational(1, 2), Symbol('x'))),Ket(Symbol('x')))") def test_operator(): a = Operator('A') b = Operator('B', Symbol('t'), S.Half) inv = a.inv() f = Function('f') x = symbols('x') d = DifferentialOperator(Derivative(f(x), x), f(x)) op = OuterProduct(Ket(), Bra()) assert str(a) == 'A' assert pretty(a) == 'A' assert upretty(a) == u'A' assert latex(a) == 'A' sT(a, "Operator(Symbol('A'))") assert str(inv) == 'A**(-1)' ascii_str = \ """\ -1\n\ A \ """ ucode_str = \ u("""\ -1\n\ A \ """) assert pretty(inv) == ascii_str assert upretty(inv) == ucode_str assert latex(inv) == r'A^{-1}' sT(inv, "Pow(Operator(Symbol('A')), Integer(-1))") assert str(d) == 'DifferentialOperator(Derivative(f(x), x),f(x))' ascii_str = \ """\ /d \\\n\ DifferentialOperator|--(f(x)),f(x)|\n\ \\dx /\ """ ucode_str = \ u("""\ ⎛d ⎞\n\ DifferentialOperator⎜──(f(x)),f(x)⎟\n\ ⎝dx ⎠\ """) assert pretty(d) == ascii_str assert upretty(d) == ucode_str assert latex(d) == \ r'DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)' sT(d, "DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))") assert str(b) == 'Operator(B,t,1/2)' assert pretty(b) == 'Operator(B,t,1/2)' assert upretty(b) == u'Operator(B,t,1/2)' assert latex(b) == r'Operator\left(B,t,\frac{1}{2}\right)' sT(b, "Operator(Symbol('B'),Symbol('t'),Rational(1, 2))") assert str(op) == '|psi><psi|' assert pretty(op) == '|psi><psi|' assert upretty(op) == u'❘ψ⟩⟨ψ❘' assert latex(op) == r'{\left|\psi\right\rangle }{\left\langle \psi\right|}' sT(op, "OuterProduct(Ket(Symbol('psi')),Bra(Symbol('psi')))") def test_qexpr(): q = QExpr('q') assert str(q) == 'q' assert pretty(q) == 'q' assert upretty(q) == u'q' assert latex(q) == r'q' sT(q, "QExpr(Symbol('q'))") def test_qubit(): q1 = Qubit('0101') q2 = IntQubit(8) assert str(q1) == '|0101>' assert pretty(q1) == '|0101>' assert upretty(q1) == u'❘0101⟩' assert latex(q1) == r'{\left|0101\right\rangle }' sT(q1, "Qubit(Integer(0),Integer(1),Integer(0),Integer(1))") assert str(q2) == '|8>' assert pretty(q2) == '|8>' assert upretty(q2) == u'❘8⟩' assert latex(q2) == r'{\left|8\right\rangle }' sT(q2, "IntQubit(8)") def test_spin(): lz = JzOp('L') ket = JzKet(1, 0) bra = JzBra(1, 0) cket = JzKetCoupled(1, 0, (1, 2)) cbra = JzBraCoupled(1, 0, (1, 2)) cket_big = JzKetCoupled(1, 0, (1, 2, 3)) cbra_big = JzBraCoupled(1, 0, (1, 2, 3)) rot = Rotation(1, 2, 3) bigd = WignerD(1, 2, 3, 4, 5, 6) smalld = WignerD(1, 2, 3, 0, 4, 0) assert str(lz) == 'Lz' ascii_str = \ """\ L \n\ z\ """ ucode_str = \ u("""\ L \n\ z\ """) assert pretty(lz) == ascii_str assert upretty(lz) == ucode_str assert latex(lz) == 'L_z' sT(lz, "JzOp(Symbol('L'))") assert str(J2) == 'J2' ascii_str = \ """\ 2\n\ J \ """ ucode_str = \ u("""\ 2\n\ J \ """) assert pretty(J2) == ascii_str assert upretty(J2) == ucode_str assert latex(J2) == r'J^2' sT(J2, "J2Op(Symbol('J'))") assert str(Jz) == 'Jz' ascii_str = \ """\ J \n\ z\ """ ucode_str = \ u("""\ J \n\ z\ """) assert pretty(Jz) == ascii_str assert upretty(Jz) == ucode_str assert latex(Jz) == 'J_z' sT(Jz, "JzOp(Symbol('J'))") assert str(ket) == '|1,0>' assert pretty(ket) == '|1,0>' assert upretty(ket) == u'❘1,0⟩' assert latex(ket) == r'{\left|1,0\right\rangle }' sT(ket, "JzKet(Integer(1),Integer(0))") assert str(bra) == '<1,0|' assert pretty(bra) == '<1,0|' assert upretty(bra) == u'⟨1,0❘' assert latex(bra) == r'{\left\langle 1,0\right|}' sT(bra, "JzBra(Integer(1),Integer(0))") assert str(cket) == '|1,0,j1=1,j2=2>' assert pretty(cket) == '|1,0,j1=1,j2=2>' assert upretty(cket) == u'❘1,0,j₁=1,j₂=2⟩' assert latex(cket) == r'{\left|1,0,j_{1}=1,j_{2}=2\right\rangle }' sT(cket, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") assert str(cbra) == '<1,0,j1=1,j2=2|' assert pretty(cbra) == '<1,0,j1=1,j2=2|' assert upretty(cbra) == u'⟨1,0,j₁=1,j₂=2❘' assert latex(cbra) == r'{\left\langle 1,0,j_{1}=1,j_{2}=2\right|}' sT(cbra, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))") assert str(cket_big) == '|1,0,j1=1,j2=2,j3=3,j(1,2)=3>' # TODO: Fix non-unicode pretty printing # i.e. j1,2 -> j(1,2) assert pretty(cket_big) == '|1,0,j1=1,j2=2,j3=3,j1,2=3>' assert upretty(cket_big) == u'❘1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3⟩' assert latex(cket_big) == \ r'{\left|1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right\rangle }' sT(cket_big, "JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") assert str(cbra_big) == '<1,0,j1=1,j2=2,j3=3,j(1,2)=3|' assert pretty(cbra_big) == u'<1,0,j1=1,j2=2,j3=3,j1,2=3|' assert upretty(cbra_big) == u'⟨1,0,j₁=1,j₂=2,j₃=3,j₁,₂=3❘' assert latex(cbra_big) == \ r'{\left\langle 1,0,j_{1}=1,j_{2}=2,j_{3}=3,j_{1,2}=3\right|}' sT(cbra_big, "JzBraCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(2), Integer(3)),Tuple(Tuple(Integer(1), Integer(2), Integer(3)), Tuple(Integer(1), Integer(3), Integer(1))))") assert str(rot) == 'R(1,2,3)' assert pretty(rot) == 'R (1,2,3)' assert upretty(rot) == u'ℛ (1,2,3)' assert latex(rot) == r'\mathcal{R}\left(1,2,3\right)' sT(rot, "Rotation(Integer(1),Integer(2),Integer(3))") assert str(bigd) == 'WignerD(1, 2, 3, 4, 5, 6)' ascii_str = \ """\ 1 \n\ D (4,5,6)\n\ 2,3 \ """ ucode_str = \ u("""\ 1 \n\ D (4,5,6)\n\ 2,3 \ """) assert pretty(bigd) == ascii_str assert upretty(bigd) == ucode_str assert latex(bigd) == r'D^{1}_{2,3}\left(4,5,6\right)' sT(bigd, "WignerD(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6))") assert str(smalld) == 'WignerD(1, 2, 3, 0, 4, 0)' ascii_str = \ """\ 1 \n\ d (4)\n\ 2,3 \ """ ucode_str = \ u("""\ 1 \n\ d (4)\n\ 2,3 \ """) assert pretty(smalld) == ascii_str assert upretty(smalld) == ucode_str assert latex(smalld) == r'd^{1}_{2,3}\left(4\right)' sT(smalld, "WignerD(Integer(1), Integer(2), Integer(3), Integer(0), Integer(4), Integer(0))") def test_state(): x = symbols('x') bra = Bra() ket = Ket() bra_tall = Bra(x/2) ket_tall = Ket(x/2) tbra = TimeDepBra() tket = TimeDepKet() assert str(bra) == '<psi|' assert pretty(bra) == '<psi|' assert upretty(bra) == u'⟨ψ❘' assert latex(bra) == r'{\left\langle \psi\right|}' sT(bra, "Bra(Symbol('psi'))") assert str(ket) == '|psi>' assert pretty(ket) == '|psi>' assert upretty(ket) == u'❘ψ⟩' assert latex(ket) == r'{\left|\psi\right\rangle }' sT(ket, "Ket(Symbol('psi'))") assert str(bra_tall) == '<x/2|' ascii_str = \ """\ / |\n\ / x|\n\ \\ -|\n\ \\2|\ """ ucode_str = \ u("""\ ╱ │\n\ ╱ x│\n\ ╲ ─│\n\ ╲2│\ """) assert pretty(bra_tall) == ascii_str assert upretty(bra_tall) == ucode_str assert latex(bra_tall) == r'{\left\langle \frac{x}{2}\right|}' sT(bra_tall, "Bra(Mul(Rational(1, 2), Symbol('x')))") assert str(ket_tall) == '|x/2>' ascii_str = \ """\ | \\ \n\ |x \\\n\ |- /\n\ |2/ \ """ ucode_str = \ u("""\ │ ╲ \n\ │x ╲\n\ │─ ╱\n\ │2╱ \ """) assert pretty(ket_tall) == ascii_str assert upretty(ket_tall) == ucode_str assert latex(ket_tall) == r'{\left|\frac{x}{2}\right\rangle }' sT(ket_tall, "Ket(Mul(Rational(1, 2), Symbol('x')))") assert str(tbra) == '<psi;t|' assert pretty(tbra) == u'<psi;t|' assert upretty(tbra) == u'⟨ψ;t❘' assert latex(tbra) == r'{\left\langle \psi;t\right|}' sT(tbra, "TimeDepBra(Symbol('psi'),Symbol('t'))") assert str(tket) == '|psi;t>' assert pretty(tket) == '|psi;t>' assert upretty(tket) == u'❘ψ;t⟩' assert latex(tket) == r'{\left|\psi;t\right\rangle }' sT(tket, "TimeDepKet(Symbol('psi'),Symbol('t'))") def test_tensorproduct(): tp = TensorProduct(JzKet(1, 1), JzKet(1, 0)) assert str(tp) == '|1,1>x|1,0>' assert pretty(tp) == '|1,1>x |1,0>' assert upretty(tp) == u'❘1,1⟩⨂ ❘1,0⟩' assert latex(tp) == \ r'{{\left|1,1\right\rangle }}\otimes {{\left|1,0\right\rangle }}' sT(tp, "TensorProduct(JzKet(Integer(1),Integer(1)), JzKet(Integer(1),Integer(0)))") def test_big_expr(): f = Function('f') x = symbols('x') e1 = Dagger(AntiCommutator(Operator('A') + Operator('B'), Pow(DifferentialOperator(Derivative(f(x), x), f(x)), 3))*TensorProduct(Jz**2, Operator('A') + Operator('B')))*(JzBra(1, 0) + JzBra(1, 1))*(JzKet(0, 0) + JzKet(1, -1)) e2 = Commutator(Jz**2, Operator('A') + Operator('B'))*AntiCommutator(Dagger(Operator('C')*Operator('D')), Operator('E').inv()**2)*Dagger(Commutator(Jz, J2)) e3 = Wigner3j(1, 2, 3, 4, 5, 6)*TensorProduct(Commutator(Operator('A') + Dagger(Operator('B')), Operator('C') + Operator('D')), Jz - J2)*Dagger(OuterProduct(Dagger(JzBra(1, 1)), JzBra(1, 0)))*TensorProduct(JzKetCoupled(1, 1, (1, 1)) + JzKetCoupled(1, 0, (1, 1)), JzKetCoupled(1, -1, (1, 1))) e4 = (ComplexSpace(1)*ComplexSpace(2) + FockSpace()**2)*(L2(Interval( 0, oo)) + HilbertSpace()) assert str(e1) == '(Jz**2)x(Dagger(A) + Dagger(B))*{Dagger(DifferentialOperator(Derivative(f(x), x),f(x)))**3,Dagger(A) + Dagger(B)}*(<1,0| + <1,1|)*(|0,0> + |1,-1>)' ascii_str = \ """\ / 3 \\ \n\ |/ +\\ | \n\ 2 / + +\\ <| /d \\ | + +> \n\ /J \\ x \\A + B /*||DifferentialOperator|--(f(x)),f(x)| | ,A + B |*(<1,0| + <1,1|)*(|0,0> + |1,-1>)\n\ \\ z/ \\\\ \\dx / / / \ """ ucode_str = \ u("""\ ⎧ 3 ⎫ \n\ ⎪⎛ †⎞ ⎪ \n\ 2 ⎛ † †⎞ ⎨⎜ ⎛d ⎞ ⎟ † †⎬ \n\ ⎛J ⎞ ⨂ ⎝A + B ⎠⋅⎪⎜DifferentialOperator⎜──(f(x)),f(x)⎟ ⎟ ,A + B ⎪⋅(⟨1,0❘ + ⟨1,1❘)⋅(❘0,0⟩ + ❘1,-1⟩)\n\ ⎝ z⎠ ⎩⎝ ⎝dx ⎠ ⎠ ⎭ \ """) assert pretty(e1) == ascii_str assert upretty(e1) == ucode_str assert latex(e1) == \ r'{J_z^{2}}\otimes \left({A^{\dagger} + B^{\dagger}}\right) \left\{\left(DifferentialOperator\left(\frac{d}{d x} f{\left(x \right)},f{\left(x \right)}\right)^{\dagger}\right)^{3},A^{\dagger} + B^{\dagger}\right\} \left({\left\langle 1,0\right|} + {\left\langle 1,1\right|}\right) \left({\left|0,0\right\rangle } + {\left|1,-1\right\rangle }\right)' sT(e1, "Mul(TensorProduct(Pow(JzOp(Symbol('J')), Integer(2)), Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), AntiCommutator(Pow(Dagger(DifferentialOperator(Derivative(Function('f')(Symbol('x')), Tuple(Symbol('x'), Integer(1))),Function('f')(Symbol('x')))), Integer(3)),Add(Dagger(Operator(Symbol('A'))), Dagger(Operator(Symbol('B'))))), Add(JzBra(Integer(1),Integer(0)), JzBra(Integer(1),Integer(1))), Add(JzKet(Integer(0),Integer(0)), JzKet(Integer(1),Integer(-1))))") assert str(e2) == '[Jz**2,A + B]*{E**(-2),Dagger(D)*Dagger(C)}*[J2,Jz]' ascii_str = \ """\ [ 2 ] / -2 + +\\ [ 2 ]\n\ [/J \\ ,A + B]*<E ,D *C >*[J ,J ]\n\ [\\ z/ ] \\ / [ z]\ """ ucode_str = \ u("""\ ⎡ 2 ⎤ ⎧ -2 † †⎫ ⎡ 2 ⎤\n\ ⎢⎛J ⎞ ,A + B⎥⋅⎨E ,D ⋅C ⎬⋅⎢J ,J ⎥\n\ ⎣⎝ z⎠ ⎦ ⎩ ⎭ ⎣ z⎦\ """) assert pretty(e2) == ascii_str assert upretty(e2) == ucode_str assert latex(e2) == \ r'\left[J_z^{2},A + B\right] \left\{E^{-2},D^{\dagger} C^{\dagger}\right\} \left[J^2,J_z\right]' sT(e2, "Mul(Commutator(Pow(JzOp(Symbol('J')), Integer(2)),Add(Operator(Symbol('A')), Operator(Symbol('B')))), AntiCommutator(Pow(Operator(Symbol('E')), Integer(-2)),Mul(Dagger(Operator(Symbol('D'))), Dagger(Operator(Symbol('C'))))), Commutator(J2Op(Symbol('J')),JzOp(Symbol('J'))))") assert str(e3) == \ "Wigner3j(1, 2, 3, 4, 5, 6)*[Dagger(B) + A,C + D]x(-J2 + Jz)*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x|1,-1,j1=1,j2=1>" ascii_str = \ """\ [ + ] / 2 \\ \n\ /1 3 5\\*[B + A,C + D]x |- J + J |*|1,0><1,1|*(|1,0,j1=1,j2=1> + |1,1,j1=1,j2=1>)x |1,-1,j1=1,j2=1>\n\ | | \\ z/ \n\ \\2 4 6/ \ """ ucode_str = \ u("""\ ⎡ † ⎤ ⎛ 2 ⎞ \n\ ⎛1 3 5⎞⋅⎣B + A,C + D⎦⨂ ⎜- J + J ⎟⋅❘1,0⟩⟨1,1❘⋅(❘1,0,j₁=1,j₂=1⟩ + ❘1,1,j₁=1,j₂=1⟩)⨂ ❘1,-1,j₁=1,j₂=1⟩\n\ ⎜ ⎟ ⎝ z⎠ \n\ ⎝2 4 6⎠ \ """) assert pretty(e3) == ascii_str assert upretty(e3) == ucode_str assert latex(e3) == \ r'\left(\begin{array}{ccc} 1 & 3 & 5 \\ 2 & 4 & 6 \end{array}\right) {\left[B^{\dagger} + A,C + D\right]}\otimes \left({- J^2 + J_z}\right) {\left|1,0\right\rangle }{\left\langle 1,1\right|} \left({{\left|1,0,j_{1}=1,j_{2}=1\right\rangle } + {\left|1,1,j_{1}=1,j_{2}=1\right\rangle }}\right)\otimes {{\left|1,-1,j_{1}=1,j_{2}=1\right\rangle }}' sT(e3, "Mul(Wigner3j(Integer(1), Integer(2), Integer(3), Integer(4), Integer(5), Integer(6)), TensorProduct(Commutator(Add(Dagger(Operator(Symbol('B'))), Operator(Symbol('A'))),Add(Operator(Symbol('C')), Operator(Symbol('D')))), Add(Mul(Integer(-1), J2Op(Symbol('J'))), JzOp(Symbol('J')))), OuterProduct(JzKet(Integer(1),Integer(0)),JzBra(Integer(1),Integer(1))), TensorProduct(Add(JzKetCoupled(Integer(1),Integer(0),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1)))), JzKetCoupled(Integer(1),Integer(1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))), JzKetCoupled(Integer(1),Integer(-1),Tuple(Integer(1), Integer(1)),Tuple(Tuple(Integer(1), Integer(2), Integer(1))))))") assert str(e4) == '(C(1)*C(2)+F**2)*(L2(Interval(0, oo))+H)' ascii_str = \ """\ // 1 2\\ x2\\ / 2 \\\n\ \\\\C x C / + F / x \\L + H/\ """ ucode_str = \ u("""\ ⎛⎛ 1 2⎞ ⨂2⎞ ⎛ 2 ⎞\n\ ⎝⎝C ⨂ C ⎠ ⊕ F ⎠ ⨂ ⎝L ⊕ H⎠\ """) assert pretty(e4) == ascii_str assert upretty(e4) == ucode_str assert latex(e4) == \ r'\left(\left(\mathcal{C}^{1}\otimes \mathcal{C}^{2}\right)\oplus {\mathcal{F}}^{\otimes 2}\right)\otimes \left({\mathcal{L}^2}\left( \left[0, \infty\right) \right)\oplus \mathcal{H}\right)' sT(e4, "TensorProductHilbertSpace((DirectSumHilbertSpace(TensorProductHilbertSpace(ComplexSpace(Integer(1)),ComplexSpace(Integer(2))),TensorPowerHilbertSpace(FockSpace(),Integer(2)))),(DirectSumHilbertSpace(L2(Interval(Integer(0), oo, false, true)),HilbertSpace())))") def _test_sho1d(): ad = RaisingOp('a') assert pretty(ad) == u' \N{DAGGER}\na ' assert latex(ad) == 'a^{\\dagger}'
4d28b44ebfbb74bafae2187928b9b15add5300ca6b217a838bcd07bcd36da38e
"""Tests for sho1d.py""" from sympy import Integer, Symbol, sqrt, I, S from sympy.core.compatibility import range from sympy.physics.quantum import Dagger from sympy.physics.quantum.constants import hbar from sympy.physics.quantum import Commutator from sympy.physics.quantum.qapply import qapply from sympy.physics.quantum.innerproduct import InnerProduct from sympy.physics.quantum.cartesian import X, Px from sympy.functions.special.tensor_functions import KroneckerDelta from sympy.physics.quantum.hilbert import ComplexSpace from sympy.physics.quantum.represent import represent from sympy.external import import_module from sympy.utilities.pytest import skip from sympy.physics.quantum.sho1d import (RaisingOp, LoweringOp, SHOKet, SHOBra, Hamiltonian, NumberOp) ad = RaisingOp('a') a = LoweringOp('a') k = SHOKet('k') kz = SHOKet(0) kf = SHOKet(1) k3 = SHOKet(3) b = SHOBra('b') b3 = SHOBra(3) H = Hamiltonian('H') N = NumberOp('N') omega = Symbol('omega') m = Symbol('m') ndim = Integer(4) np = import_module('numpy') scipy = import_module('scipy', __import__kwargs={'fromlist': ['sparse']}) ad_rep_sympy = represent(ad, basis=N, ndim=4, format='sympy') a_rep = represent(a, basis=N, ndim=4, format='sympy') N_rep = represent(N, basis=N, ndim=4, format='sympy') H_rep = represent(H, basis=N, ndim=4, format='sympy') k3_rep = represent(k3, basis=N, ndim=4, format='sympy') b3_rep = represent(b3, basis=N, ndim=4, format='sympy') def test_RaisingOp(): assert Dagger(ad) == a assert Commutator(ad, a).doit() == Integer(-1) assert Commutator(ad, N).doit() == Integer(-1)*ad assert qapply(ad*k) == (sqrt(k.n + 1)*SHOKet(k.n + 1)).expand() assert qapply(ad*kz) == (sqrt(kz.n + 1)*SHOKet(kz.n + 1)).expand() assert qapply(ad*kf) == (sqrt(kf.n + 1)*SHOKet(kf.n + 1)).expand() assert ad.rewrite('xp').doit() == \ (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(Integer(-1)*I*Px + m*omega*X) assert ad.hilbert_space == ComplexSpace(S.Infinity) for i in range(ndim - 1): assert ad_rep_sympy[i + 1,i] == sqrt(i + 1) if not np: skip("numpy not installed.") ad_rep_numpy = represent(ad, basis=N, ndim=4, format='numpy') for i in range(ndim - 1): assert ad_rep_numpy[i + 1,i] == float(sqrt(i + 1)) if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") ad_rep_scipy = represent(ad, basis=N, ndim=4, format='scipy.sparse', spmatrix='lil') for i in range(ndim - 1): assert ad_rep_scipy[i + 1,i] == float(sqrt(i + 1)) assert ad_rep_numpy.dtype == 'float64' assert ad_rep_scipy.dtype == 'float64' def test_LoweringOp(): assert Dagger(a) == ad assert Commutator(a, ad).doit() == Integer(1) assert Commutator(a, N).doit() == a assert qapply(a*k) == (sqrt(k.n)*SHOKet(k.n-Integer(1))).expand() assert qapply(a*kz) == Integer(0) assert qapply(a*kf) == (sqrt(kf.n)*SHOKet(kf.n-Integer(1))).expand() assert a.rewrite('xp').doit() == \ (Integer(1)/sqrt(Integer(2)*hbar*m*omega))*(I*Px + m*omega*X) for i in range(ndim - 1): assert a_rep[i,i + 1] == sqrt(i + 1) def test_NumberOp(): assert Commutator(N, ad).doit() == ad assert Commutator(N, a).doit() == Integer(-1)*a assert Commutator(N, H).doit() == Integer(0) assert qapply(N*k) == (k.n*k).expand() assert N.rewrite('a').doit() == ad*a assert N.rewrite('xp').doit() == (Integer(1)/(Integer(2)*m*hbar*omega))*( Px**2 + (m*omega*X)**2) - Integer(1)/Integer(2) assert N.rewrite('H').doit() == H/(hbar*omega) - Integer(1)/Integer(2) for i in range(ndim): assert N_rep[i,i] == i assert N_rep == ad_rep_sympy*a_rep def test_Hamiltonian(): assert Commutator(H, N).doit() == Integer(0) assert qapply(H*k) == ((hbar*omega*(k.n + Integer(1)/Integer(2)))*k).expand() assert H.rewrite('a').doit() == hbar*omega*(ad*a + Integer(1)/Integer(2)) assert H.rewrite('xp').doit() == \ (Integer(1)/(Integer(2)*m))*(Px**2 + (m*omega*X)**2) assert H.rewrite('N').doit() == hbar*omega*(N + Integer(1)/Integer(2)) for i in range(ndim): assert H_rep[i,i] == hbar*omega*(i + Integer(1)/Integer(2)) def test_SHOKet(): assert SHOKet('k').dual_class() == SHOBra assert SHOBra('b').dual_class() == SHOKet assert InnerProduct(b,k).doit() == KroneckerDelta(k.n, b.n) assert k.hilbert_space == ComplexSpace(S.Infinity) assert k3_rep[k3.n, 0] == Integer(1) assert b3_rep[0, b3.n] == Integer(1)
912007f20736907a7400c99a5b917e5f5cd0c236ea2d372bbc79c4cb08ada18f
from sympy import symbols from sympy.physics.mechanics import (Point, Particle, ReferenceFrame, inertia, inertia_of_point_mass) from sympy.utilities.pytest import raises def test_particle(): m, m2, v1, v2, v3, r, g, h = symbols('m m2 v1 v2 v3 r g h') P = Point('P') P2 = Point('P2') p = Particle('pa', P, m) assert p.__str__() == 'pa' assert p.mass == m assert p.point == P # Test the mass setter p.mass = m2 assert p.mass == m2 # Test the point setter p.point = P2 assert p.point == P2 # Test the linear momentum function N = ReferenceFrame('N') O = Point('O') P2.set_pos(O, r * N.y) P2.set_vel(N, v1 * N.x) raises(TypeError, lambda: Particle(P, P, m)) raises(TypeError, lambda: Particle('pa', m, m)) assert p.linear_momentum(N) == m2 * v1 * N.x assert p.angular_momentum(O, N) == -m2 * r *v1 * N.z P2.set_vel(N, v2 * N.y) assert p.linear_momentum(N) == m2 * v2 * N.y assert p.angular_momentum(O, N) == 0 P2.set_vel(N, v3 * N.z) assert p.linear_momentum(N) == m2 * v3 * N.z assert p.angular_momentum(O, N) == m2 * r * v3 * N.x P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z) assert p.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z) assert p.angular_momentum(O, N) == m2 * r * (v3 * N.x - v1 * N.z) p.potential_energy = m * g * h assert p.potential_energy == m * g * h # TODO make the result not be system-dependent assert p.kinetic_energy( N) in [m2*(v1**2 + v2**2 + v3**2)/2, m2 * v1**2 / 2 + m2 * v2**2 / 2 + m2 * v3**2 / 2] def test_parallel_axis(): N = ReferenceFrame('N') m, a, b = symbols('m, a, b') o = Point('o') p = o.locatenew('p', a * N.x + b * N.y) P = Particle('P', o, m) Ip = P.parallel_axis(p, N) Ip_expected = inertia(N, m * b**2, m * a**2, m * (a**2 + b**2), ixy=-m * a * b) assert Ip == Ip_expected
9a1e4b524fd454c70b54b8077c5053c45af8edfab6bdcc1cf192bc73b10848e7
from sympy.core.backend import sin, cos, tan, pi, symbols, Matrix, S from sympy.physics.mechanics import (Particle, Point, ReferenceFrame, RigidBody) from sympy.physics.mechanics import (angular_momentum, dynamicsymbols, inertia, inertia_of_point_mass, kinetic_energy, linear_momentum, outer, potential_energy, msubs, find_dynamicsymbols, Lagrangian) from sympy.physics.mechanics.functions import gravity, center_of_mass from sympy.physics.vector.vector import Vector from sympy.utilities.pytest import raises Vector.simp = True q1, q2, q3, q4, q5 = symbols('q1 q2 q3 q4 q5') N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q1, N.z]) B = A.orientnew('B', 'Axis', [q2, A.x]) C = B.orientnew('C', 'Axis', [q3, B.y]) def test_inertia(): N = ReferenceFrame('N') ixx, iyy, izz = symbols('ixx iyy izz') ixy, iyz, izx = symbols('ixy iyz izx') assert inertia(N, ixx, iyy, izz) == (ixx * (N.x | N.x) + iyy * (N.y | N.y) + izz * (N.z | N.z)) assert inertia(N, 0, 0, 0) == 0 * (N.x | N.x) raises(TypeError, lambda: inertia(0, 0, 0, 0)) assert inertia(N, ixx, iyy, izz, ixy, iyz, izx) == (ixx * (N.x | N.x) + ixy * (N.x | N.y) + izx * (N.x | N.z) + ixy * (N.y | N.x) + iyy * (N.y | N.y) + iyz * (N.y | N.z) + izx * (N.z | N.x) + iyz * (N.z | N.y) + izz * (N.z | N.z)) def test_inertia_of_point_mass(): r, s, t, m = symbols('r s t m') N = ReferenceFrame('N') px = r * N.x I = inertia_of_point_mass(m, px, N) assert I == m * r**2 * (N.y | N.y) + m * r**2 * (N.z | N.z) py = s * N.y I = inertia_of_point_mass(m, py, N) assert I == m * s**2 * (N.x | N.x) + m * s**2 * (N.z | N.z) pz = t * N.z I = inertia_of_point_mass(m, pz, N) assert I == m * t**2 * (N.x | N.x) + m * t**2 * (N.y | N.y) p = px + py + pz I = inertia_of_point_mass(m, p, N) assert I == (m * (s**2 + t**2) * (N.x | N.x) - m * r * s * (N.x | N.y) - m * r * t * (N.x | N.z) - m * r * s * (N.y | N.x) + m * (r**2 + t**2) * (N.y | N.y) - m * s * t * (N.y | N.z) - m * r * t * (N.z | N.x) - m * s * t * (N.z | N.y) + m * (r**2 + s**2) * (N.z | N.z)) def test_linear_momentum(): N = ReferenceFrame('N') Ac = Point('Ac') Ac.set_vel(N, 25 * N.y) I = outer(N.x, N.x) A = RigidBody('A', Ac, N, 20, (I, Ac)) P = Point('P') Pa = Particle('Pa', P, 1) Pa.point.set_vel(N, 10 * N.x) raises(TypeError, lambda: linear_momentum(A, A, Pa)) raises(TypeError, lambda: linear_momentum(N, N, Pa)) assert linear_momentum(N, A, Pa) == 10 * N.x + 500 * N.y def test_angular_momentum_and_linear_momentum(): """A rod with length 2l, centroidal inertia I, and mass M along with a particle of mass m fixed to the end of the rod rotate with an angular rate of omega about point O which is fixed to the non-particle end of the rod. The rod's reference frame is A and the inertial frame is N.""" m, M, l, I = symbols('m, M, l, I') omega = dynamicsymbols('omega') N = ReferenceFrame('N') a = ReferenceFrame('a') O = Point('O') Ac = O.locatenew('Ac', l * N.x) P = Ac.locatenew('P', l * N.x) O.set_vel(N, 0 * N.x) a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) A = RigidBody('A', Ac, a, M, (I * outer(N.z, N.z), Ac)) expected = 2 * m * omega * l * N.y + M * l * omega * N.y assert linear_momentum(N, A, Pa) == expected raises(TypeError, lambda: angular_momentum(N, N, A, Pa)) raises(TypeError, lambda: angular_momentum(O, O, A, Pa)) raises(TypeError, lambda: angular_momentum(O, N, O, Pa)) expected = (I + M * l**2 + 4 * m * l**2) * omega * N.z assert angular_momentum(O, N, A, Pa) == expected def test_kinetic_energy(): m, M, l1 = symbols('m M l1') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) raises(TypeError, lambda: kinetic_energy(Pa, Pa, A)) raises(TypeError, lambda: kinetic_energy(N, N, A)) assert 0 == (kinetic_energy(N, Pa, A) - (M*l1**2*omega**2/2 + 2*l1**2*m*omega**2 + omega**2/2)).expand() def test_potential_energy(): m, M, l1, g, h, H = symbols('m M l1 g h H') omega = dynamicsymbols('omega') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) Ac = O.locatenew('Ac', l1 * N.x) P = Ac.locatenew('P', l1 * N.x) a = ReferenceFrame('a') a.set_ang_vel(N, omega * N.z) Ac.v2pt_theory(O, N, a) P.v2pt_theory(O, N, a) Pa = Particle('Pa', P, m) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, M, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * H assert potential_energy(A, Pa) == m * g * h + M * g * H def test_Lagrangian(): M, m, g, h = symbols('M m g h') N = ReferenceFrame('N') O = Point('O') O.set_vel(N, 0 * N.x) P = O.locatenew('P', 1 * N.x) P.set_vel(N, 10 * N.x) Pa = Particle('Pa', P, 1) Ac = O.locatenew('Ac', 2 * N.y) Ac.set_vel(N, 5 * N.y) a = ReferenceFrame('a') a.set_ang_vel(N, 10 * N.z) I = outer(N.z, N.z) A = RigidBody('A', Ac, a, 20, (I, Ac)) Pa.potential_energy = m * g * h A.potential_energy = M * g * h raises(TypeError, lambda: Lagrangian(A, A, Pa)) raises(TypeError, lambda: Lagrangian(N, N, Pa)) def test_msubs(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') # Test simple substitution expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) sol = Matrix([[a + b, y], [x.diff().diff(), 1]]) sd = {x: 1, z: 1, z.diff(): 0, y.diff(): 0} assert msubs(expr, sd) == sol # Test smart substitution expr = cos(x + y)*tan(x + y) + b*x.diff() sd = {x: 0, y: pi/2, x.diff(): 1} assert msubs(expr, sd, smart=True) == b + 1 N = ReferenceFrame('N') v = x*N.x + y*N.y d = x*(N.x|N.x) + y*(N.y|N.y) v_sol = 1*N.y d_sol = 1*(N.y|N.y) sd = {x: 0, y: 1} assert msubs(v, sd) == v_sol assert msubs(d, sd) == d_sol def test_find_dynamicsymbols(): a, b = symbols('a, b') x, y, z = dynamicsymbols('x, y, z') expr = Matrix([[a*x + b, x*y.diff() + y], [x.diff().diff(), z + sin(z.diff())]]) # Test finding all dynamicsymbols sol = {x, y.diff(), y, x.diff().diff(), z, z.diff()} assert find_dynamicsymbols(expr) == sol # Test finding all but those in sym_list exclude_list = [x, y, z] sol = {y.diff(), x.diff().diff(), z.diff()} assert find_dynamicsymbols(expr, exclude=exclude_list) == sol # Test finding all dynamicsymbols in a vector with a given reference frame d, e, f = dynamicsymbols('d, e, f') A = ReferenceFrame('A') v = d * A.x + e * A.y + f * A.z sol = {d, e, f} assert find_dynamicsymbols(v, reference_frame=A) == sol # Test if a ValueError is raised on supplying only a vector as input raises(ValueError, lambda: find_dynamicsymbols(v)) def test_gravity(): N = ReferenceFrame('N') m, M, g = symbols('m M g') F1, F2 = dynamicsymbols('F1 F2') po = Point('po') pa = Particle('pa', po, m) A = ReferenceFrame('A') P = Point('P') I = outer(A.x, A.x) B = RigidBody('B', P, A, M, (I, P)) forceList = [(po, F1), (P, F2)] forceList.extend(gravity(g*N.y, pa, B)) l = [(po, F1), (P, F2), (po, g*m*N.y), (P, g*M*N.y)] for i in range(len(l)): for j in range(len(l[i])): assert forceList[i][j] == l[i][j] # This function tests the center_of_mass() function # that was added in PR #14758 to compute the center of # mass of a system of bodies. def test_center_of_mass(): a = ReferenceFrame('a') m = symbols('m', real=True) p1 = Particle('p1', Point('p1_pt'), S.One) p2 = Particle('p2', Point('p2_pt'), S(2)) p3 = Particle('p3', Point('p3_pt'), S(3)) p4 = Particle('p4', Point('p4_pt'), m) b_f = ReferenceFrame('b_f') b_cm = Point('b_cm') mb = symbols('mb') b = RigidBody('b', b_cm, b_f, mb, (outer(b_f.x, b_f.x), b_cm)) p2.point.set_pos(p1.point, a.x) p3.point.set_pos(p1.point, a.x + a.y) p4.point.set_pos(p1.point, a.y) b.masscenter.set_pos(p1.point, a.y + a.z) point_o=Point('o') point_o.set_pos(p1.point, center_of_mass(p1.point, p1, p2, p3, p4, b)) expr = 5/(m + mb + 6)*a.x + (m + mb + 3)/(m + mb + 6)*a.y + mb/(m + mb + 6)*a.z assert point_o.pos_from(p1.point)-expr == 0
115ac218623033618b6ec2e383ee890fb9d591c977b3c2c8ca471982bc1aa7eb
from sympy.core.backend import symbols, Matrix, cos, sin, atan, sqrt, Rational from sympy import solve, simplify, sympify from sympy.physics.mechanics import dynamicsymbols, ReferenceFrame, Point,\ dot, cross, inertia, KanesMethod, Particle, RigidBody, Lagrangian,\ LagrangesMethod from sympy.utilities.pytest import slow, warns_deprecated_sympy @slow def test_linearize_rolling_disc_kane(): # Symbols for time and constant parameters t, r, m, g, v = symbols('t r m g v') # Configuration variables and their time derivatives q1, q2, q3, q4, q5, q6 = q = dynamicsymbols('q1:7') q1d, q2d, q3d, q4d, q5d, q6d = qd = [qi.diff(t) for qi in q] # Generalized speeds and their time derivatives u = dynamicsymbols('u:6') u1, u2, u3, u4, u5, u6 = u = dynamicsymbols('u1:7') u1d, u2d, u3d, u4d, u5d, u6d = [ui.diff(t) for ui in u] # Reference frames N = ReferenceFrame('N') # Inertial frame NO = Point('NO') # Inertial origin A = N.orientnew('A', 'Axis', [q1, N.z]) # Yaw intermediate frame B = A.orientnew('B', 'Axis', [q2, A.x]) # Lean intermediate frame C = B.orientnew('C', 'Axis', [q3, B.y]) # Disc fixed frame CO = NO.locatenew('CO', q4*N.x + q5*N.y + q6*N.z) # Disc center # Disc angular velocity in N expressed using time derivatives of coordinates w_c_n_qd = C.ang_vel_in(N) w_b_n_qd = B.ang_vel_in(N) # Inertial angular velocity and angular acceleration of disc fixed frame C.set_ang_vel(N, u1*B.x + u2*B.y + u3*B.z) # Disc center velocity in N expressed using time derivatives of coordinates v_co_n_qd = CO.pos_from(NO).dt(N) # Disc center velocity in N expressed using generalized speeds CO.set_vel(N, u4*C.x + u5*C.y + u6*C.z) # Disc Ground Contact Point P = CO.locatenew('P', r*B.z) P.v2pt_theory(CO, N, C) # Configuration constraint f_c = Matrix([q6 - dot(CO.pos_from(P), N.z)]) # Velocity level constraints f_v = Matrix([dot(P.vel(N), uv) for uv in C]) # Kinematic differential equations kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_co_n_qd - CO.vel(N), uv) for uv in N]) qdots = solve(kindiffs, qd) # Set angular velocity of remaining frames B.set_ang_vel(N, w_b_n_qd.subs(qdots)) C.set_ang_acc(N, C.ang_vel_in(N).dt(B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Active forces F_CO = m*g*A.z # Create inertia dyadic of disc C about point CO I = (m * r**2) / 4 J = (m * r**2) / 2 I_C_CO = inertia(C, I, J, I) Disc = RigidBody('Disc', CO, C, m, (I_C_CO, CO)) BL = [Disc] FL = [(CO, F_CO)] KM = KanesMethod(N, [q1, q2, q3, q4, q5], [u1, u2, u3], kd_eqs=kindiffs, q_dependent=[q6], configuration_constraints=f_c, u_dependent=[u4, u5, u6], velocity_constraints=f_v) with warns_deprecated_sympy(): (fr, fr_star) = KM.kanes_equations(FL, BL) # Test generalized form equations linearizer = KM.to_linearizer() assert linearizer.f_c == f_c assert linearizer.f_v == f_v assert linearizer.f_a == f_v.diff(t).subs(KM.kindiffdict()) sol = solve(linearizer.f_0 + linearizer.f_1, qd) for qi in qdots.keys(): assert sol[qi] == qdots[qi] assert simplify(linearizer.f_2 + linearizer.f_3 - fr - fr_star) == Matrix([0, 0, 0]) # Perform the linearization # Precomputed operating point q_op = {q6: -r*cos(q2)} u_op = {u1: 0, u2: sin(q2)*q1d + q3d, u3: cos(q2)*q1d, u4: -r*(sin(q2)*q1d + q3d)*cos(q3), u5: 0, u6: -r*(sin(q2)*q1d + q3d)*sin(q3)} qd_op = {q2d: 0, q4d: -r*(sin(q2)*q1d + q3d)*cos(q1), q5d: -r*(sin(q2)*q1d + q3d)*sin(q1), q6d: 0} ud_op = {u1d: 4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5, u2d: 0, u3d: 0, u4d: r*(sin(q2)*sin(q3)*q1d*q3d + sin(q3)*q3d**2), u5d: r*(4*g*sin(q2)/(5*r) + sin(2*q2)*q1d**2/2 + 6*cos(q2)*q1d*q3d/5), u6d: -r*(sin(q2)*cos(q3)*q1d*q3d + cos(q3)*q3d**2)} A, B = linearizer.linearize(op_point=[q_op, u_op, qd_op, ud_op], A_and_B=True, simplify=True) upright_nominal = {q1d: 0, q2: 0, m: 1, r: 1, g: 1} # Precomputed solution A_sol = Matrix([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0], [sin(q1)*q3d, 0, 0, 0, 0, -sin(q1), -cos(q1), 0], [-cos(q1)*q3d, 0, 0, 0, 0, cos(q1), -sin(q1), 0], [0, Rational(4, 5), 0, 0, 0, 0, 0, 6*q3d/5], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -2*q3d, 0, 0]]) B_sol = Matrix([]) # Check that linearization is correct assert A.subs(upright_nominal) == A_sol assert B.subs(upright_nominal) == B_sol # Check eigenvalues at critical speed are all zero: assert sympify(A.subs(upright_nominal).subs(q3d, 1/sqrt(3))).eigenvals() == {0: 8} def test_linearize_pendulum_kane_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum u1 = dynamicsymbols('u1') # Angular velocity q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, u1*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Create Kinematic Differential Equations kde = Matrix([q1d - u1]) # Input the force resultant at P R = m*g*N.x # Solve for eom with kanes method KM = KanesMethod(N, q_ind=[q1], u_ind=[u1], kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Linearize A, B, inp_vec = KM.linearize(A_and_B=True, simplify=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_kane_nonminimal(): # Create generalized coordinates and speeds for this non-minimal realization # q1, q2 = N.x and N.y coordinates of pendulum # u1, u2 = N.x and N.y velocities of pendulum q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) u1, u2 = dynamicsymbols('u1:3') u1d, u2d = dynamicsymbols('u1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Locate the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) pP = Particle('pP', P, m) # Calculate the kinematic differential equations kde = Matrix([q1d - u1, q2d - u2]) dq_dict = solve(kde, [q1d, q2d]) # Set velocity of point P P.set_vel(N, P.pos_from(pN).dt(N).subs(dq_dict)) # Configuration constraint is length of pendulum f_c = Matrix([P.pos_from(pN).magnitude() - L]) # Velocity constraint is that the velocity in the A.x direction is # always zero (the pendulum is never getting longer). f_v = Matrix([P.vel(N).express(A).dot(A.x)]) f_v.simplify() # Acceleration constraints is the time derivative of the velocity constraint f_a = f_v.diff(t) f_a.simplify() # Input the force resultant at P R = m*g*N.x # Derive the equations of motion using the KanesMethod class. KM = KanesMethod(N, q_ind=[q2], u_ind=[u2], q_dependent=[q1], u_dependent=[u1], configuration_constraints=f_c, velocity_constraints=f_v, acceleration_constraints=f_a, kd_eqs=kde) with warns_deprecated_sympy(): (fr, frstar) = KM.kanes_equations([(P, R)], [pP]) # Set the operating point to be straight down, and non-moving q_op = {q1: L, q2: 0} u_op = {u1: 0, u2: 0} ud_op = {u1d: 0, u2d: 0} A, B, inp_vec = KM.linearize(op_point=[q_op, u_op, ud_op], A_and_B=True, simplify=True) assert A.expand() == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_minimal(): q1 = dynamicsymbols('q1') # angle of pendulum q1d = dynamicsymbols('q1', 1) # Angular velocity L, m, t = symbols('L, m, t') g = 9.8 # Compose world frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum A = N.orientnew('A', 'axis', [q1, N.z]) A.set_ang_vel(N, q1d*N.z) # Locate point P relative to the origin N* P = pN.locatenew('P', L*A.x) P.v2pt_theory(pN, N, A) pP = Particle('pP', P, m) # Solve for eom with Lagranges method Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1], forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Linearize A, B, inp_vec = LM.linearize([q1], [q1d], A_and_B=True) assert A == Matrix([[0, 1], [-9.8*cos(q1)/L, 0]]) assert B == Matrix([]) def test_linearize_pendulum_lagrange_nonminimal(): q1, q2 = dynamicsymbols('q1:3') q1d, q2d = dynamicsymbols('q1:3', level=1) L, m, t = symbols('L, m, t') g = 9.8 # Compose World Frame N = ReferenceFrame('N') pN = Point('N*') pN.set_vel(N, 0) # A.x is along the pendulum theta1 = atan(q2/q1) A = N.orientnew('A', 'axis', [theta1, N.z]) # Create point P, the pendulum mass P = pN.locatenew('P1', q1*N.x + q2*N.y) P.set_vel(N, P.pos_from(pN).dt(N)) pP = Particle('pP', P, m) # Constraint Equations f_c = Matrix([q1**2 + q2**2 - L**2]) # Calculate the lagrangian, and form the equations of motion Lag = Lagrangian(N, pP) LM = LagrangesMethod(Lag, [q1, q2], hol_coneqs=f_c, forcelist=[(P, m*g*N.x)], frame=N) LM.form_lagranges_equations() # Compose operating point op_point = {q1: L, q2: 0, q1d: 0, q2d: 0, q1d.diff(t): 0, q2d.diff(t): 0} # Solve for multiplier operating point lam_op = LM.solve_multipliers(op_point=op_point) op_point.update(lam_op) # Perform the Linearization A, B, inp_vec = LM.linearize([q2], [q2d], [q1], [q1d], op_point=op_point, A_and_B=True) assert A == Matrix([[0, 1], [-9.8/L, 0]]) assert B == Matrix([]) def test_linearize_rolling_disc_lagrange(): q1, q2, q3 = q = dynamicsymbols('q1 q2 q3') q1d, q2d, q3d = qd = dynamicsymbols('q1 q2 q3', 1) r, m, g = symbols('r m g') N = ReferenceFrame('N') Y = N.orientnew('Y', 'Axis', [q1, N.z]) L = Y.orientnew('L', 'Axis', [q2, Y.x]) R = L.orientnew('R', 'Axis', [q3, L.y]) C = Point('C') C.set_vel(N, 0) Dmc = C.locatenew('Dmc', r * L.z) Dmc.v2pt_theory(C, N, R) I = inertia(L, m / 4 * r**2, m / 2 * r**2, m / 4 * r**2) BodyD = RigidBody('BodyD', Dmc, R, m, (I, Dmc)) BodyD.potential_energy = - m * g * r * cos(q2) Lag = Lagrangian(N, BodyD) l = LagrangesMethod(Lag, q) l.form_lagranges_equations() # Linearize about steady-state upright rolling op_point = {q1: 0, q2: 0, q3: 0, q1d: 0, q2d: 0, q1d.diff(): 0, q2d.diff(): 0, q3d.diff(): 0} A = l.linearize(q_ind=q, qd_ind=qd, op_point=op_point, A_and_B=True)[0] sol = Matrix([[0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, -6*q3d, 0], [0, -4*g/(5*r), 0, 6*q3d/5, 0, 0], [0, 0, 0, 0, 0, 0]]) assert A == sol
98755e33a627af92157dca498347aadbda401b58ec300b86da6abeb629d3819c
from sympy import symbols, S from sympy.physics.mechanics import Point, ReferenceFrame, Dyadic, RigidBody from sympy.physics.mechanics import dynamicsymbols, outer, inertia from sympy.physics.mechanics import inertia_of_point_mass from sympy.core.backend import expand from sympy.utilities.pytest import raises def test_rigidbody(): m, m2, v1, v2, v3, omega = symbols('m m2 v1 v2 v3 omega') A = ReferenceFrame('A') A2 = ReferenceFrame('A2') P = Point('P') P2 = Point('P2') I = Dyadic(0) I2 = Dyadic(0) B = RigidBody('B', P, A, m, (I, P)) assert B.mass == m assert B.frame == A assert B.masscenter == P assert B.inertia == (I, B.masscenter) B.mass = m2 B.frame = A2 B.masscenter = P2 B.inertia = (I2, B.masscenter) raises(TypeError, lambda: RigidBody(P, P, A, m, (I, P))) raises(TypeError, lambda: RigidBody('B', P, P, m, (I, P))) raises(TypeError, lambda: RigidBody('B', P, A, m, (P, P))) raises(TypeError, lambda: RigidBody('B', P, A, m, (I, I))) assert B.__str__() == 'B' assert B.mass == m2 assert B.frame == A2 assert B.masscenter == P2 assert B.inertia == (I2, B.masscenter) assert B.masscenter == P2 assert B.inertia == (I2, B.masscenter) # Testing linear momentum function assuming A2 is the inertial frame N = ReferenceFrame('N') P2.set_vel(N, v1 * N.x + v2 * N.y + v3 * N.z) assert B.linear_momentum(N) == m2 * (v1 * N.x + v2 * N.y + v3 * N.z) def test_rigidbody2(): M, v, r, omega, g, h = dynamicsymbols('M v r omega g h') N = ReferenceFrame('N') b = ReferenceFrame('b') b.set_ang_vel(N, omega * b.x) P = Point('P') I = outer(b.x, b.x) Inertia_tuple = (I, P) B = RigidBody('B', P, b, M, Inertia_tuple) P.set_vel(N, v * b.x) assert B.angular_momentum(P, N) == omega * b.x O = Point('O') O.set_vel(N, v * b.x) P.set_pos(O, r * b.y) assert B.angular_momentum(O, N) == omega * b.x - M*v*r*b.z B.potential_energy = M * g * h assert B.potential_energy == M * g * h assert expand(2 * B.kinetic_energy(N)) == omega**2 + M * v**2 def test_rigidbody3(): q1, q2, q3, q4 = dynamicsymbols('q1:5') p1, p2, p3 = symbols('p1:4') m = symbols('m') A = ReferenceFrame('A') B = A.orientnew('B', 'axis', [q1, A.x]) O = Point('O') O.set_vel(A, q2*A.x + q3*A.y + q4*A.z) P = O.locatenew('P', p1*B.x + p2*B.y + p3*B.z) P.v2pt_theory(O, A, B) I = outer(B.x, B.x) rb1 = RigidBody('rb1', P, B, m, (I, P)) # I_S/O = I_S/S* + I_S*/O rb2 = RigidBody('rb2', P, B, m, (I + inertia_of_point_mass(m, P.pos_from(O), B), O)) assert rb1.central_inertia == rb2.central_inertia assert rb1.angular_momentum(O, A) == rb2.angular_momentum(O, A) def test_pendulum_angular_momentum(): """Consider a pendulum of length OA = 2a, of mass m as a rigid body of center of mass G (OG = a) which turn around (O,z). The angle between the reference frame R and the rod is q. The inertia of the body is I = (G,0,ma^2/3,ma^2/3). """ m, a = symbols('m, a') q = dynamicsymbols('q') R = ReferenceFrame('R') R1 = R.orientnew('R1', 'Axis', [q, R.z]) R1.set_ang_vel(R, q.diff() * R.z) I = inertia(R1, 0, m * a**2 / 3, m * a**2 / 3) O = Point('O') A = O.locatenew('A', 2*a * R1.x) G = O.locatenew('G', a * R1.x) S = RigidBody('S', G, R1, m, (I, G)) O.set_vel(R, 0) A.v2pt_theory(O, R, R1) G.v2pt_theory(O, R, R1) assert (4 * m * a**2 / 3 * q.diff() * R.z - S.angular_momentum(O, R).express(R)) == 0 def test_parallel_axis(): N = ReferenceFrame('N') m, Ix, Iy, Iz, a, b = symbols('m, I_x, I_y, I_z, a, b') Io = inertia(N, Ix, Iy, Iz) o = Point('o') p = o.locatenew('p', a * N.x + b * N.y) R = RigidBody('R', o, N, m, (Io, o)) Ip = R.parallel_axis(p) Ip_expected = inertia(N, Ix + m * b**2, Iy + m * a**2, Iz + m * (a**2 + b**2), ixy=-m * a * b) assert Ip == Ip_expected
a93971f13940222bd676034797a189fce54b70829ad90f98206dc8febfee32c7
from sympy.core.compatibility import range from sympy.core.backend import cos, Matrix, sin, zeros, tan, pi, symbols from sympy import trigsimp, simplify, solve from sympy.physics.mechanics import (cross, dot, dynamicsymbols, find_dynamicsymbols, KanesMethod, inertia, inertia_of_point_mass, Point, ReferenceFrame, RigidBody) from sympy.utilities.pytest import warns_deprecated_sympy def test_aux_dep(): # This test is about rolling disc dynamics, comparing the results found # with KanesMethod to those found when deriving the equations "manually" # with SymPy. # The terms Fr, Fr*, and Fr*_steady are all compared between the two # methods. Here, Fr*_steady refers to the generalized inertia forces for an # equilibrium configuration. # Note: comparing to the test of test_rolling_disc() in test_kane.py, this # test also tests auxiliary speeds and configuration and motion constraints #, seen in the generalized dependent coordinates q[3], and depend speeds # u[3], u[4] and u[5]. # First, manual derivation of Fr, Fr_star, Fr_star_steady. # Symbols for time and constant parameters. # Symbols for contact forces: Fx, Fy, Fz. t, r, m, g, I, J = symbols('t r m g I J') Fx, Fy, Fz = symbols('Fx Fy Fz') # Configuration variables and their time derivatives: # q[0] -- yaw # q[1] -- lean # q[2] -- spin # q[3] -- dot(-r*B.z, A.z) -- distance from ground plane to disc center in # A.z direction # Generalized speeds and their time derivatives: # u[0] -- disc angular velocity component, disc fixed x direction # u[1] -- disc angular velocity component, disc fixed y direction # u[2] -- disc angular velocity component, disc fixed z direction # u[3] -- disc velocity component, A.x direction # u[4] -- disc velocity component, A.y direction # u[5] -- disc velocity component, A.z direction # Auxiliary generalized speeds: # ua[0] -- contact point auxiliary generalized speed, A.x direction # ua[1] -- contact point auxiliary generalized speed, A.y direction # ua[2] -- contact point auxiliary generalized speed, A.z direction q = dynamicsymbols('q:4') qd = [qi.diff(t) for qi in q] u = dynamicsymbols('u:6') ud = [ui.diff(t) for ui in u] ud_zero = dict(zip(ud, [0.]*len(ud))) ua = dynamicsymbols('ua:3') ua_zero = dict(zip(ua, [0.]*len(ua))) # noqa:F841 # Reference frames: # Yaw intermediate frame: A. # Lean intermediate frame: B. # Disc fixed frame: C. N = ReferenceFrame('N') A = N.orientnew('A', 'Axis', [q[0], N.z]) B = A.orientnew('B', 'Axis', [q[1], A.x]) C = B.orientnew('C', 'Axis', [q[2], B.y]) # Angular velocity and angular acceleration of disc fixed frame # u[0], u[1] and u[2] are generalized independent speeds. C.set_ang_vel(N, u[0]*B.x + u[1]*B.y + u[2]*B.z) C.set_ang_acc(N, C.ang_vel_in(N).diff(t, B) + cross(B.ang_vel_in(N), C.ang_vel_in(N))) # Velocity and acceleration of points: # Disc-ground contact point: P. # Center of disc: O, defined from point P with depend coordinate: q[3] # u[3], u[4] and u[5] are generalized dependent speeds. P = Point('P') P.set_vel(N, ua[0]*A.x + ua[1]*A.y + ua[2]*A.z) O = P.locatenew('O', q[3]*A.z + r*sin(q[1])*A.y) O.set_vel(N, u[3]*A.x + u[4]*A.y + u[5]*A.z) O.set_acc(N, O.vel(N).diff(t, A) + cross(A.ang_vel_in(N), O.vel(N))) # Kinematic differential equations: # Two equalities: one is w_c_n_qd = C.ang_vel_in(N) in three coordinates # directions of B, for qd0, qd1 and qd2. # the other is v_o_n_qd = O.vel(N) in A.z direction for qd3. # Then, solve for dq/dt's in terms of u's: qd_kd. w_c_n_qd = qd[0]*A.z + qd[1]*B.x + qd[2]*B.y v_o_n_qd = O.pos_from(P).diff(t, A) + cross(A.ang_vel_in(N), O.pos_from(P)) kindiffs = Matrix([dot(w_c_n_qd - C.ang_vel_in(N), uv) for uv in B] + [dot(v_o_n_qd - O.vel(N), A.z)]) qd_kd = solve(kindiffs, qd) # noqa:F841 # Values of generalized speeds during a steady turn for later substitution # into the Fr_star_steady. steady_conditions = solve(kindiffs.subs({qd[1] : 0, qd[3] : 0}), u) steady_conditions.update({qd[1] : 0, qd[3] : 0}) # Partial angular velocities and velocities. partial_w_C = [C.ang_vel_in(N).diff(ui, N) for ui in u + ua] partial_v_O = [O.vel(N).diff(ui, N) for ui in u + ua] partial_v_P = [P.vel(N).diff(ui, N) for ui in u + ua] # Configuration constraint: f_c, the projection of radius r in A.z direction # is q[3]. # Velocity constraints: f_v, for u3, u4 and u5. # Acceleration constraints: f_a. f_c = Matrix([dot(-r*B.z, A.z) - q[3]]) f_v = Matrix([dot(O.vel(N) - (P.vel(N) + cross(C.ang_vel_in(N), O.pos_from(P))), ai).expand() for ai in A]) v_o_n = cross(C.ang_vel_in(N), O.pos_from(P)) a_o_n = v_o_n.diff(t, A) + cross(A.ang_vel_in(N), v_o_n) f_a = Matrix([dot(O.acc(N) - a_o_n, ai) for ai in A]) # noqa:F841 # Solve for constraint equations in the form of # u_dependent = A_rs * [u_i; u_aux]. # First, obtain constraint coefficient matrix: M_v * [u; ua] = 0; # Second, taking u[0], u[1], u[2] as independent, # taking u[3], u[4], u[5] as dependent, # rearranging the matrix of M_v to be A_rs for u_dependent. # Third, u_aux ==0 for u_dep, and resulting dictionary of u_dep_dict. M_v = zeros(3, 9) for i in range(3): for j, ui in enumerate(u + ua): M_v[i, j] = f_v[i].diff(ui) M_v_i = M_v[:, :3] M_v_d = M_v[:, 3:6] M_v_aux = M_v[:, 6:] M_v_i_aux = M_v_i.row_join(M_v_aux) A_rs = - M_v_d.inv() * M_v_i_aux u_dep = A_rs[:, :3] * Matrix(u[:3]) u_dep_dict = dict(zip(u[3:], u_dep)) # Active forces: F_O acting on point O; F_P acting on point P. # Generalized active forces (unconstrained): Fr_u = F_point * pv_point. F_O = m*g*A.z F_P = Fx * A.x + Fy * A.y + Fz * A.z Fr_u = Matrix([dot(F_O, pv_o) + dot(F_P, pv_p) for pv_o, pv_p in zip(partial_v_O, partial_v_P)]) # Inertia force: R_star_O. # Inertia of disc: I_C_O, where J is a inertia component about principal axis. # Inertia torque: T_star_C. # Generalized inertia forces (unconstrained): Fr_star_u. R_star_O = -m*O.acc(N) I_C_O = inertia(B, I, J, I) T_star_C = -(dot(I_C_O, C.ang_acc_in(N)) \ + cross(C.ang_vel_in(N), dot(I_C_O, C.ang_vel_in(N)))) Fr_star_u = Matrix([dot(R_star_O, pv) + dot(T_star_C, pav) for pv, pav in zip(partial_v_O, partial_w_C)]) # Form nonholonomic Fr: Fr_c, and nonholonomic Fr_star: Fr_star_c. # Also, nonholonomic Fr_star in steady turning condition: Fr_star_steady. Fr_c = Fr_u[:3, :].col_join(Fr_u[6:, :]) + A_rs.T * Fr_u[3:6, :] Fr_star_c = Fr_star_u[:3, :].col_join(Fr_star_u[6:, :])\ + A_rs.T * Fr_star_u[3:6, :] Fr_star_steady = Fr_star_c.subs(ud_zero).subs(u_dep_dict)\ .subs(steady_conditions).subs({q[3]: -r*cos(q[1])}).expand() # Second, using KaneMethod in mechanics for fr, frstar and frstar_steady. # Rigid Bodies: disc, with inertia I_C_O. iner_tuple = (I_C_O, O) disc = RigidBody('disc', O, C, m, iner_tuple) bodyList = [disc] # Generalized forces: Gravity: F_o; Auxiliary forces: F_p. F_o = (O, F_O) F_p = (P, F_P) forceList = [F_o, F_p] # KanesMethod. kane = KanesMethod( N, q_ind= q[:3], u_ind= u[:3], kd_eqs=kindiffs, q_dependent=q[3:], configuration_constraints = f_c, u_dependent=u[3:], velocity_constraints= f_v, u_auxiliary=ua ) # fr, frstar, frstar_steady and kdd(kinematic differential equations). with warns_deprecated_sympy(): (fr, frstar)= kane.kanes_equations(forceList, bodyList) frstar_steady = frstar.subs(ud_zero).subs(u_dep_dict).subs(steady_conditions)\ .subs({q[3]: -r*cos(q[1])}).expand() kdd = kane.kindiffdict() assert Matrix(Fr_c).expand() == fr.expand() assert Matrix(Fr_star_c.subs(kdd)).expand() == frstar.expand() assert (simplify(Matrix(Fr_star_steady).expand()) == simplify(frstar_steady.expand())) syms_in_forcing = find_dynamicsymbols(kane.forcing) for qdi in qd: assert qdi not in syms_in_forcing def test_non_central_inertia(): # This tests that the calculation of Fr* does not depend the point # about which the inertia of a rigid body is defined. This test solves # exercises 8.12, 8.17 from Kane 1985. # Declare symbols q1, q2, q3 = dynamicsymbols('q1:4') q1d, q2d, q3d = dynamicsymbols('q1:4', level=1) u1, u2, u3, u4, u5 = dynamicsymbols('u1:6') u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta') a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t') Q1, Q2, Q3 = symbols('Q1, Q2 Q3') IA22, IA23, IA33 = symbols('IA22 IA23 IA33') # Reference Frames F = ReferenceFrame('F') P = F.orientnew('P', 'axis', [-theta, F.y]) A = P.orientnew('A', 'axis', [q1, P.x]) A.set_ang_vel(F, u1*A.x + u3*A.z) # define frames for wheels B = A.orientnew('B', 'axis', [q2, A.z]) C = A.orientnew('C', 'axis', [q3, A.z]) B.set_ang_vel(A, u4 * A.z) C.set_ang_vel(A, u5 * A.z) # define points D, S*, Q on frame A and their velocities pD = Point('D') pD.set_vel(A, 0) # u3 will not change v_D_F since wheels are still assumed to roll without slip. pD.set_vel(F, u2 * A.y) pS_star = pD.locatenew('S*', e*A.y) pQ = pD.locatenew('Q', f*A.y - R*A.x) for p in [pS_star, pQ]: p.v2pt_theory(pD, F, A) # masscenters of bodies A, B, C pA_star = pD.locatenew('A*', a*A.y) pB_star = pD.locatenew('B*', b*A.z) pC_star = pD.locatenew('C*', -b*A.z) for p in [pA_star, pB_star, pC_star]: p.v2pt_theory(pD, F, A) # points of B, C touching the plane P pB_hat = pB_star.locatenew('B^', -R*A.x) pC_hat = pC_star.locatenew('C^', -R*A.x) pB_hat.v2pt_theory(pB_star, F, B) pC_hat.v2pt_theory(pC_star, F, C) # the velocities of B^, C^ are zero since B, C are assumed to roll without slip kde = [q1d - u1, q2d - u4, q3d - u5] vc = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]] # inertias of bodies A, B, C # IA22, IA23, IA33 are not specified in the problem statement, but are # necessary to define an inertia object. Although the values of # IA22, IA23, IA33 are not known in terms of the variables given in the # problem statement, they do not appear in the general inertia terms. inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0) inertia_B = inertia(B, K, K, J) inertia_C = inertia(C, K, K, J) # define the rigid bodies A, B, C rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star)) rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star)) rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star)) km = KanesMethod(F, q_ind=[q1, q2, q3], u_ind=[u1, u2], kd_eqs=kde, u_dependent=[u4, u5], velocity_constraints=vc, u_auxiliary=[u3]) forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)] bodies = [rbA, rbB, rbC] with warns_deprecated_sympy(): fr, fr_star = km.kanes_equations(forces, bodies) vc_map = solve(vc, [u4, u5]) # KanesMethod returns the negative of Fr, Fr* as defined in Kane1985. fr_star_expected = Matrix([ -(IA + 2*J*b**2/R**2 + 2*K + mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2, -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2, 0]) t = trigsimp(fr_star.subs(vc_map).subs({u3: 0})).doit().expand() assert ((fr_star_expected - t).expand() == zeros(3, 1)) # define inertias of rigid bodies A, B, C about point D # I_S/O = I_S/S* + I_S*/O bodies2 = [] for rb, I_star in zip([rbA, rbB, rbC], [inertia_A, inertia_B, inertia_C]): I = I_star + inertia_of_point_mass(rb.mass, rb.masscenter.pos_from(pD), rb.frame) bodies2.append(RigidBody('', rb.masscenter, rb.frame, rb.mass, (I, pD))) with warns_deprecated_sympy(): fr2, fr_star2 = km.kanes_equations(forces, bodies2) t = trigsimp(fr_star2.subs(vc_map).subs({u3: 0})).doit() assert (fr_star_expected - t).expand() == zeros(3, 1) def test_sub_qdot(): # This test solves exercises 8.12, 8.17 from Kane 1985 and defines # some velocities in terms of q, qdot. ## --- Declare symbols --- q1, q2, q3 = dynamicsymbols('q1:4') q1d, q2d, q3d = dynamicsymbols('q1:4', level=1) u1, u2, u3 = dynamicsymbols('u1:4') u_prime, R, M, g, e, f, theta = symbols('u\' R, M, g, e, f, theta') a, b, mA, mB, IA, J, K, t = symbols('a b mA mB IA J K t') IA22, IA23, IA33 = symbols('IA22 IA23 IA33') Q1, Q2, Q3 = symbols('Q1 Q2 Q3') # --- Reference Frames --- F = ReferenceFrame('F') P = F.orientnew('P', 'axis', [-theta, F.y]) A = P.orientnew('A', 'axis', [q1, P.x]) A.set_ang_vel(F, u1*A.x + u3*A.z) # define frames for wheels B = A.orientnew('B', 'axis', [q2, A.z]) C = A.orientnew('C', 'axis', [q3, A.z]) ## --- define points D, S*, Q on frame A and their velocities --- pD = Point('D') pD.set_vel(A, 0) # u3 will not change v_D_F since wheels are still assumed to roll w/o slip pD.set_vel(F, u2 * A.y) pS_star = pD.locatenew('S*', e*A.y) pQ = pD.locatenew('Q', f*A.y - R*A.x) # masscenters of bodies A, B, C pA_star = pD.locatenew('A*', a*A.y) pB_star = pD.locatenew('B*', b*A.z) pC_star = pD.locatenew('C*', -b*A.z) for p in [pS_star, pQ, pA_star, pB_star, pC_star]: p.v2pt_theory(pD, F, A) # points of B, C touching the plane P pB_hat = pB_star.locatenew('B^', -R*A.x) pC_hat = pC_star.locatenew('C^', -R*A.x) pB_hat.v2pt_theory(pB_star, F, B) pC_hat.v2pt_theory(pC_star, F, C) # --- relate qdot, u --- # the velocities of B^, C^ are zero since B, C are assumed to roll w/o slip kde = [dot(p.vel(F), A.y) for p in [pB_hat, pC_hat]] kde += [u1 - q1d] kde_map = solve(kde, [q1d, q2d, q3d]) for k, v in list(kde_map.items()): kde_map[k.diff(t)] = v.diff(t) # inertias of bodies A, B, C # IA22, IA23, IA33 are not specified in the problem statement, but are # necessary to define an inertia object. Although the values of # IA22, IA23, IA33 are not known in terms of the variables given in the # problem statement, they do not appear in the general inertia terms. inertia_A = inertia(A, IA, IA22, IA33, 0, IA23, 0) inertia_B = inertia(B, K, K, J) inertia_C = inertia(C, K, K, J) # define the rigid bodies A, B, C rbA = RigidBody('rbA', pA_star, A, mA, (inertia_A, pA_star)) rbB = RigidBody('rbB', pB_star, B, mB, (inertia_B, pB_star)) rbC = RigidBody('rbC', pC_star, C, mB, (inertia_C, pC_star)) ## --- use kanes method --- km = KanesMethod(F, [q1, q2, q3], [u1, u2], kd_eqs=kde, u_auxiliary=[u3]) forces = [(pS_star, -M*g*F.x), (pQ, Q1*A.x + Q2*A.y + Q3*A.z)] bodies = [rbA, rbB, rbC] # Q2 = -u_prime * u2 * Q1 / sqrt(u2**2 + f**2 * u1**2) # -u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2) = R / Q1 * Q2 fr_expected = Matrix([ f*Q3 + M*g*e*sin(theta)*cos(q1), Q2 + M*g*sin(theta)*sin(q1), e*M*g*cos(theta) - Q1*f - Q2*R]) #Q1 * (f - u_prime * R * u2 / sqrt(u2**2 + f**2 * u1**2)))]) fr_star_expected = Matrix([ -(IA + 2*J*b**2/R**2 + 2*K + mA*a**2 + 2*mB*b**2) * u1.diff(t) - mA*a*u1*u2, -(mA + 2*mB +2*J/R**2) * u2.diff(t) + mA*a*u1**2, 0]) with warns_deprecated_sympy(): fr, fr_star = km.kanes_equations(forces, bodies) assert (fr.expand() == fr_expected.expand()) assert ((fr_star_expected - trigsimp(fr_star)).expand() == zeros(3, 1)) def test_sub_qdot2(): # This test solves exercises 8.3 from Kane 1985 and defines # all velocities in terms of q, qdot. We check that the generalized active # forces are correctly computed if u terms are only defined in the # kinematic differential equations. # # This functionality was added in PR 8948. Without qdot/u substitution, the # KanesMethod constructor will fail during the constraint initialization as # the B matrix will be poorly formed and inversion of the dependent part # will fail. g, m, Px, Py, Pz, R, t = symbols('g m Px Py Pz R t') q = dynamicsymbols('q:5') qd = dynamicsymbols('q:5', level=1) u = dynamicsymbols('u:5') ## Define inertial, intermediate, and rigid body reference frames A = ReferenceFrame('A') B_prime = A.orientnew('B_prime', 'Axis', [q[0], A.z]) B = B_prime.orientnew('B', 'Axis', [pi/2 - q[1], B_prime.x]) C = B.orientnew('C', 'Axis', [q[2], B.z]) ## Define points of interest and their velocities pO = Point('O') pO.set_vel(A, 0) # R is the point in plane H that comes into contact with disk C. pR = pO.locatenew('R', q[3]*A.x + q[4]*A.y) pR.set_vel(A, pR.pos_from(pO).diff(t, A)) pR.set_vel(B, 0) # C^ is the point in disk C that comes into contact with plane H. pC_hat = pR.locatenew('C^', 0) pC_hat.set_vel(C, 0) # C* is the point at the center of disk C. pCs = pC_hat.locatenew('C*', R*B.y) pCs.set_vel(C, 0) pCs.set_vel(B, 0) # calculate velocites of points C* and C^ in frame A pCs.v2pt_theory(pR, A, B) # points C* and R are fixed in frame B pC_hat.v2pt_theory(pCs, A, C) # points C* and C^ are fixed in frame C ## Define forces on each point of the system R_C_hat = Px*A.x + Py*A.y + Pz*A.z R_Cs = -m*g*A.z forces = [(pC_hat, R_C_hat), (pCs, R_Cs)] ## Define kinematic differential equations # let ui = omega_C_A & bi (i = 1, 2, 3) # u4 = qd4, u5 = qd5 u_expr = [C.ang_vel_in(A) & uv for uv in B] u_expr += qd[3:] kde = [ui - e for ui, e in zip(u, u_expr)] km1 = KanesMethod(A, q, u, kde) with warns_deprecated_sympy(): fr1, _ = km1.kanes_equations(forces, []) ## Calculate generalized active forces if we impose the condition that the # disk C is rolling without slipping u_indep = u[:3] u_dep = list(set(u) - set(u_indep)) vc = [pC_hat.vel(A) & uv for uv in [A.x, A.y]] km2 = KanesMethod(A, q, u_indep, kde, u_dependent=u_dep, velocity_constraints=vc) with warns_deprecated_sympy(): fr2, _ = km2.kanes_equations(forces, []) fr1_expected = Matrix([ -R*g*m*sin(q[1]), -R*(Px*cos(q[0]) + Py*sin(q[0]))*tan(q[1]), R*(Px*cos(q[0]) + Py*sin(q[0])), Px, Py]) fr2_expected = Matrix([ -R*g*m*sin(q[1]), 0, 0]) assert (trigsimp(fr1.expand()) == trigsimp(fr1_expected.expand())) assert (trigsimp(fr2.expand()) == trigsimp(fr2_expected.expand()))
9464395281db87a76236d021418c8c95618dbc0923654cf9492984f870f74a94
from .unit_definitions import ( percent, percents, permille, rad, radian, radians, deg, degree, degrees, sr, steradian, steradians, mil, angular_mil, angular_mils, m, meter, meters, kg, kilogram, kilograms, s, second, seconds, A, ampere, amperes, K, kelvin, kelvins, mol, mole, moles, cd, candela, candelas, g, gram, grams, mg, milligram, milligrams, ug, microgram, micrograms, newton, newtons, N, joule, joules, J, watt, watts, W, pascal, pascals, Pa, pa, hertz, hz, Hz, coulomb, coulombs, C, volt, volts, v, V, ohm, ohms, siemens, S, mho, mhos, farad, farads, F, henry, henrys, H, tesla, teslas, T, weber, webers, Wb, wb, optical_power, dioptre, D, lux, lx, katal, kat, gray, Gy, becquerel, Bq, km, kilometer, kilometers, dm, decimeter, decimeters, cm, centimeter, centimeters, mm, millimeter, millimeters, um, micrometer, micrometers, micron, microns, nm, nanometer, nanometers, pm, picometer, picometers, ft, foot, feet, inch, inches, yd, yard, yards, mi, mile, miles, nmi, nautical_mile, nautical_miles, l, liter, liters, dl, deciliter, deciliters, cl, centiliter, centiliters, ml, milliliter, milliliters, ms, millisecond, milliseconds, us, microsecond, microseconds, ns, nanosecond, nanoseconds, ps, picosecond, picoseconds, minute, minutes, h, hour, hours, day, days, anomalistic_year, anomalistic_years, sidereal_year, sidereal_years, tropical_year, tropical_years, common_year, common_years, julian_year, julian_years, draconic_year, draconic_years, gaussian_year, gaussian_years, full_moon_cycle, full_moon_cycles, year, years, G, gravitational_constant, c, speed_of_light, elementary_charge, hbar, planck, eV, electronvolt, electronvolts, avogadro_number, avogadro, avogadro_constant, boltzmann, boltzmann_constant, stefan, stefan_boltzmann_constant, R, molar_gas_constant, faraday_constant, josephson_constant, von_klitzing_constant, amu, amus, atomic_mass_unit, atomic_mass_constant, gee, gees, acceleration_due_to_gravity, u0, magnetic_constant, vacuum_permeability, e0, electric_constant, vacuum_permittivity, Z0, vacuum_impedance, coulomb_constant, coulombs_constant, electric_force_constant, atmosphere, atmospheres, atm, kPa, kilopascal, bar, bars, pound, pounds, psi, dHg0, mmHg, torr, mmu, mmus, milli_mass_unit, quart, quarts, ly, lightyear, lightyears, au, astronomical_unit, astronomical_units, planck_mass, planck_time, planck_temperature, planck_length, planck_charge, planck_area, planck_volume, planck_momentum, planck_energy, planck_force, planck_power, planck_density, planck_energy_density, planck_intensity, planck_angular_frequency, planck_pressure, planck_current, planck_voltage, planck_impedance, planck_acceleration, bit, bits, byte, kibibyte, kibibytes, mebibyte, mebibytes, gibibyte, gibibytes, tebibyte, tebibytes, pebibyte, pebibytes, exbibyte, exbibytes, curie, rutherford ) __all__ = [ 'percent', 'percents', 'permille', 'rad', 'radian', 'radians', 'deg', 'degree', 'degrees', 'sr', 'steradian', 'steradians', 'mil', 'angular_mil', 'angular_mils', 'm', 'meter', 'meters', 'kg', 'kilogram', 'kilograms', 's', 'second', 'seconds', 'A', 'ampere', 'amperes', 'K', 'kelvin', 'kelvins', 'mol', 'mole', 'moles', 'cd', 'candela', 'candelas', 'g', 'gram', 'grams', 'mg', 'milligram', 'milligrams', 'ug', 'microgram', 'micrograms', 'newton', 'newtons', 'N', 'joule', 'joules', 'J', 'watt', 'watts', 'W', 'pascal', 'pascals', 'Pa', 'pa', 'hertz', 'hz', 'Hz', 'coulomb', 'coulombs', 'C', 'volt', 'volts', 'v', 'V', 'ohm', 'ohms', 'siemens', 'S', 'mho', 'mhos', 'farad', 'farads', 'F', 'henry', 'henrys', 'H', 'tesla', 'teslas', 'T', 'weber', 'webers', 'Wb', 'wb', 'optical_power', 'dioptre', 'D', 'lux', 'lx', 'katal', 'kat', 'gray', 'Gy', 'becquerel', 'Bq', 'km', 'kilometer', 'kilometers', 'dm', 'decimeter', 'decimeters', 'cm', 'centimeter', 'centimeters', 'mm', 'millimeter', 'millimeters', 'um', 'micrometer', 'micrometers', 'micron', 'microns', 'nm', 'nanometer', 'nanometers', 'pm', 'picometer', 'picometers', 'ft', 'foot', 'feet', 'inch', 'inches', 'yd', 'yard', 'yards', 'mi', 'mile', 'miles', 'nmi', 'nautical_mile', 'nautical_miles', 'l', 'liter', 'liters', 'dl', 'deciliter', 'deciliters', 'cl', 'centiliter', 'centiliters', 'ml', 'milliliter', 'milliliters', 'ms', 'millisecond', 'milliseconds', 'us', 'microsecond', 'microseconds', 'ns', 'nanosecond', 'nanoseconds', 'ps', 'picosecond', 'picoseconds', 'minute', 'minutes', 'h', 'hour', 'hours', 'day', 'days', 'anomalistic_year', 'anomalistic_years', 'sidereal_year', 'sidereal_years', 'tropical_year', 'tropical_years', 'common_year', 'common_years', 'julian_year', 'julian_years', 'draconic_year', 'draconic_years', 'gaussian_year', 'gaussian_years', 'full_moon_cycle', 'full_moon_cycles', 'year', 'years', 'G', 'gravitational_constant', 'c', 'speed_of_light', 'elementary_charge', 'hbar', 'planck', 'eV', 'electronvolt', 'electronvolts', 'avogadro_number', 'avogadro', 'avogadro_constant', 'boltzmann', 'boltzmann_constant', 'stefan', 'stefan_boltzmann_constant', 'R', 'molar_gas_constant', 'faraday_constant', 'josephson_constant', 'von_klitzing_constant', 'amu', 'amus', 'atomic_mass_unit', 'atomic_mass_constant', 'gee', 'gees', 'acceleration_due_to_gravity', 'u0', 'magnetic_constant', 'vacuum_permeability', 'e0', 'electric_constant', 'vacuum_permittivity', 'Z0', 'vacuum_impedance', 'coulomb_constant', 'coulombs_constant', 'electric_force_constant', 'atmosphere', 'atmospheres', 'atm', 'kPa', 'kilopascal', 'bar', 'bars', 'pound', 'pounds', 'psi', 'dHg0', 'mmHg', 'torr', 'mmu', 'mmus', 'milli_mass_unit', 'quart', 'quarts', 'ly', 'lightyear', 'lightyears', 'au', 'astronomical_unit', 'astronomical_units', 'planck_mass', 'planck_time', 'planck_temperature', 'planck_length', 'planck_charge', 'planck_area', 'planck_volume', 'planck_momentum', 'planck_energy', 'planck_force', 'planck_power', 'planck_density', 'planck_energy_density', 'planck_intensity', 'planck_angular_frequency', 'planck_pressure', 'planck_current', 'planck_voltage', 'planck_impedance', 'planck_acceleration', 'bit', 'bits', 'byte', 'kibibyte', 'kibibytes', 'mebibyte', 'mebibytes', 'gibibyte', 'gibibytes', 'tebibyte', 'tebibytes', 'pebibyte', 'pebibytes', 'exbibyte', 'exbibytes', 'curie', 'rutherford', ]